
Head First: Design Patterns

Table of Contents

Special Upgrade Offer

Praise for Head First Design Patterns

More Praise for Head First Design Patterns

Praise for other books by Eric Freeman and Elisabeth Robson

Authors of Head First Design Patterns

Creators of the Head First series (and co-conspirators on this book)

How to Use This Book: Intro

Who is this book for?

Who should probably back away from this book?

We know what you’re thinking.

And we know what your brain is thinking.

Metacognition: thinking about thinking

Here’s what WE did

Here’s what YOU can do to bend your brain into submission

Read Me

Tech Reviewers

Acknowledgments

Even more people

1. Intro to Design Patterns: Welcome to Design Patterns

It started with a simple SimUDuck app

But now we need the ducks to FLY

But something went horribly wrong...

Joe thinks about inheritance...

How about an interface?

What would you do if you were Joe?

The one constant in software development

Zeroing in on the problem...

Separating what changes from what stays the same

Designing the Duck Behaviors

Implementing the Duck Behaviors

Integrating the Duck Behavior

More integration...

Testing the Duck code

Setting behavior dynamically

The Big Picture on encapsulated behaviors

HAS-A can be better than IS-A

Speaking of Design Patterns...

Overheard at the local diner...

Overheard in the next cubicle...

The power of a shared pattern vocabulary

How do I use Design Patterns?

Tools for your Design Toolbox

2. The Observer Pattern: Keeping your Objects in the know

The Weather Monitoring application overview

Unpacking the WeatherData class

What do we know so far?

Taking a first, misguided SWAG at the Weather Station

What’s wrong with our implementation?

Meet the Observer Pattern

Publishers + Subscribers = Observer Pattern

A day in the life of the Observer Pattern

Five-minute drama: a subject for observation

Two weeks later...

The Observer Pattern defined

The Observer Pattern defined: the class diagram

The power of Loose Coupling

Cubicle conversation

Designing the Weather Station

Implementing the Weather Station

Implementing the Subject interface in WeatherData

Now, let’s build those display elements

Power up the Weather Station

Using Java’s built-in Observer Pattern

How Java’s built-in Observer Pattern works

Reworking the Weather Station with the built-in support

Running the new code

The dark side of java.util.Observable

Other places you’ll find the Observer Pattern in the JDK

And the code...

The updated code, using lambda expressions

Tools for your Design Toolbox

3. The Decorator Pattern: Decorating Objects

Welcome to Starbuzz Coffee

The Open-Closed Principle

Meet the Decorator Pattern

Constructing a drink order with Decorators

Okay, here’s what we know so far...

The Decorator Pattern defined

Decorating our Beverages

Cubicle Conversation

New barista training

Writing the Starbuzz code

Coding beverages

Coding condiments

Serving some coffees

Real World Decorators: Java I/O

Decorating the java.io classes

Writing your own Java I/O Decorator

Test out your new Java I/O Decorator

Give it a spin

Tools for your Design Toolbox

4. The Factory Pattern: Baking with OO Goodness

Identifying the aspects that vary

But the pressure is on to add more pizza types

Encapsulating object creation

Building a simple pizza factory

Reworking the PizzaStore class

The Simple Factory defined

Franchising the pizza store

We’ve seen one approach...

But you’d like a little more quality control...

A framework for the pizza store

Allowing the subclasses to decide

Let’s make a PizzaStore

Declaring a factory method

Let’s see how it works: ordering pizzas with the pizza factory method

So how do they order?

Let’s check out how these pizzas are really made to order...

We’re just missing one thing: PIZZA!

Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

Now we just need some concrete subclasses... how about defining New York and Chicago style cheese pizzas?

You’ve waited long enough. Time for some pizzas!

It’s finally time to meet the Factory Method Pattern

The Creator classes

The Product classes

Another perspective: parallel class hierarchies

Factory Method Pattern defined

A very dependent PizzaStore

Looking at object dependencies

The Dependency Inversion Principle

Applying the Principle

Inverting your thinking...

A few guidelines to help you follow the Principle...

Meanwhile, back at the PizzaStore...

Ensuring consistency in your ingredients

Families of ingredients...

Building the ingredient factories

Building the New York ingredient factory

Reworking the pizzas...

Reworking the pizzas, continued...

Revisiting our pizza stores

What have we done?

More pizza for Ethan and Joel...

From here things change, because we are using an ingredient factory

Abstract Factory Pattern defined

Factory Method and Abstract Factory compared

Tools for your Design Toolbox

A very dependent PizzaStore

5. The Singleton Pattern: One of a Kind Objects

The Little Singleton

A small Socratic exercise in the style of The Little Lisper

Dissecting the classic Singleton Pattern implementation

The Chocolate Factory

Singleton Pattern defined

Houston, Hershey, PA we have a problem...

Dealing with multithreading

Can we improve multithreading?

1. Do nothing if the performance of getInstance() isn’t critical to your application.

2. Move to an eagerly created instance rather than a lazily created one.

3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

Meanwhile, back at the Chocolate Factory...

Congratulations!

Tools for your Design Toolbox

6. The Command Pattern: Encapsulating Invocation

Free hardware! Let’s check out the Remote Control...

Taking a look at the vendor classes

Cubicle Conversation

Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern

Let’s study the interaction in a little more detail...

The Objectville Diner roles and responsibilities

From the Diner to the Command Pattern

Our first command object

Using the command object

Creating a simple test to use the Remote Control

The Command Pattern defined

The Command Pattern defined: the class diagram

Assigning Commands to slots

Implementing the Remote Control

Implementing the Commands

Putting the Remote Control through its paces

Now, let’s check out the execution of our remote control test...

Time to write that documentation...

What are we doing?

Time to QA that Undo button!

Using state to implement Undo

Adding Undo to the CeilingFan commands

Get ready to test the ceiling fan

Testing the ceiling fan...

Every remote needs a Party Mode!

Using a macro command

The Command Pattern means lots of command classes

Do we really need all these command classes?

Simplifying the Remote Control with lambda expressions

Simplifying even more with method references

What if we need to do more than one thing in our lambda expression?

Test the remote control with lambda expressions

Check out the results of all those lambda expression commands...

More uses of the Command Pattern: queuing requests

More uses of the Command Pattern: logging requests

Tools for your Design Toolbox

7. The Adapter and Facade Patterns: Being Adaptive

Adapters all around us

Object-oriented adapters

If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...

Test drive the adapter

The Adapter Pattern explained

Here’s how the Client uses the Adapter

Adapter Pattern defined

Object and class adapters

Real-world adapters

Old-world Enumerators

New-world Iterators

And today...

Adapting an Enumeration to an Iterator

Designing the Adapter

Dealing with the remove() method

Writing the EnumerationIterator adapter

And now for something different...

Home Sweet Home Theater

Watching a movie (the hard way)

Lights, Camera, Facade!

Constructing your home theater facade

Implementing the simplified interface

Time to watch a movie (the easy way)

Facade Pattern defined

The Principle of Least Knowledge

How NOT to Win Friends and Influence Objects

Keeping your method calls in bounds...

The Facade and the Principle of Least Knowledge

Tools for your Design Toolbox

8. The Template Method Pattern: Encapsulating Algorithms

It’s time for some more caffeine

Whipping up some coffee and tea classes (in Java)

And now the Tea...

Sir, may I abstract your Coffee, Tea?

Taking the design further...

Abstracting prepareRecipe()

What have we done?

Meet the Template Method

Let’s make some tea...

What did the Template Method get us?

Template Method Pattern defined

Hooked on Template Method...

Using the hook

Let’s run the Test Drive

The Hollywood Principle

The Hollywood Principle and Template Method

Template Methods in the Wild

Sorting with Template Method

We’ve got some ducks to sort...

What is compareTo()?

Comparing Ducks and Ducks

Let’s sort some Ducks

The making of the sorting duck machine

Swingin’ with Frames

Applets

Tools for your Design Toolbox

9. The Iterator and Composite Patterns: Well-Managed Collections

Breaking News: Objectville Diner and Objectville Pancake House Merge

Check out the Menu Items

Lou and Mel’s Menu implementations

What’s the problem with having two different menu representations?

The Java-Enabled Waitress Specification

What now?

Can we encapsulate the iteration?

Meet the Iterator Pattern

Adding an Iterator to DinerMenu

Reworking the Diner Menu with Iterator

Fixing up the Waitress code

Testing our code

Here’s the test run...

What have we done so far?

What we have so far...

Making some improvements...

Cleaning things up with java.util.Iterator

We are almost there...

What does this get us?

Iterator Pattern defined

Single Responsibility

Taking a look at the Café Menu

Reworking the Café Menu code

Adding the Café Menu to the Waitress

Breakfast, lunch AND dinner

Here’s the test run; check out the new dinner menu from the Café!

What did we do?

We decoupled the Waitress....

... and we made the Waitress more extensible

But there’s more!

Iterators and Collections

Is the Waitress ready for prime time?

Just when we thought it was safe...

What do we need?

The Composite Pattern defined

Designing Menus with Composite

Implementing the Menu Component

Implementing the Menu Item

Implementing the Composite Menu

Fixing the print() method

Getting ready for a test drive...

Now for the test drive...

Getting ready for a test drive...

Flashback to Iterator

The Composite Iterator

The Null Iterator

Give me the vegetarian menu

The magic of Iterator & Composite together...

Tools for your Design Toolbox

10. The State Pattern: The State of Things

Jawva Breakers

Cubicle Conversation

State machines 101

Writing the code

In-house testing

You knew it was coming... a change request!

The messy STATE of things...

The new design

Defining the State interfaces and classes

Implementing our State classes

Reworking the Gumball Machine

Now, let’s look at the complete GumballMachine class...

Implementing more states

Let’s take a look at what we’ve done so far...

The State Pattern defined

We still need to finish the Gumball 1 in 10 game

Finishing the game

Demo for the CEO of Mighty Gumball, Inc.

Sanity check...

We almost forgot!

Tools for your Design Toolbox

11. The Proxy Pattern: Controlling Object Access

Coding the Monitor

Testing the Monitor

The role of the ‘remote proxy’

Adding a remote proxy to the Gumball Machine monitoring code

Remote methods 101

Java RMI, the Big Picture

How does the client get the stub object?

Back to our GumballMachine remote proxy

Getting the GumballMachine ready to be a remote service

Registering with the RMI registry...

Now for the GumballMonitor client...

Writing the Monitor test drive

Another demo for the CEO of Mighty Gumball...

And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

The Proxy Pattern defined

Get ready for Virtual Proxy

Remote Proxy

Virtual Proxy

Displaying CD covers

Designing the CD cover Virtual Proxy

How ImageProxy is going to work

Writing the Image Proxy

Testing the CD Cover Viewer

Things to try...

What did we do?

Using the Java API’s Proxy to create a protection proxy

Matchmaking in Objectville

The PersonBean implementation

Five-minute drama: protecting subjects

Big Picture: creating a Dynamic Proxy for the PersonBean

Step one: creating Invocation Handlers

Creating Invocation Handlers continued...

Step two: creating the Proxy class and instantiating the Proxy object

Testing the matchmaking service

Running the code...

The Proxy Zoo

Tools for your Design Toolbox

The code for the CD Cover Viewer

12. Compound Patterns: Patterns of Patterns

Working together

Duck reunion

What did we do?

A duck’s eye view: the class diagram

The King of Compound Patterns

If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...

Meet the Model-View-Controller

A closer look...

Looking at MVC through patterns-colored glasses

Observer

Strategy

Composite

Using MVC to control the beat...

Meet the Java DJ View

The controller is in the middle...

Let’s not forget about the model underneath it all...

Putting the pieces together

Building the pieces

Let’s check out the BeatModelInterface before looking at the implementation

Now let’s have a look at the concrete BeatModel class

The View

Implementing the View

Implementing the View, continued...

Now for the Controller

And here’s the implementation of the controller

Putting it all together...

And now for a test run...

Things to do

Exploring Strategy

Adapting the Model

Now we’re ready for a HeartController

And that’s it! Now it’s time for some test code...

And now for a test run...

Things to do

MVC and the Web

Model 2: DJ’ing from a cell phone

The plan

Step one: the model

Step two: the controller servlet

Now we need a view...

Putting Model 2 to the test...

Things to do

Design Patterns and Model 2

Model 2 is an adaptation of MVC to the Web

Observer

Strategy

Composite

Tools for your Design Toolbox

Exercise Solutions

13. Better Living with Patterns: Patterns in the Real World

Design Pattern defined

Looking more closely at the Design Pattern definition

So you wanna be a Design Patterns writer

Organizing Design Patterns

Pattern Categories

Thinking in Patterns

Keep it simple (KISS)

Design Patterns aren’t a magic bullet; in fact, they’re not even a bullet!

You know you need a pattern when...

Refactoring time is Patterns time!

Take out what you don’t really need. Don’t be afraid to remove a Design Pattern from your design.

If you don’t need it now, don’t do it now.

Your Mind on Patterns

Don’t forget the power of the shared vocabulary

Cruisin’ Objectville with the Gang of Four

Your journey has just begun...

The Patterns Zoo

Annihilating evil with Anti-Patterns

Tools for your Design Toolbox

Leaving Objectville...

Boy, it’s been great having you in Objectville.

A. Leftover Patterns

Bridge

Why use the Bridge Pattern?

Builder

Why use the Builder Pattern?

Chain of Responsibility

How to use the Chain of Responsibility Pattern

Flyweight

Why use the Flyweight Pattern?

Interpreter

How to implement an interpreter

Mediator

Mediator in action...

Memento

The Memento at work

Prototype

Prototype to the rescue

Visitor

The Visitor drops by

B.

C. Mighty Gumball

Index

Special Upgrade Offer

 Head First: Design Patterns

Eric Freeman

Elisabeth Robson

Bert Bates

Kathy Sierra

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

To the Gang of Four, whose insight and expertise in capturing and communicating Design Patterns has changed the face of software design forever, and bettered the lives of developers throughout the world.

But
seriously

 , when are we going to see a second edition? After all, it’s been only

ten
 twenty years

 .

 Special Upgrade Offer

If you purchased this ebook directly from oreilly.com
 , you have the following benefits:

	DRM-free ebooks — use your ebooks across devices without restrictions or limitations

	Multiple formats — use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here
 to access your ebook upgrade.

Please note that upgrade offers are not available from sample content.

 Praise for
Head First Design Patterns

“I received the book yesterday and started to read it on the way home... and I couldn’t stop. I took it to the gym and I expect people saw me smiling a lot while I was exercising and reading. This is très ‘cool’. It is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

—

Erich Gamma, IBM Distinguished Engineer, and coauthor of
Design Patterns

 with the rest of the Gang of Four — Richard Helm, Ralph Johnson and John Vlissides

“
Head First Design Patterns

 manages to mix fun, belly-laughs, insight, technical depth, and great practical advice in one entertaining and thought-provoking read. Whether you are new to design patterns, or have been using them for years, you are sure to get something from visiting Objectville.”

—

Richard Helm, coauthor of
Design Patterns

 with rest of the Gang of Four — Erich Gamma, Ralph Johnson and John Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”

—

Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“This book is close to perfect, because of the way it combines expertise and readability. It speaks with authority and it reads beautifully. It’s one of the very few software books I’ve ever read that strikes me as indispensable. (I’d put maybe 10 books in this category, at the outside.)”

—

David Gelernter, Professor of Computer Science, Yale University, and author of
Mirror Worlds

 and
Machine Beauty

“A Nose Dive into the realm of patterns, a land where complex things become simple, but where simple things can also become complex. I can think of no better tour guides than Eric and Elisabeth.”

—

Miko Matsumura, Industry Analyst, The Middleware Company Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

—

Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the book technically accurate, it is the easiest-to-understand introduction to design patterns that I have seen.”

—

Dr. Timothy A. Budd, Associate Professor of Computer Science at Oregon State University and author of more than a dozen books, including
C++ for Java Programmers

“Jerry Rice runs patterns better than any receiver in the NFL, but Eric and Elisabeth have out run him. Seriously...this is one of the funniest and smartest books on software design I’ve ever read.”

—

Aaron LaBerge, SVP Technology & Product Development, ESPN

 More Praise for
Head First Design Patterns

“Great code design is, first and foremost, great information design. A code designer is teaching a computer how to do something, and it is no surprise that a great teacher of computers should turn out to be a great teacher of programmers. This book’s admirable clarity, humor, and substantial doses of clever make it the sort of book that helps even non-programmers think well about problem-solving.”

—

Cory Doctorow, co-editor of Boing Boing and author of
Down and Out in the Magic Kingdom

 and
Someone Comes to Town, Someone Leaves Town

“There’s an old saying in the computer and videogame business — well, it can’t be that old because the discipline is not all that old — and it goes something like this: Design is Life. What’s particularly curious about this phrase is that even today almost no one who works at the craft of creating electronic games can agree on what it means to ‘design’ a game. Is the designer a software engineer? An art director? A storyteller? An architect or a builder? A pitch person or a visionary? Can an individual indeed be in part all of these? And most importantly, who the %$!#&* cares?

It has been said that the ‘designed by’ credit in interactive entertainment is akin to the ‘directed by’ credit in filmmaking, which in fact allows it to share DNA with perhaps the single most controversial, overstated, and too often entirely lacking in humility credit grab ever propagated on commercial art. Good company, eh? Yet if Design is Life, then perhaps it is time we spent some quality cycles thinking about what it is.

Eric Freeman and Elisabeth Robson have intrepidly volunteered to look behind the code curtain for us in
Head First Design Patterns

 . I’m not sure either of them cares all that much about the PlayStation or X-Box, nor should they. Yet they do address the notion of design at a significantly honest level such that anyone looking for ego reinforcement of his or her own brilliant auteurship is best advised not to go digging here where truth is stunningly revealed. Sophists and circus barkers need not apply. Next-generation literati, please come equipped with a pencil.”

—

Ken Goldstein, Executive Vice President & Managing Director, Disney Online

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practical development strategies — gets my brain going without having to slog through a bunch of tired, stale professor-speak.”

—

Travis Kalanick, CEO and cofounder of Uber and Member of the MIT TR100

“This book combines good humor, great examples, and in-depth knowledge of Design Patterns in such a way that makes learning fun. Being in the entertainment technology industry, I am intrigued by the Hollywood Principle and the home theater Facade Pattern, to name a few. The understanding of Design Patterns not only helps us create reusable and maintainable quality software, but also helps sharpen our problem-solving skills across all problem domains. This book is a must-read for all computer professionals and students.”

—

Newton Lee, Founder and Editor-in-Chief, Association for Computing Machinery’s (ACM) Computers in Entertainment (acmcie.org)

 Praise for other books by Eric Freeman and Elisabeth Robson

“I literally love this book. In fact, I kissed this book in front of my wife.”

—

Satish Kumar

“
Head First HTML and CSS

 is a thoroughly modern introduction to forward-looking practices in web page markup and presentation. It correctly anticipates readers’ puzzlements and handles them just in time. The highly graphic and incremental approach precisely mimics the best way to learn this stuff: make a small change and see it in the browser to understand what each new item means.”

—

Danny Goodman, author of
Dynamic HTML: The Definitive Guide

“The Web would be a much better place if every HTML author started off by reading this book.”

—

L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation

http://dbaron.org/

“My wife stole the book. She’s never done any web design, so she needed a book like
Head First HTML and CSS

 to take her from beginning to end. She now has a list of websites she wants to build — for our son’s class, our family...If I’m lucky, I’ll get the book back when she’s done.”

—

David Kaminsky, Master Inventor, IBM

“This book takes you behind the scenes of JavaScript and leaves you with a deep understanding of how this remarkable programming language works.”

—

Chris Fuselier, Engineering Consultant

“I wish I’d had
Head First JavaScript Programming

 when I was starting out!”

—

Chris Fuselier, Engineering Consultant

“The
Head First

 series utilizes elements of modern learning theory, including constructivism, to bring readers up to speed quickly. The authors have proven with this book that expert-level content can be taught quickly and efficiently. Make no mistake here, this is a serious JavaScript book, and yet, fun reading!”

—

Frank Moore, Web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some serious programming skills?
Head First JavaScript Programming

 is it!”

—

Tim Williams, software entrepreneur

Other O’Reilly books by Eric Freeman and Elisabeth Robson

	Head First JavaScript Programming

	Head First HTML and CSS

	Head First HTML5 Programming

Other related books from O’Reilly

	Head First Java

	Head First EJB

	Head First Servlets & JSP

	Learning Java

	Java in a Nutshell

	Java Enterprise in a Nutshell

	Java Examples in a Nutshell

	Java Cookbook

	J2EE Design Patterns

 Authors of Head First Design Patterns

 [image: image with no caption]

Eric

 is described by Head First series co-creator Kathy Sierra as “one of those rare individuals fluent in the language, practice, and culture of multiple domains from hipster hacker, corporate VP, engineer, think tank.”

Professionally, Eric recently ended nearly a decade as a media company executive — having held the position of CTO of Disney Online & Disney.com at The Walt Disney Company. Eric is now devoting his time to WickedlySmart, a startup he co-created with Elisabeth.

By training, Eric is a computer scientist, having studied with industry luminary David Gelernter during his Ph.D. work at Yale University. His dissertation is credited as the seminal work in alternatives to the desktop metaphor, and also as the first implementation of activity streams, a concept he and Dr. Gelernter developed.

In his spare time, Eric is deeply involved with music; you’ll find Eric’s latest project, a collaboration with ambient music pioneer Steve Roach, available on the iPhone app store under the name Immersion Station.

Eric lives with his wife and young daughter in Austin, Texas. His daughter is a frequent vistor to Eric’s studio, where she loves to turn the knobs of his synths and audio effects.

Write to Eric at eric@wickedlysmart.com
 or visit his site at ericfreeman.com
 .

 [image: image with no caption]

Elisabeth

 is a software engineer, writer, and trainer. She has been passionate about technology since her days as a student at Yale University, where she earned a Masters of Science in Computer Science and designed a concurrent, visual programming language and software architecture.

Elisabeth’s been involved with the Internet since the early days; she co-created the award-winning web site, The Ada Project, one of the first web sites designed to help women in computer science find career and mentorship information online.

She’s currently co-founder of WickedlySmart, an online education experience centered on web technologies, where she creates books, articles, videos, and more. Previously, as Director of Special Projects at O’Reilly Media, Elisabeth produced in-person workshops and online courses on a variety of technical topics and developed her passion for creating learning experiences to help people understand technology. Prior to her work with O’Reilly, Elisabeth spent time spreading fairy dust at The Walt Disney Company, where she led research and development efforts in digital media.

When not in front of her computer, you’ll find Elisabeth hiking, cycling, or kayaking in the great outdoors, with her camera nearby, or cooking vegetarian meals.

You can send her email at beth@wickedlysmart.com
 or visit her blog at elisabethrobson.com
 .

 Creators of the Head First series (and co-conspirators on this book)

 [image: image with no caption]

Kathy

 has been interested in learning theory since her days as a game designer (she wrote games for Virgin, MGM, and Amblin’). She developed much of the Head First format while teaching New Media Authoring for UCLA Extension’s Entertainment Studies program. More recently, she’s been a master trainer for Sun Microsystems, teaching Sun’s Java instructors how to teach the latest Java technologies, and developing several of Sun’s certification exams. Together with Bert Bates, she has been actively using the Head First concepts to teach throusands of developers. Kathy is the founder of javaranch.com, which won a 2003 and 2004 Software Development magazine Jolt Cola Productivity Award. You might catch her teaching Java on the Java Jam Geek Cruise (geekcruises.com).

Likes: running, skiing, skateboarding, playing with her Icelandic horses, and weird science. Dislikes: entropy.

You can find her on javaranch, or occasionally blogging at seriouspony.com
 . Write to her at kathy@wickedlysmart.com
 .

Bert

 is a long-time software developer and architect, but a decade-long stint in artificial intelligence drove his interest in learning theory and technology-based training. He’s been helping clients become better programmers ever since. Recently, he’s been heading up the development team for several of Sun’s Java Certification exams.

He spent the first decade of his software career travelling the world to help broadcast clients like Radio New Zealand, the Weather Channel, and the Arts & Entertainment Network (A & E). One of his all-time favorite projects was building a full rail system simulation for Union Pacific Railroad.

Bert is a long-time, hopelessly addicted
go

 player, and has been working on a
go

 program for way too long. He’s a fair guitar player and is now trying his hand at banjo.

Look for him on javaranch, on the IGS go server, or you can write to him at terrapin@wickedlysmart.com
 .

 How to Use This Book: Intro

 [image: image with no caption]

In this section, we answer the burning question: “So, why DID they put that in a design patterns book?”

 Who is this book for?

If you can answer “yes” to all of these:

	① Do you know
Java

 ? (You don’t need to be a guru.)

 Note

You’ll probably be okay if you know C# instead.

	② Do you want to
learn

 ,
understand

 ,
remember

 , and apply
 design patterns, including the OO design principles upon which design patterns are based?

	③ Do you prefer
stimulating dinner party conversation

 to dry, dull, academic lectures?

this book is for you.

 Who should probably back away from this book?

If you can answer “yes” to any one of these:

	

① Are you completely new to Java?

(You don’t need to be advanced, and even if you don’t know Java, but you know C#, you’ll probably understand at least 80% of the code examples. You also might be okay with just a C++ background.)

	② Are you a kick-butt OO designer/developer looking for a reference

book

 ?

	③ Are you an architect looking for enterprise
 design patterns?

	④ Are you
afraid to try something different

 ? Would you rather have a root canal than mix stripes with plaid? Do you believe that a technical book can’t be serious if Java components are anthropomorphized?

this book is not for you.

 [image: image with no caption]

[note from marketing: this book is for anyone with a credit card.]

 We know what you’re thinking.

“How can this be a serious programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

 And we know what your brain is thinking.

Your brain craves novelty. It’s always searching, scanning,
waiting

 for something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking. You just never know.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it
can

 to stop them from interfering with the brain’s
real

 job — recording things that matter. It doesn’t bother saving the boring things; they never make it past the “this is obviously not important” filter.

How does your brain
know

 what’s important? Suppose you’re out for a day hike and a tiger jumps in front of you, what happens inside your head and body?

Neurons fire. Emotions crank up.
Chemicals surge

 .

And that’s how your brain knows...

 [image: image with no caption]

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this
obviously

 non-important content doesn’t clutter up scarce resources. Resources that are better spent storing the really big things. Like tigers. Like the danger of fire. Like how you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you very much, but no matter how dull this book is, and how little I’m registering on the emotional Richter scale right now, I really do want you to keep this stuff around.”

 [image: image with no caption]

We think of a “Head First” reader as a learner

So what does it take to
learn

 something? First, you have to
get

 it, then make sure you don’t
forget

 it. It’s not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology,
learning

 takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual.

 Images are far more memorable than words alone, and make learning much more effective (up to 89% improvement in recall and transfer studies). It also makes things more understandable.
Put the words within or near the graphics

 they relate to, rather than on the bottom or on another page, and learners will be up to
twice

 as likely to solve problems related to the content.

 [image: image with no caption]

Use a conversational and personalized style.

 In recent studies, students performed up to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously. Which would
you

 pay more attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply.

 In other words, unless you actively flex your neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain, and multiple senses.

 [image: image with no caption]

Get — and keep — the reader’s attention.

 We’ve all had the “I really want to learn this but I can’t stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

 [image: image with no caption]

Touch their emotions.

 We now know that your ability to remember something is largely dependent on its emotional content. You remember what you
care

 about. You remember when you
feel

 something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from engineering
doesn’t

 .

 [image: image with no caption]

 Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were
expected

 to learn, but rarely
taught

 to learn.

But we assume that if you’re holding this book, you really want to learn design patterns. And you probably don’t want to spend a lot of time. And you want to
remember

 what you read, and be able to apply it. And for that, you’ve got to
understand

 it. To get the most from this book, or
any

 book or learning experience, take responsibility for your brain. Your brain on
this

 content.

The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain doing its best to keep the new content from sticking.

 [image: image with no caption]

So how DO you get your brain to think Design Patterns are as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you
are

 able to learn and remember even the dullest of topics, if you keep pounding on the same thing. With enough repetition, your brain says, “This doesn’t
feel

 important to him, but he keeps looking at the same thing
over

 and
over

 and
over

 , so I suppose it must be.”

The faster way is to do anything that increases brain activity
 , especially different
types

 of brain activity. The things on the previous page are a big part of the solution, and they’re all things that have been proven to help your brain work in your favor. For example, studies show that putting words
within

 the pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text) causes your brain to try to makes sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing = more chances for your brain to
get

 that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they’re in a conversation, since they’re expected to follow along and hold up their end. The amazing thing is, your brain doesn’t necessarily
care

 that the “conversation” is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

 Here’s what WE did

We used pictures
 , because your brain is tuned for visuals, not text. As far as your brain’s concerned, a picture really is worth 1,024 words. And when text and pictures work together, we embedded the text in the pictures because your brain works more effectively when the text is within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

 [image: image with no caption]

We used redundancy
 , saying the same thing in
different

 ways and with different media types, and
multiple senses

 , to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected
 ways because your brain is tuned for novelty, and we used pictures and ideas with at least
some

 emotional

content

 , because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
feel

 something is more likely to be remembered, even if that feeling is nothing more than a little humor
 , surprise
 , or interest
 .

We used a personalized, conversational style
 , because your brain is tuned to pay more attention when it believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your brain does this even when you’re
reading

 .

 [image: image with no caption]

We included more than 40 activities
 , because your brain is tuned to learn and remember more when you do
 things than when you read about things. And we made the exercises challenging-yet-do-able, because that’s what most
people

 prefer.

We used multiple learning styles
 , because
you

 might prefer step-by-step procedures, while someone else wants to understand the big picture first, while someone else just wants to see a code example. But regardless of your own learning preference,
everyone

 benefits from seeing the same content represented in multiple ways.

 [image: image with no caption]

We include content for both sides of your brain
 , because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.

 [image: image with no caption]

And we included stories
 and exercises that present more than one point of view
 , because your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges
 , with exercises, and by asking questions
 that don’t always have a straight answer, because your brain is tuned to learn and remember when it has to
work

 at something. Think about it — you can’t get your
body

 in shape just by
watching

 people at the gym. But we did our best to make sure that when you’re working hard, it’s on the
right

 things. That you’re not spending one extra dendrite
 processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly terse text.

We used people
 . In stories, examples, pictures, etc., because, well, because
you’re

 a person. And your brain pays more attention to
people

 than it does to
things

 .

We used an 80/20
 approach. We assume that if you’re going for a PhD in software design, this won’t be your only book. So we don’t talk about
everything

 . Just the stuff you’ll actually
need

 .

 [image: image with no caption]

 Here’s what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure out what works for you and what doesn’t. Try new things.

 [image: image with no caption]

Cut this out and stick it on your refrigerator.

	

① Slow down. The more you understand, the less you have to memorize.

Don’t just
read

 . Stop and think. When the book asks you a question, don’t just skip to the answer. Imagine that someone really is asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.

	

② Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don’t just
look

 at the exercises.
Use a pencil

 . There’s plenty of evidence that physical activity
while

 learning can increase the learning.

	

③ Read the “There Are No Dumb Questions”

That means all of them. They’re not optional side-bars — they’re part of the core content
 ! Don’t skip them.

	

④ Make this the last thing you read before bed. Or at least the last
challenging

 thing.

Part of the learning (especially the transfer to long-term memory) happens
after

 you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing-time, some of what you just learned will be lost.

	

⑤ Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.

	

⑥ Talk about it. Out loud.

Speaking activates a different part of the brain. If you’re trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were there when you were reading about it.

	

⑦ Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it’s time for a break. Once you go past a certain point, you won’t learn faster by trying to shove more in, and you might even hurt the process.

	

⑧
Feel

 something!

Your brain needs to know that this
matters

 . Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is
still

 better than feeling nothing at all.

	

⑨
Design

 something!

Apply this to something new you’re designing, or refactor an older project. Just do
something

 to get some experience beyond the exercises and activities in this book. All you need is a pencil and a problem to solve... a problem that might benefit from one or more design patterns.

 Read Me

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of learning whatever it is we’re working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you’ve already seen and learned.

 [image: image with no caption]

We use simple UML-like diagrams.

Although there’s a good chance you’ve run across UML, it’s not covered in the book, and it’s not a prerequisite for the book. If you’ve never seen UML before, don’t worry, we’ll give you a few pointers along the way. So in other words, you won’t have to worry about Design Patterns and UML at the same time. Our diagrams are “UML-
like

 ” — while we try to be true to UML there are times we bend the rules a bit, usually for our own selfish artistic reasons.

We don’t cover every single Design Pattern ever created.

There are a
lot

 of Design Patterns. The original foundational patterns (known as the GoF patterns), enterprise Java patterns, JSP patterns, architectural patterns, game design patterns and a lot more. But our goal was to make sure the book weighed less than the person reading it, so we don’t cover them all here. Our focus is on the core patterns that
matter

 from the original GoF patterns, and making sure that you really, truly, deeply understand how and when to use them. You will find a brief look at some of the other patterns (the ones you’re far less likely to use) in the appendix. In any case, once you’re done with
Head First Design Patterns

 , you’ll be able to pick up any pattern catalog and get up to speed quickly.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some of them are to help with memory, some for understanding, and some to help you apply what you’ve learned. Don’t skip the exercises
 . The crossword puzzles are the only things you don’t
have

 to do, but they’re good for giving your brain a chance to think about the words from a different context.

We use the word “composition” in the general OO sense, which is more flexible than the strict UML use of “composition.”

When we say “one object is composed with another object” we mean that they are related by a HAS-A relationship. Our use reflects the traditional use of the term and is the one used in the GoF text (you’ll learn what that is later). More recently, UML has refined this term into several types of composition. If you are an UML expert, you’ll still be able to read the book and you should be able to easily map the use of composition to more refined terms as you read.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to
really

 get it. And we want you to finish the book remembering what you’ve learned. Most reference books don’t have retention and recall as a goal, but this book is about
learning

 , so you’ll see some of the same concepts come up more than once.

The code examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of code looking for the two lines they need to understand. Most examples in this book are shown within the smallest possible context, so that the part you’re trying to learn is clear and simple. Don’t expect all of the code to be robust, or even complete — the examples are written specifically for learning, and aren’t always fully-functional.

In some cases, we haven’t included all of the import statements needed, but we assume that if you’re a Java programmer, you know that ArrayList
 is in java.util, for example. If the imports were not part of the normal core JSE API, we mention it. We’ve also placed all the source code on the Web so you can download it. You’ll find it at http://wickedlysmart.com/head-first-design-patterns/

Also, for the sake of focusing on the learning side of the code, we did not put our classes into packages (in other words, they’re all in the Java default package). We don’t recommend this in the real world, and when you download the code examples from this book, you’ll find that all classes
are

 in packages.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience of the Brain Power activities is for you to decide if and when your answers are right. In some of the Brain Power exercises you will find hints to point you in the right direction.

 Tech Reviewers

 [image: image with no caption]

 [image: image with no caption]

Philippe Maquet

In memory of Philippe Maquet

1960 - 2004

Your amazing technical expertise, relentless enthusiasm, and deep concern for the learner will inspire us always.

We will never forget you.

 Acknowledgments

At O’Reilly:

Our biggest thanks to
Mike Loukides

 at O’Reilly, for starting it all and helping to shape the Head First concept into a series. And a big thanks to the driving force behind Head First,
Tim O’Reilly

 . Thanks to the clever Head First “series mom”
Kyle Hart

 , “In Design King”
Ron Bilodeau

 , rock-and-roll star
Ellie Volkhausen

 for her inspired cover design,
Melanie Yarbrough

 for shepherding production,
Colleen Gorman

 and
Rachel Monaghan

 for their hardcore copyedits, and
Bob Pfahler

 for a much improved index. Finally, thanks to
Mike Hendrickson

 and
Meghan Blanchette

 for championing this book and building the team.

Our intrepid reviewers:

We are extremely grateful for our technical review director
Johannes deJong

 . You are our hero, Johannes. And we deeply appreciate the contributions of the co-manager of the
Javaranch

 review team, the late
Philippe Maquet

 . You have single-handedly brightened the lives of thousands of developers, and the impact you’ve had on their (and our) lives is forever.
Jef Cumps

 is scarily good at finding problems in our draft chapters, and once again made a huge difference for the book. Thanks Jef!
Valentin Cretazz

 (AOP guy), who has been with us from the very first Head First book, proved (as always) just how much we really need his technical expertise and insight. You rock Valentin (but lose the tie).

Two newcomers to the HF review team,
Barney Marispini

 and
Ike Van Atta

 did a kick butt job on the book — you guys gave us some
really

 crucial feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderators/gurus
Mark Spritzler

 ,
Jason Menard

 ,
Dirk Schreckmann

 ,
Thomas Paul

 , and
Margarita Isaeva

 . And as always, thanks especially to the javaranch.com Trail Boss,
Paul Wheaton

 .

Thanks to the finalists of the Javaranch “Pick the
Head First Design Patterns

 Cover” contest. The winner, Si Brewster, submitted the winning essay that persuaded us to pick the woman you see on our cover. Other finalists include Andrew Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen Thomas, Sateesh Kommineni, and Jeff Fisher.

For the 2014 update to the book, we are so grateful to the following technical reviewers: George Hoffer, Ted Hill, Todd Bartoszkiewicz, Sylvain Tenier, Scott Davidson, Kevin Ryan, Rich Ward, Mark Francis Jaeger, Mark Masse, Glenn Ray, Bayard Fetler, Paul Higgins, Matt Carpenter, Julia Williams, Matt McCullough, and Mary Ann Belarmino.

 Even more people[1
]

From Eric and Elisabeth

Writing a Head First book is a wild ride with two amazing tour guides:
Kathy Sierra

 and
Bert Bates

 . With Kathy and Bert you throw out all book writing convention and enter a world full of storytelling, learning theory, cognitive science, and pop culture, where the reader always rules. Thanks to both of you for letting us enter your amazing world; we hope we’ve done Head First justice. Seriously, this has been amazing. Thanks for all your careful guidance, for pushing us to go forward, and most of all, for trusting us (with your baby). You’re both certainly “wickedly smart” and you’re also the hippest 29-year-olds we know. So... what’s next?

A big thank you to
Mike Loukides, Mike Hendrickson

 , and
Meghan Blanchette

 . Mike L. was with us every step of the way. Mike, your insightful feedback helped shape the book and your encouragement kept us moving ahead. Mike H., thanks for your persistence over five years in trying to get us to write a patterns book; we finally did it and we’re glad we waited for Head First. And Meg, thanks for diving into the update with us; we couldn’t have done it without you.

A very special thanks to
Erich Gamma

 , who went far beyond the call of duty in reviewing this book (he even took a draft with him on vacation). Erich, your interest in this book inspired us and your thorough technical review improved it immeasurably. Thanks as well to the entire
Gang of Four

 for their support & interest, and for making a special appearance in Objectville. We are also indebted to
Ward Cunningham

 and the patterns community who created the Portland Pattern Repository — an indespensible resource for us in writing this book.

It takes a village to write a technical book:
Bill Pugh

 and
Ken Arnold

 gave us expert advice on Singleton.
Joshua Marinacci

 provided rockin’ Swing tips and advice.
John Brewer’s

 “Why a Duck?” paper inspired SimUDuck (and we’re glad he likes ducks too).
Dan Friedman

 inspired the Little Singleton example.
Daniel Steinberg

 acted as our “technical liason” and our emotional support network. Thanks to Apple’s
James Dempsey

 for allowing us to use his MVC song. And thank you to
Richard Warburton

 who made sure our Java 8 code updates were up to snuff for this updated edition of the book.

Last, a personal thank you to the
Javaranch review team

 for their top-notch reviews and warm support. There’s more of you in this book than you know.

From Kathy and Bert

We’d like to thank Mike Hendrickson for finding Eric and Elisabeth... but we can’t. Because of these two, we discovered (to our horror) that we aren’t the
only

 ones who can do a Head First book. ;) However, if readers want to
believe

 that it’s really Kathy and Bert who did the cool things in the book, well, who are
we

 to set them straight?

[1
]
 The large number of acknowledgments is because we’re testing the theory that everyone mentioned in a book acknowledgment will buy at least one copy, probably more, what with relatives and everything. If you’d like to be in the acknowledgment of our
next

 book, and you have a large family, write to us.

 Chapter 1. Intro to Design Patterns: Welcome to Design Patterns

 [image: image with no caption]

Someone has already solved your problems.

 In this chapter, you’ll learn why (and how) you can exploit the wisdom and lessons learned by other developers who’ve been down the same design problem road and survived the trip. Before we’re done, we’ll look at the use and benefits of design patterns, look at some key OO design principles, and walk through an example of how one pattern works. The best way to use patterns is to
load your brain

 with them and then
recognize places

 in your designs and existing applications where you can
apply them

 . Instead of
code

 reuse, with patterns you get
experience

 reuse.

 It started with a simple SimUDuck app

Joe works for a company that makes a highly successful duck pond simulation game,
SimUDuck

 . The game can show a large variety of duck species swimming and making quacking sounds. The initial designers of the system used standard OO techniques and created one Duck superclass from which all other duck types inherit.

 [image: image with no caption]

In the last year, the company has been under increasing pressure from competitors. After a week long off-site brainstorming session over golf, the company executives think it’s time for a big innovation. They need something
really

 impressive to show at the upcoming shareholders meeting in Maui
next week

 .

 But now we need the ducks to FLY

The executives decided that flying ducks is just what the simulator needs to blow away the other duck sim competitors. And of course Joe’s manager told them it’ll be no problem for Joe to just whip something up in a week. “After all,” said Joe’s boss, “he’s an OO programmer...
how hard can it be?”

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 But something went horribly wrong...

 [image: image with no caption]

 [image: image with no caption]

What happened?

Joe failed to notice that not
all

 subclasses of Duck should
fly

 . When Joe added new behavior to the Duck superclass, he was also adding behavior that was
not

 appropriate for some Duck subclasses. He now has flying inanimate objects in the SimUDuck program.

A localized update to the code caused a nonlocal side effect (flying rubber ducks)!

 [image: image with no caption]

 [image: image with no caption]

What Joe thought was a great use of inheritance for the purpose of reuse
 hasn’t turned out so well when it comes to maintenance
 .

 Joe thinks about inheritance...

 [image: image with no caption]

Sharpen your pencil

 Which of the following are disadvantages of using
inheritance

 to provide Duck behavior? (Choose all that apply.)

	

 [image:]

	
A.

	
Code is duplicated across subclasses.

	

 [image:]

	
B.

	
Runtime behavior changes are difficult.

	

 [image:]

	
C.

	
We can’t make ducks dance.

	

 [image:]

	
D.

	
Hard to gain knowledge of all duck behaviors.

	

 [image:]

	
E.

	
Ducks can’t fly and quack at the same time.

	

 [image:]

	
F.

	
Changes can unintentionally affect other ducks.

 How about an interface?

Joe realized that inheritance probably wasn’t the answer, because he just got a memo that says that the executives now want to update the product every six months (in ways they haven’t yet decided on). Joe knows the spec will keep changing and he’ll be forced to look at and possibly override fly() and quack() for every new Duck subclass that’s ever added to the program...
forever.

So, he needs a cleaner way to have only
some

 (but not
all

) of the duck types fly or quack.

 [image: image with no caption]

 [image: image with no caption]

What do YOU think about this design?

 [image: image with no caption]

 What would you do if you were Joe?

We know that not
all

 of the subclasses should have flying or quacking behavior, so inheritance isn’t the right answer. But while having the subclasses implement Flyable and/or Quackable solves
part

 of the problem (no inappropriately flying rubber ducks), it completely destroys code reuse for those behaviors, so it just creates a
different

 maintenance nightmare. And of course there might be more than one kind of flying behavior even among the ducks that
do

 fly...

At this point you might be waiting for a Design Pattern to come riding in on a white horse and save the day. But what fun would that be? No, we’re going to figure out a solution the old-fashioned way —
by applying good OO software design principles.

 [image: image with no caption]

 The one constant in software development

Okay, what’s the one thing you can always count on in software development?

No matter where you work, what you’re building, or what language you are programming in, what’s the one true constant that will be with you always?

 [image: image with no caption]

(use a mirror to see the answer)

No matter how well you design an application, over time an application must grow and change or it will
die

 .

Sharpen your pencil

Lots of things can drive change. List some reasons you’ve had to change code in your applications (we put in a couple of our own to get you started).

	
My customers or users decide they want something else, or they want new functionality.

	
My company decided it is going with another database vendor and it is also purchasing its data from another supplier that uses a different data format. Argh!

	
__

	
__

	
__

	
__

	
__

 Zeroing in on the problem...

 So we know using inheritance hasn’t worked out very well, since the duck behavior keeps changing across the subclasses, and it’s not appropriate for
all

 subclasses to have those behaviors. The Flyable and Quackable interface sounded promising at first — only ducks that really do fly will be Flyable, etc. — except Java interfaces have no implementation code, so no code reuse. And that means that whenever you need to modify a behavior, you’re forced to track down and change it in all the different subclasses where that behavior is defined, probably introducing
new

 bugs along the way!

Luckily, there’s a design principle for just this situation.

 Design Principle

Identify the aspects of your application that vary and separate them from what stays the same.

The first of many design principles. We’ll spend more time on these throughout the book.

Take what varies and “encapsulate” it so it won’t affect the rest of your code.

The result? Fewer unintended consequences from code changes and more flexibility in your systems!

In other words, if you’ve got some aspect of your code that is changing, say with every new requirement, then you know you’ve got a behavior that needs to be pulled out and separated from all the stuff that doesn’t change.

Here’s another way to think about this principle:

take the parts that vary and encapsulate them, so that later you can alter or extend the parts that vary without affecting those that don’t.

As simple as this concept is, it forms the basis for almost every design pattern. All patterns provide a way to let
some part of a system vary independently of all other parts

 .

Okay, time to pull the duck behavior out of the Duck classes!

 Separating what changes from what stays the same

 Where do we start? As far as we can tell, other than the problems with fly() and quack(), the Duck class is working well and there are no other parts of it that appear to vary or change frequently. So, other than a few slight changes, we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same,” we are going to create two
sets

 of classes (totally apart from Duck), one for
fly

 and one for
quack

 . Each set of classes will hold all the implementations of the respective behavior. For instance, we might have
one

 class that implements
quacking

 ,
another

 that implements
squeaking

 , and
another

 that implements
silence

 .

We know that fly() and quack() are the parts of the Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll pull both methods out of the Duck class and create a new set of classes to represent each behavior.

 [image: image with no caption]

 Designing the Duck Behaviors

So how are we going to design the set of classes that implement the fly and quack behaviors?

We’d like to keep things flexible; after all, it was the inflexibility in the duck behaviors that got us into trouble in the first place. And we know that we want to
assign

 behaviors to the instances of Duck. For example, we might want to instantiate a new MallardDuck instance and initialize it with a specific
type

 of flying behavior. And while we’re there, why not make sure that we can change the behavior of a duck dynamically? In other words, we should include behavior setter methods in the Duck classes so that we can
change

 the MallardDuck’s flying behavior
at runtime

 .

Given these goals, let’s look at our second design principle:

 Design Principle

Program to an interface, not an implementation.

From now on, the Duck behaviors will live in a separate class — a class that implements a particular behavior interface.

That way, the Duck classes won’t need to know any of the implementation details for their own behaviors.

We’ll use an interface to represent each behavior — for instance, FlyBehavior and QuackBehavior — and each implementation of a
behavior

 will implement one of those interfaces.

So this time it won’t be the
Duck

 classes that will implement the flying and quacking interfaces. Instead, we’ll make a set of classes whose entire reason for living is to represent a behavior (for example, “squeaking”), and it’s the
behavior

 class, rather than the Duck class, that will implement the behavior interface.

This is in contrast to the way we were doing things before, where a behavior came either from a concrete implementation in the superclass Duck, or by providing a specialized implementation in the subclass itself. In both cases we were relying on an
implementation

 . We were locked into using that specific implementation and there was no room for changing the behavior (other than writing more code).

With our new design, the Duck subclasses will use a behavior represented by an
interface

 (FlyBehavior and QuackBehavior), so that the actual
implementation

 of the behavior (in other words, the specific concrete behavior coded in the class that implements the FlyBehavior or QuackBehavior) won’t be locked into the Duck subclass.

 [image: image with no caption]

 [image: image with no caption]

“Program to an
interface

 ” really means “Program to a
supertype

 .”

The word
interface

 is overloaded here. There’s the
concept

 of interface, but there’s also the Java construct interface. You can
program to an interface

 , without having to actually use a Java interface. The point is to exploit polymorphism by programming to a supertype so that the actual runtime object isn’t locked into the code. And we could rephrase “program to a supertype” as “the declared type of the variables should be a supertype, usually an abstract class or interface, so that the objects assigned to those variables can be of any concrete implementation of the supertype, which means the class declaring them doesn’t have to know about the actual object types!”

This is probably old news to you, but just to make sure we’re all saying the same thing, here’s a simple example of using a polymorphic type — imagine an abstract class Animal, with two concrete implementations, Dog and Cat.

Programming to an implementation

 would be:

Dog d = new Dog();

d.bark();

 Note

Declaring the variable “d” as type Dog (a concrete implementation of Animal) forces us to code to a concrete implementation.

But
programming to an interface/supertype

 would be:

Animal animal = new Dog();

animal.makeSound();

 Note

We know it’s a Dog, but we can now use the animal reference polymorphically.

Even better, rather than hardcoding the instantiation of the subtype (like new Dog()) into the code,
assign the concrete implementation object at runtime:

a = getAnimal();

a.makeSound();

 Note

We don’t know WHAT the actual animal subtype is... all we care about is that it knows how to respond to makeSound().

 [image: image with no caption]

 Implementing the Duck Behaviors

 Here we have the two interfaces, FlyBehavior and QuackBehavior, along with the corresponding classes that implement each concrete behavior:

 [image: image with no caption]

 Note

With this design, other types of objects can reuse our fly and quack behaviors because these behaviors are no longer hidden away in our Duck classes!

And we can add new behaviors without modifying any of our existing behavior classes or touching any of the Duck classes that use flying behaviors.

So we get the benefit of REUSE without all the baggage that comes along with inheritance.

There Are No Dumb Questions

	

Q:

	

Q: Do I always have to implement my application first, see where things are changing, and then go back and separate & encapsulate those things?

	
A:

	

A:

 Not always; often when you are designing an application, you anticipate those areas that are going to vary and then go ahead and build the flexibility to deal with it into your code. You’ll find that the principles and patterns can be applied at any stage of the development lifecycle.

	

Q:

	

Q: Should we make Duck an interface too?

	
A:

	

A:

 Not in this case. As you’ll see once we’ve got everything hooked together, we do benefit by having Duck not be an interface, and having specific ducks, like MallardDuck, inherit common properties and methods. Now that we’ve removed what varies from the Duck inheritance, we get the benefits of this structure without the problems.

	

Q:

	

Q: It feels a little weird to have a class that’s just a behavior. Aren’t classes supposed to represent things? Aren’t classes supposed to have both state AND behavior?

	
A:

	

A:

 In an OO system, yes, classes represent things that generally have both state (instance variables) and methods. And in this case, the thing happens to be a behavior. But even a behavior can still have state and methods; a flying behavior might have instance variables representing the attributes for the flying (wing beats per minute, max altitude, and speed, etc.) behavior.

Sharpen your pencil

	① Using our new design, what would you do if you needed to add rocket-powered flying to the SimUDuck app?

	② Can you think of a class that might want to use the Quack behavior that isn’t a duck?

Answers:

1) Create a FlyRocketPowered class that implements the FlyBehavior interface.

2) One example, a duck call (a device that makes duck sounds).

 Integrating the Duck Behavior

The key is that a Duck will now

delegate

 its flying and quacking behavior, instead of using quacking and flying methods defined in the Duck class (or subclass).

Here’s how:

	

① First we’ll add two instance variables

 to the Duck class called
flyBehavior

 and
quackBehavior

 that are declared as the interface type (not a concrete class implementation type). Each duck object will set these variables polymorphically to reference the
specific

 behavior type it would like at runtime (FlyWithWings, Squeak, etc.).

We’ll also remove the fly() and quack() methods from the Duck class (and any subclasses) because we’ve moved this behavior out into the FlyBehavior and QuackBehavior classes.

We’ll replace fly() and quack() in the Duck class with two similar methods, called performFly() and performQuack(); you’ll see how they work next.

 [image: image with no caption]

	

② Now we implement performQuack():

 [image: image with no caption]

Pretty simple, huh? To perform the quack, a Duck just allows the object that is referenced by quackBehavior to quack for it.

In this part of the code we don’t care what kind of object it is, all we care about is that it knows how to quack()!

 More integration...

	③ Okay, time to worry about
how the flyBehavior and quackBehavior instance variables are set

 . Let’s take a look at the MallardDuck class:

 [image: image with no caption]

So MallardDuck’s quack is a real live duck
quack

 , not a
squeak

 and not a
mute quack

 . So what happens here? When a MallardDuck is instantiated, its constructor initializes the MallardDuck’s inherited quackBehavior instance variable to a new instance of type Quack (a QuackBehavior concrete implementation class).

And the same is true for the duck’s flying behavior — the MallardDuck’s constructor initializes the flyBehavior instance variable with an instance of type FlyWithWings (a FlyBehavior concrete implementation class).

 [image: image with no caption]

 Good catch, that’s exactly what we’re doing...
for now.

Later in the book we’ll have more patterns in our toolbox that can help us fix it.

Still, notice that while we
are

 setting the behaviors to concrete classes (by instantiating a behavior class like Quack or FlyWithWings and assigning it to our behavior reference variable), we could
easily

 change that at runtime.

So, we still have a lot of flexibility here, but we’re doing a poor job of initializing the instance variables in a flexible way. But think about it: since the quackBehavior instance variable is an interface type, we could (through the magic of polymorphism) dynamically assign a different QuackBehavior implementation class at runtime.

Take a moment and think about how you would implement a duck so that its behavior could change at runtime. (You’ll see the code that does this a few pages from now.)

 Testing the Duck code

	①

Type and compile the Duck class below (Duck.java), and the MallardDuck class from two pages back (MallardDuck.java).

 [image: image with no caption]

	

② Type and compile the FlyBehavior interface (FlyBehavior.java) and the two behavior implementation classes (FlyWithWings.java and FlyNoWay.java).

 [image: image with no caption]

	

③ Type and compile the QuackBehavior interface (QuackBehavior.java) and the three behavior implementation classes (Quack.java, MuteQuack.java, and Squeak.java).

public interface QuackBehavior {

public void quack();

}

public class Quack implements QuackBehavior {

public void quack() {

System.out.println("Quack");

}

}

public class MuteQuack implements QuackBehavior {

public void quack() {

System.out.println("<< Silence >>");

}

}

public class Squeak implements QuackBehavior {

public void quack() {

System.out.println("Squeak");

}

}

	

④ Type and compile the test class (MiniDuckSimulator.java).

 [image: image with no caption]

	

⑤ Run the code!

 [image: image with no caption]

 Setting behavior dynamically

 What a shame to have all this dynamic talent built into our ducks and not be using it! Imagine you want to set the duck’s behavior type through a setter method on the duck subclass, rather than by instantiating it in the duck’s constructor.

	

① Add two new methods to the Duck class:

 [image: image with no caption]

We can call these methods anytime we want to change the behavior of a duck on the fly
 .

 Note

Editor note: gratuitous pun - fix

	

② Make a new Duck type (ModelDuck.java).

 [image: image with no caption]

	

③ Make a new FlyBehavior type (FlyRocketPowered.java).

 [image: image with no caption]

	

④ Change the test class (MiniDuckSimulator.java), add the ModelDuck, and make the ModelDuck rocket-enabled.

 [image: image with no caption]

To change a duck’s behavior at runtime, just call the duck’s setter method for that behavior.

 The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the duck simulator design, it’s time to come back up for air and take a look at the big picture.

Below is the entire reworked class structure. We have everything you’d expect: ducks extending Duck, fly behaviors implementing FlyBehavior, and quack behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead of thinking of the duck behaviors as a
set of behaviors

 , we’ll start thinking of them as a
family of algorithms

 . Think about it: in the SimUDuck design, the algorithms represent things a duck would do (different ways of quacking or flying), but we could just as easily use the same techniques for a set of classes that implement the ways to compute state sales tax by different states.

Pay careful attention to the
relationships

 between the classes. In fact, grab your pen and write the appropriate relationship (IS-A, HAS-A, and IMPLEMENTS) on each arrow in the class diagram.

 [image: image with no caption]

 HAS-A can be better than IS-A

 The HAS-A relationship is an interesting one: each duck has a FlyBehavior and a QuackBehavior to which it delegates flying and quacking.

When you put two classes together like this you’re using
composition

 . Instead of
inheriting

 their behavior, the ducks get their behavior by being
composed

 with the right behavior object.

This is an important technique; in fact, we’ve been using our third design principle:

 Design Principle

Favor composition over inheritance.

As you’ve seen, creating systems using composition gives you a lot more flexibility. Not only does it let you encapsulate a family of algorithms into their own set of classes, but it also lets you change behavior at runtime
 as long as the object you’re composing with implements the correct behavior interface.

Composition is used in many
 design patterns and you’ll see a lot more about its advantages and disadvantages throughout the book.

 Brain Power

A duck call is a device that hunters use to mimic the calls (quacks) of ducks. How would you implement your own duck call that does
not

 inherit from the Duck class?

Master and Student...

Master:

Grasshopper, tell me what you have learned of the Object-Oriented ways.

Student:

Master, I have learned that the promise of the object-oriented way is reuse.

Master:

Grasshopper, continue...

Student:

Master, through inheritance all good things may be reused and so we come to drastically cut development time like we swiftly cut bamboo in the woods.

Master:

Grasshopper, is more time spent on code

 before

or

 after

development is complete?

Student:

The answer is

 after
 ,
Master. We always spend more time maintaining and changing software than on initial development.

Master:

So Grasshopper, should effort go into reuse

 above

maintainability and extensibility?

Student:

Master, I believe that there is truth in this.

Master:

I can see that you still have much to learn. I would like for you to go and meditate on inheritance further. As you’ve seen, inheritance has its problems, and there are other ways of achieving reuse.

 Speaking of Design Patterns...

Congratulations on your first pattern!

 [image: image with no caption]

 You just applied your first design pattern — the
STRATEGY

 Pattern. That’s right, you used the Strategy Pattern to rework the SimUDuck app. Thanks to this pattern, the simulator is ready for any changes those execs might cook up on their next business trip to Maui.

Now that we’ve made you take the long road to apply it, here’s the formal definition of this pattern:

 Note

The Strategy Pattern

 defines a family of algorithms, encapsulates each one, and makes them interchangeable. Strategy lets the algorithm vary independently from clients that use it.

Use THIS definition when you need to impress friends and influence key executives.

Design Puzzle

 Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll find classes for game characters along with classes for weapon behaviors the characters can use in the game. Each character can make use of one weapon at a time, but can change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Your task:

	① Arrange the classes.

	② Identify one abstract class, one interface, and eight classes.

	③ Draw arrows between classes.

	Draw this kind of arrow for inheritance (“extends”).
 [image:]

	Draw this kind of arrow for interface (“implements”).
 [image:]

	Draw this kind of arrow for “HAS-A”.
 [image:]

	④ Put the method setWeapon() into the right class.

 [image: image with no caption]

 Overheard at the local diner...

 [image: image with no caption]

 What’s the difference between these two orders? Not a thing! They’re both the same order, except Alice is using twice the number of words and trying the patience of a grumpy short-order cook.

What’s Flo got that Alice doesn’t?
A shared vocabulary

 with the short-order cook. Not only does that make it easier to communicate with the cook, but it gives the cook less to remember because he’s got all the diner patterns in his head.

Design Patterns give you a shared vocabulary with other developers. Once you’ve got the vocabulary you can more easily communicate with other developers and inspire those who don’t know patterns to start learning them. It also elevates your thinking about architectures by letting you
think at the

 pattern

level

 , not the nitty-gritty
object

 level.

 Overheard in the next cubicle...

 [image: image with no caption]

 [image: image with no caption]

 Brain Power

Can you think of other shared vocabularies that are used beyond OO design and diner talk? (Hint: how about auto mechanics, carpenters, gourmet chefs, air traffic control.) What qualities are communicated along with the lingo?

Can you think of aspects of OO design that get communicated along with pattern names? What qualities get communicated along with the name “Strategy Pattern”?

 The power of a shared pattern vocabulary

When you communicate using patterns you are doing more
 than just sharing LINGO.

Shared pattern vocabularies are POWERFUL.

 When you communicate with another developer or your team using patterns, you are communicating not just a pattern name but a whole set of qualities, characteristics, and constraints that the pattern represents.

 Note

“We’re using the Strategy Pattern to implement the various behaviors of our ducks.” This tells you the duck behavior has been encapsulated into its own set of classes that can be easily expanded and changed, even at runtime if needed.

Patterns allow you to say more with less.

 When you use a pattern in a description, other developers quickly know precisely the design you have in mind.

Talking at the pattern level allows you to stay “in the design” longer.

 Talking about software systems using patterns allows you to keep the discussion at the design level, without having to dive down to the nitty-gritty details of implementing objects and classes.

 Note

How many design meetings have you been in that quickly degrade into implementation details?

Shared vocabularies can turbo-charge your development team.

 A team well versed in design patterns can move more quickly with less room for misunderstanding.

 Note

As your team begins to share design ideas and experience in terms of patterns, you will build a community of patterns users.

Shared vocabularies encourage more junior developers to get up to speed.

 Junior developers look up to experienced developers. When senior developers make use of design patterns, junior developers also become motivated to learn them. Build a community of pattern users at your organization.

 Note

Think about starting a patterns study group at your organization. Maybe you can even get paid while you’re learning...

 How do I use Design Patterns?

 We’ve all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs, compile them into our programs, and benefit from a lot of code someone else has written. Think about the Java APIs and all the functionality they give you: network, GUI, IO, etc. Libraries and frameworks go a long way towards a development model where we can just pick and choose components and plug them right in. But... they don’t help us structure our own applications in ways that are easier to understand, more maintainable and flexible. That’s where Design Patterns come in.

Design patterns don’t go directly into your code, they first go into your BRAIN. Once you’ve loaded your brain with a good working knowledge of patterns, you can then start to apply them to your new designs, and rework your old code when you find it’s degrading into an inflexible mess of jungle spaghetti code.

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: If design patterns are so great, why can’t someone build a library of them so I don’t have to?

	
A:

	

A:

 Design patterns are higher level than libraries. Design patterns tell us how to structure classes and objects to solve certain problems and it is our job to adapt those designs to fit our particular application.

	

Q:

	

Q: Aren’t libraries and frameworks also design patterns?

	
A:

	

A:

 Frameworks and libraries are not design patterns; they provide specific implementations that we link into our code. Sometimes, however, libraries and frameworks make use of design patterns in their implementations. That’s great, because once you understand design patterns, you’ll more quickly understand APIs that are structured around design patterns.

	

Q:

	

Q: So, there are no libraries of design patterns?

	
A:

	

A:

 No, but you will learn later about pattern catalogs with lists of patterns that you can apply to your applications.

 [image: image with no caption]

 [image: image with no caption]

Developer:

 Okay, hmm, but isn’t this all just good object-oriented design; I mean as long as I follow encapsulation and I know about abstraction, inheritance, and polymorphism, do I really need to think about Design Patterns? Isn’t it pretty straightforward? Isn’t this why I took all those OO courses? I think Design Patterns are useful for people who don’t know good OO design.

Guru:

 Ah, this is one of the true misunderstandings of object-oriented development: that by knowing the OO basics we are automatically going to be good at building flexible, reusable, and maintainable systems.

Developer:

 No?

Guru:

 No. As it turns out, constructing OO systems that have these properties is not always obvious and has been discovered only through hard work.

Developer:

 I think I’m starting to get it. These, sometimes non-obvious, ways of constructing object-oriented systems have been collected...

Guru:

 ...yes, into a set of patterns called Design Patterns.

Developer:

 So, by knowing patterns, I can skip the hard work and jump straight to designs that always work?

Guru:

 Yes, to an extent, but remember, design is an art. There will always be tradeoffs. But, if you follow well thought-out and time-tested design patterns, you’ll be way ahead.

Developer:

 What do I do if I can’t find a pattern?

 [image: image with no caption]

Guru:

 There are some object-oriented principles that underlie the patterns, and knowing these will help you to cope when you can’t find a pattern that matches your problem.

Developer:

 Principles? You mean beyond abstraction, encapsulation, and...

Guru:

 Yes, one of the secrets to creating maintainable OO systems is thinking about how they might change in the future, and these principles address those issues.

 Tools for your Design Toolbox

You’ve nearly made it through the first chapter! You’ve already put a few tools in your OO toolbox; let’s make a list of them before we move on to Chapter 2
 .

 [image: image with no caption]

Bullet Points

	Knowing the OO basics does not make you a good OO designer.

	Good OO designs are reusable, extensible, and maintainable.

	Patterns show you how to build systems with good OO design qualities.

	Patterns are proven object-oriented experience.

	Patterns don’t give you code, they give you general solutions to design problems. You apply them to your specific application.

	Patterns aren’t
invented

 , they are
discovered

 .

	Most patterns and principles address issues of
change

 in software.

	Most patterns allow some part of a system to vary independently of all other parts.

	We often try to take what varies in a system and encapsulate it.

	Patterns provide a shared language that can maximize the value of your communication with other developers.

Design Patterns Crossword

 Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words are from this chapter.

 [image: image with no caption]

	
Across

	
Down

	
2. ________ what varies.

4. Design patterns __________.

6. Java IO, Networking, Sound.

9. Rubber ducks make a __________.

13. Bartender thought they were called.

15. Program to this, not an implementation.

17. Patterns go into your _________.

18. Learn from the other guy’s ___________.

19. Development constant.

20. Patterns give us a shared ____________.

	
1. Patterns _______ in many applications.

3. Favor this over inheritance.

5. Dan was thrilled with this pattern.

7. Most patterns follow from OO _________.

8. Not your own __________.

10. High level libraries.

11. Joe’s favorite drink.

12. Pattern that fixed the simulator.

13. Duck that can’t quack.

14. Grilled cheese with bacon.

15. Duck demo was located here.

Design Puzzle Solution

 Character is the abstract class for all the other characters (King, Queen, Knight, and Troll), while WeaponBehavior is an interface that all weapon behaviors implement. So all actual characters and weapons are concrete classes.

To switch weapons, each character calls the setWeapon() method, which is defined in the Character superclass. During a fight the useWeapon() method is called on the current weapon set for a given character to inflict great bodily damage on another character.

 [image: image with no caption]

Sharpen your pencil Solution

 Which of the following are disadvantages of using subclassing to provide specific Duck behavior? (Choose all that apply.) Here’s our solution.

	

 [image:]

	
A.

	
Code is duplicated across subclasses.

	

 [image:]

	
B.

	
Runtime behavior changes are difficult.

	

 [image:]

	
C.

	
We can’t make duck’s dance.

	

 [image:]

	
D.

	
Hard to gain knowledge of all duck behaviors.

	

 [image:]

	
E.

	
Ducks can’t fly and quack at the same time.

	

 [image:]

	
F.

	
Changes can unintentionally affect other ducks.

Sharpen your pencil Solution

What are some factors that drive change in your applications? You might have a very different list, but here’s a few of ours. Look familiar? Here’s our solution.

 Note

My customers or users decide they want something else, or they want new functionality.

My company decided it is going with another database vendor and it is also purchasing its data from another supplier that uses a different data format. Argh!

Well, technology changes and we’ve got to update our code to make use of protocols.

We’ve learned enough building our system that we’d like to go back and do things a little better.

Design Patterns Crossword Solution

 [image: image with no caption]

 Chapter 2. The Observer Pattern: Keeping your Objects in the know

 [image: image with no caption]

Don’t miss out when something interesting happens!

 We’ve got a pattern that keeps your objects in the know when something they might care about happens. Objects can even decide at runtime whether they want to be kept informed. The Observer Pattern is one of the most heavily used patterns in the JDK, and it’s incredibly useful. Before we’re done, we’ll also look at one-to-many relationships and loose coupling (yeah, that’s right, we said coupling). With Observer, you’ll be the life of the Patterns Party.

Congratulations!

Your team has just won the contract to build Weather-O-Rama, Inc.’s next-generation, Internet-based Weather Monitoring Station.

	

 [image:]

	

Statement of Work

	
Congratulations on being selected to build our next-generation, Internet-based Weather Monitoring Station!

	
The weather station will be based on our patent pending WeatherData object, which tracks current weather conditions (temperature, humidity, and barometric pressure). We’d like you to create an application that initially provides three display elements: current conditions, weather statistics, and a simple forecast, all updated in real time as the WeatherData object acquires the most recent measurements.

	
Further, this is an expandable weather station. Weather-ORama wants to release an API so that other developers can write their own weather displays and plug them right in. We’d like for you to supply that API!

	
Weather-O-Rama thinks we have a great business model: once the customers are hooked, we intend to charge them for each display they use. Now for the best part: we are going to pay you in stock options.

	
We look forward to seeing your design and alpha application.

	
Sincerely,

	

 [image:]

	
Johnny Hurricane, CEO

	
P.S. We are overnighting the WeatherData source files to you.

 The Weather Monitoring application overview

The three players in the system are the weather station (the physical device that acquires the actual weather data), the WeatherData object (that tracks the data coming from the Weather Station and updates the displays), and the display that shows users the current weather conditions.

 [image: image with no caption]

The WeatherData object knows how to talk to the physical Weather Station, to get updated data. The WeatherData object then updates its displays for the three different display elements: Current Conditions (shows temperature, humidity, and pressure), Weather Statistics, and a simple forecast.

Our job, if we choose to accept it, is to create an app that uses the WeatherData object to update three displays for current conditions, weather stats, and a forecast.

 Unpacking the WeatherData class

As promised, the next morning the WeatherData source files arrive. When we peek inside the code, things look pretty straightforward:

 [image: image with no caption]

 [image: image with no caption]

Our job is to implement measurementsChanged() so that it updates the three displays for current conditions, weather stats, and forecast.

 What do we know so far?

 [image: image with no caption]

The spec from Weather-O-Rama wasn’t all that clear, but we have to figure out what we need to do. So, what do we know so far?

	

 [image:]

	
The WeatherData class has getter methods for three measurement values: temperature, humidity, and barometric pressure.

getTemperature()

getHumidity()

getPressure()

	

 [image:]

	
The measurementsChanged() method is called any time new weather measurement data is available. (We don’t know or care how this method is called; we just know that it
is.

)

measurementsChanged()

	

 [image:]

	
We need to implement three display elements that use the weather data: a
current conditions

 display, a
statistics display,

 and a
forecast

 display. These displays must be updated each time WeatherData has new measurements.
 [image:]

	

 [image:]

	
The system must be expandable — other developers can create new custom display elements and users can add or remove as many display elements as they want to the application. Currently, we know about only the initial
three

 display types (current conditions, statistics, and forecast).
 [image:]

 Taking a first, misguided SWAG at the Weather Station

 Here’s a first implementation possibility — we’ll take the hint from the Weather-O-Rama developers and add our code to the measurementsChanged() method:

 [image: image with no caption]

Sharpen your pencil

Based on our first implementation, which of the following apply? (Choose all that apply.)

	

 [image:]

	
A.

	
We are coding to concrete implementations, not interfaces.

	

 [image:]

	
B.

	
For every new display element we need to alter code.

	

 [image:]

	
C.

	
We have no way to add (or remove) display elements at run time.

	

 [image:]

	
D.

	
The display elements don’t implement a common interface.

	

 [image:]

	
E.

	
We haven’t encapsulated the part that changes.

	

 [image:]

	
F.

	
We are violating encapsulation of the WeatherData class.

Definition of SWAG: Scientific Wild A** Guess

 What’s wrong with our implementation?

 Think back to all those Chapter 1
 concepts and principles...

 [image: image with no caption]

 [image: image with no caption]

We’ll take a look at Observer, then come back and figure out how to apply it to the Weather Monitoring app.

 Meet the Observer Pattern

You know how newspaper or magazine subscriptions work:

	① A newspaper publisher goes into business and begins publishing newspapers.

	② You subscribe to a particular publisher, and every time there’s a new edition it gets delivered to you. As long as you remain a subscriber, you get new newspapers.

	③ You unsubscribe when you don’t want papers anymore, and they stop being delivered.

	④ While the publisher remains in business, people, hotels, airlines, and other businesses constantly subscribe and unsubscribe to the newspaper.

 [image: image with no caption]

 Publishers + Subscribers = Observer Pattern

If you understand newspaper subscriptions, you pretty much understand the Observer Pattern, only we call the publisher the SUBJECT and the subscribers the OBSERVERS.

Let’s take a closer look:

 [image: image with no caption]

 A day in the life of the Observer Pattern

	

A Duck object comes along and tells the Subject that it wants to become an observer.

Duck really wants in on the action; those ints Subject is sending out whenever its state changes look pretty interesting...

	

 [image:]

	

The Duck object is now an official observer.

Duck is psyched... he’s on the list and is waiting with great anticipation for the next notification so he can get an int.

	

 [image:]

	

The Subject gets a new data value!

Now Duck and all the rest of the observers get a notification that the Subject has changed.

	

 [image:]

	

The Mouse object asks to be removed as an observer.

The Mouse object has been getting ints for ages and is tired of it, so it decides it’s time to stop being an observer.

	

 [image:]

	

Mouse is outta here!

The Subject acknowledges the Mouse’s request and removes it from the set of observers.

	

 [image:]

	

The Subject has another new int.

All the observers get another notification, except for the Mouse who is no longer included. Don’t tell anyone, but the Mouse secretly misses those ints... maybe it’ll ask to be an observer again some day.

	

 [image:]

 Five-minute drama: a subject for observation

 [image: image with no caption]

 In today’s skit, two post-bubble software developers encounter a real live head hunter...

 [image: image with no caption]

 [image: image with no caption]

 Two weeks later...

 [image: image with no caption]

Jill’s loving life, and no longer an observer. She’s also enjoying the nice fat signing bonus that she got because the company didn’t have to pay a headhunter.

 [image: image with no caption]

But what has become of our dear Lori? We hear she’s beating the headhunter at his own game. She’s not only still an observer, she’s got her own call list now, and she is notifying her own observers. Lori’s a subject and an observer all in one.

 The Observer Pattern defined

 When you’re trying to picture the Observer Pattern, a newspaper subscription service with its publisher and subscribers is a good way to visualize the pattern.

In the real world, however, you’ll typically see the Observer Pattern defined like this:

 Note

The Observer Pattern

 defines a one-to-many dependency between objects so that when one object changes state, all of its dependents are notified and updated automatically.

Let’s relate this definition to how we’ve been talking about the pattern:

 [image: image with no caption]

The Observer Pattern defines a one-to-many relationship between a set of objects.

When the state of one object changes, all of its dependents are notified.

The subject and observers define the one-to-many relationship. The observers are dependent on the subject such that when the subject’s state changes, the observers get notified. Depending on the style of notification, the observer may also be updated with new values.

As you’ll discover, there are a few different ways to implement the Observer Pattern, but most revolve around a class design that includes Subject and Observer interfaces.

Let’s take a look...

 The Observer Pattern defined: the class diagram

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: What does this have to do with one-to-many relationships?

	
A:

	

A:

 With the Observer Pattern, the Subject is the object that contains the state and controls it. So, there is ONE subject with state. The observers, on the other hand, use the state, even if they don’t own it. There are many observers and they rely on the Subject to tell them when its state changes. So there is a relationship between the ONE Subject to the MANY Observers.

	

Q:

	

Q: How does dependence come into this?

	
A:

	

A:

 Because the subject is the sole owner of that data, the observers are dependent on the subject to update them when the data changes. This leads to a cleaner OO design than allowing many objects to control the same data.

 The power of Loose Coupling

When two objects are loosely coupled, they can interact, but have very little knowledge of each other.

The Observer Pattern provides an object design where subjects and observers are loosely coupled.

Why?

The only thing the subject knows about an observer is that it implements a certain interface (the Observer interface).

 It doesn’t need to know the concrete class of the observer, what it does, or anything else about it.

We can add new observers at any time.

 Because the only thing the subject depends on is a list of objects that implement the Observer interface, we can add new observers whenever we want. In fact, we can replace any observer at runtime with another observer and the subject will keep purring along. Likewise, we can remove observers at any time.

We never need to modify the subject to add new types of observers.

 Let’s say we have a new concrete class come along that needs to be an observer. We don’t need to make any changes to the subject to accommodate the new class type; all we have to do is implement the Observer interface in the new class and register as an observer. The subject doesn’t care; it will deliver notifications to any object that implements the Observer interface.

We can reuse subjects or observers independently of each other.

 If we have another use for a subject or an observer, we can easily reuse them because the two aren’t tightly coupled.

Changes to either the subject or an observer will not affect the other.

 Because the two are loosely coupled, we are free to make changes to either, as long as the objects still meet their obligations to implement the subject or observer interfaces.

 Note

How many different kinds of change can you identify here?

 Design Principle

Strive for loosely coupled designs between objects that interact.

Loosely coupled designs allow us to build flexible OO systems that can handle change because they minimize the interdependency between objects.

Sharpen your pencil

 Before moving on, try sketching out the classes you’ll need to implement the Weather Station, including the WeatherData class and its display elements. Make sure your diagram shows how all the pieces fit together and also how another developer might implement her own display element.

If you need a little help, read the next page; your teammates are already talking about how to design the Weather Station.

 Cubicle conversation

Back to the Weather Station project. Your teammates have already started thinking through the problem...

 [image: image with no caption]

Mary:

 Well, it helps to know we’re using the Observer Pattern.

Sue:

 Right... but how do we apply it?

Mary:

 Hmm. Let’s look at the definition again:

The Observer Pattern defines a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically.

Mary:

 That actually makes some sense when you think about it. Our WeatherData class is the “one” and our “many” is the various display elements that use the weather measurements.

Sue:

 That’s right. The WeatherData class certainly has state... that’s the temperature, humidity, and barometric pressure, and those definitely change.

Mary:

 Yup, and when those measurements change, we have to notify all the display elements so they can do whatever it is they are going to do with the measurements.

Sue:

 Cool, I now think I see how the Observer Pattern can be applied to our Weather Station problem.

Mary:

 There are still a few things to consider that I’m not sure I understand yet.

Sue:

 Like what?

Mary:

 For one thing, how do we get the weather measurements to the display elements?

Sue:

 Well, looking back at the picture of the Observer Pattern, if we make the WeatherData object the subject, and the display elements the observers, then the displays will register themselves with the WeatherData object in order to get the information they want, right?

Mary:

 Yes... and once the Weather Station knows about a display element, then it can just call a method to tell it about the measurements.

Sue:

 We gotta remember that every display element can be different... so I think that’s where having a common interface comes in. Even though every component has a different type, they should all implement the same interface so that the WeatherData object will know how to send them the measurements.

Mary:

 I see what you mean. So every display will have, say, an update() method that WeatherData will call.

Sue:

 And update() is defined in a common interface that all the elements implement...

 Designing the Weather Station

 How does this diagram compare with yours?

 [image: image with no caption]

 Implementing the Weather Station

 We’re going to start our implementation using the class diagram and following Mary and Sue’s lead (from a few pages back). You’ll see later in this chapter that Java provides some built-in support for the Observer Pattern, however, we’re going to get our hands dirty and roll our own for now. While in some cases you can make use of Java’s built-in support, in a lot of cases it’s more flexible to build your own (and it’s not all that hard). So, let’s get started with the interfaces:

 [image: image with no caption]

 Brain Power

Mary and Sue thought that passing the measurements directly to the observers was the most straightforward method of updating state. Do you think this is wise? Hint: is this an area of the application that might change in the future? If it did change, would the change be well encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the updated state to the observers?

Don’t worry; we’ll come back to this design decision after we finish the initial implementation.

 Implementing the Subject interface in WeatherData

REMEMBER: we don’t provide import and package statements in the code listings. Get the complete source code from http://wickedlysmart.com/head-first-design-patterns/
 .

Remember our first attempt at implementing the WeatherData class at the beginning of the chapter? You might want to refresh your memory. Now it’s time to go back and do things with the Observer Pattern in mind...

 [image: image with no caption]

 Now, let’s build those display elements

 Now that we’ve got our WeatherData class straightened out, it’s time to build the Display Elements. Weather-O-Rama ordered three: the current conditions display, the statistics display, and the forecast display. Let’s take a look at the current conditions display; once you have a good feel for this display element, check out the statistics and forecast displays in the code directory. You’ll see they are very similar.

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Is update() the best place to call display?

	
A:

	

A:

 In this simple example it made sense to call display() when the values changed. However, you are right; there are much better ways to design the way the data gets displayed. We are going to see this when we get to the Model-View-Controller pattern.

	

Q:

	

Q: Why did you store a reference to the Subject? It doesn’t look like you use it again after the constructor.

	
A:

	

A:

 True, but in the future we may want to un-register ourselves as an observer and it would be handy to already have a reference to the subject.

 Power up the Weather Station

 [image: image with no caption]

	①

First, let’s create a test harness.

The Weather Station is ready to go. All we need is some code to glue everything together. Here’s our first attempt. We’ll come back later in the book and make sure all the components are easily pluggable via a configuration file. For now here’s how it all works:

 [image: image with no caption]

	

② Run the code and let the Observer Pattern do its magic.

 [image: image with no caption]

Sharpen your pencil

 Johnny Hurricane, Weather-O-Rama’s CEO, just called and they can’t possibly ship without a Heat Index display element. Here are the details.

The heat index is an index that combines temperature and humidity to determine the apparent temperature (how hot it actually feels). To compute the heat index, you take the temperature, T, and the relative humidity, RH, and use this formula:

heatindex =

16.923 + 1.85212 * 10-1

 * T + 5.37941 * RH - 1.00254 * 10-1

 *

T * RH + 9.41695 * 10-3

 * T2

 + 7.28898 * 10-3

 * RH2

 + 3.45372 *

10-4

 * T2

 * RH - 8.14971 * 10-4

 * T * RH2

 + 1.02102 * 10-5

 * T2

 *

RH2

 - 3.8646 * 10-5

 * T3

 + 2.91583 * 10-5

 * RH3

 + 1.42721 * 10-6

* T3

 * RH + 1.97483 * 10-7

 * T * RH3

 - 2.18429 * 10-8

 * T3

 * RH2

+ 8.43296 * 10-10

 * T2

 * RH3

 - 4.81975 * 10-11

 * T3

 * RH3

So get typing!

Just kidding. Don’t worry, you won’t have to type that formula in; just create your own HeatIndexDisplay.java file and copy the formula from heatindex.txt into it.

 Note

You can get heatindex.txt from wickedlysmart.com.

How does it work? You’d have to refer to
Head First Meteorology

 , or try asking someone at the National Weather Service (or try a web search).

When you finish, your output should look like this:

 [image: image with no caption]

Fireside Chats

Tonight’s talk:
A Subject and Observer spar over the right way to get state information to the Observer.

	
Subject:

	
Observer:

	
I’m glad we’re finally getting a chance to chat in person.

	

	
	
Really? I thought you didn’t care much about us Observers.

	
Well, I do my job, don’t I? I always tell you what’s going on... Just because I don’t really know who you are doesn’t mean I don’t care. And besides, I do know the most important thing about you — you implement the Observer interface.

	

	
	
Yeah, but that’s just a small part of who I am. Anyway, I know a lot more about you...

	
Oh yeah, like what?

	

	
	
Well, you’re always passing your state around to us Observers so we can see what’s going on inside you. Which gets a little annoying at times...

	
Well, excuuuse me. I have to send my state with my notifications so all you lazy Observers will know what happened!

	

	
	
Okay, wait just a minute here; first, we’re not lazy, we just have other stuff to do in between your oh-so-important notifications, Mr. Subject, and second, why don’t you let us come to you for the state we want rather than pushing it out to just everyone?

	
Well... I guess that might work. I’d have to open myself up even more, though, to let all you Observers come in and get the state that you need. That might be kind of dangerous. I can’t let you come in and just snoop around looking at everything I’ve got.

	

	
	
Why don’t you just write some public getter methods that will let us pull out the state we need?

	
Yes, I could let you
pull

 my state. But won’t that be less convenient for you? If you have to come to me every time you want something, you might have to make multiple method calls to get all the state you want. That’s why I like
push

 better... then you have everything you need in one notification.

	

	
	
Don’t be so pushy! There are so many different kinds of us Observers, there’s no way you can anticipate everything we need. Just let us come to you to get the state we need. That way, if some of us only need a little bit of state, we aren’t forced to get it all. It also makes things easier to modify later. Say, for example, you expand yourself and add some more state. If you use pull, you don’t have to go around and change the update calls on every observer; you just need to change yourself to allow more getter methods to access our additional state.

	
Well, I can see the advantages to doing it both ways. I have noticed that there is a built-in Java Observer Pattern that allows you to use either push or pull.

	

	
	
Oh really? I think we’re going to look at that next....

	
Great... maybe I’ll get to see a good example of pull and change my mind.

	

	
	
What, us agree on something? I guess there’s always hope.

 Using Java’s built-in Observer Pattern

 So far we’ve rolled our own code for the Observer Pattern, but Java has built-in support in several of its APIs. The most general is the Observer interface and the Observable class in the java.util package. These are quite similar to our Subject and Observer interfaces, but give you a lot of functionality out of the box. You can also implement either a push or pull style of update to your observers, as you will see.

To get a high-level feel for java.util.Observer and java.util.Observable, check out this reworked OO design for the WeatherStation:

 [image: image with no caption]

 [image: image with no caption]

 How Java’s built-in Observer Pattern works

The built-in Observer Pattern works a bit differently than the implementation that we used on the Weather Station. The most obvious difference is that WeatherData (our subject) now extends the Observable class and inherits the add, delete, and notify Observer methods (among a few others). Here’s how we use Java’s version:

For an Object to become an observer...

As usual, implement the Observer interface (this time the java.util.Observer interface) and call addObserver() on any Observable object. Likewise, to remove yourself as an observer, just call deleteObserver().

For the Observable to send notifications...

First of all you need to be Observable by extending the java.util.Observable superclass. From there it is a two-step process:

	① You first must call the setChanged() method to signify that the state has changed in your object.

	② Then, call one of two notifyObservers() methods:

 [image: image with no caption]

For an Observer to receive notifications...

It implements the update method, as before, but the signature of the method is a bit different:

If you want to “push” data to the observers, you can pass the data as a data object to the notifyObservers(arg) method. If not, then the Observer has to “pull” the data it wants from the Observable object passed to it. How? Let’s rework the Weather Station and you’ll see.

 [image: image with no caption]

The setChanged() method is used to signify that the state has changed and that notifyObservers(), when it is called, should update its observers. If notifyObservers() is called without first calling setChanged(), the observers will NOT be notified. Let’s take a look behind the scenes of Observable to see how this works:

Behind the Scenes

 [image: image with no caption]

Why is this necessary? The setChanged() method is meant to give you more flexibility in how you update observers by allowing you to optimize the notifications. For example, in our Weather Station, imagine if our measurements were so sensitive that the temperature readings were constantly fluctuating by a few tenths of a degree. That might cause the WeatherData object to send out notifications constantly. Instead, we might want to send out notifications only if the temperature changes more than half a degree and we could call setChanged() only after that happened.

You might not use this functionality very often, but it’s there if you need it. In either case, you need to call setChanged() for notifications to work. If this functionality is something that is useful to you, you may also want to use the clearChanged() method, which sets the changed state back to false, and the hasChanged() method, which tells you the current state of the changed flag.

 Reworking the Weather Station with the built-in support

First, let’s rework WeatherData to use java.util.Observable

 [image: image with no caption]

Now, let’s rework the CurrentConditionsDisplay

 [image: image with no caption]

Code Magnets

 The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the code snippets to make it work? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need!

 [image: image with no caption]

 Running the new code

Just to be sure, let’s run the new code...

 [image: image with no caption]

Hmm, do you notice anything different? Look again...

You’ll see all the same calculations, but mysteriously, the order of the text output is different. Why might this happen? Think for a minute before reading on...

Never depend on order of evaluation of the Observer notifications

The java.util.Observable has implemented its notifyObservers() method such that the Observers are notified in a
different

 order than our own implementation. Who’s right? Neither; we just chose to implement things in different ways.

What would be incorrect, however, is if we wrote our code to
depend

 on a specific notification order. Why? Because if you need to change Observable/Observer implementations, the order of notification could change and your application would produce incorrect results. Now that’s definitely not what we’d consider loosely coupled.

 [image: image with no caption]

 The dark side of java.util.Observable

 Yes, good catch. As you’ve noticed, Observable is a class, not an
interface

 , and worse, it doesn’t even
implement

 an interface. Unfortunately, the java.util.Observable implementation has a number of problems that limit its usefulness and reuse. That’s not to say it doesn’t provide some utility, but there are some large potholes to watch out for.

Observable is a class

You already know from our principles this is a bad idea, but what harm does it really cause?

First, because Observable is a
class

 , you have to
subclass

 it. That means you can’t add on the Observable behavior to an existing class that already extends another superclass. This limits its reuse potential (and isn’t that why we are using patterns in the first place?).

Second, because there isn’t an Observable interface, you can’t even create your own implementation that plays well with Java’s built-in Observer API. Nor do you have the option of swapping out the java.util implementation for another (say, a new, multithreaded implementation).

Observable protects crucial methods

If you look at the Observable API, the setChanged() method is protected. So what? Well, this means you can’t call setChanged() unless you’ve subclassed Observable. This means you can’t even create an instance of the Observable class and compose it with your own objects, you
have

 to subclass. The design violates a second design principle here...
favor composition over inheritance

 .

What to do?

Observable
may

 serve your needs if you can extend java.util.Observable. On the other hand, you may need to roll your own implementation as we did at the beginning of the chapter. In either case, you know the Observer Pattern well and you’re in a good position to work with any API that makes use of the pattern.

 Other places you’ll find the Observer Pattern in the JDK

 The java.util implementation of Observer/Observable is not the only place you’ll find the Observer Pattern in the JDK; both JavaBeans and Swing also provide their own implementations of the pattern. At this point you understand enough about Observer to explore these APIs on your own; however, let’s do a quick, simple Swing example just for the fun of it.

 Note

If you’re curious about the Observer Pattern in JavaBeans, check out the PropertyChangeListener interface.

A little background...

Let’s take a look at a simple part of the Swing API, the JButton. If you look under the hood at JButton’s superclass, AbstractButton, you’ll see that it has a lot of add/ remove listener methods. These methods allow you to add and remove observers, or, as they are called in Swing, listeners, to listen for various types of events that occur on the Swing component. For instance, an ActionListener lets you “listen in” on any types of actions that might occur on a button, like a button press. You’ll find various types of listeners all over the Swing API.

A little life-changing application

Okay, our application is pretty simple. You’ve got a button that says “Should I do it?” and when you click on that button the listeners (observers) get to answer the question in any way they want. We’re implementing two such listeners, called the AngelListener and the DevilListener. Here’s how the application behaves:

 [image: image with no caption]

 And the code...

This life-changing application requires very little code. All we need to do is create a JButton object, add it to a JFrame and set up our listeners. We’re going to use inner classes for the listeners, which is a common technique in Swing programming. If you aren’t up on inner classes or Swing, you might want to review the “Getting GUI” chapter of
Head First Java

 .

 [image: image with no caption]

 [image: image with no caption]

 Note

 Lambda expressions were added in Java 8. If you aren’t familiar with them, don’t worry about it; you can continue using inner classes for your Swing observers.

Yes, you’re still using the Observer Pattern. By using a lambda expression rather than an inner class, you’re just skipping the step of creating an ActionListener object. With a lambda expression, you create a function object instead, and this function object is the observer. When you pass that function object to addActionListener(), Java ensures its signature matches actionPerformed(), the one method in the ActionListener interface.

Later, when the button is clicked, the button object notifies its observers — including the function objects created by the lambda expressions — that it’s been clicked, and calls each listener’s actionPerformed() method.

Let’s take a look at how you’d use lambda expressions as observers to simplify our previous code:

 The updated code, using lambda expressions

 [image: image with no caption]

 Tools for your Design Toolbox

Welcome to the end of Chapter 2
 . You’ve added a few new things to your OO toolbox...

 [image: image with no caption]

Bullet Points

	The Observer Pattern defines a one-to-many relationship between objects.

	Subjects, or as we also know them, Observables, update Observers using a common interface.

	Observers are loosely coupled in that the Observable knows nothing about them, other than that they implement the Observer interface.

	You can push or pull data from the Observable when using the pattern (pull is considered more “correct”).

	Don’t depend on a specific order of notification for your Observers.

	Java has several implementations of the Observer Pattern, including the general purpose java.util.Observable.

	Watch out for issues with the java.util.Observable implementation.

	Don’t be afraid to create your own Observable implementation if needed.

	Swing makes heavy use of the Observer Pattern, as do many GUI frameworks.

	You’ll also find the pattern in many other places, including JavaBeans and RMI.

Design Principle Challenge

 For each design principle, describe how the Observer Pattern makes use of the principle.

	

 Design Principle

Identify the aspects of your application that vary and separate them from what stays the same.

	
__

__

__

__

__

__

	

 Design Principle

Program to an interface, not an implementation.

	
__

__

__

__

__

__

	

 Design Principle

Favor composition over inheritance.

	

This is a hard one, hint: think about how observers and subjects work together.

__

__

__

__

Design Patterns Crossword

Time to give your right brain something to do again! This time all of the solution words are from Chapter 2
 .

 [image: image with no caption]

	
Across

	
Down

	
1. Observable is a ___________, not an interface.

3. Devil and Angel are _________ to the button.

4. Implement this method to get notified.

5. Jill got one of her own.

6. CurrentConditionsDisplay implements this interface.

8. How to get yourself off the Observer list.

12. You forgot this if you’re not getting notified when you think you should be.

15. One Subject likes to talk to _______ observers.

18. Don’t count on this for notification.

19. Temperature, humidity and __________.

20. Observers are __________ on the Subject.

21. Program to an _________ not an implementation.

22. A Subject is similar to a __________.

	
2. Ron was both an Observer and a _________.

3. You want to keep your coupling _________.

7. He says you should go for it.

9. _________ can manage your observers for you.

10. Java framework with lots of Observers.

11. Weather-O-Rama’s CEO named after this kind of storm.

13. Observers like to be ___________ when something new happens.

14. The WeatherData class __________ the Subject interface.

16. He didn’t want any more ints, so he removed himself.

17. CEO almost forgot the ________ index display

19. Subject initially wanted to _________ all the data to Observer.

Sharpen your pencil Solution

 Based on our first implementation, which of the following apply? (Choose all that apply.)

	

 [image:]

	
A.

	
We are coding to concrete implementations, not interfaces.

	

 [image:]

	
B.

	
For every new display element we need to alter code.

	

 [image:]

	
C.

	
We have no way to add display elements at run time.

	

 [image:]

	
D.

	
The display elements don’t implement a common interface.

	

 [image:]

	
E.

	
We haven’t encapsulated what changes.

	

 [image:]

	
F.

	
We are violating encapsulation of the WeatherData class.

Design Principle Challenge Solution

	

 Design Principle

Identify the aspects of your application that vary and separate them from what stays the same.

	
__The thing that varies in the Observer Pattern

__is the state of the Subject and the number and

__types of Observers. With this pattern, you can

__vary the objects that are dependent on the state

__of the Subject, without having to change that

__Subject. That’s called planning ahead!

 Design Principle

Program to an interface, not an implementation.

	
__Both the Subject and Observer use interfaces.

__The Subject keeps track of objects implementing

__the Observer interface, while the observers

__register with, and get notified by, the Subject

__interface. As we’ve seen, this keeps things nice and

__loosely coupled.

 Design Principle

Favor composition over inheritance.

	
__The Observer Pattern uses composition to compose
 __

__any number of Observers with their Subjects.

__These relationships aren’t set up by some kind of

__inheritance hierarchy. No, they are set up at

__runtime by composition!

Code Magnets Solution

 The ForecastDisplay class is all scrambled up on the fridge. Can you reconstruct the code snippets to make it work? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need! Here’s our solution.

 [image: image with no caption]

Design Patterns Crossword Solution

 [image: image with no caption]

 Chapter 3. The Decorator Pattern: Decorating Objects

 [image: image with no caption]

Just call this chapter “Design Eye for the Inheritance Guy.”

 We’ll re-examine the typical overuse of inheritance and you’ll learn how to decorate your classes at runtime using a form of object composition. Why? Once you know the techniques of decorating, you’ll be able to give your (or someone else’s) objects new responsibilities
without making any code changes to the underlying classes.

 Welcome to Starbuzz Coffee

 [image: image with no caption]

Starbuzz Coffee has made a name for itself as the fastest growing coffee shop around. If you’ve seen one on your local corner, look across the street; you’ll see another one.

Because they’ve grown so quickly, they’re scrambling to update their ordering systems to match their beverage offerings.

When they first went into business they designed their classes like this...

 [image: image with no caption]

In addition to your coffee, you can also ask for several condiments like steamed milk, soy, and mocha (otherwise known as chocolate), and have it all topped off with whipped milk. Starbuzz charges a bit for each of these, so they really need to get them built into their order system.

Here’s their first attempt...

 [image: image with no caption]

 [image: image with no caption]

 Brain Power

 It’s pretty obvious that Starbuzz has created a maintenance nightmare for themselves. What happens when the price of milk goes up? What do they do when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design principles that we’ve covered so far are they violating?

Hint: they’re violating two of them in a big way!

 [image: image with no caption]

Well, let’s give it a try. Let’s start with the Beverage base class and add instance variables to represent whether or not each beverage has milk, soy, mocha, and whip...

 [image: image with no caption]

 Now let’s add in the subclasses, one for each beverage on the menu:

 [image: image with no caption]

Sharpen your pencil

Write the cost() methods for the following classes (pseudo-Java is okay):

	

public class Beverage {

public double cost() {

}

}

	

public class DarkRoast extends Beverage {

public DarkRoast() {

description = "Most Excellent Dark Roast";

}

public double cost() {

 }
}

 [image: image with no caption]

Sharpen your pencil

 What requirements or other factors might change that will impact this design?

 [image: image with no caption]

Master and Student...

 Master:

Grasshopper, it has been some time since our last meeting. Have you been deep in meditation on inheritance?

Student:

Yes, Master. While inheritance is powerful, I have learned that it doesn’t always lead to the most flexible or maintainable designs.

Master:

Ah yes, you have made some progress. So, tell me, my student, how then will you achieve reuse if not through inheritance?

Student:

Master, I have learned there are ways of “inheriting” behavior at runtime through composition and delegation.

Master:

Please, go on...

Student:

When I inherit behavior by subclassing, that behavior is set statically at compile time. In addition, all subclasses must inherit the same behavior. If however, I can extend an object’s behavior through composition, then I can do this dynamically at runtime.

Master:

Very good, Grasshopper, you are beginning to see the power of composition.

Student:

Yes, it is possible for me to add multiple new responsibilities to objects through this technique, including responsibilities that were not even thought of by the designer of the superclass. And, I don’t have to touch their code!

Master:

What have you learned about the effect of composition on maintaining your code?

Student:

Well, that is what I was getting at. By dynamically composing objects, I can add new functionality by writing new code rather than altering existing code. Because I’m not changing existing code, the chances of introducing bugs or causing unintended side effects in pre-existing code are much reduced.

Master:

Very good. Enough for today, Grasshopper. I would like for you to go and meditate further on this topic... Remember, code should be closed (to change) like the lotus flower in the evening, yet open (to extension) like the lotus flower in the morning.

 The Open-Closed Principle

Grasshopper is on to one of the most important design principles:

 Design Principle

Classes should be open for extension, but closed for modification.

 [image: image with no caption]

Come on in; we’re
open

 . Feel free to extend our classes with any new behavior you like. If your needs or requirements change (and we know they will), just go ahead and make your own extensions.

 [image: image with no caption]

Sorry, we’re
closed

 . That’s right, we spent a lot of time getting this code correct and bug free, so we can’t let you alter the existing code. It must remain closed to modification. If you don’t like it, you can speak to the manager.

Our goal is to allow classes to be easily extended to incorporate new behavior without modifying existing code. What do we get if we accomplish this? Designs that are resilient to change and flexible enough to take on new functionality to meet changing requirements.

There Are No Dumb Questions

	

Q:

	

Q: Open for extension and closed for modification? That sounds very contradictory. How can a design be both?

	
A:

	

A:

 That’s a very good question. It certainly sounds contradictory at first. After all, the less modifiable something is, the harder it is to extend, right?

As it turns out, though, there are some clever OO techniques for allowing systems to be extended, even if we can’t change the underlying code. Think about the Observer Pattern (in Chapter 2
)... by adding new Observers, we can extend the Subject at any time, without adding code to the Subject. You’ll see quite a few more ways of extending behavior with other OO design techniques.

	

Q:

	

Q: Okay, I understand Observable, but how do I generally design something to be extensible, yet closed for modification?

	
A:

	

A:

 Many of the patterns give us time-tested designs that protect your code from being modified by supplying a means of extension. In this chapter you’ll see a good example of using the Decorator Pattern to follow the Open-Closed principle.

	

Q:

	

Q: How can I make every part of my design follow the Open-Closed Principle?

	
A:

	

A:

 Usually, you can’t. Making OO design flexible and open to extension without the modification of existing code takes time and effort. In general, we don’t have the luxury of tying down every part of our designs (and it would probably be wasteful). Following the Open-Closed Principle usually introduces new levels of abstraction, which adds complexity to our code. You want to concentrate on those areas that are most likely to change in your designs and apply the principles there.

	

Q:

	

Q: How do I know which areas of change are more important?

	
A:

	

A:

 That is partly a matter of experience in designing OO systems and also a matter of knowing the domain you are working in. Looking at other examples will help you learn to identify areas of change in your own designs.

While it may seem like a contradiction, there are techniques for allowing code to be extended without direct modification.

Be careful when choosing the areas of code that need to be extended; applying the Open-Closed Principle EVERYWHERE is wasteful and unnecessary, and can lead to complex, hard-to-understand code.

 Meet the Decorator Pattern

 Okay, we’ve seen that representing our beverage plus condiment pricing scheme with inheritance has not worked out very well — we get class explosions and rigid designs, or we add functionality to the base class that isn’t appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate” it with the condiments at runtime. For example, if the customer wants a Dark Roast with Mocha and Whip, then we’ll:

	

① Take a DarkRoast object

	

② Decorate it with a Mocha object

	

③ Decorate it with a Whip object

	

④ Call the cost() method and rely on delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation come into this? A hint: think of decorator objects as “wrappers.” Let’s see how this works...

 [image: image with no caption]

 Constructing a drink order with Decorators

	①

We start with our DarkRoast object.

 [image: image with no caption]

	

② The customer wants Mocha, so we create a Mocha object and wrap it around the DarkRoast.

 [image: image with no caption]

	

③ The customer also wants Whip, so we create a Whip decorator and wrap Mocha with it.

 [image: image with no caption]

 Note

So, a DarkRoast wrapped in Mocha and Whip is still a Beverage and we can do anything with it we can do with a DarkRoast, including call its cost() method.

	④

Now it’s time to compute the cost for the customer. We do this by calling cost() on the outermost decorator, Whip, and Whip is going to delegate computing the cost to the objects it decorates. Once it gets a cost, it will add on the cost of the Whip.

 [image: image with no caption]

 Okay, here’s what we know so far...

	Decorators have the same supertype as the objects they decorate.

	You can use one or more decorators to wrap an object.

	Given that the decorator has the same supertype as the object it decorates, we can pass around a decorated object in place of the original (wrapped) object.

	
The decorator adds its own behavior either before and/or after delegating to the object it decorates to do the rest of the job.

 Note

Key point!

	Objects can be decorated at any time, so we can decorate objects dynamically at runtime with as many decorators as we like.

Now let’s see how this all really works by looking at the Decorator Pattern definition and writing some code.

 The Decorator Pattern defined

 Let’s first take a look at the Decorator Pattern description:

 Note

The Decorator Pattern

 attaches additional responsibilities to an object dynamically. Decorators provide a flexible alternative to subclassing for extending functionality.

While that describes the
role

 of the Decorator Pattern, it doesn’t give us a lot of insight into how we’d
apply

 the pattern to our own implementation. Let’s take a look at the class diagram, which is a little more revealing (on the next page we’ll look at the same structure applied to the beverage problem).

 [image: image with no caption]

 Decorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

 [image: image with no caption]

 Brain Power

Before going further, think about how you’d implement the cost() method of the coffees and the condiments. Also think about how you’d implement the getDescription() method of the condiments.

 Cubicle Conversation

Some confusion over Inheritance versus Composition

 [image: image with no caption]

Sue:

 What do you mean?

Mary:

 Look at the class diagram. The CondimentDecorator is extending the Beverage class. That’s inheritance, right?

Sue:

 True. I think the point is that it’s vital that the decorators have the same type as the objects they are going to decorate. So here we’re using inheritance to achieve the
type matching

 , but we aren’t using inheritance to get
behavior

 .

Mary:

 Okay, I can see how decorators need the same “interface” as the components they wrap because they need to stand in place of the component. But where does the behavior come in?

Sue:

 When we compose a decorator with a component, we are adding new behavior. We are acquiring new behavior not by inheriting it from a superclass, but by composing objects together.

Mary:

 Okay, so we’re subclassing the abstract class Beverage in order to have the correct type, not to inherit its behavior. The behavior comes in through the composition of decorators with the base components as well as other decorators.

Sue:

 That’s right.

Mary:

 Ooooh, I see. And because we are using object composition, we get a whole lot more flexibility about how to mix and match condiments and beverages. Very smooth.

Sue:

 Yes, if we rely on inheritance, then our behavior can only be determined statically at compile time. In other words, we get only whatever behavior the superclass gives us or that we override. With composition, we can mix and match decorators any way we like...
at runtime

 .

Mary:

 And as I understand it, we can implement new decorators at any time to add new behavior. If we relied on inheritance, we’d have to go in and change existing code any time we wanted new behavior.

Sue:

 Exactly.

Mary:

 I just have one more question. If all we need to inherit is the type of the component, how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue:

 Well, remember, when we got this code, Starbuzz already
had

 an abstract Beverage class. Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously, we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if the abstract class will work just fine.

 New barista training

 Make a picture for what happens when the order is for a “double mocha soy latte with whip” beverage. Use the menu to get the correct prices, and draw your picture using the same format we used earlier (from a few pages back):

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

Draw your picture here.

 [image: image with no caption]

 Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to change from Starbuzz’s original design. Let’s take a look:

 [image: image with no caption]

 [image: image with no caption]

Beverage is simple enough. Let’s implement the abstract class for the Condiments (Decorator) as well:

 [image: image with no caption]

 Coding beverages

Now that we’ve got our base classes out of the way, let’s implement some beverages. We’ll start with Espresso. Remember, we need to set a description for the specific beverage and also implement the cost() method.

 [image: image with no caption]

 Coding condiments

If you look back at the Decorator Pattern class diagram, you’ll see we’ve now written our abstract component (Beverage), we have our concrete components (HouseBlend), and we have our abstract decorator (CondimentDecorator). Now it’s time to implement the concrete decorators. Here’s Mocha:

 [image: image with no caption]

On the next page we’ll actually instantiate the beverage and wrap it with all its condiments (decorators), but first...

Exercise

Write and compile the code for the other Soy and Whip condiments. You’ll need them to finish and test the application.

 Serving some coffees

 Congratulations. It’s time to sit back, order a few coffees, and marvel at the flexible design you created with the Decorator Pattern.

Here’s some test code*to make orders:

 [image: image with no caption]

* We’re going to see a much better way of creating decorated objects when we cover the Factory and Builder Design Patterns. Please note that the Builder Pattern is covered in the Appendix.

Now, let’s get those orders in:

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: I’m a little worried about code that might test for a specific concrete component — say, HouseBlend — and do something, like issue a discount. Once I’ve wrapped the HouseBlend with decorators, this isn’t going to work anymore.

	
A:

	

A:

 That is exactly right. If you have code that relies on the concrete component’s type, decorators will break that code. As long as you only write code against the abstract component type, the use of decorators will remain transparent to your code. However, once you start writing code against concrete components, you’ll want to rethink your application design and your use of decorators.

	

Q:

	

Q: Wouldn’t it be easy for some client of a beverage to end up with a decorator that isn’t the outermost decorator? Like if I had a DarkRoast with Mocha, Soy, and Whip, it would be easy to write code that somehow ended up with a reference to Soy instead of Whip, which means it would not include Whip in the order.

	
A:

	

A:

 You could certainly argue that you have to manage more objects with the Decorator Pattern and so there is an increased chance that coding errors will introduce the kinds of problems you suggest. However, decorators are typically created by using other patterns like Factory and Builder. Once we’ve covered these patterns, you’ll see that the creation of the concrete component with its decorator is “well encapsulated” and doesn’t lead to these kinds of problems.

	

Q:

	

Q: Can decorators know about the other decorations in the chain? Say I wanted my getDescription() method to print “Whip, Double Mocha” instead of “Mocha, Whip, Mocha.” That would require that my outermost decorator know all the decorators it is wrapping.

	
A:

	

A:

 Decorators are meant to add behavior to the object they wrap. When you need to peek at multiple layers into the decorator chain, you are starting to push the decorator beyond its true intent. Nevertheless, such things are possible. Imagine a CondimentPrettyPrint decorator that parses the final decription and can print “Mocha, Whip, Mocha” as “Whip, Double Mocha.” Note that getDescription() could return an ArrayList of descriptions to make this easier.

Sharpen your pencil

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in tall, grande, and venti sizes (translation: small, medium, and large). Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class: setSize() and getSize(). They’d also like for the condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for tall, grande, and venti coffees. The updated Beverage class is shown below.

How would you alter the decorator classes to handle this change in requirements?

public abstract class Beverage {

public enum Size { TALL, GRANDE, VENTI };

Size size = Size.TALL;

String description = "Unknown Beverage";

public String getDescription() {

return description;

}

public void setSize(Size size) {

this.size = size;

}

public Size getSize() {

return this.size;

}

public abstract double cost();

}

 Real World Decorators: Java I/O

 The large number of classes in the java.io package is...
overwhelming

 . Don’t feel alone if you said “whoa” the first (and second and third) time you looked at this API. But now that you know the Decorator Pattern, the I/O classes should make more sense since the java.io package is largely based on Decorator. Here’s a typical set of objects that use decorators to add functionality to reading data from a file:

 [image: image with no caption]

Buffered
 InputStream and LineNumber
 InputStream both extend Filter
 InputStream, which acts as the abstract decorator class.

 Decorating the java.io classes

 [image: image with no caption]

 You can see that this isn’t so different from the Starbuzz design. You should now be in a good position to look over the java.io API docs and compose decorators on the various
input

 streams.

You’ll see that the
output

 streams have the same design. And you’ve probably already found that the Reader/Writer streams (for character-based data) closely mirror the design of the streams classes (with a few differences and inconsistencies, but close enough to figure out what’s going on).

Java I/O also points out one of the
downsides

 of the Decorator Pattern: designs using this pattern often result in a large number of small classes that can be overwhelming to a developer trying to use the Decorator-based API. But now that you know how Decorator works, you can keep things in perspective and when you’re using someone else’s Decorator-heavy API, you can work through how their classes are organized so that you can easily use wrapping to get the behavior you’re after.

 Writing your own Java I/O Decorator

Okay, you know the Decorator Pattern, you’ve seen the I/O class diagram. You should be ready to write your own input decorator.

How about this: write a decorator that converts all uppercase characters to lowercase in the input stream. In other words, if we read in “I know the Decorator Pattern therefore I RULE!” then your decorator converts this to “i know the decorator pattern therefore i rule!”

 [image: image with no caption]

 [image: image with no caption]

REMEMBER: we don’t provide import and package statements in the code listings. Get the complete source code from http://wickedlysmart.com/head-first-design-patterns/
 .

 Test out your new Java I/O Decorator

Write some quick code to test the I/O decorator:

 [image: image with no caption]

 Give it a spin

 [image: image with no caption]

Patterns Exposed

This week’s interview: Confessions of a Decorator

Head First:

 Welcome, Decorator Pattern. We’ve heard that you’ve been a bit down on yourself lately?

Decorator:

 Yes, I know the world sees me as the glamorous design pattern, but you know, I’ve got my share of problems just like everyone.

HeadFirst:

 Can you perhaps share some of your troubles with us?

Decorator:

 Sure. Well, you know I’ve got the power to add flexibility to designs, that much is for sure, but I also have a
dark side

 . You see, I can sometimes add a lot of small classes to a design and this occasionally results in a design that’s less than straightforward for others to understand.

HeadFirst:

 Can you give us an example?

Decorator:

 Take the Java I/O libraries. These are notoriously difficult for people to understand at first. But if they just saw the classes as a set of wrappers around an InputStream, life would be much easier.

HeadFirst:

 That doesn’t sound so bad. You’re still a great pattern, and improving this is just a matter of public education, right?

Decorator:

 There’s more, I’m afraid. I’ve got typing problems: you see, people sometimes take a piece of client code that relies on specific types and introduce decorators without thinking through everything. Now, one great thing about me is that

you can usually insert decorators transparently and the client never has to know it’s dealing with a decorator

 . But like I said, some code is dependent on specific types and when you start introducing decorators, boom! Bad things happen.

HeadFirst:

 Well, I think everyone understands that you have to be careful when inserting decorators. I don’t think this is a reason to be too down on yourself.

Decorator:

 I know, I try not to be. I also have the problem that introducing decorators can increase the complexity of the code needed to instantiate the component. Once you’ve got decorators, you’ve got to not only instantiate the component, but also wrap it with who knows how many decorators.

HeadFirst:

 I’ll be interviewing the Factory and Builder patterns next week — I hear they can be very helpful with this?

Decorator:

 That’s true; I should talk to those guys more often.

HeadFirst:

 Well, we all think you’re a great pattern for creating flexible designs and staying true to the Open-Closed Principle, so keep your chin up and think positively!

Decorator:

 I’ll do my best, thank you.

 Tools for your Design Toolbox

You’ve got another chapter under your belt and a new principle and pattern in the toolbox.

 [image: image with no caption]

Bullet Points

	Inheritance is one form of extension, but not necessarily the best way to achieve flexibility in our designs.

	In our designs we should allow behavior to be extended without the need to modify existing code.

	Composition and delegation can often be used to add new behaviors at runtime.

	The Decorator Pattern provides an alternative to subclassing for extending behavior.

	The Decorator Pattern involves a set of decorator classes that are used to wrap concrete components.

	Decorator classes mirror the type of the components they decorate. (In fact, they are the same type as the components they decorate, either through inheritance or interface implementation.)

	Decorators change the behavior of their components by adding new functionality before and/or after (or even in place of) method calls to the component.

	You can wrap a component with any number of decorators.

	Decorators are typically transparent to the client of the component; that is, unless the client is relying on the component’s concrete type.

	Decorators can result in many small objects in our design, and overuse can be complex.

Sharpen your pencil Solution

 Write the cost() methods for the following classes (pseudo-Java is okay). Here’s our solution:

public class Beverage {

// declare instance variables for milkCost,

// soyCost, mochaCost, and whipCost, and

// getters and setters for milk, soy, mocha

// and whip.

public double cost() {

float condimentCost = 0.0;

if (hasMilk()) {

condimentCost += milkCost;

}

if (hasSoy()) {

condimentCost += soyCost;

}

if (hasMocha()) {

condimentCost += mochaCost;

}

if (hasWhip()) {

condimentCost += whipCost;

}

return condimentCost;

}

}

public class DarkRoast extends Beverage {

public DarkRoast() {

description = "Most Excellent Dark Roast";

}

public double cost() {

return 1.99 + super.cost();

}

}

Sharpen your pencil Solution

New barista training

“double mocha soy latte with whip”

 [image: image with no caption]

Sharpen your pencil Solution

 Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class: setSize() and getSize(). They’d also like for the condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements? Here’s our solution.

 [image: image with no caption]

 Chapter 4. The Factory Pattern: Baking with OO Goodness

 [image: image with no caption]

Get ready to bake some loosely coupled OO designs.

 There is more to making objects than just using the
new

 operator. You’ll learn that instantiation is an activity that shouldn’t always be done in public and can often lead to
coupling problems

 . And you don’t want
that

 , do you? Find out how Factory Patterns can help save you from embarrassing dependencies.

 [image: image with no caption]

When you see “new,” think “concrete.”

Yes, when you use
new

 you are certainly instantiating a concrete class, so that’s definitely an implementation, not an interface. And it’s a good question; you’ve learned that tying your code to a concrete class can make it more fragile and less flexible.

 [image: image with no caption]

When you have a whole set of related concrete classes, often you’re forced to write code like this:

 [image: image with no caption]

Here we’ve got several concrete classes being instantiated, and the decision of which to instantiate is made at runtime depending on some set of conditions.

When you see code like this, you know that when it comes time for changes or extensions, you’ll have to reopen this code and examine what needs to be added (or deleted). Often this kind of code ends up in several parts of the application making maintenance and updates more difficult and error-prone.

 [image: image with no caption]

What’s wrong with “new”?

Technically there’s nothing wrong with
new

 . After all, it’s a fundamental part of Java. The real culprit is our old friend CHANGE and how change impacts our use of
new

 .

By coding to an interface, you know you can insulate yourself from a lot of changes that might happen to a system down the road. Why? If your code is written to an interface, then it will work with any new classes implementing that interface through polymorphism. However, when you have code that makes use of lots of concrete classes, you’re looking for trouble because that code may have to be changed as new concrete classes are added. So, in other words, your code will not be “closed for modification.” To extend it with new concrete types, you’ll have to reopen it.

 Note

Remember that designs should be “open for extension but closed for modification” - see Chapter 3
 for a review.

So what can you do? It’s times like these that you can fall back on OO Design Principles to look for clues. Remember, our first principle deals with change and guides us to
identify the aspects that vary and separate them from what stays the same

 .

 Brain Power

How might you take all the parts of your application that instantiate concrete classes and separate or encapsulate them from the rest of your application?

 Identifying the aspects that vary

 [image: image with no caption]

 Let’s say you have a pizza shop, and as a cutting-edge pizza store owner in Objectville you might end up writing some code like this:

 [image: image with no caption]

But you need more than one type of pizza...

So then you’d add some code that
determines

 the appropriate type of pizza and then goes about
making

 the pizza:

 [image: image with no caption]

 But the pressure is on to add more pizza types

You realize that all of your competitors have added a couple of trendy pizzas to their menus: the Clam Pizza and the Veggie Pizza. Obviously you need to keep up with the competition, so you’ll add these items to your menu. And you haven’t been selling many Greek Pizzas lately, so you decide to take that off the menu:

 [image: image with no caption]

Clearly, dealing with
which

 concrete class is instantiated is really messing up our orderPizza() method and preventing it from being closed for modification. But now that we know what is varying and what isn’t, it’s probably time to encapsulate it.

 Encapsulating object creation

 So now we know we’d be better off moving the object creation out of the orderPizza() method. But how? Well, what we’re going to do is take the creation code and move it out into another object that is only going to be concerned with creating pizzas.

 [image: image with no caption]

We’ve got a name for this new object: we call it a Factory.

Factories handle the details of object creation. Once we have a SimplePizzaFactory, our orderPizza() method just becomes a client of that object. Any time it needs a pizza it asks the pizza factory to make one. Gone are the days when the orderPizza() method needs to know about Greek versus Clam pizzas. Now the orderPizza() method just cares that it gets a pizza that implements the Pizza interface so that it can call prepare(), bake(), cut(), and box().

We’ve still got a few details to fill in here; for instance, what does the orderPizza() method replace its creation code with? Let’s implement a simple factory for the pizza store and find out...

 Building a simple pizza factory

 We’ll start with the factory itself. What we’re going to do is define a class that encapsulates the object creation for all pizzas. Here it is...

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: What’s the advantage of this? It looks like we are just pushing the problem off to another object.

	
A:

	

A:

 One thing to remember is that the SimplePizzaFactory may have many clients. We’ve only seen the orderPizza() method; however, there may be a PizzaShopMenu class that uses the factory to get pizzas for their current description and price. We might also have a HomeDelivery class that handles pizzas in a different way than our PizzaShop class but is also a client of the factory.

So, by encapsulating the pizza creating in one class, we now have only one place to make modifications when the implementation changes.

Don’t forget, we are also just about to remove the concrete instantiations from our client code.

	

Q:

	

Q: I’ve seen a similar design where a factory like this is defined as a static method. What is the difference?

	
A:

	

A:

 Defining a simple factory as a static method is a common technique and is often called a static factory. Why use a static method? Because you don’t need to instantiate an object to make use of the create method. But remember it also has the disadvantage that you can’t subclass and change the behavior of the create method.

 Reworking the PizzaStore class

 Now it’s time to fix up our client code. What we want to do is rely on the factory to create the pizzas for us. Here are the changes:

 [image: image with no caption]

 Brain Power

	

Q:

	
We know that object composition allows us to change behavior dynamically at runtime (among other things) because we can swap in and out implementations. How might we be able to use that in the PizzaStore? What factory implementations might we be able to swap in and out?

	
A:

	
We don’t know about you, but we’re thinking New York, Chicago, and California style pizza factories (let’s not forget New Haven, too)

 The Simple Factory defined

 [image: image with no caption]

Pattern Honorable Mention

The Simple Factory isn’t actually a Design Pattern; it’s more of a programming idiom. But it is commonly used, so we’ll give it a Head First Pattern Honorable Mention. Some developers do mistake this idiom for the “Factory Pattern,” so the next time there is an awkward silence between you and another developer, you’ve got a nice topic to break the ice.

Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t check out how it’s put together. Let’s take a look at the class diagram of our new Pizza Store:

 [image: image with no caption]

Think of Simple Factory as a warm up. Next, we’ll explore two heavy-duty patterns that are both factories. But don’t worry, there’s more pizza to come!

 Note

*Just another reminder: in design patterns, the phrase “implement an interface” does NOT always mean “write a class that implements a Java interface, by using the ‘implements’ keyword in the class declaration.” In the general use of the phrase, a concrete class implementing a method from a supertype (which could be a class OR interface) is still considered to be “implementing the interface” of that supertype.

 Franchising the pizza store

 Your Objectville PizzaStore has done so well that you’ve trounced the competition and now everyone wants a PizzaStore in their own neighborhood. As the franchiser, you want to ensure the quality of the franchise operations and so you want them to use your time-tested code.

But what about regional differences? Each franchise might want to offer different styles of pizzas (New York, Chicago, and California, to name a few), depending on where the franchise store is located and the tastes of the local pizza connoisseurs.

 [image: image with no caption]

 We’ve seen one approach...

If we take out SimplePizzaFactory and create three different factories — NYPizzaFactory, ChicagoPizzaFactory and CaliforniaPizzaFactory — then we can just compose the PizzaStore with the appropriate factory and a franchise is good to go. That’s one approach.

Let’s see what that would look like...

 [image: image with no caption]

 But you’d like a little more quality control...

So you test-marketed the SimpleFactory idea, and what you found was that the franchises were using your factory to create pizzas, but starting to employ their own home-grown procedures for the rest of the process: they’d bake things a little differently, they’d forget to cut the pizza and they’d use third-party boxes.

Rethinking the problem a bit, you see that what you’d really like to do is create a framework that ties the store and the pizza creation together, yet still allows things to remain flexible.

In our early code, before the SimplePizzaFactory, we had the pizza-making code tied to the PizzaStore, but it wasn’t flexible. So, how can we have our pizza and eat it too?

 [image: image with no caption]

 A framework for the pizza store

 There
is

 a way to localize all the pizza-making activities to the PizzaStore class, and yet give the franchises freedom to have their own regional style.

What we’re going to do is put the createPizza() method back into PizzaStore, but this time as an
abstract method

 , and then create a PizzaStore subclass for each regional style.

First, let’s look at the changes to the PizzaStore:

 [image: image with no caption]

Now we’ve got a store waiting for subclasses; we’re going to have a subclass for each regional type (NYPizzaStore, ChicagoPizzaStore, CaliforniaPizzaStore) and each subclass is going to make the decision about what makes up a pizza. Let’s take a look at how this is going to work.

 Allowing the subclasses to decide

 Remember, the PizzaStore already has a well-honed order system in the orderPizza() method and you want to ensure that it’s consistent across all franchises.

What varies among the regional PizzaStores is the style of pizzas they make — New York Pizza has thin crust, Chicago Pizza has thick, and so on — and we are going to push all these variations into the createPizza() method and make it responsible for creating the right kind of pizza. The way we do this is by letting each subclass of PizzaStore define what the createPizza() method looks like. So, we will have a number of concrete subclasses of PizzaStore, each with its own pizza variations, all fitting within the PizzaStore framework and still making use of the well-tuned orderPizza() method.

 [image: image with no caption]

 [image: image with no caption]

Well, think about it from the point of view of the PizzaStore’s orderPizza() method: it is defined in the abstract PizzaStore, but concrete types are only created in the subclasses.

 [image: image with no caption]

Now, to take this a little further, the orderPizza() method does a lot of things with a Pizza object (like prepare, bake, cut, box), but because Pizza is abstract, orderPizza() has no idea what real concrete classes are involved. In other words, it’s decoupled!

 [image: image with no caption]

When orderPizza() calls createPizza(), one of your subclasses will be called into action to create a pizza. Which kind of pizza will be made? Well, that’s decided by the choice of pizza store you order from, NYStylePizzaStore or ChicagoStylePizzaStore.

 [image: image with no caption]

So, is there a real-time decision that subclasses make? No, but from the perspective of orderPizza(), if you chose a NYStylePizzaStore, that subclass gets to determine which pizza is made. So the subclasses aren’t really “deciding” — it was
you

 who decided by choosing which store you wanted — but they do determine which kind of pizza gets made.

 Let’s make a PizzaStore

 Being a franchise has its benefits. You get all the PizzaStore functionality for free. All the regional stores need to do is subclass PizzaStore and supply a createPizza() method that implements their style of Pizza. We’ll take care of the big three pizza styles for the franchisees.

Here’s the New York regional style:

 [image: image with no caption]

 Note

* Note that the orderPizza() method in the superclass has no clue which Pizza we are creating; it just knows it can prepare, bake, cut, and box it!

Once we’ve got our PizzaStore subclasses built, it will be time to see about ordering up a pizza or two. But before we do that, why don’t you take a crack at building the Chicago Style and California Style pizza stores on the next page.

Sharpen your pencil

 We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to franchise! Write the Chicago and California PizzaStore implementations here:

 Declaring a factory method

 With just a couple of transformations to the PizzaStore we’ve gone from having an object handle the instantiation of our concrete classes to a set of subclasses that are now taking on that responsibility. Let’s take a closer look:

 [image: image with no caption]

Code Up Close

A factory method handles object creation and encapsulates it in a subclass. This decouples the client code in the superclass from the object creation code in the subclass.

 [image: image with no caption]

 Let’s see how it works: ordering pizzas with the pizza factory method

 [image: image with no caption]

 So how do they order?

	① First, Joel and Ethan need an instance of a PizzaStore. Joel needs to instantiate a ChicagoPizzaStore and Ethan needs a NYPizzaStore.

	② With a PizzaStore in hand, both Ethan and Joel call the orderPizza() method and pass in the type of pizza they want (cheese, veggie, and so on).

	③ To create the pizzas, the createPizza() method is called, which is defined in the two subclasses NYPizzaStore and ChicagoPizzaStore. As we defined them, the NYPizzaStore instantiates a NY style pizza, and the ChicagoPizzaStore instantiates a Chicago style pizza. In either case, the Pizza is returned to the orderPizza() method.

	④ The orderPizza() method has no idea what kind of pizza was created, but it knows it is a pizza and it prepares, bakes, cuts, and boxes it for Ethan and Joel.

 Let’s check out how these pizzas are really made to order...

 [image: image with no caption]

Behind the Scenes

 [image: image with no caption]

 We’re just missing one thing: PIZZA!

 [image: image with no caption]

 Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

 [image: image with no caption]

 Note

 REMEMBER: we don’t provide import and package statements in the code listings. Get the complete source code from the wickedlysmart website. You’ll find the URL on page xxxiii in the Intro.

 Now we just need some concrete subclasses... how about defining New York and Chicago style cheese pizzas?

 [image: image with no caption]

 [image: image with no caption]

 You’ve waited long enough. Time for some pizzas!

 [image: image with no caption]

 [image: image with no caption]

 It’s finally time to meet the Factory Method Pattern

 All factory patterns encapsulate object creation. The Factory Method Pattern encapsulates object creation by letting subclasses decide what objects to create. Let’s check out these class diagrams to see who the players are in this pattern:

 The Creator classes

 [image: image with no caption]

 The Product classes

 [image: image with no caption]

 Another perspective: parallel class hierarchies

 We’ve seen that the factory method provides a framework by supplying an orderPizza() method that is combined with a factory method. Another way to look at this pattern as a framework is in the way it encapsulates product knowledge into each creator.

Let’s look at the two parallel class hierarchies and see how they relate:

 [image: image with no caption]

 Note

The factory method is the key to encapsulating this knowledge.

Design Puzzle

 We need another kind of pizza for those crazy Californians (crazy in a
good

 way, of course). Draw another parallel set of classes that you’d need to add a new California region to our PizzaStore.

 [image: image with no caption]

Okay, now write the five
most bizarre

 things you can think of to put on a pizza. Then, you’ll be ready to go into business making pizza in California!

 Factory Method Pattern defined

 It’s time to roll out the official definition of the Factory Method Pattern:

 Note

The Factory Method Pattern

 defines an interface for creating an object, but lets subclasses decide which class to instantiate. Factory Method lets a class defer instantiation to subclasses.

As with every factory, the Factory Method Pattern gives us a way to encapsulate the instantiations of concrete types. Looking at the class diagram below, you can see that the abstract Creator gives you an interface with a method for creating objects, also known as the “factory method.” Any other methods implemented in the abstract Creator are written to operate on products produced by the factory method. Only subclasses actually implement the factory method and create products.

As in the official definition, you’ll often hear developers say that the Factory Method lets subclasses decide which class to instantiate. They say “decide” not because the pattern allows subclasses themselves to decide at runtime, but because the creator class is written without knowledge of the actual products that will be created, which is decided purely by the choice of the subclass that is used.

 Note

You could ask them what “decides” means, but we bet you now understand this better than they do!

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: What’s the advantage of the Factory Method Pattern when you only have one ConcreteCreator?

	
A:

	

A:

 The Factory Method Pattern is useful if you’ve only got one concrete creator because you are decoupling the implementation of the product from its use. If you add additional products or change a product’s implementation, it will not affect your Creator (because the Creator is not tightly coupled to any ConcreteProduct).

	

Q:

	

Q: Would it be correct to say that our NY and Chicago stores are implemented using Simple Factory? They look just like it.

	
A:

	

A:

 They’re similar, but used in different ways. Even though the implementation of each concrete store looks a lot like the SimplePizzaFactory, remember that the concrete stores are extending a class that has defined createPizza() as an abstract method. It is up to each store to define the behavior of the createPizza() method. In Simple Factory, the factory is another object that is composed with the PizzaStore.

	

Q:

	

Q: Are the factory method and the Creator always abstract?

	
A:

	

A:

 No, you can define a default factory method to produce some concrete product. Then you always have a means of creating products even if there are no subclasses of the Creator.

	

Q:

	

Q: Each store can make four different kinds of pizzas based on the type passed in. Do all concrete creators make multiple products, or do they sometimes just make one?

	
A:

	

A:

 We implemented what is known as the parameterized factory method. It can make more than one object based on a parameter passed in, as you noticed. Often, however, a factory just produces one object and is not parameterized. Both are valid forms of the pattern.

	

Q:

	

Q: Your parameterized types don’t seem “type-safe.” I’m just passing in a String! What if I asked for a “CalmPizza”?

	
A:

	

A:

 You are certainly correct and that would cause, what we call in the business, a “runtime error.” There are several other more sophisticated techniques that can be used to make parameters more “type safe,” or, in other words, to ensure errors in parameters can be caught at compile time. For instance, you can create objects that represent the parameter types, use static constants, or use enums.

	

Q:

	

Q: I’m still a bit confused about the difference between Simple Factory and Factory Method. They look very similar, except that in Factory Method, the class that returns the pizza is a subclass. Can you explain?

	
A:

	

A:

 You’re right that the subclasses do look a lot like Simple Factory; however, think of Simple Factory as a one-shot deal, while with Factory Method you are creating a framework that lets the subclasses decide which implementation will be used. For example, the orderPizza() method in the Factory Method provides a general framework for creating pizzas that relies on a factory method to actually create the concrete classes that go into making a pizza. By subclassing the PizzaStore class, you decide what concrete products go into making the pizza that orderPizza() returns. Compare that with SimpleFactory, which gives you a way to encapsulate object creation, but doesn’t give you the flexibility of the Factory Method because there is no way to vary the products you’re creating.

Master and Student...

 Master:

Grasshopper, tell me how your training is going.

Student:

Master, I have taken my study of “encapsulate what varies” further.

Master:

Go on...

Student:

I have learned that one can encapsulate the code that creates objects. When you have code that instantiates concrete classes, this is an area of frequent change. I’ve learned a technique called “factories” that allows you to encapsulate this behavior of instantiation.

Master:

And these “factories,” of what benefit are they?

Student:

There are many. By placing all my creation code in one object or method, I avoid duplication in my code and provide one place to perform maintenance. That also means clients depend only upon interfaces rather than the concrete classes required to instantiate objects. As I have learned in my studies, this allows me to program to an interface, not an implementation, and that makes my code more flexible and extensible in the future.

Master:

Yes Grasshopper, your OO instincts are growing. Do you have any questions for your master today?

Student:

Master, I know that by encapsulating object creation I am coding to abstractions and decoupling my client code from actual implementations. But my factory code must still use concrete classes to instantiate real objects. Am I not pulling the wool over my own eyes?

Master:

Grasshopper, object creation is a reality of life; we must create objects or we will never create a single Java program. But, with knowledge of this reality, we can design our code so that we have corralled this creation code like the sheep whose wool you would pull over your eyes. Once corralled, we can protect and care for the creation code. If we let our creation code run wild, then we will never collect its “wool.”

Student:

Master, I see the truth in this.

Master:

As I knew you would. Now, please go and meditate on object dependencies.

 A very dependent PizzaStore

Sharpen your pencil

 Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore that doesn’t use a factory; make a count of the number of concrete pizza objects this class is dependent on. If you added California style pizzas to this PizzaStore, how many objects would it be dependent on then?

 [image: image with no caption]

 Looking at object dependencies

 When you directly instantiate an object, you are depending on its concrete class. Take a look at our very dependent PizzaStore one page back. It creates all the pizza objects right in the PizzaStore class instead of delegating to a factory.

If we draw a diagram representing that version of the PizzaStore and all the objects it depends on, here’s what it looks like:

 [image: image with no caption]

 The Dependency Inversion Principle

 It should be pretty clear that reducing dependencies to concrete classes in our code is a “good thing.” In fact, we’ve got an OO design principle that formalizes this notion; it even has a big, formal name:
Dependency Inversion Principle

 .

 Note

Yet another phrase you can use to impress the execs in the room! Your raise will more than offset the cost of this book, and you’ll gain the admiration of your fellow developers.

Here’s the general principle:

 Design Principle

Depend upon abstractions. Do not depend upon concrete classes.

At first, this principle sounds a lot like “Program to an interface, not an implementation,” right? It is similar; however, the Dependency Inversion Principle makes an even stronger statement about abstraction. It suggests that our high-level components should not depend on our low-level components; rather, they should
both

 depend on abstractions.

 Note

A “high-level” component is a class with behavior defined in terms of other, “low-level” components.

For example, PizzaStore is a high-level component because its behavior is defined in terms of pizzas - it creates all the different pizza objects, and prepares, bakes, cuts, and boxes them, while the pizzas it uses are low-level components.

But what the heck does that mean?

Well, let’s start by looking again at the pizza store diagram on the previous page. PizzaStore is our “high-level component” and the pizza implementations are our “low-level components,” and clearly the PizzaStore is dependent on the concrete pizza classes.

Now, this principle tells us we should instead write our code so that we are depending on abstractions, not concrete classes. That goes for both our high-level modules and our low-level modules.

But how do we do this? Let’s think about how we’d apply this principle to our Very Dependent PizzaStore implementation...

 Applying the Principle

Now, the main problem with the Very Dependent PizzaStore is that it depends on every type of pizza because it actually instantiates concrete types in its orderPizza() method.

While we’ve created an abstraction, Pizza, we’re nevertheless creating concrete Pizzas in this code, so we don’t get a lot of leverage out of this abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as we know, the Factory Method allows us to do just that.

So, after we’ve applied the Factory Method, our diagram looks like this:

 [image: image with no caption]

After applying the Factory Method, you’ll notice that our high-level component, the PizzaStore, and our low-level components, the pizzas, both depend on Pizza, the abstraction. Factory Method is not the only technique for adhering to the Dependency Inversion Principle, but it is one of the more powerful ones.

 [image: image with no caption]

Where’s the “inversion” in Dependency Inversion Principle?

The “inversion” in the name Dependency Inversion Principle is there because it inverts the way you typically might think about your OO design. Look at the diagram on the previous page. Notice that the low-level components now depend on a higher level abstraction. Likewise, the high-level component is also tied to the same abstraction. So, the top-to-bottom dependency chart we drew a couple of pages back has inverted itself, with both high-level and low-level modules now depending on the abstraction.

Let’s also walk through the thinking behind the typical design process and see how introducing the principle can invert the way we think about the design...

 Inverting your thinking...

	

 [image:]

	
Okay, so you need to implement a PizzaStore. What’s the first thought that pops into your head?

	

 [image:]

	
Right, you start at the top and follow things down to the concrete classes. But, as you’ve seen, you don’t want your store to know about the concrete pizza types, because then it’ll be dependent on all those concrete classes!

Now, let’s “invert” your thinking... instead of starting at the top, start at the Pizzas and think about what you can abstract.

	

 [image:]

	
Right! You are thinking about the abstraction
Pizza

 . So now, go back and think about the design of the Pizza Store again.

Close. But to do that you’ll have to rely on a factory to get those concrete classes out of your Pizza Store. Once you’ve done that, your different concrete pizza types depend only on an abstraction and so does your store. We’ve taken a design where the store depended on concrete classes and inverted those dependencies (along with your thinking).

 A few guidelines to help you follow the Principle...

 The following guidelines can help you avoid OO designs that violate the Dependency Inversion Principle:

	No variable should hold a reference to a concrete class.

 Note

If you use
new

 , you’ll be holding a reference to a concrete class. Use a factory to get around that!

	No class should derive from a concrete class.

 Note

If you derive from a concrete class, you’re depending on a concrete class. Derive from an abstraction, like an interface or an abstract class.

	No method should override an implemented method of any of its base classes.

 Note

If you override an implemented method, then your base class wasn’t really an abstraction to start with. Those methods implemented in the base class are meant to be shared by all your subclasses.

You’re exactly right! Like many of our principles, this is a guideline you should strive for, rather than a rule you should follow all the time. Clearly, every single Java program ever written violates these guidelines!

But, if you internalize these guidelines and have them in the back of your mind when you design, you’ll know when you are violating the principle and you’ll have a good reason for doing so. For instance, if you have a class that isn’t likely to change, and you know it, then it’s not the end of the world if you instantiate a concrete class in your code. Think about it; we instantiate String objects all the time without thinking twice. Does that violate the principle? Yes. Is that okay? Yes. Why? Because String is very unlikely to change.

If, on the other hand, a class you write is likely to change, you have some good techniques like Factory Method to encapsulate that change.

 [image: image with no caption]

 Meanwhile, back at the PizzaStore...

 The design for the PizzaStore is really shaping up: it’s got a flexible framework and it does a good job of adhering to design principles.

Now, the key to Objectville Pizza’s success has always been fresh, quality ingredients, and what you’ve discovered is that with the new framework your franchises have been following your
procedures

 , but a few franchises have been substituting inferior ingredients in their pies to lower costs and increase their margins. You know you’ve got to do something, because in the long term this is going to hurt the Objectville brand!

 [image: image with no caption]

 Ensuring consistency in your ingredients

So how are you going to ensure each franchise is using quality ingredients? You’re going to build a factory that produces them and ships them to your franchises!

Now there is only one problem with this plan: the franchises are located in different regions and what is red sauce in New York is not red sauce in Chicago. So, you have one set of ingredients that needs to be shipped to New York and a
different

 set that needs to be shipped to Chicago. Let’s take a closer look:

 [image: image with no caption]

 Families of ingredients...

New York uses one set of ingredients and Chicago another. Given the popularity of Objectville Pizza, it won’t be long before you also need to ship another set of regional ingredients to California, and what’s next? Seattle?

For this to work, you are going to have to figure out how to handle families of ingredients.

 [image: image with no caption]

 Building the ingredient factories

Now we’re going to build a factory to create our ingredients; the factory will be responsible for creating each ingredient in the ingredient family. In other words, the factory will need to create dough, sauce, cheese, and so on... You’ll see how we are going to handle the regional differences shortly.

Let’s start by defining an interface for the factory that is going to create all our ingredients:

 [image: image with no caption]

 Note

If we’d had some common “machinery” to implement in each instance of factory, we could have made this an abstract class instead...

Here’s what we’re going to do:

	① Build a factory for each region. To do this, you’ll create a subclass of PizzaIngredientFactory that implements each create method.

	② Implement a set of ingredient classes to be used with the factory, like ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can be shared among regions where appropriate.

	③ Then we still need to hook all this up by working our new ingredient factories into our old PizzaStore code.

 Building the New York ingredient factory

Okay, here’s the implementation for the New York ingredient factory. This factory specializes in Marinara Sauce, Reggiano Cheese, Fresh Clams...

 [image: image with no caption]

Sharpen your pencil

 Write the ChicagoPizzaIngredientFactory. You can reference the classes below in your implementation:

 [image: image with no caption]

 Reworking the pizzas...

 We’ve got our factories all fired up and ready to produce quality ingredients; now we just need to rework our Pizzas so they only use factory-produced ingredients. We’ll start with our abstract Pizza class:

 [image: image with no caption]

 Reworking the pizzas, continued...

Now that you’ve got an abstract Pizza to work from, it’s time to create the New York and Chicago style Pizzas — only this time around they will get their ingredients straight from the factory. The franchisees’ days of skimping on ingredients are over!

When we wrote the Factory Method code, we had a NYCheesePizza and a ChicagoCheesePizza class. If you look at the two classes, the only thing that differs is the use of regional ingredients. The pizzas are made just the same (dough + sauce + cheese). The same goes for the other pizzas: Veggie, Clam, and so on. They all follow the same preparation steps; they just have different ingredients.

So, what you’ll see is that we really don’t need two classes for each pizza; the ingredient factory is going to handle the regional differences for us. Here’s the Cheese Pizza:

 [image: image with no caption]

Code Up Close

 The Pizza code uses the factory it has been composed with to produce the ingredients used in the pizza. The ingredients produced depend on which factory we’re using. The Pizza class doesn’t care; it knows how to make pizzas. Now, it’s decoupled from the differences in regional ingredients and can be easily reused when there are factories for the Rockies, the Pacific Northwest, and beyond.

 [image: image with no caption]

Let’s check out the ClamPizza as well:

 [image: image with no caption]

 Revisiting our pizza stores

We’re almost there; we just need to make a quick trip to our franchise stores to make sure they are using the correct Pizzas. We also need to give them a reference to their local ingredient factories:

 [image: image with no caption]

 Brain Power

Compare this version of the createPizza() method to the one in the Factory Method implementation earlier in the chapter.

 What have we done?

That was quite a series of code changes; what exactly did we do?

We provided a means of creating a family of ingredients for pizzas by introducing a new type of factory called an Abstract Factory.

An Abstract Factory gives us an interface for creating a family of products. By writing code that uses this interface, we decouple our code from the actual factory that creates the products. That allows us to implement a variety of factories that produce products meant for different contexts — such as different regions, different operating systems, or different look and feels.

Because our code is decoupled from the actual products, we can substitute different factories to get different behaviors (like getting marinara instead of plum tomatoes).

An Abstract Factory provides an interface for a family of products. What’s a family? In our case, it’s all the things we need to make a pizza: dough, sauce, cheese, meats, and veggies.

From the abstract factory, we derive one or more concrete factories that produce the same products, but with different implementations.

We then write our code so that it uses the factory to create products. By passing in a variety of factories, we get a variety of implementations of those products. But our client code stays the same.

 [image: image with no caption]

 More pizza for Ethan and Joel...

Ethan and Joel can’t get enough Objectville Pizza! What they don’t know is that now their orders are making use of the new ingredient factories. So now when they order...

 [image: image with no caption]

Behind the Scenes

 [image: image with no caption]

The first part of the order process hasn’t changed at all. Let’s follow Ethan’s order again:

	

① First we need a NY PizzaStore:

 [image: image with no caption]

	

② Now that we have a store, we can take an order:

 [image: image with no caption]

	

③ The orderPizza() method first calls the createPizza() method:

Pizza pizza = createPizza("cheese");

 From here things change, because we are using an ingredient factory

 [image: image with no caption]

Behind the Scenes

	

④ When the createPizza() method is called, that’s when our ingredient factory gets involved:

 [image: image with no caption]

	

⑤ Next we need to prepare the pizza. Once the prepare() method is called, the factory is asked to prepare ingredients:

 [image: image with no caption]

	

⑥ Finally, we have the prepared pizza in hand and the orderPizza() method bakes, cuts, and boxes the pizza.

 Abstract Factory Pattern defined

 We’re adding yet another factory pattern to our pattern family, one that lets us create families of products. Let’s check out the official definition for this pattern:

 Note

The Abstract Factory Pattern

 provides an interface for creating families of related or dependent objects without specifying their concrete classes.

We’ve certainly seen that Abstract Factory allows a client to use an abstract interface to create a set of related products without knowing (or caring) about the concrete products that are actually produced. In this way, the client is decoupled from any of the specifics of the concrete products. Let’s look at the class diagram to see how this all holds together:

 [image: image with no caption]

That’s a fairly complicated class diagram; let’s look at it all in terms of our PizzaStore:

 [image: image with no caption]

 [image: image with no caption]

Is that a Factory Method lurking inside the Abstract Factory?

Good catch! Yes, often the methods of an Abstract Factory are implemented as factory methods. It makes sense, right? The job of an Abstract Factory is to define an interface for creating a set of products. Each method in that interface is responsible for creating a concrete product, and we implement a subclass of the Abstract Factory to supply those implementations. So, factory methods are a natural way to implement your product methods in your abstract factories.

Patterns Exposed

This week’s interview: Factory Method and Abstract Factory, on each other

HeadFirst:

 Wow, an interview with two patterns at once! This is a first for us.

Factory Method:

 Yeah, I’m not so sure I like being lumped in with Abstract Factory, you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our own interviews.

HeadFirst:

 Don’t be miffed, we wanted to interview you together so we could help clear up any confusion about who’s who for the readers. You do have similarities, and I’ve heard that people sometimes get you confused.

Abstract Factory:

 It is true, there have been times I’ve been mistaken for Factory Method, and I know you’ve had similar issues, Factory Method. We’re both really good at decoupling applications from specific implementations; we just do it in different ways. So I can see why people might sometimes get us confused.

Factory Method:

 Well, it still ticks me off. After all, I use classes to create and you use objects; that’s totally different!

HeadFirst:

 Can you explain more about that, Factory Method?

Factory Method:

 Sure. Both Abstract Factory and I create objects — that’s our jobs. But I do it through inheritance...

Abstract Factory:

 ...and I do it through object composition.

Factory Method:

 Right. So that means, to create objects using Factory Method, you need to extend a class and provide an implementation for a factory method.

HeadFirst:

 And that factory method does what?

Factory Method:

 It creates objects, of course! I mean, the whole point of the Factory Method Pattern is that you’re using a subclass to do your creation for you. In that way, clients only need to know the abstract type they are using, the subclass worries about the concrete type. So, in other words, I keep clients decoupled from the concrete types.

Abstract Factory:

 And I do too, only I do it in a different way.

HeadFirst:

 Go on, Abstract Factory... you said something about object composition?

Abstract Factory:

 I provide an abstract type for creating a family of products. Subclasses of this type define how those products are produced. To use the factory, you instantiate one and pass it into some code that is written against the abstract type. So, like Factory Method, my clients are decoupled from the actual concrete products they use.

HeadFirst:

 Oh, I see, so another advantage is that you group together a set of related products.

Abstract Factory:

 That’s right.

HeadFirst:

 What happens if you need to extend that set of related products to, say, add another one? Doesn’t that require changing your interface?

Abstract Factory:

 That’s true; my interface has to change if new products are added, which I know people don’t like to do....

Factory Method:

 <snicker>

Abstract Factory:

 What are you snickering at, Factory Method?

Factory Method:

 Oh, come on, that’s a big deal! Changing your interface means you have to go in and change the interface of every subclass! That sounds like a lot of work.

Abstract Factory:

 Yeah, but I need a big interface because I am used to creating entire families of products. You’re only creating one product, so you don’t really need a big interface, you just need one method.

HeadFirst:

 Abstract Factory, I heard that you often use factory methods to implement your concrete factories?

Abstract Factory:

 Yes, I’ll admit it, my concrete factories often implement a factory method to create their products. In my case, they are used purely to create products...

Factory Method:

 ...while in my case I usually implement code in the abstract creator that makes use of the concrete types the subclasses create.

HeadFirst:

 It sounds like you both are good at what you do. I’m sure people like having a choice; after all, factories are so useful, they’ll want to use them in all kinds of different situations. You both encapsulate object creation to keep applications loosely coupled and less dependent on implementations, which is really great, whether you’re using Factory Method or Abstract Factory. May I allow you each a parting word?

Abstract Factory:

 Thanks. Remember me, Abstract Factory, and use me whenever you have families of products you need to create and you want to make sure your clients create products that belong together.

Factory Method:

 And I’m Factory Method; use me to decouple your client code from the concrete classes you need to instantiate, or if you don’t know ahead of time all the concrete classes you are going to need. To use me, just subclass me and implement my factory method!

 Factory Method and Abstract Factory compared

 [image: image with no caption]

 [image: image with no caption]

 Note

The product subclasses create parallel sets of product families. Here we have a New York ingredient family and a Chicago family.

 Tools for your Design Toolbox

In this chapter, we added two more tools to your toolbox: Factory Method and Abstract Factory. Both patterns encapsulate object creation and allow you to decouple your code from concrete types.

 [image: image with no caption]

Bullet Points

	All factories encapsulate object creation.

	Simple Factory, while not a bona fide design pattern, is a simple way to decouple your clients from concrete classes.

	Factory Method relies on inheritance: object creation is delegated to subclasses, which implement the factory method to create objects.

	Abstract Factory relies on object composition: object creation is implemented in methods exposed in the factory interface.

	All factory patterns promote loose coupling by reducing the dependency of your application on concrete classes.

	The intent of Factory Method is to allow a class to defer instantiation to its subclasses.

	The intent of Abstract Factory is to create families of related objects without having to depend on their concrete classes.

	The Dependency Inversion Principle guides us to avoid dependencies on concrete types and to strive for abstractions.

	Factories are a powerful technique for coding to abstractions, not concrete classes.

Design Patterns Crossword

It’s been a long chapter. Grab a slice of Pizza and relax while doing this crossword; all of the solution words are from this chapter.

 [image: image with no caption]

	
Across

	
Down

	
1. In Factory Method, each franchise is a ________.

4. In Factory Method, who decides which class to instantiate?

6. Role of PizzaStore in Factory Method Pattern.

7. All New York style pizzas use this kind of cheese.

8. In Abstract Factory, each ingredient factory is a _______.

9. When you use new, you are programming to an ___________.

11. createPizza() is a ____________ (two words).

12. Joel likes this kind of pizza.

13. In Factory Method, the PizzaStore and the concrete Pizzas all depend on this abstraction.

14. When a class instantiates an object from a concrete class, it’s ___________ on that object.

15. All factory patterns allow us to __________ object creation.

	
2. We used ___________ in Simple Factory and Abstract Factory, and inheritance in Factory Method.

3. Abstract Factory creates a ___________ of products.

5. Not a REAL factory pattern, but handy nonetheless.

10. Ethan likes this kind of pizza.

Sharpen your pencil Solution

 We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to franchise! Write the Chicago and California PizzaStore implementations here:

 [image: image with no caption]

Design Puzzle Solution

 We need another kind of pizza for those crazy Californians (crazy in a GOOD way, of course). Draw another parallel set of classes that you’d need to add a new California region to our PizzaStore.

 [image: image with no caption]

Okay, now write the five silliest things you can think of to put on a pizza. Then, you’ll be ready to go into business making pizza in California!

 Note

Here are our suggestions...

__Mashed Potatoes with Roasted Garlic

__BBQ Sauce

__Artichoke Hearts

__M
 [image:]

 M’s
 __

__Peanuts
 __

 Chapter 5. The Singleton Pattern: One of a Kind Objects

 [image: image with no caption]

Our next stop is the Singleton Pattern, our ticket to creating one-of-a-kind objects for which there is only one instance.

 You might be happy to know that of all patterns, the Singleton is the simplest in terms of its class diagram; in fact, the diagram holds just a single class! But don’t get too comfortable; despite its simplicity from a class design perspective, we are going to encounter quite a few bumps and potholes in its implementation. So buckle up.

 [image: image with no caption]

Developer:

 What use is that?

Guru:

 There are many objects we only need one of: thread pools, caches, dialog boxes, objects that handle preferences and registry settings, objects used for logging, and objects that act as device drivers to devices like printers and graphics cards. In fact, for many of these types of objects, if we were to instantiate more than one we’d run into all sorts of problems like incorrect program behavior, overuse of resources, or inconsistent results.

Developer:

 Okay, so maybe there are classes that should only be instantiated once, but do I need a whole chapter for this? Can’t I just do this by convention or by global variables? You know, like in Java, I could do it with a static variable.

Guru:

 In many ways, the Singleton Pattern
is a convention

 for ensuring one and only one object is instantiated for a given class. If you’ve got a better one, the world would like to hear about it; but remember, like all patterns, the Singleton Pattern is a time-tested method for ensuring only one object gets created. The Singleton Pattern also gives us a global point of access, just like a global variable, but without the downsides.

Developer:

 What downsides?

Guru:

 Well, here’s one example: if you assign an object to a global variable, then that object might be created when your application begins. Right? What if this object is resource intensive and your application never ends up using it? As you will see, with the Singleton Pattern, we can create our objects only when they are needed.

Developer:

 This still doesn’t seem like it should be so difficult.

Guru:

 If you’ve got a good handle on static class variables and methods as well as access modifiers, it’s not. But, in either case, it is interesting to see how a Singleton works, and, as simple as it sounds, Singleton code is hard to get right. Just ask yourself: how do I prevent more than one object from being instantiated? It’s not so obvious, is it?

 The Little Singleton

 A small Socratic exercise in the style of The Little Lisper

	

 How would you create a single object?

	

new MyObject();

	
And, what if another object wanted to create a MyObject? Could it call new on MyObject again?

	
Yes, of course.

	
So as long as we have a class, can we always instantiate it one or more times?

	
Yes. Well, only if it’s a public class.

	
And if not?

	
Well, if it’s not a public class, only classes in the same package can instantiate it. But they can still instantiate it more than once.

	
Hmm, interesting.

Did you know you could do this?

 [image:]

	
No, I’d never thought of it, but I guess it makes sense because it is a legal definition.

	
What does it mean?

	
I suppose it is a class that can’t be instantiated because it has a private constructor.

	
Well, is there ANY object that could use the private constructor?

	
Hmm, I think the code in MyClass is the only code that could call it. But that doesn’t make much sense.

	
Why not?

	
Because I’d have to have an instance of the class to call it, but I can’t have an instance because no other class can instantiate it. It’s a chicken-and-egg problem: I can use the constructor from an object of type MyClass, but I can never instantiate that object because no other object can use “new MyClass()”.

	
Okay. It was just a thought.

What does this mean?

 [image:]

	
MyClass is a class with a static method. We can call the static method like this:

MyClass.getInstance();

	
Why did you use MyClass, instead of some object name?

	
Well, getInstance() is a static method; in other words, it is a CLASS method. You need to use the class name to reference a static method.

	
Very interesting. What if we put things together.

Now

 can I instantiate a MyClass?

 [image:]

	
Wow, you sure can.

	
So, now can you think of a second way to instantiate an object?

	

MyClass.getInstance();

	
Can you finish the code so that only ONE instance of MyClass is ever created?

	
Yes, I think so...

(You’ll find the code on the next page.)

 Dissecting the classic Singleton Pattern implementation

 [image: image with no caption]

 Watch it!

 If you’re just flipping through the book, don’t blindly type in this code; you’ll see it has a few issues later in the chapter.

Code Up Close

 [image: image with no caption]

Patterns Exposed

This week’s interview: Confessions of a Singleton

HeadFirst:

 Today we are pleased to bring you an interview with a Singleton object. Why don’t you begin by telling us a bit about yourself.

Singleton:

 Well, I’m totally unique; there is just one of me!

HeadFirst:

 One?

Singleton:

 Yes, one. I’m based on the Singleton Pattern, which assures that at any time there is only one instance of me.

HeadFirst:

 Isn’t that sort of a waste? Someone took the time to develop a full-blown class and now all we can get is one object out of it?

Singleton:

 Not at all! There is power in ONE. Let’s say you have an object that contains registry settings. You don’t want multiple copies of that object and its values running around — that would lead to chaos. By using an object like me you can assure that every object in your application is making use of the same global resource.

HeadFirst:

 Tell us more...

Singleton:

 Oh, I’m good for all kinds of things. Being single sometimes has its advantages you know. I’m often used to manage pools of resources, like connection or thread pools.

HeadFirst:

 Still, only one of your kind? That sounds lonely.

Singleton:

 Because there’s only one of me, I do keep busy, but it would be nice if more developers knew me — many developers run into bugs because they have multiple copies of objects floating around they’re not even aware of.

HeadFirst:

 So, if we may ask, how do you know there is only one of you? Can’t anyone with a new operator create a “new you”?

Singleton:

 Nope! I’m truly unique.

HeadFirst:

 Well, do developers swear an oath not to instantiate you more than once?

Singleton:

 Of course not. The truth be told... well, this is getting kind of personal but... I have no public constructor.

HeadFirst:

 NO PUBLIC CONSTRUCTOR! Oh, sorry, no public constructor?

Singleton:

 That’s right. My constructor is declared private.

HeadFirst:

 How does that work? How do you EVER get instantiated?

Singleton:

 You see, to get a hold of a Singleton object, you don’t instantiate one, you just ask for an instance. So my class has a static method called getInstance(). Call that, and I’ll show up at once, ready to work. In fact, I may already be helping other objects when you request me.

HeadFirst:

 Well, Mr. Singleton, there seems to be a lot under your covers to make all this work. Thanks for revealing yourself and we hope to speak with you again soon!

 The Chocolate Factory

 Everyone knows that all modern chocolate factories have computer-controlled chocolate boilers. The job of the boiler is to take in chocolate and milk, bring them to a boil, and then pass them on to the next phase of making chocolate bars.

Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength Chocolate Boiler. Check out the code; you’ll notice they’ve tried to be very careful to ensure that bad things don’t happen, like draining 500 gallons of unboiled mixture, or filling the boiler when it’s already full, or boiling an empty boiler!

 [image: image with no caption]

 [image: image with no caption]

 Brain Power

 Choc-O-Holic has done a decent job of ensuring bad things don’t happen, don’t ya think? Then again, you probably suspect that if two ChocolateBoiler instances get loose, some very bad things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is created in an application?

Sharpen your pencil

Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a singleton?

 [image: image with no caption]

 Singleton Pattern defined

Now that you’ve got the classic implementation of Singleton in your head, it’s time to sit back, enjoy a bar of chocolate, and check out the finer points of the Singleton Pattern.

Let’s start with the concise definition of the pattern:

 Note

The Singleton Pattern

 ensures a class has only one instance, and provides a global point of access to it.

No big surprises there. But let’s break it down a bit more:

	What’s really going on here? We’re taking a class and letting it manage a single instance of itself. We’re also preventing any other class from creating a new instance on its own. To get an instance, you’ve got to go through the class itself.

	We’re also providing a global access point to the instance: whenever you need an instance, just query the class and it will hand you back the single instance. As you’ve seen, we can implement this so that the Singleton is created in a lazy manner, which is especially important for resource-intensive objects.

Okay, let’s check out the class diagram:

 [image: image with no caption]

 Houston,
 Hershey, PA we have a problem...

It looks like the Chocolate Boiler has let us down; despite the fact we improved the code using Classic Singleton, somehow the ChocolateBoiler’s fill() method was able to start filling the boiler even though a batch of milk and chocolate was already boiling! That’s 500 gallons of spilled milk (and chocolate)! What happened!?

 [image: image with no caption]

Could the addition of threads have caused this? Isn’t it the case that once we’ve set the uniqueInstance variable to the sole instance of ChocolateBoiler, all calls to getInstance() should return the same instance? Right?

 [image: image with no caption]

BE the JVM

We have two threads, each executing this code. Your job is to play the JVM and determine whether there is a case in which two threads might get ahold of different boiler objects. Hint: you really just need to look at the sequence of operations in the getInstance() method and the value of uniqueInstance to see how they might overlap. Use the code magnets to help you study how the code might interleave to create two boiler objects.

 [image: image with no caption]

Make sure you check your answer in BE the JVM Solution
 before continuing!

 [image: image with no caption]

 Dealing with multithreading

Our multithreading woes are almost trivially fixed by making getInstance() a synchronized method:

 [image: image with no caption]

Good point, and it’s actually a little worse than you make out: the only time synchronization is relevant is the first time through this method. In other words, once we’ve set the uniqueInstance variable to an instance of Singleton, we have no further need to synchronize this method. After the first time through, synchronization is totally unneeded overhead!

 [image: image with no caption]

 Can we improve multithreading?

 For most Java applications, we obviously need to ensure that the Singleton works in the presence of multiple threads. But, it is expensive to synchronize the getInstance() method, so what do we do?

Well, we have a few options...

 1. Do nothing if the performance of getInstance() isn’t critical to your application.

That’s right; if calling the getInstance() method isn’t causing substantial overhead for your application, forget about it. Synchronizing getInstance() is straightforward and effective. Just keep in mind that synchronizing a method can decrease performance by a factor of 100, so if a high-traffic part of your code begins using getInstance(), you may have to reconsider.

 2. Move to an eagerly created instance rather than a lazily created one.

If your application always creates and uses an instance of the Singleton or the overhead of creation and runtime aspects of the Singleton are not onerous, you may want to create your Singleton eagerly, like this:

 [image: image with no caption]

Using this approach, we rely on the JVM to create the unique instance of the Singleton when the class is loaded. The JVM guarantees that the instance will be created before any thread accesses the static uniqueInstance variable.

 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

 With double-checked locking, we first check to see if an instance is created, and if not, THEN we synchronize. This way, we only synchronize the first time through, just what we want.

Let’s check out the code:

 [image: image with no caption]

If performance is an issue in your use of the getInstance() method then this method of implementing the Singleton can drastically reduce the overhead.

 Watch it!

Double-checked locking doesn’t work in Java 1.4 or earlier!

Unfortunately, in Java version 1.4 and earlier, many JVMs contain implementations of the volatile keyword that allow improper synchronization for double-checked locking. If you must use a JVM earlier than Java 5, consider other methods of implementing your Singleton.

 Meanwhile, back at the Chocolate Factory...

 While we’ve been off diagnosing the multithreading problems, the chocolate boiler has been cleaned up and is ready to go. But first, we have to fix the multithreading problems. We have a few solutions at hand, each with different tradeoffs, so which solution are we going to employ?

 [image: image with no caption]

Sharpen your pencil

For each solution, describe its applicability to the problem of fixing the Chocolate Boiler code:

Synchronize the getInstance() method:

__

__

Use eager instantiation:

__

__

Double-checked locking:

__

__

 Congratulations!

At this point, the Chocolate Factory is a happy customer and Choc-O-Holic was glad to have some expertise applied to their boiler code. No matter which multithreading solution you applied, the boiler should be in good shape with no more mishaps. Congratulations. You’ve not only managed to escape 500lbs of hot chocolate in this chapter, but you’ve been through all the potential problems of the Singleton.

There Are No Dumb Questions

	

Q:

	

Q: For such a simple pattern consisting of only one class, Singletons sure seem to have some problems.

	
A:

	

A:

 Well, we warned you up front! But don’t let the problems discourage you; while implementing Singletons correctly can be tricky, after reading this chapter you are now well informed on the techniques for creating Singletons and should use them wherever you need to control the number of instances you are creating.

	

Q:

	

Q: Can’t I just create a class in which all methods and variables are defined as static? Wouldn’t that be the same as a Singleton?

	
A:

	

A:

 Yes, if your class is self-contained and doesn’t depend on complex initialization. However, because of the way static initializations are handled in Java, this can get very messy, especially if multiple classes are involved. Often this scenario can result in subtle, hard-to-find bugs involving order of initialization. Unless there is a compelling need to implement your “singleton” this way, it is far better to stay in the object world.

	

Q:

	

Q: What about class loaders? I heard there is a chance that two class loaders could each end up with their own instance of Singleton.

	
A:

	

A:

 Yes, that is true as each class loader defines a namespace. If you have two or more class loaders, you can load the same class multiple times (once in each classloader). Now, if that class happens to be a Singleton, then since we have more than one version of the class, we also have more than one instance of the Singleton. So, if you are using multiple classloaders and Singletons, be careful. One way around this problem is to specify the classloader yourself.

 Relax

Rumors of Singletons being eaten by the garbage collectors are greatly exaggerated

Prior to Java 1.2, a bug in the garbage collector allowed Singletons to be prematurely collected if there was no global reference to them. In other words, you could create a Singleton and if the only reference to the Singleton was in the Singleton itself, it would be collected and destroyed by the garbage collector. This leads to confusing bugs because after the Singleton is “collected,” the next call to getInstance() produces a shiny new Singleton. In many applications, this can cause confusing behavior as state is mysteriously reset to initial values or things like network connections are reset.

Since Java 1.2 this bug has been fixed and a global reference is no longer required. If you are, for some reason, still using a pre-Java 1.2 JVM, then be aware of this issue; otherwise, you can sleep well knowing your Singletons won’t be prematurely collected.

There Are No Dumb Questions

	

Q:

	

Q: I’ve always been taught that a class should do one thing and one thing only. For a class to do two things is considered bad OO design. Isn’t a Singleton violating this?

	
A:

	

A:

 You would be referring to the “One Class, One Responsibility” principle, and yes, you are correct, the Singleton is not only responsible for managing its one instance (and providing global access), it is also responsible for whatever its main role is in your application. So, certainly you could argue it is taking on two responsibilities. Nevertheless, it isn’t hard to see that there is utility in a class managing its own instance; it certainly makes the overall design simpler. In addition, many developers are familiar with the Singleton pattern as it is in wide use. That said, some developers do feel the need to abstract out the Singleton functionality.

	

Q:

	

Q: I wanted to subclass my Singleton code, but I ran into problems. Is it okay to subclass a Singleton?

	
A:

	

A:

 One problem with subclassing a Singleton is that the constructor is private. You can’t extend a class with a private constructor. So, the first thing you’ll have to do is change your constructor so that it’s public or protected. But then, it’s not really a Singleton anymore, because other classes can instantiate it.

If you do change your constructor, there’s another issue. The implementation of Singleton is based on a static variable, so if you do a straightforward subclass, all of your derived classes will share the same instance variable. This is probably not what you had in mind. So, for subclassing to work, implementing a registry of sorts is required in the base class.

Before implementing such a scheme, you should ask yourself what you are really gaining from subclassing a Singleton. Like most patterns, the Singleton is not necessarily meant to be a solution that can fit into a library. In addition, the Singleton code is trivial to add to any existing class. Last, if you are using a large number of Singletons in your application, you should take a hard look at your design. Singletons are meant to be used sparingly.

	

Q:

	

Q: I still don’t totally understand why global variables are worse than a Singleton.

	
A:

	

A:

 In Java, global variables are basically static references to objects. There are a couple of disadvantages to using global variables in this manner. We’ve already mentioned one: the issue of lazy versus eager instantiation. But we need to keep in mind the intent of the pattern: to ensure only one instance of a class exists and to provide global access. A global variable can provide the latter, but not the former. Global variables also tend to encourage developers to pollute the namespace with lots of global references to small objects. Singletons don’t encourage this in the same way, but can be abused nonetheless.

 Tools for your Design Toolbox

You’ve now added another pattern to your toolbox. Singleton gives you another method of creating objects — in this case, unique objects.

 [image: image with no caption]

 Note

As you’ve seen, despite its apparent simplicity, there are a lot of details involved in the Singleton’s implementation. After reading this chapter, though, you are ready to go out and use Singleton in the wild.

Bullet Points

	The Singleton Pattern ensures you have at most one instance of a class in your application.

	The Singleton Pattern also provides a global access point to that instance.

	Java’s implementation of the Singleton Pattern makes use of a private constructor, a static method combined with a static variable.

	Examine your performance and resource constraints and carefully choose an appropriate Singleton implementation for multithreaded applications (and we should consider all applications multithreaded!).

	Beware of the double-checked locking implementation; it is not thread-safe in versions before Java 2, version 5.

	Be careful if you are using multiple class loaders; this could defeat the Singleton implementation and result in multiple instances.

	If you are using a JVM earlier than 1.2, you’ll need to create a registry of Singletons to defeat the garbage collector.

Design Patterns Crossword

Sit back, open that case of chocolate that you were sent for solving the multithreading problem, and have some downtime working on this little crossword puzzle; all of the solution words are from this chapter.

 [image: image with no caption]

	
Across

	
Down

	
1. It was “one of a kind.”

2. Added to chocolate in the boiler.

8. An incorrect implementation caused this to overflow.

10. Singleton provides a single instance and __________ (three words).

12. Flawed multi-threading approach if not using Java 5 or later.

13. Chocolate capital of the USA.

14. One advantage over global variables: ________ creation.

15. Company that produces boilers.

16. To totally defeat the new constructor, we have to declare the constructor __________.

	
1. Multiple __________ can cause problems.

3. A Singleton is a class that manages an instance of ________.

4. If you don’t need to worry about lazy instantiation, you can create your instance __________.

5. Prior to Java 1.2, this can eat your Singletons (two words).

6. The Singleton was embarrassed it had no public __________.

7. The classic implementation doesn’t handle this.

9. Singleton ensures only one of these exists.

11. The Singleton Pattern has one.

BE the JVM Solution

 [image: image with no caption]

Sharpen your pencil Solution

 Can you help Choc-O-Holic improve their ChocolateBoiler class by turning it into a singleton?

 [image: image with no caption]

Sharpen your pencil Solution

 For each solution, describe its applicability to the problem of fixing the Chocolate Boiler code:

Synchronize the getInstance() method:

A straightforward technique that is guaranteed to work. We don’t seem to have

any performance concerns with the chocolate boiler, so this would be a good choice.

Use eager instantiation:

We are always going to instantiate the chocolate boiler in our code, so statically initializing

the instance would cause no concerns. This solution would work as well as the synchronized

method, although perhaps be less obvious to a developer familar with the standard pattern.

Double-checked locking:

Given we have no performance concerns, double-checked locking seems like overkill. In

addition, we’d have to ensure that we are running at least Java 5.

Design Patterns Crossword Solution

 [image: image with no caption]

 Chapter 6. The Command Pattern: Encapsulating Invocation

 [image: image with no caption]

In this chapter, we take encapsulation to a whole new level: we’re going to encapsulate method invocation.

 That’s right; by encapsulating method invocation, we can crystallize pieces of computation so that the object invoking the computation doesn’t need to worry about how to do things, it just uses our crystallized method to get it done. We can also do some wickedly smart things with these encapsulated method invocations, like save them away for logging or reuse them to implement undo in our code.

	

 [image:]

	

Home Automation or Bust, Inc.

1221 Industrial Avenue, Suite 2000

Future City, IL 62914

	
Greetings!

	
I recently received a demo and briefing from Johnny Hurricane, CEO of Weather-O-Rama, on their new expandable weather station. I have to say, I was so impressed with the software architecture that I’d like to ask you to design the API for our new Home Automation Remote Control. In return for your services we’d be happy to handsomely reward you with stock options in Home Automation or Bust, Inc.

	
I’m enclosing a prototype of our ground-breaking remote control for your perusal. The remote control features seven programmable slots (each can be assigned to a different household device) along with corresponding on/off buttons for each. The remote also has a global undo button.

	
I’m also enclosing a set of Java classes on CD-R that were created by various vendors to control home automation devices such as lights, fans, hot tubs, audio equipment, and other similar controllable appliances.

	
We’d like you to create an API for programming the remote so that each slot can be assigned to control a device or set of devices. Note that it is important that we be able to control the current devices on the disc, and also any future devices that the vendors may supply.

	
Given the work you did on the Weather-O-Rama weather station, we know you’ll do a great job on our remote control! We look forward to seeing your design.

	
Sincerely,

	

 [image:]

	
Bill “X-10” Thompson, CEO

 [image: image with no caption]

 Free hardware! Let’s check out the Remote Control...

 [image: image with no caption]

 Taking a look at the vendor classes

 Check out the vendor classes on the CD-R. These should give you some idea of the interfaces of the objects we need to control from the remote.

 [image: image with no caption]

 [image: image with no caption]

It looks like we have quite a set of classes here, and not a lot of industry effort to come up with a set of common interfaces. Not only that, it sounds like we can expect more of these classes in the future. Designing a remote control API is going to be interesting. Let’s get on to the design.

 Cubicle Conversation

 Your teammates are already discussing how to design the remote control API...

 [image: image with no caption]

Mary

 : Yes, I thought we’d see a bunch of classes with on() and off() methods, but here we’ve got methods like dim(), setTemperature(), setVolume(), and setInputChannel().

Sue

 : Not only that, it sounds like we can expect more vendor classes in the future with just as diverse methods.

Mary

 : I think it’s important we view this as a separation of concerns: the remote should know how to interpret button presses and make requests, but it shouldn’t know a lot about home automation or how to turn on a hot tub.

Sue

 : Sounds like good design. But if the remote is dumb and just knows how to make generic requests, how do we design the remote so that it can invoke an action that, say, turns on a light or opens a garage door?

Mary

 : I’m not sure, but we don’t want the remote to have to know the specifics of the vendor classes.

Sue

 : What do you mean?

Mary

 : We don’t want the remote to consist of a set of if statements, like “if slot1 == Light, then light.on(), else if slot1 == Hottub then hottub.jetsOn()”. We know that is a bad design.

Sue

 : I agree. Whenever a new vendor class comes out, we’d have to go in and modify the code, potentially creating bugs and more work for ourselves!

 [image: image with no caption]

Mary

 : Yeah? Tell us more.

Joe

 : The Command Pattern allows you to decouple the requester of an action from the object that actually performs the action. So, here the requester would be the remote control and the object that performs the action would be an instance of one of your vendor classes.

Sue

 : How is that possible? How can we decouple them? After all, when I press a button, the remote has to turn on a light.

Joe

 : You can do that by introducing “command objects” into your design. A command object encapsulates a request to do something (like turn on a light) on a specific object (say, the living room light object). So, if we store a command object for each button, when the button is pressed we ask the command object to do some work. The remote doesn’t have any idea what the work is, it just has a command object that knows how to talk to the right object to get the work done. So, you see, the remote is decoupled from the light object!

Sue

 : This certainly sounds like it’s going in the right direction.

Mary

 : Still, I’m having a hard time wrapping my head around the pattern.

Joe

 : Given that the objects are so decoupled, it’s a little difficult to picture how the pattern actually works.

Mary

 : Let me see if I at least have the right idea: using this pattern, we could create an API in which these command objects can be loaded into button slots, allowing the remote code to stay very simple. And, the command objects encapsulate how to do a home automation task along with the object that needs to do it.

Joe

 : Yes, I think so. I also think this pattern can help you with that undo button, but I haven’t studied that part yet.

Mary

 : This sounds really encouraging, but I think I have a bit of work to do to really “get” the pattern.

Sue

 : Me too.

 Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern

 As Joe said, it is a little hard to understand the Command Pattern by just hearing its description. But don’t fear, we have some friends ready to help: remember our friendly diner from Chapter 1
 ? It’s been a while since we visited Alice, Flo, and the short-order cook, but we’ve got good reason for returning (well, beyond the food and great conversation): the diner is going to help us understand the Command Pattern.

 [image: image with no caption]

So, let’s take a short detour back to the diner and study the interactions between the customers, the waitress, the orders and the short-order cook. Through these interactions, you’re going to understand the objects involved in the Command Pattern and also get a feel for how the decoupling works. After that, we’re going to knock out that remote control API.

Checking in at the Objectville Diner...

Okay, we all know how the Diner operates:

 [image: image with no caption]

 Let’s study the interaction in a little more detail...

...and given this Diner is in Objectville, let’s think about the object and method calls involved, too!

 [image: image with no caption]

 The Objectville Diner roles and responsibilities

An Order Slip encapsulates a request to prepare a meal.

Think of the Order Slip as an object, an object that acts as a request to prepare a meal.

 Like any object, it can be passed around — from the Waitress to the order counter, or to the next Waitress taking over her shift. It has an interface that consists of only one method, orderUp(), that encapsulates the actions needed to prepare the meal. It also has a reference to the object that needs to prepare it (in our case, the Cook). It’s encapsulated in that the Waitress doesn’t have to know what’s in the order or even who prepares the meal; she only needs to pass the slip through the order window and call “Order up!”

 [image: image with no caption]

 Note

Okay, in real life a waitress would probably care what is on the Order Slip and who cooks it, but this is Objectville... work with us here!

The Waitress’s job is to take Order Slips and invoke the orderUp() method on them.

The Waitress has it easy: take an order from the customer, continue helping customers until she makes it back to the order counter, then invoke the orderUp() method to have the meal prepared.

 As we’ve already discussed, in Objectville, the Waitress really isn’t worried about what’s on the order or who is going to prepare it; she just knows Order Slips have an orderUp() method she can call to get the job done.

Now, throughout the day, the Waitress’s takeOrder() method gets parameterized with different Order Slips from different customers, but that doesn’t faze her; she knows all Order Slips support the orderUp() method and she can call orderUp() any time she needs a meal prepared.

 [image: image with no caption]

The Short Order Cook has the knowledge required to prepare the meal.

The Short Order Cook is the object that really knows how to prepare meals.

 Once the Waitress has invoked the orderUp() method; the Short Order Cook takes over and implements all the methods that are needed to create meals. Notice the Waitress and the Cook are totally decoupled: the Waitress has Order Slips that encapsulate the details of the meal; she just calls a method on each order to get it prepared. Likewise, the Cook gets his instructions from the Order Slip; he never needs to directly communicate with the Waitress.

 [image: image with no caption]

 [image: image with no caption]

Patience, we’re getting there...

Think of the Diner as a model for an OO design pattern that allows us to separate an object making a request from the objects that receive and execute those requests. For instance, in our remote control API, we need to separate the code that gets invoked when we press a button from the objects of the vendor-specific classes that carry out those requests. What if each slot of the remote held an object like the Diner’s Order Slip object? Then, when a button is pressed, we could just call the equivalent of the “orderUp()” method on this object and have the lights turn on without the remote knowing the details of how to make those things happen or what objects are making them happen.

Now, let’s switch gears a bit and map all this Diner talk to the Command Pattern...

 Brain Power

Before we move on, spend some time studying the diagram two pages back along with Diner roles and responsibilities until you think you’ve got a handle on the Objectville Diner objects and relationships. Once you’ve done that, get ready to nail the Command Pattern!

 [image: image with no caption]

 From the Diner to the Command Pattern

 Okay, we’ve spent enough time in the Objectville Diner that we know all the personalities and their responsibilities quite well. Now we’re going to rework the Diner diagram to reflect the Command Pattern. You’ll see that all the players are the same; only the names have changed.

 [image: image with no caption]

Loading the Invoker

	① The client creates a command object.

	② The client does a setCommand() to store the command object in the invoker.

	

③ Later

 ... the client asks the invoker to execute the command. Note: as you’ll see later in the chapter, once the command is loaded into the invoker, it may be used and discarded, or it may remain and be used many times.

Who Does What?

 Match the diner objects and methods with the corresponding names from the Command Pattern.

	
Diner

	
Command Pattern

	
Waitress

	
Command

	
Short Order Cook

	
execute()

	
orderUp()

	
Client

	
Order

	
Invoker

	
Customer

	
Receiver

	
takeOrder()

	
setCommand()

 Our first command object

 Isn’t it about time we build our first command object? Let’s go ahead and write some code for the remote control. While we haven’t figured out how to design the remote control API yet, building a few things from the bottom up may help us...

 [image: image with no caption]

Implementing the Command interface

First things first: all command objects implement the same interface, which consists of one method. In the Diner we called this method orderUp(); however, we typically just use the name execute().

Here’s the Command interface:

 [image: image with no caption]

Implementing a command to turn a light on

Now, let’s say you want to implement a command for turning a light on. Referring to our set of vendor classes, the Light class has two methods: on() and off(). Here’s how you can implement this as a command:

 [image: image with no caption]

 [image: image with no caption]

Now that you’ve got a LightOnCommand class, let’s see if we can put it to use...

 Using the command object

 Okay, let’s make things simple: say we’ve got a remote control with only one button and corresponding slot to hold a device to control:

 [image: image with no caption]

 Creating a simple test to use the Remote Control

Here’s just a bit of code to test out the simple remote control. Let’s take a look and we’ll point out how the pieces match the Command Pattern diagram:

 [image: image with no caption]

Sharpen your pencil

 Okay, it’s time for you to implement the GarageDoorOpenCommand class. First, supply the code for the class below. You’ll need the GarageDoor class diagram.

 [image: image with no caption]

 [image: image with no caption]

Now that you’ve got your class, what is the output of the following code? (Hint: the GarageDoor up() method prints out “Garage Door is Open” when it is complete.)

public class RemoteControlTest {

public static void main(String[] args) {

SimpleRemoteControl remote = new SimpleRemoteControl();

Light light = new Light();

GarageDoor garageDoor = new GarageDoor();

LightOnCommand lightOn = new LightOnCommand(light);

GarageDoorOpenCommand garageOpen =

new GarageDoorOpenCommand(garageDoor);

remote.setCommand(lightOn);

remote.buttonWasPressed();

remote.setCommand(garageOpen);

remote.buttonWasPressed();

}

}

 [image: image with no caption]

 The Command Pattern defined

 You’ve done your time in the Objectville Diner, you’ve partly implemented the remote control API, and in the process you’ve got a fairly good picture of how the classes and objects interact in the Command Pattern. Now we’re going to define the Command Pattern and nail down all the details.

Let’s start with its official definition:

 Note

The Command Pattern

 encapsulates a request as an object, thereby letting you parameterize other objects with different requests, queue or log requests, and support undoable operations.

 [image: image with no caption]

Let’s step through this. We know that a command object
encapsulates a request

 by binding together a set of actions on a specific receiver. To achieve this, it packages the actions and the receiver up into an object that exposes just one method, execute(). When called, execute() causes the actions to be invoked on the receiver. From the outside, no other objects really know what actions get performed on what receiver; they just know that if they call the execute() method, their request will be serviced.

We’ve also seen a couple examples of
parameterizing an object

 with a command. Back at the diner, the Waitress was parameterized with multiple orders throughout the day. In the simple remote control, we first loaded the button slot with a “light on” command and then later replaced it with a “garage door open” command. Like the Waitress, your remote slot didn’t care what command object it had, as long as it implemented the Command interface.

What we haven’t encountered yet is using commands to implement
queues and logs and support undo operations

 . Don’t worry, those are pretty straightforward extensions of the basic Command Pattern and we will get to them soon. We can also easily support what’s known as the Meta Command Pattern once we have the basics in place. The Meta Command Pattern allows you to create macros of commands so that you can execute multiple commands at once.

 [image: image with no caption]

 The Command Pattern defined: the class diagram

 [image: image with no caption]

 Brain Power

 How does the design of the Command Pattern support the decoupling of the invoker of a request and the receiver of the request?

 [image: image with no caption]

Mary

 : Me too. So where do we begin?

Sue

 : Like we did in the SimpleRemote, we need to provide a way to assign commands to slots. In our case we have seven slots, each with an “on” and “off” button. So we might assign commands to the remote something like this:

onCommands[0] = onCommand;

offCommands[0] = offCommand;

and so on for each of the seven command slots.

Mary

 : That makes sense, except for the Light objects. How does the remote know the living room from the kitchen light?

Sue

 : Ah, that’s just it, it doesn’t! The remote doesn’t know anything but how to call execute() on the corresponding command object when a button is pressed.

Mary

 : Yeah, I sorta got that, but in the implementation, how do we make sure the right objects are turning on and off the right devices?

Sue

 : When we create the commands to be loaded into the remote, we create one LightCommand that is bound to the living room light object and another that is bound to the kitchen light object. Remember, the receiver of the request gets bound to the command it’s encapsulated in. So, by the time the button is pressed, no one cares which light is which; the right thing just happens when the execute() method is called.

Mary

 : I think I’ve got it. Let’s implement the remote and I think this will get clearer!

Sue

 : Sounds good. Let’s give it a shot...

 Assigning Commands to slots

 So we have a plan: we’re going to assign each slot to a command in the remote control. This makes the remote control our
invoker

 . When a button is pressed the execute() method is going to be called on the corresponding command, which results in actions being invoked on the receiver (like lights, ceiling fans, and stereos).

 [image: image with no caption]

 Implementing the Remote Control

 [image: image with no caption]

 Implementing the Commands

 Well, we’ve already gotten our feet wet implementing the LightOnCommand for the SimpleRemoteControl. We can plug that same code in here and everything works beautifully. Off commands are no different; in fact, the LightOffCommand looks like this:

 [image: image with no caption]

Let’s try something a little more challenging; how about writing on and off commands for the Stereo? Okay, off is easy, we just bind the Stereo to the off() method in the StereoOffCommand. On is a little more complicated; let’s say we want to write a StereoOnWithCDCommand...

 [image: image with no caption]

 [image: image with no caption]

Not too bad. Take a look at the rest of the vendor classes; by now, you can definitely knock out the rest of the Command classes we need for those.

 Putting the Remote Control through its paces

 Our job with the remote is pretty much done; all we need to do is run some tests and get some documentation together to describe the API. Home Automation or Bust, Inc. sure is going to be impressed, don’t ya think? We’ve managed to come up with a design that is going to allow them to produce a remote that is easy to maintain and they’re going to have no trouble convincing the vendors to write some simple command classes in the future since they are so easy to write.

Let’s get to testing this code!

 [image: image with no caption]

 [image: image with no caption]

 Now, let’s check out the execution of our remote control test...

 [image: image with no caption]

 [image: image with no caption]

 Good catch. We did sneak a little something in there. In the remote control, we didn’t want to check to see if a command was loaded every time we referenced a slot. For instance, in the onButtonWasPushed() method, we would need code like this:

public void onButtonWasPushed(int slot) {

if (onCommands[slot] != null) {

onCommands[slot].execute();

}

}

So, how do we get around that? Implement a command that does nothing!

public class NoCommand implements Command {

public void execute() { }

}

Then, in our RemoteControl constructor, we assign every slot a NoCommand object by default and we know we’ll always have some command to call in each slot.

Command noCommand = new NoCommand();

for (int i = 0; i < 7; i++) {

onCommands[i] = noCommand;

offCommands[i] = noCommand;

}

So in the output of our test run, you are seeing only slots that have been assigned to a command other than the default NoCommand object, which we assigned when we created the RemoteControl.

Pattern Honorable Mention

The NoCommand object is an example of a
null object

 . A null object is useful when you don’t have a meaningful object to return, and yet you want to remove the responsibility for handling
null

 from the client. For instance, in our remote control we didn’t have a meaningful object to assign to each slot out of the box, so we provided a NoCommand object that acts as a surrogate and does nothing when its execute method is called.

You’ll find uses for Null Objects in conjunction with many Design Patterns and sometimes you’ll even see Null Object listed as a Design Pattern.

 Time to write that documentation...

Remote Control API Design for Home Automation or Bust, Inc.

 We are pleased to present you with the following design and application programming interface for your Home Automation Remote Control. Our primary design goal was to keep the remote control code as simple as possible so that it doesn’t require changes as new vendor classes are produced. To this end we have employed the Command Pattern to logically decouple the RemoteControl class from the Vendor Classes. We believe this will reduce the cost of producing the remote as well as drastically reduce your ongoing maintenance costs.

The following class diagram provides an overview of our design:

 [image: image with no caption]

 [image: image with no caption]

Whoops! We almost forgot... luckily, once we have our basic Command classes, undo is easy to add. Let’s step through adding undo to our commands and to the remote control...

 What are we doing?

Okay, we need to add functionality to support the undo button on the remote. It works like this: say the Living Room Light is off and you press the on button on the remote. Obviously the light turns on. Now if you press the undo button then the last action will be reversed — in this case, the light will turn off. Before we get into more complex examples, let’s get the light working with the undo button:

	① When commands support undo, they have an undo() method that mirrors the execute() method. Whatever execute() last did, undo() reverses. So, before we can add undo to our commands, we need to add an undo() method to the Command interface:

 [image: image with no caption]

That was simple enough.

Now, let’s dive into the Light command and implement the undo() method.

	② Let’s start with the LightOnCommand: if the LightOnCommand’s execute() method was called, then the on() method was last called. We know that undo() needs to do the opposite of this by calling the off() method.

 [image: image with no caption]

Piece of cake! Now for the LightOffCommand. Here the undo() method just needs to call the Light’s on() method.

 [image: image with no caption]

Could this be any easier? Okay, we aren’t done yet; we need to work a little support into the Remote Control to handle tracking the last button pressed and the undo button press.

	③ To add support for the undo button we only have to make a few small changes to the Remote Control class. Here’s how we’re going to do it: we’ll add a new instance variable to track the last command invoked; then, whenever the undo button is pressed, we retrieve that command and invoke its undo() method.

 [image: image with no caption]

 Time to QA that Undo button!

 Okay, let’s rework the test harness a bit to test the undo button:

 [image: image with no caption]

And here are the test results...

 [image: image with no caption]

 Using state to implement Undo

 Okay, implementing undo on the Light was instructive but a little too easy. Typically, we need to manage a bit of state to implement undo. Let’s try something a little more interesting, like the CeilingFan from the vendor classes. The CeilingFan allows a number of speeds to be set along with an off method.

 [image: image with no caption]

Here’s the source code for the CeilingFan:

 [image: image with no caption]

 [image: image with no caption]

 Adding Undo to the CeilingFan commands

Now let’s tackle adding undo to the various CeilingFan commands. To do so, we need to track the last speed setting of the fan and, if the undo() method is called, restore the fan to its previous setting. Here’s the code for the CeilingFanHighCommand:

 [image: image with no caption]

 [image: image with no caption]

 Brain Power

We’ve got three more ceiling fan commands to write: low, medium, and off. Can you see how these are implemented?

 Get ready to test the ceiling fan

 Time to load up our remote control with the ceiling fan commands. We’re going to load slot 0’s on button with the medium setting for the fan and slot 1 with the high setting. Both corresponding off buttons will hold the ceiling fan off command.

 [image: image with no caption]

Here’s our test script:

 [image: image with no caption]

 Testing the ceiling fan...

Okay, let’s fire up the remote, load it with commands, and push some buttons!

 [image: image with no caption]

 Every remote needs a Party Mode!

What’s the point of having a remote if you can’t push one button and have the lights dimmed, the stereo and TV turned on and set to a DVD, and the hot tub fired up?

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 Using a macro command

 Let’s step through how we use a macro command:

	① First we create the set of commands we want to go into the macro:

 [image: image with no caption]

Sharpen your pencil

We will also need commands for the off buttons. Write the code to create those here:

	② Next we create two arrays, one for the On commands and one for the Off commands, and load them with the corresponding commands:

 [image: image with no caption]

	③ Then we assign MacroCommand to a button like we always do:

 [image: image with no caption]

	④

 Finally, we just need to push some buttons and see if this works.

 [image: image with no caption]

Exercise

 The only thing our MacroCommand is missing is its undo functionality. When the undo button is pressed after a macro command, all the commands that were invoked in the macro must undo their previous actions. Here’s the code for MacroCommand; go ahead and implement the undo() method:

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Do I always need a receiver? Why can’t the command object implement the details of the execute() method?

	
A:

	

A:

 In general, we strive for “dumb” command objects that just invoke an action on a receiver; however, there are many examples of “smart” command objects that implement most, if not all, of the logic needed to carry out a request. Certainly you can do this; just keep in mind you’ll no longer have the same level of decoupling between the invoker and receiver, nor will you be able to parameterize your commands with receivers.

	

Q:

	

Q: How can I implement a history of undo operations? In other words, I want to be able to press the undo button multiple times?

	
A:

	

A:

 Great question. It’s pretty easy actually; instead of keeping just a reference to the last Command executed, you keep a stack of previous commands. Then, whenever undo is pressed, your invoker pops the first item off the stack and calls its undo() method.

	

Q:

	

Q: Could I have just implemented party mode as a Command by creating a PartyCommand and putting the calls to execute the other Commands in the PartyCommand’s execute() method?

	
A:

	

A:

 You could; however, you’d essentially be “hardcoding” the party mode into the PartyCommand. Why go to the trouble? With the MacroCommand, you can decide dynamically which Commands you want to go into the PartyCommand, so you have more flexibility using MacroCommands. In general, the MacroCommand is a more elegant solution and requires less new code.

 The Command Pattern means lots of command classes

 When you use the Command Pattern, you end up with a lot of small classes — the concrete Command implementations — that each encapsulate the request to the corresponding receiver. In our remote control implementation, we have two command classes for each receiver class. For instance, for the Light receiver, we have LightOnCommand and LightOffCommand; for the GarageDoor receiver, we have GarageDoorUpCommand and GarageDoorDownCommand, and so on. That’s a lot of extra stuff that’s needed to create little bits of packaged-up computation that all have the same interface for the RemoteControl:

 [image: image with no caption]

 Do we really need all these command classes?

A command is simply a piece of packaged-up computation. It’s a way for us to have a common interface to the behavior of many different receivers (lights, hot tubs, stereos) each with its own set of actions.

What if you could keep the common interface for all your commands, but take out the bits of computation from inside the concrete Command implementations and use them directly instead?
And

 you could get rid of all those extra classes and simplify your code? Well, with lambda expressions you can. Let’s see how...

 Simplifying the Remote Control with lambda expressions

 While you’ve seen how straightforward the Command Pattern is, Java gives us a nice tool to simplify things even more; namely, the lambda expression. A lambda expression is a short hand for a method — a bit of computation — exactly where you need it. Instead of creating a whole separate class containing that method, instantiating an object from that class, and then calling the method, you can just say, “here’s the method I want called” by using a lambda expression. In our case, the method we want called is the execute() method.

 Note

If you aren’t yet familiar with lambda expressions (they were added in Java 8) they can take some getting used to. You should be able to follow along over the next few pages, but consult a Java reference to get up to speed on the syntax and semantics if you need to.

Let’s replace the LightOnCommand and LightOffCommand objects with lambda expressions to see how this works. Here are the steps to use lambda expressions instead of command objects to add the light on and off commands to the remote control:

Step 1: Create the Receiver

This step is exactly the same as before.

Light livingRoomLight = new Light("Living Room");

 [image: image with no caption]

Step 2: Set the remote control’s commands using lambda expressions

This is where the magic happens. Now, instead of creating LightOnCommand and LightOffCommand objects to pass to remoteControl.setCommand(), we simply pass a lambda expression in place of each object, with the code from their respective execute() methods:

 [image: image with no caption]

Step 3: Push the remote control buttons

This step doesn’t change either. Except now, when we call the remote’s onButtonWasPushed(0) method, the command that’s in slot 0 is a function object (created by the lambda expression). When we call execute() on the command, that method is matched up with the method defined by the lambda expression, which is then executed.

 [image: image with no caption]

 [image: image with no caption]

Well, we did say “magic” didn’t we?

Just kidding... it’s actually not all that magical. We’re using lambda expressions to stand in for Command objects, and the Command interface has just one method: execute(). The lambda expression we use must have a compatible signature with this method — and it does: execute() takes no arguments (neither does our lambda expression), and returns no value (neither does our lambda expression), so the compiler is happy.

We pass the lambda expression into the Command parameter of the setCommand() method:

 [image: image with no caption]

The compiler checks to see if the Command interface has one method that matches the lambda expression, and it does: execute().

Then, when we call execute() on that command, the method in the lambda expression is called:

 [image: image with no caption]

Just remember: as long as the interface of the parameter we’re passing the lambda expression to has one (and only one!) method, and that method has a compatible signature with the lambda expression, this will work.

 Simplifying even more with method references

 We can simplify our code even more using
method references

 . When the lambda expression you’re passing calls just one method, you can pass a method reference in place of the lambda expression. Like this:

 [image: image with no caption]

So now, instead of passing a lambda expression that calls the livingRoomLight’s on() method, we’re passing a
reference to the method itself

 .

 What if we need to do more than one thing in our lambda expression?

Sometimes, the lambda expressions you’ll use to stand in for Command objects have to do more than one thing. Let’s take a quick look at how to replace the stereoOnWithCDCommand and stereoOffCommand objects with lambda expressions, and then we’ll look at the complete code for the RemoteLoader so you can see all these ideas come together.

The stereoOffCommand just executes a simple one-line command:

stereo.off();

So we can use a method reference, stereo::off
 , in place of a lambda expression for this command.

But the stereoOnWithCDCommand does
three

 things:

stereo.on();

stereo.setCD();

stereo.setVolume(11);

In this case, then, we can’t use a method reference. Instead, we can either write the lambda expression in line, or we can create it separately, give it a name, and then pass it to the remoteControl’s setCommand() method using that name. Here’s how you can create the lambda expression separately, and give it a name:

 [image: image with no caption]

Notice that we use Command as the type of the lambda expression. The lambda expression will match the Command interface’s execute() method, and the Command parameter we’re passing it to in the setCommand() method.

 Test the remote control with lambda expressions

 To use lambda expressions to simplify the code for the original Remote Control implementation (without undo), we’re going to change the code in the RemoteLoader to replace the concrete Command objects with lambda expressions, and change the RemoteControl constructor to use lambda expressions instead of a NoCommand object. Once we’ve done that, we can delete all the concrete Command classes (LightOnCommand, LightOffCommand, HottubOnCommand, HottubOffCommand, and so on). And that’s it. Everything else stays the same. Make sure you
don’t

 delete the Command interface; you still need that to match the type of the function objects created by the lambda expressions that get stored in the remote control, and passed to the various methods.

Here’s the new code for the RemoteLoader class:

 [image: image with no caption]

 And don’t forget, we need to modify the RemoteControl constructor to remove the code to construct NoCommand objects, and replace those with lambda expressions too:

 [image: image with no caption]

 [image: image with no caption]

 Check out the results of all those lambda expression commands...

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Can a lambda expression have parameters or return a value? Or does it always have to be a void, no-argument method?

	
A:

	

A:

 Yes, a lambda expression can have parameters and return a value (take a look back at Chapter 2
 to see how we used a one-argument lambda expression in place of an ActionListener object in the Swing observer example). But the rules are the same: the signature of the lambda expression must match the signature of the one method in the type of the object you’re using the lambda expression to stand in for. To learn more about how to write lambda expressions with parameters and return values (and how to deal with the types), check out the Java docs.

	

Q:

	

Q: You keep saying that a lambda expression must match a method in an interface with one, and only one, method. So if an interface has two methods, we can’t use a lambda expression?

	
A:

	

A:

 That’s right. An interface, like our original Command interface (or ActionListener as another example), that has just one method is known as a
functional interface

 . Lambda expressions are designed specifically to replace the methods in these functional interfaces, partly as a way to reduce the code that is required when you have a lot of these small classes with functional interfaces. If your interface has two methods, it’s not a functional interface and you won’t be able to replace it with a lambda expression. Think about it: a lambda expression is really a replacement for a method, not an entire object. You can’t replace two methods with one lambda expression.

	

Q:

	

Q: Does that mean we can’t use lambda expressions for our Remote Control implementation with undo? There, our Command interface has two methods: execute() and undo().

	
A:

	

A:

 That’s right. You could probably find a way to use lambdas with undo (by making two different types of commands), but in the end your code would probably be more complex than if you’d just used Command objects like we did when we implemented the RemoteControl with undo earlier in the chapter.

Lambda expressions are meant to be used with functional interfaces (one method only), to simplify your code. If you find yourself trying to work around this to support a case like Command with undo, then using lambda expressions probably isn’t the right solution.

	

Q:

	

Q: Why do the names of on and off slots look so weird when we display the RemoteControl?

	
A:

	

A:

 If you take another look at how we implemented the toString() method of RemoteControl, you’ll see we’re using getClass() to get the class of the Command object, and then getName() to get the name of the class, and printing that to the console as a string. This was a convenient way to get a name for each slot, but kind of a cheat.

As you can see from the output, lambda expressions don’t have nice class names. That’s because their names are assigned internally by the Java runtime and Java has no idea what these lambda expressions mean; to Java, they’re just function objects that happen to match a method in an interface.

To fix the RemoteControl display, we’d have to modify the setCommand() code in RemoteControl, perhaps to allow a name parameter for each slot, and modify the toString() method to use this name. Then in RemoteLoader, we’d pass a nice, human-readable name into setCommand() along with the commands. This would probably mirror real life more closely (if you’re programming your own remote, you’ll likely want to set your own custom names).

 More uses of the Command Pattern: queuing requests

 Commands give us a way to package a piece of computation (a receiver and a set of actions) and pass it around as a first-class object. Now, the computation itself may be invoked long after some client application creates the command object. In fact, it may even be invoked by a different thread. We can take this scenario and apply it to many useful applications such as schedulers, thread pools, and job queues, to name a few.

Imagine a job queue: you add commands to the queue on one end, and on the other end sits a group of threads. Threads run the following script: they remove a command from the queue, call its execute() method, wait for the call to finish, then discard the command object and retrieve a new one.

 [image: image with no caption]

Note that the job queue classes are totally decoupled from the objects that are doing the computation. One minute a thread may be computing a financial computation, and the next it may be retrieving something from the network. The job queue objects don’t care; they just retrieve commands and call execute(). Likewise, as long as you put objects into the queue that implement the Command Pattern, your execute() method will be invoked when a thread is available.

 Brain Power

How might a web server make use of such a queue? What other applications can you think of?

 More uses of the Command Pattern: logging requests

 The semantics of some applications require that we log all actions and be able to recover after a crash by reinvoking those actions. The Command Pattern can support these semantics with the addition of two methods: store() and load(). In Java we could use object serialization to implement these methods, but the normal caveats for using serialization for persistence apply.

How does this work? As we execute commands, we store a history of them on disk. When a crash occurs, we reload the command objects and invoke their execute() methods in batch and in order.

Now, this kind of logging wouldn’t make sense for a remote control; however, there are many applications that invoke actions on large data structures that can’t be quickly saved each time a change is made. By using logging, we can save all the operations since the last check point, and if there is a system failure, apply those operations to our checkpoint. Take, for example, a spreadsheet application: we might want to implement our failure recovery by logging the actions on the spreadsheet rather than writing a copy of the spreadsheet to disk every time a change occurs. In more advanced applications, these techniques can be extended to apply to sets of operations in a transactional manner so that all of the operations complete, or none of them do.

 [image: image with no caption]

 [image: image with no caption]

 Tools for your Design Toolbox

 Your toolbox is starting to get heavy! In this chapter we’ve added a pattern that allows us to encapsulate methods into Command objects: store them, pass them around, and invoke them when you need them.

 [image: image with no caption]

Bullet Points

	The Command Pattern decouples an object making a request from the one that knows how to perform it.

	A Command object is at the center of this decoupling and encapsulates a receiver with an action (or set of actions) .

	An invoker makes a request of a Command object by calling its execute() method, which invokes those actions on the receiver.

	Invokers can be parameterized with Commands, even dynamically at runtime.

	Commands may support undo by implementing an undo method that restores the object to its previous state before the execute() method was last called.

	Macro Commands are a simple extension of Command that allow multiple commands to be invoked. Likewise, Macro Commands can easily support undo().

	In practice, it is not uncommon for “smart” Command objects to implement the request themselves rather than delegating to a receiver.

	Commands may also be used to implement logging and transactional systems.

Design Patterns Crossword

Time to take a breather and let it all sink in.

It’s another crossword; all of the solution words are from this chapter.

 [image: image with no caption]

	
Across

	
Down

	
3. The Waitress was one.

4. A command __________ a set of actions and a receiver.

7. Dr. Seuss diner food.

8. Our favorite city.

9. Act as the receivers in the remote control.

13. Object that knows the actions and the receiver.

14. Another thing Command can do.

15. Object that knows how to get things done.

17. A command encapsulates this.

	
1. Role of customer in the Command Pattern.

2. Our first command object controlled this.

5. Invoker and receiver are _________.

6. Company that got us word-of-mouth business.

10. All commands provide this.

11. The Cook and this person were definitely decoupled.

12. Carries out a request.

16. Waitress didn’t do this.

Who Does What? Solution

 Match the diner objects and methods with the corresponding names from the Command Pattern

 [image: image with no caption]

Sharpen your pencil Solution

Here’s the code for the GarageDoorOpenCommand class.

public class GarageDoorOpenCommand implements Command {

GarageDoor garageDoor;

public GarageDoorOpenCommand(GarageDoor garageDoor) {

this.garageDoor = garageDoor;

}

public void execute() {

garageDoor.up();

}

}

Here’s the output:

 [image: image with no caption]

Exercise Solution

 Here is the undo() method for the MacroCommand.

public class MacroCommand implements Command {

Command[] commands;

public MacroCommand(Command[] commands) {

this.commands = commands;

}

public void execute() {

for (int i = 0; i < commands.length; i++) {

commands[i].execute();

}

}

public void undo() {

for (int i = commands.length - 1; i > = 0; i--) {

commands[i].undo();

}

}

}

Sharpen your pencil Solution

Here is the code to create commands for the off button.

LightOffCommand lightOff = new LightOffCommand(light);

StereoOffCommand stereoOff = new StereoOffCommand(stereo);

TVOffCommand tvOff = new TVOffCommand(tv);

HottubOffCommand hottubOff = new HottubOffCommand(hottub);

 [image: image with no caption]

 Chapter 7. The Adapter and Facade Patterns: Being Adaptive

 [image: image with no caption]

In this chapter we’re going to attempt such impossible feats as putting a square peg in a round hole.

 Sound impossible? Not when we have Design Patterns. Remember the Decorator Pattern? We
wrapped objects

 to give them new responsibilities. Now we’re going to wrap some objects with a different purpose: to make their interfaces look like something they’re not. Why would we do that? So we can adapt a design expecting one interface to a class that implements a different interface. That’s not all; while we’re at it, we’re going to look at another pattern that wraps objects to simplify their interface.

 Adapters all around us

You’ll have no trouble understanding what an OO adapter is because the real world is full of them. How’s this for an example: Have you ever needed to use a US-made laptop in Great Britain? Then you’ve probably needed an AC power adapter...

 [image: image with no caption]

You know what the adapter does: it sits in between the plug of your laptop and the British AC outlet; its job is to adapt the British outlet so that you can plug your laptop into it and receive power. Or look at it this way: the adapter changes the interface of the outlet into one that your laptop expects.

 Note

How many other real-world adapters can you think of?

Some AC adapters are simple — they only change the shape of the outlet so that it matches your plug, and they pass the AC current straight through — but other adapters are more complex internally and may need to step the power up or down to match your devices’ needs.

Okay, that’s the real world; what about object-oriented adapters? Well, our OO adapters play the same role as their real-world counterparts: they take an interface and adapt it to one that a client is expecting.

 Object-oriented adapters

Say you’ve got an existing software system that you need to work a new vendor class library into, but the new vendor designed their interfaces differently than the last vendor:

 [image: image with no caption]

Okay, you don’t want to solve the problem by changing your existing code (and you can’t change the vendor’s code). So what do you do? Well, you can write a class that adapts the new vendor interface into the one you’re expecting.

 [image: image with no caption]

The adapter acts as the middleman by receiving requests from the client and converting them into requests that make sense on the vendor classes.

 [image: image with no caption]

 Note

Can you think of a solution that doesn’t require YOU to write ANY additional code to integrate the new vendor classes? How about making the vendor supply the adapter class?

 If it walks like a duck and quacks like a duck, then it must
 might be a duck
 turkey wrapped with a duck adapter...

 It’s time to see an adapter in action. Remember our ducks from Chapter 1
 ? Let’s review a slightly simplified version of the Duck interfaces and classes:

 [image: image with no caption]

 [image: image with no caption]

Here’s a subclass of Duck, the MallardDuck.

 [image: image with no caption]

Now it’s time to meet the newest fowl on the block:

 [image: image with no caption]

 [image: image with no caption]

Now, let’s say you’re short on Duck objects and you’d like to use some Turkey objects in their place. Obviously we can’t use the turkeys outright because they have a different interface.

So, let’s write an Adapter:

Code Up Close

 [image: image with no caption]

 Test drive the adapter

 Now we just need some code to test drive our adapter:

 [image: image with no caption]

 [image: image with no caption]

 The Adapter Pattern explained

 Now that we have an idea of what an Adapter is, let’s step back and look at all the pieces again.

 [image: image with no caption]

 Here’s how the Client uses the Adapter

	

① The client makes a request to the adapter by calling a method on it using the target interface.

	

② The adapter translates the request into one or more calls on the adaptee using the adaptee interface.

	

③ The client receives the results of the call and never knows there is an adapter doing the translation.

 Note

Note that the Client and Adaptee are decoupled – neither knows about the other.

Sharpen your pencil

 Let’s say we also need an Adapter that converts a Duck to a Turkey. Let’s call it DuckAdapter. Write that class:

How did you handle the fly method (after all, we know ducks fly longer than turkeys)? Check the answers at the end of the chapter for our solution. Did you think of a better way?

There Are No Dumb Questions

	

Q:

	

Q: How much “adapting” does an adapter need to do? It seems like if I need to implement a large target interface, I could have a LOT of work on my hands?

	
A:

	

A:

 You certainly could. The job of implementing an adapter really is proportional to the size of the interface you need to support as your target interface. Think about your options, however. You could rework all your client-side calls to the interface, which would result in a lot of investigative work and code changes. Or, you can cleanly provide one class that encapsulates all the changes in one class.

	

Q:

	

Q: Does an adapter always wrap one and only one class?

	
A:

	

A:

 The Adapter Pattern’s role is to convert one interface into another. While most examples of the adapter pattern show an adapter wrapping one adaptee, we both know the world is often a bit more messy. So, you may well have situations where an adapter holds two or more adaptees that are needed to implement the target interface.

This relates to another pattern called the Facade Pattern; people often confuse the two. Remind us to revisit this point when we talk about facades later in this chapter.

	

Q:

	

Q: What if I have old and new parts of my system, and the old parts expect the old vendor interface, but we’ve already written the new parts to use the new vendor interface? It is going to get confusing using an adapter here and the unwrapped interface there. Wouldn’t I be better off just writing my older code and forgetting the adapter?

	
A:

	

A:

 Not necessarily. One thing you can do is create a Two Way Adapter that supports both interfaces. To create a Two Way Adapter, just implement both interfaces involved, so the adapter can act as an old interface or a new interface.

 Adapter Pattern defined

 Enough ducks, turkeys, and AC power adapters; let’s get real and look at the official definition of the Adapter Pattern:

 Note

The Adapter Pattern

 converts the interface of a class into another interface the clients expect. Adapter lets classes work together that couldn’t otherwise because of incompatible interfaces.

Now, we know this pattern allows us to use a client with an incompatible interface by creating an Adapter that does the conversion. This acts to decouple the client from the implemented interface, and if we expect the interface to change over time, the adapter encapsulates that change so that the client doesn’t have to be modified each time it needs to operate against a different interface.

We’ve taken a look at the runtime behavior of the pattern; let’s take a look at its class diagram as well:

 [image: image with no caption]

The Adapter Pattern is full of good OO design principles: check out the use of object composition to wrap the adaptee with an altered interface. This approach has the added advantage that we can use an adapter with any subclass of the adaptee.

Also check out how the pattern binds the client to an interface, not an implementation; we could use several adapters, each converting a different backend set of classes. Or, we could add new implementations after the fact, as long as they adhere to the Target interface.

 Object and class adapters

 Now despite having defined the pattern, we haven’t told you the whole story yet. There are actually
two

 kinds of adapters:
object

 adapters and
class

 adapters. This chapter has covered object adapters and the class diagram on the previous page is a diagram of an object adapter.

So what’s a
class

 adapter and why haven’t we told you about it? Because you need multiple inheritance to implement it, which isn’t possible in Java. But, that doesn’t mean you might not encounter a need for class adapters down the road when using your favorite multiple inheritance language! Let’s look at the class diagram for multiple inheritance.

 [image: image with no caption]

Look familiar? That’s right — the only difference is that with class adapter we subclass the Target and the Adaptee, while with object adapter we use composition to pass requests to an Adaptee.

 Brain Power

Object adapters and class adapters use two different means of adapting the adaptee (composition versus inheritance). How do these implementation differences affect the flexibility of the adapter?

Duck Magnets

 Your job is to take the duck and turkey magnets and drag them over the part of the diagram that describes the role played by that bird, in our earlier example. (Try not to flip back through the pages.) Then add your own annotations to describe how it works.

Class Adapter

 [image: image with no caption]

Object Adapter

 [image: image with no caption]

 [image: image with no caption]

Drag these onto the class diagram, to show which part of the diagram represents the Duck and which represents the Turkey.

Duck Magnets Answer

 Note

Note: the class adapter uses multiple inheritance, so you can’t do it in Java...

Class Adapter

 [image: image with no caption]

Object Adapter

 [image: image with no caption]

Fireside Chats

 Tonight’s talk:
The Object Adapter and Class Adapter meet face to face.

	
Object Adapter:

	
Class Adapter:

	
Because I use composition I’ve got a leg up. I can not only adapt an adaptee class, but any of its subclasses.

	

	
	
That’s true, I do have trouble with that because I am committed to one specific adaptee class, but I have a huge advantage because I don’t have to reimplement my entire adaptee. I can also override the behavior of my adaptee if I need to because I’m just subclassing.

	
In my part of the world, we like to use composition over inheritance; you may be saving a few lines of code, but all I’m doing is writing a little code to delegate to the adaptee. We like to keep things flexible.

	

	
	
Flexible maybe, but efficient? No. Using a class adapter there is just one of me, not an adapter and an adaptee.

	
You’re worried about one little object? You might be able to quickly override a method, but any behavior I add to my adapter code works with my adaptee class
and

 all its subclasses.

	

	
	
Yeah, but what if a subclass of adaptee adds some new behavior. Then what?

	
Hey, come on, cut me a break, I just need to compose with the subclass to make that work.

	

	
	
Sounds messy...

	
You wanna see messy? Look in the mirror!

	

 Real-world adapters

 Let’s take a look at the use of a simple Adapter in the real world (something more serious than Ducks at least)...

 Old-world Enumerators

If you’ve been around Java for a while you probably remember that the early collection types (Vector, Stack, Hashtable, and a few others) implement a method, elements(), which returns an Enumeration. The Enumeration interface allows you to step through the elements of a collection without knowing the specifics of how they are managed in the collection.

 [image: image with no caption]

 New-world Iterators

The newer Collection classes use an Iterator interface that, like Enumeration, allows you to iterate through a set of items in a collection, but also adds the ability to remove items.

 [image: image with no caption]

 And today...

We are often faced with legacy code that exposes the Enumeration interface, yet we’d like for our new code to use only Iterators. It looks like we need to build an adapter.

 Adapting an Enumeration to an Iterator

 First we’ll look at the two interfaces to figure out how the methods map from one to the other. In other words, we’ll figure out what to call on the adaptee when the client invokes a method on the target.

 [image: image with no caption]

 Designing the Adapter

Here’s what the classes should look like: we need an adapter that implements the Target interface and that is composed with an adaptee. The hasNext() and next() methods are going to be straightforward to map from target to adaptee: we just pass them right through. But what do you do about remove()? Think about it for a moment (and we’ll deal with it on the next page). For now, here’s the class diagram:

 [image: image with no caption]

 Dealing with the remove() method

 Well, we know Enumeration just doesn’t support remove. It’s a “read only” interface. There’s no way to implement a fully functioning remove() method on the adapter. The best we can do is throw a runtime exception. Luckily, the designers of the Iterator interface foresaw this need and defined the remove() method so that it supports an UnsupportedOperationException.

This is a case where the adapter isn’t perfect; clients will have to watch out for potential exceptions, but as long as the client is careful and the adapter is well documented this is a perfectly reasonable solution.

 Writing the EnumerationIterator adapter

Here’s simple but effective code for all those legacy classes still producing Enumerations:

 [image: image with no caption]

Exercise

 While Java has gone in the direction of the Iterator, there is nevertheless a lot of legacy client code that depends on the Enumeration interface, so an Adapter that converts an Iterator to an Enumeration is also quite useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your code by adapting an ArrayList. The ArrayList class supports the Iterator interface but doesn’t support Enumerations (well, not yet anyway).

 Brain Power

Some AC adapters do more than just change the interface — they add other features like surge protection, indicator lights, and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

Fireside Chats

 Tonight’s talk:
The Decorator Pattern and the Adapter Pattern discuss their differences.

	
Decorator:

	
Adapter:

	
I’m important. My job is all about
responsibility

 — you know that when a Decorator is involved there’s going to be some new responsibilities or behaviors added to your design.

	

	
	
You guys want all the glory while us adapters are down in the trenches doing the dirty work: converting interfaces. Our jobs may not be glamorous, but our clients sure do appreciate us making their lives simpler.

	
That may be true, but don’t think we don’t work hard. When we have to decorate a big interface, whoa, that can take a lot of code.

	

	
	
Try being an adapter when you’ve got to bring several classes together to provide the interface your client is expecting. Now that’s tough. But we have a saying: “an uncoupled client is a happy client.”

	
Cute. Don’t think we get all the glory; sometimes I’m just one decorator that is being wrapped by who knows how many other decorators. When a method call gets delegated to you, you have no idea how many other decorators have already dealt with it and you don’t know that you’ll ever get noticed for your efforts servicing the request.

	

	
	
Hey, if adapters are doing their job, our clients never even know we’re there. It can be a thankless job.

	
	
But, the great thing about us adapters is that we allow clients to make use of new libraries and subsets without changing
any

 code; they just rely on us to do the conversion for them. Hey, it’s a niche, but we’re good at it.

	
Well, us decorators do that as well, only we allow
new behavior

 to be added to classes without altering existing code. I still say that adapters are just fancy decorators — I mean, just like us, you wrap an object.

	

	
	
No, no, no, not at all. We
always

 convert the interface of what we wrap; you
never

 do. I’d say a decorator is like an adapter; it is just that you don’t change the interface!

	
Uh, no. Our job in life is to extend the behaviors or responsibilities of the objects we wrap; we aren’t a
simple pass through

 .

	

	
	
Hey, who are you calling a simple pass through? Come on down and we’ll see how long
you

 last converting a few interfaces!

	
Maybe we should agree to disagree. We seem to look somewhat similar on paper, but clearly we are
miles

 apart in our
intent

 .

	

	
	
Oh yeah, I’m with you there.

 And now for something different...

There’s another pattern in this chapter.

You’ve seen how the Adapter Pattern converts the interface of a class into one that a client is expecting. You also know we achieve this in Java by wrapping the object that has an incompatible interface with an object that implements the correct one.

We’re going to look at a pattern now that alters an interface, but for a different reason: to simplify the interface. It’s aptly named the Facade Pattern because this pattern hides all the complexity of one or more classes behind a clean, well-lit facade.

Who Does What?

Match each pattern with its intent:

	
Pattern

	
Intent

	
Decorator

	
Converts one interface to another

	
Adapter

	
Doesn’t alter the interface, but adds responsibility

	
Facade

	
Makes an interface simpler

 Home Sweet Home Theater

 Before we dive into the details of the Facade Pattern, let’s take a look at a growing national obsession: building your own home theater.

You’ve done your research and you’ve assembled a killer system complete with a DVD player, a projection video system, an automated screen, surround sound, and even a popcorn popper.

 [image: image with no caption]

Check out all the components you’ve put together:

 [image: image with no caption]

You’ve spent weeks running wire, mounting the projector, making all the connections, and fine tuning. Now it’s time to put it all in motion and enjoy a movie...

 Watching a movie (the hard way)

Pick out a DVD, relax, and get ready for movie magic. Oh, there’s just one thing — to watch the movie, you need to perform a few tasks:

	

① Turn on the popcorn popper

	

② Start the popper popping

	

③ Dim the lights

	

④ Put the screen down

	

⑤ Turn the projector on

	

⑥ Set the projector input to DVD

	

⑦ Put the projector on wide-screen mode

	

⑧ Turn the sound amplifier on

	

⑨ Set the amplifier to DVD input

	

⑩ Set the amplifier to surround sound

	

⑪ Set the amplifier volume to medium (5)

	

⑫ Turn the DVD player on

	

⑬ Start the DVD player playing

 [image: image with no caption]

Let’s check out those same tasks in terms of the classes and the method calls needed to perform them:

 [image: image with no caption]

But there’s more...

	When the movie is over, how do you turn everything off? Wouldn’t you have to do all of this over again, in reverse?

	Wouldn’t it be as complex to listen to a CD or the radio?

	If you decide to upgrade your system, you’re probably going to have to learn a slightly different procedure.

So what to do? The complexity of using your home theater is becoming apparent!

Let’s see how the Facade Pattern can get us out of this mess so we can enjoy the movie...

 Lights, Camera, Facade!

 A Facade is just what you need: with the Facade Pattern you can take a complex subsystem and make it easier to use by implementing a Facade class that provides one, more reasonable interface. Don’t worry; if you need the power of the complex subsystem, it’s still there for you to use, but if all you need is a straightforward interface, the Facade is there for you.

Let’s take a look at how the Facade operates:

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: If the facade encapsulates the subsystem classes, how does a client that needs lower-level functionality gain access to them?

	
A:

	

A:

 Facades don’t “encapsulate” the subsystem classes; they merely provide a simplified interface to their functionality. The subsystem classes still remain available for direct use by clients that need to use more specific interfaces. This is a nice property of the Facade Pattern: it provides a simplified interface while still exposing the full functionality of the system to those who may need it.

	

Q:

	

Q: Does the facade add any functionality or does it just pass through each request to the subsystem?

	
A:

	

A:

 A facade is free to add its own “smarts” in addition to making use of the subsystem. For instance, while our home theater facade doesn’t implement any new behavior, it is smart enough to know that the popcorn popper has to be turned on before it can pop (as well as the details of how to turn on and stage a movie showing).

	

Q:

	

Q: Does each subsystem have only one facade?

	
A:

	

A:

 Not necessarily. The pattern certainly allows for any number of facades to be created for a given subsystem.

	

Q:

	

Q: What is the benefit of the facade other than the fact that I now have a simpler interface?

	
A:

	

A:

 The Facade Pattern also allows you to decouple your client implementation from any one subsystem. Let’s say that you get a big raise and decide to upgrade your home theater to all new components that have different interfaces. Well, if you coded your client to the facade rather than the subsystem, your client code doesn’t need to change, just the facade (and hopefully the manufacturer is supplying that!).

	

Q:

	

Q: So the way to tell the difference between the Adapter Pattern and the Facade Pattern is that the adapter wraps one class and the facade may represent many classes?

	
A:

	

A:

 No! Remember, the Adapter Pattern changes the interface of one or more classes into one interface that a client is expecting. While most textbook examples show the adapter adapting one class, you may need to adapt many classes to provide the interface a client is coded to. Likewise, a Facade may provide a simplified interface to a single class with a very complex interface.

The difference between the two is not in terms of how many classes they “wrap,” it is in their intent. The intent of the Adapter Pattern is to alter an interface so that it matches one a client is expecting. The intent of the Facade Pattern is to provide a simplified interface to a subsystem.

A facade not only simplifies an interface, it decouples a client from a subsystem of components.

Facades and adapters may wrap multiple classes, but a facade’s intent is to simplify, while an adapter’s is to convert the interface to something different.

 Constructing your home theater facade

 Let’s step through the construction of the HomeTheaterFacade. The first step is to use composition so that the facade has access to all the components of the subsystem:

 [image: image with no caption]

 Implementing the simplified interface

 Now it’s time to bring the components of the subsystem together into a unified interface. Let’s implement the watchMovie() and endMovie() methods:

 [image: image with no caption]

 Brain Power

Think about the facades you’ve encountered in the Java API. Where would you like to have a few new ones?

 Time to watch a movie (the easy way)

 It’s SHOWTIME!

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 Facade Pattern defined

 To use the Facade Pattern, we create a class that simplifies and unifies a set of more complex classes that belong to some subsystem. Unlike a lot of patterns, Facade is fairly straightforward; there are no mind-bending abstractions to get your head around. But that doesn’t make it any less powerful: the Facade Pattern allows us to avoid tight coupling between clients and subsystems, and, as you will see shortly, also helps us adhere to a new object-oriented principle.

Before we introduce that new principle, let’s take a look at the official definition of the pattern:

 Note

The Facade Pattern

 provides a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface that makes the subsystem easier to use.

There isn’t a lot here that you don’t already know, but one of the most important things to remember about a pattern is its intent. This definition tells us loud and clear that the purpose of the facade is to make a subsystem easier to use through a simplified interface. You can see this in the pattern’s class diagram:

 [image: image with no caption]

That’s it; you’ve got another pattern under your belt! Now, it’s time for that new OO principle. Watch out, this one can challenge some assumptions!

 The Principle of Least Knowledge

 The Principle of Least Knowledge guides us to reduce the interactions between objects to just a few close “friends.” The principle is usually stated as:

 Design Principle

Principle of Least Knowledge: talk only to your immediate friends.

But what does this mean in real terms? It means when you are designing a system, for any object, be careful of the number of classes it interacts with and also how it comes to interact with those classes.

This principle prevents us from creating designs that have a large number of classes coupled together so that changes in one part of the system cascade to other parts. When you build a lot of dependencies between many classes, you are building a fragile system that will be costly to maintain and complex for others to understand.

 Brain Power

How many classes is this code coupled to?

public float getTemp() {

return station.getThermometer().getTemperature();

}

 How NOT to Win Friends and Influence Objects

Okay, but how do you keep from doing this? The principle provides some guidelines: take any object; now from any method in that object, the principle tells us that we should only invoke methods that belong to:

	The object itself

	Objects passed in as a parameter to the method

	Any object the method creates or instantiates

 Note

Notice that these guidelines tell us not to call methods on objects that were returned from calling other methods!!

	Any components of the object

 Note

Think of a “component” as any object that is referenced by an instance variable. In other words, think of this as a HAS-A relationship.

This sounds kind of stringent doesn’t it? What’s the harm in calling the method of an object we get back from another call? Well, if we were to do that, then we’d be making a request of another object’s subpart (and increasing the number of objects we directly know). In such cases, the principle forces us to ask the object to make the request for us; that way we don’t have to know about its component objects (and we keep our circle of friends small). For example:

 [image: image with no caption]

 Keeping your method calls in bounds...

 Here’s a Car class that demonstrates all the ways you can call methods and still adhere to the Principle of Least Knowledge:

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: There is another principle called the Law of Demeter; how are they related?

	
A:

	

A:

 The two are one and the same and you’ll encounter these terms being used interchangeably. We prefer to use the Principle of Least Knowledge for a couple of reasons: (1) the name is more intuitive and (2) the use of the word “Law” implies we always have to apply this principle. In fact, no principle is a law, all principles should be used when and where they are helpful. All design involves tradeoffs (abstractions versus speed, space versus time, and so on) and while principles provide guidance, all factors should be taken into account before applying them.

	

Q:

	

Q: Are there any disadvantages to applying the Principle of Least Knowledge?

	
A:

	

A:

 Yes; while the principle reduces the dependencies between objects and studies have shown this reduces software maintenance, it is also the case that applying this principle results in more “wrapper” classes being written to handle method calls to other components. This can result in increased complexity and development time as well as decreased runtime performance.

Sharpen your pencil

 Do either of these classes violate the Principle of Least Knowledge? Why or why not?

 [image: image with no caption]

 Brain Power

	

Q:

	
Can you think of a common use of Java that violates the Principle of Least Knowledge?

Should you care?

	
A:

	
Answer: How about System.out.println()?

 The Facade and the Principle of Least Knowledge

 [image: image with no caption]

 Tools for your Design Toolbox

 Your toolbox is starting to get heavy! In this chapter we’ve added a couple of patterns that allow us to alter interfaces and reduce coupling between clients and the systems they use.

 [image: image with no caption]

Bullet Points

	When you need to use an existing class and its interface is not the one you need, use an adapter.

	When you need to simplify and unify a large interface or complex set of interfaces, use a facade.

	An adapter changes an interface into one a client expects.

	A facade decouples a client from a complex subsystem.

	Implementing an adapter may require little work or a great deal of work depending on the size and complexity of the target interface.

	Implementing a facade requires that we compose the facade with its subsystem and use delegation to perform the work of the facade.

	There are two forms of the Adapter Pattern: object and class adapters. Class adapters require multiple inheritance.

	You can implement more than one facade for a subsystem.

	An adapter wraps an object to change its interface, a decorator wraps an object to add new behaviors and responsibilities, and a facade “wraps” a set of objects to simplify.

Design Patterns Crossword

Yes, it’s another crossword. All of the solution words are from this chapter.

 [image: image with no caption]

	
Across

	
Down

	
1. True or false? Adapters can wrap only one object.

5. An Adapter __________ an interface.

6. Movie we watched (five words).

10. If in Britain, you might need one of these (two words).

11. Adapter with two roles (two words).

14. Facade still ________ low-level access.

15. Ducks do it better than Turkeys.

16. Disadvantage of the Principle of Least Knowledge: too many __________.

17. A __________ simplifies an interface.

19. New American dream (two words).

	
2. Decorator called Adapter this (three words).

3. One advantage of Facade.

4. Principle that wasn’t as easy as it sounded (two words).

7. A __________ adds new behavior.

8. Masquerading as a Duck.

9. Example that violates the Principle of Least Knowledge: System.out.__________.

12. No movie is complete without this.

13. Adapter client uses the __________ interface.

18. An Adapter and a Decorator can be said to ________ an object.

Sharpen your pencil Solution

 Let’s say we also need an Adapter that converts a Duck to a Turkey. Let’s call it DuckAdapter. Here’s our solution:

 [image: image with no caption]

Sharpen your pencil Solution

Do either of these classes violate the Principle of Least Knowledge? Why or why not?

 [image: image with no caption]

Exercise Solution

 You’ve seen how to implement an adapter that adapts an Enumeration to an Iterator; now write an adapter that adapts an Iterator to an Enumeration.

 [image: image with no caption]

Who Does What? Solution

Match each pattern with its intent:

 [image: image with no caption]

Design Patterns Crossword Solution

 [image: image with no caption]

 Chapter 8. The Template Method Pattern: Encapsulating Algorithms

 [image: image with no caption]

We’re on an encapsulation roll; we’ve encapsulated object creation, method invocation, complex interfaces, ducks, pizzas...what could be next?

 We’re going to get down to encapsulating pieces of algorithms so that subclasses can hook themselves right into a computation anytime they want. We’re even going to learn about a design principle inspired by Hollywood.

 It’s time for some more caffeine

 Some people can’t live without their coffee; some people can’t live without their tea. The common ingredient? Caffeine, of course!

But there’s more; tea and coffee are made in very similar ways. Let’s check it out:

 [image: image with no caption]

 Whipping up some coffee and tea classes (in Java)

Let’s play “coding barista” and write some code for creating coffee and tea.

 [image: image with no caption]

Here’s the coffee:

 [image: image with no caption]

 And now the Tea...

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

Design Puzzle

 You’ve seen that the Coffee and Tea classes have a fair bit of code duplication. Take another look at the Coffee and Tea classes and draw a class diagram showing how you’d redesign the classes to remove redundancy:

 Sir, may I abstract your Coffee, Tea?

It looks like we’ve got a pretty straightforward design exercise on our hands with the Coffee and Tea classes. Your first cut might have looked something like this:

 [image: image with no caption]

 Brain Power

Did we do a good job on the redesign? Hmmmm, take another look. Are we overlooking some other commonality? What are other ways that Coffee and Tea are similar?

 Taking the design further...

So what else do Coffee and Tea have in common? Let’s start with the recipes.

 [image: image with no caption]

Notice that both recipes follow the same algorithm:

	

① Boil some water.

 Note

These two are already abstracted into the base class.

	

② Use the hot water to extract the coffee or tea.

 Note

These aren’t abstracted but are the same; they just apply to different beverages.

	

③ Pour the resulting beverage into a cup.

	

④ Add the appropriate condiments to the beverage.

So, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

 Abstracting prepareRecipe()

 Let’s step through abstracting prepareRecipe() from each subclass (that is, the Coffee and Tea classes)...

	① The first problem we have is that Coffee uses brewCoffeeGrinds() and addSugarAndMilk() methods, while Tea uses steepTeaBag() and addLemon() methods.

 [image: image with no caption]

Let’s think through this: steeping and brewing aren’t so different; they’re pretty analogous. So let’s make a new method name, say, brew(), and we’ll use the same name whether we’re brewing coffee or steeping tea.

Likewise, adding sugar and milk is pretty much the same as adding a lemon: both are adding condiments to the beverage. Let’s also make up a new method name, addCondiments(), to handle this. So, our new prepareRecipe() method will look like this:
void prepareRecipe() {
 boilWater();
 brew();

 pourInCup();
 addCondiments();

}

	② Now we have a new prepareRecipe() method, but we need to fit it into the code. To do this we are going to start with the CaffeineBeverage superclass:

 [image: image with no caption]

	③ Finally, we need to deal with the Coffee and Tea classes. They now rely on CaffeineBeverage to handle the recipe, so they just need to handle brewing and condiments:

 [image: image with no caption]

Sharpen your pencil

 Draw the new class diagram now that we’ve moved the implementation of prepareRecipe() into the CaffeineBeverage class:

 What have we done?

 [image: image with no caption]

 Meet the Template Method

 We’ve basically just implemented the Template Method Pattern. What’s that? Let’s look at the structure of the CaffeineBeverage class; it contains the actual “template method”:

 [image: image with no caption]

The Template Method defines the steps of an algorithm and allows subclasses to provide the implementation for one or more steps.

 Let’s make some tea...

 [image: image with no caption]

Behind the Scenes

Let’s step through making a tea and trace through how the template method works. You’ll see that the template method controls the algorithm; at certain points in the algorithm, it lets the subclass supply the implementation of the steps...

	① Okay, first we need a Tea object...
Tea myTea = new Tea();

	② Then we call the template method:

 [image: image with no caption]

which follows the algorithm for making caffeine beverages...

	③ First we boil water:

 [image: image with no caption]

which happens in CaffeineBeverage.

	④ Next we need to brew the tea, which only the subclass knows how to do:
brew();

	⑤ Now we pour the tea in the cup; this is the same for all beverages so it happens in CaffeineBeverage:
pourInCup();

	⑥ Finally, we add the condiments, which are specific to each beverage, so the subclass implements this:
addCondiments();

 What did the Template Method get us?

	

 [image:]

	

 [image:]

	

Underpowered Tea & Coffee implementation

	

New, hip CaffeineBeverage powered by Template Method

	
Coffee and Tea are running the show; they control the algorithm.

	
The CaffeineBeverage class runs the show; it has the algorithm, and protects it.

	
Code is duplicated across Coffee and Tea.

	
The CaffeineBeverage class maximizes reuse among the subclasses.

	
Code changes to the algorithm require opening the subclasses and making multiple changes.

	
The algorithm lives in one place and code changes only need to be made there.

	
Classes are organized in a structure that requires a lot of work to add a new caffeine beverage.

	
The Template Method version provides a framework that other caffeine beverages can be plugged into. New caffeine beverages only need to implement a couple of methods.

	
Knowledge of the algorithm and how to implement it is distributed over many classes.

	
The CaffeineBeverage class concentrates knowledge about the algorithm and relies on subclasses to provide complete implementations.

 Template Method Pattern defined

 You’ve seen how the Template Method Pattern works in our Tea and Coffee example; now, check out the official definition and nail down all the details:

 Note

The Template Method Pattern

 defines the skeleton of an algorithm in a method, deferring some steps to subclasses. Template Method lets subclasses redefine certain steps of an algorithm without changing the algorithm’s structure.

This pattern is all about creating a template for an algorithm. What’s a template? As you’ve seen it’s just a method; more specifically, it’s a method that defines an algorithm as a set of steps. One or more of these steps is defined to be abstract and implemented by a subclass. This ensures the algorithm’s structure stays unchanged, while subclasses provide some part of the implementation.

Let’s check out the class diagram:

 [image: image with no caption]

Code Up Close

 Let’s take a closer look at how the AbstractClass is defined, including the template method and primitive operations.

 [image: image with no caption]

Code Way Up Close

 Now we’re going to look even closer at the types of method that can go in the abstract class:

 [image: image with no caption]

 Hooked on Template Method...

A hook is a method that is declared in the abstract class, but only given an empty or default implementation. This gives subclasses the ability to “hook into” the algorithm at various points, if they wish; a subclass is also free to ignore the hook.

 [image: image with no caption]

There are several uses of hooks; let’s take a look at one now. We’ll talk about a few other uses later:

 [image: image with no caption]

 Using the hook

To use the hook, we override it in our subclass. Here, the hook controls whether the CaffeineBeverage evaluates a certain part of the algorithm; that is, whether it adds a condiment to the beverage.

How do we know whether the customer wants the condiment? Just ask!

 [image: image with no caption]

 Let’s run the Test Drive

 Okay, the water’s boiling... Here’s the test code where we create a hot tea and a hot coffee.

 [image: image with no caption]

And let’s give it a run...

 [image: image with no caption]

 [image: image with no caption]

 You know what? We agree with you. But you have to admit before you thought of that, it was a pretty cool example of how a hook can be used to conditionally control the flow of the algorithm in the abstract class. Right?

We’re sure you can think of many other more realistic scenarios where you could use the template method and hooks in your own code.

There Are No Dumb Questions

	

Q:

	

Q: When I’m creating a template method, how do I know when to use abstract methods and when to use hooks?

	
A:

	

A:

 Use abstract methods when your subclass MUST provide an implementation of the method or step in the algorithm. Use hooks when that part of the algorithm is optional. With hooks, a subclass may choose to implement that hook, but it doesn’t have to.

	

Q:

	

Q: What are hooks really supposed to be used for?

	
A:

	

A:

 There are a few uses of hooks. As we just said, a hook may provide a way for a subclass to implement an optional part of an algorithm, or if it isn’t important to the subclass’s implementation, it can skip it. Another use is to give the subclass a chance to react to some step in the template method that is about to happen, or just happened. For instance, a hook method like justReOrderedList() allows the subclass to perform some activity (such as redisplaying an onscreen representation) after an internal list is reordered. As you’ve seen, a hook can also provide a subclass with the ability to make a decision for the abstract class.

	

Q:

	

Q: Does a subclass have to implement all the abstract methods in the AbstractClass?

	
A:

	

A:

 Yes, each concrete subclass defines the entire set of abstract methods and provides a complete implementation of the undefined steps of the template method’s algorithm.

	

Q:

	

Q: It seems like I should keep my abstract methods small in number; otherwise, it will be a big job to implement them in the subclass.

	
A:

	

A:

 That’s a good thing to keep in mind when you write template methods. Sometimes this can be done by not making the steps of your algorithm too granular. But it’s obviously a trade off: the less granularity, the less flexibility.

Remember, too, that some steps will be optional; so you can implement these as hooks rather than abstract methods, easing the burden on the subclasses of your abstract class.

 The Hollywood Principle

 We’ve got another design principle for you; it’s called the Hollywood Principle:

 [image: image with no caption]

 Note

The Hollywood Principle

Don’t call us, we’ll call you.

Easy to remember, right? But what has it got to do with OO design?

The Hollywood Principle gives us a way to prevent “dependency rot.” Dependency rot happens when you have high-level components depending on low-level components depending on high-level components depending on sideways components depending on low-level components, and so on. When rot sets in, no one can easily understand the way a system is designed.

With the Hollywood Principle, we allow low-level components to hook themselves into a system, but the high-level components determine when they are needed, and how. In other words, the high-level components give the low-level components a “don’t call us, we’ll call you” treatment.

 [image: image with no caption]

 The Hollywood Principle and Template Method

The connection between the Hollywood Principle and the Template Method Pattern is probably somewhat apparent: when we design with the Template Method Pattern, we’re telling subclasses, “don’t call us, we’ll call you.” How? Let’s take another look at our CaffeineBeverage design:

 [image: image with no caption]

 Brain Power

What other patterns make use of the Hollywood Principle?

The Factory Method, Observer; any others?

There Are No Dumb Questions

	

Q:

	

Q: How does the Hollywood Principle relate to the Dependency Inversion Principle that we learned a few chapters back?

	
A:

	

A:

 The Dependency Inversion Principle teaches us to avoid the use of concrete classes and instead work as much as possible with abstractions. The Hollywood Principle is a technique for building frameworks or components so that lower-level components can be hooked into the computation, but without creating dependencies between the lower-level components and the higher-level layers. So, they both have the goal of decoupling, but the Dependency Inversion Principle makes a much stronger and general statement about how to avoid dependencies in design.

The Hollywood Principle gives us a technique for creating designs that allow low-level structures to interoperate while preventing other classes from becoming too dependent on them.

	

Q:

	

Q: Is a low-level component disallowed from calling a method in a higher-level component?

	
A:

	

A:

 Not really. In fact, a low-level component will often end up calling a method defined above it in the inheritance hierarchy purely through inheritance. But we want to avoid creating explicit circular dependencies between the low-level component and the high-level ones.

Who Does What?

Match each pattern with its description:

	
Pattern

	
Description

	
Template Method

	
Encapsulate interchangeable behaviors and use delegation to decide which behavior to use.

	
Strategy

	
Subclasses decide how to implement steps in an algorithm.

	
Factory Method

	
Subclasses decide which concrete classes to instantiate.

 Template Methods in the Wild

 The Template Method Pattern is a very common pattern and you’re going to find lots of it in the wild. You’ve got to have a keen eye, though, because there are many implementations of the template methods that don’t quite look like the textbook design of the pattern.

This pattern shows up so often because it’s a great design tool for creating frameworks, where the framework controls how something gets done, but leaves you (the person using the framework) to specify your own details about what is actually happening at each step of the framework’s algorithm.

Let’s take a little safari through a few uses in the wild (well, okay, in the Java API)...

 [image: image with no caption]

 Sorting with Template Method

 What’s something we often need to do with arrays? Sort them!

 [image: image with no caption]

Recognizing that, the designers of the Java Arrays class have provided us with a handy template method for sorting. Let’s take a look at how this method operates:

 Note

We’ve pared down this code a little to make it easier to explain. If you’d like to see it all, grab the Java source code and check it out...

 [image: image with no caption]

 We’ve got some ducks to sort...

Let’s say you have an array of ducks that you’d like to sort. How do you do it? Well, the sort template method in Arrays gives us the algorithm, but you need to tell it how to compare ducks, which you do by implementing the compareTo() method... Make sense?

 [image: image with no caption]

 [image: image with no caption]

Good point. Here’s the deal: the designers of sort() wanted it to be useful across all arrays, so they had to make sort() a static method that could be used from anywhere. But that’s okay, it works almost the same as if it were in a superclass. Now, here is one more detail: because sort() really isn’t defined in our superclass, the sort() method needs to know that you’ve implemented the compareTo() method, or else you don’t have the piece needed to complete the sort algorithm.

To handle this, the designers made use of the Comparable interface. All you have to do is implement this interface, which has one method (surprise): compareTo().

 What is compareTo()?

The compareTo() method compares two objects and returns whether one is less than, greater than, or equal to the other. sort() uses this as the basis of its comparison of objects in the array.

 [image: image with no caption]

 Comparing Ducks and Ducks

Okay, so you know that if you want to sort Ducks, you’re going to have to implement this compareTo() method; by doing that you’ll give the Arrays class what it needs to complete the algorithm and sort your ducks.

Here’s the duck implementation:

 [image: image with no caption]

 [image: image with no caption]

 Let’s sort some Ducks

Here’s the test drive for sorting Ducks...

 [image: image with no caption]

Let the sorting commence!

 [image: image with no caption]

 The making of the sorting duck machine

 [image: image with no caption]

Behind the Scenes

	① First, we need an array of Ducks:

Duck[] ducks = {new Duck("Daffy", 8), ... };

	② Then we call the sort() template method in the Array class and pass it our ducks:

 [image: image with no caption]

The sort() method (and its helper mergeSort()) control the sort procedure.

	③ To sort an array, you need to compare two items one by one until the entire list is in sorted order.

When it comes to comparing two ducks, the sort method relies on the Duck’s compareTo() method to know how to do this. The compareTo() method is called on the first duck and passed the duck to be compared to:

 [image: image with no caption]

	④ If the Ducks are not in sorted order, they’re swapped with the concrete swap() method in Arrays:

swap()

	⑤ The sort() method continues comparing and swapping Ducks until the array is in the correct order!

There Are No Dumb Questions

	

Q:

	

Q: Is this really the Template Method Pattern, or are you trying too hard?

	
A:

	

A:

 The pattern calls for implementing an algorithm and letting subclasses supply the implementation of the steps — and the Arrays sort is clearly not doing that! But, as we know, patterns in the wild aren’t always just like the textbook patterns. They have to be modified to fit the context and implementation constraints.

The designers of the Arrays sort() method had a few constraints. In general, you can’t subclass a Java array and they wanted the sort to be used on all arrays (and each array is a different class). So they defined a static method and deferred the comparison part of the algorithm to the items being sorted.

So, while it’s not a textbook template method, this implementation is still in the spirit of the Template Method Pattern. Also, by eliminating the requirement that you have to subclass Arrays to use this algorithm, they’ve made sorting in some ways more flexible and useful.

	

Q:

	

Q: This implementation of sorting actually seems more like the Strategy Pattern than the Template Method Pattern. Why do we consider it Template Method?

	
A:

	

A:

 You’re probably thinking that because the Strategy Pattern uses object composition. You’re right in a way — we’re using the Arrays object to sort our array, so that’s similar to Strategy. But remember, in Strategy, the class that you compose with implements the entire algorithm. The algorithm that Arrays implements for sort is incomplete; it needs a class to fill in the missing compareTo() method. So, in that way, it’s more like Template Method.

	

Q:

	

Q: Are there other examples of template methods in the Java API?

	
A:

	

A:

 Yes, you’ll find them in a few places. For example, java.io has a read() method in InputStream that subclasses must implement and is used by the template method read(byte b[], int off, int len).

 Brain Power

We know that we should favor composition over inheritance, right? Well, the implementers of the sort() template method decided not to use inheritance and instead to implement sort() as a static method that is composed with a Comparable at runtime. How is this better? How is it worse? How would you approach this problem? Do Java arrays make this particularly tricky?

 Brain2 Power

Think of another pattern that is a specialization of the template method. In this specialization, primitive operations are used to create and return objects. What pattern is this?

 Swingin’ with Frames

 Up next on our Template Method safari... keep your eye out for swinging JFrames!

 [image: image with no caption]

If you haven’t encountered JFrame, it’s the most basic Swing container and inherits a paint() method. By default, paint() does nothing because it’s a hook! By overriding paint(), you can insert yourself into JFrame’s algorithm for displaying its area of the screen and have your own graphic output incorporated into the JFrame. Here’s an embarrassingly simple example of using a JFrame to override the paint() hook method:

 [image: image with no caption]

 [image: image with no caption]

 Applets

 Our final stop on the safari: the applet.

 [image: image with no caption]

You probably know an applet is a small program that runs in a web page. Any applet must subclass Applet, and this class provides several hooks. Let’s take a look at a few of them:

 [image: image with no caption]

Concrete applets make extensive use of hooks to supply their own behaviors. Because these methods are implemented as hooks, the applet isn’t required to implement them.

Fireside Chats

 Tonight’s talk:
Template Method and Strategy compare methods.

	
Template Method:

	
Strategy:

	
Hey Strategy, what are you doing in my chapter? I figured I’d get stuck with someone boring like Factory Method.

	

 [image:]

	
	
Nope, it’s me, although be careful — you and Factory Method are related, aren’t you?

	
I was just kidding! But seriously, what are you doing here? We haven’t heard from you in eight chapters!

	

	
	
I’d heard you were on the final draft of your chapter and I thought I’d swing by to see how it was going. We have a lot in common, so I thought I might be able to help...

	
You might want to remind the reader what you’re all about, since it’s been so long.

	

	
	
I don’t know, since Chapter 1
 , people have been stopping me in the street saying, “Aren’t you that pattern...?” So I think they know who I am. But for your sake: I define a family of algorithms and make them interchangeable. Since each algorithm is encapsulated, the client can use different algorithms easily.

	
Hey, that does sound a lot like what I do. But my intent’s a little different from yours; my job is to define the outline of an algorithm, but let my subclasses do some of the work. That way, I can have different implementations of an algorithm’s individual steps, but keep control over the algorithm’s structure. Seems like you have to give up control of your algorithms.

	

	
	
I’m not sure I’d put it quite like
that

 ... and anyway, I’m not stuck using inheritance for algorithm implementations. I offer clients a choice of algorithm implementation through object composition.

	
I remember that. But I have more control over my algorithm and I don’t duplicate code. In fact, if every part of my algorithm is the same except for, say, one line, then my classes are much more efficient than yours. All my duplicated code gets put into the superclass, so all the subclasses can share it.

	

	
	
You might be a little more efficient (just a little) and require fewer objects.
And

 you might also be a little less complicated in comparison to my delegation model, but I’m more flexible because I use object composition. With me, clients can change their algorithms at runtime simply by using a different strategy object. Come on, they didn’t choose me for Chapter 1
 for nothing!

	
Yeah, well, I’m
real

 happy for ya, but don’t forget I’m the most used pattern around. Why? Because I provide a fundamental method for code reuse that allows subclasses to specify behavior. I’m sure you can see that this is perfect for creating frameworks.

	

	
	
Yeah, I guess... but, what about dependency? You’re way more dependent than me.

	
How’s that? My superclass is abstract.

	

	
	
But you have to depend on methods implemented in your subclasses, which are part of your algorithm. I don’t depend on anyone; I can do the entire algorithm myself!

	
Like I said, Strategy, I’m
real

 happy for you. Thanks for stopping by, but I’ve got to get the rest of this chapter done.

	

	
	
Okay, okay, don’t get touchy. I’ll let you work, but let me know if you need my special techniques anyway; I’m always glad to help.

	
Got it. Don’t call us, we’ll call you...

	

Design Patterns Crossword

It’s that time again....

 [image: image with no caption]

	
Across

	
Down

	
1. Strategy uses __________ rather than inheritance.

4. Type of sort used in Arrays.

5. The JFrame hook method that we overrode to print “I Rule”.

6. The Template Method Pattern uses __________ to defer implementation to other classes.

8. Coffee and ________.

9. “Don’t call us, we’ll call you” is known as the __________ Principle.

12. A template method defines the steps of an ____________.

13. In this chapter, we give you more ________.

14. The template method is usually defined in an __________ class.

16. Class that likes web pages.

	
2. _____________ algorithm steps are implemented by hook methods.

3. Factory Method is a __________ of Template Method.

7. The steps in the algorithm that must be supplied by the subclasses are usually declared ____________.

8. Huey, Louie, and Dewey all weigh ___________ pounds.

9. A method in the abstract superclass that does nothing or provides default behavior is called a ____________ method.

10. Big-headed pattern.

11. Our favorite coffee shop in Objectville.

15. The Arrays class implements its template method as a __________ method.

 Chapter 9. The Iterator and Composite Patterns: Well-Managed Collections

 [image: image with no caption]

There are lots of ways to stuff objects into a collection.

 Put them into an Array, a Stack, a List, a Hashmap, take your pick. Each has its own advantages and tradeoffs. But at some point your client is going to want to iterate over those objects, and when he does, are you going to show him your implementation? We certainly hope not! That just wouldn’t be professional. Well, you don’t have to risk your career; you’re going to see how you can allow your clients to iterate through your objects without ever getting a peek at how you store your objects. You’re also going to learn how to create some super collections of objects that can leap over some impressive data structures in a single bound. And if that’s not enough, you’re also going to learn a thing or two about object responsibility.

 Breaking News: Objectville Diner and Objectville Pancake House Merge

 That’s great news! Now we can get those delicious pancake breakfasts at the Pancake House and those yummy lunches at the Diner all in one place. But, there seems to be a slight problem...

 [image: image with no caption]

 Check out the Menu Items

At least Lou and Mel agree on the implementation of the MenuItems. Let’s check out the items on each menu, and also take a look at the implementation.

 [image: image with no caption]

 [image: image with no caption]

 Lou and Mel’s Menu implementations

 Now let’s take a look at what Lou and Mel are arguing about. They both have lots of time and code invested in the way they store their menu items in a menu, and lots of other code that depends on it.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 What’s the problem with having two different menu representations?

To see why having two different menu representations complicates things, let’s try implementing a client that uses the two menus. Imagine you have been hired by the new company formed by the merger of the Diner and the Pancake House to create a Java-enabled waitress (this is Objectville, after all). The spec for the Java-enabled waitress specifies that she can print a custom menu for customers on demand, and even tell you if a menu item is vegetarian without having to ask the cook — now that’s an innovation!

Let’s check out the spec, and then step through what it might take to implement her...

 The Java-Enabled Waitress Specification

 [image: image with no caption]

 Let’s start by stepping through how we’d implement the printMenu() method:

	① To print all the items on each menu, you’ll need to call the getMenuItems() method on the PancakeHouseMenu and the DinerMenu to retrieve their respective menu items. Note that each returns a different type:

 [image: image with no caption]

	② Now, to print out the items from the PancakeHouseMenu, we’ll loop through the items on the breakfastItems ArrayList. And to print out the Diner items we’ll loop through the Array.

 [image: image with no caption]

	③ Implementing every other method in the Waitress is going to be a variation of this theme. We’re always going to need to get both menus and use two loops to iterate through their items. If another restaurant with a different implementation is acquired then we’ll have
three

 loops.

Sharpen your pencil

 Based on our implementation of printMenu(), which of the following apply?

	

 [image:]

	
A.

	
We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not to an interface.

	

 [image:]

	
B.

	
The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a standard.

	

 [image:]

	
C.

	
If we decided to switch from using DinerMenu to another type of menu that implemented its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

	

 [image:]

	
D.

	
The Waitress needs to know how each menu represents its internal collection of menu items; this violates encapsulation.

	

 [image:]

	
E.

	
We have duplicate code: the printMenu() method needs two separate loops to iterate over the two different kinds of menus. And if we added a third menu, we’d have yet another loop.

	

 [image:]

	
F.

	
The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as it should be.

 What now?

Mel and Lou are putting us in a difficult position. They don’t want to change their implementations because it would mean rewriting a lot of code that is in each respective menu class. But if one of them doesn’t give in, then we’re going to have the job of implementing a Waitress that is going to be hard to maintain and extend.

It would really be nice if we could find a way to allow them to implement the same interface for their menus (they’re already close, except for the return type of the getMenuItems() method). That way we can minimize the concrete references in the Waitress code and also hopefully get rid of the multiple loops required to iterate over both menus.

Sound good? Well, how are we going to do that?

 [image: image with no caption]

Yes, using for each would allow us to hide the complexity of the different kinds of iteration.

 But that doesn’t solve the real problem here: that we’ve got two different implementations of the menus, and the Waitress has to know how each kind of menu is implemented. That’s not really the Waitress’s job. We want her to focus on being a waitress, and not have to think about the type of the menus
at all

 .

 [image: image with no caption]

Our goal is to decouple the Waitress from the concrete implementations of the menus completely. So hang in there, and you’ll see there’s a better way to do this.

 Can we encapsulate the iteration?

 If we’ve learned one thing in this book, it’s encapsulate what varies. It’s obvious what is changing here: the iteration caused by different collections of objects being returned from the menus. But can we encapsulate this? Let’s work through the idea...

	① To iterate through the breakfast items we use the size() and get() methods on the ArrayList:

 [image: image with no caption]

	② And to iterate through the lunch items we use the Array length field and the array subscript notation on the MenuItem Array.

 [image: image with no caption]

	③ Now what if we create an object, let’s call it an Iterator, that encapsulates the way we iterate through a collection of objects? Let’s try this on the ArrayList

 [image: image with no caption]

	④ Let’s try that on the Array too:

 [image: image with no caption]

 Meet the Iterator Pattern

 Well, it looks like our plan of encapsulating iteration just might actually work; and as you’ve probably already guessed, it is a Design Pattern called the Iterator Pattern.

The first thing you need to know about the Iterator Pattern is that it relies on an interface called Iterator. Here’s one possible Iterator interface:

 [image: image with no caption]

Now, once we have this interface, we can implement Iterators for any kind of collection of objects: arrays, lists, hashmaps, ...pick your favorite collection of objects. Let’s say we wanted to implement the Iterator for the Array used in the DinerMenu. It would look like this:

 [image: image with no caption]

 [image: image with no caption]

Let’s go ahead and implement this Iterator and hook it into the DinerMenu to see how this works...

 Adding an Iterator to DinerMenu

 To add an Iterator to the DinerMenu we first need to define the Iterator Interface:

 [image: image with no caption]

And now we need to implement a concrete Iterator that works for the Diner menu:

 [image: image with no caption]

 Reworking the Diner Menu with Iterator

 Okay, we’ve got the iterator. Time to work it into the DinerMenu; all we need to do is add one method to create a DinerMenuIterator and return it to the client:

 [image: image with no caption]

Exercise

Go ahead and implement the PancakeHouseIterator yourself and make the changes needed to incorporate it into the PancakeHouseMenu.

 Fixing up the Waitress code

Now we need to integrate the iterator code into the Waitress. We should be able to get rid of some of the redundancy in the process. Integration is pretty straightforward: first we create a printMenu() method that takes an Iterator; then we use the createIterator() method on each menu to retrieve the Iterator and pass it to the new method.

 [image: image with no caption]

 Testing our code

It’s time to put everything to a test. Let’s write some test drive code and see how the Waitress works...

 [image: image with no caption]

 Here’s the test run...

 [image: image with no caption]

 What have we done so far?

For starters, we’ve made our Objectville cooks very happy. They settled their differences and kept their own implementations. Once we gave them a PancakeHouseMenuIterator and a DinerMenuIterator, all they had to do was add a createIterator() method and they were finished.

We’ve also helped ourselves in the process. The Waitress will be much easier to maintain and extend down the road. Let’s go through exactly what we did and think about the consequences:

 [image: image with no caption]

	
Hard to Maintain Waitress Implementation

	
New, Hip Waitress Powered by Iterator

	
The Menus are not well encapsulated; we can see the Diner is using an ArrayList and the Pancake House an Array.

	
The Menu implementations are now encapsulated. The Waitress has no idea how the Menus hold their collection of menu items.

	
We need two loops to iterate through the MenuItems.

	
All we need is a loop that polymorphically handles any collection of items as long as it implements Iterator.

	
The Waitress is bound to concrete classes (MenuItem[] and ArrayList).

	
The Waitress now uses an interface (Iterator).

	
The Waitress is bound to two different concrete Menu classes, despite their interfaces being almost identical.

	
The Menu interfaces are now exactly the same and, uh oh, we still don’t have a common interface, which means the Waitress is still bound to two concrete Menu classes. We’d better fix that.

 What we have so far...

 Before we clean things up, let’s get a bird’s-eye view of our current design.

 [image: image with no caption]

 Making some improvements...

 Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are exactly the same and yet we haven’t defined a common interface for them. So, we’re going to do that and clean up the Waitress a little more.

You may be wondering why we’re not using the Java Iterator interface — we did that so you could see how to build an iterator from scratch. Now that we’ve done that, we’re going to switch to using the Java Iterator interface, because we’ll get a lot of leverage by implementing that instead of our home-grown Iterator interface. What kind of leverage? You’ll soon see.

First, let’s check out the java.util.Iterator interface:

 [image: image with no caption]

This is going to be a piece of cake: we just need to change the interface that both PancakeHouseMenuIterator and DinerMenuIterator extend, right? Almost... actually, it’s even easier than that. Not only does java.util have its own Iterator interface, but ArrayList has an iterator() method that returns an iterator. In other words, we never needed to implement our own iterator for ArrayList. However, we’ll still need our implementation for the DinerMenu because it relies on an Array, which doesn’t support the iterator() method (or any other way to create an array iterator).

There Are No Dumb Questions

	

Q:

	

Q: What if I don’t want to provide the ability to remove something from the underlying collection of objects?

	
A:

	

A:

 The remove() method is considered optional. You don’t have to provide remove functionality. But, you should provide the method because it’s part of the Iterator interface. If you’re not going to allow remove() in your iterator you’ll want to throw the runtime exception java.lang.UnsupportedOperationException. The Iterator API documentation specifies that this exception may be thrown from remove() and any client that is a good citizen will check for this exception when calling the remove() method.

	

Q:

	

Q: How does remove() behave under multiple threads that may be using different iterators over the same collection of objects?

	
A:

	

A:

 The behavior of the remove() is unspecified if the collection changes while you are iterating over it. So you should be careful in designing your own multithreaded code when accessing a collection concurrently.

 Cleaning things up with java.util.Iterator

 Let’s start with the PancakeHouseMenu. Changing it over to java.util.Iterator is going to be easy. We just delete the PancakeHouseMenuIterator class, add an import java.util.Iterator to the top of PancakeHouseMenu and change one line of the PancakeHouseMenu:

 [image: image with no caption]

And that’s it, PancakeHouseMenu is done.

Now we need to make the changes to allow the DinerMenu to work with java.util.Iterator.

 [image: image with no caption]

 We are almost there...

We just need to give the Menus a common interface and rework the Waitress a little. The Menu interface is quite simple: we might want to add a few more methods to it eventually, like addItem(), but for now we will let the chefs control their menus by keeping that method out of the public interface:

 [image: image with no caption]

Now we need to add an implements Menu
 to both the PancakeHouseMenu and the DinerMenu class definitions and update the Waitress:

 [image: image with no caption]

 What does this get us?

 The PancakeHouseMenu and DinerMenu classes implement an interface, Menu. Waitress can refer to each menu object using the interface rather than the concrete class. So, we’re reducing the dependency between the Waitress and the concrete classes by “programming to an interface, not an implementation.”

 Note

This solves the problem of the Waitress depending on the concrete Menus.

The new Menu interface has one method, createIterator(), that is implemented by PancakeHouseMenu and DinerMenu. Each menu class assumes the responsibility of creating a concrete Iterator that is appropriate for its internal implementation of the menu items.

 Note

This solves the problem of the Waitress depending on the implementation of the MenuItems.

 [image: image with no caption]

 Iterator Pattern defined

 You’ve already seen how to implement the Iterator Pattern with your very own iterator. You’ve also seen how Java supports iterators in some of its collection oriented classes (the ArrayList). Now it’s time to check out the official definition of the pattern:

 Note

The Iterator Pattern

 provides a way to access the elements of an aggregate object sequentially without exposing its underlying representation.

This makes a lot of sense: the pattern gives you a way to step through the elements of an aggregate without having to know how things are represented under the covers. You’ve seen that with the two implementations of Menus. But the effect of using iterators in your design is just as important: once you have a uniform way of accessing the elements of all your aggregate objects, you can write polymorphic code that works with
any

 of these aggregates — just like the printMenu() method, which doesn’t care if the menu items are held in an Array or ArrayList (or anything else that can create an Iterator), as long as it can get hold of an Iterator.

The Iterator Pattern allows traversal of the elements of an aggregate without exposing the underlying implementation.

It also places the task of traversal on the iterator object, not on the aggregate, which simplifies the aggregate interface and implementation, and places the responsibility where it should be.

The other important impact on your design is that the Iterator Pattern takes the responsibility of traversing elements and gives that responsibility to the iterator object, not the aggregate object. This not only keeps the aggregate interface and implementation simpler, it removes the responsibility for iteration from the aggregate and keeps the aggregate focused on the things it should be focused on (managing a collection of objects), not on iteration.

Let’s check out the class diagram to put all the pieces in context...

 [image: image with no caption]

 Brain Power

 The class diagram for the Iterator Pattern looks very similar to another pattern you’ve studied; can you think of what it is? Hint: a subclass decides which object to create.

There Are No Dumb Questions

	

Q:

	

Q: I’ve seen other books show the Iterator class diagram with the methods first(), next(), isDone() and currentItem(). Why are these methods different?

	
A:

	

A:

 Those are the “classic” method names that have been used. These names have changed over time and we now have next(), hasNext() and even remove() in java.util.Iterator.

Let’s look at the classic methods. The next() and currentItem() have been merged into one method in java.util. The isDone() method has obviously become hasNext(); but we have no method corresponding to first(). That’s because in Java we tend to just get a new iterator whenever we need to start the traversal over. Nevertheless, you can see there is very little difference in these interfaces. In fact, there is a whole range of behaviors you can give your iterators. The remove() method is an example of an extension in java.util.Iterator.

	

Q:

	

Q: I’ve heard about “internal” iterators and “external” iterators. What are they? Which kind did we implement in the example?

	
A:

	

A:

 We implemented an external iterator, which means that the client controls the iteration by calling next() to get the next element. An internal iterator is controlled by the iterator itself. In that case, because it’s the iterator that’s stepping through the elements, you have to tell the iterator what to do with those elements as it goes through them. That means you need a way to pass an operation to an iterator. Internal iterators are less flexible than external iterators because the client doesn’t have control of the iteration. However, some might argue that they are easier to use because you just hand them an operation and tell them to iterate, and they do all the work for you.

	

Q:

	

Q: Could I implement an Iterator that can go backwards as well as forwards?

	
A:

	

A:

 Definitely. In that case, you’d probably want to add two methods, one to get to the previous element, and one to tell you when you’re at the beginning of the collection of elements. Java’s Collection Framework provides another type of iterator interface called ListIterator. This iterator adds previous() and a few other methods to the standard Iterator interface. It is supported by any Collection that implements the List interface.

	

Q:

	

Q: Who defines the ordering of the iteration in a collection like Hashtable, which are inherently unordered?

	
A:

	

A:

 Iterators imply no ordering. The underlying collections may be unordered as in a hashtable or in a bag; they may even contain duplicates. So ordering is related to both the properties of the underlying collection and to the implementation. In general, you should make no assumptions about ordering unless the Collection documentation indicates otherwise.

	

Q:

	

Q: You said we can write “polymorphic code” using an iterator; can you explain that more?

	
A:

	

A:

 When we write methods that take Iterators as parameters, we are using polymorphic iteration. That means we are creating code that can iterate over any collection as long as it supports Iterator. We don’t care about how the collection is implemented, we can still write code to iterate over it.

	

Q:

	

Q: If I’m using Java, won’t I always want to use the java.util.Iterator interface so I can use my own iterator implementations with classes that are already using the Java iterators?

	
A:

	

A:

 Probably. If you have a common Iterator interface, it will certainly make it easier for you to mix and match your own aggregates with Java aggregates like ArrayList and Vector. But remember, if you need to add functionality to your Iterator interface for your aggregates, you can always extend the Iterator interface.

	

Q:

	

Q: I’ve seen an Enumeration interface in Java; does that implement the Iterator Pattern?

	
A:

	

A:

 We talked about this in the Adapter Pattern chapter (Chapter 7
). Remember? The java.util.Enumeration is an older implementation of Iterator that has since been replaced by java.util. Iterator. Enumeration has two methods, hasMoreElements(), corresponding to hasNext(), and nextElement(), corresponding to next(). However, you’ll probably want to use Iterator over Enumeration as more Java classes support it. If you need to convert from one to another, review Chapter 7
 again where you implemented the adapter for Enumeration and Iterator.

 Single Responsibility

 What if we allowed our aggregates to implement their internal collections and related operations AND the iteration methods? Well, we already know that would expand the number of methods in the aggregate, but so what? Why is that so bad?

Well, to see why, you first need to recognize that when we allow a class to not only take care of its own business (managing some kind of aggregate) but also take on more responsibilities (like iteration) then we’ve given the class two reasons to change. Two? Yup, two: it can change if the collection changes in some way, and it can change if the way we iterate changes. So once again our friend CHANGE is at the center of another design principle:

 Design Principle

A class should have only one reason to change.

Every responsibility of a class is an area of potential change. More than one responsibility means more than one area of change.

This principle guides us to keep each class to a single responsibility.

We know we want to avoid change in a class like the plague — modifying code provides all sorts of opportunities for problems to creep in. Having two ways to change increases the probability the class will change in the future, and when it does, it’s going to affect two aspects of your design.

The solution? The principle guides us to assign each responsibility to one class, and only one class.

That’s right, it’s as easy as that, and then again it’s not: separating responsibility in design is one of the most difficult things to do. Our brains are just too good at seeing a set of behaviors and grouping them together even when there are actually two or more responsibilities. The only way to succeed is to be diligent in examining your designs and to watch out for signals that a class is changing in more than one way as your system grows.

 [image: image with no caption]

Cohesion

 is a term you’ll hear used as a measure of how closely a class or a module supports a single purpose or responsibility.

We say that a module or class has
high cohesion

 when it is designed around a set of related functions, and we say it has
low cohesion

 when it is designed around a set of unrelated functions.

Cohesion is a more general concept than the Single Responsibility Principle, but the two are closely related. Classes that adhere to the principle tend to have high cohesion and are more maintainable than classes that take on multiple responsibilities and have low cohesion.

 Brain Power

Examine these classes and determine which ones have multiple responsibilities.

 [image: image with no caption]

 [image: image with no caption]

HARD HAT AREA. WATCH OUT FOR FALLING ASSUMPTIONS

 Brain2 Power

Determine if these classes have low or high cohesion.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

 Taking a look at the Café Menu

 Here’s the café menu. It doesn’t look like too much trouble to integrate the CafeMenu class into our framework... let’s check it out.

 [image: image with no caption]

Sharpen your pencil

Before looking at the next page, quickly jot down the three things we have to do to this code to fit it into our framework:

 Reworking the Café Menu code

 Integrating the CafeMenu into our framework is easy. Why? Because HashMap is one of those Java collections that supports Iterator. But it’s not quite the same as ArrayList...

 [image: image with no caption]

Code Up Close

HashMap is a little more complex than the ArrayList because it supports both keys and values, but we can still get an Iterator for the values (which are the MenuItems).

 [image: image with no caption]

 Adding the Café Menu to the Waitress

That was easy; how about modifying the Waitress to support our new Menu? Now that the Waitress expects Iterators, that should be easy too.

 [image: image with no caption]

 Breakfast, lunch AND dinner

Let’s update our test drive to make sure this all works.

 [image: image with no caption]

 Here’s the test run; check out the new dinner menu from the Café!

 [image: image with no caption]

 What did we do?

 [image: image with no caption]

 We decoupled the Waitress....

 [image: image with no caption]

 ... and we made the Waitress more extensible

 [image: image with no caption]

 But there’s more!

 [image: image with no caption]

 Iterators and Collections

 We’ve been using a couple of classes that are part of the Java Collections Framework. This “framework” is just a set of classes and interfaces, including ArrayList, which we’ve been using, and many others like Vector, LinkedList, Stack, and PriorityQueue. Each of these classes implements the java.util.Collection interface, which contains a bunch of useful methods for manipulating groups of objects.

 [image: image with no caption]

Let’s take a quick look at the interface:

 [image: image with no caption]

 Watch it!

Hashtable is one of a few classes that

 indirectly

supports Iterator.

As you saw when we implemented the CafeMenu, you could get an Iterator from it, but only by first retrieving its Collection called values. If you think about it, this makes sense: the HashMap holds two sets of objects: keys and values. If we want to iterate over its values, we first need to retrieve them from the HashMap, and then obtain the iterator.

 [image: image with no caption]

Code Magnets

 The Chefs have decided that they want to be able to alternate their lunch menu items; in other words, they will offer some items on Monday, Wednesday, Friday, and Sunday, and other items on Tuesday, Thursday, and Saturday. Someone already wrote the code for a new “Alternating” DinerMenu Iterator so that it alternates the menu items, but she scrambled it up and put it on the fridge in the Diner as a joke. Can you put it back together? Some of the curly braces fell on the floor and they were too small to pick up, so feel free to add as many of those as you need.

 [image: image with no caption]

 Is the Waitress ready for prime time?

 The Waitress has come a long way, but you’ve gotta admit those three calls to printMenu() are looking kind of ugly.

Let’s be real — every time we add a new menu we are going to have to open up the Waitress implementation and add more code. Can you say “violating the Open Closed Principle”?

 [image: image with no caption]

 [image: image with no caption]

It’s not the Waitress’ fault. We have done a great job of decoupling the menu implementation and extracting the iteration into an iterator. But we still are handling the menus with separate, independent objects — we need a way to manage them together.

 Brain Power

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you think of a way to combine the menus so that only one call needs to be made? Or perhaps so that one Iterator is passed to the Waitress to iterate over all the menus?

 [image: image with no caption]

Sounds like the chef is on to something. Let’s give it a try:

 [image: image with no caption]

This looks pretty good, although we’ve lost the names of the menus, but we could add the names to each menu.

 Just when we thought it was safe...

 Now they want to add a dessert submenu.

Okay, now what? Now we have to support not only multiple menus, but menus within menus.

It would be nice if we could just make the dessert menu an element of the DinerMenu collection, but that won’t work as it is now implemented.

What we want (something like this):

 [image: image with no caption]

 [image: image with no caption]

We can’t assign a dessert menu to a MenuItem array.

Time for a change!

 What do we need?

 The time has come to make an executive decision to rework the chef’s implementation into something that is general enough to work over all the menus (and now submenus). That’s right, we’re going to tell the chefs that the time has come for us to reimplement their menus.

The reality is that we’ve reached a level of complexity such that if we don’t rework the design now, we’re never going to have a design that can accommodate further acquisitions or submenus.

So, what is it we really need out of our new design?

	

 [image:]

	
We need some kind of a tree-shaped structure that will accommodate menus, submenus, and menu items.

	

 [image:]

	
We need to make sure we maintain a way to traverse the items in each menu that is at least as convenient as what we are doing now with iterators.

	

 [image:]

	
We may need to traverse the items in a more flexible manner. For instance, we might need to iterate over only the Diner’s dessert menu, or we might need to iterate over the Diner’s entire menu, including the dessert submenu.

 [image: image with no caption]

 Note

Because we need to represent menus, nested submenus and menu items, we can naturally fit them in a tree-like structure.

 [image: image with no caption]

 Brain Power

How would you handle this new wrinkle to our design requirements? Think about it before turning the page.

 The Composite Pattern defined

 That’s right; we’re going to introduce another pattern to solve this problem. We didn’t give up on Iterator — it will still be part of our solution — however, the problem of managing menus has taken on a new dimension that Iterator doesn’t solve. So, we’re going to step back and solve it with the Composite Pattern.

We’re not going to beat around the bush on this pattern; we’re going to go ahead and roll out the official definition now:

 Note

Here’s a tree structure.

 [image: image with no caption]

 Note

The Composite Pattern

 allows you to compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual objects and compositions of objects uniformly.

Let’s think about this in terms of our menus: this pattern gives us a way to create a tree structure that can handle a nested group of menus
and

 menu items in the same structure. By putting menus and items in the same structure we create a part-whole hierarchy; that is, a tree of objects that is made of parts (menus and menu items) but that can be treated as a whole, like one big über menu.

Once we have our über menu, we can use this pattern to treat “individual objects and compositions uniformly.” What does that mean? It means if we have a tree structure of menus, submenus, and perhaps subsubmenus along with menu items, then any menu is a “composition” because it can contain both other menus and menu items. The individual objects are just the menu items — they don’t hold other objects. As you’ll see, using a design that follows the Composite Pattern is going to allow us to write some simple code that can apply the same operation (like printing!) over the entire menu structure.

 [image: image with no caption]

 Note

We can create arbitrarily complex trees.

 [image: image with no caption]

 [image: image with no caption]

 Note

Operations can be applied to the whole.

 [image: image with no caption]

 Note

Or the parts.

The Composite Pattern allows us to build structures of objects in the form of trees that contain both compositions of objects and individual objects as nodes.

Using a composite structure, we can apply the same operations over both composites and individual objects. In other words, in most cases we can ignore
 the differences between compositions of objects and individual objects.

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Component, Composite, Trees? I’m confused.

	
A:

	

A:

 A composite contains components. Components come in two flavors: composites and leaf elements. Sound recursive? It is. A composite holds a set of children; those children may be other composites or leaf elements.

When you organize data in this way you end up with a tree structure (actually an upside-down tree structure) with a composite at the root and branches of composites growing up to leaf nodes.

	

Q:

	

Q: How does this relate to iterators?

	
A:

	

A:

 Remember, we’re taking a new approach. We’re going to re-implement the menus with a new solution: the Composite Pattern. So don’t look for some magical transformation from an iterator to a composite. That said, the two work very nicely together. You’ll soon see that we can use iterators in a couple of ways in the composite implementation.

 Designing Menus with Composite

 So, how do we apply the Composite Pattern to our menus? To start with, we need to create a component interface; this acts as the common interface for both menus and menu items and allows us to treat them uniformly. In other words, we can call the
same

 method on menus or menu items.

Now, it may not make
sense

 to call some of the methods on a menu item or a menu, but we can deal with that, and we will in just a moment. But for now, let’s take a look at a sketch of how the menus are going to fit into a Composite Pattern structure:

 [image: image with no caption]

 Implementing the Menu Component

 Okay, we’re going to start with the MenuComponent abstract class; remember, the role of the menu component is to provide an interface for the leaf nodes and the composite nodes. Now you might be asking, “Isn’t the MenuComponent playing two roles?” It might well be and we’ll come back to that point. However, for now we’re going to provide a default implementation of the methods so that if the MenuItem (the leaf) or the Menu (the composite) doesn’t want to implement some of the methods (like getChild() for a leaf node) they can fall back on some basic behavior:

 Note

All components must implement the MenuComponent interface; however, because leaves and nodes have different roles we can’t always define a default implementation for each method that makes sense. Sometimes the best you can do is throw a runtime exception.

 Note

Because some of these methods only make sense for MenuItems, and some only make sense for Menus, the default implementation
 is UnsupportedOperationException. That way, if MenuItem or Menu doesn’t support an operation, they don’t have to do anything; they can just inherit
 the default im
 plementation
 .

 [image: image with no caption]

 Implementing the Menu Item

Okay, let’s give the MenuItem class a shot. Remember, this is the leaf class in the Composite diagram and it implements the behavior of the elements of the composite.

 [image: image with no caption]

 [image: image with no caption]

 Implementing the Composite Menu

Now that we have the MenuItem, we just need the composite class, which we’re calling Menu. Remember, the composite class can hold MenuItems
or

 other Menus. There’s a couple of methods from MenuComponent this class doesn’t implement: getPrice() and isVegetarian(), because those don’t make a lot of sense for a Menu.

 [image: image with no caption]

 [image: image with no caption]

Excellent catch. Because menu is a composite and contains both MenuItems and other Menus, its print() method should print everything it contains. If it didn’t we’d have to iterate through the entire composite and print each item ourselves. That kind of defeats the purpose of having a composite structure.

As you’re going to see, implementing print() correctly is easy because we can rely on each component to be able to print itself. It’s all wonderfully recursive and groovy. Check it out:

 Fixing the print() method

 [image: image with no caption]

 Note

NOTE: If, during this iteration, we encounter another Menu object, its print() method will start another iteration, and so on.

 Getting ready for a test drive...

 It’s about time we took this code for a test drive, but we need to update the Waitress code before we do — after all she’s the main client of this code:

 [image: image with no caption]

Okay, one last thing before we write our test drive. Let’s get an idea of what the menu composite is going to look like at runtime:

 [image: image with no caption]

 Now for the test drive...

Okay, now we just need a test drive. Unlike our previous version, we’re going to handle all the menu creation in the test drive. We could ask each chef to give us his new menu, but let’s get it all tested first. Here’s the code:

 [image: image with no caption]

 Getting ready for a test drive...

 Note

NOTE: this output is based on the complete source.

 [image: image with no caption]

 [image: image with no caption]

 There is some truth to that observation. We could say that the Composite Pattern takes the Single Responsibility design principle and trades it for
transparency

 . What’s transparency? Well, by allowing the Component interface to contain the child management operations
and

 the leaf operations, a client can treat both composites and leaf nodes uniformly; so whether an element is a composite or leaf node becomes transparent to the client.

Now given we have both types of operations in the Component class, we lose a bit of
safety

 because a client might try to do something inappropriate or meaningless on an element (like try to add a menu to a menu item). This is a design decision; we could take the design in the other direction and separate out the responsibilities into interfaces. This would make our design safe, in the sense that any inappropriate calls on elements would be caught at compile time or runtime, but we’d lose transparency and our code would have to use conditionals and the instanceof
 operator.

So, to return to your question, this is a classic case of tradeoff. We are guided by design principles, but we always need to observe the effect they have on our designs. Sometimes we purposely do things in a way that seems to violate the principle. In some cases, however, this is a matter of perspective; for instance, it might seem incorrect to have child management operations in the leaf nodes (like add(), remove() and getChild()), but then again you can always shift your perspective and see a leaf as a node with zero children.

 Flashback to Iterator

 We promised you a few pages back that we’d show you how to use Iterator with a Composite. You know that we are already using Iterator in our internal implementation of the print() method, but we can also allow the Waitress to iterate over an entire composite if she needs to — for instance, if she wants to go through the entire menu and pull out vegetarian items.

To implement a Composite iterator, let’s add a createIterator() method in every component. We’ll start with the abstract MenuComponent class:

 [image: image with no caption]

Now we need to implement this method in the Menu and MenuItem classes:

 [image: image with no caption]

 The Composite Iterator

The CompositeIterator is a SERIOUS iterator. It’s got the job of iterating over the MenuItems in the component, and of making sure all the child Menus (and child child Menus, and so on) are included.

Here’s the code. Watch out. This isn’t a lot of code, but it can be a little mind bending. As you go through it just repeat to yourself “recursion is my friend, recursion is my friend.”

 [image: image with no caption]

WATCH
 OUT
 : RECURSION
 ZONE
 AHEAD

 [image: image with no caption]

 [image: image with no caption]

 When we wrote the print() method in the MenuComponent class we used an iterator to step through each item in the component, and if that item was a Menu (rather than a MenuItem), then we recursively called the print() method to handle it. In other words, the MenuComponent handled the iteration itself,
internally

 .

With this code we are implementing an
external

 iterator so there is a lot more to keep track of. For starters, an external iterator must maintain its position in the iteration so that an outside client can drive the iteration by calling hasNext() and next(). But in this case, our code also needs to maintain that position over a composite, recursive structure. That’s why we use stacks to maintain our position as we move up and down the composite hierarchy.

 Brain Power

Draw a diagram of the Menus and MenuItems. Then pretend you are the CompositeIterator, and your job is to handle calls to hasNext() and next(). Trace the way the CompositeIterator traverses the structure as this code is executed:

public void testCompositeIterator(MenuComponent component) {

CompositeIterator iterator = new CompositeIterator(component.iterator);

while(iterator.hasNext()) {

MenuComponent component = iterator.next();

}

}

 The Null Iterator

 Okay, now what is this Null Iterator all about? Think about it this way: a MenuItem has nothing to iterate over, right? So how do we handle the implementation of its createIterator() method? Well, we have two choices:

 Note

NOTE: Another example of the Null Object “Design Pattern.”

Choice one:

	Return null

	We could return null from createIterator(), but then we’d need conditional code in the client to see if null was returned or not.

Choice two:

	Return an iterator that always returns false when hasNext() is called

	This seems like a better plan. We can still return an iterator, but the client doesn’t have to worry about whether or not null is ever returned. In effect, we’re creating an iterator that is a “no op.”

The second choice certainly seems better. Let’s call it NullIterator and implement it.

 [image: image with no caption]

 Give me the vegetarian menu

 Now we’ve got a way to iterate over every item of the Menu. Let’s take that and give our Waitress a method that can tell us exactly which items are vegetarian.

 [image: image with no caption]

 The magic of Iterator & Composite together...

Whooo! It’s been quite a development effort to get our code to this point. Now we’ve got a general menu structure that should last the growing Diner empire for some time. Now it’s time to sit back and order up some veggie food:

 [image: image with no caption]

 [image: image with no caption]

 Let’s take a look at what you’re talking about:

 [image: image with no caption]

In general we agree; try/catch is meant for error handling, not program logic. What are our other options? We could have checked the runtime type of the menu component with instanceof to make sure it’s a MenuItem before making the call to isVegetarian(). But in the process we’d lose
transparency

 because we wouldn’t be treating Menus and MenuItems uniformly.

We could also change isVegetarian() in the Menus so that it returns false. This provides a simple solution and we keep our transparency.

In our solution we are going for clarity: we really want to communicate that this is an unsupported operation on the Menu (which is different than saying isVegetarian() is false). It also allows for someone to come along and actually implement a reasonable isVegetarian() method for Menu and have it work with the existing code.

That’s our story and we’re stickin’ to it.

Patterns Exposed

This week’s interview: The Composite Pattern, on implementation issues

HeadFirst

 : We’re here tonight speaking with the Composite Pattern. Why don’t you tell us a little about yourself, Composite?

Composite

 : Sure... I’m the pattern to use when you have collections of objects with whole-part relationships and you want to be able to treat those objects uniformly.

HeadFirst

 : Okay, let’s dive right in here... what do you mean by whole-part relationships?

Composite

 : Imagine a graphical user interface; there you’ll often find a top level component like a Frame or a Panel, containing other components, like menus, text panes, scrollbars and buttons. So your GUI consists of several parts, but when you display it, you generally think of it as a whole. You tell the top level component to display, and count on that component to display all its parts. We call the components that contain other components,
composite objects

 , and components that don’t contain other components,
leaf objects

 .

HeadFirst

 : Is that what you mean by treating the objects uniformly? Having common methods you can call on composites and leaves?

Composite

 : Right. I can tell a composite object to display or a leaf object to display and it will do the right thing. The composite object will display by telling all its components to display.

HeadFirst

 : That implies that every object has the same interface. What if you have objects in your composite that do different things?

Composite

 : In order for the composite to work transparently to the client, you must implement the same interface for all objects in the composite; otherwise, the client has to worry about which interface each object is implementing, which kind of defeats the purpose. Obviously that means that at times you’ll have objects for which some of the method calls don’t make sense.

HeadFirst

 : So how do you handle that?

Composite

 : Well, there are a couple of ways to handle it; sometimes you can just do nothing, or return null or false — whatever makes sense in your application. Other times you’ll want to be more proactive and throw an exception. Of course, then the client has to be willing to do a little work and make sure that the method call didn’t do something unexpected.

HeadFirst

 : But if the client doesn’t know which kind of object they’re dealing with, how would they ever know which calls to make without checking the type?

Composite

 : If you’re a little creative you can structure your methods so that the default implementations do something that does make sense. For instance, if the client is calling getChild(), on the composite this makes sense. And it makes sense on a leaf too, if you think of the leaf as an object with no children.

HeadFirst

 : Ah... smart. But, I’ve heard some clients are so worried about this issue, that they require separate interfaces for different objects so they aren’t allowed to make nonsensical method calls. Is that still the Composite Pattern?

Composite

 : Yes. It’s a much safer version of the Composite Pattern, but it requires the client to check the type of every object before making a call so the object can be cast correctly.

HeadFirst

 : Tell us a little more about how these composite and leaf objects are structured.

Composite

 : Usually it’s a tree structure, some kind of hierarchy. The root is the top-level composite, and all its children are either composites or leaf nodes.

HeadFirst

 : Do children ever point back up to their parents?

Composite

 : Yes, a component can have a pointer to a parent to make traversal of the structure easier. And, if you have a reference to a child, and you need to delete it, you’ll need to get the parent to remove the child. Having the parent reference makes that easier too.

HeadFirst

 : There’s really quite a lot to consider in your implementation. Are there other issues we should think about when implementing the Composite Pattern?

Composite

 : Actually there are... one is the ordering of children. What if you have a composite that needs to keep its children in a particular order? Then you’ll need a more sophisticated management scheme for adding and removing children, and you’ll have to be careful about how you traverse the hierarchy.

HeadFirst

 : A good point I hadn’t thought of.

Composite

 : And did you think about caching?

HeadFirst

 : Caching?

Composite

 : Yeah, caching. Sometimes, if the composite structure is complex or expensive to traverse, it’s helpful to implement caching of the composite nodes. For instance, if you are constantly traversing a composite and all its children to compute some result, you could implement a cache that stores the result temporarily to save traversals.

HeadFirst

 : Well, there’s a lot more to the Composite Patterns than I ever would have guessed. Before we wrap this up, one more question: what do you consider your greatest strength?

Composite

 : I think I’d definitely have to say simplifying life for my clients. My clients don’t have to worry about whether they’re dealing with a composite object or a leaf object, so they don’t have to write if statements everywhere to make sure they’re calling the right methods on the right objects. Often, they can make one method call and execute an operation over an entire structure.

HeadFirst

 : That does sound like an important benefit. There’s no doubt you’re a useful pattern to have around for collecting and managing objects. And, with that, we’re out of time... Thanks so much for joining us and come back soon for another Patterns Exposed.

Design Patterns Crossword

Wrap your brain around this composite crossword.

 [image: image with no caption]

	
Across

	
Down

	
5. Third company acquired.

6. This class indirectly supports Iterator.

12. HashMap and ArrayList both implement this interface.

13. A separate object that can traverse a collection.

15. We deleted PancakeHouseMenuIterator because this class already provides an Iterator.

16. Has no children.

17. Name of principle that states only one responsibility per class (two words).

19. CompositeIterator used a lot of this.

	
1. A class should have only one reason to do this.

2. We encapsulated this.

3. The Iterator Pattern decouples the client from the aggregate’s _________.

4. Merged with the Diner (two words).

7. User interface packages often use this pattern for their components.

8. Collection and Iterator are in this package.

9. Iterators are usually created using this pattern (two words).

10. A composite holds this.

11. We Java-enabled her.

14. This menu caused us to change our entire implementation.

18. A component can be a composite or this.

Who Does What?

 Match each pattern with its description:

	
Pattern

	
Description

	
Strategy

	
Clients treat collections of objects and individual objects uniformly

	
Adapter

	
Provides a way to traverse a collection of objects without exposing the collection’s implementation

	
Iterator

	
Simplifies the interface of a group of classes

	
Facade

	
Changes the interface of one or more classes

	
Composite

	
Allows a group of objects to be notified when some state changes

	
Observer

	
Encapsulates interchangeable behaviors and uses delegation to decide which one to use

 Tools for your Design Toolbox

Two new patterns for your toolbox — two great ways to deal with collections of objects.

 [image: image with no caption]

Bullet Points

	An Iterator allows access to an aggregate’s elements without exposing its internal structure.

	An Iterator takes the job of iterating over an aggregate and encapsulates it in another object.

	When using an Iterator, we relieve the aggregate of the responsibility of supporting operations for traversing its data.

	An Iterator provides a common interface for traversing the items of an aggregate, allowing you to use polymorphism when writing code that makes use of the items of the aggregate.

	We should strive to assign only one responsibility to each class.

	The Composite Pattern provides a structure to hold both individual objects and composites.

	The Composite Pattern allows clients to treat composites and individual objects uniformly.

	A Component is any object in a Composite structure. Components may be other composites or leaf nodes.

	There are many design tradeoffs in implementing Composite. You need to balance transparency and safety with your needs.

Sharpen your pencil Solution

 Based on our implementation of printMenu(), which of the following apply?

	

 [image:]

	
A.

	
We are coding to the PancakeHouseMenu and DinerMenu concrete implementations, not to an interface.

	

 [image:]

	
B.

	
The Waitress doesn’t implement the Java Waitress API and so she isn’t adhering to a standard.

	

 [image:]

	
C.

	
If we decided to switch from using DinerMenu to another type of menu that implemented its list of menu items with a Hashtable, we’d have to modify a lot of code in the Waitress.

	

 [image:]

	
D.

	
The Waitress needs to know how each menu represents its internal collection of menu items; this violates encapsulation.

	

 [image:]

	
E.

	
We have duplicate code: the printMenu() method needs two separate loops to iterate over the two different kinds of menus. And if we added a third menu, we’d have yet another loop.

	

 [image:]

	
F.

	
The implementation isn’t based on MXML (Menu XML) and so isn’t as interoperable as it should be.

Sharpen your pencil Solution

Before looking at the next page, quickly jot down the three things we have to do to this code to fit it into our framework:

	
implement the Menu interface

get rid of getItems()
 __

	
add createIterator() and return an Iterator that can step through the Hashtable values

Code Magnets Solution

 The unscrambled “Alternating” DinerMenu Iterator.

 [image: image with no caption]

Who Does What? Solution

 Match each pattern with its description:

 [image: image with no caption]

Design Patterns Crossword Solution

Wrap your brain around this composite crossword. Here’s our solution.

 [image: image with no caption]

 Chapter 10. The State Pattern: The State of Things

 [image: image with no caption]

A little-known fact: the Strategy and State Patterns were twins separated at birth.

 As you know, the Strategy Pattern went on to create a wildly successful business around interchangeable algorithms. State, however, took the perhaps more noble path of helping objects to control their behavior by changing their internal state. He’s often overheard telling his object clients, “Just repeat after me: I’m good enough, I’m smart enough, and doggonit...”

 Jaw
 va Breakers

 Java toasters are so ’90s. Today people are building Java into
real

 devices, like gumball machines. That’s right, gumball machines have gone high tech; the major manufacturers have found that by putting CPUs into their machines, they can increase sales, monitor inventory over the network and measure customer satisfaction more accurately.

 Note

At least that’s their story – we think they just got bored with the circa 1800’s technology and needed to find a way to make their jobs more exciting.

But these manufacturers are gumball machine experts, not software developers, and they’ve asked for your help:

 [image: image with no caption]

 [image: image with no caption]

 Cubicle Conversation

 [image: image with no caption]

Judy

 : This diagram looks like a state diagram.

Joe

 : Right, each of those circles is a state...

Judy

 : ... and each of the arrows is a state transition.

Frank

 : Slow down, you two, it’s been too long since I studied state diagrams. Can you remind me what they’re all about?

Judy

 : Sure, Frank. Look at the circles; those are states. “No Quarter” is probably the starting state for the gumball machine because it’s just sitting there waiting for you to put your quarter in. All states are just different configurations of the machine that behave in a certain way and need some action to take them to another state.

Joe

 : Right. See, to go to another state, you need to do something like put a quarter in the machine. See the arrow from “No Quarter” to “Has Quarter”?

Frank

 : Yes...

Joe

 : That just means that if the gumball machine is in the “No Quarter” state and you put a quarter in, it will change to the “Has Quarter” state. That’s the state transition.

Frank

 : Oh, I see! And if I’m in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold” state, or eject the quarter and change back to the “No Quarter” state.

Judy

 : You got it!

Frank

 : This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “inserts quarter,” “ejects quarter,” “turns crank” and “dispense.” But... when we dispense, we test for zero or more gumballs in the “Gumball Sold” state, and then either go to the “Out of Gumballs” state or the “No Quarter” state. So we actually have five transitions from one state to another.

Judy

 : That test for zero or more gumballs also implies we’ve got to keep track of the number of gumballs too. Any time the machine gives you a gumball, it might be the last one, and if it is, we need to transition to the “Out of Gumballs” state.

Joe

 : Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine is in the “No Quarter” state, or insert two quarters.

Frank

 : Oh, I didn’t think of that; we’ll have to take care of those too.

Joe

 : For every possible action we’ll just have to check to see which state we’re in and act appropriately. We can do this! Let’s start mapping the state diagram to code...

 State machines 101

 How are we going to get from that state diagram to actual code? Here’s a quick introduction to implementing state machines:

	① First, gather up your states:

 [image: image with no caption]

	② Next, create an instance variable to hold the current state, and define values for each of the states:

 [image: image with no caption]

	③ Now we gather up all the actions that can happen in the system:

 [image: image with no caption]

	④ Now we create a class that acts as the state machine. For each action, we create a method that uses conditional statements to determine what behavior is appropriate in each state. For instance, for the insert quarter action, we might write a method like this:

 [image: image with no caption]

 [image: image with no caption]

With that quick review, let’s go implement the Gumball Machine!

 Writing the code

 It’s time to implement the Gumball Machine. We know we’re going to have an instance variable that holds the current state. From there, we just need to handle all the actions, behaviors and state transitions that can happen. For actions, we need to implement inserting a quarter, removing a quarter, turning the crank, and dispensing a gumball; we also have the empty Gumball Machine condition to implement.

 [image: image with no caption]

 [image: image with no caption]

 In-house testing

 That feels like a nice solid design using a well-thought-out methodology, doesn’t it? Let’s do a little in-house testing before we hand it off to Mighty Gumball to be loaded into their actual gumball machines. Here’s our test harness:

 [image: image with no caption]

 You knew it was coming... a change request!

Mighty Gumball, Inc., has loaded your code into their newest machine and their quality assurance experts are putting it through its paces. So far, everything’s looking great from their perspective.

In fact, things have gone so smoothly they’d like to take things to the next level...

 [image: image with no caption]

Design Puzzle

 Draw a state diagram for a Gumball Machine that handles the 1 in 10 contest. In this contest, 10% of the time the Sold state leads to two balls being released, not one. Check your answer with ours (at the end of the chapter) to make sure we agree before you go further...

 [image: image with no caption]

 The messy STATE of things...

 Just because you’ve written your gumball machine using a well-thought-out methodology doesn’t mean it’s going to be easy to extend. In fact, when you go back and look at your code and think about what you’ll have to do to modify it, well...

 [image: image with no caption]

Sharpen your pencil

Which of the following describe the state of our implementation? (Choose all that apply.)

	

 [image:]

	
A.

	
This code certainly isn’t adhering to the Open Closed Principle.

	

 [image:]

	
B.

	
This code would make a FORTRAN programmer proud.

	

 [image:]

	
C.

	
This design isn’t even very object-oriented.

	

 [image:]

	
D.

	
State transitions aren’t explicit; they are buried in the middle of a bunch of conditional statements.

	

 [image:]

	
E.

	
We haven’t encapsulated anything that varies here.

	

 [image:]

	
F.

	
Further additions are likely to cause bugs in working code.

 [image: image with no caption]

Frank

 : You’re right about that! We need to refactor this code so that it’s easy to maintain and modify.

Judy

 : We really should try to localize the behavior for each state so that if we make changes to one state, we don’t run the risk of messing up the other code.

Frank

 : Right; in other words, follow that ol’ “encapsulate what varies” principle.

Judy

 : Exactly.

Frank

 : If we put each state’s behavior in its own class, then every state just implements its own actions.

Judy

 : Right. And maybe the Gumball Machine can just delegate to the state object that represents the current state.

Frank

 : Ah, you’re good: favor composition... more principles at work.

Judy

 : Cute. Well, I’m not 100% sure how this is going to work, but I think we’re on to something.

Frank

 : I wonder if this will make it easier to add new states?

Judy

 : I think so... We’ll still have to change code, but the changes will be much more limited in scope because adding a new state will mean we just have to add a new class and maybe change a few transitions here and there.

Frank

 : I like the sound of that. Let’s start hashing out this new design!

 The new design

 It looks like we’ve got a new plan: instead of maintaining our existing code, we’re going to rework it to encapsulate state objects in their own classes and then delegate to the current state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to maintain down the road. Here’s how we’re going to do it:

	

① First, we’re going to define a State interface that contains a method for every action in the Gumball Machine.

	

② Then we’re going to implement a State class for every state of the machine. These classes will be responsible for the behavior of the machine when it is in the corresponding state.

	

③ Finally, we’re going to get rid of all of our conditional code and instead delegate to the State class to do the work for us.

Not only are we following design principles, as you’ll see, we’re actually implementing the State Pattern. But we’ll get to all the official State Pattern stuff after we rework our code...

 [image: image with no caption]

 Defining the State interfaces and classes

 First let’s create an interface for State, which all our states implement:

 [image: image with no caption]

Then take each state in our design and encapsulate it in a class that implements the State interface.

Sharpen your pencil

 To implement our states, we first need to specify the behavior of the classes when each action is called. Annotate the diagram below with the behavior of each action in each class; we’ve already filled in a few for you.

 [image: image with no caption]

 Implementing our State classes

 Time to implement a state: we know what behaviors we want; we just need to get it down in code. We’re going to closely follow the state machine code we wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:

 [image: image with no caption]

 [image: image with no caption]

 Reworking the Gumball Machine

 Before we finish the State classes, we’re going to rework the Gumball Machine — that way you can see how it all fits together. We’ll start with the state-related instance variables and switch the code from using integers to using state objects:

 [image: image with no caption]

 Now, let’s look at the complete GumballMachine class...

 [image: image with no caption]

 Implementing more states

 Now that you’re starting to get a feel for how the Gumball Machine and the states fit together, let’s implement the HasQuarterState and the SoldState classes...

 [image: image with no caption]

Now, let’s check out the SoldState class...

 [image: image with no caption]

 Brain Power

Look back at the GumballMachine implementation. If the crank is turned and not successful (say the customer didn’t insert a quarter first), we call dispense anyway, even though it’s unnecessary. How might you fix this?

Sharpen your pencil

 We have one remaining class we haven’t implemented: SoldOutState. Why don’t you implement it? To do this, carefully think through how the Gumball Machine should behave in each situation. Check your answer before moving on...

public class SoldOutState implements _______________ {

GumballMachine gumballMachine;

public SoldOutState(GumballMachine gumballMachine) {

}

public void insertQuarter() {

}

public void ejectQuarter() {

}

public void turnCrank() {

}

public void dispense() {

}

}

 Let’s take a look at what we’ve done so far...

For starters, you now have a Gumball Machine implementation that is
structurally

 quite different from your first version, and yet
functionally it is exactly the same

 . By structurally changing the implemention, you’ve:

	Localized the behavior of each state into its own class.

	Removed all the troublesome if
 statements that would have been difficult to maintain.

	Closed each state for modification, and yet left the Gumball Machine open to extension by adding new state classes (and we’ll do this in a second).

	Created a code base and class structure that maps much more closely to the Mighty Gumball diagram and is easier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

 [image: image with no caption]

 [image: image with no caption]

Sharpen your pencil

Behind the Scenes: Self-Guided Tour

 [image: image with no caption]

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate the diagram with actions and output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

 [image: image with no caption]

 The State Pattern defined

 Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

 Note

The State Pattern

 allows an object to alter its behavior when its internal state changes. The object will appear to change its class.

The first part of this description makes a lot of sense, right? Because the pattern encapsulates state into separate classes and delegates to the object representing the current state, we know that behavior changes along with the internal state. The Gumball Machine provides a good example: when the gumball machine is in the NoQuarterState and you insert a quarter, you get different behavior (the machine accepts the quarter) than if you insert a quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object to “appear to change its class”? Think about it from the perspective of a client: if an object you’re using can completely change its behavior, then it appears to you that the object is actually instantiated from another class. In reality, however, you know that we are using composition to give the appearance of a class change by simply referencing different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

 [image: image with no caption]

 [image: image with no caption]

 You’ve got a good eye! Yes, the class diagrams are essentially the same, but the two patterns differ in their
intent

 .

With the State Pattern, we have a set of behaviors encapsulated in state objects; at any time the context is delegating to one of those states. Over time, the current state changes across the set of state objects to reflect the internal state of the context, so the context’s behavior changes over time as well. The client usually knows very little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that the context is composed with. Now, while the pattern provides the flexibility to change the strategy object at runtime, often there is a strategy object that is most appropriate for a context object. For instance, in Chapter 1
 , some of our ducks were configured to fly with typical flying behavior (like mallard ducks), while others were configured with a fly behavior that kept them grounded (like rubber ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to subclassing; if you use inheritance to define the behavior of a class, then you’re stuck with that behavior even if you need to change it. With Strategy you can change the behavior by composing with a different object.

Think of the State Pattern as an alternative to putting lots of conditionals in your context; by encapsulating the behaviors within state objects, you can simply change the state object in context to change its behavior.

There Are No Dumb Questions

	

Q:

	

Q: In the GumballMachine, the states decide what the next state should be. Do the ConcreteStates always decide what state to go to next?

	
A:

	

A:

 No, not always. The alternative is to let the Context decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed they are appropriate for putting in the Context; however, when the transitions are more dynamic, they are typically placed in the state classes themselves (for instance, in the GumballMachine the choice of the transition to NoQuarter or SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state classes is that we create dependencies between the state classes. In our implementation of the GumballMachine we tried to minimize this by using getter methods on the Context, rather than hardcoding explicit concrete state classes.

Notice that by making this decision, you are making a decision as to which classes are closed for modification — the Context or the state classes — as the system evolves.

	

Q:

	

Q: Do clients ever interact directly with the states?

	
A:

	

A:

 No. The states are used by the Context to represent its internal state and behavior, so all requests to the states come from the Context. Clients don’t directly change the state of the Context. It is the Context’s job to oversee its state, and you don’t usually want a client changing the state of a Context without that Context’s knowledge.

	

Q:

	

Q: If I have lots of instances of the Context in my application, is it possible to share the state objects across them?

	
A:

	

A:

 Yes, absolutely, and in fact this is a very common scenario. The only requirement is that your state objects do not keep their own internal context; otherwise, you’d need a unique instance per context.

To share your states, you’ll typically assign each state to a static instance variable. If your state needs to make use of methods or instance variables in your Context, you’ll also have to give it a reference to the Context in each handler() method.

	

Q:

	

Q: It seems like using the State Pattern always increases the number of classes in our designs. Look how many more classes our GumballMachine had than the original design!

	
A:

	

A:

 You’re right, by encapsulating state behavior into separate state classes, you’ll always end up with more classes in your design. That’s often the price you pay for flexibility. Unless your code is some “one off” implementation you’re going to throw away (yeah, right), consider building it with the additional classes and you’ll probably thank yourself down the road. Note that often what is important is the number of classes that you expose to your clients, and there are ways to hide these extra classes from your clients (say, by declaring them package visible).

Also, consider the alternative: if you have an application that has a lot of state and you decide not to use separate objects, you’ll instead end up with very large, monolithic conditional statements. This makes your code hard to maintain and understand. By using objects, you make states explicit and reduce the effort needed to understand and maintain your code.

	

Q:

	

Q: The State Pattern class diagram shows that State is an abstract class. But didn’t you use an interface in the implementation of the gumball machine’s state?

	
A:

	

A:

 Yes. Given we had no common functionality to put into an abstract class, we went with an interface. In your own implementation, you might want to consider an abstract class. Doing so has the benefit of allowing you to add methods to the abstract class later, without breaking the concrete state implementations.

 We still need to finish the Gumball 1 in 10 game

 Remember, we’re not done yet. We’ve got a game to implement, but now that we’ve got the State Pattern implemented, it should be a breeze. First, we need to add a state to the GumballMachine class:

 [image: image with no caption]

Now let’s implement the WinnerState class; it’s remarkably similar to the SoldState class:

 [image: image with no caption]

 Finishing the game

 We’ve just got one more change to make: we need to implement the random chance game and add a transition to the WinnerState. We’re going to add both to the HasQuarterState since that is where the customer turns the crank:

 [image: image with no caption]

Wow, that was pretty simple to implement! We just added a new state to the GumballMachine and then implemented it. All we had to do from there was to implement our chance game and transition to the correct state. It looks like our new code strategy is paying off...

 Demo for the CEO of Mighty Gumball, Inc.

 The CEO of Mighty Gumball has dropped by for a demo of your new gumball game code. Let’s hope those states are all in order! We’ll keep the demo short and sweet (the short attention span of CEOs is well documented), but hopefully long enough so that we’ll win at least once.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

	
A:

	

A:

 That’s a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The downside is, of course, that now you’ve got TWO states represented in one State class: the state in which you’re a winner, and the state in which you’re not. So you are sacrificing clarity in your State class to reduce code duplication. Another thing to consider is the principle you learned in the previous chapter: One class, One responsibility. By putting the WinnerState responsibility into the SoldState, you’ve just given the SoldState TWO responsibilities. What happens when the promotion ends? Or the stakes of the contest change? So, it’s a tradeoff and comes down to a design decision.

 [image: image with no caption]

 Sanity check...

 Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s not what we’re talking about here. Let’s think through some aspects of the GumballMachine that we might want to shore up before we ship the gold version:

	We’ve got a lot of duplicate code in the Sold and Winning states and we might want to clean those up. How would we do it? We could make State into an abstract class and build in some default behavior for the methods; after all, error messages like, “You already inserted a quarter,” aren’t going to be seen by the customer. So all “error response” behavior could be generic and inherited from the abstract State class.

 Note

Dammit Jim, I’m a gumball machine, not a computer!

	The dispense() method always gets called, even if the crank is turned when there is no quarter. While the machine operates correctly and doesn’t dispense unless it’s in the right state, we could easily fix this by having turnCrank() return a boolean, or by introducing exceptions. Which do you think is a better solution?

	All of the intelligence for the state transitions is in the State classes. What problems might this cause? Would we want to move that logic into the Gumball Machine? What would be the advantages and disadvantages of that?

	Will you be instantiating a lot of GumballMachine objects? If so, you may want to move the state instances into static instance variables and share them. What changes would this require to the GumballMachine and the States?

Fireside Chats

 Tonight’s talk:
A Strategy and State Pattern Reunion.

	
Strategy:

	
State:

	
Hey bro. Did you hear I was in Chapter 1
 ?

	

	
	
Yeah, word is definitely getting around.

	
I was just over giving the Template Method guys a hand — they needed me to help them finish off their chapter. So, anyway, what is my noble brother up to?

	

	
	
Same as always — helping classes to exhibit different behaviors in different states.

	
I don’t know, you always sound like you’ve just copied what I do and you’re using different words to describe it. Think about it: I allow objects to incorporate different behaviors or algorithms through composition and delegation. You’re just copying me.

	

	
	
I admit that what we do is definitely related, but my intent is totally different than yours. And, the way I teach my clients to use composition and delegation is totally different.

	
Oh yeah? How so? I don’t get it.

	

	
	
Well, if you spent a little more time thinking about something other than
yourself

 , you might. Anyway, think about how you work: you have a class you’re instantiating and you usually give it a strategy object that implements some behavior. Like, in Chapter 1
 you were handing out quack behaviors, right? Real ducks got a real quack; rubber ducks got a quack that squeaked.

	
Yeah, that was some
fine

 work... and I’m sure you can see how that’s more powerful than inheriting your behavior, right?

	

	
	
Yes, of course. Now, think about how I work; it’s totally different.

	
Sorry, you’re going to have to explain that.

	

	
	
Okay, when my Context objects get created, I may tell them the state to start in, but then they change their own state over time.

	
Hey, come on, I can change behavior at runtime too; that’s what composition is all about!

	

	
	
Sure you can, but the way I work is built around discrete states; my Context objects change state over time according to some well-defined state transitions. In other words, changing behavior is built in to my scheme — it’s how I work!

	
Well, I admit, I don’t encourage my objects to have a well-defined set of transitions between states. In fact, I typically like to control what strategy my objects are using.

	

	
	
Look, we’ve already said we’re alike in structure, but what we do is quite different in intent. Face it, the world has uses for both of us.

	
Yeah, yeah, keep living your pipe dreams, brother. You act like you’re a big pattern like me, but check it out: I’m in Chapter 1
 ; they stuck you way out in Chapter 10
 . I mean, how many people are actually going to read this far?

	

	
	
Are you kidding? This is a Head First book and Head First readers rock. Of course they’re going to get to Chapter 10
 !

	
That’s my brother, always the dreamer.

	

 We almost forgot!

 [image: image with no caption]

Sharpen your pencil

 We need you to write the refill() method for the Gumball machine. It has one argument — the number of gumballs you’re adding to the machine — and should update the gumball machine count and reset the machine’s state.

 [image: image with no caption]

Who Does What?

 Match each pattern with its description:

	
Pattern

	
Description

	
State

	
Encapsulate interchangeable behaviors and use delegation to decide which behavior to use.

	
Strategy

	
Subclasses decide how to implement steps in an algorithm.

	
Template Method

	
Encapsulate state-based behavior and delegate behavior to the current state.

 Tools for your Design Toolbox

It’s the end of another chapter; you’ve got enough patterns here to breeze through any job interview!

 [image: image with no caption]

Bullet Points

	The State Pattern allows an object to have many different behaviors that are based on its internal state.

	Unlike a procedural state machine, the State Pattern represents state as a full-blown class.

	The Context gets its behavior by delegating to the current state object it is composed with.

	By encapsulating each state into a class, we localize any changes that will need to be made.

	The State and Strategy Patterns have the same class diagram, but they differ in intent.

	Strategy Pattern typically configures Context classes with a behavior or algorithm.

	State Pattern allows a Context to change its behavior as the state of the Context changes.

	State transitions can be controlled by the State classes or by the Context classes.

	Using the State Pattern will typically result in a greater number of classes in your design.

	State classes may be shared among Context instances.

Design Puzzle Solution

 Draw a state diagram for a Gumball Machine that handles the 1-in-10 contest. In this contest, 10% of the time the Sold state leads to two balls being released, not one. Here’s our solution.

 [image: image with no caption]

Sharpen your pencil Solution

 Which of the following describe the state of our implementation? (Choose all that apply.) Here’s our solution.

	

 [image:]

	
A.

	
This code certainly isn’t adhering to the Open Closed Principle.

	

 [image:]

	
B.

	
This code would make a FORTRAN programmer proud.

	

 [image:]

	
C.

	
This design isn’t even very object-oriented.

	

 [image:]

	
D.

	
State transitions aren’t explicit; they are buried in the middle of a bunch of conditional statements.

	

 [image:]

	
E.

	
We haven’t encapsulated anything that varies here.

	

 [image:]

	
F.

	
Further additions are likely to cause bugs in working code.

Sharpen your pencil Solution

We have one remaining class we haven’t implemented: SoldOutState. Why don’t you implement it? To do this, carefully think through how the Gumball Machine should behave in each situation. Here’s our solution.

public class SoldOutState implements State {

GumballMachine gumballMachine;

public SoldOutState(GumballMachine gumballMachine) {

this.gumballMachine = gumballMachine;

}

public void insertQuarter() {

System.out.println("You can't insert a quarter, the machine is sold out");

}

public void ejectQuarter() {

System.out.println("You can't eject, you haven't inserted a quarter yet");

}

public void turnCrank() {

System.out.println("You turned, but there are no gumballs");

}

public void dispense() {

System.out.println("No gumball dispensed");

}

public String toString() {

return "sold out";

}

}

 Note

In the Sold Out state, we really can’t do anything until someone refills the Gumball Machine.

Sharpen your pencil Solution

 To implement the states, we first need to define what the behavior will be when the corresponding action is called. Annotate the diagram below with the behavior of each action in each class; here’s our solution.

 [image: image with no caption]

Behind the Scenes: Self-Guided Tour Solution

 [image: image with no caption]

Who Does What? Solution

 Match each pattern with its description:

 [image: image with no caption]

Sharpen your pencil Solution

To refill the Gumball Machine, we add a refill() method to the State interface, which each State must implement. In every state except the SoldOutState, the method does nothing. In SoldOutState, refill() transitions to NoQuarterState. We also add a refill() method to GumballMachine that adds to the count of gumballs, and then calls the current state’s refill() method.

 [image: image with no caption]

 Chapter 11. The Proxy Pattern: Controlling Object Access

 [image: image with no caption]

Ever play good cop, bad cop?

 You’re the good cop and you provide all your services in a nice and friendly manner, but you don’t want everyone asking you for services, so you have the bad cop control access to you. That’s what proxies do: control and manage access. As you’re going to see, there are lots of ways in which proxies stand in for the objects they proxy. Proxies have been known to haul entire method calls over the Internet for their proxied objects; they’ve also been known to patiently stand in the place for some pretty lazy objects.

 [image: image with no caption]

 Sounds easy enough. If you remember, we’ve already got methods in the gumball machine code for getting the count of gumballs (getCount()), and getting the current state of the machine (getState()).

All we need to do is create a report that can be printed out and sent back to the CEO. Hmmm, we should probably add a location field to each gumball machine as well; that way the CEO can keep the machines straight.

Let’s just jump in and code this. We’ll impress the CEO with a very fast turnaround.

 Coding the Monitor

Let’s start by adding support to the GumballMachine class so that it can handle locations:

 [image: image with no caption]

Now let’s create another class, GumballMonitor, that retrieves the machine’s location, inventory of gumballs, and current machine state and prints them in a nice little report:

 [image: image with no caption]

 Testing the Monitor

We implemented that in no time. The CEO is going to be thrilled and amazed by our development skills.

Now we just need to instantiate a GumballMonitor and give it a machine to monitor:

 [image: image with no caption]

 [image: image with no caption]

Frank

 : A remote what?

Joe

 : Remote proxy. Think about it: we’ve already got the monitor code written, right? We give the GumballMonitor a reference to a machine and it gives us a report. The problem is that the monitor runs in the same JVM as the gumball machine and the CEO wants to sit at his desk and remotely monitor the machines! So what if we left our GumballMonitor class as is, but handed it a proxy to a remote object?

Frank

 : I’m not sure I get it.

Jim

 : Me neither.

Joe

 : Let’s start at the beginning... a proxy is a stand in for a real object. In this case, the proxy acts just like it is a Gumball Machine object, but behind the scenes it is communicating over the network to talk to the real, remote GumballMachine.

Jim

 : So you’re saying we keep our code as it is, and we give the monitor a reference to a proxy version of the GumballMachine...

Frank

 : And this proxy pretends it’s the real object, but it’s really just communicating over the net to the real object.

Joe

 : Yeah, that’s pretty much the story.

Frank

 : It sounds like something that is easier said than done.

Joe

 : Perhaps, but I don’t think it’ll be that bad. We have to make sure that the gumball machine can act as a service and accept requests over the network; we also need to give our monitor a way to get a reference to a proxy object, but we’ve got some great tools already built into Java to help us. Let’s talk a little more about remote proxies first...

 The role of the ‘remote proxy’

 A remote proxy acts as a
local representative to a remote object

 . What’s a “remote object”? It’s an object that lives in the heap of a different Java Virtual Machine (or more generally, a remote object that is running in a different address space). What’s a “local representative”? It’s an object that you can call local methods on and have them forwarded on to the remote object.

 [image: image with no caption]

Your client object acts like it’s making remote method calls. But what it’s really doing is calling methods on a heap-local ‘proxy’ object that handles all the low-level details of network communication.

 [image: image with no caption]

 Brain Power

Before going further, think about how you’d design a system to enable remote method invocation. How would you make it easy on the developer so that she has to write as little code as possible? How would you make the remote invocation look seamless?

 Brain Power

Should making remote calls be totally transparent? Is that a good idea? What might be a problem with that approach?

 Adding a remote proxy to the Gumball Machine monitoring code

 On paper this looks good, but how do we create a proxy that knows how to invoke a method on an object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right? In other words, you can’t say:

Duck d = <object in another heap>

Whatever the variable

d

 is referencing must be in the same heap space as the code running the statement. So how do we approach this? Well, that’s where Java’s Remote Method Invocation comes in... RMI gives us a way to find objects in a remote JVM and allows us to invoke their methods.

You may have encountered RMI in Head First Java; if not, take a slight detour and get up to speed on RMI before adding the proxy support to the Gumball Machine code.

So, here’s what we’re going to do:

	

① First, we’re going to take the RMI Detour and check RMI out. Even if you are familiar with RMI, you might want to follow along and check out the scenery.

 [image: image with no caption]

	

② Then we’re going to take our GumballMachine and make it a remote service that provides a set of methods calls that can be invoked remotely.

	

③ Then, we going to create a proxy that can talk to a remote GumballMachine, again using RMI, and put the monitoring system back together so that the CEO can monitor any number of remote machines.

 Remote methods 101

 [image: image with no caption]

 Let’s say we want to design a system that allows us to call a local object that forwards each request to a remote object. How would we design it? We’d need a couple of helper objects that actually do the communicating for us. The helpers make it possible for the client to act as though it’s calling a method on a local object (which in fact, it is). The client calls a method on the client helper, as if the client helper were the actual service. The client helper then takes care of forwarding that request for us.

In other words, the client object thinks it’s calling a method on the remote service, because the client helper is pretending to be the service object. Pretending to be the thing with the method the client wants to call.

But the client helper isn’t really the remote service. Although the client helper acts like it (because it has the same method that the service is advertising), the client helper doesn’t have any of the actual method logic the client is expecting. Instead, the client helper contacts the server, transfers information about the method call (e.g., name of the method, arguments, etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client helper (through a Socket connection), unpacks the information about the call, and then invokes the real method on the real service object. So, to the service object, the call is local. It’s coming from the service helper, not a remote client.

The service helper gets the return value from the service, packs it up, and ships it back (over a Socket’s output stream) to the client helper. The client helper unpacks the information and returns the value to the client object.

 Note

This should look familiar...

 [image: image with no caption]

How the method call happens

	① Client object calls doBigThing() on the client helper object.

 [image: image with no caption]

	② Client helper packages up information about the call (arguments, method name, etc.) and ships it over the network to the service helper.

 [image: image with no caption]

	③ Service helper unpacks the information from the client helper, finds out which method to call (and on which object) and invokes the real
 method on the real
 service object.

 [image: image with no caption]

	④ The method is invoked on the service object, which returns some result to the service helper.

 [image: image with no caption]

 [image: image with no caption]

	⑤ Service helper packages up information returned from the call and ships it back over the network to the client helper.

 [image: image with no caption]

	⑥ Client helper unpackages the returned values and returns them to the client object. To the client object, this was all transparent.

 [image: image with no caption]

 Java RMI, the Big Picture

 Okay, you’ve got the gist of how remote methods work; now you just need to understand how to use RMI to enable remote method invocation.

What RMI does for you is build the client and service helper objects, right down to creating a client helper object with the same methods as the remote service. The nice thing about RMI is that you don’t have to write any of the networking or I/O code yourself. With your client, you call remote methods (i.e., the ones the Real Service has) just like normal method calls on objects running in the client’s own local JVM.

RMI also provides all the runtime infrastructure to make it all work, including a lookup service that the client can use to find and access the remote objects.

There is one difference between RMI calls and local (normal) method calls. Remember that even though to the client it looks like the method call is local, the client helper sends the method call across the network. So there is networking and I/O. And what do we know about networking and I/O methods?

They’re risky! They can fail! And so, they throw exceptions all over the place. As a result, the client does have to acknowledge the risk. We’ll see how in a few pages.

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the service helper is a ‘skeleton’.

 [image: image with no caption]

Now let’s go through all the steps needed to make an object into a service that can accept remote calls and also the steps needed to allow a client to make remote calls.

You might want to make sure your seat belt is fastened; there are a lot of steps and a few bumps and curves — but nothing to be too worried about.

Making the Remote service

 [image: image with no caption]

This is an
overview

 of the five steps for making the remote service. In other words, the steps needed to take an ordinary object and supercharge it so it can be called by a remote client. We’ll be doing this later to our GumballMachine. For now, let’s get the steps down and then we’ll explain each one in detail.

Step one:

	Make a
Remote Interface

	The remote interface defines the methods that a client can call remotely. It’s what the client will use as the class type for your service. Both the Stub and actual service will implement this!

 [image: image with no caption]

Step two:

	Make a
Remote Implementation

	This is the class that does the Real Work. It has the real implementation of the remote methods defined in the remote interface. It’s the object that the client wants to call methods on (e.g., our GumballMachine!).

 [image: image with no caption]

Step three:

	Start the
RMI registry

 (rmiregistry)

	The
rmiregistry

 is like the white pages of a phone book. It’s where the client goes to get the proxy (the client stub/helper object).

 [image: image with no caption]

Step four:

	Start the
remote service

	You have to get the service object up and running. Your service implementation class instantiates an instance of the service and registers it with the RMI registry. Registering it makes the service available for clients.

 [image: image with no caption]

Step one: make a Remote interface

	

① Extend java.rmi.Remote

Remote is a ‘marker’ interface, which means it has no methods. It has special meaning for RMI, though, so you must follow this rule. Notice that we say ‘extends’ here. One interface is allowed to
extend

 another interface.

 [image: image with no caption]

	② Declare that all methods
throw a RemoteException

The remote interface is the one the client uses as the type for the service. In other words, the client invokes methods on something that implements the remote interface. That something is the stub, of course, and since the stub is doing networking and I/O, all kinds of Bad Things can happen. The client has to acknowledge the risks by handling or declaring the remote exceptions. If the methods in an interface declare exceptions, any code calling methods on a reference of that type (the interface type) must handle or declare the exceptions.

 [image: image with no caption]

	

③ Be sure arguments and return values are primitives or Serializable

Arguments and return values of a remote method must be either primitive or Serializable. Think about it. Any argument to a remote method has to be packaged up and shipped across the network, and that’s done through Serialization. Same thing with return values. If you use primitives, Strings, and the majority of types in the API (including arrays and collections), you’ll be fine. If you are passing around your own types, just be sure that you make your classes implement Serializable.

 Note

Check out Head First Java if you need to refresh your memory on Serializable.

 [image: image with no caption]

Step two: make a Remote implementation

 [image: image with no caption]

	

① Implement the Remote interface

Your service has to implement the remote interface — the one with the methods your client is going to call.

 [image: image with no caption]

	

② Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality related to ‘being remote’. The simplest way is to extend UnicastRemoteObject (from the java.rmi.server package) and let that class (your superclass) do the work for you.

 [image: image with no caption]

	

③ Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem — its constructor throws a RemoteException. The only way to deal with this is to declare a constructor for your remote implementation, just so that you have a place to declare the RemoteException. Remember, when a class is instantiated, its superclass constructor is always called. If your superclass constructor throws an exception, you have no choice but to declare that your constructor also throws an exception.

 [image: image with no caption]

	

④ Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to remote clients. You do this by instantiating it and putting it into the RMI registry (which must be running or this line of code fails). When you register the implementation object, the RMI system actually puts the
stub

 in the registry, since that’s what the client really needs. Register your service using the static rebind() method of the java.rmi.Naming class.

 [image: image with no caption]

Step three: run rmiregistry

	

① Bring up a terminal and start the rmiregistry.

Be sure you start it from a directory that has access to your classes. The simplest way is to start it from your classes
 directory.

 [image: image with no caption]

Step four: start the service

	

① Bring up another terminal and start your service

This might be from a main() method in your remote implementation class, or from a separate launcher class. In this simple example, we put the starter code in the implementation class, in a main method that instantiates the object and registers it with RMI registry.

 [image: image with no caption]

 Watch it!

Before Java 5, we had to generate static stubs and skeletons using rmic. Now, we don’t have to do this anymore and in fact, we

 shouldn’t

do it anymore, because

 static

stubs and skeletons are deprecated.

Instead, stubs and skeletons are generated dynamically. This happens automatically when we subclass the UnicastRemoteObject (like we’re doing for the MyRemoteImpl class).

There Are No Dumb Questions

	

Q:

	

Q: Why are you showing stubs and skeletons in the diagrams for the RMI code? I thought we got rid of those way back.

	
A:

	

A:

 You’re right; for the skeleton, the RMI runtime can dispatch the client calls directly to the remote service using reflection, and stubs are generated dynamically using Dynamic Proxy (which you’ll learn more about a bit later in the chapter). The remote object’s stub is a java.lang.reflect.Proxy instance (with an invocation handler) that is automatically generated to handle all the details of getting the local method calls by the client to the remote object. But we like to show both the stub and skeleton, because conceptually it helps you to understand that there is something under the covers that’s making that communication between the client stub and the remote service happen.

Complete code for the server side

 [image: image with no caption]

The Remote interface:

 [image: image with no caption]

The Remote service (the implementation):

 [image: image with no caption]

 How does the client get the stub ob
 ject
 ?

 The client has to get the stub object (our proxy), since that’s the thing the client will call methods on. And that’s where the RMI registry comes in. The client does a ‘lookup’, like going to the white pages of a phone book, and essentially says, “Here’s a name, and I’d like the stub that goes with that name.”

Let’s take a look at the code we need to look-up and retrieve a stub object.

Code Up Close

 Note

Here’s how it works.

 [image: image with no caption]

 [image: image with no caption]

 [image: image with no caption]

How it works...

	

① Client does a lookup on the RMI registry

Naming.lookup("rmi://127.0.0.1/RemoteHello");

	

② RMI registry returns the stub object

(as the return value of the lookup method) and RMI deserializes the stub automatically.

	

③ Client invokes a method on the stub, as if the stub IS the real service

Complete client code

 [image: image with no caption]

 Watch it!

The things programmers do wrong with RMI are:

	

Forget to start rmiregistry before starting remote service (when the service is registered using Naming.rebind(), the rmiregistry must be running!)

	

Forget to make arguments and return types serializable (you won’t know until runtime; this is not something the compiler will detect.)

 Back to our GumballMachine remote proxy

Okay, now that you have the RMI basics down, you’ve got the tools you need to implement the gumball machine remote proxy. Let’s take a look at how the GumballMachine fits into this framework:

 [image: image with no caption]

 [image: image with no caption]

 Getting the GumballMachine ready to be a remote service

 The first step in converting our code to use the remote proxy is to enable the GumballMachine to service remote requests from clients. In other words, we’re going to make it into a service. To do that, we need to:

	Create a remote interface for the GumballMachine. This will provide a set of methods that can be called remotely.

	Make sure all the return types in the interface are serializable.

	Implement the interface in a concrete class.

We’ll start with the remote interface:

 [image: image with no caption]

We have one return type that isn’t Serializable: the State class. Let’s fix it up...

 [image: image with no caption]

 Actually, we’re not done with Serializable yet; we have one problem with State. As you may remember, each State object maintains a reference to a gumball machine so that it can call the gumball machine’s methods and change its state. We don’t want the entire gumball machine serialized and transferred with the State object. There is an easy way to fix this:

 [image: image with no caption]

We’ve already implemented our GumballMachine, but we need to make sure it can act as a service and handle requests coming from over the network. To do that, we have to make sure the GumballMachine is doing everything it needs to implement the GumballMachineRemote interface.

As you’ve already seen in the RMI detour, this is quite simple; all we need to do is add a couple of things...

 [image: image with no caption]

 Registering with the RMI registry...

 That completes the gumball machine service. Now we just need to fire it up so it can receive requests. First, we need to make sure we register it with the RMI registry so that clients can locate it.

We’re going to add a little code to the test drive that will take care of this for us:

 [image: image with no caption]

Let’s go ahead and get this running...

 [image: image with no caption]

 Now for the GumballMonitor client...

 Remember the GumballMonitor? We wanted to reuse it without having to rewrite it to work over a network. Well, we’re pretty much going to do that, but we do need to make a few changes.

 [image: image with no caption]

 [image: image with no caption]

 Writing the Monitor test drive

 Now we’ve got all the pieces we need. We just need to write some code so the CEO can monitor a bunch of gumball machines:

 [image: image with no caption]

Code Up Close

 [image: image with no caption]

 Another demo for the CEO of Mighty Gumball...

Okay, it’s time to put all this work together and give another demo. First let’s make sure a few gumball machines are running the new code:

 [image: image with no caption]

 And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

 [image: image with no caption]

By invoking methods on the proxy, we make a remote call across the wire, and get back a String, an integer, and a State object. Because we are using a proxy, the GumballMonitor doesn’t know, or care, that calls are remote (other than having to worry about remote exceptions).

 [image: image with no caption]

Behind the Scenes

	

 ① The CEO runs the monitor, which first grabs the proxies to the remote gumball machines and then calls getState() on each one (along with getCount() and getLocation()).

 [image: image with no caption]

	② getState() is called on the proxy, which forwards the call to the remote service. The skeleton receives the request and then forwards it to the gumball machine.

 [image: image with no caption]

	③ GumballMachine returns the state to the skeleton, which serializes it and transfers it back over the wire to the proxy. The proxy deserializes it and returns it as an object to the monitor.

 [image: image with no caption]

 Note

We also have a small bit of code to register and locate stubs using the RMI registry. But no matter what, if we were writing something to work over the Internet, we’d need some kind of locator service.

 The Proxy Pattern defined

 We’ve already put a lot of pages behind us in this chapter; as you can see, explaining the Remote Proxy is quite involved. Despite that, you’ll see that the definition and class diagram for the Proxy Pattern is actually fairly straightforward. Note that Remote Proxy is one implementation of the general Proxy Pattern; there are actually quite a few variations of the pattern, and we’ll talk about them later. For now, let’s get the details of the general pattern down.

Here’s the Proxy Pattern definition:

Use the Proxy Pattern to create a representative object that controls access to another object, which may be remote, expensive to create, or in need of securing.

 Note

The Proxy Pattern

 provides a surrogate or placeholder for another object to control access to it.

Well, we’ve seen how the Proxy Pattern provides a surrogate or placeholder for another object. We’ve also described the proxy as a “representative” for another object.

But what about a proxy controlling access? That sounds a little strange. No worries. In the case of the gumball machine, just think of the proxy controlling access to the remote object. The proxy needed to control access because our client, the monitor, didn’t know how to talk to a remote object. So in some sense the remote proxy controlled access so that it could handle the network details for us. As we just discussed, there are many variations of the Proxy Pattern, and the variations typically revolve around the way the proxy “controls access.” We’re going to talk more about this later, but for now here are a few ways proxies control access:

	As we know, a remote proxy controls access to a remote object.

	A virtual proxy controls access to a resource that is expensive to create.

	A protection proxy controls access to a resource based on access rights.

Now that you’ve got the gist of the general pattern, check out the class diagram...

 [image: image with no caption]

Let’s step through the diagram...

First we have a Subject, which provides an interface for the RealSubject and the Proxy. By implementing the same interface, the Proxy can be substituted for the RealSubject anywhere it occurs.

The RealSubject is the object that does the real work. It’s the object that the Proxy represents and controls access to.

The Proxy holds a reference to the RealSubject. In some cases, the Proxy may be responsible for creating and destroying the RealSubject. Clients interact with the RealSubject through the Proxy. Because the Proxy and RealSubject implement the same interface (Subject), the Proxy can be substituted anywhere the subject can be used. The Proxy also controls access to the RealSubject; this control may be needed if the Subject is running on a remote machine, if the Subject is expensive to create in some way or if access to the subject needs to be protected in some way.

Now that you understand the general pattern, let’s look at some other ways of using proxy beyond the Remote Proxy...

 Get ready for Virtual Proxy

 Okay, so far you’ve seen the definition of the Proxy Pattern and you’ve taken a look at one specific example: the
Remote Proxy

 . Now we’re going to take a look at a different type of proxy, the
Virtual Proxy

 . As you’ll discover, the Proxy Pattern can manifest itself in many forms, yet all the forms follow roughly the general proxy design. Why so many forms? Because the Proxy Pattern can be applied to a lot of different use cases. Let’s check out the Virtual Proxy and compare it to Remote Proxy:

 Remote Proxy

With Remote Proxy, the proxy acts as a local representative for an object that lives in a different JVM. A method call on the proxy results in the call being transferred over the wire, invoked remotely, and the result being returned back to the proxy and then to the Client.

 [image: image with no caption]

 Virtual Proxy

Virtual Proxy acts as a representative for an object that may be expensive to create. The Virtual Proxy often defers the creation of the object until it is needed; the Virtual Proxy also acts as a surrogate for the object before and while it is being created. After that, the proxy delegates requests directly to the RealSubject.

 [image: image with no caption]

 Displaying CD covers

 Let’s say you want to write an application that displays your favorite compact disc covers. You might create a menu of the CD titles and then retrieve the images from an online service like Amazon.com. If you’re using Swing, you might create an Icon and ask it to load the image from the network. The only problem is, depending on the network load and the bandwidth of your connection, retrieving a CD cover might take a little time, so your application should display something while you are waiting for the image to load. We also don’t want to hang up the entire application while it’s waiting on the image. Once the image is loaded, the message should go away and you should see the image.

An easy way to achieve this is through a virtual proxy. The virtual proxy can stand in place of the icon, manage the background loading, and before the image is fully retrieved from the network, display “Loading CD cover, please wait...”. Once the image is loaded, the proxy delegates the display to the Icon.

 [image: image with no caption]

 Designing the CD cover Virtual Proxy

 Before writing the code for the CD Cover Viewer, let’s look at the class diagram. You’ll see this looks just like our Remote Proxy class diagram, but here the proxy is used to hide an object that is expensive to create (because we need to retrieve the data for the Icon over the network) as opposed to an object that actually lives somewhere else on the network.

 [image: image with no caption]

 How ImageProxy is going to work

	

① ImageProxy first creates an ImageIcon and starts loading it from a network URL.

	

② While the bytes of the image are being retrieved, ImageProxy displays “Loading CD cover, please wait...”.

	

③ When the image is fully loaded, ImageProxy delegates all method calls to the image icon, including paintIcon(), getWidth() and getHeight().

	

④ If the user requests a new image, we’ll create a new proxy and start the process over.

 Writing the Image Proxy

 [image: image with no caption]

Code Up Close

 [image: image with no caption]

Code Way Up Close

 [image: image with no caption]

 Note

 So, the next time the display is painted after the ImageIcon is instantiated, the paintIcon method will paint the image, not the loading message.

Design Puzzle

 The ImageProxy class appears to have two states that are controlled by conditional statements. Can you think of another pattern that might clean up this code? How would you redesign ImageProxy?

 [image: image with no caption]

 Testing the CD Cover Viewer

Ready Bake Code

 Okay, it’s time to test out this fancy new virtual proxy. Behind the scenes we’ve been baking up a new ImageProxyTestDrive that sets up the window, creates a frame, installs the menus and creates our proxy. We don’t go through all that code in gory detail here, but you can always grab the source code and have a look, or check it out at the end of the chapter where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:

 [image: image with no caption]

Now let’s run the test drive:

 [image: image with no caption]

 Things to try...

	① Use the menu to load different CD covers; watch the proxy display “loading” until the image has arrived.

	② Resize the window as the “loading” message is displayed. Notice that the proxy is handling the loading without hanging up the Swing window.

	③ Add your own favorite CDs to the ImageProxyTestDrive.

 What did we do?

Behind the Scenes

	①

 We created an ImageProxy for the display. The paintIcon() method is called and ImageProxy fires off a thread to retrieve the image and create the ImageIcon.

 [image: image with no caption]

	② At some point the image is returned and the ImageIcon fully instantiated.

	③ After the ImageIcon is created, the next time paintIcon() is called, the proxy delegates to the ImageIcon.

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: The Remote Proxy and Virtual Proxy seem so different to me; are they really ONE pattern?

	
A:

	

A:

 You’ll find a lot of variants of the Proxy Pattern in the real world; what they all have in common is that they intercept a method invocation that the client is making on the subject. This level of indirection allows us to do many things, including dispatching requests to a remote subject, providing a representative for an expensive object as it is created, or, as you’ll see, providing some level of protection that can determine which clients should be calling which methods. That’s just the beginning; the general Proxy Pattern can be applied in many different ways, and we’ll cover some of the other ways at the end of the chapter.

	

Q:

	

Q: ImageProxy seems just like a Decorator to me. I mean, we are basically wrapping one object with another and then delegating the calls to the ImageIcon. What am I missing?

	
A:

	

A:

 Sometimes Proxy and Decorator look very similar, but their purposes are different: a decorator adds behavior to a class, while a proxy controls access to it. You might ask, “Isn’t the loading message adding behavior?” In some ways it is; however, more importantly, the ImageProxy is controlling access to an ImageIcon. How does it control access? Well, think about it this way: the proxy is decoupling the client from the ImageIcon. If they were coupled the client would have to wait until each image is retrieved before it could paint its entire interface. The proxy controls access to the ImageIcon so that before it is fully created, the proxy provides another on screen representation. Once the ImageIcon is created the proxy allows access.

	

Q:

	

Q: How do I make clients use the Proxy rather than the Real Subject?

	
A:

	

A:

 Good question. One common technique is to provide a factory that instantiates and returns the subject. Because this happens in a factory method we can then wrap the subject with a proxy before returning it. The client never knows or cares that it’s using a proxy instead of the real thing.

	

Q:

	

Q: I noticed in the ImageProxy example, you always create a new ImageIcon to get the image, even if the image has already been retrieved. Could you implement something similar to the ImageProxy that caches past retrievals?

	
A:

	

A:

 You are talking about a specialized form of a Virtual Proxy called a Caching Proxy. A caching proxy maintains a cache of previously created objects and when a request is made it returns cached object, if possible.

We’re going to look at this and at several other variants of the Proxy Pattern at the end of the chapter.

	

Q:

	

Q: I see how Decorator and Proxy relate, but what about Adapter? An adapter seems very similar as well.

	
A:

	

A:

 Both Proxy and Adapter sit in front of other objects and forward requests to them. Remember that Adapter changes the interface of the objects it adapts, while the Proxy implements the same interface.

There is one additional similarity that relates to the Protection Proxy. A Protection Proxy may allow or disallow a client access to particular methods in an object based on the role of the client. In this way a Protection Proxy may only provide a partial interface to a client, which is quite similar to some Adapters. We are going to take a look at Protection Proxy in a few pages.

Fireside Chats

Tonight’s talk:
Proxy and Decorator get intentional.

	
Proxy:

	
Decorator:

	
Hello, Decorator. I presume you’re here because people sometimes get us confused?

	

	
	
Well, I think the reason people get us confused is that you go around pretending to be an entirely different pattern, when in fact, you’re just a Decorator in disguise. I really don’t think you should be copying all my ideas.

	

Me

 copying
your

 ideas? Please. I control access to objects. You just decorate them. My job is so much more important than yours it’s just not even funny.

	

	
	
“Just” decorate? You think decorating is some frivolous, unimportant pattern? Let me tell you buddy, I add
behavior

 . That’s the most important thing about objects — what they do!

	
Fine, so maybe you’re not entirely frivolous... but I still don’t get why you think I’m copying all your ideas. I’m all about representing my subjects, not decorating them.

	

	
	
You can call it “representation” but if it looks like a duck and walks like a duck... I mean, just look at your Virtual Proxy; it’s just another way of adding behavior to do something while some big expensive object is loading, and your Remote Proxy is a way of talking to remote objects so your clients don’t have to bother with that themselves. It’s all about behavior, just like I said.

	
I don’t think you get it, Decorator. I stand in for my Subjects; I don’t just add behavior. Clients use me as a surrogate of a Real Subject, because I can protect them from unwanted access, or keep their GUIs from hanging up while they’re waiting for big objects to load, or hide the fact that their Subjects are running on remote machines. I’d say that’s a very different intent from yours!

	

	
	
Call it what you want. I implement the same interface as the objects I wrap; so do you.

	
Okay, let’s review that statement. You wrap an object. While sometimes we informally say a proxy wraps its Subject, that’s not really an accurate term.

	

	
	
Oh yeah? Why not?

	
Think about a remote proxy... what object am I wrapping? The object I’m representing and controlling access to lives on another machine! Let’s see you do that.

	

	
	
Okay, but we all know remote proxies are kinda weird. Got a second example? I doubt it.

	
Sure, okay, take a virtual proxy... think about the CD viewer example. When the client first uses me as a proxy the subject doesn’t even exist! So what am I wrapping there?

	

	
	
Uh huh, and the next thing you’ll be saying is that you actually get to create objects.

	
I never knew decorators were so dumb! Of course I sometimes create objects. How do you think a virtual proxy gets its subject?! Okay, you just pointed out a big difference between us: we both know decorators only add window dressing; they never get to instantiate anything.

	

	
	
Oh yeah? Instantiate this!

	
Hey, after this conversation I’m convinced you’re just a dumb proxy!

	

	
	
Dumb proxy? I’d like to see you recursively wrap an object with 10 decorators and keep your head straight at the same time.

	
Very seldom will you ever see a proxy get into wrapping a subject multiple times; in fact, if you’re wrapping something 10 times, you better go back reexamine your design.

	

	
	
Just like a proxy, acting all real when in fact you just stand in for the objects doing the real work. You know, I actually feel sorry for you.

 Using the Java API’s Proxy to create a protection proxy

 Java’s got its own proxy support right in the java.lang.reflect package. With this package, Java lets you create a proxy class
on the fly

 that implements one or more interfaces and forwards method invocations to a class that you specify. Because the actual proxy class is created at runtime, we refer to this Java technology as a
dynamic proxy

 .

 [image: image with no caption]

We’re going to use Java’s dynamic proxy to create our next proxy implementation (a protection proxy), but before we do that, let’s quickly look at a class diagram that shows how dynamic proxies are put together. Like most things in the real world, it differs slightly from the classic definition of the pattern:

 [image: image with no caption]

Because Java creates the Proxy class
for you

 , you need a way to tell the Proxy class what to do. You can’t put that code into the Proxy class like we did before, because you’re not implementing one directly. So, if you can’t put this code in the Proxy class, where do you put it? In an InvocationHandler. The job of the InvocationHandler is to respond to any method calls on the proxy. Think of the InvocationHandler as the object the Proxy asks to do all the real work after it’s received the method calls.

Okay, let’s step through how to use the dynamic proxy...

 Matchmaking in Objectville

 [image: image with no caption]

 Every town needs a matchmaking service, right? You’ve risen to the task and implemented a dating service for Objectville. You’ve also tried to be innovative by including a “Hot or Not” feature in the service where participants can rate each other — you figure this keeps your customers engaged and looking through possible matches; it also makes things a lot more fun.

Your service revolves around a PersonBean that allows you to set and get information about a person:

 [image: image with no caption]

Now let’s check out the implementation...

 The PersonBean implementation

 [image: image with no caption]

 [image: image with no caption]

 While we suspect other factors may be keeping Elroy from getting dates, he is right: you shouldn’t be able to vote for yourself or to change another customer’s data. The way our PersonBean is defined, any client can call any of the methods.

This is a perfect example of where we might be able to use a Protection Proxy. What’s a Protection Proxy? It’s a proxy that controls access to an object based on access rights. For instance, if we had an employee object, a Protection Proxy might allow the employee to call certain methods on the object, a manager to call additional methods (like setSalary()), and a human resources employee to call any method on the object.

In our dating service we want to make sure that a customer can set his own information while preventing others from altering it. We also want to allow just the opposite with the HotOrNot ratings: we want the other customers to be able to set the rating, but not that particular customer. We also have a number of getter methods in the PersonBean, and because none of these return private information, any customer should be able to call them.

 Five-minute drama: protecting subjects

 [image: image with no caption]

 The Internet bubble seems a distant memory; those were the days when all you needed to do to find a better, higher-paying job was to walk across the street. Even agents for software developers were in vogue...

 [image: image with no caption]

 Big Picture: creating a Dynamic Proxy for the PersonBean

 We have a couple of problems to fix: customers shouldn’t be changing their own HotOrNot rating and customers shouldn’t be able to change other customers’ personal information. To fix these problems we’re going to create two proxies: one for accessing your own PersonBean object and one for accessing another customer’s PersonBean object. That way, the proxies can control what requests can be made in each circumstance.

To create these proxies we’re going to use the Java API’s dynamic proxy that you saw a few pages back. Java will create two proxies for us; all we need to do is supply the handlers that know what to do when a method is invoked on the proxy.

 [image: image with no caption]

Step one:

	Create two
InvocationHandlers.

	InvocationHandlers implement the behavior of the proxy. As you’ll see, Java will take care of creating the actual proxy class and object; we just need to supply a handler that knows what to do when a method is called on it.

Step two:

	Write the code that creates the dynamic proxies.

	We need to write a little bit of code to generate the proxy class and instantiate it. We’ll step through this code in just a bit.

Step three:

	Wrap any PersonBean object with the appropriate proxy.

	When we need to use a PersonBean object, either it’s the object of the customer himself (in that case, will call him the “owner”), or it’s another user of the service that the customer is checking out (in that case we’ll call him “non-owner”).

	In either case, we create the appropriate proxy for the PersonBean.

 [image: image with no caption]

 Step one: creating Invocation Handlers

 We know we need to write two invocation handlers, one for the owner and one for the non-owner. But what are invocation handlers? Here’s the way to think about them: when a method call is made on the proxy, the proxy forwards that call to your invocation handler, but not by calling the invocation handler’s corresponding method. So, what does it call? Have a look at the InvocationHandler interface:

 [image: image with no caption]

There’s only one method, invoke(), and no matter what methods get called on the proxy, the invoke() method is what gets called on the handler. Let’s see how this works:

 [image: image with no caption]

 Creating Invocation Handlers continued...

 When invoke() is called by the proxy, how do you know what to do with the call? Typically, you’ll examine the method that was called on the proxy and make decisions based on the method’s name and possibly its arguments. Let’s implement the OwnerInvocationHandler to see how this works:

 [image: image with no caption]

Exercise

 The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except that it
allows

 calls to setHotOrNotRating() and it
disallows

 calls to any other set method. Go ahead and write this handler yourself:

 Step two: creating the Proxy class and instantiating the Proxy object

 Now, all we have left is to dynamically create the Proxy class and instantiate the proxy object. Let’s start by writing a method that takes a PersonBean and knows how to create an owner proxy for it. That is, we’re going to create the kind of proxy that forwards its method calls to the OwnerInvocationHandler. Here’s the code:

 [image: image with no caption]

Sharpen your pencil

While it is a little complicated, there isn’t much to creating a dynamic proxy. Why don’t you write getNonOwnerProxy(), which returns a proxy for the NonOwnerInvocationHandler:

Take it further: can you write one method getProxy() that takes a handler and a person and returns a proxy that uses that handler?

 Testing the matchmaking service

 Let’s give the matchmaking service a test run and see how it controls access to the setter methods based on the proxy that is used.

 [image: image with no caption]

 Running the code...

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: So what exactly is the “dynamic” aspect of dynamic proxies? Is it that I’m instantiating the proxy and setting it to a handler at runtime?

	
A:

	

A:

 No, the proxy is dynamic because its class is created at runtime. Think about it: before your code runs there is no proxy class; it is created on demand from the set of interfaces you pass it.

	

Q:

	

Q: My InvocationHandler seems like a very strange proxy, it doesn’t implement any of the methods of the class it’s proxying.

	
A:

	

A:

 That is because the InvocationHandler isn’t a proxy — it is a class that the proxy dispatches to for handling method calls. The proxy itself is created dynamically at runtime by the static Proxy.newProxyInstance() method.

	

Q:

	

Q: Is there any way to tell if a class is a Proxy class?

	
A:

	

A:

 Yes. The Proxy class has a static method called isProxyClass(). Calling this method with a class will return true if the class is a dynamic proxy class. Other than that, the proxy class will act like any other class that implements a particular set of interfaces.

	

Q:

	

Q: Are there any restrictions on the types of interfaces I can pass into newProxyInstance()?

	
A:

	

A:

 Yes, there are a few. First, it is worth pointing out that we always pass newProxyInstance() an array of interfaces — only interfaces are allowed, no classes. The major restrictions are that all non-public interfaces need to be from the same package. You also can’t have interfaces with clashing method names (that is, two interfaces with a method with the same signature). There are a few other minor nuances as well, so at some point you should take a look at the fine print on dynamic proxies in the javadoc.

Who Does What?

 Match each pattern with its description:

	
Pattern

	
Description

	
Decorator

	
Wraps another object and provides a different interface to it.

	
Facade

	
Wraps another object and provides additional behavior for it.

	
Proxy

	
Wraps another object to control access to it.

	
Adapter

	
Wraps a bunch of objects to simplify their interface.

 The Proxy Zoo

 Welcome to the Objectville Zoo!

 [image: image with no caption]

You now know about the remote, virtual and protection proxies, but out in the wild you’re going to see lots of mutations of this pattern. Over here in the Proxy corner of the zoo we’ve got a nice collection of wild proxy patterns that we’ve captured for your study.

Our job isn’t done; we are sure you’re going to see more variations of this pattern in the real world, so give us a hand in cataloging more proxies. Let’s take a look at the existing collection:

 [image: image with no caption]

 [image: image with no caption]

 Note

 Field Notes: please add your observations of other proxies in the wild here:

__

__

__

__

__

Design Patterns Crossword

It’s been a LONG chapter. Why not unwind by doing a crossword puzzle before it ends?

 [image: image with no caption]

	
Across

	
Down

	
1. Our first mistake: the gumball machine reporting was not _________.

5. Commonly used proxy for web services (two words).

7. Objectville matchmaking gimmick (three words).

11. A _______ proxy class is created at runtime.

13. Java’s dynamic proxy forwards all requests to this (two words).

16. In RMI, the object that takes the network requests on the service side.

17. The CD viewer used this kind of proxy.

	
2. Remote _________ was used to implement the gumball machine monitor (two words).

3. Similar to proxy, but with a different purpose.

4. Place to learn about the many proxy variants.

6. Proxy that protects method calls from unauthorized callers.

8. This utility acts as a lookup service for RMI.

9. Why Elroy couldn’t get dates.

10. Software developer agent was being this kind of proxy.

12. In RMI, the proxy is called this.

14. Proxy that stands in for expensive objects.

15. We took one of these to learn RMI.

 Tools for your Design Toolbox

Your design toolbox is almost full; you’re prepared for almost any design problem that comes your way.

 [image: image with no caption]

Bullet Points

	The Proxy Pattern provides a representative for another object in order to control the client’s access to it. There are a number of ways it can manage that access.

	A Remote Proxy manages interaction between a client and a remote object.

	A Virtual Proxy controls access to an object that is expensive to instantiate.

	A Protection Proxy controls access to the methods of an object based on the caller.

	Many other variants of the Proxy Pattern exist including caching proxies, synchronization proxies, firewall proxies, copy-on-write proxies, and so on.

	Proxy is structurally similar to Decorator, but the two differ in their purpose.

	The Decorator Pattern adds behavior to an object, while a Proxy controls access.

	Java’s built-in support for Proxy can build a dynamic proxy class on demand and dispatch all calls on it to a handler of your choosing.

	Like any wrapper, proxies will increase the number of classes and objects in your designs.

Exercise Solution

 The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except that it
allows

 calls to setHotOrNotRating() and it
disallows

 calls to any other set method. Here’s our solution:

import java.lang.reflect.*;

public class NonOwnerInvocationHandler implements InvocationHandler {

PersonBean person;

public NonOwnerInvocationHandler(PersonBean person) {

this.person = person;

}

public Object invoke(Object proxy, Method method, Object[] args)

throws IllegalAccessException {

try {

if (method.getName().startsWith("get")) {

return method.invoke(person, args);

} else if (method.getName().equals("setHotOrNotRating")) {

return method.invoke(person, args);

} else if (method.getName().startsWith("set")) {

throw new IllegalAccessException();

}

} catch (InvocationTargetException e) {

e.printStackTrace();

}

return null;

}

}

Design Puzzle Solution

The ImageProxy class appears to have two states that are controlled by conditional statements. Can you think of another pattern that might clean up this code? How would you redesign ImageProxy?

Use State Pattern: implement two states, ImageLoaded and ImageNotLoaded. Then put the code from the if statements into their respective states. Start in the ImageNotLoaded state and then transition to the ImageLoaded state once the ImageIcon had been retrieved.

Sharpen your pencil Solution

 While it is a little complicated, there isn’t much to creating a dynamic proxy. Why don’t you write getNonOwnerProxy(), which returns a proxy for the NonOwnerInvocationHandler. Here’s our solution:

PersonBean getNonOwnerProxy(PersonBean person) {

return (PersonBean) Proxy.newProxyInstance(

person.getClass().getClassLoader(),

person.getClass().getInterfaces(),

new NonOwnerInvocationHandler(person));

}

Design Patterns Crossword Solution

 [image: image with no caption]

Who Does What? Solution

 Match each pattern with its description:

 [image: image with no caption]

 The code for the CD Cover Viewer

Ready Bake Code

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

public class ImageProxyTestDrive {

ImageComponent imageComponent;

JFrame frame = new JFrame("CD Cover Viewer");

JMenuBar menuBar;

JMenu menu;

Hashtable<String, String> cds = new Hashtable<String, String>();

public static void main (String[] args) throws Exception {

ImageProxyTestDrive testDrive = new ImageProxyTestDrive();

}

public ImageProxyTestDrive() throws Exception{

cds.put("Buddha Bar","http://images.amazon.com/images/P/B00009XBYK.01.LZZZZZZZ.

jpg");

cds.put("Ima","http://images.amazon.com/images/P/B000005IRM.01.LZZZZZZZ.jpg");

cds.put("Karma","http://images.amazon.com/images/P/B000005DCB.01.LZZZZZZZ.gif");

cds.put("MCMXC A.D.","http://images.amazon.com/images/P/B000002URV.01.LZZZZZZZ.

jpg");

cds.put("Northern Exposure","http://images.amazon.com/images/P/B000003SFN.01.

LZZZZZZZ.jpg");

cds.put("Selected Ambient Works, Vol. 2","http://images.amazon.com/images/P/

B000002MNZ.01.LZZZZZZZ.jpg");

URL initialURL = new URL((String)cds.get("Selected Ambient Works, Vol. 2"));

menuBar = new JMenuBar();

menu = new JMenu("Favorite CDs");

menuBar.add(menu);

frame.setJMenuBar(menuBar);

for(Enumeration e = cds.keys(); e.hasMoreElements();) {

String name = (String)e.nextElement();

JMenuItem menuItem = new JMenuItem(name);

menu.add(menuItem);

menuItem.addActionListener(event -> {

imageComponent.setIcon(new ImageProxy(getCDUrl(event.getActionCommand())));

frame.repaint();

});

}

// set up frame and menus

Icon icon = new ImageProxy(initialURL);

imageComponent = new ImageComponent(icon);

frame.getContentPane().add(imageComponent);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setSize(800,600);

frame.setVisible(true);

}

URL getCDUrl(String name) {

try {

return new URL((String)cds.get(name));

} catch (MalformedURLException e) {

e.printStackTrace();

return null;

}

}

}

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;

import java.awt.*;

import javax.swing.*;

class ImageProxy implements Icon {

volatile ImageIcon imageIcon;

final URL imageURL;

Thread retrievalThread;

boolean retrieving = false;

public ImageProxy(URL url) { imageURL = url; }

public int getIconWidth() {

if (imageIcon != null) {

return imageIcon.getIconWidth();

} else {

return 800;

}

}

public int getIconHeight() {

if (imageIcon != null) {

return imageIcon.getIconHeight();

} else {

return 600;

}

}

synchronized void setImageIcon(ImageIcon imageIcon) {

this.imageIcon = imageIcon;

}

public void paintIcon(final Component c, Graphics g, int x, int y) {

if (imageIcon != null) {

imageIcon.paintIcon(c, g, x, y);

} else {

g.drawString("Loading CD cover, please wait...", x+300, y+190);

if (!retrieving) {

retrieving = true;

retrievalThread = new Thread(new Runnable() {

public void run() {

try {

setImageIcon(new ImageIcon(imageURL, "CD Cover"));

c.repaint();

} catch (Exception e) {

e.printStackTrace();

}

}

});

retrievalThread.start();

}

}

}

}

package headfirst.designpatterns.proxy.virtualproxy;

import java.awt.*;

import javax.swing.*;

class ImageComponent extends JComponent {

private Icon icon;

public ImageComponent(Icon icon) {

this.icon = icon;

}

public void setIcon(Icon icon) {

this.icon = icon;

}

public void paintComponent(Graphics g) {

super.paintComponent(g);

int w = icon.getIconWidth();

int h = icon.getIconHeight();

int x = (800 - w)/2;

int y = (600 - h)/2;

icon.paintIcon(this, g, x, y);

}

}

 Chapter 12. Compound Patterns: Patterns of Patterns

 [image: image with no caption]

Who would have ever guessed that Patterns could work together?

 You’ve already witnessed the acrimonious Fireside Chats (and you haven’t even seen the Pattern Death Match pages that the editor forced us to remove from the book[2
]
), so who would have thought patterns can actually get along well together? Well, believe it or not, some of the most powerful OO designs use several patterns together. Get ready to take your pattern skills to the next level; it’s time for compound patterns.

 Working together

One of the best ways to use patterns is to get them out of the house so they can interact with other patterns. The more you use patterns the more you’re going to see them showing up together in your designs. We have a special name for a set of patterns that work together in a design that can be applied over many problems: a
compound pattern

 . That’s right, we are now talking about patterns made of patterns!

 [image: image with no caption]

You’ll find a lot of compound patterns in use in the real world. Now that you’ve got patterns in your brain, you’ll see that they are really just patterns working together, and that makes them easier to understand.

We’re going to start this chapter by revisiting our friendly ducks in the SimUDuck duck simulator. It’s only fitting that the ducks should be here when we combine patterns; after all, they’ve been with us throughout the entire book and they’ve been good sports about taking part in lots of patterns. The ducks are going to help you understand how patterns can work together in the same solution. But just because we’ve combined some patterns doesn’t mean we have a solution that qualifies as a compound pattern. For that, it has to be a general-purpose solution that can be applied to many problems. So, in the second half of the chapter we’ll visit a
real

 compound pattern: that’s right, Mr. Model-View-Controller himself. If you haven’t heard of him, you will, and you’ll find this compound pattern is one of the most powerful patterns in your design toolbox.

Patterns are often used together and combined within the same design solution.

A compound pattern combines two or more patterns into a solution that solves a recurring or general problem.

 Duck reunion

 As you’ve already heard, we’re going to get to work with the ducks again. This time the ducks are going to show you how patterns can coexist and even cooperate within the same solution.

We’re going to rebuild our duck simulator from scratch and give it some interesting capabilities by using a bunch of patterns. Okay, let’s get started...

	

① First, we’ll create a Quackable interface.

Like we said, we’re starting from scratch. This time around, the Ducks are going to implement a Quackable interface. That way we’ll know what things in the simulator can quack() — like Mallard Ducks, Redhead Ducks, Duck Calls, and we might even see the Rubber Duck sneak back in.

 [image: image with no caption]

	

② Now, some Ducks that implement Quackable

What good is an interface without some classes to implement it? Time to create some concrete ducks (but not the “lawn art” kind, if you know what we mean).

 [image: image with no caption]

This wouldn’t be much fun if we didn’t add other kinds of Ducks too.

Remember last time? We had duck calls (those things hunters use — they are definitely quackable) and rubber ducks.

 [image: image with no caption]

	

③ Okay, we’ve got our ducks; now all we need is a simulator.

Let’s cook up a simulator that creates a few ducks and makes sure their quackers are working...

 [image: image with no caption]

 [image: image with no caption]

 Note

They all implement the same Quackable interface, but their implementations allow them to quack in their own way.

It looks like everything is working; so far, so good.

	

④ When ducks are around, geese can’t be far.

Where there is one waterfowl, there are probably two. Here’s a Goose class that has been hanging around the simulator.

 [image: image with no caption]

 Brain Power

Let’s say we wanted to be able to use a Goose anywhere we’d want to use a Duck. After all, geese make noise; geese fly; geese swim. Why can’t we have Geese in the simulator?

What pattern would allow Geese to easily intermingle with Ducks?

	⑤

We need a goose adapter.

Our simulator expects to see Quackable interfaces. Since geese aren’t quackers (they’re honkers), we can use an adapter to adapt a goose to a duck.

 [image: image with no caption]

	

⑥ Now geese should be able to play in the simulator, too.

All we need to do is create a Goose, wrap it in an adapter that implements Quackable, and we should be good to go.

 [image: image with no caption]

	

⑦ Now let’s give this a quick run....

This time when we run the simulator, the list of objects passed to the simulate() method includes a Goose wrapped in a duck adapter. The result? We should see some honking!

 [image: image with no caption]

Quackology

Quackologists are fascinated by all aspects of Quackable behavior. One thing Quackologists have always wanted to study is the total number of quacks made by a flock of ducks.

How can we add the ability to count duck quacks without having to change the duck classes?

Can you think of a pattern that would help?

 [image: image with no caption]

	⑧

We’re going to make those Quackologists happy and give them some quack counts.

How? Let’s create a decorator that gives the ducks some new behavior (the behavior of counting) by wrapping them with a decorator object. We won’t have to change the Duck code at all.

 [image: image with no caption]

	

⑨ We need to update the simulator to create decorated ducks.

Now, we must wrap each Quackable object we instantiate in a QuackCounter decorator. If we don’t, we’ll have ducks running around making uncounted quacks.

 [image: image with no caption]

 [image: image with no caption]

You have to decorate objects to get decorated behavior.

He’s right, that’s the problem with wrapping objects: you have to make sure they get wrapped or they don’t get the decorated behavior.

Why don’t we take the creation of ducks and localize it in one place; in other words, let’s take the duck creation and decorating and encapsulate it.

What pattern does that sound like?

	

⑩ We need a factory to produce ducks!

Okay, we need some quality control to make sure our ducks get wrapped. We’re going to build an entire factory just to produce them. The factory should produce a family of products that consists of different types of ducks, so we’re going to use the Abstract Factory Pattern.

Let’s start with the definition of the AbstractDuckFactory:

 [image: image with no caption]

Let’s start by creating a factory that creates ducks without decorators, just to get the hang of the factory:

 [image: image with no caption]

Now let’s create the factory we really want, the CountingDuckFactory:

 [image: image with no caption]

	

⑪ Let’s set up the simulator to use the factory.

Remember how Abstract Factory works? We create a polymorphic method that takes a factory and uses it to create objects. By passing in different factories, we get to use different product families in the method.

We’re going to alter the simulate() method so that it takes a factory and uses it to create ducks.

 [image: image with no caption]

 Note

 Here’s the output using the factory...

 [image: image with no caption]

Sharpen your pencil

We’re still directly instantiating Geese by relying on concrete classes. Can you write an Abstract Factory for Geese? How should it handle creating “goose ducks”?

 [image: image with no caption]

Ah, he wants to manage a flock of ducks.

Here’s another good question from Ranger Brewer: Why are we managing ducks individually?

 [image: image with no caption]

What we need is a way to talk about collections of ducks and even sub-collections of ducks (to deal with the family request from Ranger Brewer). It would also be nice if we could apply operations across the whole set of ducks.

What pattern can help us?

	⑫

Let’s create a flock of ducks (well, actually a flock of Quackables).

Remember the Composite Pattern that allows us to treat a collection of objects in the same way as individual objects? What better composite than a flock of Quackables!

Let’s step through how this is going to work:

 [image: image with no caption]

Code Up Close

Did you notice that we tried to sneak a Design Pattern by you without mentioning it?

 [image: image with no caption]

	

⑬ Now we need to alter the simulator.

Our composite is ready; we just need some code to round up the ducks into the composite structure.

 [image: image with no caption]

 Let’s give it a spin...

 [image: image with no caption]

Safety versus transparency

You might remember that in the Composite Pattern chapter the composites (the Menus) and the leaf nodes (the MenuItems) had the
same

 exact set of methods, including the add() method. Because they had the same set of methods, we could call methods on MenuItems that didn’t really make sense (like trying to add something to a MenuItem by calling add()). The benefit of this was that the distinction between leaves and composites was
transparent

 : the client didn’t have to know whether it was dealing with a leaf or a composite; it just called the same methods on both.

Here, we’ve decided to keep the composite’s child maintenance methods separate from the leaf nodes: that is, only Flocks have the add() method. We know it doesn’t make sense to try to add something to a Duck, and in this implementation, you can’t. You can only add() to a Flock. So this design is
safer

 — you can’t call methods that don’t make sense on components — but it’s less transparent. Now the client has to know that a Quackable is a Flock in order to add Quackables to it.

As always, there are trade-offs when you do OO design and you need to consider them as you create your own composites.

 [image: image with no caption]

Can you say “observer”?

It sounds like the Quackologist would like to observe individual duck behavior. That leads us right to a pattern made for observing the behavior of objects: the Observer Pattern.

	

⑭ First we need an Observable interface.

Remember that an Observable is the object being observed. An Observable needs methods for registering and notifying observers. We could also have a method for removing observers, but we’ll keep the implementation simple here and leave that out.

 [image: image with no caption]

Now we need to make sure all Quackables implement this interface...

 [image: image with no caption]

	

⑮ Now, we need to make sure all the concrete classes that implement Quackable can handle being a QuackObservable.

We could approach this by implementing registration and notification in each and every class (like we did in Chapter 2
). But we’re going to do it a little differently this time: we’re going to encapsulate the registration and notification code in another class, call it Observable, and compose it with a QuackObservable. That way, we only write the real code once and the QuackObservable just needs enough code to delegate to the helper class Observable.

Let’s begin with the Observable helper class.

 [image: image with no caption]

 [image: image with no caption]

	⑯

Integrate the helper Observable with the Quackable classes.

This shouldn’t be too bad. All we need to do is make sure the Quackable classes are composed with an Observable and that they know how to delegate to it. After that, they’re ready to be Observables. Here’s the implementation of MallardDuck; the other ducks are the same.

 [image: image with no caption]

Sharpen your pencil

We haven’t changed the implementation of one Quackable, the QuackCounter decorator. We need to make it an Observable too. Why don’t you write that one:

	

⑰ We’re almost there! We just need to work on the Observer side of the pattern.

We’ve implemented everything we need for the Observables; now we need some Observers. We’ll start with the Observer interface:

 [image: image with no caption]

Now we need an Observer: where are those Quackologists?!

 [image: image with no caption]

Sharpen your pencil

 What if a Quackologist wants to observe an entire flock? What does that mean anyway? Think about it like this: if we observe a composite, then we’re observing everything in the composite. So, when you register with a flock, the flock composite makes sure you get registered with all its children (sorry, all its little quackers), which may include other flocks.

Go ahead and write the Flock observer code before we go any further.

	

⑱ We’re ready to observe. Let’s update the simulator and give it a try:

 [image: image with no caption]

 This is the big finale. Five, no, six patterns have come together to create this amazing Duck Simulator. Without further ado, we present the DuckSimulator!

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: So this was a compound pattern?

	
A:

	

A:

 No, this was just a set of patterns working together. A compound pattern is a set of a few patterns that are combined to solve a general problem. We’re just about to take a look at the Model-View-Controller compound pattern; it’s a collection of a few patterns that has been used over and over in many design solutions.

	

Q:

	

Q: So the real beauty of Design Patterns is that I can take a problem, and start applying patterns to it until I have a solution. Right?

	
A:

	

A:

 Wrong. We went through this exercise with Ducks to show you how patterns
can

 work together. You’d never actually want to approach a design like we just did. In fact, there may be solutions to parts of the Duck Simulator for which some of these patterns were big time overkill. Sometimes just using good OO design principles can solve a problem well enough on its own.

We’re going to talk more about this in the next chapter, but you only want to apply patterns when and where they make sense. You never want to start out with the intention of using patterns just for the sake of it. You should consider the design of the Duck Simulator to be forced and artificial. But hey, it was fun and gave us a good idea of how several patterns can fit into a solution.

 What did we do?

We started with a bunch of Quackables...

A goose came along and wanted to act like a Quackable too.

 So we used the
Adapter Pattern

 to adapt the goose to a Quackable. Now, you can call quack() on a goose wrapped in the adapter and it will honk!

Then, the Quackologists decided they wanted to count quacks.

 So we used the
Decorator Pattern

 to add a QuackCounter decorator that keeps track of the number of times quack() is called, and then delegates the quack to the Quackable it’s wrapping.

But the Quackologists were worried they’d forget to add the QuackCounter decorator.

 So we used the
Abstract Factory Pattern

 to create ducks for them. Now, whenever they want a duck, they ask the factory for one, and it hands back a decorated duck. (And don’t forget, they can also use another duck factory if they want an un-decorated duck!)

We had management problems keeping track of all those ducks and geese and quackables.

 So we used the
Composite Pattern

 to group Quackables into Flocks. The pattern also allows the Quackologist to create sub-Flocks to manage duck families. We used the
Iterator Pattern

 in our implementation by using java.util’s iterator in ArrayList.

The Quackologists also wanted to be notified when any Quackable quacked.

 So we used the
Observer Pattern

 to let the Quackologists register as Quackable Observers. Now they’re notified every time any Quackable quacks. We used iterator again in this implementation. The Quackologists can even use the Observer Pattern with their composites.

 [image: image with no caption]

 A
 [image:]

 duck’s eye view: the class diagram

 We’ve packed a lot of patterns into one small duck simulator! Here’s the big picture of what we did:

 [image: image with no caption]

 The King of Compound Patterns

 If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...

	

 Model, View, Controller

Lyrics and music by James Dempsey.

	
Model a bottle of fine Chardonnay

Model all the glottal stops people say

Model the coddling of boiling eggs

You can model the waddle in Hexley’s legs

	
MVC’s a paradigm for factoring your code into functional segments, so your brain does not explode.

To achieve reusability, you gotta keep those boundaries clean

Model on the one side, View on the other, the Controller’s in between.

	
Model View, you can model all the models that pose for GQ

Model View Controller

	

 [image:]

	

 Note

So does Java!

View objects tend to be controls used to display and edit

Cocoa’s got a lot of those, well written to its credit.

Take an NSTextView, hand it any old Unicode string

The user can interact with it, it can hold most anything

But the view don’t know about the Model

That string could be a phone number or the works of Aristotle

Keep the coupling loose and so achieve a massive level of reuse

So does Java!

	
Model View, it’s got three layers like Oreos do

Model View Controller

Model View, Model View, Model View Controller

	
Model View, all rendered very nicely in Aqua blue

Model View Controller

	
Model objects represent your application’s raison d’être

Custom objects that contain data, logic, and et cetera

You create custom classes, in your app’s problem domain you can choose to reuse them with all the views but the model objects stay the same.

	
You’re probably wondering now

You’re probably wondering how

Data flows between Model and View

The Controller has to mediate

Between each layer’s changing state

To synchronize the data of the two

It pulls and pushes every changed value

	
You can model a throttle and a manifold

Model the toddle of a two year old

	
Model View, mad props to the smalltalk crew!

Model View Controller

	
Model View, it’s pronounced Oh Oh not Ooo Ooo

Model View Controller

	
Model View

How we gonna deep six all that glue

Model View Controller

	
There’s a little left to this story

A few more miles upon this road

Nobody seems to get much glory

From writing the controller code

	
Controllers know the Model and View very intimately

They often use hardcoding which can be foreboding for reusability

But now you can connect each model key that you select to any view property

	
Well the model’s mission critical

And gorgeous is the view

I might be lazy, but sometimes it’s just crazy

How much code I write is just glue

And it wouldn’t be so tragic

But the code ain’t doing magic

It’s just moving values through

	
And once you start binding

I think you’ll be finding less code in your source tree

Yeah I know I was elated by the stuff they’ve automated and the things you get for free

	
And I don’t mean to be vicious

But it gets repetitious

Doing all the things controllers do

	
And I think it bears repeating all the code you won’t be needing when you hook it up in
 [image:]

	
And I wish I had a dime

For every single time

I sent a TextField StringValue.

	
Model View, even handles multiple selections too

Model View Controller

Model View, bet I ship my application before you

Model View Controller

 Ear Power

Don’t just read! After all, this is a Head First book... grab your iPod, hit this URL:

http://www.youtube.com/watch?v=YYvOGPMLVDo

Sit back and give it a listen.

 [image: image with no caption]

No. Design Patterns are your key to the MVC.

We were just trying to whet your appetite. Tell you what, after you finish reading this chapter, go back and listen to the song again — you’ll have even more fun.

It sounds like you’ve had a bad run-in with MVC before? Most of us have. You’ve probably had other developers tell you it’s changed their lives and could possibly create world peace. It’s a powerful compound pattern, for sure, and while we can’t claim it will create world peace, it will save you hours of writing code once you know it.

But first you have to learn it, right? Well, there’s going to be a big difference this time around because
now you know patterns!

That’s right, patterns are the key to MVC. Learning MVC from the top down is difficult; not many developers succeed. Here’s the secret to learning MVC:
it’s just a few patterns put together.

 When you approach learning MVC by looking at the patterns, all of a sudden it starts to make sense.

Let’s get started. This time around you’re going to nail MVC!

 Meet the Model-View-Controller

 Imagine you’re using your favorite MP3 player, like iTunes. You can use its interface to add new songs, manage playlists and rename tracks. The player takes care of maintaining a little database of all your songs along with their associated names and data. It also takes care of playing the songs and, as it does, the user interface is constantly updated with the current song title, the running time, and so on.

Well, underneath it all sits the Model-View-Controller...

 [image: image with no caption]

 A closer look...

The MP3 player description gives us a high-level view of MVC, but it really doesn’t help you understand the nitty gritty of how the compound pattern works, how you’d build one yourself, or why it’s such a good thing. Let’s start by stepping through the relationships among the model, view and controller, and then we’ll take second look from the perspective of Design Patterns.

 [image: image with no caption]

	

① You’re the user — you interact with the view.

The view is your window to the model. When you do something to the view (like click the Play button) then the view tells the controller what you did. It’s the controller’s job to handle that.

	

② The controller asks the model to change its state.

The controller takes your actions and interprets them. If you click on a button, it’s the controller’s job to figure out what that means and how the model should be manipulated based on that action.

	

③ The controller may also ask the view to change.

When the controller receives an action from the view, it may need to tell the view to change as a result. For example, the controller could enable or disable certain buttons or menu items in the interface.

	

④ The model notifies the view when its state has changed.

When something changes in the model, based either on some action you took (like clicking a button) or some other internal change (like the next song in the playlist has started), the model notifies the view that its state has changed.

	

⑤ The view asks the model for state.

The view gets the state it displays directly from the model. For instance, when the model notifies the view that a new song has started playing, the view requests the song name from the model and displays it. The view might also ask the model for state as the result of the controller requesting some change in the view.

There Are No Dumb Questions

	

Q:

	

Q: Does the controller ever become an observer of the model?

	
A:

	

A:

 Sure. In some designs the controller registers with the model and is notified of changes. This can be the case when something in the model directly affects the user interface controls. For instance, certain states in the model may dictate that some interface items be enabled or disabled. If so, it is really controller’s job to ask the view to update its display accordingly.

	

Q:

	

Q: All the controller does is take user input from the view and send it to the model, correct? Why have it at all if that is all it does? Why not just have the code in the view itself? In most cases isn’t the controller just calling a method on the model?

	
A:

	

A:

 The controller does more than just “send it to the model”; it is responsible for interpreting the input and manipulating the model based on that input. But your real question is probably “why can’t I just do that in the view code?”

You could; however, you don’t want to for two reasons. First, you’ll complicate your view code because it now has two responsibilities: managing the user interface and dealing with the logic of how to control the model. Second, you’re tightly coupling your view to the model. If you want to reuse the view with another model, forget it. The controller separates the logic of control from the view and decouples the view from the model. By keeping the view and controller loosely coupled, you are building a more flexible and extensible design, one that can more easily accommodate change down the road.

 Looking at MVC through patterns-colored glasses

 [image: image with no caption]

 We’ve already told you the best path to learning the MVC is to see it for what it is: a set of patterns working together in the same design.

Let’s start with the model. As you might have guessed, the model uses Observer to keep the views and controllers updated on the latest state changes. The view and the controller, on the other hand, implement the Strategy Pattern. The controller is the behavior of the view, and it can be easily exchanged with another controller if you want different behavior. The view itself also uses a pattern internally to manage the windows, buttons and other components of the display: the Composite Pattern.

Let’s take a closer look:

 [image: image with no caption]

 Observer

 [image: image with no caption]

 Strategy

 [image: image with no caption]

 Note

The view only worries about presentation. The controller worries about translating user input to actions on the model.

 Composite

 [image: image with no caption]

 Using MVC to control the beat...

 [image: image with no caption]

 It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You might start your mix with a slowed, downtempo groove at 95 beats per minute (BPM) and then bring the crowd up to a frenzied 140 BPM of trance techno. You’ll finish off your set with a mellow 80 BPM ambient mix.

How are you going to do that? You have to control the beat and you’re going to build the tool to get you there.

 Meet the Java DJ View

Let’s start with the
view

 of the tool. The view allows you to create a driving drum beat and tune its beats per minute...

 [image: image with no caption]

 Note

 Here are a few more ways to control the DJ View...

 [image: image with no caption]

 The controller is in the middle...

The
controller

 sits between the view and model. It takes your input, like selecting “Start” from the DJ Control menu, and turns it into an action on the model to start the beat generation.

 Let’s not forget about the model underneath it all...

You can’t see the
model

 , but you can hear it. The model sits underneath everything else, managing the beat and driving the speakers with MIDI.

 [image: image with no caption]

 Putting the pieces together

 [image: image with no caption]

 Building the pieces

 Okay, you know the model is responsible for maintaining all the data, state and any application logic. So what’s the BeatModel got in it? Its main job is managing the beat, so it has state that maintains the current beats per minute and lots of code that generates MIDI events to create the beat that we hear. It also exposes an interface that lets the controller manipulate the beat and lets the view and controller obtain the model’s state. Also, don’t forget that the model uses the Observer Pattern, so we also need some methods to let objects register as observers and send out notifications.

 Let’s check out the BeatModelInterface before looking at the implementation

 [image: image with no caption]

 Now let’s have a look at the concrete BeatModel class

 [image: image with no caption]

Ready Bake Code

This model uses Java’s MIDI support to generate beats. You can check out the complete implementation of all the DJ classes in the Java source files available on the wickedlysmart.com site, or look at the code at the end of the chapter.

 The View

Now the fun starts; we get to hook up a view and visualize the BeatModel!

The first thing to notice about the view is that we’ve implemented it so that it is displayed in two separate windows. One window contains the current BPM and the pulse; the other contains the interface controls. Why? We wanted to emphasize the difference between the interface that contains the view of the model and the rest of the interface that contains the set of user controls. Let’s take a closer look at the two parts of the view:

 [image: image with no caption]

 Brain Power

Our BeatModel makes no assumptions about the view. The model is implemented using the Observer Pattern, so it just notifies any view registered as an observer when its state changes. The view uses the model’s API to get access to the state. We’ve implemented one type of view; can you think of other views that could make use of the notifications and state in the BeatModel?

A lightshow that is based on the real-time beat.

A textual view that displays a music genre based on the BPM (ambient, downbeat, techno, etc
 .).

__

__

__

 Implementing the View

The two parts of the view — the view of the model, and the view with the user interface controls — are displayed in two windows, but live together in one Java class. We’ll first show you just the code that creates the view of the model, which displays the current BPM and the beat bar. Then we’ll come back on the next page and show you just the code that creates the user interface controls, which displays the BPM text entry field, and the buttons.

 Watch it!

The code on these two pages is just an outline!

What we’ve done here is split ONE class into TWO, showing you one part of the view on this page, and the other part on the next page. All this code is really in ONE class — DJView.java. It’s all listed at the end of the chapter.

 [image: image with no caption]

 Implementing the View, continued...

Now, we’ll look at the code for the user interface controls part of the view. This view lets you control the model by telling the controller what to do, which in turn, tells the model what to do. Remember, this code is in the same class file as the other view code.

 [image: image with no caption]

 Now for the Controller

 It’s time to write the missing piece: the controller. Remember the controller is the strategy that we plug into the view to give it some smarts.

Because we are implementing the Strategy Pattern, we need to start with an interface for any Strategy that might be plugged into the DJ View. We’re going to call it ControllerInterface.

 [image: image with no caption]

Design Puzzle

You’ve seen that the view and controller together make use of the Strategy Pattern. Can you draw a class diagram of the two that represents this pattern?

 And here’s the implementation of the controller

 [image: image with no caption]

 Putting it all together...

 We’ve got everything we need: a model, a view, and a controller. Now it’s time to put them all together into a MVC! We’re going to see and hear how well they work together.

 [image: image with no caption]

All we need is a little code to get things started; it won’t take much:

 [image: image with no caption]

 And now for a test run...

 [image: image with no caption]

 [image: image with no caption]

 Things to do

	

① Start the beat generation with the Start menu item; notice the controller disables the item afterwards.

	

② Use the text entry along with the increase and decrease buttons to change the BPM. Notice how the view display reflects the changes despite the fact that it has no logical link to the controls.

	

③ Notice how the beat bar always keeps up with the beat since it’s an observer of the model.

	

④ Put on your favorite song and see if you can beat match the beat by using the increase and decrease controls.

	

⑤ Stop the generator. Notice how the controller disables the Stop menu item and enables the Start menu item.

 Exploring Strategy

 Let’s take the Strategy Pattern just a little further to get a better feel for how it is used in MVC. We’re going to see another friendly pattern pop up too — a pattern you’ll often see hanging around the MVC trio: the Adapter Pattern.

 [image: image with no caption]

Think for a second about what the DJ View does: it displays a beat rate and a pulse. Does that sound like something else? How about a heartbeat? It just so happens that we have a heart monitor class; here’s the class diagram:

 [image: image with no caption]

 Brain Power

It certainly would be nice to reuse our current view with the HeartModel, but we need a controller that works with this model. Also, the interface of the HeartModel doesn’t match what the view expects because it has a getHeartRate() method rather than a getBPM(). How would you design a set of classes to allow the view to be reused with the new model? Jot down your class design ideas below.

 Adapting the Model

 For starters, we’re going to need to adapt the HeartModel to a BeatModel. If we don’t, the view won’t be able to work with the model, because the view only knows how to getBPM(), and the equivalent heart model method is getHeartRate(). How are we going to do this? We’re going to use the Adapter Pattern, of course! It turns out that this is a common technique when working with the MVC: use an adapter to adapt a model to work with existing controllers and views.

Here’s the code to adapt a HeartModel to a BeatModel:

 [image: image with no caption]

 Now we’re ready for a HeartController

 With our HeartAdapter in hand we should be ready to create a controller and get the view running with the HeartModel. Talk about reuse!

 [image: image with no caption]

 And that’s it! Now it’s time for some test code...

 [image: image with no caption]

 And now for a test run...

 [image: image with no caption]

 [image: image with no caption]

 Things to do

	

① Notice that the display works great with a heart! The beat bar looks just like a pulse. Because the HeartModel also supports BPM and Beat Observers we can get beat updates just like with the DJ beats.

	

② As the heartbeat has natural variation, notice the display is updated with the new beats per minute.

	

③ Each time we get a BPM update the adapter is doing its job of translating getBPM() calls to getHeartRate() calls.

	

④ The Start and Stop menu items are not enabled because the controller disabled them.

	

⑤ The other buttons still work but have no effect because the controller implements no ops for them. The view could be changed to support the disabling of these items.

 MVC and the Web

 It wasn’t long after the Web was spun that developers started adapting the MVC to fit the browser/server model. The prevailing adaptation is known simply as “Model 2” and uses a combination of servlet and JSP technology to achieve the same separation of model, view and controller that we see in conventional GUIs.

Let’s check out how Model 2 works:

 [image: image with no caption]

	
①

	

You make an HTTP request, which is received by a servlet.

Using your web browser you make an HTTP request. This typically involves sending along some form data, like your username and password. A servlet receives this form data and parses it.

	
②

	

The servlet acts as the controller.

The servlet plays the role of the controller and processes your request, most likely making requests on the model (usually a database). The result of processing the request is usually bundled up in the form of a JavaBean.

	
③

	

The controller forwards control to the view.

The View is represented by a JSP. The JSP’s only job is to generate the page representing the view of model (❹ which it obtains via the JavaBean) along with any controls needed for further actions.

	
④

	

The view returns a page to the browser via HTTP.

A page is returned to the browser, where it is displayed as the view. The user submits further requests, which are processed in the same fashion.

 [image: image with no caption]

Model 2 is more than just a clean design.

The benefits of the separation of the view, model and controller are pretty clear to you now. But you need to know the “rest of the story” with Model 2 — that it saved many web shops from sinking into chaos.

How? Well, Model 2 not only provides a separation of components in terms of design, it also provides a separation in
production responsibilities

 . Let’s face it, in the old days, anyone with access to your JSPs could get in and write any Java code they wanted, right? And that included a lot of people who didn’t know a jar file from a jar of peanut butter. The reality is that most web producers
know about content and HTML, not software

 .

Luckily Model 2 came to the rescue. With Model 2 we can leave the developer jobs to the men & women who know their servlets and let the web producers loose on simple Model 2-style JSPs where all the producers have access to is HTML and simple JavaBeans.

 Model 2: DJ’ing from a cell phone

 You didn’t think we’d try to skip out without moving that great BeatModel over to the Web, did you? Just think, you can control your entire DJ session through a web page on your cellular phone. So now you can get out of that DJ booth and get down in the crowd. What are you waiting for? Let’s write that code!

 [image: image with no caption]

 The plan

	

① Fix up the model.

Well, actually, we don’t have to fix the model; it’s fine just like it is!

	

② Create a servlet controller

We need a simple servlet that can receive our HTTP requests and perform a few operations on the model. All it needs to do is stop, start and change the beats per minute.

	

③ Create a HTML view.

We’ll create a simple view with a JSP. It’s going to receive a JavaBean from the controller that will tell it everything it needs to display. The JSP will then generate an HTML interface.

 Geek Bits

Setting up your servlet environment

Showing you how to set up your servlet environment is a little bit off topic for a book on Design Patterns, at least if you don’t want the book to weigh more than you do!

Fire up your web browser and head straight to http://jakarta.apache.org/tomcat/
 for the Apache Jakarta Project’s Tomcat Servlet Container. You’ll find everything you need there to get you up and running.

You’ll also want to check out
Head First Servlets & JSP

 by Bryan Basham, Kathy Sierra and Bert Bates.

 [image: image with no caption]

 Step one: the model

Remember that in MVC, the model doesn’t know anything about the views or controllers. In other words, it is totally decoupled. All it knows is that it may have observers it needs to notify. That’s the beauty of the Observer Pattern. It also provides an interface the views and controllers can use to get and set its state.

Now all we need to do is adapt it to work in the web environment, but, given that it doesn’t depend on any outside classes, there is really no work to be done. We can use our BeatModel off the shelf without changes. So, let’s be productive and move on to step two!

 Step two: the controller servlet

Remember, the servlet is going to act as our controller; it will receive web browser input in a HTTP request and translate it into actions that can be applied to the model.

Then, given the way the Web works, we need to return a view to the browser. To do this we’ll pass control to the view, which takes the form of a JSP. We’ll get to that in step three.

Here’s the outline of the servlet; on the next page, we’ll look at the full implementation.

 [image: image with no caption]

Here’s the implementation of the doGet() method from the page before:

 [image: image with no caption]

 Now we need a view...

All we need is a view and we’ve got our browser-based beat generator ready to go! In Model 2, the view is just a JSP. All the JSP knows about is the bean it receives from the controller. In our case, that bean is just the model and the JSP is only going to use its BPM property to extract the current beats per minute. With that data in hand, it creates the view and also the user interface controls.

 [image: image with no caption]

 Note

NOTICE that just like MVC, in Model 2 the view doesn’t alter the model (that’s the controller’s job); all it does is use its state!

 Putting Model 2 to the test...

It’s time to start your web browser, hit the DJView Servlet and give the system a spin...

 [image: image with no caption]

 [image: image with no caption]

 Things to do

	

① First, hit the web page; you’ll see the beats per minute at 0. Go ahead and click the “on” button.

	

② Now you should see the beats per minute at the default setting: 90 BPM. You should also hear a beat on the machine the server is running on.

	

③ Enter a specific beat, say, 120, and click the “set” button. The page should refresh with a beats per minute of 120 (and you should hear the beat increase).

	

④ Now play with the increase/decrease buttons to adjust the beat up and down.

	

⑤ Think about how each step of the system works. The HTML interface makes a request to the servlet (the controller); the servlet parses the user input and then makes requests to the model. The servlet then passes control to the JSP (the view), which creates the HTML view that is returned and displayed.

 Design Patterns and Model 2

 After implementing the DJ control for the Web using Model 2, you might be wondering where the patterns went. We have a view created in HTML from a JSP, but the view is no longer a listener of the model. We have a controller that’s a servlet that receives HTTP requests, but are we still using the Strategy Pattern? And what about Composite? We have a view that is made from HTML and displayed in a web browser. Is that still the Composite Pattern?

 Model 2 is an adaptation of MVC to the Web

Even though Model 2 doesn’t look exactly like “textbook” MVC, all the parts are still there; they’ve just been adapted to reflect the idiosyncrasies of the web browser model. Let’s take another look...

 Observer

The view is no longer an observer of the model in the classic sense; that is, it doesn’t register with the model to receive state change notifications.

However, the view does receive the equivalent of notifications indirectly from the controller when the model has been changed. The controller even passes the view a bean that allows the view to retrieve the model’s state.

If you think about the browser model, the view only needs an update of state information when an HTTP response is returned to the browser; notifications at any other time would be pointless. Only when a page is being created and returned does it make sense to create the view and incorporate the model’s state.

 [image: image with no caption]

 Strategy

 In Model 2, the Strategy object is still the controller servlet; however, it’s not directly composed with the view in the classic manner. That said, it is an object that implements behavior for the view, and we can swap it out for another controller if we want different behavior.

 Composite

Like our Swing GUI, the view is ultimately made up of a nested set of graphical components. In this case, they are rendered by a web browser from an HTML description; however, underneath there is an object system that most likely forms a composite.

 [image: image with no caption]

 Note

The controller still provides the view behavior, even if it isn’t composed with the view using object composition.

There Are No Dumb Questions

	

Q:

	

Q: It seems like you are really hand-waving the fact that the Composite Pattern is really in MVC. Is it really there?

	
A:

	

A:

 Yes, Virginia, there really is a Composite Pattern in MVC. But, actually, this is a very good question. Today GUI packages, like Swing, have become so sophisticated that we hardly notice the internal structure and the use of Composite in the building and update of the display. It’s even harder to see when we have web browsers that can take markup language and convert it into a user interface.

Back when MVC was first discovered, creating GUIs required a lot more manual intervention and the pattern was more obviously part of the MVC.

	

Q:

	

Q: Does the controller ever implement any application logic?

	
A:

	

A:

 No, the controller implements behavior for the view. It is the smarts that translates the actions from the view to actions on the model. The model takes those actions and implements the application logic to decide what to do in response to those actions. The controller might have to do a little work to determine what method calls to make on the model, but that’s not considered the “application logic.” The application logic is the code that manages and manipulates your data and it lives in your model.

	

Q:

	

Q: I’ve always found the word “model” hard to wrap my head around. I now get that it’s the guts of the application, but why was such a vague, hard-to-understand word used to describe this aspect of the MVC?

	
A:

	

A:

 When MVC was named they needed a word that began with a “M” or otherwise they couldn’t have called it MVC.

But seriously, we agree with you. Everyone scratches their head and wonders what a model is. But then everyone comes to the realization that they can’t think of a better word either.

	

Q:

	

Q: You’ve talked a lot about the state of the model. Does this mean it has the State Pattern in it?

	
A:

	

A:

 No, we mean the general idea of state. But certainly some models do use the State Pattern to manage their internal states.

	

Q:

	

Q: I’ve seen descriptions of the MVC where the controller is described as a “mediator” between the view and the model. Is the controller implementing the Mediator Pattern?

	
A:

	

A:

 We haven’t covered the Mediator Pattern (although you’ll find a summary of the pattern in the appendix), so we won’t go into too much detail here, but the intent of the mediator is to encapsulate how objects interact and promote loose coupling by keeping two objects from referring to each other explicitly. So, to some degree, the controller can be seen as a mediator, since the view never sets state directly on the model, but rather always goes through the controller. Remember, however, that the view does have a reference to the model to access its state. If the controller were truly a mediator, the view would have to go through the controller to get the state of the model as well.

	

Q:

	

Q: Does the view always have to ask the model for its state? Couldn’t we use the push model and send the model’s state with the update notification?

	
A:

	

A:

 Yes, the model could certainly send its state with the notification, and in fact, if you look again at the JSP/HTML view, that’s exactly what we’re doing. We’re sending the entire model in a bean, which the view uses to access the state it needs using the bean properties. We could do something similar with the BeatModel by sending just the state that the view is interested in. If you remember the Observer Pattern chapter, however, you’ll also remember that there’s a couple of disadvantages to this. If you don’t, go back and have a second look.

	

Q:

	

Q: If I have more than one view, do I always need more than one controller?

	
A:

	

A:

 Typically, you need one controller per view at runtime; however, the same controller class can easily manage many views.

	

Q:

	

Q: The view is not supposed to manipulate the model; however, I noticed in your implementation that the view has full access to the methods that change the model’s state. Is this dangerous?

	
A:

	

A:

 You are correct; we gave the view full access to the model’s set of methods. We did this to keep things simple, but there may be circumstances where you want to give the view access to only part of your model’s API. There’s a great design pattern that allows you to adapt an interface to only provide a subset. Can you think of it?

 Tools for your Design Toolbox

You could impress anyone with your design toolbox. Wow, look at all those principles, patterns and now, compound patterns!

 [image: image with no caption]

Bullet Points

	The Model View Controller Pattern (MVC) is a compound pattern consisting of the Observer, Strategy and Composite patterns.

	The model makes use of the Observer Pattern so that it can keep observers updated yet stay decoupled from them.

	The controller is the strategy for the view. The view can use different implementations of the controller to get different behavior.

	The view uses the Composite Pattern to implement the user interface, which usually consists of nested components like panels, frames and buttons.

	These patterns work together to decouple the three players in the MVC model, which keeps designs clear and flexible.

	The Adapter Pattern can be used to adapt a new model to an existing view and controller.

	Model 2 is an adaptation of MVC for web applications.

	In Model 2, the controller is implemented as a servlet and JSP & HTML implement the view.

 Exercise Solutions

Sharpen your pencil Solution

 The QuackCounter is a Quackable too. When we change Quackable to extend QuackObservable, we have to change every class that implements Quackable, including QuackCounter:

 [image: image with no caption]

Sharpen your pencil Solution

 What if our Quackologist wants to observe an entire flock? What does that mean anyway? Think about it like this: if we observe a composite, then we’re observing everything in the composite. So, when you register with a flock, the flock composite makes sure you get registered with all its children, which may include other flocks.

 [image: image with no caption]

Sharpen your pencil Solution

 We’re still directly instantiating Geese by relying on concrete classes. Can you write an Abstract Factory for Geese? How should it handle creating “goose ducks”?

You could add a createGooseDuck() method to the existing Duck Factories. Or, you could create a completely separate Factory for creating families of Geese.

Design Puzzle Solution

You’ve seen that the view and controller together make use of the Strategy Pattern. Can you draw a class diagram of the two that represents this pattern?

 [image: image with no caption]

Ready Bake Code

 Here’s the complete implementation of the DJView. It shows all the MIDI code to generate the sound, and all the Swing components to create the view. You can also download this code at http://www.wickedlysmart.com
 . Have fun!

package headfirst.designpatterns.combined.djview;

public class DJTestDrive {

public static void main (String[] args) {

BeatModelInterface model = new BeatModel();

ControllerInterface controller = new BeatController(model);

}

}

The Beat Model

package headfirst.designpatterns.combined.djview;

public interface BeatModelInterface {

void initialize();

void on();

void off();

void setBPM(int bpm);

int getBPM();

void registerObserver(BeatObserver o);

void removeObserver(BeatObserver o);

void registerObserver(BPMObserver o);

void removeObserver(BPMObserver o);

}

package headfirst.designpatterns.combined.djview;

import javax.sound.midi.*;

import java.util.*;

public class BeatModel implements BeatModelInterface, MetaEventListener {

Sequencer sequencer;

ArrayList<BeatObserver> beatObservers = new ArrayList<BeatObserver>();

ArrayList<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();

int bpm = 90;

Sequence sequence;

Track track;

public void initialize() {

setUpMidi();

buildTrackAndStart();

}

public void on() {

System.out.println("Starting the sequencer");

sequencer.start();

setBPM(90);

}

public void off() {

setBPM(0);

sequencer.stop();

}

public void setBPM(int bpm) {

this.bpm = bpm;

sequencer.setTempoInBPM(getBPM());

notifyBPMObservers();

}

public int getBPM() {

return bpm;

}

void beatEvent() {

notifyBeatObservers();

}

public void registerObserver(BeatObserver o) {

beatObservers.add(o);

}

public void notifyBeatObservers() {

for(int i = 0; i < beatObservers.size(); i++) {

BeatObserver observer = (BeatObserver)beatObservers.get(i);

observer.updateBeat();

}

}

public void registerObserver(BPMObserver o) {

bpmObservers.add(o);

}

public void notifyBPMObservers() {

for(int i = 0; i < bpmObservers.size(); i++) {

BPMObserver observer = (BPMObserver)bpmObservers.get(i);

observer.updateBPM();

}

}

public void removeObserver(BeatObserver o) {

int i = beatObservers.indexOf(o);

if (i >= 0) {

beatObservers.remove(i);

}

}

public void removeObserver(BPMObserver o) {

int i = bpmObservers.indexOf(o);

if (i >= 0) {

bpmObservers.remove(i);

}

}

public void meta(MetaMessage message) {

if (message.getType() == 47) {

beatEvent();

sequencer.start();

setBPM(getBPM());

}

}

public void setUpMidi() {

try {

sequencer = MidiSystem.getSequencer();

sequencer.open();

sequencer.addMetaEventListener(this);

sequence = new Sequence(Sequence.PPQ,4);

track = sequence.createTrack();

sequencer.setTempoInBPM(getBPM());

sequencer.setLoopCount(Sequencer.LOOP_CONTINUOUSLY);

} catch(Exception e) {

e.printStackTrace();

}

}

public void buildTrackAndStart() {

int[] trackList = {35, 0, 46, 0};

sequence.deleteTrack(null);

track = sequence.createTrack();

makeTracks(trackList);

track.add(makeEvent(192,9,1,0,4));

try {

sequencer.setSequence(sequence);

} catch(Exception e) {

e.printStackTrace();

}

}

public void makeTracks(int[] list) {

for (int i = 0; i < list.length; i++) {

int key = list[i];

if (key != 0) {

track.add(makeEvent(144,9,key, 100, i));

track.add(makeEvent(128,9,key, 100, i+1));

}

}

}

public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {

MidiEvent event = null;

try {

ShortMessage a = new ShortMessage();

a.setMessage(comd, chan, one, two);

event = new MidiEvent(a, tick);

} catch(Exception e) {

e.printStackTrace();

}

return event;

}

}

The View

package headfirst.designpatterns.combined.djview;

public interface BeatObserver {

void updateBeat();

}

package headfirst.designpatterns.combined.djview;

public interface BPMObserver {

void updateBPM();

}

package headfirst.designpatterns.combined.djview;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class DJView implements ActionListener, BeatObserver, BPMObserver {

BeatModelInterface model;

ControllerInterface controller;

JFrame viewFrame;

JPanel viewPanel;

BeatBar beatBar;

JLabel bpmOutputLabel;

JFrame controlFrame;

JPanel controlPanel;

JLabel bpmLabel;

JTextField bpmTextField;

JButton setBPMButton;

JButton increaseBPMButton;

JButton decreaseBPMButton;

JMenuBar menuBar;

JMenu menu;

JMenuItem startMenuItem;

JMenuItem stopMenuItem;

public DJView(ControllerInterface controller, BeatModelInterface model) {

this.controller = controller;

this.model = model;

model.registerObserver((BeatObserver)this);

model.registerObserver((BPMObserver)this);

}

public void createView() {

// Create all Swing components here

viewPanel = new JPanel(new GridLayout(1, 2));

viewFrame = new JFrame("View");

viewFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

viewFrame.setSize(new Dimension(100, 80));

bpmOutputLabel = new JLabel("offline", SwingConstants.CENTER);

beatBar = new BeatBar();

beatBar.setValue(0);

JPanel bpmPanel = new JPanel(new GridLayout(2, 1));

bpmPanel.add(beatBar);

bpmPanel.add(bpmOutputLabel);

viewPanel.add(bpmPanel);

viewFrame.getContentPane().add(viewPanel, BorderLayout.CENTER);

viewFrame.pack();

viewFrame.setVisible(true);

}

public void createControls() {

// Create all Swing components here

JFrame.setDefaultLookAndFeelDecorated(true);

controlFrame = new JFrame("Control");

controlFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

controlFrame.setSize(new Dimension(100, 80));

controlPanel = new JPanel(new GridLayout(1, 2));

menuBar = new JMenuBar();

menu = new JMenu("DJ Control");

startMenuItem = new JMenuItem("Start");

menu.add(startMenuItem);

startMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

controller.start();

}

});

stopMenuItem = new JMenuItem("Stop");

menu.add(stopMenuItem);

stopMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

controller.stop();

}

});

JMenuItem exit = new JMenuItem("Quit");

exit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

System.exit(0);

}

});

menu.add(exit);

menuBar.add(menu);

controlFrame.setJMenuBar(menuBar);

bpmTextField = new JTextField(2);

bpmLabel = new JLabel("Enter BPM:", SwingConstants.RIGHT);

setBPMButton = new JButton("Set");

setBPMButton.setSize(new Dimension(10,40));

increaseBPMButton = new JButton(">>");

decreaseBPMButton = new JButton("<<");

setBPMButton.addActionListener(this);

increaseBPMButton.addActionListener(this);

decreaseBPMButton.addActionListener(this);

JPanel buttonPanel = new JPanel(new GridLayout(1, 2));

buttonPanel.add(decreaseBPMButton);

buttonPanel.add(increaseBPMButton);

JPanel enterPanel = new JPanel(new GridLayout(1, 2));

enterPanel.add(bpmLabel);

enterPanel.add(bpmTextField);

JPanel insideControlPanel = new JPanel(new GridLayout(3, 1));

insideControlPanel.add(enterPanel);

insideControlPanel.add(setBPMButton);

insideControlPanel.add(buttonPanel);

controlPanel.add(insideControlPanel);

bpmLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

bpmOutputLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

controlFrame.getRootPane().setDefaultButton(setBPMButton);

controlFrame.getContentPane().add(controlPanel, BorderLayout.CENTER);

controlFrame.pack();

controlFrame.setVisible(true);

}

public void enableStopMenuItem() {

stopMenuItem.setEnabled(true);

}

public void disableStopMenuItem() {

stopMenuItem.setEnabled(false);

}

public void enableStartMenuItem() {

startMenuItem.setEnabled(true);

}

public void disableStartMenuItem() {

startMenuItem.setEnabled(false);

}

public void actionPerformed(ActionEvent event) {

if (event.getSource() == setBPMButton) {

int bpm = Integer.parseInt(bpmTextField.getText());

controller.setBPM(bpm);

} else if (event.getSource() == increaseBPMButton) {

controller.increaseBPM();

} else if (event.getSource() == decreaseBPMButton) {

controller.decreaseBPM();

}

}

public void updateBPM() {

int bpm = model.getBPM();

if (bpm == 0) {

bpmOutputLabel.setText("offline");

} else {

bpmOutputLabel.setText("Current BPM: " + model.getBPM());

}

}

public void updateBeat() {

beatBar.setValue(100);

}

}

The Controller

package headfirst.designpatterns.combined.djview;

public interface ControllerInterface {

void start();

void stop();

void increaseBPM();

void decreaseBPM();

void setBPM(int bpm);

}

package headfirst.designpatterns.combined.djview;

public class BeatController implements ControllerInterface {

BeatModelInterface model;

DJView view;

public BeatController(BeatModelInterface model) {

this.model = model;

view = new DJView(this, model);

view.createView();

view.createControls();

view.disableStopMenuItem();

view.enableStartMenuItem();

model.initialize();

}

public void start() {

model.on();

view.disableStartMenuItem();

view.enableStopMenuItem();

}

public void stop() {

model.off();

view.disableStopMenuItem();

view.enableStartMenuItem();

}

public void increaseBPM() {

int bpm = model.getBPM();

model.setBPM(bpm + 1);

}

public void decreaseBPM() {

int bpm = model.getBPM();

model.setBPM(bpm - 1);

}

public void setBPM(int bpm) {

model.setBPM(bpm);

}

}

The Heart Model

package headfirst.designpatterns.combined.djview;

public class HeartTestDrive {

public static void main (String[] args) {

HeartModel heartModel = new HeartModel();

ControllerInterface model = new HeartController(heartModel);

}

}

package headfirst.designpatterns.combined.djview;

public interface HeartModelInterface {

int getHeartRate();

void registerObserver(BeatObserver o);

void removeObserver(BeatObserver o);

void registerObserver(BPMObserver o);

void removeObserver(BPMObserver o);

}

package headfirst.designpatterns.combined.djview;

import java.util.*;

public class HeartModel implements HeartModelInterface, Runnable {

ArrayList<BeatObserver> beatObservers = new ArrayList<BeatObserver>();

ArrayList<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();

int time = 1000;

int bpm = 90;

Random random = new Random(System.currentTimeMillis());

Thread thread;

public HeartModel() {

thread = new Thread(this);

thread.start();

}

public void run() {

int lastrate = -1;

for(;;) {

int change = random.nextInt(10);

if (random.nextInt(2) == 0) {

change = 0 - change;

}

int rate = 60000/(time + change);

if (rate < 120 && rate > 50) {

time += change;

notifyBeatObservers();

if (rate != lastrate) {

lastrate = rate;

notifyBPMObservers();

}

}

try {

Thread.sleep(time);

} catch (Exception e) {}

}

}

public int getHeartRate() {

return 60000/time;

}

public void registerObserver(BeatObserver o) {

beatObservers.add(o);

}

public void removeObserver(BeatObserver o) {

int i = beatObservers.indexOf(o);

if (i >= 0) {

beatObservers.remove(i);

}

}

public void notifyBeatObservers() {

for(int i = 0; i < beatObservers.size(); i++) {

BeatObserver observer = (BeatObserver)beatObservers.get(i);

observer.updateBeat();

}

}

public void registerObserver(BPMObserver o) {

bpmObservers.add(o);

}

public void removeObserver(BPMObserver o) {

int i = bpmObservers.indexOf(o);

if (i >= 0) {

bpmObservers.remove(i);

}

}

public void notifyBPMObservers() {

for(int i = 0; i < bpmObservers.size(); i++) {

BPMObserver observer = (BPMObserver)bpmObservers.get(i);

observer.updateBPM();

}

}

}

The Heart Adapter

package headfirst.designpatterns.combined.djview;

public class HeartAdapter implements BeatModelInterface {

HeartModelInterface heart;

public HeartAdapter(HeartModelInterface heart) {

this.heart = heart;

}

public void initialize() {}

public void on() {}

public void off() {}

public int getBPM() {

return heart.getHeartRate();

}

public void setBPM(int bpm) {}

public void registerObserver(BeatObserver o) {

heart.registerObserver(o);

}

public void removeObserver(BeatObserver o) {

heart.removeObserver(o);

}

public void registerObserver(BPMObserver o) {

heart.registerObserver(o);

}

public void removeObserver(BPMObserver o) {

heart.removeObserver(o);

}

}

The Controller

package headfirst.designpatterns.combined.djview;

public class HeartController implements ControllerInterface {

HeartModelInterface model;

DJView view;

public HeartController(HeartModelInterface model) {

this.model = model;

view = new DJView(this, new HeartAdapter(model));

view.createView();

view.createControls();

view.disableStopMenuItem();

view.disableStartMenuItem();

}

public void start() {}

public void stop() {}

public void increaseBPM() {}

public void decreaseBPM() {}

public void setBPM(int bpm) {}

}

 Chapter 13. Better Living with Patterns: Patterns in the Real World

 [image: image with no caption]

Ahhhh, now you’re ready for a bright new world filled with Design Patterns.

 But, before you go opening all those new doors of opportunity, we need to cover a few details that you’ll encounter out in the real world — that’s right, things get a little more complex than they are here in Objectville. Come along, we’ve got a nice guide to help you through the transition on the next page...

The Objectville Guide to Better Living with Design Patterns

 [image: image with no caption]

 Please accept our handy guide with tips & tricks for living with patterns in the real world. In this guide you will:

	

 [image:]

	
Learn the all too common misconceptions about the definition of a “Design Pattern.”

	

 [image:]

	
Discover those nifty Design Patterns catalogs and why you just have to get one.

	

 [image:]

	
Avoid the embarrassment of using a Design Pattern at the wrong time.

	

 [image:]

	
Learn how to keep patterns in classifications where they belong.

	

 [image:]

	
See that discovering patterns isn’t just for the gurus; read our quick How To and become a patterns writer too.

	

 [image:]

	
Be there when the true identity of the mysterious Gang of Four is revealed.

	

 [image:]

	
Keep up with the neighbors — the coffee table books any patterns user must own.

	

 [image:]

	
Learn to train your mind like a Zen master.

	

 [image:]

	
Win friends and influence developers by improving your patterns vocabulary.

 Design Pattern defined

 We bet you’ve got a pretty good idea of what a pattern is after reading this book. But we’ve never really given a definition for a Design Pattern. Well, you might be a bit surprised by the definition that is in common use:

 Note

A Pattern

 is a solution to a problem in a context.

That’s not the most revealing definition is it? But don’t worry, we’re going to step through each of these parts: context, problem and solution:

	The
context

 is the situation in which the pattern applies. This should be a recurring situation.

 Note

Example: You have a collection of objects.

	The
problem

 refers to the goal you are trying to achieve in this context, but it also refers to any constraints that occur in the context.

 Note

You need to step through the objects without exposing the collection’s implementation.

	The
solution

 is what you’re after: a general design that anyone can apply which resolves the goal and set of constraints.

 Note

Encapsulate the iteration into a separate class.

This is one of those definitions that takes a while to sink in, but take it one step at a time. Here’s a little mnemonic you can repeat to yourself to remember it:

“If you find yourself in a context with a problem that has a goal that is affected by a set of constraints, then you can apply a design that resolves the goal and constraints and leads to a solution.”

Now, this seems like a lot of work just to figure out what a Design Pattern is. After all, you already know that a Design Pattern gives you a solution to a common recurring design problem. What is all this formality getting you? Well, you’re going to see that by having a formal way of describing patterns we can create a catalog of patterns, which has all kinds of benefits.

 [image: image with no caption]

You might be right; let’s think about this a bit... We need a
problem

 , a
solution

 and a
context

 :

	

Problem

 : How do I get to work on time?

	

Context

 : I’ve locked my keys in the car.

	

Solution

 : Break the window, get in the car, start the engine and drive to work.

We have all the components of the definition: we have a problem, which includes the goal of getting to work, and the constraints of time, distance and probably some other factors. We also have a context in which the keys to the car are inaccessible. And we have a solution that gets us to the keys and resolves both the time and distance constraints. We must have a pattern now! Right?

 Brain Power

We followed the Design Pattern definition and defined a problem, a context, and a solution (which works!). Is this a pattern? If not, how did it fail? Could we fail the same way when defining an OO Design Pattern?

 Looking more closely at the Design Pattern definition

 Our example does seem to match the Design Pattern definition, but it isn’t a true pattern. Why? For starters, we know that a pattern needs to apply to a recurring problem. While an absent-minded person might lock his keys in the car often, breaking the car window doesn’t qualify as a solution that can be applied over and over (or at least isn’t likely to if we balance the goal with another constraint: cost).

It also fails in a couple of other ways: first, it isn’t easy to take this description, hand it to someone and have him apply it to his own unique problem. Second, we’ve violated an important but simple aspect of a pattern: we haven’t even given it a name! Without a name, the pattern doesn’t become part of a vocabulary that can be shared with other developers.

Luckily, patterns are not described and documented as a simple problem, context and solution; we have much better ways of describing patterns and collecting them together into
patterns catalogs

 .

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Am I going to see pattern descriptions that are stated as a problem, a context and a solution?

	
A:

	

A:

 Pattern descriptions, which you’ll typically find in pattern catalogs, are usually a bit more revealing than that. We’re going to look at patterns catalogs in detail in just a minute; they describe a lot more about a pattern’s intent and motivation and where it might apply, along with the solution design and the consequences (good and bad) of using it.

	

Q:

	

Q: Is it okay to slightly alter a pattern’s structure to fit my design? Or am I going to have to go by the strict definition?

	
A:

	

A:

 Of course you can alter it. Like design principles, patterns are not meant to be laws or rules; they are guidelines that you can alter to fit your needs. As you’ve seen, a lot of real-world examples don’t fit the classic pattern designs.

However, when you adapt patterns, it never hurts to document how your pattern differs from the classic design — that way, other developers can quickly recognize the patterns you’re using and any differences between your pattern and the classic pattern.

	

Q:

	

Q: Where can I get a patterns catalog?

	
A:

	

A:

 The first and most definitive patterns catalog is
Design Patterns: Elements of Reusable Object-Oriented Software

 , by Gamma, Helm, Johnson & Vlissides (Addison Wesley). This catalog lays out 23 fundamental patterns. We’ll talk a little more about this book in a few pages.

Many other patterns catalogs are starting to be published in various domain areas such as enterprise software, concurrent systems and business systems.

 Geek Bits

May the force be with you

The Design Pattern definition tells us that the
problem

 consists of a
goal

 and a
set of constraints

 . Patterns gurus have a term for these: they call them forces
 . Why? Well, we’re sure they have their own reasons, but if you remember the movie, the force “shapes and controls the Universe.” Likewise, the forces in the pattern definition shape and control the solution. Only when a solution balances both sides of the force (the light side: your goal, and the dark side: the constraints) do we have a useful pattern.

This “force” terminology can be quite confusing when you first see it in pattern discussions, but just remember that there are two sides of the force (goals and constraints) and that they need to be balanced or resolved to create a pattern solution. Don’t let the lingo get in your way and may the force be with you!

 [image: image with no caption]

Frank

 : Fill us in, Jim. I’ve just been learning patterns by reading a few articles here and there.

Jim

 : Sure, each patterns catalog takes a set of patterns and describes each in detail along with its relationship to the other patterns.

Joe

 : Are you saying there is more than one patterns catalog?

Jim

 : Of course; there are catalogs for fundamental Design Patterns and there are also catalogs on domain-specific patterns, like EJB patterns.

Frank

 : Which catalog are you looking at?

Jim

 : This is the classic GoF catalog; it contains 23 fundamental Design Patterns.

Frank

 : GoF?

Jim

 : Right, that stands for the Gang of Four. The Gang of Four are the guys that put together the first patterns catalog.

Joe

 : What’s in the catalog?

Jim

 : There is a set of related patterns. For each pattern there is a description that follows a template and spells out a lot of details of the pattern. For instance, each pattern has a
name

 .

Frank

 : Wow, that’s earth-shattering — a name! Imagine that.

Jim

 : Hold on, Frank; actually, the name is really important. When we have a name for a pattern, it gives us a way to talk about the pattern; you know, that whole shared vocabulary thing.

Frank

 : Okay, okay. I was just kidding. Go on, what else is there?

Jim

 : Well, like I was saying, every pattern follows a template. For each pattern we have a name and a few sections that tell us more about the pattern. For instance, there is an Intent section that describes what the pattern is, kind of like a definition. Then there are Motivation and Applicability sections that describe when and where the pattern might be used.

Joe

 : What about the design itself?

Jim

 : There are several sections that describe the class design along with all the classes that make it up and what their roles are. There is also a section that describes how to implement the pattern and often sample code to show you how.

Frank

 : It sounds like they’ve thought of everything.

Jim

 : There’s more. There are also examples of where the pattern has been used in real systems, as well as what I think is one of the most useful sections: how the pattern relates to other patterns.

Frank

 : Oh, you mean they tell you things like how state and strategy differ?

Jim

 : Exactly!

Joe

 : So Jim, how are you actually using the catalog? When you have a problem, do you go fishing in the catalog for a solution?

Jim

 : I try to get familiar with all the patterns and their relationships first. Then, when I need a pattern, I have some idea of what it is. I go back and look at the Motivation and Applicability sections to make sure I’ve got it right. There is also another really important section: Consequences. I review that to make sure there won’t be some unintended effect on my design.

Frank

 : That makes sense. So once you know the pattern is right, how do you approach working it into your design and implementing it?

Jim

 : That’s where the class diagram comes in. I first read over the Structure section to review the diagram and then over the Participants section to make sure I understand each class’s role. From there, I work it into my design, making any alterations I need to make it fit. Then I review the Implementation and Sample code sections to make sure I know about any good implementation techniques or gotchas I might encounter.

Joe

 : I can see how a catalog is really going to accelerate my use of patterns!

Frank

 : Totally. Jim, can you walk us through a pattern description?

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Is it possible to create your own Design Patterns? Or is that something you have to be a “patterns guru” to do?

	
A:

	

A:

 First, remember that patterns are discovered, not created. So, anyone can discover a Design Pattern and then author its description; however, it’s not easy and doesn’t happen quickly, nor often. Being a “patterns writer” takes commitment.

You should first think about why you’d want to — the majority of people don’t author patterns; they just use them. However, you might work in a specialized domain for which you think new patterns would be helpful, or you might have come across a solution to what you think is a recurring problem, or you may just want to get involved in the patterns community and contribute to the growing body of work.

	

Q:

	

Q: I’m game; how do I get started?

	
A:

	

A:

 As with any discipline, the more you know the better. Studying existing patterns, what they do, and how they relate to other patterns is crucial. Not only does it make you familiar with how patterns are crafted, it also prevents you from reinventing the wheel. From there you’ll want to start writing your patterns on paper, so you can communicate them to other developers; we’re going to talk more about how to communicate your patterns in a bit. If you’re really interested, you’ll want to read the section that follows these Q&As.

	

Q:

	

Q: How do I know when I really have a pattern?

	
A:

	

A:

 That’s a very good question: you don’t have a pattern until others have used it and found it to work. In general, you don’t have a pattern until it passes the “Rule of Three.” This rule states that a pattern can be called a pattern only if it has been applied in a real-world solution at least three times.

So you wanna be a design patterns star?

Well, listen now to what I tell.

Get yourself a patterns catalog,

Then take some time and learn it well.

And when you’ve got your description right,

And three developers agree without a fight,

Then you’ll know it’s a pattern alright.

 Note

To the tune of “So you wanna be a Rock’n Roll Star.”

 So you wanna be a Design Patterns writer

Do your homework.

 You need to be well versed in the existing patterns before you can create a new one. Most patterns that appear to be new, are, in fact, just variants of existing patterns. By studying patterns, you become better at recognizing them, and you learn to relate them to other patterns.

Take time to reflect, evaluate.

 Your experience — the problems you’ve encountered, and the solutions you’ve used — are where ideas for patterns are born. So take some time to reflect on your experiences and comb them for novel designs that recur. Remember that most designs are variations on existing patterns and not new patterns. And when you do find what looks like a new pattern, its applicability may be too narrow to qualify as a real pattern.

Get your ideas down on paper in a way others can understand.

 Locating new patterns isn’t of much use if others can’t make use of your find; you need to document your pattern candidates so that others can read, understand, and apply them to their own solution and then supply you with feedback. Luckily, you don’t need to invent your own method of documenting your patterns. As you’ve already seen with the GoF template, a lot of thought has already gone into how to describe patterns and their characteristics.

Have others try your patterns; then refine and refine some more.

 Don’t expect to get your pattern right the first time. Think of your pattern as a work in progress that will improve over time. Have other developers review your candidate pattern, try it out, and give you feedback. Incorporate that feedback into your description and try again. Your description will never be perfect, but at some point it should be solid enough that other developers can read and understand it.

Don’t forget the Rule of Three.

 Remember, unless your pattern has been successfully applied in three real-world solutions, it can’t qualify as a pattern. That’s another good reason to get your pattern into the hands of others so they can try it, give feedback, and allow you to converge on a working pattern.

 [image: image with no caption]

Who Does What?

 Match each pattern with its description:

 [image: image with no caption]

 Organizing Design Patterns

 As the number of discovered Design Patterns grows, it makes sense to partition them into classifications so that we can organize them, narrow our searches to a subset of all Design Patterns, and make comparisons within a group of patterns.

In most catalogs, you’ll find patterns grouped into one of a few classification schemes. The most well-known scheme was used by the first patterns catalog and partitions patterns into three distinct categories based on their purposes: Creational, Behavioral, and Structural.

Sharpen your pencil

 [image: image with no caption]

 Pattern Categories

Sharpen your pencil Solution

Here’s the grouping of patterns into categories. You probably found the exercise difficult, because many of the patterns seem like they could fit into more than one category. Don’t worry, everyone has trouble figuring out the right categories for the patterns.

 [image: image with no caption]

 Patterns are often classified by a second attribute: whether or not the pattern deals with classes or objects:

 [image: image with no caption]

There Are No Dumb Questions

	

Q:

	

Q: Are these the only classification schemes?

	
A:

	

A:

 No, other schemes have been proposed. Some other schemes start with the three categories and then add subcategories, like “Decoupling Patterns.” You’ll want to be familiar with the most common schemes for organizing patterns, but also feel free to create your own, if it helps you to understand the patterns better.

	

Q:

	

Q: Does organizing patterns into categories really help you remember them?

	
A:

	

A:

 It certainly gives you a framework for the sake of comparison. But many people are confused by the creational, structural and behavioral categories; often a pattern seems to fit into more than one category. The most important thing is to know the patterns and the relationships among them. When categories help, use them!

	

Q:

	

Q: Why is the Decorator Pattern in the structural category? I would have thought of that as a behavioral pattern; after all, it adds behavior!

	
A:

	

A:

 Yes, lots of developers say that! Here’s the thinking behind the Gang of Four classification: structural patterns describe how classes and objects are composed to create new structures or new functionality. The Decorator Pattern allows you to compose objects by wrapping one object with another to provide new functionality. So the focus is on how you compose the objects dynamically to gain functionality, rather than on the communication and interconnection between objects, which is the purpose of behavioral patterns. But remember, the intent of these patterns is different, and that’s often the key to understanding which category a pattern belongs to.

Master and Student...

 Master:

Grasshopper, you look troubled.

Student:

Yes, I’ve just learned about pattern classification and I’m confused.

Master:

Grasshopper, continue...

Student:

After learning much about patterns, I’ve just been told that each pattern fits into one of three classifications: structural, behavioral, or creational. Why do we need these classifications?

Master:

Grasshopper, whenever we have a large collection of anything, we naturally find categories to fit those things into. It helps us to think of the items at a more abstract level.

Student:

Master; can you give me an example?

Master:

Of course. Take automobiles; there are many different models of automobiles and we naturally put them into categories like economy cars, sports cars, SUVs, trucks, and luxury car categories.

Master:

Grasshopper, you look shocked; does this not make sense?

Student:

Master, it makes a lot of sense, but I am shocked you know so much about cars!

Master:

Grasshopper, I can’t relate

 everything

to lotus flowers or rice bowls. Now, may I continue?

Student:

Yes, yes, I’m sorry, please continue.

Master:

Once you have classifications or categories you can easily talk about the different groupings: “If you’re doing the mountain drive from Silicon Valley to Santa Cruz, a sports car with good handling is the best option.” Or, “With the worsening oil situation, you really want to buy a economy car; they’re more fuel-efficient.”

Student:

So by having categories we can talk about a set of patterns as a group. We might know we need a creational pattern, without knowing exactly which one, but we can still talk about creational patterns.

Master

: Yes, and it also gives us a way to compare a member to the rest of the category. For example, “the Mini really is the most stylish compact car around,” or to narrow our search, “I need a fuel-efficient car.”

Student:

I see. So I might say that the Adapter Pattern is the best structural pattern for changing an object’s interface.

Master
 :
Yes. We also can use categories for one more purpose: to launch into new territory. For instance, “we really want to deliver a sports car with Ferrari performance at Miata prices.”

Student:

That sounds like a death trap.

Master
 :
I’m sorry, I did not hear you Grasshopper.

Student:

Uh, I said “I see that.”

Student:

So categories give us a way to think about the way groups of patterns relate and how patterns within a group relate to one another. They also give us a way to extrapolate to new patterns. But why are there three categories and not four, or five?

Master
 :
Ah, like stars in the night sky, there are as many categories as you want to see. Three is a convenient number and a number that many people have decided makes for a nice grouping of patterns. But others have suggested four, five or more.

 [image: image with no caption]

 Thinking in Patterns

 Contexts, constraints, forces, catalogs, classifications... boy, this is starting to sound mighty academic. Okay, all that stuff is important and knowledge is power. But, let’s face it, if you understand the academic stuff and don’t have the
experience

 and practice using patterns, then it’s not going to make much difference in your life.

Here’s a quick guide to help you start to
think in patterns.

 What do we mean by that? We mean being able to look at a design and see where patterns naturally fit and where they don’t.

 [image: image with no caption]

 Keep it simple (KISS)

First of all, when you design, solve things in the simplest way possible. Your goal should be simplicity, not “how can I apply a pattern to this problem?” Don’t feel like you aren’t a sophisticated developer if you don’t use a pattern to solve a problem. Other developers will appreciate and admire the simplicity of your design. That said, sometimes the best way to keep your design simple and flexible is to use a pattern.

 Design Patterns aren’t a magic bullet; in fact, they’re not even a bullet!

Patterns, as you know, are general solutions to recurring problems. Patterns also have the benefit of being well tested by lots of developers. So, when you see a need for one, you can sleep well knowing many developers have been there before and solved the problem using similar techniques.

However, patterns aren’t a magic bullet. You can’t plug one in, compile and then take an early lunch. To use patterns, you also need to think through the consequences for the rest of your design.

 You know you need a pattern when...

Ah... the most important question: when do you use a pattern? As you approach your design, introduce a pattern when you’re sure it addresses a problem in your design. If a simpler solution might work, give that consideration before you commit to using a pattern.

Knowing

 when a pattern applies is where your experience and knowledge come in. Once you’re sure a simple solution will not meet your needs, you should consider the problem along with the set of constraints under which the solution will need to operate — these will help you match your problem to a pattern. If you’ve got a good knowledge of patterns, you may know of a pattern that is a good match. Otherwise, survey patterns that look like they might solve the problem. The intent and applicability sections of the patterns catalogs are particularly useful for this. Once you’ve found a pattern that appears to be a good match, make sure it has a set of consequences you can live with and study its effect on the rest of your design. If everything looks good, go for it!

 There is one situation in which you’ll want to use a pattern even if a simpler solution would work: when you expect aspects of your system to vary. As we’ve seen, identifying areas of change in your design is usually a good sign that a pattern is needed. Just make sure you are adding patterns to deal with
practical change

 that is likely to happen, not
hypothetical change

 that may happen.

Design time isn’t the only time you want to consider introducing patterns; you’ll also want to do so at refactoring time.

 Refactoring time is Patterns time!

Refactoring is the process of making changes to your code to improve the way it is organized. The goal is to improve its structure, not change its behavior. This is a great time to reexamine your design to see if it might be better structured with patterns. For instance, code that is full of conditional statements might signal the need for the State Pattern. Or, it may be time to clean up concrete dependencies with a Factory. Entire books have been written on the topic of refactoring with patterns, and as your skills grow, you’ll want to study this area more.

 Take out what you don’t really need. Don’t be afraid to remove a Design Pattern from your design.

No one ever talks about when to remove a pattern. You’d think it was blasphemy! Nah, we’re all adults here; we can take it.

So when do you remove a pattern? When your system has become complex and the flexibility you planned for isn’t needed. In other words, when a simpler solution without the pattern would be better.

 If you don’t need it now, don’t do it now.

Design Patterns are powerful, and it’s easy to see all kinds of ways they can be used in your current designs. Developers naturally love to create beautiful architectures that are ready to take on change from any direction.

Resist the temptation. If you have a practical need to support change in a design today, go ahead and employ a pattern to handle that change. However, if the reason is only hypothetical, don’t add the pattern; it is only going to add complexity to your system, and you might never need it!

 [image: image with no caption]

Master and Student...

 [image: image with no caption]

 Master:

Grasshopper, your initial training is almost complete. What are your plans?

Student:

I’m going to Disneyland! And, then I’m going to start creating lots of code with patterns!

Master:

Whoa, hold on. Never use your big guns unless you have to.

Student:

What do you mean, Master? Now that I’ve learned design patterns shouldn’t I be using them in all my designs to achieve maximum power, flexibility and manageability?

Master:

No; patterns are a tool, and a tool that should only be used when needed. You’ve also spent a lot of time learning design principles. Always start from your principles and create the simplest code you can that does the job. However, if you see the need for a pattern emerge, then use it.

Student:

So I shouldn’t build my designs from patterns?

Master:

That should not be your goal when beginning a design. Let patterns emerge naturally as your design progresses.

Student:

If patterns are so great, why should I be so careful about using them?

Master:

Patterns can introduce complexity, and we never want complexity where it is not needed. But patterns are powerful when used where they are needed. As you already know, patterns are proven design experience that can be used to avoid common mistakes. They’re also a shared vocabulary for communicating our design to others.

Student:

Well, when do we know it’s okay to introduce design patterns?

Master:

Introduce a pattern when you are sure it’s necessary to solve a problem in your design, or when you are quite sure that it is needed to deal with a future change in the requirements of your application.

Student:

I guess my learning is going to continue even though I already understand a lot of patterns.

Master:

Yes, grasshopper; learning to manage the complexity and change in software is a life-long pursuit. But now that you know a good set of patterns, the time has come to apply them where needed in your design and to continue learning more patterns.

Student:

Wait a minute, you mean I don’t know them ALL?

Master:

Grasshopper, you’ve learned the fundamental patterns; you’re going to find there are many more, including patterns that just apply to particular domains such as concurrent systems and enterprise systems. But now that you know the basics, you’re in good shape to learn them.

 Your Mind on Patterns

The Beginner uses patterns everywhere.

 This is good: the beginner gets lots of experience with and practice using patterns. The beginner also thinks, “The more patterns I use, the better the design.” The beginner will learn this is not so, that all designs should be as simple as possible. Complexity and patterns should only be used where they are needed for practical extensibility.

 [image: image with no caption]

“I need a pattern for Hello World.”

As learning progresses, the Intermediate mind starts to see where patterns are needed and where they aren’t.

 The intermediate mind still tries to fit too many square patterns into round holes, but also begins to see that patterns can be adapted to fit situations where the canonical pattern doesn’t fit.

 [image: image with no caption]

“Maybe I need a Singleton here.”

The Zen mind is able to see patterns where they fit naturally.

 The Zen mind is not obsessed with using patterns; rather it looks for simple solutions that best solve the problem. The Zen mind thinks in terms of the object principles and their trade-offs. When a need for a pattern naturally arises, the Zen mind applies it knowing well that it may require adaptation. The Zen mind also sees relationships to similar patterns and understands the subtleties of differences in the intent of related patterns.
The Zen mind is also a Beginner mind

 — it doesn’t let all that pattern knowledge overly influence design decisions.

 [image: image with no caption]

“This is a natural place for Decorator.”

 Note

 WARNING: Overuse of design patterns can lead to code that is downright over-engineered. Always go with the simplest solution that does the job and introduce patterns where the need emerges.

 [image: image with no caption]

Of course we want you to use Design Patterns!

But we want you to be a good OO designer even more.

When a design solution calls for a pattern, you get the benefits of using a solution that has been time-tested by lots of developers. You’re also using a solution that is well documented and that other developers are going to recognize (you know, that whole shared vocabulary thing).

However, when you use Design Patterns, there can also be a downside. Design Patterns often introduce additional classes and objects, and so they can increase the complexity of your designs. Design Patterns can also add more layers to your design, which adds not only complexity, but also inefficiency.

Also, using a Design Pattern can sometimes be outright overkill. Many times you can fall back on your design principles and find a much simpler solution to solve the same problem. If that happens, don’t fight it. Use the simpler solution.

Don’t let us discourage you, though. When a Design Pattern is the right tool for the job, the advantages are many.

 Don’t forget the power of the shared vocabulary

 We’ve spent so much time in this book discussing OO nuts and bolts that it’s easy to forget the human side of Design Patterns — they don’t just help load your brain with solutions, they also give you a shared vocabulary with other developers. Don’t underestimate the power of a shared vocabulary, it’s one of the
biggest benefits

 of Design Patterns.

Just think, something has changed since the last time we talked about shared vocabularies; you’ve now started to build up quite a vocabulary of your own! Not to mention, you have also learned a full set of OO design principles from which you can easily understand the motivation and workings of any new patterns you encounter.

Now that you’ve got the Design Pattern basics down, it’s time for you to go out and spread the word to others. Why? Because when your fellow developers know patterns and use a shared vocabulary as well, it leads to better designs, better communication, and, best of all, it’ll save you a lot of time that you can spend on cooler things.

 [image: image with no caption]

Top five ways to share your vocabulary

	

In design meetings:

 When you meet with your team to discuss a software design, use design patterns to help stay “in the design” longer. Discussing designs from the perspective of Design Patterns and OO principles keeps your team from getting bogged down in implementation details and prevent many misunderstandings.

	

With other developers:

 Use patterns in your discussions with other developers. This helps other developers learn about new patterns and builds a community. The best part about sharing what you’ve learned is that great feeling when someone else “gets it”!

	

In architecture documentation:

 When you write architectural documentation, using patterns will reduce the amount of documentation you need to write and gives the reader a clearer picture of the design.

	

In code comments and naming conventions:

 When you’re writing code, clearly identify the patterns you’re using in comments. Also, choose class and method names that reveal any patterns underneath. Other developers who have to read your code will thank you for allowing them to quickly understand your implementation.

	

To groups of interested developers:

 Share your knowledge. Many developers have heard about patterns but don’t have a good understanding of what they are. Volunteer to give a brown-bag lunch on patterns or a talk at your local user group.

 [image: image with no caption]

 Cruisin’ Objectville with the Gang of Four

 [image: image with no caption]

 You won’t find the Jets or Sharks hanging around Objectville, but you will find the Gang of Four. As you’ve probably noticed, you can’t get far in the World of Patterns without running into them. So, who is this mysterious gang?

Put simply, “the GoF,” which includes Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, is the group of guys who put together the first patterns catalog and in the process, started an entire movement in the software field!

How did they get that name? No one knows for sure; it’s just a name that stuck. But think about it: if you’re going to have a “gang element” running around Objectville, could you think of a nicer bunch of guys? In fact, they’ve even agreed to pay us a visit...

 [image: image with no caption]

 Your journey has just begun...

 Now that you’re on top of Design Patterns and ready to dig deeper, we’ve got three definitive texts that you need to add to your bookshelf...

The definitive Design Patterns text

This is the book that kicked off the entire field of Design Patterns when it was released in 1995. You’ll find all the fundamental patterns here. In fact, this book is the basis for the set of patterns we used in
Head First Design Patterns

 .

You won’t find this book to be the last word on Design Patterns — the field has grown substantially since its publication — but it is the first and most definitive.

Picking up a copy of
Design Patterns

 is a great way to start exploring patterns after Head First.

 [image: image with no caption]

The definitive Patterns texts

Patterns didn’t start with the GoF; they started with Christopher Alexander, a professor of architecture at Berkeley — that’s right, Alexander is an
architect

 , not a computer scientist. Alexander invented patterns for building living architectures (like houses, towns and cities).

The next time you’re in the mood for some deep, engaging reading, pick up
The Timeless Way of Building

 and
A Pattern Language

 . You’ll see the true beginnings of Design Patterns and recognize the direct analogies between creating “living architecture” and flexible, extensible software.

So grab a cup of Starbuzz Coffee, sit back, and enjoy...

 [image: image with no caption]

Other Design Patterns resources

You’re going to find there is a vibrant, friendly community of patterns users and writers out there and they’re glad to have you join them. Here are a few resources to get you started...

Websites

The Portland Patterns Repository

 , run by Ward Cunningham, is a wiki devoted to all things related to patterns. Anyone can participate. You’ll find threads of discussion on every topic you can think of related to patterns and OO systems.

http://c2.com/cgi/wiki?WelcomeVisitors

The
Hillside Group

 fosters common programming and design practices and provides a central resource for patterns work. The site includes information on many patterns-related resources such as articles, books, mailing lists and tools.

http://hillside.net/

 [image: image with no caption]

Conferences and Workshops

And if you’d like to get some face-to-face time with the patterns community, be sure to check out the many patterns-related conferences and workshops. The Hillside site maintains a complete list. At the least you’ll want to check out Pattern Languages of Programs (PLoP), and the ACM Conference on Object-Oriented Systems, Languages and Applications (OOPSLA).

 [image: image with no caption]

 The Patterns Zoo

 [image: image with no caption]

 As you’ve just seen, patterns didn’t start with software; they started with the architecture of buildings and towns. In fact, the patterns concept can be applied in many different domains. Take a walk around the Patterns Zoo to see a few...

 [image: image with no caption]

Architectural Patterns

 are used to create the living, vibrant architecture of buildings, towns, and cities. This is where patterns got their start.

 Note

Habitat: found in buildings you like to live in, look at and visit.

 [image: image with no caption]

 Note

Habitat: seen hanging around 3-tier architectures, client-server systems and the web.

Application Patterns

 are patterns for creating system-level architecture. Many multi-tier architectures fall into this category.

 Note

Field note: MVC has been known to pass for an application pattern.

 [image: image with no caption]

Domain-Specific Patterns

 are patterns that concern problems in specific domains, like concurrent systems or real-time systems.

 Note

Help find a habitat

_____J2EE

 [image: image with no caption]

Business Process Patterns

 describe the interaction between businesses, customers and data, and can be applied to problems such as how to effectively make and communicate decisions.

 Note

Help find a habitat

Development team

Customer support team

 [image: image with no caption]

Organizational Patterns

 describe the structures and practices of human organizations. Most efforts to date have focused on organizations that produce and/or support software.

 [image: image with no caption]

User Interface Design Patterns

 address the problems of how to design interactive software programs.

 Note

Habitat: seen in the vicinity of video game designers, GUI builders, and producers.

 Note

Field notes: please add your observations of pattern domains here:

 Annihilating evil with Anti-Patterns

 [image: image with no caption]

 The Universe just wouldn’t be complete if we had patterns and no anti-patterns, now would it?

If a Design Pattern gives you a general solution to a recurring problem in a particular context, then what does an anti-pattern give you?

 Note

An
Anti-Pattern

 tells you how to go from a problem to a BAD solution.

You’re probably asking yourself, “Why on earth would anyone waste their time documenting bad solutions?”

Think about it like this: if there is a recurring bad solution to a common problem, then by documenting it we can prevent other developers from making the same mistake. After all, avoiding bad solutions can be just as valuable as finding good ones!

Let’s look at the elements of an anti-pattern:

An anti-pattern tells you why a bad solution is attractive.

 Let’s face it, no one would choose a bad solution if there wasn’t something about it that seemed attractive up front. One of the biggest jobs of the anti-pattern is to alert you to the seductive aspect of the solution.

An anti-pattern tells you why that solution in the long term is bad.

 In order to understand why it’s an anti-pattern, you’ve got to understand how it’s going to have a negative effect down the road. The anti-pattern describes where you’ll get into trouble using the solution.

An anti-pattern suggests other patterns that are applicable which may provide good solutions.

 To be truly helpful, an anti-pattern needs to point you in the right direction; it should suggest other possibilities that may lead to good solutions.

Let’s have a look at an anti-pattern.

An anti-pattern always looks like a good solution, but then turns out to be a bad solution when it is applied.

By documenting anti-patterns we help others to recognize bad solutions before they implement them.

Like patterns, there are many types of anti-patterns including development, OO, organizational, and domain-specific anti-patterns.

 Note

Here’s an example of a software development anti-pattern.

Anti-Pattern

Name

 : Golden Hammer

 Note

Just like a Design Pattern, an anti-pattern has a name so we can create a shared vocabulary.

Problem

 : You need to choose technologies for your development and you believe that exactly one technology must dominate the architecture.

Context

 : You need to develop some new system or piece of software that doesn’t fit well with the technology that the development team is familiar with.

 Note

The problem and context, just like a Design Pattern description.

Forces

 :

 Note

Tells you why the solution is attractive.

	The development team is committed to the technology they know.

	The development team is not familiar with other technologies.

	Unfamiliar technologies are seen as risky.

	It is easy to plan and estimate for development using the familiar technology.

Supposed Solution

 : Use the familiar technology anyway. The technology is applied obsessively to many problems, including places where it is clearly inappropriate.

 Note

The bad, yet attractive, solution.

Refactored Solution

 : Expanding the knowledge of developers through education, training, and book study groups that expose developers to new solutions.

 Note

How to get to a good solution.

Examples

 :

 Note

Example of where this anti-pattern has been observed.

Web companies keep using and maintaining their internal homegrown caching systems when open source alternatives are in use.

 Note

Adapted from the Portland Pattern Repository’s WIKI at http://c2.com/
 where you’ll find many anti patterns and discussions.

 Tools for your Design Toolbox

You’ve reached that point where you’ve outgrown us. Now’s the time to go out in the world and explore patterns on your own...

 [image: image with no caption]

Bullet Points

	Let Design Patterns emerge in your designs; don’t force them in just for the sake of using a pattern.

	Design Patterns aren’t set in stone; adapt and tweak them to meet your needs.

	Always use the simplest solution that meets your needs, even if it doesn’t include a pattern.

	Study Design Patterns catalogs to familiarize yourself with patterns and the relationships among them.

	Pattern classifications (or categories) provide groupings for patterns. When they help, use them.

	You need to be committed to be a patterns writer: it takes time and patience, and you have to be willing to do lots of refinement.

	Remember, most patterns you encounter will be adaptations of existing patterns, not new patterns.

	Build your team’s shared vocabulary. This is one of the most powerful benefits of using patterns.

	Like any community, the patterns community has its own lingo. Don’t let that hold you back. Having read this book, you now know most of it.

 Leaving Objectville...

 [image: image with no caption]

 Boy, it’s been great having you in Objectville.

We’re going to miss you, for sure. But don’t worry — before you know it, the next Head First book will be out and you can visit again. What’s the next book, you ask? Hmmm, good question! Why don’t you help us decide? Send email to
booksuggestions@wickedlysmart.com

 .

Who Does What? Solution

 Match each pattern with its description:

 [image: image with no caption]

 Appendix A. Leftover Patterns

 [image: image with no caption]

Not everyone can be the most popular.

 A lot has changed in the last 20 years. Since
Design Patterns: Elements of Reusable Object-Oriented Software

 first came out, developers have applied these patterns thousands of times. The patterns we summarize in this appendix are full-fledged, card-carrying, official GoF patterns, but aren’t used as often as the patterns we’ve explored so far. But these patterns are awesome in their own right, and if your situation calls for them, you should apply them with your head held high. Our goal in this appendix is to give you a high-level idea of what these patterns are all about.

 Bridge

Use the Bridge Pattern to vary not only your implementations, but also your abstractions.

A scenario

Imagine you’re going to revolutionize “extreme lounging.” You’re writing the code for a new ergonomic and user-friendly remote control for TVs. You already know that you’ve got to use good OO techniques because while the remote is based on the same
abstraction

 , there will be lots of
implementations

 — one for each model of TV.

 [image: image with no caption]

Your dilemma

You know that the remote’s user interface won’t be right the first time. In fact, you expect that the product will be refined many times as usability data is collected on the remote control.

So your dilemma is that the remotes are going to change and the TVs are going to change. You’ve already
abstracted

 the user interface so that you can vary the
implementation

 over the many TVs your customers will own. But you are also going to need to
vary the abstraction

 because it is going to change over time as the remote is improved based on the user feedback.

 Note

Using this design we can vary only
 the TV implementation, not the user interface.

So how are you going to create an OO design that allows you to vary the implementation
and

 the abstraction?

 Why use the Bridge Pattern?

The Bridge Pattern allows you to vary the implementation
and

 the abstraction by placing the two in separate class hierarchies.

 [image: image with no caption]

Now you have two hierarchies, one for the remotes and a separate one for platform-specific TV implementations. The bridge allows you to vary either side of the two hierarchies independently.

 Bridge Benefits

	Decouples an implementation so that it is not bound permanently to an interface.

	Abstraction and implementation can be extended independently.

	Changes to the concrete abstraction classes don’t affect the client.

 Bridge Uses and Drawbacks

	Useful in graphics and windowing systems that need to run over multiple platforms.

	Useful any time you need to vary an interface and an implementation in different ways.

	Increases complexity.

 Builder

Use the Builder Pattern to encapsulate the construction of a product and allow it to be constructed in steps.

A scenario

You’ve just been asked to build a vacation planner for Patternsland, a new theme park just outside of Objectville. Park guests can choose a hotel and various types of admission tickets, make restaurant reservations, and even book special events. To create a vacation planner, you need to be able to create structures like this:

 [image: image with no caption]

You need a flexible design

Each guest’s planner can vary in the number of days and types of activities it includes. For instance, a local resident might not need a hotel, but wants to make dinner and special event reservations. Another guest might be flying into Objectville and needs a hotel, dinner reservations, and admission tickets.

So, you need a flexible data structure that can represent guest planners and all their variations; you also need to follow a sequence of potentially complex steps to create the planner. How can you provide a way to create the complex structure without mixing it with the steps for creating it?

 Why use the Builder Pattern?

Remember Iterator? We encapsulated the iteration into a separate object and hid the internal representation of the collection from the client. It’s the same idea here: we encapsulate the creation of the trip planner in an object (let’s call it a builder), and have our client ask the builder to construct the trip planner structure for it.

 [image: image with no caption]

 Builder Benefits

	Encapsulates the way a complex object is constructed.

	Allows objects to be constructed in a multistep and varying process (as opposed to one-step factories).

	Hides the internal representation of the product from the client.

	Product implementations can be swapped in and out because the client only sees an abstract interface.

 Builder Uses and Drawbacks

	Often used for building composite structures.

	Constructing objects requires more domain knowledge of the client than when using a Factory.

 Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to give more than one object a chance to handle a request.

A scenario

Mighty Gumball has been getting more email than they can handle since the release of the Java-powered Gumball Machine. From their own analysis they get four kinds of email: fan mail from customers that love the new 1-in-10 game, complaints from parents whose kids are addicted to the game, and requests to put machines in new locations. They also get a fair amount of spam.

All fan mail should go straight to the CEO, all complaints should go to the legal department and all requests for new machines should go to business development. Spam should be deleted.

Your task

Mighty Gumball has already written some AI detectors that can tell if an email is spam, fan mail, a complaint, or a request, but they need you to create a design that can use the detectors to handle incoming email.

 [image: image with no caption]

 How to use the Chain of Responsibility Pattern

With the Chain of Responsibility Pattern, you create a chain of objects to examine requests. Each object in turn examines a request and either handles it, or passes it on to the next object in the chain.

 Note

Each object in the chain acts as a handler and has a successor object. If it can handle the request, it does; otherwise, it forwards the request to its successor.

 [image: image with no caption]

As email is received, it is passed to the first handler: the SpamHandler. If the SpamHandler can’t handle the request, it is passed on to the FanHandler. And so on...

 [image: image with no caption]

 Chain of Responsibility Benefits

	Decouples the sender of the request and its receivers.

	Simplifies your object because it doesn’t have to know the chain’s structure and keep direct references to its members.

	Allows you to add or remove responsibilities dynamically by changing the members or order of the chain.

 Chain of Responsibility Uses and Drawbacks

	Commonly used in windows systems to handle events like mouse clicks and keyboard events.

	Execution of the request isn’t guaranteed; it may fall off the end of the chain if no object handles it (this can be an advantage or a disadvantage).

	Can be hard to observe and debug at runtime.

 Flyweight

Use the Flyweight Pattern when one instance of a class can be used to provide many “virtual instances.”

A scenario

You want to add trees as objects in your hot new landscape design application. In your application, trees don’t really do very much; they have an X-Y location, and they can draw themselves dynamically, depending on how old they are. The thing is, a user might want to have lots and lots of trees in one of their home landscape designs. It might look something like this:

 [image: image with no caption]

Your big client’s dilemma

You’ve just landed your “reference account.” That key client you’ve been pitching for months. They’re going to buy 1,000 seats of your application, and they’re using your software to do the landscape design for huge planned communities. After using your software for a week, your client is complaining that when they create large groves of trees, the app starts getting sluggish...

 Why use the Flyweight Pattern?

What if, instead of having thousands of Tree objects, you could redesign your system so that you’ve got only one instance of Tree, and a client object that maintains the state of ALL your trees? That’s the Flyweight!

 [image: image with no caption]

 Flyweight Benefits

	Reduces the number of object instances at runtime, saving memory.

	Centralizes state for many “virtual” objects into a single location.

 Flyweight Uses and Drawbacks

	The Flyweight is used when a class has many instances, and they can all be controlled identically.

	A drawback of the Flyweight pattern is that once you’ve implemented it, single, logical instances of the class will not be able to behave independently from the other instances.

 Interpreter

Use the Interpreter Pattern to build an interpreter for a language.

A scenario

Remember the Duck Simulator? You have a hunch it would also make a great educational tool for children to learn programming. Using the simulator, each child gets to control one duck with a simple language. Here’s an example of the language:

 [image: image with no caption]

 Relax

The Interpreter Pattern requires some knowledge of formal grammars.

If you’ve never studied formal grammars, go ahead and read through the pattern; you’ll still get the gist of it.

Now, remembering how to create grammars from one of your old introductory programming classes, you write out the grammar:

 [image: image with no caption]

Now what?

You’ve got a grammar; now all you need is a way to represent and interpret sentences in the grammar so that the students can see the effects of their programming on the simulated ducks.

 How to implement an interpreter

When you need to implement a simple language, the Interpreter Pattern defines a class-based representation for its grammar along with an interpreter to interpret its sentences. To represent the language, you use a class to represent each rule in the language. Here’s the duck language translated into classes. Notice the direct mapping to the grammar.

 [image: image with no caption]

To interpret the language, call the interpret() method on each expression type. This method is passed a context — which contains the input stream of the program we’re parsing — and matches the input and evaluates it.

 Interpreter Benefits

	Representing each grammar rule in a class makes the language easy to implement.

	Because the grammar is represented by classes, you can easily change or extend the language.

	By adding methods to the class structure, you can add new behaviors beyond interpretation, like pretty printing and more sophisticated program validation.

 Interpreter Uses and Drawbacks

	Use interpreter when you need to implement a simple language.

	Appropriate when you have a simple grammar and simplicity is more important than efficiency.

	Used for scripting and programming languages.

	This pattern can become cumbersome when the number of grammar rules is large. In these cases a parser/compiler generator may be more appropriate.

 Mediator

Use the Mediator Pattern to centralize complex communications and control between related objects.

A scenario

Bob has a Java-enabled auto-house, thanks to the good folks at HouseOfTheFuture. All of his appliances are designed to make his life easier. When Bob stops hitting the snooze button, his alarm clock tells the coffee maker to start brewing. Even though life is good for Bob, he and other clients are always asking for lots of new features: No coffee on the weekends... Turn off the sprinkler 15 minutes before a shower is scheduled... Set the alarm early on trash days...

 [image: image with no caption]

HouseOfTheFuture’s dilemma

It’s getting really hard to keep track of which rules reside in which objects, and how the various objects should relate to each other.

 Mediator in action...

With a Mediator added to the system, all of the appliance objects can be greatly simplified:

	They tell the Mediator when their state changes.

	They respond to requests from the Mediator.

Before we added the Mediator, all of the appliance objects needed to know about each other... they were all tightly coupled. With the Mediator in place, the appliance objects are all completely decoupled from each other.

The Mediator contains all of the control logic for the entire system. When an existing appliance needs a new rule, or a new appliance is added to the system, you’ll know that all of the necessary logic will be added to the Mediator.

 [image: image with no caption]

 Mediator Benefits

	Increases the reusability of the objects supported by the Mediator by decoupling them from the system.

	Simplifies maintenance of the system by centralizing control logic.

	Simplifies and reduces the variety of messages sent between objects in the system.

 Mediator Uses and Drawbacks

	The Mediator is commonly used to coordinate related GUI components.

	A drawback of the Mediator Pattern is that without proper design, the Mediator object itself can become overly complex.

 Memento

Use the Memento Pattern when you need to be able to return an object to one of its previous states; for instance, if your user requests an “undo.”

A scenario

Your interactive role playing game is hugely successful, and has created a legion of addicts, all trying to get to the fabled “level 13.” As users progress to more challenging game levels, the odds of encountering a game-ending situation increase. Fans who have spent days progressing to an advanced level are understandably miffed when their character gets snuffed, and they have to start all over. The cry goes out for a “save progress” command, so that players can store their game progress and at least recover most of their efforts when their character is unfairly extinguished. The “save progress” function needs to be designed to return a resurrected player to the last level she completed successfully.

 [image: image with no caption]

 The Memento at work

The Memento has two goals:

	Saving the important state of a system’s key object.

	Maintaining the key object’s encapsulation.

Keeping the single responsibility principle in mind, it’s also a good idea to keep the state that you’re saving separate from the key object. This separate object that holds the state is known as the Memento object.

 [image: image with no caption]

 Memento Benefits

	Keeping the saved state external from the key object helps to maintain cohesion.

	Keeps the key object’s data encapsulated.

	Provides easy-to-implement recovery capability.

 Memento Uses and Drawbacks

	The Memento is used to save state.

	A drawback to using Memento is that saving and restoring state can be time consuming.

	In Java systems, consider using Serialization to save a system’s state.

 Prototype

Use the Prototype Pattern when creating an instance of a given class is either expensive or complicated.

A scenario

Your interactive role playing game has an insatiable appetite for monsters. As your heroes make their journey through a dynamically created landscape, they encounter an endless chain of foes that must be subdued. You’d like the monster’s characteristics to evolve with the changing landscape. It doesn’t make a lot of sense for bird-like monsters to follow your characters into underseas realms. Finally, you’d like to allow advanced players to create their own custom monsters.

 [image: image with no caption]

 Prototype to the rescue

The Prototype Pattern allows you to make new instances by copying existing instances. (In Java this typically means using the clone() method, or de-serialization when you need deep copies.) A key aspect of this pattern is that the client code can make new instances without knowing which specific class is being instantiated.

 [image: image with no caption]

 [image: image with no caption]

 Prototype Benefits

	Hides the complexities of making new instances from the client.

	Provides the option for the client to generate objects whose type is not known.

	In some circumstances, copying an object can be more efficient than creating a new object.

 Prototype Uses and Drawbacks

	Prototype should be considered when a system must create new objects of many types in a complex class hierarchy.

	A drawback to using the Prototype is that making a copy of an object can sometimes be complicated.

 Visitor

Use the Visitor Pattern when you want to add capabilities to a composite of objects and encapsulation is not important.

A scenario

Customers who frequent the Objectville Diner and Objectville Pancake House have recently become more health conscious. They are asking for nutritional information before ordering their meals. Because both establishments are so willing to create special orders, some customers are even asking for nutritional information on a per ingredient basis.

Lou’s proposed solution:

 [image: image with no caption]

Mel’s concerns...

“Boy, it seems like we’re opening Pandora’s box. Who knows what new method we’re going to have to add next, and every time we add a new method we have to do it in two places. Plus, what if we want to enhance the base application with, say, a recipes class? Then we’ll have to make these changes in three different places...”

 The Visitor drops by

The Visitor works hand in hand with a Traverser. The Traverser knows how to navigate to all of the objects in a Composite. The Traverser guides the Visitor through the Composite so that the Visitor can collect state as it goes. Once state has been gathered, the Client can have the Visitor perform various operations on the state. When new functionality is required, only the Visitor must be enhanced.

 [image: image with no caption]

 Visitor Benefits

	Allows you to add operations to a Composite structure without changing the structure itself.

	Adding new operations is relatively easy.

	The code for operations performed by the Visitor is centralized.

 Visitor Drawbacks

	The Composite classes’ encapsulation is broken when the Visitor is used.

	Because the traversal function is involved, changes to the Composite structure are more difficult.

 Appendix B.

 [image: image with no caption]

And now, a final word from the Head First Institute...

Our world class researchers are working day and night in a mad race to uncover the mysteries of Life, the Universe and Everything–before it’s too late. Never before has a research team with such noble and daunting goals been assembled. Currently, we are focusing our collective energy and brain power on creating the ultimate learning machine. Once perfected, you and others will join us in our quest!

You’re fortunate to be holding one of our first prototypes in your hands. But only through constant refinement can our goal be achieved. We ask you, a pioneer user of the technology, to send us periodic field reports of your progress, at
fieldreports@wickedlysmart.com

 [image: image with no caption]

 Appendix C. Mighty Gumball

 [image: image with no caption]

Without your help the next generation may never know the joys of the gumball machine.

 Today, inflexible, poorly designed code is putting our Java-powered machines at risk. Mighty Gumball won’t let that happen. We’re devoting ourselves to helping you improve your Java and OO design skills so that you can help us build the next generation of Mighty Gumball machines.

 [image: image with no caption]

Come on, Java toasters are
sooo

 ‘90s, visit us at

http://www.wickedlysmart.com

 .

 [image: image with no caption]

 Index

A note on the digital index

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A

abstract class, Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them
 , Template Method Pattern defined
 , Template Method Pattern defined

about, Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

definition of, Template Method Pattern defined

methods in, Template Method Pattern defined

Abstract Factory Pattern, Building the ingredient factories
 , What have we done?
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , A very dependent PizzaStore
 , Duck reunion
 , Exercise Solutions
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, What have we done?

building ingredient factories, Building the ingredient factories
 , A very dependent PizzaStore

combining patterns, Duck reunion
 , Exercise Solutions

definition of, Abstract Factory Pattern defined

exercise matching description of, So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

Factory Method Pattern and, Abstract Factory Pattern defined

implementing, Abstract Factory Pattern defined

abstract superclasses, Designing the Duck Behaviors

ACM Conference, Your journey has just begun...

Adapter Pattern, The Adapter Pattern explained
 , Adapter Pattern defined
 , Object and class adapters
 , Real-world adapters
 , Adapting an Enumeration to an Iterator
 , Adapting an Enumeration to an Iterator
 , Dealing with the remove() method
 , Dealing with the remove() method
 , Writing the EnumerationIterator adapter
 , And now for something different...
 , Lights, Camera, Facade!
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , What did we do?
 , Running the code...
 , Duck reunion
 , Adapting the Model
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, The Adapter Pattern explained

adapting to Iterator Enumeration interface, Adapting an Enumeration to an Iterator

combining patterns, Duck reunion

dealing with remove() method, Dealing with the remove() method

Decorator Pattern vs., Writing the EnumerationIterator adapter

definition of, Adapter Pattern defined

designing Adapter, Adapting an Enumeration to an Iterator

exercise matching description of, The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Running the code...
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

exercise matching pattern with its intent, And now for something different...
 , Tools for your Design Toolbox

Facade Pattern vs., Lights, Camera, Facade!

in Model-View-Controller, Adapting the Model

object and class adapters, Object and class adapters

Proxy Pattern vs., What did we do?

simple real world adapters, Real-world adapters

writing Enumeration Iterator Adapter, Dealing with the remove() method

adapters, OO (Object-Oriented), Adapters all around us
 , If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
 , Test drive the adapter
 , Here’s how the Client uses the Adapter
 , Object and class adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...

object and class object and class, Object and class adapters

test driving, Test drive the adapter

aggregates, Meet the Iterator Pattern
 , Iterator Pattern defined

Alexander, Christopher, Your journey has just begun...
 , Your journey has just begun...

A Pattern Language, Your journey has just begun...

The Timeless Way of Building, Your journey has just begun...

algorithms, encapsulating, The Template Method Pattern: Encapsulating Algorithms
 , Abstracting prepareRecipe()
 , Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , The Hollywood Principle
 , Template Methods in the Wild
 , Sorting with Template Method
 , Swingin’ with Frames
 , Applets

about, The Template Method Pattern: Encapsulating Algorithms

abstracting prepareRecipe(), Abstracting prepareRecipe()

Template Method Pattern and, Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , The Hollywood Principle
 , Template Methods in the Wild
 , Sorting with Template Method
 , Swingin’ with Frames
 , Applets

about, Meet the Template Method

applets in, Applets

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

Anti-Patterns, Annihilating evil with Anti-Patterns

Applet, Template Method Pattern and, Applets

Applicability section, in pattern catalog, Looking more closely at the Design Pattern definition

Application Patterns, The Patterns Zoo

Architectural Patterns, The Patterns Zoo

ArrayList, arrays and, Lou and Mel’s Menu implementations
 , Iterators and Collections

arrays, Sorting with Template Method
 , Can we encapsulate the iteration?
 , Adding an Iterator to DinerMenu
 , Adding an Iterator to DinerMenu
 , Cleaning things up with java.util.Iterator

iteration and, Can we encapsulate the iteration?

iterator and hasNext() method with, Adding an Iterator to DinerMenu

iterator and next() method with, Adding an Iterator to DinerMenu

removing an element, Cleaning things up with java.util.Iterator

sorting with Template Method Pattern, Sorting with Template Method

B

Basham, Bryan, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

Be the JVM solution exercises, dealing with multithreading, Houston, Hershey, PA we have a problem...
 , Tools for your Design Toolbox

behavior, encapsulating, Designing the Duck Behaviors

behavioral patterns category, Design Patterns, Pattern Categories
 , Pattern Categories

behaviors, Designing the Duck Behaviors
 , Implementing the Duck Behaviors
 , Implementing the Duck Behaviors
 , Integrating the Duck Behavior
 , Integrating the Duck Behavior
 , Setting behavior dynamically
 , The Big Picture on encapsulated behaviors
 , The Open-Closed Principle
 , Constructing a drink order with Decorators

classes as, Implementing the Duck Behaviors

classes extended to incorporate new, The Open-Closed Principle

declaring variables, Integrating the Duck Behavior

delegating to decorated objects while adding, Constructing a drink order with Decorators

designing, Designing the Duck Behaviors

encapsulating, The Big Picture on encapsulated behaviors

implementing, Implementing the Duck Behaviors

integrating, Integrating the Duck Behavior

setting dynamically, Setting behavior dynamically

Bert Bates, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

Bridge Pattern, Bridge

Builder Pattern, Builder

Business Process Patterns, The Patterns Zoo

C

Caching Proxy, as form of Virtual Proxy, What did we do?
 , The Proxy Zoo

Cafe Menu, integrating into framework (Iterator Pattern), Taking a look at the Café Menu
 , Reworking the Café Menu code

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

CD covers, displaying using Proxy Pattern, Displaying CD covers
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?
 , Compound Patterns: Patterns of Patterns

about, Displaying CD covers

code for, Compound Patterns: Patterns of Patterns

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing viewer, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Chain of Responsibility Pattern, Chain of Responsibility

change, The one constant in software development
 , The power of Loose Coupling
 , Single Responsibility

constant in software development, The one constant in software development

identifying, The power of Loose Coupling

iteration and, Single Responsibility

Chocolate Factory, using Singleton Pattern, The Chocolate Factory
 , Meanwhile, back at the Chocolate Factory...

about, The Chocolate Factory

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...

class adapters, object vs., Object and class adapters

class design, of Observer Pattern, The Observer Pattern defined

class hierarchies, parallel, Another perspective: parallel class hierarchies

class patterns, Design Patterns, Pattern Categories

classes., Separating what changes from what stays the same
 , Implementing the Duck Behaviors
 , HAS-A can be better than IS-A
 , Welcome to Starbuzz Coffee
 , Welcome to Starbuzz Coffee
 , The Open-Closed Principle
 , Tools for your Design Toolbox
 , The Factory Pattern: Baking with OO Goodness
 , Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them
 , It’s finally time to meet the Factory Method Pattern
 , The Dependency Inversion Principle
 , Congratulations!
 , The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references
 , Here’s how the Client uses the Adapter
 , Adapter Pattern defined
 , Tools for your Design Toolbox
 , Single Responsibility
 , Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , The State Pattern defined
 , The State Pattern defined
 , We still need to finish the Gumball 1 in 10 game
 , Running the code...

(see also subclasses)

abstract, Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

adapter, Here’s how the Client uses the Adapter
 , Tools for your Design Toolbox

Adapter Pattern, Adapter Pattern defined

altering decorator, Tools for your Design Toolbox

as behaviors, Implementing the Duck Behaviors

command, The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method references

using lambda expressions, Simplifying the Remote Control with lambda expressions

creating, Separating what changes from what stays the same

Factory Method Pattern creator and product, It’s finally time to meet the Factory Method Pattern

having single responsibility, Single Responsibility

high-level component, The Dependency Inversion Principle

identifying as Proxy class, Running the code...

Open-Closed Principle, The Open-Closed Principle

state, Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , The State Pattern defined
 , The State Pattern defined
 , We still need to finish the Gumball 1 in 10 game

defining, Defining the State interfaces and classes

implementing, Implementing our State classes
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game

increasing number in design of, The State Pattern defined

reworking state classes, Reworking the Gumball Machine

state transitions in, The State Pattern defined

using composition with, HAS-A can be better than IS-A

using instance variables instead of, Welcome to Starbuzz Coffee

using instead of Singletons static, Congratulations!

using new operator for instantiating concrete, The Factory Pattern: Baking with OO Goodness

Classification section, in pattern catalog, Looking more closely at the Design Pattern definition

classloaders, using with Singletons, Congratulations!

client heap, Remote methods 101

client helper (stubs), in RMI, Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , How does the client get the stub object?
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

Code Magnets exercise, Reworking the Weather Station with the built-in support
 , Tools for your Design Toolbox
 , Iterators and Collections
 , Tools for your Design Toolbox

for DinerMenu Iterator, Iterators and Collections
 , Tools for your Design Toolbox

for Observer Pattern, Reworking the Weather Station with the built-in support
 , Tools for your Design Toolbox

cohesion, Single Responsibility

Collaborations section, in pattern catalog, Looking more closely at the Design Pattern definition

collection classes, Iterators and Collections

collection of objects, The Iterator and Composite Patterns: Well-Managed Collections
 , Meet the Iterator Pattern
 , Meet the Iterator Pattern
 , Adding an Iterator to DinerMenu
 , Making some improvements...
 , Cleaning things up with java.util.Iterator
 , Taking a look at the Café Menu
 , Reworking the Café Menu code
 , The Composite Pattern defined
 , Designing Menus with Composite
 , Implementing the Menu Component
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Flashback to Iterator
 , The magic of Iterator & Composite together...

abstracting with Iterator Pattern, The Iterator and Composite Patterns: Well-Managed Collections
 , Adding an Iterator to DinerMenu
 , Making some improvements...
 , Cleaning things up with java.util.Iterator

about, The Iterator and Composite Patterns: Well-Managed Collections

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with java.util.Iterator

remove() method in, Making some improvements...

implementing Iterators for, Meet the Iterator Pattern

integrating into framework, Taking a look at the Café Menu
 , Reworking the Café Menu code

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

meaning of, Meet the Iterator Pattern

using Composite Pattern, The Composite Pattern defined
 , Designing Menus with Composite
 , Implementing the Menu Component
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Flashback to Iterator

about, Designing Menus with Composite

implementing components, Implementing the Menu Component

testing code, Getting ready for a test drive...

tree structure, The Composite Pattern defined
 , Getting ready for a test drive...

using with Iterators, Flashback to Iterator

using whole-part relationships, The magic of Iterator & Composite together...

Collections, Iterators and, Iterators and Collections

Combining Patterns, Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , A duck’s eye view: the class diagram

Abstract Factory Pattern, Duck reunion

Adapter Pattern, Duck reunion

class diagram for, A duck’s eye view: the class diagram

Composite Pattern, Duck reunion

Decorator Pattern, Duck reunion

Iterator Pattern, Duck reunion

Observer Pattern, Duck reunion

command classes, in Command Pattern, The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method references

using lambda expressions, Simplifying the Remote Control with lambda expressions

command objects, Cubicle Conversation
 , From the Diner to the Command Pattern
 , Using the command object

encapsulating requests to do something, Cubicle Conversation

mapping, From the Diner to the Command Pattern

using, Using the command object

Command Pattern, Taking a look at the vendor classes
 , Taking a look at the vendor classes
 , Cubicle Conversation
 , Cubicle Conversation
 , Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern
 , From the Diner to the Command Pattern
 , From the Diner to the Command Pattern
 , From the Diner to the Command Pattern
 , Our first command object
 , Our first command object
 , Using the command object
 , Using the command object
 , The Command Pattern defined
 , The Command Pattern defined
 , The Command Pattern defined: the class diagram
 , The Command Pattern defined: the class diagram
 , Implementing the Commands
 , Putting the Remote Control through its paces
 , Now, let’s check out the execution of our remote control test...
 , Now, let’s check out the execution of our remote control test...
 , Time to write that documentation...
 , Time to write that documentation...
 , Get ready to test the ceiling fan
 , Every remote needs a Party Mode!
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , The Command Pattern means lots of command classes
 , The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references
 , Simplifying even more with method references
 , Test the remote control with lambda expressions
 , Test the remote control with lambda expressions
 , Check out the results of all those lambda expression commands...
 , More uses of the Command Pattern: queuing requests
 , More uses of the Command Pattern: logging requests
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

command classes in, The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method references

using lambda expressions, Simplifying the Remote Control with lambda expressions

command objects, Cubicle Conversation
 , From the Diner to the Command Pattern
 , Our first command object
 , Using the command object

building, Our first command object

encapsulating requests to do something, Cubicle Conversation

mapping, From the Diner to the Command Pattern

using, Using the command object

definition of, The Command Pattern defined

dumb and smart command objects, Using a macro command

exercise matching description of, So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

home automation remote control, Taking a look at the vendor classes
 , Taking a look at the vendor classes
 , Cubicle Conversation
 , From the Diner to the Command Pattern
 , Our first command object
 , Using the command object
 , The Command Pattern defined
 , The Command Pattern defined: the class diagram
 , The Command Pattern defined: the class diagram
 , Implementing the Commands
 , Putting the Remote Control through its paces
 , Now, let’s check out the execution of our remote control test...
 , Time to write that documentation...
 , Time to write that documentation...
 , Get ready to test the ceiling fan
 , Every remote needs a Party Mode!
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , The Command Pattern means lots of command classes
 , Simplifying even more with method references
 , Test the remote control with lambda expressions
 , Test the remote control with lambda expressions
 , Check out the results of all those lambda expression commands...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox

about, Taking a look at the vendor classes

building, Our first command object
 , Tools for your Design Toolbox

class diagram, The Command Pattern defined: the class diagram

command classes in, The Command Pattern means lots of command classes
 , Simplifying even more with method references

creating commands to be loaded, The Command Pattern defined: the class diagram

defining, The Command Pattern defined

designing, Cubicle Conversation

display of on and off slots, Check out the results of all those lambda expression commands...

implementing, Implementing the Commands

macro commands, Every remote needs a Party Mode!
 , Using a macro command
 , Tools for your Design Toolbox

mapping, From the Diner to the Command Pattern
 , Tools for your Design Toolbox

Null Object in, Now, let’s check out the execution of our remote control test...
 , Test the remote control with lambda expressions

testing, Using the command object
 , Putting the Remote Control through its paces
 , Using a macro command
 , Test the remote control with lambda expressions

undo commands, Time to write that documentation...
 , Get ready to test the ceiling fan
 , Using a macro command
 , Tools for your Design Toolbox

vendor classes for, Taking a look at the vendor classes

writing documentation, Time to write that documentation...

logging requests using, More uses of the Command Pattern: logging requests

mapping, From the Diner to the Command Pattern
 , Tools for your Design Toolbox

Null Object, Now, let’s check out the execution of our remote control test...

queuing requests using, More uses of the Command Pattern: queuing requests

understanding, Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern

Complexity Hiding Proxy, The Proxy Zoo

components of object, The Principle of Least Knowledge

Composite Iterator, Flashback to Iterator

Composite Pattern, Just when we thought it was safe...
 , The Composite Pattern defined
 , The Composite Pattern defined
 , Designing Menus with Composite
 , Implementing the Menu Component
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Flashback to Iterator
 , Flashback to Iterator
 , Flashback to Iterator
 , Give me the vegetarian menu
 , The magic of Iterator & Composite together...
 , The magic of Iterator & Composite together...
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Duck reunion
 , Duck reunion
 , Looking at MVC through patterns-colored glasses
 , Strategy
 , Composite
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

combining patterns, Duck reunion

definition of, The Composite Pattern defined

dessert submenu using, Just when we thought it was safe...
 , Designing Menus with Composite
 , Implementing the Menu Component
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Flashback to Iterator

about, Just when we thought it was safe...

designing, Designing Menus with Composite
 , Getting ready for a test drive...

implementing, Implementing the Menu Component

testing, Getting ready for a test drive...

using Iterators in, Flashback to Iterator

exercise matching description of, The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

in Model 2, Strategy

in Model-View-Controller, Looking at MVC through patterns-colored glasses
 , Composite

Iterator Pattern and, Flashback to Iterator

on implementation issues, The magic of Iterator & Composite together...

safety versus transparency, Duck reunion

transparency in, Getting ready for a test drive...

tree structure of, The Composite Pattern defined
 , Getting ready for a test drive...

try/catch, using, The magic of Iterator & Composite together...

using with Iterator, Flashback to Iterator

vegetarian menu using Iterators, Give me the vegetarian menu

composition, HAS-A can be better than IS-A
 , Welcome to Starbuzz Coffee
 , Welcome to Starbuzz Coffee
 , Cubicle Conversation
 , Object and class adapters

adding behavior at runtime, Welcome to Starbuzz Coffee

favoring over inheritance, HAS-A can be better than IS-A
 , Welcome to Starbuzz Coffee

inheritance vs., Cubicle Conversation

object adapters and, Object and class adapters

compound patterns, using, Compound Patterns: Patterns of Patterns
 , Duck reunion
 , If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , Meet the Model-View-Controller
 , Looking at MVC through patterns-colored glasses
 , Looking at MVC through patterns-colored glasses
 , Looking at MVC through patterns-colored glasses
 , Using MVC to control the beat...
 , Meet the Java DJ View
 , Building the pieces
 , Now for the Controller
 , Now for the Controller
 , Putting it all together...
 , Exploring Strategy
 , Exploring Strategy
 , Exploring Strategy
 , Now we’re ready for a HeartController
 , MVC and the Web
 , MVC and the Web
 , Model 2: DJ’ing from a cell phone
 , Design Patterns and Model 2
 , Strategy
 , Strategy
 , Composite
 , Composite
 , Composite
 , Composite
 , Composite
 , Composite
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions

about, Compound Patterns: Patterns of Patterns

Model 2, MVC and the Web
 , Model 2: DJ’ing from a cell phone
 , Design Patterns and Model 2
 , Strategy
 , Strategy

about, MVC and the Web

Composite Pattern, Strategy

from cell phone, Model 2: DJ’ing from a cell phone

Observer Pattern, Design Patterns and Model 2

Strategy Pattern, Strategy

Model-View-Controller, If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , Meet the Model-View-Controller
 , Looking at MVC through patterns-colored glasses
 , Looking at MVC through patterns-colored glasses
 , Looking at MVC through patterns-colored glasses
 , Using MVC to control the beat...
 , Meet the Java DJ View
 , Building the pieces
 , Now for the Controller
 , Now for the Controller
 , Putting it all together...
 , Exploring Strategy
 , Exploring Strategy
 , Exploring Strategy
 , Now we’re ready for a HeartController
 , MVC and the Web
 , Composite
 , Composite
 , Composite
 , Composite
 , Composite
 , Composite
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions

about, If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , Meet the Model-View-Controller

Adapter Pattern, Exploring Strategy

Beat model, Meet the Java DJ View
 , Exercise Solutions

Composite Pattern, Looking at MVC through patterns-colored glasses
 , Composite

controllers per view, Composite

Heart controller, Now we’re ready for a HeartController
 , Exercise Solutions

Heart model, Exploring Strategy
 , Exercise Solutions

implementing controller, Now for the Controller

implementing DJ View, Using MVC to control the beat...
 , Exercise Solutions

Mediator Pattern, Composite

model in, Composite

Observer Pattern, Looking at MVC through patterns-colored glasses
 , Building the pieces

song, If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...

state of model, Composite

Strategy Pattern, Looking at MVC through patterns-colored glasses
 , Now for the Controller
 , Exploring Strategy

testing, Putting it all together...

views accessing model state methods, Composite

web and, MVC and the Web

multiple patterns vs., Duck reunion

concrete classes, The Factory Pattern: Baking with OO Goodness
 , Reworking the PizzaStore class
 , Factory Method Pattern defined
 , Looking at object dependencies
 , A few guidelines to help you follow the Principle...
 , A few guidelines to help you follow the Principle...

deriving from, A few guidelines to help you follow the Principle...

Factory Pattern and, Factory Method Pattern defined

getting rid of, Reworking the PizzaStore class

instantiating objects and, Looking at object dependencies

using new operator for instantiating, The Factory Pattern: Baking with OO Goodness

variables holding reference to, A few guidelines to help you follow the Principle...

concrete creators, Factory Method Pattern defined

concrete implementation object, assigning, Designing the Duck Behaviors

concrete methods, as hooks, Template Method Pattern defined

concrete subclasses, Allowing the subclasses to decide
 , Let’s run the Test Drive

abstract class methods defined by, Let’s run the Test Drive

in Pizza Store project, Allowing the subclasses to decide

Consequences section, in pattern catalog, Looking more closely at the Design Pattern definition

constant in software development, The one constant in software development

controlling object access, using Proxy Pattern, The Proxy Pattern: Controlling Object Access
 , Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?
 , What did we do?
 , What did we do?
 , Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo

about, The Proxy Pattern: Controlling Object Access

Caching Proxy, What did we do?
 , The Proxy Zoo

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Firewall Proxy, The Proxy Zoo

Protection Proxy, Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection proxy

Remote Proxy, Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , What did we do?

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

Virtual Proxy, Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?

about, Get ready for Virtual Proxy

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Copy-On-Write Proxy, The Proxy Zoo

create method, Building a simple pizza factory
 , Reworking the PizzaStore class
 , Allowing the subclasses to decide

replacing new operator with, Reworking the PizzaStore class

static method vs., Building a simple pizza factory

using subclasses with, Allowing the subclasses to decide

creating static classes instead of Singleton, Houston, Hershey, PA we have a problem...

creational patterns category, Design Patterns, Pattern Categories
 , Pattern Categories

creator classes, in Factory Method Pattern, It’s finally time to meet the Factory Method Pattern
 , Factory Method Pattern defined

crossword puzzle, Tools for your Design Toolbox

Cunningham, Ward, Your journey has just begun...

D

Decorator Pattern, Welcome to Starbuzz Coffee
 , Meet the Decorator Pattern
 , Constructing a drink order with Decorators
 , The Decorator Pattern defined
 , Decorating our Beverages
 , New barista training
 , Writing the Starbuzz code
 , Serving some coffees
 , Serving some coffees
 , Real World Decorators: Java I/O
 , Real World Decorators: Java I/O
 , Decorating the java.io classes
 , Give it a spin
 , Tools for your Design Toolbox
 , Writing the EnumerationIterator adapter
 , And now for something different...
 , Tools for your Design Toolbox
 , What did we do?
 , Running the code...
 , Duck reunion
 , So you wanna be a Design Patterns writer
 , Pattern Categories
 , Boy, it’s been great having you in Objectville.

about, Meet the Decorator Pattern
 , Give it a spin

Adapter Pattern vs., Writing the EnumerationIterator adapter

combining patterns, Duck reunion

definition of, The Decorator Pattern defined

disadvantages of, Decorating the java.io classes

exercise matching description of, Running the code...
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

exercise matching pattern with its intent, And now for something different...
 , Tools for your Design Toolbox

in Java I/O, Real World Decorators: Java I/O

in Structural patterns category, Pattern Categories

Proxy Pattern vs., What did we do?

Starbuzz Coffee project, Welcome to Starbuzz Coffee
 , Constructing a drink order with Decorators
 , Decorating our Beverages
 , New barista training
 , Writing the Starbuzz code
 , Serving some coffees
 , Serving some coffees
 , Real World Decorators: Java I/O
 , Tools for your Design Toolbox

about, Welcome to Starbuzz Coffee

adding sizes to code, Serving some coffees

constructing drink orders, Constructing a drink order with Decorators

decorating beverages in, Decorating our Beverages

drawing beverage order process, New barista training
 , Tools for your Design Toolbox

testing order code, Serving some coffees

using Java decorators, Real World Decorators: Java I/O

writing code, Writing the Starbuzz code

decoupling, Iterator allowing, What we have so far...
 , What does this get us?
 , Iterator Pattern defined
 , Iterators and Collections

delegation, adding behavior at runtime, Welcome to Starbuzz Coffee

dependence, in Observer Pattern, The Observer Pattern defined: the class diagram

Dependency Inversion Principle, The Dependency Inversion Principle
 , The Hollywood Principle and Template Method

dependency rot, The Hollywood Principle

Design Patterns, How do I use Design Patterns?
 , How do I use Design Patterns?
 , How do I use Design Patterns?
 , The Simple Factory defined
 , Better Living with Patterns: Patterns in the Real World
 , Design Pattern defined
 , Looking more closely at the Design Pattern definition
 , So you wanna be a Design Patterns writer
 , So you wanna be a Design Patterns writer
 , Organizing Design Patterns
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Pattern Categories
 , Thinking in Patterns
 , If you don’t need it now, don’t do it now.
 , Your Mind on Patterns
 , Your Mind on Patterns
 , Your Mind on Patterns
 , Your journey has just begun...
 , Boy, it’s been great having you in Objectville.

becoming writer of, So you wanna be a Design Patterns writer

behavioral patterns category, Pattern Categories
 , Pattern Categories

categories of, Pattern Categories

class patterns, Pattern Categories

creational patterns category, Pattern Categories
 , Pattern Categories

definition of, Design Pattern defined

discovering own, Looking more closely at the Design Pattern definition

exercise matching description of, Boy, it’s been great having you in Objectville.

frameworks vs., How do I use Design Patterns?

guide to better living with, Better Living with Patterns: Patterns in the Real World

implement on interface in, The Simple Factory defined

libraries vs., How do I use Design Patterns?

object patterns, Pattern Categories

organizing, Organizing Design Patterns

overusing, Your Mind on Patterns

resources for, Your journey has just begun...

rule of three applied to, So you wanna be a Design Patterns writer

structural patterns category, Pattern Categories
 , Pattern Categories

thinking in patterns, Thinking in Patterns

using, How do I use Design Patterns?
 , If you don’t need it now, don’t do it now.
 , Your Mind on Patterns

your mind on patterns, Your Mind on Patterns

Design Patterns: Reusable Object-Oriented Software (Gamma et al.), Your journey has just begun...

design principles, Zeroing in on the problem...
 , Designing the Duck Behaviors
 , HAS-A can be better than IS-A
 , The power of Loose Coupling
 , The dark side of java.util.Observable
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The Open-Closed Principle
 , Factory Method Pattern defined
 , The Dependency Inversion Principle
 , The Dependency Inversion Principle
 , The Singleton Pattern: One of a Kind Objects
 , Congratulations!
 , The Principle of Least Knowledge
 , The Hollywood Principle
 , What does this get us?
 , Single Responsibility
 , Single Responsibility
 , Is the Waitress ready for prime time?
 , Getting ready for a test drive...
 , The messy STATE of things...
 , The messy STATE of things...

Dependency Inversion Principle, The Dependency Inversion Principle

designing upon abstractions, The Dependency Inversion Principle

encapsulate what varies, Zeroing in on the problem...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Factory Method Pattern defined

favor composition over inheritance, HAS-A can be better than IS-A
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The messy STATE of things...

One Class, One Responsibility Principle, Congratulations!
 , Single Responsibility
 , Getting ready for a test drive...

one instance., The Singleton Pattern: One of a Kind Objects
 (see Singleton Pattern)

Open-Closed Principle, The Open-Closed Principle
 , Is the Waitress ready for prime time?
 , The messy STATE of things...

Principle of Least Knowledge, The Principle of Least Knowledge

program to an interface, not an implementation, Designing the Duck Behaviors
 , The dark side of java.util.Observable
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , What does this get us?

Single Responsibility Principle, Single Responsibility

strive for loosely coupled designs between objects that interact, The power of Loose Coupling

The Hollywood Principle, The Hollywood Principle

using Observer Pattern, Tools for your Design Toolbox
 , Tools for your Design Toolbox

Design Puzzles, Speaking of Design Patterns...
 , Tools for your Design Toolbox
 , Another perspective: parallel class hierarchies
 , Tools for your Design Toolbox
 , It’s time for some more caffeine
 , You knew it was coming... a change request!
 , Tools for your Design Toolbox
 , Writing the Image Proxy
 , Tools for your Design Toolbox
 , Now for the Controller
 , Exercise Solutions

drawing class diagram making use of view and controller, Now for the Controller
 , Exercise Solutions

drawing parallel set of classes, Another perspective: parallel class hierarchies
 , Tools for your Design Toolbox

drawing state diagram, You knew it was coming... a change request!
 , Tools for your Design Toolbox

of classes and interfaces, Speaking of Design Patterns...
 , Tools for your Design Toolbox

redesigning classes to remove redundancy, It’s time for some more caffeine

redesigning Image Proxy, Writing the Image Proxy
 , Tools for your Design Toolbox

dessert submenu, using Composite Pattern, Just when we thought it was safe...
 , Designing Menus with Composite
 , Implementing the Menu Component
 , Getting ready for a test drive...
 , Getting ready for a test drive...
 , Flashback to Iterator

about, Just when we thought it was safe...

designing, Designing Menus with Composite
 , Getting ready for a test drive...

implementing, Implementing the Menu Component

testing, Getting ready for a test drive...

using Iterators in, Flashback to Iterator

diner menus, merging (Iterator Pattern), Breaking News: Objectville Diner and Objectville Pancake House Merge
 , Lou and Mel’s Menu implementations
 , Can we encapsulate the iteration?
 , Meet the Iterator Pattern
 , Adding an Iterator to DinerMenu
 , Cleaning things up with java.util.Iterator

about, Breaking News: Objectville Diner and Objectville Pancake House Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

DJ View, Using MVC to control the beat...
 , Exercise Solutions

Domain-Specific Patterns, The Patterns Zoo

double-checked locking, reducing use of synchronization using, 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

Duck Magnets exercises, object and class object and class adapters, Object and class adapters

duck simulator, rebuilding, Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , A duck’s eye view: the class diagram
 , Exercise Solutions

about, Duck reunion

adding Abstract Factory Pattern, Duck reunion
 , Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

dumb command objects, Using a macro command

dynamic aspect of dynamic proxies, Running the code...

dynamic proxy, Using the Java API’s Proxy to create a protection proxy
 , Big Picture: creating a Dynamic Proxy for the PersonBean

creating, Big Picture: creating a Dynamic Proxy for the PersonBean

using to create proxy implementation, Using the Java API’s Proxy to create a protection proxy

E

encapsulate what varies, Zeroing in on the problem...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Factory Method Pattern defined
 , The messy STATE of things...

encapsulating algorithms, Designing the Duck Behaviors
 , The Big Picture on encapsulated behaviors
 , Encapsulating object creation
 , Factory Method Pattern defined
 , The Template Method Pattern: Encapsulating Algorithms
 , Abstracting prepareRecipe()
 , Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , The Hollywood Principle
 , Template Methods in the Wild
 , Sorting with Template Method
 , Swingin’ with Frames
 , Applets

about, The Template Method Pattern: Encapsulating Algorithms

abstracting prepareRecipe(), Abstracting prepareRecipe()

encapsulating behavior, Designing the Duck Behaviors

encapsulating code, The Big Picture on encapsulated behaviors
 , Encapsulating object creation
 , Factory Method Pattern defined

in behaviors, The Big Picture on encapsulated behaviors

in object creation, Encapsulating object creation

object creation, Factory Method Pattern defined

Template Method Pattern and, Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , The Hollywood Principle
 , Template Methods in the Wild
 , Sorting with Template Method
 , Swingin’ with Frames
 , Applets

about, Meet the Template Method

applets in, Applets

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

encapsulating iteration, Can we encapsulate the iteration?

encapsulating method invocation, The Command Pattern: Encapsulating Invocation
 , The Command Pattern defined

encapsulating object construction, Builder

encapsulating requests, The Command Pattern defined

encapsulating subsystem, Facades, Lights, Camera, Facade!

Enumeration, Real-world adapters
 , Real-world adapters
 , Adapting an Enumeration to an Iterator
 , Dealing with the remove() method
 , Writing the EnumerationIterator adapter
 , Tools for your Design Toolbox
 , Iterator Pattern defined

about, Real-world adapters

adapting to Iterator, Adapting an Enumeration to an Iterator

java.util.Enumeration as older implementation of Iterator, Real-world adapters
 , Iterator Pattern defined

remove() method and, Dealing with the remove() method

writing Adapter that adapts Iterator to, Writing the EnumerationIterator adapter
 , Tools for your Design Toolbox

exercises, Joe thinks about inheritance...
 , The one constant in software development
 , Implementing the Duck Behaviors
 , Speaking of Design Patterns...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Taking a first, misguided SWAG at the Weather Station
 , The power of Loose Coupling
 , Reworking the Weather Station with the built-in support
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Welcome to Starbuzz Coffee
 , Welcome to Starbuzz Coffee
 , Serving some coffees
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Building the New York ingredient factory
 , A very dependent PizzaStore
 , The Chocolate Factory
 , Houston, Hershey, PA we have a problem...
 , Meanwhile, back at the Chocolate Factory...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , From the Diner to the Command Pattern
 , Creating a simple test to use the Remote Control
 , Using a macro command
 , Using a macro command
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Here’s how the Client uses the Adapter
 , Object and class adapters
 , Object and class adapters
 , Writing the EnumerationIterator adapter
 , And now for something different...
 , Keeping your method calls in bounds...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , And now the Tea...
 , Abstracting prepareRecipe()
 , The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The Java-Enabled Waitress Specification
 , Reworking the Diner Menu with Iterator
 , Taking a look at the Café Menu
 , Iterators and Collections
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , You knew it was coming... a change request!
 , The messy STATE of things...
 , Defining the State interfaces and classes
 , Implementing more states
 , Let’s take a look at what we’ve done so far...
 , We almost forgot!
 , We almost forgot!
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Writing the Image Proxy
 , Creating Invocation Handlers continued...
 , Step two: creating the Proxy class and instantiating the Proxy object
 , Running the code...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Now for the Controller
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , So you wanna be a Design Patterns writer
 , Organizing Design Patterns
 , Boy, it’s been great having you in Objectville.

Be the JVM solution, dealing with multithreading, Houston, Hershey, PA we have a problem...
 , Tools for your Design Toolbox

Code Magnets, Reworking the Weather Station with the built-in support
 , Tools for your Design Toolbox
 , Iterators and Collections
 , Tools for your Design Toolbox

for DinerMenu Iterator, Iterators and Collections
 , Tools for your Design Toolbox

for Observer Pattern, Reworking the Weather Station with the built-in support
 , Tools for your Design Toolbox

dealing with multithreading, Object and class adapters

Design Puzzles, Speaking of Design Patterns...
 , Tools for your Design Toolbox
 , And now the Tea...
 , You knew it was coming... a change request!
 , Tools for your Design Toolbox
 , Writing the Image Proxy
 , Tools for your Design Toolbox
 , Now for the Controller
 , Exercise Solutions

drawing class diagram making use of view and controller, Now for the Controller
 , Exercise Solutions

drawing state diagram, You knew it was coming... a change request!
 , Tools for your Design Toolbox

of classes and interfaces, Speaking of Design Patterns...
 , Tools for your Design Toolbox

redesigning classes to remove redundancy, And now the Tea...

redesigning Image Proxy, Writing the Image Proxy
 , Tools for your Design Toolbox

Duck Magnets exercises, object and class object and class adapters, Object and class adapters

implementing Iterator, Reworking the Diner Menu with Iterator

implementing undo button for macro command, Using a macro command
 , Tools for your Design Toolbox

Sharpen Your Pencil, Joe thinks about inheritance...
 , The one constant in software development
 , Implementing the Duck Behaviors
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Taking a first, misguided SWAG at the Weather Station
 , The power of Loose Coupling
 , Tools for your Design Toolbox
 , Welcome to Starbuzz Coffee
 , Welcome to Starbuzz Coffee
 , Serving some coffees
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Building the New York ingredient factory
 , A very dependent PizzaStore
 , The Chocolate Factory
 , Meanwhile, back at the Chocolate Factory...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Creating a simple test to use the Remote Control
 , Using a macro command
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Here’s how the Client uses the Adapter
 , Keeping your method calls in bounds...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Abstracting prepareRecipe()
 , Tools for your Design Toolbox
 , The Java-Enabled Waitress Specification
 , Taking a look at the Café Menu
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The messy STATE of things...
 , Defining the State interfaces and classes
 , Implementing more states
 , Let’s take a look at what we’ve done so far...
 , We almost forgot!
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Step two: creating the Proxy class and instantiating the Proxy object
 , Tools for your Design Toolbox
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Organizing Design Patterns

altering decorator classes, Serving some coffees
 , Tools for your Design Toolbox

annotating Gumball Machine states, Let’s take a look at what we’ve done so far...
 , Tools for your Design Toolbox

annotating state diagram, Defining the State interfaces and classes
 , Tools for your Design Toolbox

building ingredient factory, Building the New York ingredient factory
 , A very dependent PizzaStore

changing classes for Decorator Pattern, Duck reunion
 , Exercise Solutions

changing code to fit framework in Iterator Pattern, Taking a look at the Café Menu
 , Tools for your Design Toolbox

choosing descriptions of state of implementation, The messy STATE of things...
 , Tools for your Design Toolbox

class diagram for implementation of prepareRecipe(), Abstracting prepareRecipe()
 , Tools for your Design Toolbox

creating commands for off buttons, Using a macro command
 , Tools for your Design Toolbox

determining classes violating Principle of Least Knowledge, Keeping your method calls in bounds...
 , Tools for your Design Toolbox

drawing beverage order process, Tools for your Design Toolbox

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...
 , Tools for your Design Toolbox

identifying factors influencing design, Welcome to Starbuzz Coffee

implementing garage door command, Creating a simple test to use the Remote Control
 , Tools for your Design Toolbox

implementing state classes, Implementing more states
 , Tools for your Design Toolbox

matching patterns with categories, Organizing Design Patterns

method for refilling gumball machine, We almost forgot!
 , Tools for your Design Toolbox

on adding behaviors, Implementing the Duck Behaviors

on implementation of printmenu(), The Java-Enabled Waitress Specification
 , Tools for your Design Toolbox

on inheritance, Joe thinks about inheritance...
 , Tools for your Design Toolbox

sketching out classes, The power of Loose Coupling

things driving change, The one constant in software development
 , Tools for your Design Toolbox

turning class into Singleton, The Chocolate Factory
 , Tools for your Design Toolbox

weather station SWAG, Taking a first, misguided SWAG at the Weather Station
 , Tools for your Design Toolbox

writing Abstract Factory Pattern, Duck reunion
 , Exercise Solutions

writing classes for adapters, Here’s how the Client uses the Adapter
 , Tools for your Design Toolbox

writing dynamic proxy, Step two: creating the Proxy class and instantiating the Proxy object
 , Tools for your Design Toolbox

writing Flock observer code, Duck reunion
 , Exercise Solutions

writing methods for classes, Welcome to Starbuzz Coffee
 , Tools for your Design Toolbox

Who Does What, From the Diner to the Command Pattern
 , Tools for your Design Toolbox
 , And now for something different...
 , Tools for your Design Toolbox
 , The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , Running the code...
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

matching objects and methods to Command Pattern, From the Diner to the Command Pattern
 , Tools for your Design Toolbox

matching pattern with description, The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , Running the code...
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

matching patterns with its intent, And now for something different...
 , Tools for your Design Toolbox

writing Adapter that adapts Iterator to Enumeration, Writing the EnumerationIterator adapter
 , Tools for your Design Toolbox

writing handler for matchmaking service, Creating Invocation Handlers continued...
 , Tools for your Design Toolbox

external iterators, Iterator Pattern defined

F

Facade Pattern, And now for something different...
 , And now for something different...
 , Home Sweet Home Theater
 , Lights, Camera, Facade!
 , Lights, Camera, Facade!
 , Lights, Camera, Facade!
 , Lights, Camera, Facade!
 , Constructing your home theater facade
 , Implementing the simplified interface
 , Time to watch a movie (the easy way)
 , Facade Pattern defined
 , Facade Pattern defined
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Running the code...
 , The Proxy Zoo
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, And now for something different...

Adapter Pattern vs., Lights, Camera, Facade!

advantages, Lights, Camera, Facade!

benefits of, Lights, Camera, Facade!

building home theater system, Home Sweet Home Theater
 , Lights, Camera, Facade!
 , Constructing your home theater facade
 , Implementing the simplified interface
 , Time to watch a movie (the easy way)

about, Home Sweet Home Theater

constructing Facade in, Constructing your home theater facade

implementing Facade class, Lights, Camera, Facade!

implementing interface, Implementing the simplified interface

testing, Time to watch a movie (the easy way)

class diagram, Facade Pattern defined

Complexity Hiding Proxy vs., The Proxy Zoo

definition of, Facade Pattern defined

exercise matching description of, The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Running the code...
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

exercise matching pattern with its intent, And now for something different...
 , Tools for your Design Toolbox

Principle of Least Knowledge and, Tools for your Design Toolbox

factory method, Declaring a factory method
 , Declaring a factory method
 , Another perspective: parallel class hierarchies
 , Factory Method Pattern defined
 , Factory Method Pattern defined

about, Declaring a factory method
 , Factory Method Pattern defined

as abstract, Factory Method Pattern defined

declaring, Declaring a factory method

parallel class hierarchies and, Another perspective: parallel class hierarchies

Factory Method Pattern, Encapsulating object creation
 , Declaring a factory method
 , It’s finally time to meet the Factory Method Pattern
 , It’s finally time to meet the Factory Method Pattern
 , It’s finally time to meet the Factory Method Pattern
 , Another perspective: parallel class hierarchies
 , Another perspective: parallel class hierarchies
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Looking at object dependencies
 , The Dependency Inversion Principle
 , Reworking the pizzas, continued...
 , Abstract Factory Pattern defined
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, It’s finally time to meet the Factory Method Pattern

about factory objects, Encapsulating object creation

Abstract Factory Pattern and, Abstract Factory Pattern defined

code up close, Reworking the pizzas, continued...

concrete classes and, Factory Method Pattern defined

creator classes, It’s finally time to meet the Factory Method Pattern

declaring factory method, Declaring a factory method

definition of, Factory Method Pattern defined

Dependency Inversion Principle, The Dependency Inversion Principle

drawing parallel set of classes, Another perspective: parallel class hierarchies
 , Tools for your Design Toolbox

exercise matching description of, So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

looking at object dependencies, Looking at object dependencies

parallel class hierarchies, Another perspective: parallel class hierarchies

product classes, It’s finally time to meet the Factory Method Pattern

Simple Factory and, Factory Method Pattern defined

Factory Pattern, The Factory Pattern: Baking with OO Goodness
 , Encapsulating object creation
 , Building a simple pizza factory
 , The Simple Factory defined
 , The Simple Factory defined
 , Declaring a factory method
 , It’s finally time to meet the Factory Method Pattern
 , It’s finally time to meet the Factory Method Pattern
 , It’s finally time to meet the Factory Method Pattern
 , Another perspective: parallel class hierarchies
 , Another perspective: parallel class hierarchies
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Looking at object dependencies
 , The Dependency Inversion Principle
 , Building the ingredient factories
 , Reworking the pizzas, continued...
 , What have we done?
 , What have we done?
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Tools for your Design Toolbox
 , A very dependent PizzaStore
 , The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , Duck reunion
 , Exercise Solutions
 , So you wanna be a Design Patterns writer
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.
 , Boy, it’s been great having you in Objectville.

Abstract Factory, Building the ingredient factories
 , What have we done?
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , A very dependent PizzaStore
 , Duck reunion
 , Exercise Solutions
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, What have we done?

building ingredient factories, Building the ingredient factories
 , A very dependent PizzaStore

combining patterns, Duck reunion
 , Exercise Solutions

definition of, Abstract Factory Pattern defined

exercise matching description of, So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

Factory Method Pattern and, Abstract Factory Pattern defined

implementing, Abstract Factory Pattern defined

exercise matching description of, The Hollywood Principle and Template Method
 , Tools for your Design Toolbox

Factory Method, Declaring a factory method
 , It’s finally time to meet the Factory Method Pattern
 , It’s finally time to meet the Factory Method Pattern
 , It’s finally time to meet the Factory Method Pattern
 , Another perspective: parallel class hierarchies
 , Another perspective: parallel class hierarchies
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Factory Method Pattern defined
 , Looking at object dependencies
 , The Dependency Inversion Principle
 , Reworking the pizzas, continued...
 , What have we done?
 , Abstract Factory Pattern defined
 , Abstract Factory Pattern defined
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, It’s finally time to meet the Factory Method Pattern

Abstract Factory and, Abstract Factory Pattern defined

Abstract Factory in, What have we done?
 , Abstract Factory Pattern defined

advantages of, Factory Method Pattern defined

code up close, Reworking the pizzas, continued...

creator classes, It’s finally time to meet the Factory Method Pattern

declaring factory method, Declaring a factory method

definition of, Factory Method Pattern defined

Dependency Inversion Principle, The Dependency Inversion Principle

drawing parallel set of classes, Another perspective: parallel class hierarchies
 , Tools for your Design Toolbox

exercise matching description of, So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

looking at object dependencies, Looking at object dependencies

parallel class hierarchies, Another perspective: parallel class hierarchies

product classes, It’s finally time to meet the Factory Method Pattern

Simple Factory and, Factory Method Pattern defined

Simple Factory, The Factory Pattern: Baking with OO Goodness
 , Encapsulating object creation
 , Building a simple pizza factory
 , The Simple Factory defined
 , The Simple Factory defined
 , Factory Method Pattern defined

about factory objects, Encapsulating object creation

building factory, Building a simple pizza factory

definition of, The Simple Factory defined

Factory Method Pattern and, Factory Method Pattern defined

pattern honorable mention, The Simple Factory defined

using new operator for instantiating concrete classes, The Factory Pattern: Baking with OO Goodness

favor composition over inheritance, HAS-A can be better than IS-A
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The messy STATE of things...

Firewall Proxy, The Proxy Zoo

Flyweight Pattern, Flyweight

forces, Looking more closely at the Design Pattern definition

frameworks vs. libraries, How do I use Design Patterns?

G

Gamma, Erich, Cruisin’ Objectville with the Gang of Four

Gang of Four (GoF), Looking more closely at the Design Pattern definition
 , Looking more closely at the Design Pattern definition
 , Cruisin’ Objectville with the Gang of Four

about, Looking more closely at the Design Pattern definition
 , Cruisin’ Objectville with the Gang of Four

catalogs, Looking more closely at the Design Pattern definition

garbage collectors, Congratulations!

global access point, Singleton Pattern defined

global variables vs. Singleton, Congratulations!

guide to better living with Design Patterns, Better Living with Patterns: Patterns in the Real World

gumball machine controller implementation, using State Pattern, Jawva Breakers
 , State machines 101
 , Writing the code
 , In-house testing
 , You knew it was coming... a change request!
 , You knew it was coming... a change request!
 , The messy STATE of things...
 , The new design
 , Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game
 , Finishing the game
 , Demo for the CEO of Mighty Gumball, Inc.
 , Demo for the CEO of Mighty Gumball, Inc.
 , Sanity check...
 , We almost forgot!
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox

about, Jawva Breakers

cleaning up code, Sanity check...

demonstration of, Demo for the CEO of Mighty Gumball, Inc.

diagram to code, State machines 101

finishing, Finishing the game

one in ten contest, You knew it was coming... a change request!
 , You knew it was coming... a change request!
 , The messy STATE of things...
 , The new design
 , Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes
 , Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!
 , Tools for your Design Toolbox

implementing state classes, Implementing our State classes
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game

new design, The new design

reworking state classes, Reworking the Gumball Machine

refilling gumball machine, We almost forgot!

SoldState and WinnerState in, Demo for the CEO of Mighty Gumball, Inc.

testing code, In-house testing

writing code, Writing the code

gumball machine monitoring, using Proxy Patterns, The Proxy Pattern: Controlling Object Access
 , Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , What did we do?

about, The Proxy Pattern: Controlling Object Access

Remote Proxy, Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , What did we do?

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

H

HAS-A relationships, HAS-A can be better than IS-A
 , The Decorator Pattern defined

about, HAS-A can be better than IS-A

wrapping components, The Decorator Pattern defined

HashMap, Reworking the Café Menu code
 , Iterators and Collections
 , Iterators and Collections

hasNext() method, Adding an Iterator to DinerMenu
 , Iterator Pattern defined

in arrays, Adding an Iterator to DinerMenu

in java.util.Iterator, Iterator Pattern defined

Head First learning principles, And we know what your brain is thinking.

Head First Servlets & JSP (Basham, Sierra and Bates), Model 2: DJ’ing from a cell phone

Helm, Richard, Cruisin’ Objectville with the Gang of Four

high-level component classes, The Dependency Inversion Principle

The Hillside Group (website), Your journey has just begun...

The Hollywood Principle, The Hollywood Principle

home automation remote control, using Command Pattern, Taking a look at the vendor classes
 , Taking a look at the vendor classes
 , Cubicle Conversation
 , From the Diner to the Command Pattern
 , Our first command object
 , Using the command object
 , The Command Pattern defined
 , The Command Pattern defined: the class diagram
 , The Command Pattern defined: the class diagram
 , Implementing the Commands
 , Putting the Remote Control through its paces
 , Now, let’s check out the execution of our remote control test...
 , Time to write that documentation...
 , Time to write that documentation...
 , Time to QA that Undo button!
 , Using state to implement Undo
 , Get ready to test the ceiling fan
 , Every remote needs a Party Mode!
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references
 , Test the remote control with lambda expressions
 , Test the remote control with lambda expressions
 , Check out the results of all those lambda expression commands...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox

about, Taking a look at the vendor classes

building, Our first command object
 , Tools for your Design Toolbox

class diagram, The Command Pattern defined: the class diagram

command classes in, The Command Pattern means lots of command classes
 , Simplifying the Remote Control with lambda expressions
 , Simplifying even more with method references

about, The Command Pattern means lots of command classes

passing method references, Simplifying even more with method references

using lambda expressions, Simplifying the Remote Control with lambda expressions

creating commands to be loaded, The Command Pattern defined: the class diagram

defining, The Command Pattern defined

designing, Cubicle Conversation

display of on and off slots, Check out the results of all those lambda expression commands...

implementing, Implementing the Commands

macro commands, Every remote needs a Party Mode!
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , Tools for your Design Toolbox

about, Every remote needs a Party Mode!

hard coding vs., Using a macro command

undo button, Using a macro command
 , Tools for your Design Toolbox

using, Using a macro command

mapping, From the Diner to the Command Pattern
 , Tools for your Design Toolbox

Null Object, Now, let’s check out the execution of our remote control test...
 , Test the remote control with lambda expressions

testing, Using the command object
 , Putting the Remote Control through its paces
 , Using a macro command
 , Test the remote control with lambda expressions

undo commands, Time to write that documentation...
 , Time to QA that Undo button!
 , Using state to implement Undo
 , Get ready to test the ceiling fan
 , Using a macro command
 , Tools for your Design Toolbox

creating, Time to write that documentation...

creating multiple, Using a macro command

implementing for macro command, Tools for your Design Toolbox

testing, Time to QA that Undo button!
 , Get ready to test the ceiling fan

using state to implement, Using state to implement Undo

vendor classes for, Taking a look at the vendor classes

writing documentation, Time to write that documentation...

home theater system, building, Home Sweet Home Theater
 , Lights, Camera, Facade!
 , Constructing your home theater facade
 , Implementing the simplified interface
 , Time to watch a movie (the easy way)
 , Keeping your method calls in bounds...

about, Home Sweet Home Theater

constructing Facade in, Constructing your home theater facade

implementing interface, Implementing the simplified interface

Sharpen Your Pencil, Keeping your method calls in bounds...

testing, Time to watch a movie (the easy way)

using Facade Pattern, Lights, Camera, Facade!

hooks, in Template Method Pattern, Template Method Pattern defined

I

Image Proxy, writing, Writing the Image Proxy

implement on interface, in design patterns, The Simple Factory defined

Implementation section, in pattern catalog, Looking more closely at the Design Pattern definition

implementations, More integration...
 , What’s wrong with our implementation?

coding to, What’s wrong with our implementation?

programming, More integration...

implementing behaviors, Implementing the Duck Behaviors

import and package statements, Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

inheritance, But something went horribly wrong...
 , But something went horribly wrong...
 , Joe thinks about inheritance...
 , Joe thinks about inheritance...
 , Implementing the Duck Behaviors
 , HAS-A can be better than IS-A
 , Welcome to Starbuzz Coffee
 , Cubicle Conversation
 , Object and class adapters

about, Joe thinks about inheritance...

composition vs., Cubicle Conversation

disadvantages, Joe thinks about inheritance...

disadvantages of, Welcome to Starbuzz Coffee

favoring composition over, HAS-A can be better than IS-A

for maintenance, But something went horribly wrong...

for reuse, But something went horribly wrong...
 , Implementing the Duck Behaviors

implementing multiple, Object and class adapters

instance variables, Welcome to Starbuzz Coffee
 , Coding condiments

using instead of classes, Welcome to Starbuzz Coffee

wrapping to object, Coding condiments

instantiating concrete classes, The Factory Pattern: Baking with OO Goodness
 , Looking at object dependencies

in objects, Looking at object dependencies

using new operator for, The Factory Pattern: Baking with OO Goodness

instantiating one object, The Singleton Pattern: One of a Kind Objects

integrating behaviors, Integrating the Duck Behavior

integrating Cafe Menu, using Iterator Pattern, Taking a look at the Café Menu
 , Reworking the Café Menu code

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

Intent section, in pattern catalog, Looking more closely at the Design Pattern definition

interface, Designing the Duck Behaviors
 , The dark side of java.util.Observable
 , The Factory Pattern: Baking with OO Goodness

coding to, The Factory Pattern: Baking with OO Goodness

programming to, Designing the Duck Behaviors
 , The dark side of java.util.Observable

interface type, Integrating the Duck Behavior
 , Testing the Duck code

internal iterators, Iterator Pattern defined

Interpreter Pattern, Interpreter

inversion, in Dependency Inversion Principle, Applying the Principle

invoker, From the Diner to the Command Pattern
 , The Command Pattern defined
 , Assigning Commands to slots
 , Tools for your Design Toolbox

Iterator Pattern, Breaking News: Objectville Diner and Objectville Pancake House Merge
 , Lou and Mel’s Menu implementations
 , Can we encapsulate the iteration?
 , Meet the Iterator Pattern
 , Meet the Iterator Pattern
 , Adding an Iterator to DinerMenu
 , Making some improvements...
 , Making some improvements...
 , Cleaning things up with java.util.Iterator
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Single Responsibility
 , Taking a look at the Café Menu
 , Reworking the Café Menu code
 , Reworking the Café Menu code
 , Iterators and Collections
 , Is the Waitress ready for prime time?
 , Getting ready for a test drive...
 , Flashback to Iterator
 , The Null Iterator
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Duck reunion
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, Meet the Iterator Pattern

class diagram, Iterator Pattern defined

code up close using HashMap, Reworking the Café Menu code

code violating Open-Closed Principle, Is the Waitress ready for prime time?

Collections and, Iterators and Collections

combining patterns, Duck reunion

Composite Pattern and, Getting ready for a test drive...

definition of, Iterator Pattern defined

exercise matching description of, The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

integrating Cafe Menu, Taking a look at the Café Menu
 , Reworking the Café Menu code

about, Taking a look at the Café Menu

reworking code, Reworking the Café Menu code

java.util.Iterator, Making some improvements...

merging diner menus, Breaking News: Objectville Diner and Objectville Pancake House Merge
 , Lou and Mel’s Menu implementations
 , Can we encapsulate the iteration?
 , Meet the Iterator Pattern
 , Adding an Iterator to DinerMenu
 , Cleaning things up with java.util.Iterator

about, Breaking News: Objectville Diner and Objectville Pancake House Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

Null Iterator, Flashback to Iterator
 , The Null Iterator

removing objects, Making some improvements...

Single Responsibility Principle, Single Responsibility

Iterators, Adapting an Enumeration to an Iterator
 , Dealing with the remove() method
 , Writing the EnumerationIterator adapter
 , Tools for your Design Toolbox
 , Can we encapsulate the iteration?
 , Meet the Iterator Pattern
 , Adding an Iterator to DinerMenu
 , What we have so far...
 , Cleaning things up with java.util.Iterator
 , What does this get us?
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterator Pattern defined
 , Iterators and Collections
 , Iterators and Collections
 , Iterators and Collections
 , Flashback to Iterator

adding, Adding an Iterator to DinerMenu

allowing decoupling, What we have so far...
 , What does this get us?
 , Iterator Pattern defined
 , Iterators and Collections

cleaning up code using java.util.Iterator, Cleaning things up with java.util.Iterator

Collections and, Iterators and Collections

encapsulating, Can we encapsulate the iteration?

Enumeration adapting to, Adapting an Enumeration to an Iterator
 , Iterator Pattern defined

external, Iterator Pattern defined

HashMap and, Iterators and Collections

implementing, Meet the Iterator Pattern

internal and external, Iterator Pattern defined

ordering of, Iterator Pattern defined

polymorphic code using, Iterator Pattern defined
 , Iterator Pattern defined

using ListInterator, Iterator Pattern defined

using with Composite Pattern, Flashback to Iterator

writing Adapter for Enumeration, Dealing with the remove() method

writing Adapter that adapts to Enumeration, Writing the EnumerationIterator adapter
 , Tools for your Design Toolbox

J

Java Collections Framework, Iterators and Collections

Java decorators (java.io packages), Real World Decorators: Java I/O

Java Virtual Machines (JVMs), 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().
 , Congratulations!
 , Adding a remote proxy to the Gumball Machine monitoring code

bug in garbage collector, Congratulations!

Remote Method Invocation (RMI), Adding a remote proxy to the Gumball Machine monitoring code

support of volatile keyword, 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

java.lang.reflect package, proxy support in, Java RMI, the Big Picture
 , Using the Java API’s Proxy to create a protection proxy
 , Creating Invocation Handlers continued...

java.util, built-in Observer Pattern, Using Java’s built-in Observer Pattern

java.util.Collection, Iterators and Collections

java.util.Enumeration, as older implementation of Iterator, Real-world adapters
 , Iterator Pattern defined

java.util.Iterator, Making some improvements...
 , Cleaning things up with java.util.Iterator
 , Iterator Pattern defined

cleaning up code using, Cleaning things up with java.util.Iterator

interface of, Making some improvements...

using, Iterator Pattern defined

JButton, in Swing API, Other places you’ll find the Observer Pattern in the JDK

JFrames, Swing, Swingin’ with Frames

Johnson, Ralph, Cruisin’ Objectville with the Gang of Four

K

Kathy Sierra, (Head First Servlets & JSP), Model 2: DJ’ing from a cell phone

KISS (Keep It Simple), in designing patterns, Thinking in Patterns

Known Uses section, in pattern catalog, Looking more closely at the Design Pattern definition

L

lambda expressions, And the code...
 , Simplifying the Remote Control with lambda expressions

Law of Demeter, Keeping your method calls in bounds...

lazy instantiation, Singleton Pattern defined

leaves, in Composite Pattern tree structure, The Composite Pattern defined
 , Getting ready for a test drive...

libraries, How do I use Design Patterns?
 , How do I use Design Patterns?

design patterns vs., How do I use Design Patterns?

frameworks vs., How do I use Design Patterns?

LinkedList, Iterators and Collections

ListInterator, Iterator Pattern defined

logging requests, using Command Pattern, More uses of the Command Pattern: logging requests

looping through array items, The Java-Enabled Waitress Specification
 , What now?

loose coupling, The power of Loose Coupling

M

macro commands, Every remote needs a Party Mode!
 , Using a macro command
 , Using a macro command
 , Using a macro command
 , Tools for your Design Toolbox

about, Every remote needs a Party Mode!

macro commands, Using a macro command
 , Using a macro command
 , Tools for your Design Toolbox

hard coding vs., Using a macro command

undo button, Using a macro command
 , Tools for your Design Toolbox

using, Using a macro command

magic bullet, Design Patterns as not, Thinking in Patterns

maintenance, inheritance for, But something went horribly wrong...

matchmaking service, using Proxy Pattern, Matchmaking in Objectville
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service

about, Matchmaking in Objectville

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the PersonBean

implementing, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing, Testing the matchmaking service

Mediator Pattern, Composite
 , Mediator

Memento Pattern, Memento

merging diner menus (Iterator Pattern), Breaking News: Objectville Diner and Objectville Pancake House Merge
 , Lou and Mel’s Menu implementations
 , Can we encapsulate the iteration?
 , Meet the Iterator Pattern
 , Adding an Iterator to DinerMenu
 , Cleaning things up with java.util.Iterator

about, Breaking News: Objectville Diner and Objectville Pancake House Merge

adding Iterators, Adding an Iterator to DinerMenu

cleaning up code using java.util.Iterator, Cleaning things up with java.util.Iterator

encapsulating Iterator, Can we encapsulate the iteration?

implementing Iterators for, Meet the Iterator Pattern

implementing of, Lou and Mel’s Menu implementations

method of objects, components of object vs., The Principle of Least Knowledge

method references, passing, Simplifying even more with method references

methods, A few guidelines to help you follow the Principle...
 , Template Method Pattern defined

as hooks, Template Method Pattern defined

overriding from implemented, A few guidelines to help you follow the Principle...

Model 2, MVC and the Web
 , Model 2: DJ’ing from a cell phone
 , Design Patterns and Model 2
 , Strategy
 , Strategy

about, MVC and the Web

Composite Pattern, Strategy

from cell phone, Model 2: DJ’ing from a cell phone

Observer Pattern, Design Patterns and Model 2

Strategy Pattern, Strategy

Model-View-Controller (MVC), If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , Meet the Model-View-Controller
 , Looking at MVC through patterns-colored glasses
 , Looking at MVC through patterns-colored glasses
 , Looking at MVC through patterns-colored glasses
 , Using MVC to control the beat...
 , Meet the Java DJ View
 , Building the pieces
 , Now for the Controller
 , Now for the Controller
 , Putting it all together...
 , Exploring Strategy
 , Exploring Strategy
 , Adapting the Model
 , Now we’re ready for a HeartController
 , MVC and the Web
 , Composite
 , Composite
 , Composite
 , Composite
 , Composite
 , Composite
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions

about, If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...
 , Meet the Model-View-Controller

Adapter Pattern, Adapting the Model

Beat model, Meet the Java DJ View
 , Exercise Solutions

Composite Pattern, Looking at MVC through patterns-colored glasses
 , Composite

controllers per view, Composite

Heart controller, Now we’re ready for a HeartController
 , Exercise Solutions

Heart model, Exploring Strategy

implementing controller, Now for the Controller
 , Exercise Solutions

implementing DJ View, Using MVC to control the beat...
 , Exercise Solutions

Mediator Pattern, Composite

model in, Composite

Observer Pattern, Looking at MVC through patterns-colored glasses
 , Building the pieces

song, If Elvis were a compound pattern, his name would be Model-View-Controller, and he’d be singing a little song like this...

state of model, Composite

Strategy Pattern, Looking at MVC through patterns-colored glasses
 , Now for the Controller
 , Exploring Strategy
 , Exercise Solutions

testing, Putting it all together...

views accessing model state methods, Composite

web and, MVC and the Web

modeling state, State machines 101

Motivation section, in pattern catalog, Looking more closely at the Design Pattern definition

multiple patterns, using, Compound Patterns: Patterns of Patterns
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , A duck’s eye view: the class diagram
 , Exercise Solutions

about, Compound Patterns: Patterns of Patterns

in duck simulator, Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , A duck’s eye view: the class diagram
 , Exercise Solutions

about rebuilding, Duck reunion

adding Abstract Factory Pattern, Duck reunion
 , Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

multithreading, Can we improve multithreading?
 , Tools for your Design Toolbox

dealing with, Tools for your Design Toolbox

improving, Can we improve multithreading?

N

Name section, in pattern catalog, Looking more closely at the Design Pattern definition

new operator, replacing with concrete method, Reworking the PizzaStore class

next() method, Adding an Iterator to DinerMenu
 , Iterator Pattern defined

in java.util.Iterator, Iterator Pattern defined

with Iterator, arrays, Adding an Iterator to DinerMenu

NoCommand, in remote control code, Now, let’s check out the execution of our remote control test...
 , Test the remote control with lambda expressions

nodes, in Composite Pattern tree structure, The Composite Pattern defined
 , Getting ready for a test drive...

Null Iterator, Flashback to Iterator
 , The Null Iterator

Null Objects, Now, let’s check out the execution of our remote control test...

O

object access, using Proxy Pattern for controlling, The Proxy Pattern: Controlling Object Access
 , Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?
 , What did we do?
 , What did we do?
 , Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo

about, The Proxy Pattern: Controlling Object Access

Caching Proxy, What did we do?
 , The Proxy Zoo

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Firewall Proxy, The Proxy Zoo

Protection Proxy, Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection proxy

Remote Proxy, Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , What did we do?

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

Virtual Proxy, Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?

about, Get ready for Virtual Proxy

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

object adapters vs. class adapters, Object and class adapters

object construction, encapsulating, Builder

object creation, encapsulating, Encapsulating object creation
 , Factory Method Pattern defined

object patterns, Design Patterns, Pattern Categories

Object-Oriented (OO) design., How do I use Design Patterns?
 , The power of Loose Coupling
 , The Open-Closed Principle
 , The Dependency Inversion Principle
 , A few guidelines to help you follow the Principle...
 , Adapters all around us
 , If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
 , Test drive the adapter
 , Here’s how the Client uses the Adapter
 , Object and class adapters

(see also design principles)

adapters, Adapters all around us
 , If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
 , Test drive the adapter
 , Here’s how the Client uses the Adapter
 , Object and class adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
 , Test drive the adapter

object and class object and class, Object and class adapters

design patterns vs., How do I use Design Patterns?

extensibility and modification of code in, The Open-Closed Principle

guidelines for avoiding violation of Dependency Inversion Principle, A few guidelines to help you follow the Principle...

loosely coupled designs and, The power of Loose Coupling

Object-Oriented Systems, Languages and Applications (OOPSLA) conference, Your journey has just begun...

objects, The power of Loose Coupling
 , Meet the Decorator Pattern
 , Factory Method Pattern defined
 , A small Socratic exercise in the style of The Little Lisper
 , Dissecting the classic Singleton Pattern implementation
 , Here’s how the Client uses the Adapter
 , Writing the EnumerationIterator adapter
 , Lights, Camera, Facade!
 , The Principle of Least Knowledge
 , The State Pattern defined
 , Duck reunion

components of, The Principle of Least Knowledge

creating, Factory Method Pattern defined

loosely coupled designs between, The power of Loose Coupling

sharing state, The State Pattern defined

Singleton, A small Socratic exercise in the style of The Little Lisper
 , Dissecting the classic Singleton Pattern implementation

wrapping, Meet the Decorator Pattern
 , Here’s how the Client uses the Adapter
 , Writing the EnumerationIterator adapter
 , Lights, Camera, Facade!
 , Duck reunion

Observer Pattern, The Observer Pattern: Keeping your Objects in the know
 , Unpacking the WeatherData class
 , Taking a first, misguided SWAG at the Weather Station
 , Meet the Observer Pattern
 , Publishers + Subscribers = Observer Pattern
 , Publishers + Subscribers = Observer Pattern
 , Publishers + Subscribers = Observer Pattern
 , A day in the life of the Observer Pattern
 , Five-minute drama: a subject for observation
 , The Observer Pattern defined
 , The Observer Pattern defined
 , The Observer Pattern defined
 , The Observer Pattern defined: the class diagram
 , The power of Loose Coupling
 , Designing the Weather Station
 , Implementing the Weather Station
 , Now, let’s build those display elements
 , Power up the Weather Station
 , Using Java’s built-in Observer Pattern
 , Reworking the Weather Station with the built-in support
 , Other places you’ll find the Observer Pattern in the JDK
 , And the code...
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Duck reunion
 , Looking at MVC through patterns-colored glasses
 , Building the pieces
 , Design Patterns and Model 2
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, The Observer Pattern: Keeping your Objects in the know
 , Meet the Observer Pattern

class design of, The Observer Pattern defined

class patterns category, So you wanna be a Design Patterns writer

combining patterns, Duck reunion

definition of, The Observer Pattern defined

dependence in, The Observer Pattern defined: the class diagram

exercise matching description of, The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , Boy, it’s been great having you in Objectville.

in Five Minute Drama, Five-minute drama: a subject for observation

in Model 2, Design Patterns and Model 2

in Model-View-Controller, Looking at MVC through patterns-colored glasses
 , Building the pieces

lambada expressions and, And the code...

loose coupling in, The power of Loose Coupling

Observer object in, Publishers + Subscribers = Observer Pattern

one-to-many relationships, The Observer Pattern defined

process, A day in the life of the Observer Pattern

Publish-Subscribe as, Publishers + Subscribers = Observer Pattern

Subject object in, Publishers + Subscribers = Observer Pattern

Swing and, Other places you’ll find the Observer Pattern in the JDK

using built-in java.util, Using Java’s built-in Observer Pattern

weather station using, Unpacking the WeatherData class
 , Taking a first, misguided SWAG at the Weather Station
 , Designing the Weather Station
 , Implementing the Weather Station
 , Now, let’s build those display elements
 , Power up the Weather Station
 , Reworking the Weather Station with the built-in support

building display elements, Now, let’s build those display elements

designing, Designing the Weather Station

implementing, Implementing the Weather Station

powering up, Power up the Weather Station

SWAG, Taking a first, misguided SWAG at the Weather Station

unpacking classes, Unpacking the WeatherData class

using built-in Java Observer Pattern, Reworking the Weather Station with the built-in support

observers, Publishers + Subscribers = Observer Pattern
 , Five-minute drama: a subject for observation
 , The Observer Pattern defined: the class diagram

in class diagram, The Observer Pattern defined: the class diagram

in Five Minute Drama, Five-minute drama: a subject for observation

in Observer Pattern, Publishers + Subscribers = Observer Pattern

One Class, One Responsibility Principle, Congratulations!
 , Single Responsibility
 , Getting ready for a test drive...

one in ten contest in gumball machine, using State Pattern, You knew it was coming... a change request!
 , You knew it was coming... a change request!
 , The messy STATE of things...
 , The new design
 , Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes
 , Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!
 , Tools for your Design Toolbox

implementing state classes, Implementing our State classes
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game

new design, The new design

reworking state classes, Reworking the Gumball Machine

one-to-many relationships, Observer Pattern defining, The Observer Pattern defined

OO (Object-Oriented) design., How do I use Design Patterns?
 , The power of Loose Coupling
 , The Open-Closed Principle
 , The Dependency Inversion Principle
 , A few guidelines to help you follow the Principle...
 , Adapters all around us
 , If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
 , Test drive the adapter
 , Here’s how the Client uses the Adapter
 , Object and class adapters

(see also design principles)

adapters, Adapters all around us
 , If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...
 , Test drive the adapter
 , Here’s how the Client uses the Adapter
 , Object and class adapters

about, Adapters all around us

creating Two Way Adapters, Here’s how the Client uses the Adapter

in action, If it walks like a duck and quacks like a duck, then it must might be a duck turkey wrapped with a duck adapter...

object and class object and class, Object and class adapters

test driving, Test drive the adapter

design patterns vs., How do I use Design Patterns?

extensibility and modification os code in, The Open-Closed Principle

guidelines for avoiding violation of Dependency Inversion Principle, A few guidelines to help you follow the Principle...

loosely coupled designs and, The power of Loose Coupling

OOPSLA (Object-Oriented Systems, Languages and Applications) conference, Your journey has just begun...

Open-Closed Principle, The Open-Closed Principle
 , Is the Waitress ready for prime time?
 , The messy STATE of things...

code violating, Is the Waitress ready for prime time?
 , The messy STATE of things...

effect on maintaining code, The Open-Closed Principle

Organizational Patterns, The Patterns Zoo

overusing Design Patterns, Your Mind on Patterns

P

package and import statements, Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

parallel class hierarchies, Another perspective: parallel class hierarchies

part-whole hierarchy, The Composite Pattern defined

Participants section, in pattern catalog, Looking more closely at the Design Pattern definition

pattern catalogs, Looking more closely at the Design Pattern definition
 , Looking more closely at the Design Pattern definition

Pattern Death Match pages, Compound Patterns: Patterns of Patterns

Pattern Languages of Programs (PLoP) conference, Your journey has just begun...

pattern templates, uses of, So you wanna be a Design Patterns writer

A Pattern Language (Alexander), Your journey has just begun...

patterns, using compound, Compound Patterns: Patterns of Patterns

patterns, using multiple, Compound Patterns: Patterns of Patterns
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , A duck’s eye view: the class diagram
 , Exercise Solutions

about, Compound Patterns: Patterns of Patterns

in duck simulator, Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , A duck’s eye view: the class diagram
 , Exercise Solutions

about rebuilding, Duck reunion

adding Abstract Factory Pattern, Duck reunion
 , Exercise Solutions

adding Adapter Pattern, Duck reunion

adding Composite Pattern, Duck reunion

adding Decorator Pattern, Duck reunion

adding Iterator Pattern, Duck reunion

adding Observer Pattern, Duck reunion

class diagram, A duck’s eye view: the class diagram

Pizza Store project, using Factory Pattern, Identifying the aspects that vary
 , Encapsulating object creation
 , Building a simple pizza factory
 , Franchising the pizza store
 , A framework for the pizza store
 , Allowing the subclasses to decide
 , Let’s make a PizzaStore
 , Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them
 , Another perspective: parallel class hierarchies
 , Inverting your thinking...
 , Meanwhile, back at the PizzaStore...
 , Reworking the pizzas...
 , Revisiting our pizza stores
 , What have we done?
 , More pizza for Ethan and Joel...
 , Abstract Factory Pattern defined
 , Tools for your Design Toolbox
 , A very dependent PizzaStore

Abstract Factory in, What have we done?
 , Abstract Factory Pattern defined

behind the scenes, More pizza for Ethan and Joel...

building factory, Building a simple pizza factory

concrete subclasses in, Allowing the subclasses to decide

drawing parallel set of classes, Another perspective: parallel class hierarchies
 , Tools for your Design Toolbox

encapsulating object creation, Encapsulating object creation

ensuring consistency in ingredients, Meanwhile, back at the PizzaStore...
 , A very dependent PizzaStore

framework for, A framework for the pizza store

franchising store, Franchising the pizza store

identifying aspects in, Identifying the aspects that vary

implementing, Inverting your thinking...

making pizza store in, Let’s make a PizzaStore

ordering pizza, Our PizzaStore isn’t going to be very popular without some pizzas, so let’s implement them

referencing local ingredient factories, Revisiting our pizza stores

reworking pizzas, Reworking the pizzas...

PLoP (Pattern Languages of Programs) conference, Your journey has just begun...

polymorphic code, using on iterator, Iterator Pattern defined
 , Iterator Pattern defined

polymorphism, Designing the Duck Behaviors

prepareRecipe(), abstracting, Abstracting prepareRecipe()

Principle of Least Knowledge, The Principle of Least Knowledge

print() method, in dessert submenu using Composite Pattern, Implementing the Menu Component
 , The Composite Iterator

program to an interface, not an implementation, Designing the Duck Behaviors
 , The dark side of java.util.Observable
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , What does this get us?

program to interface vs. program to supertype, Designing the Duck Behaviors

Protection Proxy, What did we do?
 , Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service

about, Using the Java API’s Proxy to create a protection proxy

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

Proxy Pattern and, What did we do?

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection proxy

Prototype Pattern, Prototype

proxies, The Proxy Pattern: Controlling Object Access

Proxy class, identifying class as, Running the code...

Proxy Pattern, Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Java RMI, the Big Picture
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , The Proxy Pattern defined
 , Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?
 , What did we do?
 , What did we do?
 , What did we do?
 , What did we do?
 , What did we do?
 , What did we do?
 , What did we do?
 , What did we do?
 , Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Step one: creating Invocation Handlers
 , Creating Invocation Handlers continued...
 , Creating Invocation Handlers continued...
 , Step two: creating the Proxy class and instantiating the Proxy object
 , Testing the matchmaking service
 , Running the code...
 , Running the code...
 , Running the code...
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , The Proxy Zoo
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

Adapter Pattern vs., What did we do?

Complexity Hiding Proxy, The Proxy Zoo

Copy-On-Write Proxy, The Proxy Zoo

Decorator Pattern vs., What did we do?

definition of, The Proxy Pattern defined

dynamic aspect of dynamic proxies, Running the code...

exercise matching description of, Running the code...
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

Firewall Proxy, The Proxy Zoo

implementation of Remote Proxy, Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , What did we do?

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

java.lang.reflect package, Java RMI, the Big Picture
 , Using the Java API’s Proxy to create a protection proxy
 , Creating Invocation Handlers continued...

Protection Proxy and, What did we do?
 , Using the Java API’s Proxy to create a protection proxy
 , Using the Java API’s Proxy to create a protection proxy
 , The PersonBean implementation
 , Five-minute drama: protecting subjects
 , Big Picture: creating a Dynamic Proxy for the PersonBean
 , Testing the matchmaking service

about, Using the Java API’s Proxy to create a protection proxy

Adapters and, What did we do?

creating dynamic proxy, Big Picture: creating a Dynamic Proxy for the PersonBean

implementing matchmaking service, The PersonBean implementation

protecting subjects, Five-minute drama: protecting subjects

testing matchmaking service, Testing the matchmaking service

using dynamic proxy, Using the Java API’s Proxy to create a protection proxy

Real Subject, What did we do?
 , What did we do?
 , Step one: creating Invocation Handlers
 , Creating Invocation Handlers continued...
 , Step two: creating the Proxy class and instantiating the Proxy object

as surrogate of, What did we do?

invoking method on, Step one: creating Invocation Handlers

making client use Proxy instead of, What did we do?

passing in constructor, Creating Invocation Handlers continued...

returning proxy for, Step two: creating the Proxy class and instantiating the Proxy object

restrictions on passing types of interfaces, Running the code...

Smart Reference Proxy, The Proxy Zoo

Synchronization Proxy, The Proxy Zoo

variations, What did we do?
 , The Proxy Zoo

Virtual Proxy, Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?
 , What did we do?
 , The Proxy Zoo

about, Get ready for Virtual Proxy

Caching Proxy as form of, What did we do?
 , The Proxy Zoo

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Publish-Subscribe, as Observer Pattern, Publishers + Subscribers = Observer Pattern

Q

queuing requests, using Command Pattern, More uses of the Command Pattern: queuing requests

R

Real Subject, What did we do?
 , What did we do?
 , Step one: creating Invocation Handlers
 , Creating Invocation Handlers continued...
 , Step two: creating the Proxy class and instantiating the Proxy object

as surrogate of Proxy Pattern, What did we do?

invoking method on, Step one: creating Invocation Handlers

making client use proxy instead of, What did we do?

passing in constructor, Creating Invocation Handlers continued...

returning proxy for, Step two: creating the Proxy class and instantiating the Proxy object

refactoring, What do we need?
 , You know you need a pattern when...

Related patterns section, in pattern catalog, Looking more closely at the Design Pattern definition

Remote Method Invocation (RMI), Adding a remote proxy to the Gumball Machine monitoring code
 , Remote methods 101
 , Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , How does the client get the stub object?
 , How does the client get the stub object?
 , Getting the GumballMachine ready to be a remote service
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...

about, Adding a remote proxy to the Gumball Machine monitoring code
 , Java RMI, the Big Picture

code up close, How does the client get the stub object?

completing code for server side, Java RMI, the Big Picture

importing java.rmi, Getting the GumballMachine ready to be a remote service

importing packages, Getting the GumballMachine ready to be a remote service
 , Now for the GumballMonitor client...

making remote service, Java RMI, the Big Picture

method call in, Remote methods 101

registering with RMI registry, Registering with the RMI registry...

things to watch out for in, How does the client get the stub object?

Remote proxy, Testing the Monitor
 , The role of the ‘remote proxy’
 , Adding a remote proxy to the Gumball Machine monitoring code
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...
 , Writing the Monitor test drive
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it
 , What did we do?

about, Testing the Monitor

adding to monitoring code, Adding a remote proxy to the Gumball Machine monitoring code

preparing for remote service, Getting the GumballMachine ready to be a remote service

registering with RMI registry, Registering with the RMI registry...

reusing client for, Now for the GumballMonitor client...

reviewing process, And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

role of, The role of the ‘remote proxy’

testing, Writing the Monitor test drive

wrapping objects and, What did we do?

remove() method, Dealing with the remove() method
 , Making some improvements...
 , Iterator Pattern defined

Enumeration and, Dealing with the remove() method

in collection of objects, Making some improvements...

in java.util.Iterator, Iterator Pattern defined

requests, encapsulating, The Command Pattern defined

resources, Design Patterns, Your journey has just begun...

reuse, But something went horribly wrong...
 , Welcome to Starbuzz Coffee

RMI (Remote Method Invocation), Adding a remote proxy to the Gumball Machine monitoring code
 , Remote methods 101
 , Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , How does the client get the stub object?
 , How does the client get the stub object?
 , Getting the GumballMachine ready to be a remote service
 , Getting the GumballMachine ready to be a remote service
 , Registering with the RMI registry...
 , Now for the GumballMonitor client...

about, Adding a remote proxy to the Gumball Machine monitoring code
 , Java RMI, the Big Picture

code up close, How does the client get the stub object?

completing code for server side, Java RMI, the Big Picture

importing java.rmi, Getting the GumballMachine ready to be a remote service

importing packages, Getting the GumballMachine ready to be a remote service
 , Now for the GumballMonitor client...

making remote service, Java RMI, the Big Picture

method call in, Remote methods 101

registering with RMI registry, Registering with the RMI registry...

things to watch out for in, How does the client get the stub object?

rule of three, applied to Design Patterns, So you wanna be a Design Patterns writer

runtime errors, causes of, Factory Method Pattern defined

S

Sample code section, in pattern catalog, Looking more closely at the Design Pattern definition

server heap, Remote methods 101

service helper (skeletons), in RMI, Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , How does the client get the stub object?
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

servlet environment, setting up, Model 2: DJ’ing from a cell phone

shared vocabulary, Overheard at the local diner...
 , The power of a shared pattern vocabulary
 , Don’t forget the power of the shared vocabulary

importance of, Overheard at the local diner...

power of, The power of a shared pattern vocabulary
 , Don’t forget the power of the shared vocabulary

Sharpen Your Pencil, Joe thinks about inheritance...
 , The one constant in software development
 , Implementing the Duck Behaviors
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Taking a first, misguided SWAG at the Weather Station
 , The power of Loose Coupling
 , Power up the Weather Station
 , Tools for your Design Toolbox
 , Welcome to Starbuzz Coffee
 , Welcome to Starbuzz Coffee
 , Serving some coffees
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Let’s make a PizzaStore
 , A very dependent PizzaStore
 , Building the New York ingredient factory
 , Tools for your Design Toolbox
 , A very dependent PizzaStore
 , A very dependent PizzaStore
 , The Chocolate Factory
 , Meanwhile, back at the Chocolate Factory...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Creating a simple test to use the Remote Control
 , Using a macro command
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Here’s how the Client uses the Adapter
 , Keeping your method calls in bounds...
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Abstracting prepareRecipe()
 , Tools for your Design Toolbox
 , The Java-Enabled Waitress Specification
 , Taking a look at the Café Menu
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The messy STATE of things...
 , Defining the State interfaces and classes
 , Implementing more states
 , Let’s take a look at what we’ve done so far...
 , We almost forgot!
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Step two: creating the Proxy class and instantiating the Proxy object
 , Tools for your Design Toolbox
 , Duck reunion
 , Duck reunion
 , Duck reunion
 , Exercise Solutions
 , Exercise Solutions
 , Exercise Solutions
 , Organizing Design Patterns
 , Organizing Design Patterns

altering decorator classes, Serving some coffees
 , Tools for your Design Toolbox

annotating Gumball Machine States, Let’s take a look at what we’ve done so far...
 , Tools for your Design Toolbox

annotating state diagram, Defining the State interfaces and classes
 , Tools for your Design Toolbox

building ingredient factory, Building the New York ingredient factory
 , A very dependent PizzaStore

changing classes for Decorator Pattern, Duck reunion
 , Exercise Solutions

changing code to fit framework in Iterator Pattern, Taking a look at the Café Menu
 , Tools for your Design Toolbox

choosing descriptions of state of implementation, The messy STATE of things...
 , Tools for your Design Toolbox

class diagram for implementation of prepareRecipe(), Abstracting prepareRecipe()
 , Tools for your Design Toolbox

code not using factories, A very dependent PizzaStore
 , A very dependent PizzaStore

creating commands for off buttons, Using a macro command
 , Tools for your Design Toolbox

creating heat index, Power up the Weather Station

determining classes violating Principle of Least Knowledge, Keeping your method calls in bounds...
 , Tools for your Design Toolbox

drawing beverage order process, Tools for your Design Toolbox

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...
 , Tools for your Design Toolbox

identifying factors influencing design, Welcome to Starbuzz Coffee

implementing garage door command, Creating a simple test to use the Remote Control
 , Tools for your Design Toolbox

implementing state classes, Implementing more states
 , Tools for your Design Toolbox

making pizza store, Let’s make a PizzaStore
 , Tools for your Design Toolbox

matching patterns with categories, Organizing Design Patterns
 , Organizing Design Patterns

method for refilling gumball machine, We almost forgot!
 , Tools for your Design Toolbox

on adding behaviors, Implementing the Duck Behaviors

on implementation of printmenu(), The Java-Enabled Waitress Specification
 , Tools for your Design Toolbox

on inheritance, Joe thinks about inheritance...
 , Tools for your Design Toolbox

sketching out classes, The power of Loose Coupling

things driving change, The one constant in software development
 , Tools for your Design Toolbox

turning class into Singleton, The Chocolate Factory
 , Tools for your Design Toolbox

weather station SWAG, Taking a first, misguided SWAG at the Weather Station
 , Tools for your Design Toolbox

writing Abstract Factory Pattern, Duck reunion
 , Exercise Solutions

writing classes for adapters, Here’s how the Client uses the Adapter
 , Tools for your Design Toolbox

writing dynamic proxy, Step two: creating the Proxy class and instantiating the Proxy object
 , Tools for your Design Toolbox

writing Flock observer code, Duck reunion
 , Exercise Solutions

writing methods for classes, Welcome to Starbuzz Coffee
 , Tools for your Design Toolbox

Simple Factory Pattern, The Factory Pattern: Baking with OO Goodness
 , Encapsulating object creation
 , Building a simple pizza factory
 , The Simple Factory defined
 , The Simple Factory defined
 , Factory Method Pattern defined

about factory objects, Encapsulating object creation

building factory, Building a simple pizza factory

definition of, The Simple Factory defined

Factory Method Pattern and, Factory Method Pattern defined

pattern honorable mention, The Simple Factory defined

using new operator for instantiating concrete classes, The Factory Pattern: Baking with OO Goodness

Single Responsibility Principle, Single Responsibility

Singleton objects, A small Socratic exercise in the style of The Little Lisper
 , Dissecting the classic Singleton Pattern implementation

Singleton Pattern, The Singleton Pattern: One of a Kind Objects
 , The Singleton Pattern: One of a Kind Objects
 , Dissecting the classic Singleton Pattern implementation
 , Dissecting the classic Singleton Pattern implementation
 , The Chocolate Factory
 , Singleton Pattern defined
 , Singleton Pattern defined
 , Houston, Hershey, PA we have a problem...
 , 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().
 , Meanwhile, back at the Chocolate Factory...
 , Congratulations!
 , Congratulations!
 , Congratulations!
 , Congratulations!
 , Congratulations!
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer

about, The Singleton Pattern: One of a Kind Objects

advantages of, The Singleton Pattern: One of a Kind Objects

Chocolate Factory, The Chocolate Factory
 , Meanwhile, back at the Chocolate Factory...

about, The Chocolate Factory

fixing Chocolate Boiler code, Meanwhile, back at the Chocolate Factory...

class diagram, Singleton Pattern defined

code up close, Dissecting the classic Singleton Pattern implementation

dealing with multithreading, Houston, Hershey, PA we have a problem...
 , Tools for your Design Toolbox

definition of, Singleton Pattern defined

disadvantages of, Congratulations!

double-checked locking, 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

exercise matching description of, So you wanna be a Design Patterns writer

global variables vs., Congratulations!

implementing, Dissecting the classic Singleton Pattern implementation

One Class, One Responsibility Principle and, Congratulations!

subclasses in, Congratulations!

using, Congratulations!

skeletons (service helper), in RMI, Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , How does the client get the stub object?
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

smart command objects, Using a macro command

Smart Reference Proxy, The Proxy Zoo

sorting methods, in Template Method Pattern, Sorting with Template Method

Starbuzz Coffee Barista training manual project, It’s time for some more caffeine
 , Abstracting prepareRecipe()
 , Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , The Hollywood Principle

about, It’s time for some more caffeine

abstracting prepareRecipe(), Abstracting prepareRecipe()

using Template Method Pattern, Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , The Hollywood Principle

about, Meet the Template Method

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

hooks in, Template Method Pattern defined

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

Starbuzz Coffee project, using Decorator Pattern, Welcome to Starbuzz Coffee
 , Constructing a drink order with Decorators
 , Decorating our Beverages
 , New barista training
 , Writing the Starbuzz code
 , Serving some coffees
 , Serving some coffees
 , Real World Decorators: Java I/O
 , Tools for your Design Toolbox

about, Welcome to Starbuzz Coffee

adding sizes to code, Serving some coffees

constructing drink orders, Constructing a drink order with Decorators

decorating beverages in, Decorating our Beverages

drawing beverage order process, New barista training
 , Tools for your Design Toolbox

testing order code, Serving some coffees

using Java decorators, Real World Decorators: Java I/O

writing code, Writing the Starbuzz code

state machines, State machines 101

State Pattern, Jawva Breakers
 , State machines 101
 , State machines 101
 , Writing the code
 , In-house testing
 , You knew it was coming... a change request!
 , You knew it was coming... a change request!
 , The messy STATE of things...
 , The new design
 , Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , The State Pattern defined
 , The State Pattern defined
 , The State Pattern defined
 , The State Pattern defined
 , The State Pattern defined
 , We still need to finish the Gumball 1 in 10 game
 , Finishing the game
 , Demo for the CEO of Mighty Gumball, Inc.
 , Demo for the CEO of Mighty Gumball, Inc.
 , Sanity check...
 , Sanity check...
 , We almost forgot!
 , We almost forgot!
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

definition of, The State Pattern defined

exercise matching description of, We almost forgot!
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

gumball machine controller implementation, Jawva Breakers
 , State machines 101
 , Writing the code
 , In-house testing
 , Finishing the game
 , Demo for the CEO of Mighty Gumball, Inc.
 , Demo for the CEO of Mighty Gumball, Inc.
 , Sanity check...
 , We almost forgot!

about, Jawva Breakers

cleaning up code, Sanity check...

demonstration of, Demo for the CEO of Mighty Gumball, Inc.

diagram to code, State machines 101

finishing, Finishing the game

refilling gumball machine, We almost forgot!

SoldState and WinnerState in, Demo for the CEO of Mighty Gumball, Inc.

testing code, In-house testing

writing code, Writing the code

increasing number of classes in design, The State Pattern defined

modeling state, State machines 101

one in ten contest in gumball machine, You knew it was coming... a change request!
 , You knew it was coming... a change request!
 , The messy STATE of things...
 , The new design
 , Defining the State interfaces and classes
 , Implementing our State classes
 , Reworking the Gumball Machine
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox

about, You knew it was coming... a change request!

annotating state diagram, Defining the State interfaces and classes
 , Tools for your Design Toolbox

changing code, The messy STATE of things...

drawing state diagram, You knew it was coming... a change request!
 , Tools for your Design Toolbox

implementing state classes, Implementing our State classes
 , Implementing more states
 , We still need to finish the Gumball 1 in 10 game

new design, The new design

reworking state classes, Reworking the Gumball Machine

sharing state objects, The State Pattern defined

state transitions in state classes, The State Pattern defined

Strategy Pattern vs., The State Pattern defined
 , Sanity check...

state transitions, in state classes, The State Pattern defined

state, using to implement undo commands, Using state to implement Undo

static classes, using instead of Singletons, Congratulations!

static method vs. create method, Building a simple pizza factory

Strategy Pattern, Speaking of Design Patterns...
 , The Hollywood Principle and Template Method
 , The making of the sorting duck machine
 , Applets
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , The State Pattern defined
 , Sanity check...
 , We almost forgot!
 , Tools for your Design Toolbox
 , Looking at MVC through patterns-colored glasses
 , Now for the Controller
 , Exploring Strategy
 , Strategy
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

definition of, Speaking of Design Patterns...

exercise matching description of, The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

in Model 2, Strategy

in Model-View-Controller, Looking at MVC through patterns-colored glasses
 , Now for the Controller
 , Exploring Strategy

State Pattern vs., The State Pattern defined
 , Sanity check...

Template Method Pattern and, The making of the sorting duck machine
 , Applets

structural patterns category, Design Patterns, Pattern Categories
 , Pattern Categories

Structure section, in pattern catalog, Looking more closely at the Design Pattern definition

stubs (client helper), in RMI, Java RMI, the Big Picture
 , Java RMI, the Big Picture
 , How does the client get the stub object?
 , And now let’s put the monitor in the hands of the CEO. Hopefully, this time he’ll love it

subclasses, But something went horribly wrong...
 , Welcome to Starbuzz Coffee
 , Allowing the subclasses to decide
 , Factory Method Pattern defined
 , Congratulations!
 , The Command Pattern defined: the class diagram
 , Meet the Template Method
 , The State Pattern defined

class explosion and, Welcome to Starbuzz Coffee

concrete commands and, The Command Pattern defined: the class diagram

concrete states and, The State Pattern defined

Factory Method and, letting subclasses decide which class to instantiate, Factory Method Pattern defined

in Singletons, Congratulations!

inheritance gone wrong and, But something went horribly wrong...

Pizza Store concrete, Allowing the subclasses to decide

Template Method, Meet the Template Method

Subject, Publishers + Subscribers = Observer Pattern
 , Five-minute drama: a subject for observation
 , The Observer Pattern defined: the class diagram

in class diagram, The Observer Pattern defined: the class diagram

in Five Minute Drama, Five-minute drama: a subject for observation

in Observer Pattern, Publishers + Subscribers = Observer Pattern

subsystems, Facades and, Lights, Camera, Facade!

superclasses, But something went horribly wrong...
 , Designing the Duck Behaviors

abstract, Designing the Duck Behaviors

using, But something went horribly wrong...

supertype (programming to interface), vs. programming to interface, Designing the Duck Behaviors

SWAG, Taking a first, misguided SWAG at the Weather Station

Swing, Other places you’ll find the Observer Pattern in the JDK
 , Swingin’ with Frames
 , Composite

Composite Pattern and, Composite

Observer Pattern in, Other places you’ll find the Observer Pattern in the JDK

Template Method Pattern and, Swingin’ with Frames

Synchronization Proxy, The Proxy Zoo

synchronization, as overhead, Dealing with multithreading

T

Template Method Pattern, Meet the Template Method
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive
 , Let’s run the Test Drive
 , Let’s run the Test Drive
 , The Hollywood Principle
 , The Hollywood Principle and Template Method
 , Template Methods in the Wild
 , Sorting with Template Method
 , The making of the sorting duck machine
 , Swingin’ with Frames
 , Applets
 , Applets
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

about, Meet the Template Method

abstract class in, Template Method Pattern defined
 , Template Method Pattern defined
 , Let’s run the Test Drive

definition of, Template Method Pattern defined

hooks vs., Let’s run the Test Drive

methods in, Template Method Pattern defined

Applet and, Applets

class diagram, Template Method Pattern defined

code up close, Template Method Pattern defined

definition of, Template Method Pattern defined

exercise matching description of, The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

hooks in, Template Method Pattern defined
 , Let’s run the Test Drive

in real world, Template Methods in the Wild

sorting with, Sorting with Template Method

Strategy Pattern and, The making of the sorting duck machine
 , Applets

Swing and, Swingin’ with Frames

testing code, Let’s run the Test Drive

The Hollywood Principle and, The Hollywood Principle

The Timeless Way of Building (Alexander), Your journey has just begun...

thinking in patterns, Thinking in Patterns

tightly coupled, The power of Loose Coupling

transparency, in Composite Pattern, Getting ready for a test drive...

tree structure, Composite Pattern, The Composite Pattern defined
 , Getting ready for a test drive...

try/catch, not supporting method, The magic of Iterator & Composite together...

Two Way Adapters, creating, Here’s how the Client uses the Adapter

type safe parameters, Factory Method Pattern defined

U

undo commands, Time to write that documentation...
 , Time to write that documentation...
 , Time to QA that Undo button!
 , Using state to implement Undo
 , Get ready to test the ceiling fan
 , Using a macro command
 , Using a macro command

creating, Time to write that documentation...

creating multiple, Using a macro command

implementing for macro command, Using a macro command

support of, Time to write that documentation...

testing, Time to QA that Undo button!
 , Get ready to test the ceiling fan

using state to implement, Using state to implement Undo

User Interface Design Patterns, The Patterns Zoo

V

variables, Integrating the Duck Behavior
 , A few guidelines to help you follow the Principle...

declaring behavior, Integrating the Duck Behavior

holding reference to concrete class, A few guidelines to help you follow the Principle...

Vector, Iterators and Collections

vegetarian menu, using Composite Pattern, Give me the vegetarian menu

Virtual Proxy, Get ready for Virtual Proxy
 , Designing the CD cover Virtual Proxy
 , Writing the Image Proxy
 , Testing the CD Cover Viewer
 , What did we do?
 , What did we do?
 , The Proxy Zoo

about, Get ready for Virtual Proxy

Caching Proxy as form of, What did we do?
 , The Proxy Zoo

designing Virtual Proxy, Designing the CD cover Virtual Proxy

reviewing process, What did we do?

testing, Testing the CD Cover Viewer

writing Image Proxy, Writing the Image Proxy

Visitor Pattern, Visitor

Vlissides, John, Cruisin’ Objectville with the Gang of Four

volatile keyword, 3. Use “double-checked locking” to reduce the use of synchronization in getInstance().

W

weather station, Unpacking the WeatherData class
 , Taking a first, misguided SWAG at the Weather Station
 , Designing the Weather Station
 , Implementing the Weather Station
 , Now, let’s build those display elements
 , Power up the Weather Station
 , Reworking the Weather Station with the built-in support

building display elements, Now, let’s build those display elements

designing, Designing the Weather Station

implementing, Implementing the Weather Station

powering up, Power up the Weather Station

SWAG, Taking a first, misguided SWAG at the Weather Station

unpacking classes, Unpacking the WeatherData class

using built-in Java Observer Pattern, Reworking the Weather Station with the built-in support

web, Model-View-Controller and, MVC and the Web

Who Does What exercises, From the Diner to the Command Pattern
 , Tools for your Design Toolbox
 , Tools for your Design Toolbox
 , The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , Running the code...
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

matching objects and methods to Command Pattern, From the Diner to the Command Pattern
 , Tools for your Design Toolbox

matching pattern with description, The Hollywood Principle and Template Method
 , Tools for your Design Toolbox
 , The magic of Iterator & Composite together...
 , Tools for your Design Toolbox
 , We almost forgot!
 , Tools for your Design Toolbox
 , Running the code...
 , Tools for your Design Toolbox
 , So you wanna be a Design Patterns writer
 , Boy, it’s been great having you in Objectville.

matching patterns with its intent, Tools for your Design Toolbox

whole-part relationships, collection of objects using, The magic of Iterator & Composite together...

wickedlysmart web site, Read Me

wrapping objects, Meet the Decorator Pattern
 , Here’s how the Client uses the Adapter
 , Writing the EnumerationIterator adapter
 , Lights, Camera, Facade!
 , What did we do?
 , Duck reunion

Y

your mind on patterns, Your Mind on Patterns

 About the Authors

Eric Freeman recently ended nearly a decade as a media company executive, having held the position of CTO of Disney Online & Disney.com at The Walt Disney Company. Eric is now devoting his time to WickedlySmart.com and lives with his wife and young daughter in Austin, TX. He holds a Ph.D. in Computer Science from Yale University.

Elisabeth Robson is co-founder of Wickedly Smart, an education company devoted to helping customers gain mastery in web technologies. She's co-author of four bestselling books, Head First Design Patterns, Head First HTML and CSS, Head First HTML5 Programming, and Head First JavaScript Programming.

Bert Bates is a 20-year software developer, a Java instructor, and a co-developer of Sun's upcoming EJB exam (Sun Certified Business Component Developer). His background features a long stint in artificial intelligence, with clients like the Weather Channel, A&E Network, Rockwell, and Timken.

Kathy Sierra has been interested in learning theory since her days as a game developer (Virgin, MGM, Amblin'). More recently, she's been a master trainer for Sun Microsystems, teaching Sun's Java instructors how to teach the latest technologies to customers, and a lead developer of several Sun certification exams. Along with her partner Bert Bates, Kathy created the Head First series. She's also the original founder of the Software Development/Jolt Productivity Award-winning javaranch.com, the largest (and friendliest) all-volunteer Java community.

 Colophon

 [image: image with no caption]

All interior layouts were designed by Eric Freeman, Elisabeth Robson, Kathy Sierra and Bert Bates.

 Kathy and Bert created the look & feel of the Head First series. The book was produced using Adobe InDesign CS (an unbelievably cool design tool that we can’t get enough of) and Adobe Photoshop CS. The book was typeset using Uncle Stinky, Mister Frisky (you think we’re kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro, Skippy Sharp, Savoye LET, Jokerman LET, Courier New and Woodrow typefaces.

Interior design and production all happened exclusively on Apple Macintoshes — at Head First we’re all about “Think Different” (even if it isn’t grammatical). All Java code was created using James Gosling’s favorite IDE,
vi

 , Erich Gamma’s Eclipse.

Long days of writing were powered by the caffeine fuel of Honest Tea and Tejava, the clean Santa Fe air, and the grooving sounds of Banco de Gaia, Cocteau Twins, Buddha Bar I-VI, Delerium, Enigma, Mike Oldfield, Olive, Orb, Orbital, LTJ Bukem, Massive Attack, Steve Roach, Sasha and Digweed, Thievery Corporation, Zero 7 and Neil Finn (in all his incarnations) along with a heck of a lot of acid trance and more 80s music than you’d care to know about.

 Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here
 .

 Head First: Design Patterns

Eric Freeman

Elisabeth Robson

Bert Bates

Kathy Sierra

Editor

Mike Hendrickson

Editor

Mike Loukides

Copyright © 2009 O’Reilly Media, Inc., Bert Bates and Kathy Sierra

Head First Design Patterns

by Eric Freeman, Elisabeth Robson, Kathy Sierra, and Bert Bates

All rights reserved.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com

 .

	

Editors:

	
Mike Hendrickson, Mike Loukides

	

Cover Designer:

	
Ellie Volckhausen

	

Pattern Wranglers:

	
Eric Freeman, Elisabeth Freeman

	

Facade Decoration:

	
Elisabeth Robson

	

Strategy:

	
Kathy Sierra and Bert Bates

	

Observer:

	
Oliver

 [image: image with no caption]

Printing History:

July 2014: Second release.

October 2004: First release.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in
Head First Design Patterns

 to, say, run a nuclear power plant, you’re on your own. We do, however, encourage you to use the DJ View app.

No ducks were harmed in the making of this book.

The original GoF agreed to have their photos in this book. Yes, they really are that good-looking.

[LSI] [2014-06-30]

O’Reilly Media

1005 Gravenstein Highway North

Sebastopol
 , CA
 95472

2014-09-11T10:25:26-07:00

OEBPS/Image00192.jpg
PizzaStore

createPizzal)
orterPizzal)

Eath subtlass provides an implementation
of the treatePizzal) method, overriding
Lhe abstratk eveatePizza) method in
PizzaStore, while all subtlasses make use
of the orderPizzal) method defined

in PizzaStore. We could make the
orderPizzal) method Final if we veally
wanted to enforee this

'

2

NYStylePizzastore

Similavly, by using the

£ a franchise wants NY style
pizzas for its tustomers, it
uses the NY subelass, which has
ks own treatePizza() method,
eveating NY style pizzas

{

public Pizza createPizza(type) (

createPizzal)

Remember: eveatePizzal) s

fieza store subbypes VUST
implement the method

if (type.equals("cheese™) {
pizza = new NYStyleCheesePizza() ;
} else if (type.equals("pepperoni") {
pizza = new NYStylePepperoniPizza();
} else if (type.equals("clam") {
pizza = new NYStyleClampizza() ;
} else if (type.equals("veggie™ {
pizza = new NYStyleVeggiePizza();

icagoStylePizzaStore
createPizzal)

abshract in PizzaStore, so all

Chitago subtlass, we get an
implementation of eveatePizzal)
wikh Chicago ingredients.

)

public Pizza createPizza(type) (

if (type.equals(“cheese")) (
pizza = new ChicagoStyleCheesePizza() ;
) else if (type.equals('pepperoni®) (
pizza = new ChicagoStyleepperoniPizza() ;
) else if (type.equals(clam") {
pizza = new ChicagoStyleClamPizza() ;
) else if (type.equals("veggie")
pizza = new ChicagoStyleVeggiePizza() ;

OEBPS/Image00435.jpg
public class BeverageTestDrive {
public static void main(String[] args) {

TeaWithHook teaHook = new TeaWithHook() ; £ (reate a tea.
CoffeciithHook coffestiook = new CoffecHithHook(); g . A toffec

System.out.println("\nMaking tea..."); S o cll prepareRecied)

teaHook .prepareRecipe () ; £ on both!
on bot

System.out.println("\nMaking coffee...");
coffeeHook . prepareRecipe () ;

OEBPS/Image00191.jpg
PizzaStore is now abstract (see why below).

{

public abstract class PizzaStore {

public Pizza orderPizza(String type) (
Pizza pizza;
e o Now ereaePizza s back 4o being 3
call to a method in the PizzaStore

pizza = createPizza(type); vather than on a factory object

pizza.prepare() ;
pizza.bake()
pizza.cut() ;

pizaanos() S All his looks just the same
[o——

‘2

Now veve moved aur fac
abstract Pizza createPizza(String type) ; object to this method

C Our “Sackory method”
il Sl

OEBPS/Image00436.jpg
(File Edit
%java BeverageTestDrive

ow Help_send-more-honestlez

Making tea...
Boiiing wites A steaming tup of £ea, and yes
Stmenion e o of course we want that lemon!

Pouring into cup)
Would you like lemon with your tea (v/m)? y

Adding Lemon

Making coffee. .. s
totree,
st orees And a ice hot &8 of

i ok we'l pass on he waistline
Dripping Coffee through filter Sy e ments:
Pouring into cup
Would you like milk and sugar with your coffee (y/n)? n
4

OEBPS/Image00194.jpg
orderPizza() is defined in the abstract

PizzaStore, not the subelasses. So, the
method has no idea which abtlass is actually

\unning the tode and making the pizzas-

createPizza()
orderPizza()

OEBPS/Image00433.jpg
public abstract class CaffeineBeverageWithHook {

final void prepareRecipe() {
boilWater () ;

brew(); .

7 We've added a little conditional

statement that bases its
if (customerWantsCondiments()) { suttess on a tonerete method,
method,
addCondiments () ; eustomerWantsCondiments(). [£ he

p eustomer WANTS condiments, only then

) do we ¢all addCondiments().

abstract void brew() ;

abstract void addCondiments () ;

void boilWater() {

System.out.println("Boiling water

void pourInCup() (Here wee M)Nd atmrﬂ:d\e
System.out.println("Pouring into cup"); ©ith a (mostly c;:'jm&o 4 jt

nplemertation

e brue and. does nothind el

boolean customerWantsCondiments() {

return true; £ Thisis 2 hook becawse the
subelass cam overvide this

} method, but doesn't have to.

OEBPS/Image00193.jpg
I don't get it. The PizzaStore
subclasses are just subclasses. How
are they deciding anything? T dorit

see any logical decision-making code in
NYStylePizzaStore....

OEBPS/Image00434.jpg
public class CoffeeWithHook extends CaffeineBeverageWithHook {
public void brew() {

System.out.println("Dripping Coffee through filter");

public void addCondiments() { P
System.out.println("Adding Sugar and Milk"); Heees

\ and provide your
fhe hook and prov
) R ey

public boolean customerWantsCondiments () {

evvide

String answer = getUserInput();

if (answer.toLowerCase() .startsWith("y")) x
return true;

Gek the user’s input on

} else (the tondiment detision
return false; <S——— and veburn true or false
,) depending on the input.

private String getUserInput() {
String answer = null;

syst:

.out.print ("Would you like milk and sugar with your coffee (y/m)?

BufferedReader in = new BufferedReader (new InputStreamReader (System.in));
try {
answer = in.readLine() ;
} catch (IOException ioe) {
System.err.println("I0 error trying to read your answer');
}

if (answer

null) {
return "no";

) /&4 £ he'd like milk and
4 This tode asks the usev it he :
! T suaar and geks his input. from the Command line

OEBPS/Image00196.jpg
NYStylePizzaStore ChicagoStylePizza
createPizzal) createPizzal)

OEBPS/Image00195.jpg
prom— pizza = createPizza();
pizza prepare();

pizza bake():

pizza cul);

pizza box();

orderPizzal)

Pizzal) ealls eveatePizzal) 4o actually get a
pizza object But hich kind of pizza vill it aet?
The orderPizza0) method eank detide; it doesn't
e bow. So who does detide?

order]

OEBPS/Image00427.jpg

OEBPS/Image00428.jpg

OEBPS/Image00188.jpg
You want. all the franchise piz2a stores
o leverage your PizzaStore tode, so

the Dnt franchise wants 3
pizzas are vuyami in the same way. fattory that makes NY style
pizzas: thin trust, Lasty
sauce and just 3 little e

ZzaFuC‘
B,
TzzaSto o Anobher Franchise
vonts 3 Fackory that
o makes Chicago shyle
o s fnzas; heiv customers
Ot ke piazas vith thick

evust, vith sauce, and
Lons of cheese.

OEBPS/Image00431.jpg
We've changed the
templateMethod() o
inthude new method eall

abstract class AbstractClass {

final void templateMethod() {
primitiveOperationl() ;
primitiveOperation2() ;
concreteOperation() ;
hook () ; We still have our primitive
) methods; these are
\[—\ abstract and implemented

by eontrete subelasses
abstract void primitiveOperationl();

abstract void primitiveOperation2();

4 in the
nevebe operation is define
?»,iinli lass, This one is declared £inal

final void concreteOperation() { ; "t overvide it It
ome ; 4hat subclasses eant o
// implementation here é/ e the demlate method

) ek, or used by subclasses

void hook () {}

; 7\
We can also have conerete methods that do nothing
A tontrete method, but by default; we call hese “hooks” Subelasses ave free
i€ does nobhing! to overvide these but don't have to. We're going to

see how these are useful on the next page.

OEBPS/Image00187.jpg
This is the factory where we treate
pizzas; it should be the only part T is the product of
of our application that vefers to the fatkory: pz2d!

tonerete Pizza classes.
g [We've defined Piz22

as an abstratt elass

Pizzastore SimplePizzaFactory Pizza e o
orderPizzal) crealePizzal) prepare() +ations that
bake() implemen ‘
¢an be overvidden:

cut)

i od is
1« the dlient of the The ereate method i
Tg:;;;c \;wSh el often declaved statieall - 2
oo}
L)
o i PepperoniPizza
nskantes of P22

ClamPizza

VeggiePizza

These ave our contrete produtts.
Product needs to implemmd{htsﬁf::h
interface Cuhich in this case mears
extend the abstract Pizza elass”) and
be conrete. As long as that’s the ease

it ¢an be eveated by the Fad:m—y and ' J
handed back to the ¢lient.

OEBPS/Image00432.jpg
With a hook, T can
override the method, or
rot. Tt's my choice. If T dor't,
the abstract class provides a
default implementation.

OEBPS/Image00190.jpg
T've been making pizza
for years so I thought T'd add
my own "improvements” to the
PizzaStore procedures..

d
ok what you vank in 2 900
L e Yo do NOT vank to

Know whak he puts on his Fizz3s

OEBPS/Image00429.jpg
The template method makes use of the
primitiveOperations to implement an
algorithm. [t is decoupled from the actual
implementation of these operations.

The AbstractClass /\/

tontains the template
method.

..and abstract versions
of the opevations
used in the template
method.

Yo w2
There ™3 eath
ckeClassts L
G entind ¢ bl s
e ons T
‘vm\,\au method:

AbstractClass

primitiveOperation2()

ConcreteClass

primitieOperaton()
primitveOperation2()

TemplteMetnod)) +<vereerreresfBeenes
é primitiveOperaion’()

)

The ConeveteClass implements
+the abstract operations,

which ave ¢alled when the
templateMethod() needs them.

OEBPS/Image00189.jpg
Heve we create a factory
& for making NY style pizzas

NYPizzaFactory nyFactory = new NYPizzaFactory();
PizzaStore nyStore = new PizzaStore (nyFactory) ; € Then ue treste a PizzaShore and pas:

¥ 4—\ it a veference bo the NY fackory
and when ve make pizzas, we

aet NY style pizzas.

nyStore.orderPizza ("Veggi

ChicagoPizzaFactory chicagoFactory = new ChicagoPizzaFactory () ;
PizzaStore chicagoStore = new PizzaStore (chicagoFactory) ;

chicagoStore.orderPizza ("Veggie") ;

RJ Likeuise for the Chicago pizza stores: we
ereate a factory for Chicago pizzas and
exeate a store that is omposed with a

Chicago factory. When we make pizzas, we
gt the Chicago style ones

OEBPS/Image00430.jpg
deve we have our abstract class; Tt
s delaved abstract and meant 4o
be subtlassed by classes that provide

lementations of the aperations Heve's the tenplate method: I£5

detlaved final 4o prevent sibelasses
Srrom veworking the sequence
skeps in the algorithm

abstract class AbstractClass {

final void templateMethod() { PE {QMPQ{‘ method
primitiveOperationl() ; e¥ines the sequente of
primitiveOperation2 () ; / steps, eath vepresented
concreteOperation () ; b1 3 method.

abstract void primitiveOperationl(); 5

abstract void primitiveOperation2();

1; this example, 4o of
he primit;
void concreteOperation() { wrtPl:; J,:ﬁ::ﬁ?f

// implementation here concrete subelasses.

}
) 7
We also have a conerete operation

defined in the abstract class. More
bl $hass binds of rabhadew s Wb

OEBPS/Image00203.jpg

OEBPS/Image00446.jpg
I don't
know. That's what
compareTa() tells us.

Am T greater
than you?

OEBPS/Image00202.jpg
o Let’s follow Ethan’s order: first we need a NY PizzaStore:

PizzaStore nyPizzaStore = new NYPizzaStore() ;

\ Creates a instance of

NYPizz3Store.
e Now that we have a store, we can take an order: &
DPiz205%0
nyPizzaStore.orderPizza ("cheese") ; /\
3
\ The ovd exPizza() method is called on ?
e mpresaStore nskance (e method :
defined inside PizzaStore vuns). 5
e The orderPizza() method then calls the createPizza() §
method: z
i
Pizza pizza = createPizza("cheese");
Remember, ereatePizza0), the factory
method, is implemented in the subelass. In
this case it veburns 3 NY Cheese Pizza
Pizza

e Finally, we have the unprepared pizza in hand and the
orderPizza() method finishes preparing it:

pizza.prepare() ;
pizza.bake() ; Al of Ehese methods ave
pizza.cut(); defined in the spetifie yizzd

ned from the fattor
e st dked

The orderPizzal) method acts et ol
back a Pizza, vithout knowind
axathly what conerete tlass i s

pizza.box () ;

OEBPS/Image00205.jpg
The NY Pizza has its own
t(mavinava style sauce and thin erust

public class NYStyleCheesePizza extends Pizza {

public NYStyleCheesePizza() {

name = "NY Style Sauce and Cheese Pizza";
dough = "Thin Crust Dough";
sauce "Marinara Sauce";

toppings.add("Grated Reggiano Cheese") ; ;\
And one top
PPing,

veagiano cheese!

OEBPS/Image00444.jpg
/Weugc&anawa of

Ducks we need b ot

OEBPS/Image00204.jpg
an Jostract
| the contre
From Ehs

wel skavt witkh .
ez dass and 3

(eaas vl derve
Eath Pizza has a rame, a type of dowsh,

public abstract class Pizza { 2 type of saute, and 2 set of toppings
String name;
String dough; </
String sauce;
ArrayList<String> toppings = new ArrayList<String>();
The abstract elass provides
void prepare() { <ome basic.defaults for
System.out.println("Preparing " + name); baking, tutting and boxing,
System.out.println("Tossing dough...");
System.out.println("Adding sauce...");
System.out.println("Adding toppings: ") ;
for (String topping : toppings) (

System.out.println(" " + topping);
} \ Peeparation follows a
l number of steps in 3

particular sequente

void bake() {
System.out.println("Bake for 25 minutes at 350");

void cut() {
System.out.println("Cutting the pizza into diagonal slices!

void box() {
System.out.println("Place pizza in official PizzaStore box'

public String getName () {
return name;

OEBPS/Image00445.jpg
No, it doesn't.
Aren't we supposed to be
subclassing something? T thought
that was the point of Template

Method. An array doesr't subclass
anything, so T don't get how we'd
use sort().

o0

OEBPS/Image00206.jpg
The Chicago Pizza uses plum
Lomatoes as 3 saute along
ith extra—thick erust.

public class ChicagoStyleCheesePizza extends Pizza {
public ChicagoStyleCheesePizza() {
name = "Chicago Style Deep Dish Cheese Pizza";
dough = "Extra Thick Crust Dough";

sauce = "Plum Tomato Sauce";

toppings.add ("Shredded Mozzarella Cheese"); & The Chicago style deep
) dish Piz2a has Jots of
mozzavella cheese!
void cut() {

System.out.println("Cutting the pizza into square slices");

The Chicago style pizza also ovevrides the et
mebhod so that the pieces are eut into squares

OEBPS/Image00438.jpg

OEBPS/Image00439.jpg
N

High-Level Component

7N

|
he high-level
V::i;;,@ control
when and how

Another

Low-Level
Component

ETN Alow-level com

Ponent. never
¢l a igh-level componnt
directly

OEBPS/Image00197.jpg
223, and
preatePizzal) veburns 3 P The NYPizzaStore extends

ble Yo
e sbclas 2 fllyvepenle for Piz2aStore, so i€ imherits fhe

223 it
which eonerete P22 orderPiz220) method (among
others).
public class NYPizzaStore extends PizzaStore (
Pizza createPizza(String item) { We've g0t to implement.
—_ 0, sinte it is
if (item.equals("cheese")) { ereatePizzal),
abstract in PizzaStore.

return new NYStyleCheesePizza();
else if (item.equals('veggie™) {

return new NYStyleVeggiePizza() ;
else if (item.equals("clam")) {

Heve's where we ereate our
contrete elasses. For eath Lype of
else if (item.equals("pepperoni")) { Pizza we eveate the NY style

return new NYStyleClamPizza() ; “

return new NYStylePepperoniPizza() ;

else return null;

OEBPS/Image00437.jpg
Now, T would have thought
that functionality like
asking the customer could
have been used by all

subclasses?

OEBPS/Image00199.jpg
A fattory wmethod m3Y

‘e pavamekerized (or
"o ko seleck amens
T el vaviations of 2

abstract

P

roduct factoryMethod (Stri odict
ing type) " e

Sbtlases are gonete
nted

R

A facd ethod v
m eburns
3 Produck that is typically A fackary method islates the client.
used within methods (4he tode in the superelass, like
orderPizza0)) from knoving what kind

defined in the suj
pevtlass.
8 sontrete Product is acbually eveated:

OEBPS/Image00442.jpg

OEBPS/Image00198.jpg
es ot

The subelasse ok
public abstract class PizzaStore { PizzaStore m;d\: obyim
inskantiation for s ¥
S e
public Pizza orderPizza(String type) {
Pizza pizza; NYStylepizzastor
»
pizza = createPizza(type) ;
pizza.prepare() ; ChicagoStylePi

pizza.bake();
pizza.cut();
pizza.box() ;

crealePizal)

return pizza;
 §
NN the vesponsiiy for

protected abstract Pizza createPizza(String type) ; iy Pixzas hs
been moved into @ method

4| othex mathots hese fhat acks as 2 fatkory

OEBPS/Image00443.jpg
t
We actually have wo methods heve and they ac
tracther ik provide the sort functionality.

od that ereates 3
sk helper meth eray
ebhod, s0rt0, 5 3¢ destination 2

The i?t&:?:ray:v\d o dont 35 the 4050y
capy

ses alony
e »cv'at&*“),c:‘“"i l: o ot e vt demert
pu

aevay and £l

public static void sort(Objectl] a) {
Object aux[] = (Object[])a.clone();
mergeSort (aux, a, 0, a.length, 0);

The mergeSort() method contains the sort algorithm, and
veles on an inplementation of the compareTol) method o
complete the algorithm. [F you'e intevested in the itty
gty of how the sorting happens, you'l want to check ot
he Java source code

Think of this as the
private static void mergeSort(Object src(], Object dest[], template method.

int low, int high, int off)

// a lot of other code here
for (int i=low; i<high; i++){
for (int j=i; j>low &

((Comparable) dest [j-1]) .compareTo ((Comparable)dest[31)>0; j--)

1
swap(dest, 3, 3-1); k/\ compareTol) is the method we

weed ko implement o “Fill out”

vete method, al g0
) defined in the Arvays s hesdy The bemplate method

// and a lot of other code here

¥ This is a coney

OEBPS/Image00201.jpg

OEBPS/Image00440.jpg
CaffeineBeverage is ouwr high—level
tomponent. [t has tontyol over the
Lhe vetipe, and calls on

algorithm for :
o abtlssses anly vhen heyee needed ‘\
Tor an implementation of 3 method-

CaffoineBeverage

prepareRecipe()
boilWater()
pourinCup()
brew()
‘addCondiments()

Clients of

beverages i depend

/ :;fhc Qa#eithevoage

: rattion vather ha, a

':d»w_vc& Tea or Coffee, whieh
uées dependenties i, :tbe '

overall systen,

‘ Coffee ‘

Tea

brew()

addCondimens()

The subelass

letails.

brew()

addCondiments()

K

é\

and Coffee never
1::‘:1\ he abstract elass.
©ithout being

OEBPS/Image00200.jpg
I like NY Style pizza... you
know, thin, crispy crust with
alittle cheese and really

good sauce.

T like Chicago style deep dish
pizzawith thick crust and
tons of cheese.

Ethan needs to order [}
his pizza from 5 Ny
Piz2a store.

Joel needs to order his
pizza from a Chicago
pizza store. Same pizza
ordering method, but
different kind of pizzal

OEBPS/Image00441.jpg

OEBPS/Image00170.jpg
public class InputTest {
public static void main(String[] args) throws IOException {

int ¢;
Set up the FilelnputStream

« d o corste i, Fisk vith 2
= BubferedlnputStream and then MMU

InputStresn in = brand new LowerCaselnputStream

new LowerCaseInputStream(
new BufferedInputStream(
new FileInputStream("test.txt")));

while((c = in.read()) >= 0) (\W

System.out.print ((char)c) ; I know the Decorator Pattern therefore T RULE!

in.close() ;

} catch (IOException e) { test txt file
e.printStackTrace () ; Q
)
) Just use the stream o vead ou meed 12, e
charatters until the end of make Ehis *1

] File and print as we go.

OEBPS/Image00413.jpg

OEBPS/Image00655.jpg
public class GumballMachineTestDrive {

public static void main(String[] args) {
GumballMachineRemote gumballMachine = null;
int count;

if (args.length < 2) {
System.out.println("GuuballMachine <name> <inventory>");

System.exit(1) ;
, First we need 4o add a {vy/tatah block
/\ arcund the gunball instantiation becouce our
- Construchor tan now theaw exceptions
count = Integer.parselnt (args(il) ;

gumballMachine = new GumballMachine (args[0], count);
Naming.rebind("//" + args[0] + "/gumballmachine", gumballMachine);

} catch (Exception e) {

e.printStackTrace () ;
L (- We also add the call £o Namingvebind,

! which publishes the GumballMachine stub
under Lhe name aumballmachine.

OEBPS/Image00169.jpg
No problem. T
just have to extend the
FilterInputStream class and
override the read() methods.

OEBPS/Image00414.jpg
Benc’s our Coffe lass o making cofiee

Sor tokfees

S braiivg manedl

public class Coffee { Herd's o m.‘:f
straioht ot

void prepareRecipe() {
ps i implemented 35

boilWater () ; Eath of the e
brewCoffeeGrinds () ; aist\’a"m nethe
pourInCup() ;

addsugarAndMilk () ;

public void boilWater() {

System.out.println("Boiling water");

Eath of these
methods implements
one step of the

public void brewCoffeeGrinds() { \
stem. i il i
System.out.println("Dripping Coffee through filter"); algorith There's a

method to boil water,
brew the eoffee, pour
the cobfee in a eup,

public void pourInCup() {
and add sugar and milk

System.out.println("Pouring into cup");

public void addSugarAndMilk () {
System.out.println("Adding Sugar and Milk");

OEBPS/Image00656.jpg
This gets the RMI
vegistry sevvice up
and vunring

We've using the “official” Mighty
e Gomball mathines, You ol
bekibuke your own mathine rane

beve, or “lotalho
i o o o

rmiregistry

Edt_window

java GumballMachineTestDrive seattle.mightygumball.com 100

R itsil) o

This aeks the Gunballiachine up and running
and vegisters it with the RMI vegisbry.

OEBPS/Image00172.jpg
00 Basies

00 PﬁnL‘\Y\cs

Encaplate Wt
Faver Lompasition V€ inhecitante
Program kerkates 7ot
mplemertator®

chvive for loost coupled desars
etks that inkevatt

ebueen 9B -

Classes s ould be open for We now have 4

now he Open—
~ ekension b tlosed for Closed P\rmilyl:{n?«;:de
A v We've going to strive

£o design our system so
that the elosed parts
ave isolated from owr
\ new extensions

And here's o ivsk patterm for treating desin®
at satisky the Open-Closed Peincigle. Or ¥as ¥
veally the kst |s theve another pakkern we've
" i hat Follows this printiple 35 well?

OEBPS/Image00411.jpg
Yeah, he's a great
boss until it comes to getting
down in this hole, then it ALL
becomes MY job. See what T
mean? He's nowhere in sight!

OEBPS/Image00653.jpg
In each implementation of State, we add
public class NoQuarterState implements State { Ve

] — bhe serialVexsiondID and the transient
private static final long serialVersionUID = 2L; ktw:lrd _{r;;‘ thte éumb:ll:ﬂachm; ,;‘%15:
vaviable. The transient keyword tells the

M not to sevialize this field. Note
that £his can be sightly dangerous if you
fry bo aetess this Teld ance-the oect's
been sevialized and fransferved.

transient GumballMachine gumballMachine;
// all other methods here

OEBPS/Image00171.jpg
File Edit_Window

% java InputTest
i know the decorator pattern therefore i rule!
%

OEBPS/Image00412.jpg
TN The vetipe for
tofee looks a lot
ke the vetipe for
$ea, doesn't 182

OEBPS/Image00654.jpg
| h
First, we need fomfort ¢ Machine s

i patkages. Py
oing 4o subtlass
‘[UoicastRemoteObiect
import java.rmi.*; Lhis gves it the ability to GumballMachine also needs £
import java.rmi.server.*; atk as a vemote sevviee. (_ implement the vemote interface

public class GumballMachine
extends UnicastRemoteObject implements GumballMachineRemote
{
private static final long serialVersionUID = 2L;
/7 other instance variables here

public GumballMachine(String location, int numberGumballs) throws RemoteException {
// code here

)
pu.bl:t::l: ﬁﬁﬁ?‘"m { and the constructor needs
) ; 4o throw a vemote exception
s because the superclass does.
public State getState() { That's it! Nothi
return state; & Tk ety

; / changes heve at all

public String getLocation() {
return location;

 §

// other methods here

OEBPS/Image00174.jpg
public abstract class CondimentDecorator extends Beverage {

public Beverage beverage; {he Beverase instante
e
public abstract String getDescription(); We moved Detoratet)

D
able into Condimer 3
Vardaa;dcd 3 method, 5&,&;;(1 m\;
T detoratars that smely et
T mmm— fhe size of the beverdde

public Size getSize() {

public class Soy extends CondimentDecorator {
public Soy (Beverage beverage) {
this.beverage = beverage;

public String getDescription() {

return beverage.getDescription() + ", Soy";

public double cost() { Here we get the siee (vhich
double cost = beverage.cost () ; propagates all the way to the
) tontrete beverage) and then

if (beverage.getSize() add the appropriate cost

cost += .10;

size.TALL) (

} else if (beverage.getSize()
cost += .15;

Size.GRANDE) {

} else if (beverage.getSize()
cost += .20;

Size.VENTI) {

1
return cost;

OEBPS/Image00173.jpg
© Whip tals cost() on Macha
Fiest, ve call cost0) on the © Motha call eostl) on another Motha
© _ Cusk detorator, Whi. © Next, Motha calls ast0) on Soy.
© Last topping! 501 calls
cost0) on HouseBlerd.

© HouscBlend's cost() method
veburns 89 tents and pops
off the stack

© Sofs tosk) method adds 15
and veturns the vesult, and
pops off the stack

© The second Motha's tost() method
adds 20 and veturns the vest,
and pops off the stack

Fmal(ly, the vesult veduens to Whip's

:D? >,I wh:h ;dfs 10 and we have © The fivst. Motha's tost() method adds

inal cost of 154 20 and vekurns the veslt, and pops
off 4he stack.

OEBPS/Image00176.jpg
Okay, i's been three chapters and
you still haver(t answered my question
about new. We aren't supposed fo
program to an implementation, but every
time I use new, that's exactly what T'm
doing, right?

OEBPS/Image00415.jpg

OEBPS/Image00175.jpg

OEBPS/Image00416.jpg
public class Tea {
This looks very similar to the one

void preparerscipe () { we just implemented in Coffee;
iita s +the second and fourth steps are
7 different, but it's basically the
steepTeaBag() ; same vetipe
pourInCup() ;
addLemon () ;
)

public void boilWater() { {‘V\

System.out.println("Boiling water");

; Notice that these
two mekhods
o E e to ave exackly the
public void steepTeaBag() { ethods are same as they ave
System.out.println("Steeping the tea ?\xuahud b Tea in Colfeel So
) é/ we definitely
have some tode
public void addLemon() { duplication going
System.out.println("Adding Lemon"); on heve.
i

public void pourInCup() { Q

System.out.println("Pouring into cup");

OEBPS/Image00647.jpg
Shelet Sep, S
e

OEBPS/Image00648.jpg
'he Naming elass (for doing th
ing the rmiregstr
vt smveemt et K lookip)is in the Javami package.)

public class MyRemoteClient {
public static void main (String[] args) (
new MyRemoteClient ().go () ;

e
public void go() { the "3"::7 i

o,
ey (N

MyRemote service = (MyRemote) Naming.lookup("rmi://127.0.0.1/RemoteHello!

You reed the (p T

address or hostname. and {h:’Samz used to
bind/vebind the sevvice

String s = service.sayHello() ;

System.out.println(s) ; 1 looks just. fik,
} catch(Exception ex) { method gall/ {Ei;;?;h»:f
ex.printStackTrace() ; atknowledge the Rc».afzgu:yé)
ion.
)

OEBPS/Image00409.jpg
Pattern Intent

Converts one interface to
Decorator another
Adapter Doesn't alter the nterface,
but adds respensibility

Facade —_—

Makes an interface simpler

OEBPS/Image00651.jpg
i ¥
Don't foraet to import jpavmi
This is the vemote interface
import java.rmi.*;

public interface GumballMachineRemote extends Remote {
public int getCount() throws RemoteException;
public String getLocation() throws RemoteException;
public State getState() throws RemoteException;

W

M xebn s st Here ave. he methods were going o support-
o be pimibivc o Eort o thvows RemokeException
Cevializable...

OEBPS/Image00410.gif
B

o wl -]
]

[o] o[o] ol «] 2

<]

=

-

% olmlelrlulelalr]elr]

OEBPS/Image00652.jpg
import java.io.*;

public interface State extends Serializable {

public
public
public
public

= Sevializable is in the javaio package

Then we just extend the Serializable

void insertQuarter () ; 'L/ inkevface (whith has no methods in ib).
void ejectQuarter () ; And now State in all the subelasses ¢an
void turnCrank () ; be dransferved over the network.

void dispense() ;

OEBPS/Image00168.jpg
Fivst, extend the FilterlnputStream, the
Dort foragt 42 "0 Sbvbract decorator for al InputStreams.

jpeaie (mt hown) l

public class LowerCaseInputStream extends FilterInputStream {

public LowerCaseInputStream(InputStream in) {

super (in) ;

public int read() throws IOException {

int ¢ = in.read();

return (c = -1 ? ¢ : Character.toLowerCase((char)c));

public int read(bytel[] b, int offset, int len) throws IOException {
int result = in.read(b, offset, len);
for (int i = offset; i < offsettresult; i++) { \ Now we need to implement. two
bli] = (byte)Character. toLowerCase ((char)b[i]) ; vead methods. They take a
; byke (or an arvay of bytes)
ind convert. cazh byte (kha{
return result; vepresents 3 chavacter) o

. o eeane F i am wppevease
% chavacter.

OEBPS/Image00407.jpg
public House { Vidlakes the Peinciple of Least Knowledge!
WeatherStation station;

You ave calling the method of an abject
// other methods and constructor veburned from another call
public float getTemp() {

return station.getThermometer () .getTemperature(); 4—/

]
public House {
WeatherStation station;
// other methods and constructor Doesr't violate Printiple of
public float getTemp() { Least walzdgz’ This seems
Thermometer thermometer = station.getThermometer () ; like hatking our way avound
return getTempHelper (thermometer) ; the printiple. Has anything
¥ veally changed since we

just moved out the eall to
public float getTempHelper (Thermometer thermometer) (e her mebhod?

return thermometer.getTemperature () ;

OEBPS/Image00649.jpg

OEBPS/Image00167.jpg
1y o dosbrath tomEn
o

Hex
(’\ FilterlnputStream

is an abstract

/\ detorator.

PushbackinputStream

BufferedinputStream DatalnputSream ineNumberinputStream
These InputStreams act as the concrete]

h ith eorators:
;:::::gfj eT:.tr::a:“awE:: ::ie we And finaly, heve ave 3l our eomtretElesees

didn't show, like ObjectinputStream.

OEBPS/Image00408.jpg
PALAR SL8S LPACRIOFSATUESTALIONn LERLGNNLE TR CLaSURIeEEs 1
Iterator<?> iterator;

—

Notice ve keep $he 11 o Teeratormnueration (Tterator<?> iterator) (
tyre F:'a'"z&‘;w " this.iterator = iterator;
enexit. o this il
Yok forampbype !
of abject
public boolean hasMoreElements() {
return iterator.hasNext();

public Object nextElement() {
return iterator.next();

OEBPS/Image00650.jpg
CEO's deskbor

The shb s 3 ro¥] Kemote Gumball Mach,
ine

L_) r 1o the vemote with a J|
| E GumballMathine v
==p Client heap s A)

- et

This is owr

Moritor tode It
L . D
Lalk ko vem e skeleton acee The
qunball mathines ::o&» calls and :ﬁf“ GumballMachine is
mmﬁ ;:3 work on the our vemote sevvice;
e s going to exgse
e o

Sor the client o

e

OEBPS/Image00181.jpg
PASER Oorderrizzal) 1

Pizza pizza = new Pizza();

BlEEatirepaEe ()% k/ For «szxlbwhty, we veally want.

this 0 be an abstract ¢lass or
pizza.bake() ; interface, but we can’t directly
pizza.cut(); instantiate either of those.

pizza.box() ;

return pizza;

OEBPS/Image00424.jpg
prepaveRecipe() is our
Lemplate method. Why?

prblic abstrsct class c;ffe,m?,é (

void final prepareRecipe() { 5

boilWater () ;

brew() ;
pourInCup() ; \

addCondiments () ;

abstract void brew() ;

abstract void addCondiments() ;

void boilWater() {

// implementation

void pourInCup() {
// implementation

)

Because:
(1) [t is & method, aftev all
| (2) [t serves as a template for an

K In the template, each
—— step of the algorithm is
F vepresented by a method

!
/ lgorsth, n s case, an alaorithm
N B vakig abbeimated bevevages.
&

| Some methods are
T handled by his class

and some ave handled

by the subelass.

The methods that need to
be supplied by a subelass are
detlared abstract

OEBPS/Image00666.jpg
Skeleto® q""bqnu\o‘\.\g

The monitor hasn't thanged at all Likewise, the GumballMachine

extept it knows it may encourter implements another interfate and
vemote exteptions. [£ also uses the may throw a vemote exteption in its
GumballMathineRemote intevface vather construttor, but other than that, the

than 3 tonteke implementation. code hasn't changed

OEBPS/Image00180.jpg

OEBPS/Image00425.jpg
myTea.prepareRecipe () ;

boilWater () ;
brew() ;

pourInCup () ;

addCondiments () ;

)

The prepaveRetipe()
method tontrols the
algorithm. No one ean
¢hange this, and it
tounts on subelasses to
provide some or all of

4he implementation.

OEBPS/Image00183.jpg
FANES GroECiiEasiString Treen v

o e et
T;oT wid e Pizza pizza;
ol s

Piz22 > CLevimd ™ if (type.equals("cheese")) {

ode 308 ™) i . -
pizza-=—new GreekPizza() ;

pizza = new PepperoniPizza();

pizz:

= new ClamPizza();

pizz:

pizza.prepare() ;
pizza.bake() ;
pizza.cut();
pizza.box () ;

return pizza;

pizza = new CheesePizza();

else if (type.equals("pepperoni") {

= new VeggiePizza() ;

This is what vavies
s the pizz2
selection tharges
over Limes Yo

have to modY
his tode over and
over.

else if (type.equals("clam") {

else if (type.equals("veggie) {

This is what we expect to

stay the same. For the most
park, preparing, cooking, and
packaging a pizza has vemained
the same or years and years.
So, we dor'k expect this code
£ change, jusk the pizzas it
operates on

OEBPS/Image00422.jpg
£ g in our desig, Tea and CoFtee
public class Tea extends CaffeineBeverage { row exkend CaffeineBeverage
public void brew() {
System.out.println("Steeping the tea");

; Tea needs to define brew() and
public void addCondiments() { R addCondimentsO—the two abstract

System.out println("Adding Lemon") ; &——— methods from CaffeineBeverae
Same for Coffee, except Coffee
deals with coffee, and sugar and milk

public class Coffee extends CaffeineBeverage { instead of tea bags and lemon

public void brew() {

b

System.out.println("Dripping Coffee through filter");
-

public void addCondiments() {
System.out.println("Adding Sugar and Milk");

OEBPS/Image00664.jpg
Remote Gumball Machine
CEO's desktof with a JUm
L% Tpe is GumballMachineRemote

OEBPS/Image00182.jpg
Pizza orderPizza(String type) { We've now passing in

Pizza pizza; N et of pezi bo
orderPizza.
if (type.equals("cheese")) {
pizza = new CheesePizza();
) else if (type.equals(greek’) { &)
pizza = new GreekPizza(); Based on the type of pizzs, ve
instantiate the corvect tontrete class

N o i i
pizza = new PepperoniPizza(); variable.” Note mi E::;f:n:;
i e
: has 4o implement. the Pizza interface.
pizza.prepare () ; Onee we have a Pizza, we prepare it

pizza.bake() ; (you know, vall the dough, put on the
pizza.cut() ; sauce and add the toppings ¢ cheese),
then we bake it, eut it and box it!

pizza.box() ;
Eath Pizza subtype (CheesePizza,
VeggiePizza, etz.) knows how to
prepare itself.

return pizza;

OEBPS/Image00423.jpg
We've vetognized
that the o vetipes
are essentially the
same, although

some of the steps

— vepive bbbt~
implementations. So Co
{ea we've 5<n;va‘l.m; f{:-e ° ffee
vetipe and plated i B
© boll somewater o the base s ° lsome waty,
thewater Br
© Stesptheteabaait v P W thecotfeg griyq
© Pourteainacwp reotfecina
© Addlenon ° Al v ang ilk
Caffeine Beverage
generalize

telies on
subclass
for some
steps

© Steepthe teabag in the water
© Addlewon

teps of

Torkorms teps | and 3 /
Preelf, but veles on Tea
or Cobfee to do steps

@ Boil some water

© Brew

© Pour beveragein a cup
@ Add condiments

generalize

relies on
subclass
for some
steps

.

Catiheine Beverase
Knows and tontrols the
{he vetipe, and

| an

@ Mdsvgar and wilk

2 and &

Coflee subeagg

Q brew the coffee qrinds

OEBPS/Image00665.jpg

OEBPS/Image00185.jpg
the SimplePizzaFactory. 1t
for its clients

Heve's our new elass,

has ane gob i life: reating piz=s e bl

/— e apiuaal) method

: v v This is the

public class SimplePizzaFactory { e ;a‘*‘rﬁb\mﬂ; Coe

% Joetts

ke e e e e) | R o ate v
Pizza pizza = null;

if (type.equals("cheese")) {
pizza = new CheesePizza();

} else if (type.equals("pepperoni")) { Heve's the code we
pizza = new PepperoniPizza() ; lucked ot of the

} else if (type.equals(“clam")) { orderPizzal) method
pizza = new ClamPizza();

} else if (type.equals("veggie")) (

X pizza = new VeggiePizza();

return pizza;

}
This code is sl pavameterized by the type of the
binzs, jusk like our original orderPiz220) method vas

OEBPS/Image00184.jpg
Pizza orderPizza(String type) {

Pizza pizza;

_/

e

Firsk we pul the object
ereation tode vt o%
orderPizza() Method-

pizza.prepare() ;
Then e place that code in an objett.

pizza.bake() ;
tnat s ol g b vy a::ut{:m ;:
i er jtl: net

any
i is the object £

pizza.cut();

pizza.box();

What's o;
%9003 £o 40 heyer

return pizza;

OEBPS/Image00426.jpg
boilWater () ;

[

CaffeineBeverage

prepareRecipe()
boilWater()
pourinCupf)

brew()
‘addCondiments();

OEBPS/Image00186.jpg
Now we give PizzaStore a veterente
4o 3 SimplePizzaFattory.
public class PizzaStore {
SimplePizzaFactory factory;

Piz2aStore gets the fattory passed
public PizzaStore(SimplePizzaFactory factory) { 1o it in the consbrurtor.

this.factory = factory;

public Pizza orderPizza(String type) (
Pizza pizza;

EitEa ooy s (el o the orderPizzal) method s th
" Tatkory 4o create ks pizzas by simply
T passing on the type of the order

pizza.bake() ;

izza.cut() ;
5 . Notice that we've veplaced the new

pizza.box(); apevato vith treate method
on the fatkory dbjeet. No move
return pizza; conreke instantiations heve!

// other methods here

OEBPS/Image00658.jpg
Joe was right;
this is working out
quite nicely!

OEBPS/Image00417.jpg

OEBPS/Image00659.jpg
Heve's the monitor test drive. The
CEO is aoing o vun this!

Hreve's all the \ozzbm

import java.rmi.

were apind b0 montte” "
)) We teate an arvay
o 11Moni torTestDriv
public class GumballMonitorTestDrive { f of lotations, one for
eath mathine.
public static void main(String[] args) {
String[] location = {"rmi://santafe.mightygumball.com/gumballmachine",

"rmi://boulder . mightygumball .com/gumballmachine"
"rmi://seattle.mightygunball.com/gunballmachine”} ;

GumballMonitor([] monitor = new GumballMonitor[location.length];
We also ereate an
for (int i=0; i < location.length; i+ { avvay of moritors
try (
GumballMachineRemote machine =
(GumballMachineRemote) Naming.lookup (location[i]);
monitor[i] = new GumballMonitor (machine) ;

System.out.println (monitor(il)
} catch (Exception e) {

e.printStackTrace() ; Now we need to get a proxy
) 1o eath remote mathine.

for (int i=0; i < monitor.length; i++) {

monitor [1] .xeport () ;

' Then we iterate though cach
} achine and print out its veport:

OEBPS/Image00657.jpg
We need o import the RMI package because we
Lmport Sava.zml ¥i < . o bhe RemoteException css below

)) Now weve aging o rely on the vemote
e e N e-// interFace rather than the conerete

iy " <hine i GumballMachine class.

public GumballMonitor (GumballMachineRemote machine) {

this.machine = machine;

public void report() {

try {
System.out.println("Gumball Machine: " + machine.getLocation());
System.out.println("Current inventory: " + machine.getCount() + " gumballs");
System.out.println("Current state: " + machine.getState());

} catch (RemoteException e) {
e.printStackTrace () ; We also need to tateh any vemote exceptions

it that might happen as we try to invoke methods

X Ehat are ultimately happening over the nebuork

OEBPS/Image00177.jpg
Duck duck = new MallardDuck();

I

We want 4o use Wave to ereate an
fo eep sce B nicrboees Bt e e ek dlasd

OEBPS/Image00420.jpg
Coffee Tea

void prepareRecipe() { void prepareRecipe() {
boilWater () ; boilWater () ;
brewCoffeeGrinds(); &> steepTeaBag();
pourInCup() ; pourInCup() ;

addSugarAndMilk() ; <— x> addlLemon() ;

OEBPS/Image00662.jpg
File Edit_Window Help GumbalisAndBeyond

% java GumballMonitorTestDrive

Gumball
Current

Current

Gumball
Current

Current

Gumball
Current
Current

%

Machine: santafe.mightygumball.com

inventory: 99 gumballs e
state: waiting for quarter The monitor itevates
over each vemote

‘ . mathine and ¢alls
Machine: boulder.mightygumball.com its getLocationl)

inventory: 44 gumballs aetCont() and

() meth
state: waiting for turn of crank ety

Machine: seattle.mightygumball.com
inventory: 187 gumballs
state: waiting for arter
9 G This is amazing; it's going to
revolutionize my business and
blow away the competition!

OEBPS/Image00421.jpg
public abstract class CaffeineBeverage {

Calfeineeverang is abstracts
Hass desion

just like in the
f = Now the same prepareRetipel) method
il be used ko make both Tea and Coffee

vepaveRecipel) is declaved {inal becavse
P want our subclasses o be dble 0

- : i e wedont
T el e b
Brew0; W qperalued seps 2 and 4o brevD)
beweraag and addCordimentsO

pourInCup () ;
addCondiments () ;
¥
abstract void brew() ; o Betawse Cobfee and Tea handle these
methods in diéferent ways, they've going to

STTET————— . haie to be declaved a5 abstrach Let the
=) aubelases vorey about that sbufF!

void boilWater() {
System.out.println("Boiling water") ;

)
W Remember, we moved these into
voild: paperncep il 1 the CaffeineBeverage class
o (back in cur class iageam)

, System.out.println("Pouring into cup");

OEBPS/Image00663.jpg
This worked great! But

T want to make sure T

understand exactly what's
going on...

OEBPS/Image00179.jpg
But you have to create an
object at some point and Java
only gives us one way to create an
object, right? So what gives?

OEBPS/Image00418.jpg
The prepareRecipe()
_d-# s in each subel
is defined as abstract,

Each subtlass
implements its

own vetipe.

S

lass, so it

The boilWater() and ?our|nCu?O

mekhods ave shave
so they are define

The methods specific o
Coffee and Tea stay in
4he subelasses-

CaffeineBeverage
meth prepareRecioe()

¥ K\) boilWater()

pourinCup()

Coffee =

ot prepareRecipe()
brewCofeeGrinds() s
‘addSugarandlik() vty

d by both subtlasses)
d in the supertlass:

Each subelass

S overrides the
prepareRecipe()
method and
implements its own
vetipe.

OEBPS/Image00660.jpg
This veturns a proxy to the remote mber, Naming lookup() is 3
Gumball Machine or throws an excepbion R e he Rl patine
iF ene can't be located): that takes a location and service

ey (/_\ f vame and lodks it up in {:z
Grmbatbiechinenemote: madinsi= ivetry st that oabion

(GumballMachineRemote) Naming.lookup(location[il);

monitor[i] = new GumballMonitor (machine) ;

; mote
} cateh (Exception o) (Once ve get 3 prony ¥ uéu:banmum
e.printStackTrace() ; mathine, We treate a mew prilh

} e vass it the machine o

OEBPS/Image00178.jpg
e e

if (picnic) { N

duck = new Mallardbuck(); e have a bunth of dfferent
} else if (hunting) { dutk lasses, and we dunht

duck = new DecoyDuck () ; Ynow until vuntime which one
} else if (inBathTub) { we need o nstanbiate

duck = new RubberDuck () ;

OEBPS/Image00419.jpg
SrarbuzZ Goffee Recipe
some wate®
(@ Brow <ofF° 5o poiling 2T
(3) pour < offee in P
T and milk
Starbuzz Tea Recipe

(4) add sugd
2
2) wate;
3 HEREnm b:
Pour tea in c"pxllng B

(4)) Rid e

Starbizz Tea Recipe

OEBPS/Image00661.jpg
On cach machine, vun vmivegistry in and then vun the GumballMachine, giving it
the background or from a separate a lotation and an intial qumball count
Lerminal vindow

]
| i
% java GumballMachineTestDrive santafe.mightygumball.com 100

% rmiregistry &

% java GumballMachineTestDrive boulder.mightygumball.com 100

Fio i indow Holp Hun?
% rmiregistry &
% java GumballMachineTestDrive seattle.mightygumball.com 250

Popular machinel _J"

OEBPS/Image00391.jpg
T'm already exhausted
and all I've done is turn

everything orl

OEBPS/Image00633.jpg
File Edit_Window Help Drink
$rmiregistry

Run this in a separd
Lerminal window

e—

OEBPS/Image00392.jpg
v difberent dlasses
invalved!

PN

Turn on the poptorn popper and

start popring
popper.on() ;

popper.pop () ;
Lights.aima0y; &

—

Dim the lights o 10%.

Put the streen down.

screen.down () ;

projecter.onl) ; £ Torn on the projector and put i
projector. setInput (dvd) ; wide sereen mode for the movie

projector. wideScreendode () ;

amp.on() ; 4 Turn on the amp, set it 4o DVD;
amp. setDva (ava) et it in survound saund mode and
amp.

setsurzoundsound () ; ek the vlme £
anp. setVoLuma (5);

Torn on the DVD player

avd.on();
and FINALLY, play the moviel

dvd.play (movie) ;

OEBPS/Image00634.jpg
File Edit_Window Help BeMerry o'sio T

%java MyServiceImpl ti

The St{b and Skeleton ace Skeleton
9enerated dynamically for
Behind the e T e e

OEBPS/Image00389.jpg

OEBPS/Image00631.jpg
defines €

N
PR kerface
venott we’d‘"‘” il
wank ther erts ¥ ot

MyService.java

OEBPS/Image00390.jpg
w0
down()

amplfer
on)

offl)

setAm()
setfm)
setFrequency()
toSting)

Screen

toSiing)

Amplifier

tuner
dvdPlayer
cdPayer

on)

offg

seiCd)

selvd)
setStereoSound()
setSumoundSoud()
setTuner()
setVolume()
toStingl)

L 5| CaPlayer

PopcomnPopper

amplifer
on
off)

pause()
play)
payl)

TheaterLights

DvdPlayer
amplfier

o)

off)

efectl)

pause()

playl)
setSuroundAudio)
‘sefTwoChannelAudiol)
stop()

toSting()

Projector

S

That's a lot of
elasses, a lot

of intevattions,
and a big set
of interkaces to

learn and use.

OEBPS/Image00632.jpg
D The Real Service: the tlass
& Likh the methods that do
he veal work. [t implements

ViyServicelmpl.java Lhe vemote intertate

OEBPS/Image00395.jpg
PENa1a YOO BALSINOTLS (Mo snne) L
System.out.println("Get ready to watch a movie.
popper.on() ;
popper.pop () ;
lights.din(10) ; /—\
screen.down () ;
projector.on() ;
projector.wideScreenMode () ;

amp.on() ;

amp. setDvd (dvd) ;

amp . setSurroundSound () ;

amp . setVolume (5) ;

dvd.on() ;

dvd.play (movie) ;

M

ovieQ) Follows the same sequente
:emh:;w o do by hand before, but wraps
% up in 3 handy method that docs al
the work. Notice that for each task we
ave delegating the vesporsibiity to {:
Corvespanding component: in the subsystem

L7 N nd endMovieD takes eave

public void endMovie() {

System.out.println("Shutting movie theater down...

popper.of£ () ;
lights.on() ;
sereen.up() ;
projector.off () ;
amp. of£ () ;
dvd.stop() ;
dvd.eject () ;
dvd.off () ;

oF shutting everything down
for us. Again, cach ask is
delegated to the appropriate
component i the subsystem

OEBPS/Image00396.jpg

OEBPS/Image00393.jpg
@ oy imetocrates

Facadefor the home
heate system. Todo thi
we creste new cass
HomeTheaterracade
Which exposes a few
Simple methods such a5
atchiovied

T baptem B¢ 7
Peingistt

alchioyi # dlent of the
() shnysten ficade
f

The Focde css o
O s

componentsas 3

<
" subsystem, and calls
Y, onthe subiystem @ Yourclen cade now calls
i e on i pome s
o et iy
e st

llone method,vatchMovie(.
St commuricates with the
Tights, VD player, projector.
b, screen, nd popcorn
ke orus.

T go tohave.
mylomlvel eccess

ettt
= preetivbomernimiig
.y S o e

B Seire Ch

OEBPS/Image00635.jpg
This Lells vs that the

publie inter:
face
MyRemote extends te{ inkerbate is 9oimd be used
O £ sugport vemote &l

OEBPS/Image00394.jpg
public class HomeTheaterFacade {
Amplifier amp;
mesuly JO
Dvdplayer dvd;
cdplayer cd;
Projector projector;
TheaterLights lights;
Screen screen;

PopcornPopper popper;

public HomeTheaterFacade (Amplifier
Tuner tuner,
Dvdplayer dvd,
cdPlayer cd,
Projector projector,
Screen screen,
TheaterLights lights,
PopcornPopper popper)

this.amp = amp;

this.tuner = tuner;
this.dvd = dvd;

this.cd = cd;
this.projector = projector;
this.screen = screen;
this.lights = lights;
this.popper = popper;

// other methods here

=

Here's the com
ave all the tompone
absystem ve are oing bo use

position; these

nts of the

The facade is passed &
vefevente o eath tomponent
of the subsystem in its
tonstruttor. The facade

then assigns eath to the
torvesponding instante variable

Weve just about. o £ill these i

OEBPS/Image00636.jpg
. i % ; & Remote interfaee is in T
import java.rmi.; Every vemote method call i
- ¢ Considered ‘visky’. Detlaving
public interface MyRemote extends Remo qamy RemoteException on cvery

. . Hello() throws REMOEEEXCEPEION . ihod e the client

public String say to pay attention and
' atknowledge that things
might not work.

OEBPS/Image00387.jpg
Your new tode still gets
£o use [tevators, even
if theve's veally an
Evumevation underneath

Enumerationiterator —¥
is the adapter

<<inferface>>
Iterator

hasNext)
next()
remove()

Enumerationiterator

hasNext)
next)

remove()

We've making the Enumerations
in your old eode look like
[tevators for your new code

s

<<interface>>
Enumeration

hasMoreElements()
nextElement()

A elass
my\:men{\n@
the Enumevatior
intevface is the
adaptee

OEBPS/Image00629.jpg

OEBPS/Image00388.jpg
Sinte we're adapting

Enumeration to [tevator,

our Adapter implements the
[tevator intecface... it has

public class EnumerationIterator implements Iterator<Object> {
o look like an [tevator-

Enumeration<?> enumeration;
£ The Enumeration we've
i 2 i)
public EnumerationIterator (Enumeration<?> enumeration) { aday{ms We've using

this.enumeration = enumeration; composition so we stash it
} in an instance vaviable

public;boolean hasNext(). { &e——— The Itevator’s hasNext() method
return enumeration.hasMoreElements () ; is delegated to the Enumeration’s
) hasMoreElements() method.
- and the [terator’s next() method
public Object next() { o is deleaated to the Evumerations's

nextElement() method.

return enumeration.nextElement();

public void remove() { ST Unfortuntely, we cant support
throw new UnsupportedOperationException () ; [tevator’s vemove() method, so
) we have to punt (in other words,

we give upl). Heve we just theow
an exteption.

OEBPS/Image00630.jpg
This is gony

4o att as owr
proxy!
u Client heap

Newer versions
of Java don't
vequire an explieit

ﬁ\f'/ skeleton b,
ut something on

¢ server side
is il handli
skelebon behg.o...

OEBPS/Image00627.jpg
‘7/em hv,\‘?d

OEBPS/Image00628.jpg
]g Client heap | serverh%-pl]

OEBPS/Image00402.jpg
RO Sonew X

WeatherStation station;

// other methods and constructor

public float getTemp() {

return station.getThermometer () .getTemperature () ;

}
public House {

WeatherStation station;
// other methods and constructor
public float getTemp() {

Thermometer thermometer = station.getThermometer () ;

return getTempHelper (thermometer) ;

public float getTempHelper (Thermometer thermometer) {

return thermometer.getTemperature () ;

} HARD HAT AREA.
) 'WATCH OUT FOR
FALLING ASSUMPTIONS

OEBPS/Image00644.jpg
RemoteException and Remote
T eforkace are in javarmi packase

import java.rmi.*;
o o Your interface MUST extend jaiarmi Remote.
public interface MyRemote extends Remote { ’
public Strin
g sayHello() throws Rem
teE: ;
otemxception; Al oF yaur vemote methods muct

}
7 detlave 3 RemoteExceeption

OEBPS/Image00403.jpg
The HomeTheaterFacade
manages all those subsystem
tomponents for the client.
£ keeps the elient simple
and flexible

/_‘>

P A

We ean uparade the home
{heater tome ks withovt
affetking the chient

/—>

We try o kee? subsystems

adhering to the Printiple of Least
Knowledge 3s well. [§ his gets oo
Complex and oo many friends ave
inkermingling, we €3n introdute
additional facades 4o foem layers
of subsystems

/_\

watchlovie()
endhovie()
listenToCd()
endcd)
listenToRadiof)
endRadio)

This client onty

has one kriend®

Rom:Thca{'ﬂFaLadc. In 00
ogeamming having on\\‘ one

Yv GOOD thiny

iend s 3

HomeTheaterFacade

OEBPS/Image00645.jpg
UnicastRemoteObject is in
import Sava.rmi.*i L {he joarmiserier packise e
i s
e e e Btending UnicasRencteObicct i«
pub> orsest way 4o make remote e
lic class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
private static final long serialVersionUID = 1L;

£ You have 4o implement. al the You MUST implnyg

public String sayiello() { inerlae methods,of comse Bt T nberfael
return "Server says, Hey'™: robie fhat yo do NOT 1as 1
; declare the RemoteEnception

public MyRemoteImpl() throws RemoteException } i perelass constructor (For
R UnitastRemokeObject) declares an exception
so YOU must. wnfz 3 tonsbruttor, because it
is talling vis!
public static void main (String[] args) { means that your tonstruetor is ealling visky
tode (its super construttor).
try {
MyRemote service = new MyRemoteImpl();
Naming. rebind ("RemoteHello", service) ;
} catch (Exception ex) {

Make the vemote object, then ‘ind' it 4, the

rmiregistry using the staby
ex.printStackTrace () ; nime you Zzgng ’!M::afyt‘SN{a:mg vebind(). The
) use 1o look € name clients v

i it up in the R vegistry,

OEBPS/Image00400.jpg
public float getTemp() {

Without the
Bemerle Thermometer thermometer = station.getThermometer () ;
return thermometer.getTemperature () ;
}
Heve ve ek the thermameter obiect
from the station and then call the
g¢Temperaturel) method oursches
the :
\g—fmlg public float getTemp() {

return station.getTemperature(); <7

When we apply the principle, we add 3 method
1o the Station class that makes the veauest
1o the thermometer for us. This veduces the
ber of ¢lasses we've dependent on.

OEBPS/Image00642.jpg
File Edit

dow Help_Huh?

$rmiregistry

OEBPS/Image00401.jpg
Hee's a component of s

public class Car { / tlass. We ean ¢all ks methods
Engine engine;

// other instance variables

public Car() { Heve we've ereating a new
abject; its mebhods are legal

// initialize engine, etc.

You tan ¢all 8 method on an

object passed as a pavameker
public void start(Key key) {
:ooiu doorsh= newdl}oo:! 0; (o canla ethod - a
00! t] i = -t #
ean authorized = key. turns () Lomponent of £he objet

if (authorized) {
engine. start(); 4—/
updateDashboarddisplay() ; < You tan call a lotal method
doors.lock() ; within the object

You ean ¢all a method on an
; object you treate or instantiate

public void updateDashboardDisplay() {
// vpdate display

OEBPS/Image00643.jpg
$java MyRemoteImpl

OEBPS/Image00406.jpg
ing Turkeys 4o Ducks, so

Now we are adapting 1

public clas:kDuckAdaptsr implements Turkey { - mylcmth{ the kaq inkevface.
Duck duck;

fendon pudl We stash a vefevence 4o the Duck we ave adapting
public DuckAdapter (Duck duck) {

S s A e
RLTEEO o et

;ublic void fly() {

if (rand.nextInt(5) == 0) { Sinte Ducks fly a lot longer than Turkeys,
duck. £1y () ; we detided to only £ly the Duck on average

) one of five times

OEBPS/Image00404.jpg
00 Pasits
00 Prentiples
Eoaapulate L5

Favor Lompasition °'° inheri
Program ¥ kerates ot
mplementatier®

chvive for loose Conpled desdr®
ebween Sigets 3 nkerath

Classes hodld e open For extension

ot tlosed for wodifitation We have 3 new Lethniaue

e nkannd 2 2% \esel
o toupima ™ 2 esiars
ol oty 2T

Geiends)

Degend on ssratBr Do rek
cbions

and TWO new pat
patten
Each thanges an m‘ccv@h.:u
be ke o prashng
nd the facad
and swyhﬁya e e iy

‘]

OEBPS/Image00646.jpg
The client always uses the remote
interface as the type of the sevvice.

In faet, the client mever needs 4o This must be the g
know the attual lass vame of your 3t the servieq ag
remote sevvice. lookup() is a static method vegistered undey.

i of t\; Naming ¢lass. /

MyRemote service = .
Naming.lookup ("rmi://127.0.0.1/RemoteHello")
(MyRemote) Naming. {0 1/Remot

7
You have 4o cast it to the The host name or [P
intevface, since the lookup addvess where the
method veturns type Object. servite is running.

OEBPS/Image00405.gif

OEBPS/Image00637.jpg
tion;
public String sayHello() throws RemoteExcep

"N This reburn value is gomna be shipped over the wire from the
gerver back &0 bhe client, o it must be Sevighasble. Trot',
how args and veturn values aet. packaned up ond co i

OEBPS/Image00398.jpg
%java HomeTheaterTestDrive
Get ready to watch a movie...

Here's the output

Calling the Facade's
watthMovie() does all
this work for us.

7

Theater
Theater
Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line

and here, we've done
watching the movie, so
¢alling endMovie) burns

everything off.

Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line
Top-O-Line
%

Popcorn Popper on
Popcorn Popper popping popcorn!
Ceiling Lights dimming to 10%

Screen going down
Projector on
Projector in widescreen mode (16x9 aspect ratio)
Amplifier on
Amplifier setting DVD player to Top-O-Line DVD Player
Amplifier surround sound on (5 speakers, 1 subwoofer)
Amplifier setting volume to 5

DVD Player on
DVD Player playing "Raiders of the Lost Ark"

Shutting movie theater down...
Popcorn Popper off

Theater Ceiling Lights on
Theater Screen going up

Projector off
Amplifier off

DVD Player stopped "Raiders of the Lost Ark"
DVD Player eject

DVD Player off

OEBPS/Image00640.jpg
public MyRemotelmpl () [Ehrews Remotesx Yo dort bae o put anything M
ception { } Lhe construttor You just need 3

e daare bt oo s
b O Bvous an extepbion

OEBPS/Image00399.jpg
easier bet
the facade:

More tomplen SESYAE™

pagpy client e
1ob just became -
) o

aue

subsystem classes

v~ UWnified interface

that is easier o use

OEBPS/Image00641.jpg
e (that clients can usc

try {
MyRemote service = ne Give your sevice 3 nam
Raminglzebind ("Remm: MyRemoteTmpl (); look it up in the vegistry) and vegjster it
Ry, () f oot the RM| vegjstry- When you bind the
7 eice dojeck, RMI swaps the seriee o7 the
Ehe vegistry

} catch(Exception ex) {...} R~
stub and puts the stub

OEBPS/Image00638.jpg
public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote f

public String sayHello() { S
, roturn "Server says, 'BeY'™ The campler will make sue Gk e
implemented all the methods fron.

// more code in class You implement. [n this ease, {ht:i's ﬁ:fy‘:ff'{“‘

OEBPS/Image00397.jpg
Here we've ereating the tomponents

public class HomeTheaterTestDrive (vight in the test drive. Normally the
public static void main(String[] args) { client is given 3 facade; it doesn't have
// instantiate components here 1o construct one itself
HomeTheaterFacade homeTheater = <~ First you instantiate
new HomeTheaterFacade(amp, tuner, dvd, cd, the Facade vith all the

componerts in the subsystem

projector, screen, lights, popper);

homeTheater.watchMovie ("Raiders of the Lost Ark");

homeTheater . endMovie () ; Use the simplified interface to
. IS first start the morie up, and
then shut. it down

OEBPS/Image00639.jpg
public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
private static final long serialVersionUID = 1L; <— Mhltasﬁkcmofeob‘)dé implements
Serializable 5o we need the

sevialVersionld[D Field

OEBPS/Image00375.jpg
Testvun X

Pl Edi Vindor, Hsp DoniForgeiToDuck

ava DuckTestDrive

The Turkey says...

Gobble gobble

I'm flying a short distance

The Duck says...

Quack
I'm flying

The TurkeyAdapter says...
Gobble gobble

I'm flying a short distance
I'm flying a short distance
I'm flying a short distance
I'm flying a short distance
I'm flying a short distance

a
a
a
a

L quack)

The Turkey gobbles and
Flies a short distance.

The Duck quacks and Flies

€7 jusk like you'd exect

he adapter gobbles when
b e e Few tme

when 0 s ealled. The bestDutkO
ethod never knows it has a turkey
disaised as 3 dvek!

OEBPS/Image00376.jpg
Adaptee

ost0
cared™
cllenf "equesy ranse
The Client is implemented
against the target interface.
Adapter
2daptee
o jtertac® interface
The Adapter implements the Turkey was the
target interface and holds an S adapkee interfate
instance of the Adaptee. ked
myler
wuq}\aav*ﬁ u "ttt Dk

e 3¢

OEBPS/Image00369.jpg
public interface Duck {
public void quack();
public void £ly();

OEBPS/Image00611.jpg
Pattern Description

Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use.

Subelasses decide how

Strategy to implement steps fn an
algorithm.

. Encapsulate state-based

Template Method behavior and delegate

behavior to the current state.

OEBPS/Image00853.jpg
.

OEBPS/Image00370.jpg
public class MallardDuck implements Duck {

public void quack() {
ons: bhne dutk

System.out.println("Quack") ;
mle implemer At dane

) R__ Sls{?\'\" ouk what T

public void £1y() {
System.out.println("I'm £lying") ;

OEBPS/Image00612.jpg
public void refill() {
:) We add this method to
gumballMachine. setState (gumbalMachine. getNoQuarterState ()) 4\ ¢ 14, tChate

And add this method to

void refill(int count) { the GumballMachine

this.count += count;
System.out.println("The guiball machine was just refilled; it's new count is
state.refill() ;

" + this.count);

OEBPS/Image00854.jpg

OEBPS/Image00367.jpg
Your Adapter | Vendor
Existing Class
System)

No code changes. New tode. No code thanges

OEBPS/Image00609.jpg
Go to HasQuarterState.
Tell the customer, “You havenm
e

Tell the eustomer, “You turned, but there’s no quarter.”
Tell he cusbomer, you need o pay Fet”
Tell the eustomer, “You tan't insert another quarter.”

Give back quarter, 90 to No Quarter state

=
o to SoldState

-

Tell the tustomer, “wo qumball dispensed” =

Tell the customer, “please vait, we've alveady gving you a quball”
Tell the tustomer, “sorvy, you alveady turned the evank”
Tell the customer, “4uring uice doesn’t get you another gumball”

Dispense one qumball. Check number of qumballs; if > 0, 90

to NoRuarter state, othervise, go to Sold Out state —

Tell the eustomer, “the mathine is sold out.”
Tell the eustomer, “you haven't inserted a quarter yeb”

Tell the customer, “There are no gumballs” \};

Tell the ustomer, “no gquball dispensed.” >
Tell the customer, “please vait, we've alveady giving you a qumball”

Tell the customer, “sorvy, you alveady turned the erank”

Tell the customer, “burning buite doesr't gt you another qunball”

Dispense two gumballs. Cheek mumber of qumballs if > 0,
30 4o NoGuarker state, otherwise, 40 4o SoldOuiShate, ~——1

NoQuarterState
insertQuarter()
ejectQuarter)
tumCrank()
dispensel)

HasQuarterState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldState
insertQuarter()
efectQuarter()
tumCrank()
dispense()

SoldOutState
insertQuarter()
efectQuarter()
tunCrank()
dispense()

WinnerState
insertQuarter()
ejectQuarter()
tumCrank)

dispense()

OEBPS/Image00851.jpg
Head First
Institute

OEBPS/Image00368.jpg

OEBPS/Image00610.jpg
delegates {0
Curvent state L]

@

@
o

insertQuarter() @
E xvid
W
machine attion @
sad
Soldost
© Gomball Machine States

dispense()

Heve the mathine

gives out a qumball 5
by calling the intevnal @
dispense() action...

insertQuarter() WMJMIM

e
R

}Cmﬂ\e

g
tumCrank() | oxenise @
T e

mathine action @
]

transitions to
HasQuarter state
transitions to
Sold state
@ ¢umball Machine States
P
o
ROl
s.,!u
~.and then transitions Soldost

4o NoQuarter

OEBPS/Image00852.jpg
And next time youre in Objectville,
drop by and take one of our behind
‘the scenes laboratory tours.

OEBPS/Image00373.jpg
Fiest, you need to implement the interface
of the type you've adapting to. This is the
interface your elient expects to see
public class TurkeyAdapter implements Duck {
Turkey turkey;
Next, we need to get a vefevente to the
public TurkeyAdapter (Turkey turkey) { £~ object that we are adapting heve we do

this.turkey = turkey; ‘that through the construetor.

Now v need 4o implement all the methods in
public void quack() { @r—\ +the intecface; the quack() translation between

turkey.gobble () ; elasses is easy: just ¢all £he aobble) method
1
Publiciveidizly () “ N Even though both interfaces have a fiy)
for(int i=0; i < 5; i+h) (method, Turkeys £y in shwl:‘syur{s -
turkey. £1y () ; they ¢an't do long-distante Flying like
o L e D B0
method and 3 Turkey's, ve need to call
! the Turkey's Fly0) method five times to

make up for it.

OEBPS/Image00615.jpg
public class GumballMachine { A lotation is just a String,
// other instance variables

String location;

public GumballMachine (String location, int count) {
// other constructor code here K The loestion
lotation is passed into the

this.location = location; construttor and stored in the
) instance variable.

public String getloeation() {
return location;

J Let's also add a getter method to

grab the location when we need it

// other methods here

OEBPS/Image00374.jpg
L%
Leks vedte ® D

ond 2 Toveet

public class DuckTestDrive {
public static void main(String[] args) { f
MallardDuck duck = new MallardDuck () ;

WildTurkey turkey = new WildTurkey () ; f And then wrap the turkey

Duck turkeyAdapter = new TurkeyAdapter (turkey) ; [\ in a Turkeyhdapter, which
makes it look like a Duck

System.out.println("The Turkey says...

turkey.gobble () ;

turkey.£1y () ; S Then, let’s test the Turkey
make it gobble, make it fly.

Systen.out.println("\nThe Duck says.

testDuck (duck) ; Now let’s Lest the duck
ST by tling the bestDuek
System.out.println("\nThe TurkeyAdapter says..."); method, which expects a
testDuck (turkeyAdapter) ; Dutk object
)
S 5;» the -
static void testDuck (Duck duck) { the furk(y :i' TR

duck.quack () ;
duck. £1y () ;

~_ :,Z‘ﬂ ;«rk&s{DuLkO method; it
el %
and fly0 M:::dia”s it quack)

OEBPS/Image00616.jpg
P s S ANE TR §

Gumbailiachine machine; L et ke e i o
its onstructor and assigns it to
public GumballMons tor (GunballMachine machine) { O machine instance variable.

this.machine = machine;

public void report() {
System.out.println("Gumball Machine: " + machine.getLocation()) ;

System.out.println("Current inventory: " + machine.getCount() + " gumballs");
System.out.println("Current state: " + machine.getState());

Our veport

location, gt paa (oo vty

inventory and the machine's shate.

OEBPS/Image00371.jpg
ace Turkey Turkeys dont atk, the oble:
N 2t auatk, thet &
ic int .

public void gobble();

public void £ly() ;
; TN Turkeys an iy, abthough they
2an only By short distances

OEBPS/Image00613.jpg
With you as my proxy,

Tl be able to triple the
amount of lunch money I can
extract from friends!

OEBPS/Image00855.jpg
Mighty Gumba]l, Inc.

OEBPS/Image00372.jpg
PO BLANE MiLCTUTERY TePLOEEe TorEey 1 neveke implementation

public void gobble() { Heres 8 25 ke Dutk, it just

[urkey
System.out.println("Gobble gobble") ; 4J/ ;f‘l; ‘:‘1 its attions

public void £ly() {
System.out.println("I'm flying a short distance");

OEBPS/Image00614.jpg
Hey team, Id really like to
get some better monitoring for
my gumball machines. Can you find a
way to get me a report of inventory
and machine state?

Remember the
M

? E0 of
flighty Qumball, ne.?

OEBPS/Image00856.jpg

OEBPS/Image00607.jpg

OEBPS/Image00849.jpg
// new methods
q:tﬂealthﬂaunq()
qetcaxoues()

getprotein() \
getCarbs () ——————————
// new methods

getHealthRating ()

getCalories () \
getProtein() ——— — =
getCarbs () —

OEBPS/Image00608.jpg

OEBPS/Image00850.jpg
All these composite
¢lasses have to do is add
3 aekStatel) method
The Visbor needs o be able £ 63l (and not worry abot
ettt sevssclasss rd WS 5 i bhenaches
“here you tan add rew methods for

the client to use Z

The Client asks
the Visitor to get.

sy RN
Composite structure.
New methods tan be
added o the Visitor

withaut ablecting the
Composite

g

The Traverser knows how o
aide the Visior through
The Composite strutture

OEBPS/Image00847.jpg
<<interface>>
Monster

WellKnownMonster I DynamicPlayerGeneratedMonster I

OEBPS/Image00848.jpg
MonsterMaker

makeRandomtonster () {

The elient needs 3 new monster
Monster m =

iate 4o the curvent
imﬁ; (The client won't know
what kind of monster he aets)

MonsterRegistry. getionstes () ;

MonsterRegistry
Monster getMonster() {
// £ind the correct monster

return correctMonster.clone() ;

S vegstry finds he 3

e PPropriate
veburns the clo. lone of it and

OEBPS/Image00386.jpg
These two methods look easy.
They map straight to hasNext()

Tavaet interface 1 and next() in [tevator.
<<interface>> ‘ <<interface>>
Iterator

Enumeration
hasMoreElements()
nextElement()

‘hasNext()
next()
remove()

T Adaptee interface

But what about £his method
vemovel in [terator? There's
nothing like that in Enumeration.

OEBPS/Image00380.jpg
Client

<<interface>>

Target

request()

&

Adapter

Adaptee

request()

‘specificRequest()

OEBPS/Image00622.jpg
An RMI Detour

OEBPS/Image00381.jpg

OEBPS/Image00623.jpg
Client doject £rinks
¥s talking b0 the

Real Sevvice

Lhinks the elient

elper is the hind
fnat can actally do
Lhe veal work:

Client helper pretencs

Real Thing

ey o
Vit go nt he®

This is 909
o be 0w
profy-

T be the sevite, b
ﬂcngm heap & st 3 prowy For the

Service hel
IPer gets th
):lwt From the cli;,.i
ﬂi"lrz),unyﬂ‘ks '{: and
e m
Roat ook method on the

Twe Sevite et |
the Red Sm;
oyt WL does

OEBPS/Image00378.jpg
T
arget Adaptee
request()
specifcReauest)

Adapter
request()

Instead of using composition
to adapt the Adaptee the
Adapter now sublasses the
Adaptee and the Target classes

OEBPS/Image00620.jpg
This is a pretty slick idea.
We're going to write some code that

takes a method invocation, somehow transfers it
over the network, and invokes the same method
ona remote object. Then I presume when the call is
complete, the result gets sent back over the network
to our client. But it seems to me this code is going
to be very tricky to write.

Hold on now, we arer't going
to write that code ourselves; it's
pretty much built into Java's remote
invocation functionality. All we have fo
do is retrofit our code so that it takes
advantage of RML.

OEBPS/Image00379.jpg
Client

Target

Adaptee

request()

specifcRequest()

Adapter

request()

OEBPS/Image00621.jpg
An RMI Detour,

If you're new fo RMI,

take the detour that runs
over the next few pages:
otherwise, you might want to
Just quickly thumb through
the detour as a review

OEBPS/Image00384.jpg
Tells you if theve are any move

<<interface>> .
: elements in the collection:

Enumeration
hastoreElements()
nextElement()

Gives You the next element
in the tollettion.

OEBPS/Image00626.jpg
Edie hea
nt heap -
I
client wants 1o call a method” Server heap

Toagmg0 N

Remember, this 1 the
ochLt with the REAL
‘mebhod logie. The one
that does the veal work!

OEBPS/Image00385.jpg
Analogous to hasMoreElementst)
in the Enumeration intertace.

This method just &ell you if
've looked at all the ibems in

<<interface>
Iterator J the collection:
‘hasNext()

next) G
- Gives You the next
element in the collettion

Removes an ite
the aollezfiolh. From

OEBPS/Image00382.jpg
Dutk elass

Rrkey ¢lass
e
Client specificRequest() ot
equest() The Turkey tlass t\fd: -
1s the have the same m¢ ter tan
Client thinks pe's The Tacoek f“__‘s Duck, but the Ad:"calls
talking to 3 Dyey. Dutk arfi; client e fake Dutk Mt:oand ook
. 3 avow
s :’:\us mekhods o o an:i{:/:;: on the Turkey:
n ™
The Adapter lets the Tur)

key vespond 4o
vequests on 3 Duck, by ex

tending BOTH
and Turkey).

elasses (Duck

OEBPS/Image00624.jpg
Server heap

Fent o™

OEBPS/Image00383.jpg
Dutk inteckace

The Turkey ¢lass doesn’t have the same

o «nmvef interface as the Dyck. In other words,
request) Turkeys don’t have k() methods, els
Client. hinks s fer, 2
talking to 3 Dyek. & 2 with 01t gﬁ& Turkey
dus ek is e M en objeet
the TR hat & &
tlass: thods O Adapter -
nvokes ™€ —— > speciicrequest) saeter he Turkey
he AGIPUEY /0L ke
The Adapter implements the Duck Tharks b)ﬁ.‘-\\ ot ealle th?n’w’ fate
interface, but when it gets a (}\da\’b"am e
method Call it furns araungl ang dliert v

delegates the ealls 4, 3 Turkey.

OEBPS/Image00625.jpg
5=~=""4’l

Seryice 603&

OEBPS/Image00857.jpg
y;z

OEBPS/Image00618.jpg
Dorit worry guys, T've
been brushing up on my design
patterns. All we need is a remote
proxy and we'll be ready to go.

Well, that wil feach us to
gather some requirements
before we jump in and code. T

hope we dor't have fo start over...

OEBPS/Image00377.jpg
=—]

The client sees only the
Target interfate.

The Adapter implements
the Tavget interrace.

Adaptee

<cinterface>>
Target
request()

Adapter is ¢
with the M::é‘:ed

Ao l
request() speciicRequest()
\] R Mreyeds st

deleaated to the
Adaptee.

OEBPS/Image00619.jpg
CEO's desktoy
The prof vekends to
A Remote Gumb,
ith a UM all Mathine

k’ b the vemote obyects
| Teg s et a stand in vi
B rekeal Thng

fteve the Gumball

Manitor s the elient.
dbject; it hinks it

u‘{\tmg 4o the Real
bl machine, but
e veally just £3kny
o the pro¥) whih
Lhen kalks to the
Real gumball machine
over the nebork Saxc as m dd
Code, only i
alking o @ ProXY &:: bt

OEBPS/Image00858.jpg
oRELL
Head First

Design Patterns:

A Brain-Friendly Guide

Learn why everything
your friends know about
Fagctory pattern is

probably @

Avoid those |
embarrassing
coupling mistakes |

Load the patterns
that matter straight

-«" /; } mmya?im

See why Jim's

~" | love life improved
)| when he cut down

his inheritance

B S
Discover the secrets
of the Patterns Guru

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Eric Freeman & Elisabeth Robson
with Kathy Sierra & Bert Bates

OEBPS/Image00617.jpg
Ppublic class GumballMachinelestlrive {

public static void main(String[] args) { Pass in a lotation and initial # of

int count = 0; f qumballs on the command line.

if (args.length < 2) {
System.out.println("GumballMachine <name> <inventory>");
System.exit(1);),

, Don't forget 4o give
the constructor 2
lotation and count,

count = Integer.parseInt (args(1]) ;

GumballMachine gumballMachine = new GumballMachine(args[0], count);

T ——
nd inshanbiake 3 monitor and pass it 3
athine 4o provide a veport on

// rest of test code here

e o i o T
$3ava GumballMachineTestDrive Seattle 112
Gumball Machine: Seattle

When ve need a report on Current Inventory: 112 gumballs

the machine, we ¢all the Current State: waiting for quarter
veport0) method.

monitor. report () ;

i

And here's the ovtput!

The monitor output looks

great, but T guess T wasnit clear. I need
fo monitor gumball machines REMOTELY!
In fact, we already have the networks in
place for moritoring. Come on guys, you're
supposed to be the Internet generation!

OEBPS/Image00066.jpg
7t Bunth of Patterns

Yo Code, no¥ nEw

and imp)

design ¥

coved with

a{-‘{;gvns!

OEBPS/Image00064.jpg
So I created this broadcast class. It keeps
track of all the objects listening o it, and

anytime a new piece of data comes along it sends
a message fo each listener. What's cool is that the
listeners can join the broadcast at any time or
they can even remove themselves. It is really
dynamic and loosely coupled!

OEBPS/Image00065.jpg

OEBPS/Image00062.jpg
fight(;

Character
WeaponBehavior weapon;

KnifeBehavior BowAndArrowBehavior
useWeapon() {/ implements useWeapon() { implements
cutting with

ﬁ

<<interface>> g an arrow with a bow
WeaponBehavior
useleapon();

King

useWeapon() { implements.
chopping with an axe.

fight({... }

‘SwordBehavior

useleapon){mplements
swinging a sword }

setWeapon (WeaponBehavior w) {
this.weapon = w;

OEBPS/Image00063.jpg
Alice

T need a cream cheese with jelly on white

bread, a chocolate soda with varilla ice cream, a
grilled cheese sandwich with bacon, a tuna fish
salad on toast, a banana split with ice cream & sliced
bananas, and a coffee with a cream and two sugars, .. Give me a C.J. White,
oh, and put a hamburger on the grill ablack & white, a Jack
Benny, a radio, a house boat, a
coffee regular, and burn onel

OEBPS/Image00060.jpg

OEBPS/Image00061.jpg

OEBPS/Image00058.jpg

OEBPS/Image00059.jpg

OEBPS/Image00057.jpg
Client makes use of an
entapsulated family of algorithms
for both flying and quacking.

Client
Faenavo ysnavr
——

Encapsulated fly behavior

<o

Think of eath
set of behaviors
35 a Family
algorithms:

MalardDuck

RedneadDuck

Rubberduck

DecoyDuck

Encapsulated quack behavior

<o
QuackBehavior
=0

dspn)(
ks e amatar)

dspl(
ks ke areeas)

s
ooks he 3 etk

dasin)(
eoks e adecoydck)

Saueak WutoQuack

wack)(
inier ek sueak
)

i
e e——

OEBPS/Image00250.jpg
BlackOlives

EggPlant

Spinach

SlicedPepperoni

ThickCrustDough

FrozenClams

PlumTomatoSauce

WozzarellaCheese

OEBPS/Image00249.jpg
public class DependentPizzaStore {

public Pizza createPizza(String style, String type) {

Pizza pizza =

if (style.equals("NY")) {
if (type.equals("cheese")) {

pizza
} else if
pizza
} else if
pizza
} else if
pizza
}

new NYStyleCheesePizza() ;
.equals ("veggie")) { Handles all the

NYStyleVeggiePizza() ; / NY style pizzas

.equals("clam")) {

NYStyleClamPizza() ;

.equals ("pepperoni”)) {

NYStylePepperoniPizza() ;

) else if (style.equals("Chicago")) {
if (type.equals("cheese")) {

pizza
} else if
pizza
} else if
pizza
} else if
pizza
}
} else {

ChicagoStyleCheesePizza () ; Handles all the
.equals("veggie")) { Chicago style pizz3s
ChicagoStyleVeggiePizza () ; f

.equals("clam")) {

ChicagoStyleClamPizza () ;

.equals ("pepperoni”)) {

ChicagoStylePepperoniPizza() ;

System.out.println("Error: invalid type of pizza");

return null;

}

pizza.prepare() ;

pizza.bake() ;
pizza.cut() ;
pizza.box () ;
return pizza;

You can vrike your
answevs here:

8 rumber]2 umber vith Californa #°

OEBPS/Image00055.jpg
That's okay, we've treating a

/“ votket—powered flying behavior

public class FlyRocketPowered implements FlyBehavior {
public void £ly() {
System.out.println("I'm flying with a rocket!");

OEBPS/Image00252.jpg
You talkin' to me or the car?
Oh, and when can I get my oven
mitt back?

I tell ya she's ONE
OF A KIND. Lok at the
lines, the curves, the body,
the headlights!

OEBPS/Image00056.jpg
public class MiniDuckSimulator { e ‘~ {
public static void main(String[] args) (L}
Duck mallard = new MallardDuck () ;

mallard.performQuack () ; ﬁb

mallard.performFly () ;
=odal Sivst call o peckornPO o

T 1o the RyBenavior o ek

Duck = new ModelDuck () ; 4elDuck’s consbructe”

sek in the Mot mskance:
e T i Py

sodeL sacTiysenavios (new FiyRockatzonared()) s € TH 7ioks the models pheiteg

behavior setter method, and. vol)
The model suddenly has vocket.
Povered flying capabilty!

model .performFly () ;

i 1€t worked, the model duck d

) ehanged its By behavin] o v !
THAT i€ the implementation lves i
the Duck elass el
O \Runit!)‘
%java MiniDuckSimulator .

Quack %'b

I'm flying!! Abter

I can't fly

I'm flying with a rocket!

OEBPS/Image00251.gif
lolnlclelelvlelrlalcltlolr]Y]

nmu
e —
Lalelols v v e]
aHaan ARnENDAnG
T - I —

OEBPS/Image00053.jpg
public void setFlyBehavior (FlyBehavior 1b)

flyBehavior = fb;
) Duck
FlyBehavior flyBehavior;

QuackBehavior quackBehavior;
public void setQuackBehavior (QuackBehavior gb) {

quackBehavior = gb; swim()

} display()

performQuack()
performFly()
setFlyBehavior()
setQuackBehavior()

1/ OTHER duck-fke methods.

OEBPS/Image00254.jpg
public MyClass {

private MyClass() {}

OEBPS/Image00054.jpg
public class ModelDuck extends Duck { s e grounded
public ModelDuck () {
flyBehavior = new FlyNoWay () ;< itk

quackBehavior = new Quack () ;

Our model dutk be)
out 3 vaY

public void display() {
System.out.println("I'm a model duck");

OEBPS/Image00253.jpg
What is this? An
entire chapter about
how to instantiate just
ONE OBJECT!

That's one and ONLY
ONE object.

OEBPS/Image00051.jpg
PSS SLENE. R W . 1

public static
tatic void main(String[] args) {

Duck mallard = new Mallardbuck () ;
mallard performuack () ; Y—"’ This calls the MallardDuck's inherited
N mallard.performFly () ; perform@uack() *ethod, which then delegates o
Ehe abject’s QuackBehavior (e, calls quaek) on
Lhe dutk's inherited auatkBehavior vefevente:
Then vie do the same thirg ©ith MallavdDuck's

e ted pevformPIyQ method

OEBPS/Image00256.jpg
public MyClass {

private MyClass() {}

public static MyClass getInstance() {
return new MyClass() ;

OEBPS/Image00052.jpg
File Edit_Window Help Yadayadayada

%$java MiniDuckSimulator

Quack
I'm flying!!

OEBPS/Image00255.jpg
public MyClass {

public static MyClass getInstance() {
}

OEBPS/Image00248.jpg

OEBPS/Image00247.jpg
PizzaStore

creatoPizza()
orderPizzal)

’s everything you ™
N ot Toz2

e pizza stove
the mz‘;c&: Catifornia

elass, an
style pizzds
NYPizzaStore ChicagoPizzaStore CaliforniaPizzaStore
crestePizzal) crestePizzal) crestePiza)
| NYStyleCheesePizza ‘Chitlﬂosfyllchmlpinli CaliforniaStyleCheesePizza
NYStylePepperoniPiza ‘ [CaliforniaStylePepperoniPizza
[NYStyleClamPizza - CaliforniaStyleClamPizza

 ChicagoSyleVeggi

-1‘ NYStyleVeggiePizza l

CaliforniastyleVeggiePizza

OEBPS/Image00049.jpg
public abstract class Duck {
Detlave two vefevente

FlyBehavior flyBehavior; €— variables Lo the behavior

QuackBehavior quackBehavior; nterface b Ml K
public Duck() { subelasses (in the same
’ vackage) inhevit Ehese

public abstract void display();

public void performFly() {

f£lyBehavior . £1y () ;i$¢———— Delegate to the behavior class
)

public void performQuack () {
quackBehavior . quack () ;
¥

public void swim() {
System.out.println("All ducks float, even decoys!

OEBPS/Image00050.jpg
public interface FrlyBehavior {
public void f£ly(); The interface that all ﬂlm@
) behavior elasses implemen

public class FlyWithWings implements FlyBehavior
public void fly() { Flying behavior ..,Vlmemt-on
System.out.println("I'm £lying!!"); Lor ducks that DO Py

}

public class FlyNoWay implements FlyBehavior {
public void £fly() { Flying behavior implementation

e im0t canrt 21377 for ducks that do NOT fly (ke
: vubber ducks and decoy ducks).

OEBPS/Image00047.jpg
Ppubiic ciass Malilardiuck extends buck {

A MallardDutk uses the Quack

public Mallardbuck() { 7 th t hand\z{)lﬁ ‘\“ﬁ' ‘; whe.
apuck e Quack() is called, the
quackBehavior = new Quack () ; ‘::sym.b.hky for the quatk is delegated
f£lyBehavior = new FlyWithWings () ; 1o the Quack object and we get 3 veal
) quack

Remember, MallardDuck inherits the And it uses FlyWithWings as its
auackBehavior and £lyBehavior instante FlyBehavior tyre.
variables from class Duck

public void display() (

System.out.println("I'm a real Mallard duck");

OEBPS/Image00048.jpg
Wait a second, didrt you
say we should NOT program to an
implementation? But what are we doing in that
constructor? We're making a new instance of a
concrete Quack implementation class!

OEBPS/Image00046.jpg
¢ o something that

public class Duck
Qua i
e Each Duck has 3 vekerent
;& implemerts the QuatkBehavior interkaee
public voi
ARt L Rather than hand\'vn?){h: aatk
) or.quack () ; behavior itse , the Duck Jbjett
& ddenples Bt ovavior 1o Ehe obyeet
e ented by quackBehar

OEBPS/Image00261.jpg
PEOGAE NSNS LHOROLRLAROLWE
private boolean empty;

private boolean boiled;

ChocolateBoiler () {

empty = true;
boiled = false;

public void £i110) {
if (isEmpty () {
empty = false;
boiled = false;
// £ill the boiler with a milk/chocolate mixture

}
// rest of ChocolateBoiler code...

OEBPS/Image00260.jpg
PHEAAR GAAES SEETEhLMRRNaRM. 1
private boolean empty;
private boolean boiled;

This eode is only started

public ChocolateBoiler() {
empty = true; J when the bailer s emply!
boiled = faise;

}
To §il the baler vt’nf{“be
T et engly and orce e Blve
e s 7 The empty and baled 2y
empty = false;

boiled = false;
// £i11 the boiler with a milk/chocolate mixture

¥

P it s &7 N o desin the boller, i must be ul
AF (tioRmpey() 68 eBoled()) [(enenply) and o biled. Once it
- tuer < dvaimed we sck enply batk to brue

empty = true;
¥

public void boil() {
if (!isEmpty() && !isBoiled()) {
et inasrng B To boil the mixture, the bailer
boiled o true; has £o be full and not alveady
boiled. Onee it's bailed we st

y the boiled flag to true
public boolean isEmpty() {

return empty;
¥

public boolean isBoiled() {
return boiled;
)

OEBPS/Image00044.jpg
FlyBehavior is an interface
that all Flying elasses implement.

Same thing here for the quack
behavior; we have an intevtace
that just includes a quack()

Allnew Plying classes just need method thet needs b be
f 4o implement. the SiyD) method P ""‘:“‘/
<<interface>> <<interface>>
FlyBehavior QuackBehavior
FlyWithWings FlyNoWay Quack Squeak MuteQuack
m0(m0(
a0 {) { quack({
I implements duck fl - i
implements duck fying /1 do nothing - can't iyl Irimplements duck quacking ||/ rubber duckie squeak I1do nothing - can't quack!
)) }

5%

Quacks th
t
really quacg.

Quatks that saueak

Quatks that make
o sound at all

OEBPS/Image00263.jpg
We dorit know what happened! The new Singleton
code was running fine. The orly thing we can think
of is that we just added some optimizations to
the Chocolate Boiler Controller that makes use of
multiple threads.

OEBPS/Image00045.jpg
The behavior variables are
declared as the behavior

INTERFACE tyre.

S

These methods veplace

0 and auackl). ik
displey()

Instance variables hold a veferente
1o a specific behavior at vuntime.

FlyBehavior flyBehavior
QuackBehavior quackBehavior

performQuack()

performFly()
1/ OTHER duck-like methods.

OEBPS/Image00262.jpg
The uniquelnstance
¢lass variable holds our
one and only instance

of Singleton.

static uniquelnstance

I Other useful Singleton data...

static getinstance()

11 Other useful Singleton methods.

R__ A tlass implementing the Singleton
gathrn s more than a Singleton; it
is a geneval purpose elass with its
"% I L of data and methods:

OEBPS/Image00042.jpg
T don't see why you
have to use an inferface for
FlyBehavior. You can do the
same thing with an abstract
superclass. Isni't the whole point
1o use polymorphism?

OEBPS/Image00265.jpg
ChocolateBoiler boiler =
ChocolateBoiler.getInstance () ;

boiler.£ill() ;

boiler.boil() ;

boiler.drain() ;

OEBPS/Image00043.jpg
be gy 2t sperg
e peseact ., Gedd

N

Animal
makeSound()

pete
G entations

Dog cat
makeSound() { makeSound() {
bark();) meow();
)
berk() { bark sound } meow() { // meow sound }

OEBPS/Image00264.jpg

OEBPS/Image00040.jpg
The Dutk elass is still the

perlas of all dutks bk ve
g ovt e {ly and w2tk
i and putking them irto it
T dass strocbur orcus behavior
another dlas strctire Now fying and auatking each mplementations are
ot i oun et of dases o b e e

A\

Pull out what varies

Ouck ces®
A of®

Packing e

Duck Behaviors

OEBPS/Image00041.jpg
<<interface>>
FlyBehavior

FlyWithWings

FlyNoWay

L
1limplements duck iing

i

iy {
I/ do nothing - can'tly!

i

OEBPS/Image00266.jpg
public static ChocolateBoiler
getInstance() {

if (uniqueInstance == null) {

uniqueInstance =
new ChocolateBoiler () ;

return uniqueInstance;

Thread

One

Thread
Two

Value of
unjquelnstance

OEBPS/Image00257.jpg
's vename .
Let's e vave 2 R

ingleton.
Ol o Snde e o
kA,
public class Singleton { o e Snae™
P

private static Singleton uniqueInstance;

// other useful instance variables here
Our consbruttor is

< ste; ol
declaved private; only
Ghgleton can nstantiate

this elass!

private Singleton() {}

ic static Singleton getInstance
if (uniqueInstance == null) {
uniqueInstance = new Singleton();

The getinstance) method
gves us a vay o instantiate
the ¢lass and also 4o veturn
an instance of it.

}
return uniqueInstance;

// other useful methods here (—\
] OF tourse, Sing|
> Singleton is 3 norma]
1355 it has ofher wseful efonge

vaviables and methods

OEBPS/Image00259.jpg

OEBPS/Image00258.jpg
€ uniquelnstance is null, then Ve
wigehtince vlds o ONE. (0¥ rcted the mitrce Y-
instance; vemember, it 1s 3 and, i it docont exist v
statie variable instantiate Singleton through

its private onsbructor and
assign it to uniquelnstance. Note
that if we never need the

£ {(uniquelnstanceim aull) { instance, it never gels created
uniqueInstance = new Singleton(); this s lazy instantiation.
}
. £ uniquelnstance wasn't null
coturn uniqueTnstance; & thn & aps pevosl cresed
L We just £all throush to the
By the time ve hit this code, ve vebiurn statement.

have an instance and we veburn it

OEBPS/Image00038.jpg
Wouldrit it be dreamy

if there were away to build software
50 that when we need to change it, we
could do so with the least possible
impact on the existing code? We could
spend less time reworking code and
more making the program do cooler
things..

OEBPS/Image00236.jpg
R AARS Lo OECRERIRAR ("Hiaea 7 3.

\\ The ovderPizza() method is called
on the nyPizzaStore instance

OEBPS/Image00039.jpg

OEBPS/Image00235.jpg
new NYPizzaStore():

N Cooslls s
of NYPizzsShore, — 5

PERERR oSS HyRAREANTOTE:

reatepizza(cneese’)

OEBPS/Image00037.jpg
That is, like, the dumbest idea
You've come up with. Can you say,
“duplicate code"? If you thought having
o override a few methods was bad, how
are you gonna feel when you need fo make
alittle change to the flying behavior...in all
48 of the flying Duck subclasses?!

OEBPS/Image00035.jpg
swim()

display()

1/ OTHER duck-fike methods.

RedheadDuck

bberDuck

DecoyDuck

display()
fiy)
quack()

display()
quack()

display()

OEBPS/Image00228.jpg
public abstract class Pizza {
String name; Eath pizza holds a set of ingredients

that are used in its preparation.

Sauce sauce;
Veggies veggies(];
Cheese cheese;
Pepperoni pepperoni ;
Clams clam;

We've now made the prepare method abstract
This is where we are going to collect the
ingredients needed for the pizza, which of
abstract void prepare() ; course will tome From the ingredient factory

void bake() {
System.out.println("Bake for 25 minutes at 350");

void cut() {
System.out.println("Cutting the pizza into diagonal slices");

void box() {
System.out.println("Place pizza in official PizzaStore box");

4

void setName (String name) 5 th
this.name = name; TN gur other methods vemain he same, Wt

, . - e peegave method

e exception

String getName() {
return name;

public String toString() {
// code to print pizza here

OEBPS/Image00036.jpg
T could take the fly() out of the Duck
superclass, and make a Flyable() inferface
with a fly() method. That way, only the ducks
that are supposed o fly will implement that
interface and have a fly() method... and T might
as well make a Quackable, t0o, since not all
ducks can quack.

a

OEBPS/Image00227.jpg
EggPlant

ThickCrustDough

BlackOlives

PlumTomatoSauce

FrozenClam

MozzarellaCheese

OEBPS/Image00033.jpg
method...

I could always just
override the fly() method
in rubber duck, the way

T am with the quack()

RubberDuck
quack() { // squeak}
display() {1 rubber duck }

fiy) {
Il override to do nothing

}

But then what happens when
we add wooden decoy ducks
to the program? They aren't
supposed to fly or quack..

DecoyDuck

quack() {
I override to do nothing

display() { I decoy duck}

Bere's ancther tlass in the
hv‘;‘arth\j. notice that like
RubberDuck, it doesn't £y,
bt it also doesn't quack

fiy0{
Il override to do nothing

OEBPS/Image00230.jpg
= lngredientFactory.createSauce() ;

sauce =
el
iz:a f:fz:ﬂuéhe This is oue ingredient factory. The treateSavee) method Ect:m {:-e saute
7 t .
TP it cre s DT W Bl

variable 4o vef
T hdoyswed nlnsit BRI

the specific
used in Q,’x :: is an ingredient. factory.

OEBPS/Image00034.jpg

OEBPS/Image00229.jpg
public class CheesePizza extends Pizza {

8
To make 3 pizza now
» ‘ wed 3 factory to provide
PizzalngredientFactory ingredientFactory; ks ey o
¢ ingedien

Pizza tlass gets Eachﬁ
public CheesePizza(PizzalngredientFactory ingredientFactory) { passed into it tonstruttor,

this.ingredientFactory = ingredientFactory; and s stoved in an
) ‘nskance vaviable:

void prepare()
System.out.println("Preparing " + name) ;
dough = ingredientFactory.createDough(); & Heve's wheve the magic happens!
sauce = ingredientFactory.createSauce () ;

cheese = ingredientFactory.createCheese () ;

The preparel) method steps through ereating
3 theese pizza, and each time it needs an
inavedient, it asks the factory to produce it

OEBPS/Image00031.jpg
Duck
quack()
swim()
display()
fiy()

1/ OTHER duck-like methods...

MallardDuck RedheadDuck RubberDuck
display() { display() { quack() {
1ooks like a mallard Ilooks like a redhead Il overridden to Squeak
) })
display() {
I'ooks like & rubberduck
}

Quiber dutks dort

qpatk, 50

overvidden

ak0 s
Lo “Soueal

OEBPS/Image00232.jpg
public class NYPizzaStore extends PizzaStore { The NY Store ;"’:YO;GLW1
edi
a NY 722 M0 ovodute the
protected Pizza createPizza(String item) { / This will be used K’NYQ syle P22
Pizza pizza = null; inoyedients for 3

PizzalngredientFactory ingredientFactory =
new NYPizzaIngredientFactory() ;

if @ % i We now pass cath pizza the
= ettspaiatioRstsesy £ VAR Crchory that shoud be wsed to

produce its ingredierts.

pizza = new CheesePizza (ingredientFactory) ;
pizza.setName("New York Style Cheese Pizza"); /K
} else if (item.equals("veggie")) { Look batk one page and make
aure You understand how the
pizza = new VeggiePizza (ingredientFactory) ; pizza and the fattory work
pizza.setName ("New York Style Veggie Pizza"); fogether!

} else if (item.equals("clam")) {

pizza = new ClamPizza(ingredientFactory) ; S
pizza.setName("New York Style Clam Pizza'

For eath type of Pizza, ve

} else if (item.equals("pepperoni)) { instantiate a new Pizza and
gve it the fackory it needs 4o
pizza = new PepperoniPizza(ingredientFactory) ; get its ingredients

pizza.setName("New York Style Pepperoni Pizza");

3

return pizza;

OEBPS/Image00032.jpg

OEBPS/Image00231.jpg
ClamPizza also stashes
public class ClamPizza extends Pizza { . ingredient factory.

PizzalngredientFactory ingredientFactory;

public ClamPizza(PizzaIngredientFactory ingredientFactory) {
this.ingredientFactory = ingredientFactory;

void prepare() {
System.out.println("Preparing " + name) ;
dough = ingredientFactory.createDough () ;

sauce = ingredientFactory.createSauce () ; < T zak: & ﬁ"':j:h‘" ::Z e
method calleets the vi
cheese = ingredientFactory.createCheese () ; Q m;“:m 5 Beom its local factory

clam = ingredientFactory.createClam() ;

}
| I
I£ ¥ 2 New York fattory,

Lhe lams vill be fresh; if
Chitago, theyll be Frozen

OEBPS/Image00029.jpg
Joe, I'm at the shareholder's
meeting. They just gave a demo and
there were rubber duckies flying around
the screen. Was this your idea of a joke?
You might want to spend some time on
Monster.com...

OEBPS/Image00234.jpg
T'm stickin' with
Chicago.

OEBPS/Image00030.jpg

OEBPS/Image00233.jpg
pgﬁ\ms the
nkectate:

ObjectvilleAbst:

lle Abstract Ingrediont ac
Provides :
\..\?\mcw\'ﬁ*«‘“‘

Sor product?

New York
Chicago

Pizza made wr\’.\\
\ “‘Bnd\ch{} Y"
"22a5106Y o o

OEBPS/Image00027.jpg

OEBPS/Image00028.jpg
quack()

swim()
display() ak Joe added.
N w\at\it;a_ |y e
R\ e 8 11 OTHER duck ke methods...
MallardDuck RedheadDuck Other Dutk B1Ees”
display() { display() {

I1ooks like a mallard }

Ilooks like a redhead)

OEBPS/Image00246.jpg
ave almost exactly like the New

Both of these stores e teert inds of pozas

O Yorkstore.. they ot

public class ChicagoPizzaStore extends PizzaStore {
protected Pizza createPizza(String item) {

if (item.equals("cheese")) { For the Chitago 7222
return new ChicagoStyleCheesePizza() ; skove, we)..s{ have

} else if (item.equals("veggie")) { £ ke sure ve treate
return new ChicagoStyleVeggiePizza(); .~ (hiage stil¢ yiz2ds

} else if (item.equals("clam")) { /

return new ChicagoStyleClamPizza () ;
} else if (item.equals("pepperoni™) {

return new ChicagoStylePepperoniPizza() ;
} else return null;

public class CaliforniaPizzaStore extends PizzaStore {
protected Pizza createPizza(String item) {

if (item.equals('cheese")) { and for the California
return new CaliforniaStyleCheesePizza(); ™~ .3 store, W& ereate

} else if (item.equals("veggie™) { o Calbornia style P22
return new CaliforniaStyleVeggiePizza();

} else if (item.equals("clam")) { /

return new CaliforniaStyleClamPizza() ;
} else if (item.equals("pepperoni™)) {

return new CaliforniaStylePepperoniPizza () ;
} else return null;

OEBPS/Image00024.jpg
Now that we'e living in
Objectville, we've just got to get
into Design Patterns... everyone
is doing them. Soon we'll be the hit
of Jim and Betty's Wednesday night
patterns groupl

OEBPS/Image00239.jpg
The AbstractFactory defines the

The Client is written against the
abstract factory and then tomposed
at vuntime vith an actual factory.

intecface that all Concrete factories
must, implement, which consists of aset
of methods for produting produts.

J

<interface>>

AbstractFactory
CreateProduct()
CreateProdcis)

ConcreteFactory

ConcreteFactory1

CrealeProductA(
CreateProducts()

CreateProducth()
CreateProducts()

C The contvete fattories implement \
the diffevent product families. To
eveate a produtt, the client uses
one of these factories, so it never
has 4o instantiate a product object.

This is the product

Lamily. Each contrete
fattory LSy;E\‘oduu an
entive set of products.

<<interface>>
AbstractProductA

<<interface>>
AbstractProductB.

ProductB1

— Products? '

OEBPS/Image00025.jpg
All ducks auack and svim. The

superclas bakes care of the <> | 20
implementation code. swim)

display()

: The display() method i
I OTHER duck-like methods.

abstract, since all duek

— bbpes look different
Eath dutk sRYFE
is vesporsio © MallardD:
Sor im \ementing uck Redhead|
,:; :»,Y,, dispayd —> | display(){ readDuck Loks of other types of dutks

Dotk tlass

disple
o for hou e | Vi o amate) il { et from the

Teks on the stree™ I1loks ke a redhead)

OEBPS/Image00238.jpg
Trim £

void prepare() {

dough = factory.createDough ()
Marinara

sauce =
uce = factory.createSauce () ;

cheese =
ese = factory.createCheese () ;
™ Reg

gano

For Ethan's pizza the New York
inaredient fattory s used, and s0
we aet the NY ingedients

OEBPS/Image00022.jpg
Valentin Crettaz

Jef Cumps

Barney Mavispini

Fearless leader of
the HFDP Extreme

Review Team

Jason Menard
Johamnes dedong)

Dirk Schretkmann

OEBPS/Image00241.jpg
I noticed that each method in the
Abstract Factory actually looks like

a Factory Method (createDough(),
createSauce(), etc.). Each method is
declared abstract and the subclasses
override it fo create some object. Isn't
that Factory Method?

OEBPS/Image00023.jpg

OEBPS/Image00240.jpg
The abstract

PizzalngredientFattory is the
intevfate that defines how to

make a family of velated products -

everything we need to make 3 pizza. Z

<cinterface>>
PizzaingredientFactory

The clients of the Abstract

Fattory ave the two
instances of our PizzaStore,

NYPizzaStore and
ChicagoStylePizzaStore.

NYPizzaStore
createPzza)
<cinterface>>
Dough

ThinCrustough

> ThickCrustDough l

<interface>>
Sauce

MarinaraSauce

NYPizzalngredientFactory

ChicagoPizzaingredientFactory

createDough)
createSauce()
createCheese()
createVeggis()
createPepperoni)
createClam()

N=

The job of the

tontrete pizza

Lattories is to make
222 ingredients. Eah

Ean{m—y knows how

4o ereate the vight
objetts for their vegion

createDough)
createSaucel)

createChesse()
createVegges)

createClam()

‘createPepperoni)

|——»[PlumTomatoSauce l
<cinterface>>
Cheese
ReggianoCheese

> Wozzaria Checse '

<cintorface>>
Clams

FreshClams

> Frozenciams_ '

Eath factory produces a diffevent

implementation for the family of products

i

OEBPS/Image00020.jpg

OEBPS/Image00243.jpg
<<interface>>
PizzalngredientFactory
Provides an sbsteact 2| cssebo
inbevface for ereating @ — cresteSauce()
Lamily of produtts G5 | et
amily of pro®— gD
createPepperoni)
createClam()

New York 7

T btlass implements th

PizzalvaredientFactory
Roskract Factory
Lamilies of producd

own vegjonal suppliers.

betause we need to ex

4s (the ingredients
¢ inapedients using

is implemented as an

eate
). Bach

Eath tontrete subtlass ereates

[a family of products.

NYPizalngredientFactory

ChicagoPizzaingredientFactory.

Chicago

createDough)
createSauce()
createCheese()
createVeggies()
createPepperoni)
createCiam)

for instance, the subelass
detides the type of dough-.

\

‘ThinCrustDough l ThickCrustDough

e

| MarinaraSauce PlumTomatoSauce |

createDough)
createSauce()
createChessel)
createVeggies()
crestePepperoni)
creteCiam()

Methods to ereate

products in an Abstract
Fattory are
implemented vith a

often

Factory Method...

or the 4ype of clams.

N\

[FreshCiams '

Each ingredient
vepresents 3

product that is
produted by a

Factory Method

in the Abstract
Fattory

ReggianoCheese '

MozzarellaCheese '

OEBPS/Image00021.jpg
2 simplen
‘t‘:a;\?\r.d L UML 2

Director

getMovies

getOscars()
getKevinBaconDegrees()

OEBPS/Image00242.jpg
PizzaShore is implemented as 3 Fattory

Peovides an dbstract \[\ Mekhod beeause we want to be able to

interface for ereate 3 produtt that varies by vegion.

ereating one product With the Factory Method, each vegion
FL aets its own contrete factory that

nows how 4o make pizzas that ave
appropriate for the area

Each subelass decides whith
contreke tlass o instantiate: o

New York Stove /3

. Chicago Store
The Fattory Method The Factory Method
This is the product of the
The NyPizzaStore subelass oy PrzzaSiaee. Clioks anly
! : vely on this abstract The ChieagoPizzaStore
nstantiates NY style pizzas. Y I subelass inihn{iabs only
\L Chicago shyle piezas.
i
——————] Subtlasses are ChicagoStyleCheesePizzal
etonboted by the e
NYStyleClamPizza Fattory Methods.

T e R

The eveatePizza() method is parameterized by pizza
ype, so we ¢an veturn many £ypes of pizza produts.

Chicago

OEBPS/Image00018.jpg
zles

OEBPS/Image00245.gif
IEEEEEEEEEE NS
iINENEEEEEEEE
L iEEEEEEEn

|

OEBPS/Image00019.jpg

OEBPS/Image00244.jpg
00 Peintiples

Ereapslate what vavies

Favr tamsion 7 aerbante:

Program 2 kertates 1ot
Foglenentations
crive for loote, Loupled desar®
pebween pb)ub "tnat inkerdé!
We
(s o b L estenson e have a new pri
e for i35 5:4:; Ny C!’P*'::gy\c that
al ing
stract whenever ,,oglme

00 Patterrs \ Both of these nev
o (; R e . patterns entapsulate
AT . - object ereation
w{ h\zs*xar)c Fad _ Provides and lead to move
PRE R for treatnd Lamiies of decoupled flexible
(L ted o dependen Stk kot desiops

. a e
14 specibind e Lontreke 035
-
Mekhod Defimes a0
b

OEBPS/Image00026.jpg
T just need to add a
fly() method in the Duck class
and then all the ducks will inherit
it. Now's my time to really show my

true OO genius.

OEBPS/Image00237.jpg
i nd

dient fatkory is chosen @
Thsiﬂl:g:h;hm the PizzaStore and h:em

o atkor of eath 1izz2

passed inko the eorstr
Pizza pizza = new CheesePizza(nyIngredientFactory) ; nolds
N\ Creates a instanee
of Pizza that is ¢
Ctomposed with the £
New York ingrediont 4 Toreder®
fattory

Pizza

prepare ()

OEBPS/Image00214.jpg
public class DepencentPizzaStore {

public Pizza createPizza(String style, String type) {
Pizza pizza = null;
if (style.equals("NY") {
if (type.equals("cheese")) {
pizza = new NYStyleCheesePizza() ;

} else if (type.equals('veggie")) { Handles all the
pizza = new NYStyleVeggiePizzal() ; / NY style pizzas
} else if (type.equals("clam")) {

pizza = new NYStyleClamPizza() ;
} else if (type.equals("pepperoni")) {
pizza = new NYStylePepperoniPizza() ;
}
} else if (style.equals("Chicago")) {
if (type.equals("cheese")) {

pizza = new ChicagoStyleCheesePizza() ; Handles all the
} else if (type.equals("veggie™)) { Chicago style pizz3s
pizza = new ChicagoStyleVeggiePizza() ; /

} else if (type.equals("clam")) {
pizza = new ChicagoStyleClamPizza () ;
} else if (type.equals("pepperoni")) {
pizza = new ChicagoStylePepperoniPizza() ;
1
} else {
System.out.println("Error: invalid type of pizza");
return null;
1
pizza.prepare() ;
pizza.bake () ;
pizza.cut() ;
pizza.box() ;
return pizza;

You can write your it Californa &2

answevs here number number

OEBPS/Image00017.jpg

OEBPS/Image00213.jpg
/—‘7

i tans
tor is 8 tlass that con
T O fabons for o e
mekhods to mamEu\a{.e \mdu&:,
extept for the atkory method:

[

Product

Creator
implement p——
o =
elasses that vse the produtts
can veker to the intecface,
ot the contreke tlass

\} ConcreteProduct ri

The abstract factoryMethodO)
is what all Creator subelasses
sk implement.

Concrete

ator

[—\The ContreteCreator

factoryMethod()

s /

The ContreteCreator s vesponsible for

implements the
faetoryMethod(), which is
the method that actually
produtes products.

treating one or more tontrete products. [t
i the only elass that has the kE::I:dgelF

how to eveate these products.

OEBPS/Image00216.jpg
° e
b PrasaShore naw deperds orly
zatS” o Pizza, the absbrack lass

Piz2a is an abstract i

elass...an abstrasd o
The tontrete Fizz3 elasses depend on

LN e Preaa abskratkion oo, betause

fhey implement the Pizza intevface
“nterface’

(cemember, we've using "in

Sebraction
=
(\ in the general sense) in the Pizza
abstract elass:
e
q 3 a“ : %&5
e B
@ @
R

<4

OEBPS/Image00455.jpg
© O © Head First Design Patterns

Bere's the messane that gets
Paimked in the Frame because ve'e
Focked into the paint() method

1 rule!!

OEBPS/Image00215.jpg
This version ot the
PizzaStove depends on all
those piz2a objects, because

i ¥s ereating them directly.
¢ implementat,;
I ion of Because any changes to the concrete
s chinggs, ey g F e) mplementstions of izeas affects the
modify in Pressinl, PiazaStore, ve say that the PizzaStore

° [‘“defcndx on” the pizza implementations.
U

Every new kind of pizza
e o4 trcatis snabber

devendenty For PizzaStore.

OEBPS/Image00456.jpg
public ol The init hook allows the applet to do whatever
Sosi bR e sussines fewiet L/ ot b wikidhze Ahe applet the firs time

String message;

public void init() {
o ped . NRmp— vepaink() is concreke method in the Aprlet
repaint () ; tlass that leks upper—level components know

¥ {he applet needs to be vedrawn.

public void start() £

he start hook

phivuri I i e
repaint () ; i) pplet is just about

) e displayed on the web page

public void stop() { L £ the user goes to amﬁlhzv yiygi, {hed
message = "Oh, _—— o hook is wsed, and the aplt ean do
Sosesse = TN, mowiziabelag seopped.ts vhalawi ices b do o sop s attions

}

public void destroy() (K And the destroy hook is used when the applet

i oot e B is g0ing 4o be destroyed, say, when the browser

, pane is elosed. We could try to display
something here, but what would be the point?

public void paint(Graphics g) {
g.drawString (message, 5, 15);
)
]
IR‘ Well,looky hevel Our old Friend the
painkD) method] Applet also makes
use of Lhis method as a hook.

OEBPS/Image00013.jpg

OEBPS/Image00449.jpg
Pab10 caass TnokiortTasthrive 1

public static void main(String[] args) {
Duck([] ducks = {
new Duck ("Daffy", 8), £ We need an 23] o 5
new Duck ("Dewey", 2) , \s; Ehese look 80°
new Duck ("Howazd", 7), ek
new Duck ("Louie", 2),
new Duck ("Donald", 10),
new Duck ("Huey", 2)
)i

Notice that we) .
call Aveays’ static System.out printin("Before sorting:"); e Letsprint them ;eé
method sort, and display (ducks) ; Lheiv names and weig)

pass it our Ducks.

St

Arrays.sort (ducks) ; [¥s sort. time

System.out.println("\nAfter sorting:
display (ducks) ;

Leb's prink, them (agin) 4o set
Eheiv names and weights

public static void display(Duck[] ducks) {
for (Duck d : ducks) {
System.out.println(d) ;

OEBPS/Image00014.jpg
T wonder how T
can trick my brain
into remembering
this stuff...

OEBPS/Image00450.jpg
%java DuckSortTestDrive
Before sorting:

Daffy weighs 8

Dewey weighs 2 The unsorted Dutks
Howard weighs 7

Louie weighs 2

Donald weighs 10

Huey weighs 2

After sorting:
Dewey weighs 2 The sorted Ducks
Louie weighs 2

Huey weighs 2

Howard weighs 7

Daffy weighs 8

Donald weighs 10

s

OEBPS/Image00011.jpg
It really sucks o be
an abstract method.
You dor't have @

OEBPS/Image00208.jpg
%java PizzaTestDrive

Preparing NY Style Sauce and Cheese Pizza
Tossing dough. ..
Adding sauce.
Adding toppings:
Grated Reggiano cheese
Bake for 25 minutes at 350
Cutting the pizza into diagonal slices
Place pizza in official PizzaStore box
Ethan ordered a NY Style Sauce and Cheese Pizza

Preparing Chicago Style Deep Dish Cheese Pizza
Tossing dough. ..
Adding sauce.
Adding toppings:

Shredded Mozzarella Cheese
Bake for 25 minutes at 350
Cutting the pizza into square slices
Place pizza in official PizzaStore box

Joel ordered a Chicago Style Deep Dish Cheese Pizza

Both pizzas ack prepared,
Lhe opyimgs added, and
‘e pizzas baked, et and
boxed. Our superclass never
had to know the details,
he subtlass handled all that
Just by instantiating the
vight pizza.

OEBPS/Image00447.jpg

OEBPS/Image00012.jpg
Does if make sense to
say Tub 15-A Bathroom>
Bathroom I5-A Tub? Or is it
a HAS-A relationship?

OEBPS/Image00207.jpg
ereate O

First we A
public class PizzaTestDrive { / d‘um,‘{ skores
public static void main(String[] args) {
PizzaStore nyStore = new NYPizzaStore () ; Then use one one store
PizzaStore chicagoStore = new ChicagoPizzaStore() ; o make Ethan's order.

Pizza pizza = nyStore.orderPizza("cheese") ;

System.out.println("Ethan ordered a " + pizza.getName() + "\n");

pizza = chicagoStore.orderPizza ("cheese") ;

System.out.println("Joel ordered a " + pizza.getName() + "\n");

And the other for Joel's.

OEBPS/Image00448.jpg
Remember, we need 4o implement. the Comparable
inberbace since we aven't veally subtlassing

public class Duck implements Comparable {
String name;
LN Oue Ducks have a name and 3 weight;

int weight;

public Duck (String name, int weight) {

this.nas

= name;

this.weight = weight;

Weee keepin ik simple; ll Dutks do is
public String toString() { & peint their name and weight!
return name + " weighs " + weight;

/\ Okay, heve's what sort needs.

public int compareTo(Object object) {

u i IS Duck
Duck otherbuck = (Duck)object; compareTol) takes another Duck to compare THIS Duck to.

if (this.weight < otherDuck.weight) {

TotiEn T Heve's where ve specify how Dutks
} else if (this.weight == otherDuck.weight) { £ tompare. '4 TH'SPtDuLZ WQISMX less
4han otherDuck then we vetuen
1} if they are equal, ve vebuen O;
and i THIS Duck weighs more, we

return 1;
veturn |

return 0;
} else { // this.weight > otherDuck.weight

OEBPS/Image00009.jpg
Great. Orly
654 more dull,
dry, boring pages.

OEBPS/Image00210.jpg
"\ Fackories produce products

izzaStore, our

I)
product is a Pizza-

These are the tonerete
products — all the pizzas that
are produted by our stores. NYStyleCheesePizza '

<,

Chiugosiylech!enPizn.

OEBPS/Image00453.jpg

OEBPS/Image00010.jpg
needs fo call 3 | vemote
net»od on the

x:wev

sevite

doCale()

MWW

OEBPS/Image00209.jpg
This is our abst,
o /\ 0fken the treator contains code
\/\ that depends on an abstract product,

treator elass. [f def;
- etines
[pumasore | whith is produted by a subelass. The
createPizza()
ocerpizzs)

an abstract facbry
eveator never veally knows which
N

method that the
contrete product was produced

\/-gnu cath franthise gets its
own subtlass of PizzaStare,
it's free to ereate its own

style of pizza by implementing

eveatePizzal)

subtlasses impl
Plement o
Produce products.

ChicagoPizzaStore.

NYPizzaStore

The createpizza)
€ ere,
s oup &Z‘é’jm{) methog ;\ ﬁ
o
Produces pyort <thod. ¢ Classes that produce
codutts are called

OEBPS/Image00454.jpg
We've extending JFrame, whith contains 3

R ethod updatel) hat controls he algorithm
f o u\?da{?mg ‘the streen. We tan hook into that
gt by overriding th paint() hook method
public class MyFrame extends JFrame {

(,_-—/——\ Don't look behind the
public MyFrame (String title) (curkainl Just some
super (title) ; initialization heve
this.setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;

this.setSize (300,300) ;
this.setVisible (true) ;

£ JFeane's update dlgorithn ealls paint0. By

jing.-. it's @ ho
public void paint(Graphics graphics) { default, paint() does rothing b ‘f ”{M
super.paint (graphics) We've overviding paint(), and zh'“5 o
message in the windo
String msg = "I rule!!"; JFrame to draw a message

graphics.drawString (msg, 100, 100) ;

public static void main(Stringl] args) {
MyFrame myFrame = new MyFrame ("Head First Design Patterns") ;
3

OEBPS/Image00007.jpg

OEBPS/Image00212.jpg
PizaStore

createPizzal)

orderPizzal)

Al

NYPizzaStore

ChicagoPizzaStore

createPizzal)

\

createPizzal)

NYStyleCheesePizza . chicagostylecnemmml
NYStylePepperoniPizza ChicagoStylePepperoniPizza
- NYStyleClamPizza l . ChicagoStyleClamPizza
NYStyleVeggiePizza ChicagoStyleVeggiePizza

OEBPS/Image00451.jpg
for (int i=low; i<high; i++)({

compareTo ()
. swap()

The sort() method tontrols
the algorsthm no clas ean
changg i sork() counts
Arrays.sort (ducks) ; on a Comparable class to
provide the inplementation
P esnpave ol

OEBPS/Image00008.jpg

OEBPS/Image00211.jpg
Notite how these

¢lass hievarchies are
parallel: both have
abstract elasses that
are extended by
The Product classes conerete classes, which — The Creator classes
know about speeific
implementations for

NY and Chicago.

createPizzal)
orderPizzal)

NYStleCheesePizzs | ChicagostyleCheesePizza NYPizzaStore ChicagoPizzastore
NYStylePeppero [ChicagoStylePepperoniPizza createPizza) createPizzl)
ﬁ ChicagoStyleClamPizza

"= [ChicagoStyleveggiepizza (7\
ol S
' w?
ﬁs*f"w " FENRE yo
% eV Nk

NYStyleVeggiePizza

OEBPS/Image00452.jpg
ducks[0] . compareTo (ducks[1]) ; ’
7\ H compareTo)
/Y toSting()

First Duck Dutk to tompare it to
No inheritance,

unlike a typical
Lemplate method

OEBPS/Image00015.jpg
Object that
holds state

ONE TO MANY RELATIONSHIP

- >
)

Automatic update/notification

OEBPS/Image00016.jpg

OEBPS/Image00225.jpg
public interface PizzalngredientFactory {

public Dough createDough () ;

public Sauce createSauce();

public Cheese createCheese();
public Veggies[] createVeggies();
public Pepperoni createPepperoni () ;
public Clams createClam();

Lotks of new elasses here,
one per ingredient

OEBPS/Image00224.jpg
Chicago

FrozenClams l
PlumTomatoSauce l ThickCrustDough l
MozzarellaCheese

s Pizzas ave made Lrom the same

New York o
A bl P bas 2 differnt

e components) 2
E implementation of those Lomponen

MarinaraSauce l ThinCrustDough I
Eﬂ e California
Calamari '

VeryThinCrust l
Each family consists of a type of dough, GoatCheese
a type of saue, a type of cheese, and 2

seatood topping (along with a few more we
el e e R

jions. mak cedient families, vith
ot rse e re8e PSR L et

\ementing 3

In
eath vegion impl

OEBPS/Image00466.jpg
public class Menultem {
String name;
String description;
boolean vegetarian;
double price;

public MenuItem(String name,
String description,
boolean vegetarian,
double price)

this.name = name;
this.description = description;
this.vegetarian = vegetarian;
this.price = price;

}

public String getName() {
return name;

¥

public String getDescription() {
return description;

¥

public double getPrice() {
return price;

1

public boolean isVegetarian() {
return vegetarian;

}

N A Mendtem o

3 f1ag to ind 3 deseription,
o e

Consbructon 4 it all these values int 4he

initialize the Menften,

These gebher methods let you access
Lhe Fields of the menw item

OEBPS/Image00226.jpg
The NY ingredient factor
implements the intecface for all
ingredient fattories

Z

public class NYPizzaIngredientFactory implements PizzaIngredientFactory {

public Dough createDough() {

return new ThinCrustDough() ;

jent in the
veate

RK_ For cath mErzd
public Sauce createSauce() { ingredient amily) we &
i New York versior

return new MarinaraSauce() ;

public Cheese createCheese() {
return new ReggianoCheese () ;

public Veggies[] createVeggies() (

Veggies veggies[] = { new Garlic() i new RedP
, mew Onion(), new Mush:
return veggies; oo el

¥ For veagjes, ve vedurn an array of
Veagies. freve we've hardtoded the
ubl. epperoni . veagjes. We eould make this more
¥ “: zoni createPepperoni () { sophisticated, but that doesn't veally
retumn new Slicedsepperont (); add anything o learning the factory
! patbern so vell keep it simple

public Clams createClam() {

return new FreshClams() ;
The best. sliced peppevont

! This is shaved between New
York and Chicago. Make sure
New York i on the coast; it you use i on the next page
aeks Dresh clams. Chicago has when yo gk o tnplenrt
X o for Frozen the Chicago fatkory yoursel

OEBPS/Image00002.jpg
OREILLY®

OEBPS/Image00217.jpg
Okay, T get the
dependency part, but why
is it called dependency
inversion?

OEBPS/Image00460.jpg
prepareRecipe()
boilWater()
pourinCup()
brew()
addCondiments{()

CaffeineBeverage

Coffee

Tea

brew()
addCondiments()

brew()
addCondiments()

OEBPS/Image00003.jpg

OEBPS/Image00461.jpg
Pattern Description

] Encapsulate interchangable
Template Method behaviors and use delegation to
decide which behavior o use.

Subelasses decide how to

Strategy implement steps in an algorithm.

Subelasses decide which
concrete classes to create.

Tactory Method

OEBPS/Image00219.jpg
Well, a CheesePizza and a
VeggiePizza and ClamPizza are
all just Pizzas, so they should

share a Pizza interface.

OEBPS/Image00458.gif
5

OEBPS/Image00001.jpg
oRELL
Head First

Design Patterns:

A Brain-Friendly Guide

Learn why everything
your friends know about
Fagctory pattern is

probably @

Avoid those |
embarrassing
coupling mistakes |

Load the patterns
that matter straight

-«" /; } mmya?im

See why Jim's

~" | love life improved
)| when he cut down

his inheritance

B S
Discover the secrets
of the Patterns Guru

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Eric Freeman & Elisabeth Robson
with Kathy Sierra & Bert Bates

OEBPS/Image00218.jpg

OEBPS/Image00459.jpg
00 Peintiples
sl
Favor tampositon inheritante

Progeam b wkerkates, not
apiementatir

v For \oosely Copled desar®
“pebween oR3eEE gt inkeratt

Classes shovld e ofen for extension

ot losed for modifieatio

Degend o Jestractions Do ot Oue ewest 7Y iqle vem™

Do om el 05 o that YOO pertlasses
show $© \e

‘ave vunnid
hem ea YOU© subtlasses

e e recdel
Yie they do Wolywood

ony talk b2 1 Seiends

And our newest
paken leks classes
implementing an

\ a!gm{hm defer some
g e b subelasses.

OEBPS/Image00221.jpg
But wait, aren't these
guidelines impossible to
follow? If I follow these, Tl never
be able to write a single program!

OEBPS/Image00464.jpg

OEBPS/Image00220.jpg
Since I now have a Pizza
abstraction, T can design my

Pizza Store and not worry about
the concrete pizza classes.

OEBPS/Image00465.jpg

OEBPS/Image00223.jpg
C/u'cago
p zzaMenu
Cheese Pizza

Plum Tomato Sauce, Mozzarella, Parmesan,
Oregano

Veggie Pizza
‘Plum Tomato Sauce, Mozzarella, Parmesan,

Eggplant, Spinach, Black Olives

clam pizza
"Plum Tomato Sauce, Mozzarella, Parmesan, Clams

Pepperoni Pizza
"Plum Tomato Sauce, Mozzarella, Parmesan,
Egaplant, Spinach, Black Olives, Pepperoni

We've aot the
same product
Lamilies (dough,

saute, cheese,

vengies, mets)
but different
implementations

based on vegj

o

ion.

- |

Vew York
PzzaMenu

Cheese Pizza
Marinara Sauce, Reggiano, Gartic

vesgie izza
rions e regpers M
Clam Pizza
Marinara Sauce, Reggiano, Fresh Clams
Pepperoni Pizza

Marinara Sauce, Reagiano, M
Onions, ed Pespers, Pepmerons >

OEBPS/Image00462.gif
mmu

B
e (e o e s lole]
anpnE o
B ANnnoonnan o
I 0
any anlRnnEnn B
Wil W B
B _BA B n
A 0 AnBnnaGmn [«
B n o
ABNOEENE | AnAnnnEs
A B B O
A M A Annnnn
n A G
B Ll
H 1

OEBPS/Image00222.jpg

OEBPS/Image00463.jpg
You bet I keep
my collections well
encapsulated|

OEBPS/Image00006.jpg
T can't believe they
put that in a design
patterns book!

OEBPS/Image00457.jpg
Fattory Method

Ve

Hey, T heard that!

OEBPS/Image00004.jpg

OEBPS/Image00005.jpg
Kathy Sievva

—
Berk Bates

OEBPS/Image00476.jpg
for (int 1 = 0; 1 < breakfastltems.size(); 1++) {
MenuItem menultem = breakfastItems.get(i);

}
get(1) get(2) get(d) . aetl) helps v ke
get(0) ¥ \' Though eath item
\A\A Arraylist
.

@e00 i
sz | e | | de of Menultems
e i s

OEBPS/Image00474.jpg
Wait, arer't you making
this a lot more complicated
than it needs to be? If we use
for each to loop, then the way
we loop is exactly the same for
both menus.

OEBPS/Image00716.jpg
PPOL10 GlAsS DunElEnLALOn §
public static void main(String[] args) {

DuckSimulator simulator = new DuckSimulator() ;

simulator.simulate() ; Each time ve create 5

Quatkable, we wrap it with
a new decorator

void simulate() {

Quackable mallardDuck = new QuackCounter (new Mallardbuck()) ;
Quackable redheadDuck = new QuackCounter (new RedheadDuck()) ;
Quackable duckCall = new QuackCounter (new DuckCall());
Quackable rubberDuck = new QuackCounter (new RubberDuck()) ;
Quackable gooseDuck = new GooseAdapter (new Goose()) ;

System.out.println("\nDuck Simulator: With Decorator") ;

simulate (mallardbuck) ; The park vanger told us he
simulate (redheadDuck) ; didn't vant o count geese
simulate (duckCall) ; horks, so we don’t decorate it
simulate (rubberDuck) ;

simulate (gooseDuck) ;

VT Her's where we

eking
System.out.println("The ducks quacked " + gather the quacking

QuackCounter.getQuacks() + " timesn); behavior for the
Quatkslagits.

void simulate(Quackable duck) {

the
duck. quack () ; Nothing changes herti
5ol qu] “— b v B,

Quackables

% java DuckSimulator

fere's the N Duck Simulator: With Decorator
] Quack
Quack
Kurak
Remembers Squeak
I e fonk

£ounting 4e€E 4 quacks were counted

%

OEBPS/Image00475.jpg
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();

Bven if we use for ArraylistdMenuTtem> breakfastTtems = pancakeHouseMenu.getMenuItens ()
eath loops to iterate
through the menus,

the Waikress st has
4o know about the MenuTtem(] lunchItems = dinerMenu.getMenuItems () ;

ype of cach menw

DinerMenu dinerMenu = new DinerMenu() ;

for (Menultem menultem : breakfastItems) {
System.out.print (nenulten.getNane () ;
System.out.println("\t\t" + menultem.getPrice());
System.out.println("\t" + menultem.getDescription());

for (MenuItem menultem : lunchItems) {
Systen.out.print (menultem.getName () ;
System.out.println("\t\t" + menultem.getPrice());
System.out.println("\t" + menultem.getDescription()) ;

OEBPS/Image00468.jpg
Here's Lou's implementation ot
£he Pancake House mens

public class Pancakeouseeny { Low's using an rvayList
ArrayList<MenuTten> menuTtens; < Ly e bk wem 1o

public PancakeHouseMenu() {
menuItems = new ArrayList<MenuItem>();

addItem("K&B's Pancake Breakfast",

"Pancakes with scrambled eggs, and toast', Eath menu item is added 4o the
true,

2.99); Qx ArvayList here, in the Canstrechar
a

name,
addItem("Regular Pancake Breakfast Eath Menultem has a nd

iwsa
"Pancakes with fried eggs, sausage", deseription, whether o not it's
false, veaetarian item, and the price
2.99) ;

addItem("Blueberry Pancakes"
"Pancakes made with fresh blueberries",
true,
3.49);

addIten("Waffles",
"Waffles, with your choice of blueberries or strawberries",
true,
3.59) ;
' o add 3 men item, Lou restes anev
ment,
public void addItem(String name, String description, Menultem o\,)a{, passing in zaztazsv
boolean vegetarian, double price) 4 then adds it fo the Preeaylis
' /
MenuTtem menultem = new MenuItem(name, description, vegetarian, price);
menultens.add (menuItem) ;
! o The setMenltens) method vetors be
public ArrayList<MenuItem> getMenuItems() { list. of menw items
return menultems;
’ Low has 3 buneh of other menw code that
depends on the AveayList implementation. He

// other menu methods here dosr't wank +o have b vewrite all that code!

OEBPS/Image00710.jpg
PUL0 oLREN. Sooae |
public void honk() {
System.out.println ("Honk") ;

KT\ A Goose s a honker,
not a quacker.

OEBPS/Image00469.jpg
Hach! An ArrayList... T used
REAL Array so I can control the
maximurn size of my menu.

OEBPS/Image00711.jpg
/\Kmm\m, an Adapter

public class GooseAdapter implements Quackable { implements the faraet interfate
Goose goose; v eh in s case is Quackable

public GooseAdapter (Goose goose) { The constructor takes the
) this.goose = goose; &= apose we are going o adapt

public void quack() { When quack is called, the call is delegated
, goose. honk () 7 s o the goose’s honk() method.

OEBPS/Image00708.jpg
m Heve's our main method
public class DuckSimulator { o aet everything going;
public static void main(String[] args) { i
DuckSimulator simulator = new DuckSimulator(); p—— We ereate 3 simuld
simulator.simulate() ; and then call its

) T dmlabe) method

void simulate() {
Quackable mallardDuck = new MallardDuck () ;
Quackable redheadDuck = new RedheadDuck () ;

Quackable duckCall = new DuckCall() ;
Quackable rubberDuck = new RubberDuck () ;

We need some dutks, s0
here we treate one
cath Quatkable

System.out.println("\nDuck Simulator");

simulate (mallardDuck) ; hen we simulate
simulate (redheadDuck) ;
eath one
simulate (duckCall) ; S
simulate (rubberDuck) ; Heve we overload the simulate

y f mebhod 4o similate just one duck

void simulate(Quackable duck) {

Smskiquack () Heve ve let polymorphism do its masie: no
¥ /t/ matter what kind of Quackable gefs passed in,

+the simulate() method asks it to quack.

OEBPS/Image00467.jpg
T used an ArrayList
so T can easily expand
my menu.

OEBPS/Image00709.jpg
% java DuckSimulator

Duck Simulator
Quack

Quack
Kuak

Squeak

OEBPS/Image00472.jpg
The method looks
he same, but the
eall ave vekvning
diffevent Lypes:

ArraylList<Menultem> breakfastItems = pancakeHouseMenu.getMenuItems () ;

PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu () ;

DinerMenu dinerMenu = new DinerMenu() ;

e e o emuttons) The implementation s shoving
through: breakfast ibems are
in an AvvayList, and lunch
tems are in an Avray.

OEBPS/Image00714.jpg
J. Brewer,
Park Ranger and
Quackologist

OEBPS/Image00473.jpg
Now, we have
& ,,Eume two

for (int i = 0; i < breakfastItems.size(); i++) {

diffevent loops to

MenuItem menuItem = breakfastItems.get(i); step through the two
System.out.print (menultem.getName() + " "); implementations of the
System.out.println (menultem.getPrice() + " ") ; ot
System.out.println(menultem.getDescription()) ; one loop for the

, AreayList

for (int i = 0; i < lunchItems.length; i++) { “ and another for
MenuTten menuItem = lunchItems[i]; Ehe freay
System.out.print (menultem.getName() + " ") ;
System.out.println(menultem.getPrice() + " ");

System.out.println(menulten.getDescription()) ;

OEBPS/Image00715.jpg
ith Adapter, we need to
mter is a decorator As wi ‘

SEE e We've g0k an instanee variable

1 4o hold on to the quacker

we've decorating.
public class QuackCounter implements Quackable {

Quackable duck; And we've counting ALL

static int numberOfQuacks; S~ quacks so we'll use a statie
variable to keep track
public QuackCounter (Quackable duck) {

this.duck = duck; \ We get the refevente £o the
)

Quatkable we've detorating
in the constructor.
public void quack() {

duck.quack () ; S When quackO is ¢alled, we delegate the eall

numberOfQuacks++ ; \fn the Quackable we're decorating.
)

hen we increase fhe rumber of uacks,
public static int getQuacks() {

return numberOfQuacks; \
)

We've adding one other method 4o the
detorator. This static method just
veburns the mumber of quacks That
have oteurred in all Quackables.

OEBPS/Image00470.jpg
And here's Mel's implementation of ‘the Diner ment:
ind her

publ::!:il:szi:::e::m { B e Mel takes a diffevent approach; he's using an Avvay

int numberofItems = 0; <0 he tan control the max size of the menw
MenuItem[] menultems;

public DinerMenu() { Like Low, Mel treates his mena items in the
menultems = new Menultem[MAX TTEMS]; / tonsbrutor, using the addltem() helper method

addItenm("Vegetarian BLT",

"(Fakin') Bacon with lettuce & tomato on whole wheat", true, 2.99);
addItem("BLT",

"Bacon with lettuce & tomato on whole wheat", false, 2.99);
addItem("Soup of the day",

"Soup of the day, with a side of potato salad", false, 3.29);
addIten("Hotdog",

"A hot dog, with saurkraut, relish, onions, topped with cheese",
false, 3.05);

/1 & couple of other Dinex Men: items added here jgiienl) takes il the pirimeters
YT neessary bo breate 3 Mzm!{y:m;nd ’
e on. Ht also chetks 4o make
bt void sattom(itriog o strio dmergtion, | 2T b o e b
boolean vegetarian, double price) A€ W& h3Ven

}

‘ J/
MenuTtem menultem = new Menultem(name, description, vegetarian, price);
if (numberOfItems >= MAX ITEMS) {

System.err.println("Sorry, menu is full! Can’t add item to menu");

} else {
e auTtens [nunberofItens] = menuItem; Mel specifically wants to keep his men
et tang - it under 3 certain size (presumably so he

) doesn't have o vemember {oo many vecipes)

} /\
public MenuItem[] getMenuItems() {
return menultems;

aetMenuftems() veturns the arvay of menu items.

}

Like Low, Mel has a bunch of eode that depends on the implementation
/1 othar manu methods hare & Py bring an Arvay. Re's oo busy cooking bo vewrite all of s

OEBPS/Image00712.jpg
poalLin ‘olass DuckElmiator {
public static void main(String(] args) {

void simulate() {

DuckSimulator simulator = new DuckSimulator();
simulator.simulate() ;

We make 3 Goose that atks
Quackable mallardDuck = new MallardDuck () ; like @ Duck by wrapping the
Quackable redheadbuck = new RedheadDuck () ; Goose in the GoosehdaPEE
Quackable duckCall = new DuckCall() ;

Quackable rubberDuck new RubberDuck () ;
Quackable gooseDuck = new GooseAdapter (new Goose()) ;

System.out.println("\nDuck Simulator: With Goose Adapter"):

simulate (mallardDuck) ; Once the Goose is wrapped, we can treat

simulate (redheadDuck) it just like other duck Quackables.
simulate(duckCall) ; 4/

simulate (rubberDuck) ;
simulate (gooseDuck) ;

void simulate(Quackable duck) {

}

duck. quack () 7

OEBPS/Image00471.jpg
printMens ()

Java-Enabled Waitress:

code-name "Alice"

_ prints every item o the menu

printBreakfastient ()

- prints just preakfast items

| printrunchtent(

)

| - prines Just lunch items

printVegetariantent 0

| prints all vegetarian menu items

| js1temvegetarian (name)

| given tne name of a7 item, returns true

L the items is vegetarians

returns false

otherwise,

R The spee for
he Waitress

OEBPS/Image00713.jpg
% java DuckSimulator

Duck Simulator: With Goose Adapter
Quack
Quack

) Kwak
Theve's the goose/ Now the

Goose tan quack with the
vest of the Dutks > Honk

Squeak

OEBPS/Image00707.jpg
n GaaRs DORECRLL. SRDLELE Mok 1
public void quack() {

System.out printin ("Kak) ; A DuckCall that quacks but
s U Gocon ' sond sk like the real

; Hhing,

public class RubberDuck implements Quackable {
public void quack() {

System.out.println("Squeak") ; A RubberDuck that makes 3
¥ squeak when it quacks.

OEBPS/Image00485.jpg
PORLin iaEs Panareenu 1

static final int MAX ITEMS = 6;
int numberOfItems = 0;
MenuItem[] menuItems;

/1 constructor here

11 soaeen reee Weve no aoing o e the setMemltensl)
/\ method anymore and in fact, we don't vant it
prbtie Mt bent -yttt 0 betave it exposes cur inbernal implementabion

returmmenTtems T

.

public Iterator createIterator() {

return new DinerMenuIterator (menultems) ;

Here's the eveatelterator() method.

¥ It eveates a DinerMenulterator
from the menultems arvay and
// other menu methods here veturns it £o the client.

We've veturning the [berator intecface. The elient
dotsr't need Lo know how the menultems are maintained
in the DinerMenu, nor does it need to know how the
DinerMenulterator is implemented. [£ just needs to use
he itevators 4o step through the ikems in the menu

OEBPS/Image00486.jpg
g

New and
improved with
[terator.
public class Waitress {
PancakeHouseMenu pancakeHouseMenu; In the tonstruttor the Waitress

DinerMenu dinerMenu; [\{lgkcs the two menus.

public Waitress (PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

The printMen)

ethod now treates
public void printMenu() { [Lwo ikerators, one for
Iterator pancakeIterator = pancakeHouseMenu.createIterator () ; €3¢h men
Iterator dinerIterator = dinerMenu.createIterator(); ==

System.out.println ("MENU\n

\nBREAKFAST") ;

rintMenu (pancakelterator) ; i Bl e
s e snoRke teratary = overloaded printMen)
System.out.println ("\nLUNCH") ; L with eath iterator
printMenu (dinerIterator) ;

Test if theve are

private void printMenu(Iterator iterator) { any more ikems. The Jﬂev!o?}ded
while (iterator.hasNext()) { Get the printMenu
MenuTtem menultem = iterator.next() ; T ekitem ::ﬁizdr‘;i %
System.out.print (menultem.getName() + ", "); Sé {im‘ "
System.out.print (menultem.getPrice() + " -- "); thcv”m ka N
System.out.println(menultem.getDescription()) ; and print them
)
)
Use the item to
// other methods here Note that we've down get name, price,
45 one loob. and destription

S vk Hhew

OEBPS/Image00479.jpg
Iterator iterator = lunchMenu.createlterator()

while (iterator.hasNext()) {
Menultem menultem = iterator.next();

Wow, this tode /J
is ;;L_Hj {_the /\ next()
same as the /

breakkastMens
tode. ’%l

lunchitems(0}

Same situation heve: the client just ealls
hasNext() and next(); behind the seenes,
the tkerabor indexes into the Aveay

OEBPS/Image00721.jpg
public class DuckSimulator {

Fiesk we £redts
the fackory
That we've 998

public static void main(Stringl] args) (4o pass nto

0
DuckSimulator simulator = new DuckSimulator () ; e smlate!
AT i S ST i St e i S R

K—\ The simulate0

simulator. simulate (duckFactory) ;

void simulate (AbstractDuckFactory duckFactory) {

method takes an
Quackable mallardDuck = duckFactory.createMallardDuck () ;

AbstractDuckFctory
Quackable redheadDuck = duckFactory.createRedheadDuck () ; and uses it to ereate
Quackable duckCall = duckFactory.createDuckCall(); dueks vather than
Quackable rubberDuck = duckFactory.createRubberDuck () ; instantiating them
Quackable gooseDuck = new GooseAdapter (new Goose ()) ; diveedly.

System.out.println("\nDuck Simulator: With Abstract Factory");

simulate (mallardDuck) ;
simulate (redheadDuck) ;
simulate (duckCall) ;
simulate (rubberDuck) ;

simulate (gooseDuck) ; 4\

System.out.println("The ducks quacked " +

v A heve! Same o code.
QuackCounter.gatQuacks () +
Wkaany

Nothing ehanges

void simulate(Quackable duck) {

duck.quack () ;

OEBPS/Image00480.jpg
The hasNext() method
Lells us if there ave
move elements in the

aggregate to iterate
through.

\ The next) method

veturns the next
object in the
aggregate.

<interface>>
Iterator
hashiext()
next)

OEBPS/Image00722.jpg
File_Edit_Window Help EggFactory

% java DuckSimulator

Duck Simulator: With Abstract Factory
Quack

Quack

Kwak

Squeak.

Honk

4 quacks were counted

%

OEBPS/Image00477.jpg
—\ *
0)3

Junchitems(0}
for (int i = 0; i < lunchItems.length; i++ ; b
lunch| =5
MenuItem menultem = lunchItems[i]; <hitems[1)

We use the array
abstripts o step T~

theouh rbems.
An Arvay of _T"
Menultems.

OEBPS/Image00719.jpg
public class DuckFactory extends Abstracwuck?actﬂm

public Quackable createMallardDuck() { DuckFactory extends
return new Mallardbuck() ; the abstract factory.
)
public Quackable createRedheadDuck() duck:
method treates a prof
. return new RedheadDuck () ; Ea‘::rb:fhr ond of Quackable.
The athal vwﬂv‘: ‘;“f‘““" h
Lhe simulator — it just knows ¥
public Quackable createDuckCall() { %:{W)a Quackable

return new DuckCall() ;
}

public Quackable createRubberDuck () {
return new RubberDuck () ;
)

OEBPS/Image00478.jpg
We ask the breaktastMens

for an iterator of its
T Menultens

Iterator iterator = breakfastMenu.createlterator() ;
And while there are more items lef:
- more items left.
while (iterator.hasNext()) {
MenuItem menultem = iterator.next() ;
d next() 3
We get the next ibem.

- T
@ ———

Pert NS N ge®d)
ter get(1) Arrayls»r x
i
The client just calls hasNext() get(0) \)\,

and next(); behind the stenes the
iterator calls get() on the Avraylist.

OEBPS/Image00720.jpg
CountingDuckFactory

2o extends the
absbract fackory.
public class CountingDuckFactory extends AbstractDuckFactory {

public Quackable createMallardbuck() {

return new QuackCounter (new MallardDuck()) ; Each mebhod wraps the

Quackable with the quack

counting decorator. The
public Quackable createRedheadDuck() { aulabor il ever ko

return new QuackCounter (new RedheadDuck () ; the diffevence; it just

gets back 3 Quackable.
Bk now our vangers can
be sure that all quacks
are being counted

public Quackable createDuckCall() {
return new QuackCounter (new DuckCall()) ;

public Quackable createRubberDuck() {
return new QuackCounter (new RubberDuck()) ;

OEBPS/Image00483.jpg
Heve ave our fwo methods

The hasNext() method veburns 3 boolear

public interface Iterator { / indicaking whether or not there are
more clements to itevate over

boolean hasNext () ;
Object next() ;
TN the et et

b
veturns the pext element.

OEBPS/Image00725.jpg
ds to implement

Remember, the tomposite nzcc ol

lea
fhe same interfate as the
C Jeal elements ave Quackables

We've using an AvrayList inside each Flock 4o

public class Flock implements Quackable { \C\ hold the Quackables that belong to the Flotk.
ArrayList<Quackable> quackers = new ArrayList<Quackable>();

public void add(Quackable quacker) { \' The 3440 wethod adds 3
guackers sadimecken Quatkable o the Flock

public void quack() {
Iterator<Quackable> iterator = quackers.iterator();
while (iterator.hasNext()) {
Quackable quacker = iterator.next();
quacker.quack () ;

Flotk is a Quatkable too.
} t Now for the quatk0) method - after all the

I over the entive Flotk. Here
] The quack() method in Flock needs o work o = e Tl

e hoste through the AvrayList and call qua

OEBPS/Image00484.jpg
We implement the

f tevator interfate

public class DinerMenuIterator implements Iterator { aimtains the
on

MenuItenm[] items; post the

«———— turvert oSt .
int position = 0; ievation over the avvay:

ion

public DinerMenuIterator (MenuItem[] items) {

this.items = items; r\—/ The ¢onstructor takes the
. arvay of menu items ve
ave going to iterate over.
public Menultem next() { é\
MenuTtem menultem = items[position]; The next() method veturns the
position = position + 1; next item in the array and

intrements the position

return menultem;

public boolean hasNext() {

if (position >= items.length || items[position] == null) {
return false;
} else { ,j
retusn true;
The h. N Because the diner chef went ahead and
) Ddatih hhod checks foseellocated a ma sieed avvay, we red to
) ¢ clements of the cheek not only i€ we ave at the end of

arvay and veturns true if theve are

more o ke e the arvay, but also if the next ibem is mul,

whith ndidates theve 3re-no more ewms:

OEBPS/Image00726.jpg
PRGN Weia gquankir 1 s
|
Iterator<Quackable> iterator = quackers.iterator(); Ihere itisl The ;‘wm
Pattern at work!

while (iterator.hasNext()) {
Quackable quacker = iterator.next();
quacker. quack () ;

OEBPS/Image00481.jpg
<<interface>>
Iterator

m DinerMenulterator is an
implementation of [tevator
hat knows how to iterate
over an aveay of Menultems

DinerMenulterator

hasNext)
next)

OEBPS/Image00723.jpg
It's getting a little difficult fo manage
all these different ducks separately.
Is there any way you can help us

manage ducks as a whole, and perhaps even
allow us to manage a few duck *families”
that we'd like to keep track of?

OEBPS/Image00482.jpg

OEBPS/Image00724.jpg
Quackable mallardDuck

duckrFactory.createMallardbuck();

This isn't very /’ Quackable redheadDuck = duckFactory.createRedheadDuck () ;
manageable! Quackable duckCall = duckFactory.createDuckCall () ;
\\ Quackable rubberDuck = duckFactory. createRubberDuck () ;

Quackable gooseDuck = new GooseAdapter (new Goose () ;

simulate (mallardDuck) ;
simulate (redheadDuck) ;
simulate (duckCall) ;
simulate (rubberDuck) ;

simulate (gooseDuck) ;

OEBPS/Image00717.jpg
This quack counting is great. We're learning
things we never knew about the little quackers.
But we're finding that too many quacks aren't

being counted, Can you help?

OEBPS/Image00718.jpg
We've defining an abstract Tactery

iy
Tt sblasses wil mplemen
T el

public abstract class AbstractDuckFactory {

public abstract Quackable
public abstract Quackable
public abstract Quackable
public abstract Quackable

createMallardbuck () ;
createRedheadDuck () ;
createDuckcall () ;
createRubberDuck () ;

Eath method treates one kind of dusk.

OEBPS/Image00696.jpg

OEBPS/Image00694.jpg
Main just eveates the test
public class MatchMakingTestDrive { drive and ealls its drive)
// instance variables here f method to get things going
public static void main(String[] args) (
MatchMakingTestDrive test = new MatchMakingTestDrive () ;

test.drive()
! The construttor initializes owr DB of

e peee m the matzhmling seice
public MatchMakingTestDrive() {

initializeDatabasa() ;
' Lets vedrieve a person

from the DB.
public void drive() { v

PersonBean joe = getPersonFromDatabase ("Joe Javabean')
PersonBean ownerProxy = getOwnerProxy (joe) ; «—— ..and treate an owmer proxy.
System.out.println('Nane is " + ownerProxy.getName()); &~ (| ; gebter
ownerProxy.setInterests ("bowling, Go");

System.out.println("Interests set from owner proxy"); And then a setter.

try (
ownerProxy. setHotOrNotRating (10) ; < And bhen by o

} catch (Exception e) { ehange the vating.
System.out.println("Can't set rating from owner proxy") ;

} This shouldn't work!

System.out.println("Rating is " + ownerProxy.getHotOrNotRating());

Now ¢veate a non—
PersonBean nonOwnerProxy = getNonOwnerProxy (joe) ; & cumer provy.
Systen_out println("Name is * + nonOwnerProxy getName () : << s ol 2 sebber

try {
nonOwnerProxy . setInterests ("bowling, Go"); S—— Followed by a

} catch (Exception e) { setter
System.out.println("Can't set interests from non owner proxy") ;

} This shouldn't work!

nonOwnerProxy .setHotOrNotRating(3) ;

Systen.out.println("Rating set from non owner Proxy");

System.out.println("Rating is " + nonOwnerProxy.getRotOrNotRating ()) ; Then bry to sct
) the vating

// other methods like getOwnerProxy and getNonOwnerProxy here This should work!

OEBPS/Image00695.jpg
File

% java MatchMakingTestDrive

Name is Joe Javabean
Our Owner proxy

allows aetting and
Can’t set rating from owner proxy setting, except for the

Rating is 7 HotOrNot vating.

Interests set from owner proxy

Name is Joe Javabean Our NonOwner proxy

Can’t set interests from non owner proxy allows getting only, but

. also allows ¢alls 4o set the
Rating set from non owner proxy HotOrNot vating
Rating is 5
%

The new rating is the average of the previous rating, 7
and the value set by the nonowner proxy, 3

OEBPS/Image00688.jpg
Remember this diagram
from a few pages back-.

<cinterface>>
Subject

<cinterface>>
InvocationHandler

request)

RealSubject s 3
- i Proxy InvocationHandler
q request() invoke()

We need two
of these.

We create the
proxy itself at

vuntime.

OEBPS/Image00689.jpg
Proxy OwnerlvocationHandler

request()

When a customer is viewing his own bean

When a tustomer is viewing someone else’s bean

4

Proxy NonOwnerlnvocationHandler

o) invokel)

OEBPS/Image00687.jpg

OEBPS/Image00692.jpg
valang veklect
ocationtlandler is part i{&i e larenes Allinvotation handlers

/ implement the
InvotationHandler interface.
import java.lang.reflect. \L
We're passed the

public class Ownerlnvocationfiandler implements InvocationHandler { Resl Subject i 1y

patkage, so we need to inf

PersonBesn person; Constructor and e

é—/ keep a veference 4o it
public OwnerInvocationHandler (PersonBean person) {

this.person = person; Here's the invoke
) / method that gets
called every time a
method is invoked

public Object invoke(Object proxy, Method method, Object[] args) £hs ooy
on the pro

throws I1legalAccessException {
£ the method is a getter,
try { ST ve g0 ahead and invoke it
if (method.getName () .startsWith("get")) { on the veal subject.
return method.invoke (person, args);
} else if (method.getName().equals("setHotOrNotRating")) {

throw new TllegalAccessException() ;
i 1th("set™ Othervise, if it is the
} else if (method.getName().startsWith("set")) {

i setttotOrNotRating)
return method.invoke (person, args); webhod we disallow
¥ it by throwing a
} catch (InvocationTargetException e) { lllegalAccessException.
e.printStackTrace() ; /F
i Betause we are the
return null; This will happen if ower any other sct
¥ the veal subject. method is fine and we
) throws an exception 90 ahead and invoke it

1£ any other method is called, on the veal subject.

we've just gaing o veturn mll
vather than +ake 3 thante.

OEBPS/Image00693.jpg
This method takes a person object (the veal
sbjerd) and veturns @ provy for it Because the
proxy has the same interface as the subjeet, ve
vetuen a PersonBean. \/

This code treates the
prowy. Now bhis is some
gty ualy eode, so lets
step through it cavefully

To cveate a proxy we use the
PersonBean getOwnerProxy (PersonBean person) {

static newProxyinstance method

on the Proxy class
return (PersonBean) Proxy.newProxylInstance (

person.getClass () .getClassLoader (), &— W pass it the classloader for our subject:
person.getClass () .getInterfaces (),

new OwnerInvocationHandler (person)) ;

TN the et of inkerfaces bhe
prony needs to implement...

We pass the veal subject into the constructor of

the invotation handler. [€ you look back two pages .and an invocation handler, in this
/Il see this is how the handler gets access to case our Ownerlnvotationtandler-

Treven subjeet.

OEBPS/Image00690.jpg
<<interface>>
InvocationHandler

invoke()

OEBPS/Image00691.jpg
Let's say the setHotOrNotRating()

method is called on the proxy.

S

proxy.setHotOrNotRating (9) ; @ The proxy then

turns around and
calls invoke() on the

w \v InvocationHandler.

invoke (Object proxy, Method method, Object[] args) &

@ The handler decides
what it should do
with the request
and possibly
forwards it on to
the RealSubject. —=
How does the
handler decide?
We'll find out next.

The Method class, part of the

Here's how ve vefleckion AP, tells us what
imioke the method mebhod vas called on the proxy
on the Real va its getName() method
Subject.

return method.invoke (person, args);

Here we invoke the ! ; . with the original
original method that was (.):VZ\(:GI e vauments

caled on the proxy. This
etk vas pased o vs n ReASRjeet

he invoke ¢all.

OEBPS/Image00705.jpg
public interface Quackable { uatkables vﬂ\‘{&"tcd 4o do

public void quack(); < -~ g well uatk!

OEBPS/Image00706.jpg
I/\ . sandrd

Mallard duck
public class Mallardbuck implements Quackable {
public void quack() {

System.out.println("Quack") ;

public class RedheadDuck implements Quackable {

public void quack() (})

intln ("Quack") ; We've aot Lo have some vaviation
S ¥ speties i we vant this o be
! o inbevesting simulator

syst

OEBPS/Image00699.gif
HiNEEEEREEN

c L]

OEBPS/Image00700.jpg
00 P\"lv\L\Y\cS
Encapulate 3t
Favor Lomeon 2 heritance
Progeam b0 herbates not
nglomentation
e for loos, coupled deirS
ot 2 inkeratt

cuw s\«w‘A e apen for exkension
bt o wodi? ieation

skeattions Do vt

,mu dlasses No mew Yr\anV s ¥
L\osz the

ehatens &2 ~1m
Yook and ¥ ewber them Fld

'Dq;mi

oy Ak B Y friends
Dot cll s w68 Y
B class hold b3 anty one ¥R

1o charge

s ” N
o D I - En Our new pattern
in V“ \5 L,..-u M.lk,.a Dafine 2= 13 A Proxy atts as 2
e Y rcvrcsm{z{m for
— another object.

OEBPS/Image00697.jpg
\[\Ha\m{at often seen in the lotation

Firewall Proxy
controls access fo a
set of network
resources, protecting
the subject from "bad” clients.

Help find 2 habitat

of corporate fivevall systems

R

Smart Reference Proxy

provides additional actions
whenever a subject is

referenced, such as counting

the number of references to
anobject.

Caching Proxy provides
temporary storage for
results of operations
that are expensive. Tt
can also allow multiple clients to share
the results to reduce computation or

network latency.

Habitat: often seen in web sevver proxies as well
as tontent management and publishing systems.

&

OEBPS/Image00698.jpg
Y Seenhanging aroung JavaSpaces, where

it controls s inthroniz.e
o an oot of s &
ynchronization Proxy distributed envir, e
provides safe access to o
asubject from multiple
threads.

Help Find a habitat _——= Complexity Hiding Proxy
hides the complexity of
and controls access to a
complex set of classes.
This is sometimes called
the Facade Proxy for obvious reasons.
The Complexity Hiding Proxy differs
from the Facade Pattern in that the
proxy controls access, while the Facade
Pattern just provides an alternative

interface.
Copy-On-Write Proxy
controls the copying of

an object by deferring V i | j
the copying of an Habitat: seen in the vicinity of the
object until it is required by Java's CopyOnteiteperaylist

aclient. This is a variant of
the Virtual Proxy.

OEBPS/Image00703.jpg

OEBPS/Image00704.jpg

OEBPS/Image00701.gif
B o]
B = [0/ Flw/ o n o] 2|
NEE B o]
2| B -]
B EREEER B
B o <] B
0w ololal</Flol [x| i
= =|] E
ool Fluwlv[+ o2 =
wi Sl o] B
E B B ZEER
o[l o] [<1 <|
Z wirlxlolanz>0/ v <|F o] 2]
wl B B
| o> n e ko <[
2] | <

o3 na w0k o Fal e
=
-0l w o>«

OEBPS/Image00702.jpg
Pattern Description

. Wraps another object
o and provides a different
interface o it.

TFacade Wraps another object
and provides additional
behavior for it.

e 3
Proxy Wraps another ijac:t
to control aceess to it.

Wraps a bunch of
Adapter abjects to simplify
their nterface.

OEBPS/Image00674.jpg
1€ we aren't alveady trying to vetrieve the image

ere ondering, only onc thvead ealls paint so ve

\(then it time do start vebrieving it (in case you
“hould be okay here in terms of thread safety)

if (Iretrieving) (X
ratsiaving=itua; We dor't vk & harg up the
o entive v merfae, s e

vy b e another thread to

retrievalThread = new Thread(new Runnable() {

vetrieve the image-
public void run() {

try {
setImageIcon(new ImageIcon(imageURL, "CD Cover")) ;
c.zepaint () ; N our bhvead ve
} catch (Exception e) { instantiate the
e.printStackTrace () ; leon object. [t
constructor will not

veturn until the
image is loaded,

When we have the image,
) we tell Suing that ve
. need 4o be vepainted

retrievalThread.start() ;

OEBPS/Image00675.jpg
SLase ImsgeUiToRy JEDLEmGNCE Ioon 1

// instance variables & constructor here

public int getIconWidth() {

null) (\Tm .
il

if (imageIcon !

return imageIcon.getIconWidth();
} else {
return 800;

public int getIconHeight() {
if (imageIcon != null) {
return imageIcon.getIconHeight () ; Tuo stabes

} else { 4

return 60|

public void paintIcon(final Component c, Graphics g, int x, int y) {
null) {

if (imageIcon

imageIcon.paintIcon(c, g, X, y); Two states

} else {
g.drawsString("Loading CD cover, please wait...", x+300, y+190);

// more code here

OEBPS/Image00672.jpg
The [mageProxy

implements the leon <o
on
face
class ImageProxy implements Icon { nter geticontian)
volatile ImageIcon imageIcon gttt
final URL imageURL; paiteon)
Thread retrievalThread;

boolean retrieving = false; The imageleon is the REAL icon that ve

eventually vant o display when it's loaded
public ImageProxy(URL url) { imageURL = url; }

publiondnt getiocnmionl) o We pass the URL. of Ehe image into
il e e — Lhe construtkor. This is the image we
return imageIcon.getIconWidth () ; y 1
) else ¢ need to display once it's loaded!
return 800;
g SN We vebun a default width and height
public int getIconHeight() { until £he imagelcon is loaded; then we
if (imageTcon Im mull) { L bmiteebbe imagelcon.
return imageIcon.getIconHeight () ;
} else {

return 600;
}

! i imaglton s wsed by bwo different
Eheeads so along with making the variable
synchronized void setImageIcon (Imagelcon imageIcon) { ntle Con probect veads), we usc &

, this.imageIcon = imageIcon; synehronized setter (4o protect writes).

public void paintIcon(final Component c, Graphics g, int x, inty) {

if (imageIcon != null) {
imageIcon.paintIcon(c, g, X, ¥)
} else {
g.drawString("Loading CD cover, please wait...", x+300, y+190);

if (iretrieving) {
retrieving = true;

retrievalThread = new Thread(new Runnable() {
public void run() {

try {
setImagelcon(new Imagelcon(imageURL, "CD Cover"));
c.repaint() ;
} catch (Exception e) { Here's where Lhings get intevesting,
e.printStackTrace() ; This tode paints the icon on the
} streen (by delegating to the
d ..,a5¢m$ However, if we don't have

i
retrievalThread.start() ;

a Rully ereated [magelcon, then ve
eveate one. Let's look at this closer
¥ on the next page..

OEBPS/Image00673.jpg
This method is talled when it's time to paint the icon on the streen-

public void paintIcon(final Component c, Graphics g, int x, int y) {
if (imagelcon != null) {
1€ we've got an icon alveady, we g0

& ahead and tell it 4o paint itself

imageIcon.paintIcon(c, g, x, ¥)/

} else {
g.drawString("Loading CD cover, please wait...", x+300, y+190);
if (lretrieving) { R Othervise we
Jisplay the
retrieving = true; loading” message

retrievalThread = new Thread(new Runnable() {
public void run() {
try {
setImagelcon (new ImageIcon(imageURL, "CD Cover));
c.repaint() ;
} catch (Exception e) {
e.printStackTrace () ;

s Noke that
! e

\oas
n: Here's where M€ ©0n M conlmage 1* he ima%t
e gt 90 L gort "*“Y;:!?{a“ tnte 0 60
lcon tonstrut®, us mut) ve
doesn £ gve isplayed: 50 W
s \“dtd‘,:a:if and have o message d:[\’&&godz Way Uy
stveen

e
e st S

1} %o(:i” on the next 723¢ Sor more-

setrievalThroad.atart(); Imdth

OEBPS/Image00676.jpg
PUDLIY ClasN TReEroeytesthpive 1
ImageComponent imageComponent;
public static void main (String[] args) throws Exception {
ImageProxyTestDrive testDrive = new ImageProxyTestDrive();

public ImageProxyTestDrive() throws Exception { Here ve eveate an image pr —
im, oxy an

set it to an initial URL. Whenever
// sst up frame and menus ﬁ You thoose a selection from the CD
mens, Yol get a new image prosy
Icon icon = new ImageProxy(initialURL);
imageComponent = new ImageComponent(icon); © Next we wrap our proxy in a
frame.getContentPane () .add (imageComponent) ; tomponent so it tan be added to
) N the frame. The component: will
) Finaly we add the provy to the take care of the proxys vidth,
i height and similar details

OEBPS/Image00667.jpg
[\ Bokh the Proxy and the
Realsuchtt implement the

“Sunjest Subject teckace This
request) a\lows any tlient to tre
the pro®y jusk like the
RealSubjee
RealSubject et
Tequest)
Tequest) l
T ﬂ
i fovom i
that Zﬂu ¢ object The Proxy keeps 3
of Dre The Proxy oftzn nstantiote veberence to the
the Pr. veal work; or handles the eveation of G Subjetk, so it €ar
oxy tontrols the RealSubject. Sorward ceapests
4o the Subject

acteess 4o it
when netessary:

OEBPS/Image00670.jpg
Choose the album cover of
your liking here

Buddha Bar
Selected Amblent Works, Vol. 2
Northern Exposure

Ima

Karma
Ambient: Music for Airports

While the CD cover
is loading, the proxy
/ displays a message.

o corviewar

CD Cover Viewer

LYY oo
LYYy
s
Y
WE“K \oaded: £he grort
W 77 ke imade

OEBPS/Image00671.jpg
This is the Swing

leon interface used ~ >
to display images in @

user intevface.

Imagelcon

getlconWicth(
getlconteight)
painticon()

This is Javaxswing [mageeon,
a tlass that displays an [mage.

<<inlerface>>
Icon

getlconWith)
getlcontieight)
painticon()

subject

getlconWidth(
getlconteight)
painticon()

This is our proxy, which first
displays a message and then wher
the image is loaded, delegates to
Imageleon to display the image.

OEBPS/Image00668.jpg
We know this diageam
pretty well by now.

OEBPS/Image00669.jpg
qensive ko treate’ oBiEcE

Bige

The proxy ereates
the RealSubject

hen it's needed.
est) il
req\

Cliet®

’\‘ealsm\‘p
The proxy may handle the vequest, or if

the RealSubject has been ereated, delegate
the calls £o the RealSubject.

OEBPS/Image00685.jpg
T wasr't very successful finding dates.
Then I noticed someone had changed my
interests. I also noticed that a lot of
people are bumping up their HotOrNot
scores by giving themselves high ratings.
You shouldn't be able to change someone.
else’s interests or give yourself a rating!

Elvoy

OEBPS/Image00686.jpg

OEBPS/Image00683.jpg
e interkace well

e e menens”
ek aset H
S ap,"e{m Can get i, {°"naé

U the persops wormatio
Ykt
public interface Personsean (t vating (1),

String getName() ;
String getGender () ;
String getInterests();
int getHotOrNotRating() ;

void setName(String name) ;
void setGender (String gender) ;
void setInterests(String interests);

void setHotOrNotRating(int rating) ;

() takes
! f cboOelotRatnd) K

dds
We can also st the same an integec awd:;., L persor
information through the unning 2vev3%¢

vespeetive method ealls.

OEBPS/Image00684.jpg
\[The PersonBean|mpl implements the PersonBean interface.

public class PersonBeanImpl implements PersonBean {

String name;
String gender;
String interests;
int rating;

int ratingCount = 0;

public String getName() {
return name;

}

public String getGender() {
return gender;
}

public String getInterests() {
return interests;

¥

public int getHotOrNotRating() {

if (ratingCount == 0) return 0; &

return (rating/ratingCount);

public void setName(String name) {
this.name = name;

¥

public void setGender(String gender) {
this.gender = gender;
}

€—— The instance variables.

Al the aebber methods; they eath veburn
the appropriate imstante variable...

extept for
qettotOrNotRatina0), which
Eomputes the average o

the vatings by dividing the

vatings by the vatingCount

And here's all the setter
methods, which set the
eorvesponding instante variable

/‘

public void setInterests(String interests) {

this.interests = interests;

¥

public void setHotOrNotRating(int rating) {

this.rating += rating;
ratingCountt;

Finally, the et
St
vatin t

i h?m::; ;::I 3dds the rating ¢,

OEBPS/Image00677.jpg
File Edit_Window Help JustSomeOfTheCDs ThatGotUs ThroughThisBook

% java ImageProxyTestDrive

Running ImageProxy TestDrive
should give you a vindow like this

OEBPS/Image00678.jpg
{mageProny ereates 2

Tvead ko mstantiote the
pairtIeon() |maaeleon, which starts o

- veliciing the image P
. the Infernet

K_/ Tmocf?&e\

displays loading
message

OEBPS/Image00681.jpg
RealSubject
request()

<<interface>>
Subject
request)

<<interface>>
InvocationHandler

invoke()

<— The Proxy now eonsists

¢ of two ¢lasses-

request()

The Proxy is generated
by Java and implements
the entire Subject
interface.

InvocationHandler

invoke()

You supply the Invotationttandler, which gets passed
all method ¢alls that ave invoked on the Proxy.
The Invotationttandler eontrols aceess o the

T ebhods of the RealSubject.

OEBPS/Image00682.jpg

OEBPS/Image00679.jpg
paintIcon()

paintTeon()

<
l'ma‘a'jJ 1’"ageu°“

displays the real image

OEBPS/Image00680.jpg

OEBPS/Image00071.gif
10 n 2

14

15

16 17

15 19

2

OEBPS/Image00313.jpg
public class Remoteloader {

public static void main(String[] args) {
RemoteControl remoteControl = new RemoteControl();

Light livingRoomLight = new Light("Living Room") ; Create all the devices in
Light kitchenLight = new Light("Kitchen") ; fneir proper lotatiors
CeilingFan ceilingFan= new CeilingFan("Living Room") ;

GarageDoor garageDoor = new GarageDoor ("") ;

Stereo stereo = new Stereo("Living Room") ;

LightOnCommand livingRoomLightOn =
new LightOnCommand (livingRoomLight) ;
LightOffCommand livingRoomLightOff = Create all the Light
new LightOffCommand (livingRoomLight) ;
LightOnCommand kitchenLightOn =
new LightOnCommand (kitchenLight) ;
LightOffCommand kitchenLightOff =
new LightOffCommand (kitchenLight) ;

Command objects

CeilingFanOnCommand ceilingFanOn = 408
new CeilingFanOnCommand (ceilingFan) ; Create the On ant

CeilingFanOffCommand ceilingFanOff = Sor the teling rar
new CeilingFanOf£Command (ceilingFan) ;

GarageDoorUpCommand garageDoorUp =
new GarageDoorUpCommand (garageDoor) ; Create the Up and Down

GarageDoorDownCommand garageDoorDown commands for the Garage
new GarageDoorDownCommand (garageDoor) ;

StereoOnWi thCDCommand sterecOnWithCD =
new StereoOnWithCDCommand (stereo) ; Create the steveo On

SterecOffCommand sterecOff and OFF commands.
new SterecOffCommand (stereo) ;

OEBPS/Image00556.jpg

OEBPS/Image00070.jpg
OO Bas“'s We assume 12 \enow \m“

: 00 bas im0
e q\1-::evma\\1, o et ,,::
a2 %0 desn o1 ¥ otk &
oo " o etap oo Y
R o itdle o ;gym;u
i esd Pk 122 %
: ?:2\1:‘ hen 0 s ChapRe"

e

00 Printiples

el be taking 2 Aeser ook 3t
rgse down the vosd nd aso
Sading 3 few more ¥ e list

Throughout the
o Yok sbot
how patkerns vely
on 00 basics and
principles

D down, many b0 30!

OEBPS/Image00312.jpg
PUSHLIO SLANS FERTHOLENCOVGEIEDY JEpLlemente Commang 1

Stereo stereo;

public StereoOnWithCDCommand(Stereo stereo) { Jusk like the Lubhwvxco:i‘mi;d, :;;Yeo
this_stereo = stereo; et pased the stance of bhe st
- T a0 o be onbralling an
’ store it in a local instane vaviable.

public void execute() {

tereo.on() ;
e TN sy o B e me et il i
stereo. s ; methods on the sterea: £irst, turn it on, then sct
it to play the CD, and finally set the volume 4o []
. Why 12 Well, s betber than 10, vight?

stereo. setVolume(11) ;

OEBPS/Image00073.jpg

OEBPS/Image00315.jpg
LightOffComnand

LightOfECammand

CailingFanOf£Command

[—

NoCommand

NoCommand

NoCommand

Onslots OFF slots

Living Room light is on
Living Room light is off
Kitchen light is on
Kitchen light is off ;
Living oom coiling fan s on high S gur Commands in acton! Remember, the output
T e TR T om eath device tomes from the vendor classes.
Living Room stareo is on For instance, when a light object is turned on i
Living Room stereo is set for CD imput Prints “Living Room light is on.”

Living Room Stereo volume set to 11
Living Room stereo is off
%

OEBPS/Image00554.jpg
00 Prntiples

Encapsite what vavies

Favor compesition '€ inheritante:

chrne for Voot copled 45
e dhths B wkevatt

Classes hod e ofen for exension
ot cesed for wodifitatior

Degend o Juractians Do 7
Lontreke 0955

ek anothe? mpockart
ehangt

OEBPS/Image00072.jpg
abstract

v

Weaporbehavir weapon.
fight():
solWespon(eaponBeavicrw){
this.weapon = w;

A Charatter HAS-A
WeaponBehavior-

i

4

Knight

) (-}

fight() { -

WeaponBehavior

SwordBehavior BowAndArrowBehavior

[ssoNoapont){implements i
svininga swor) L =¥
soleapod (I o]
NY doieck told e =
! ‘ﬂ\:£ g\c Weavon%e:\;\nm oo impleme
o apectis e
WLY;;“ L Zifjdtcd sea bass
o i

OEBPS/Image00314.jpg
remoteControl . setCommand (0,
remoteControl . setCommand (1,
remoteControl . setCommand (2,
remoteControl . setCommand (3,

System.out.println (remoteControl) ; (\

livingRoomLightOn, livingRoomLightOff);
kitchenLightOn, kitchenlightOff) ;
ceilingFanOn, ceilingFanOff) ;

Now that. we've got
stereoOnWithCD, stereoOff) ;

all our commands, we
¢an load them into
the vemote slots.

remoteControl . onButtonWasPushed (0) ; Here's where we use our 4oString()
remoteControl . of fButtonWasPushed (0) ; method {o print cach vemote slg{ d
remoteControl . onButtonWasPushed (1) ; the command that it .
remoteControl . of fButtonWasPushed (1) ; is assigned o
remoteControl .onButtonWasPushed (2) ;

remoteControl . of fButtonWasPushed(2) ;

remoteControl .onButtonWasPushed (3) ;

remoteControl . of fButtonWasPushed (3) ; ™ vight, we are veady to voll

Now, we step through eath slot
and push its On and OFF but-ton

OEBPS/Image00555.jpg

OEBPS/Image00075.jpg

OEBPS/Image00074.jpg

OEBPS/Image00316.jpg
Wait a second, what
is with that NoCommand
that is loaded in slots four
through six? Trying fo pull
a fast one?

OEBPS/Image00076.jpg

OEBPS/Image00548.jpg
This is the laziest [terator
You'e ever seen. At every step

import java.util.Iterator; of the vay it punts.

public class Nulllterator implements <MenuComponent> {

public Object next() {
return null; E Wm0 i called, we vetuen wull
1}
Most importantly when hasNext(
public boolean hasext() { T L Cied ve ahays veburn e
return false;

)

i i e 24 wouldn't Ehink of

w new Un: rtedOperationExc n(); And the Nulllterator
e e nenes STRULONEXCEREION0 7 & | pporbing vemove. We don't veed o

} implement this; ve could leave it
3 lek the default javaublIterator

vesce handle

OEBPS/Image00549.jpg
PrOLLE CURSN-Wnltraem 1
MenuComponent allMenus;

public Waitress (MenuComponent allMenus) {
this.allMenus = allMenus;

public void printMenu() { The printVegetariantlenu() method
s composite and
allMenus.print () ; takes the allMenu's composite a

aeks its tevator. That wil be owr
’ Compositelterator.

public void printVegetarianMenu() {
Iterator<MenuComponent> iterator = allMenus.createlterator() ;

[terate throush every
System.out.printin ("\nVEGETARIAN MENU\n---

; clement, of the composite
while (iterator.hasNext()) {
MenuComponent. menuComponent. = iterator .next () ;
try {
'« VeaetarianD)
. Call cath element's sVese
@ (T (- ey
menuComponent .print () ; et

3 print() method.

} catch (UnsupportedOperationException) {}

F\ Peink0) is enly called
on Menultems, never
conposites. Can you

We implemented isegetariant) on the et
Menss o always throw an exception 16

4hat haprens ve catth the excaption

bl it itk et

OEBPS/Image00307.jpg
Okay, T think T've got a good
feel for the Command Pattern now.
Great tip, Joe, I think we are going fo
look like superstars after finishing off
the Remote Control APL

OEBPS/Image00547.jpg
That is serious code... I'm trying
to understand why iterating over a
composite like this is more difficult than
the iteration code we wrote for print() in
the MenuComponent class?

OEBPS/Image00067.jpg
Patterns are nothing
more than using 00
design principles...

Skeptical Peveloper

OEBPS/Image00309.jpg
= This Lime avound the vemote is 30Ny
™ comanats st ulimlg seven On and OE commands,

Command[] onCommands ; B n corvesponding VY

Command[] offCommands ;

I the constructor all we need to
do is instantiate and initialize the
on and off avrays.

public RemoteControl() {
onCommands = new Command[7]; ?

offCommands = new Command[7];

Command noCommand = new NoCommand() ;
for (int i = 0; i < 7; i+H) {
onCommands[i] = noCommand;

offCommands[i] = noCommand; The setCommand() method takes a slot
¥ position and an On and OFF command to
) & be stored in that slot
¢ =

public void setCommand(int slot, Command onCommand, Command offCommand) {

onCommands [slot] = onCommand;
ofsCommands [slot] = offCommand; © "~ [t puts these commands in the on
) and off arvays for later use.

public void onButtonWasPushed (int slot) (
onCommands [slot] .execute() ;

. When an On o OFF button is
pressed, the hardware takes

Re %
. . . & tave of calling the eorvesponding
public void offButtonWasPushed(int slot) { vetliods s BubbomlaPiched() o

offCommands [slot] .execute () ; offButtonasPushed().

public String toString() {
StringBuffer stringBuff = new StringBuffer();
stringBuff.append("\n------ Remote Control ------- \n") ;
for (int i = 0; i < onCommands.length; i++) {
stringBuff.append("[slot " + i + "] " + onCommands[i].getClass () .getName ()

% " + offCommands([i].getClass() .getName() + "\n");
¥
Teturn stringBuff.toString(); We've overwridden toString() to print out each
¥ slot and its torvesponding command. You'l see us

} use this when we test the vemote control

OEBPS/Image00552.jpg
try {

/\ W eall isVegetariant)

» on 3l MenComponents
if (menuComponent.isVegetarian()) { bt Menss thvow 38

menuComponent..print () ; iyt betze 8
)

dor't sipport the
vation:
} catch (UnsupportedOperationException) {} o

1£ the memu component. doesn’t
support. the operation, we just throw
avay the exception and ignore it.

OEBPS/Image00308.jpg
(1) Each slot gets a tommand.
* (2) When the bukton is pressed, the

execute() method is called on the

torvesponding Command.

e
=i

Ster

We'll worry about the
vemaining slots in a bt

(3) In the exetute() method
7L attions are invoked on the veceiver

The [nvoker \1/

Stere®

OEBPS/Image00553.gif

OEBPS/Image00069.jpg
Remember, knowing concepts
like abstraction, inheritance, and
polymorphism does not make you a good
object-oriented designer. A design
guru thinks about how to create flexible
designs that are maintainable and can
cope with change.

o
1

OEBPS/Image00311.jpg
Stereo

on()
off)
setCd()
seiDud()
setRadiof)
setVolume)

OEBPS/Image00550.jpg
% java MenuTestDrive

VEGETARTAN MENU The Vegebarian Mena consists of the
- £ egetarian items from every menu.

K&B’s Pancake Breakfast(v), 2.99

-- Pancakes with scrambled eggs, and toast
Blueberry Pancakes(v), 3.49

-~ Pancakes made with fresh blueberries, and blueberry syrup
Waffles(v), 3.59

-- Waffles, with your choice of blueberries or strawberries
Vegetarian BLT(v), 2.99

-- (Fakin’) Bacon with lettuce & tomato on whole wheat
Steamed Veggies and Brown Rice(v), 3.99

-~ Steamed vegetables over brown rice
Pasta(v), 3.89

-- Spaghetti with Marinara Sauce, and a slice of sourdough bread
Apple Pie(v), 1.59

-~ Apple pie with a flakey crust, topped with vanilla ice cream
Cheesecake (v) , 1.99

-- Creamy New York cheesecake, with a chocolate graham crust
Sorbet(v), 1.89

~- A scoop of raspberry and a scoop of lime
Veggie Burger and Air Fries(v), 3.99

- Veggie burger on a whole wheat bun, lettuce, tomato, and fries

Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole

OEBPS/Image00068.jpg
A common misconception,
Grasshopper, but it's more
subtle than that. You have
much to learn.

Friendly Patterns Guru

OEBPS/Image00310.jpg
FEELI0 CLAEN IJOREMECICRERSGS hNEL. S o 1
Light light;

public LightOffCommand (Light light) {
this.light = light;
) The LightOffCommand works exactly the
same vay 35 the LightOnCommand, except
o e Hhat we are binding. the veceiver to 2
ubl. a o
el i sowinal il different action: the ofF() method

light.of£() ;

OEBPS/Image00551.jpg
I noticed in your
printVegetarianMenu() method
that you used the try/catch to handle

the logic of the Menus not supporting the
isVegetarian() method. T've always heard
that isn't good programming form.

OEBPS/Image00082.jpg
ods vetuen the most vecent
b for kemperabive

These three meth

WeatherData
©eather measurenen
gi;eu':‘n'i':z:;'e‘) iy, and bavamebrit presres cespeckively
i
getPressure() e g o WO s il 3 < B
m e ot dejct ks how & 314
eeummenpGhatg) s Trom the Wisther Stabion .

1l other methods

=
O e T e)
* whene
5 T (8 G e
have been updated

The developers of the :
e frerData ejeet eF us 2
f ot what we reed ¥ ad o
public void
measurementsChanged() {

// Your coda goes hers

WeatherData java

OEBPS/Image00324.jpg
 java RemoteLoader

Light is on & Turn the liht on, then off.

Tight ie ofe
Here are the Light commands

...... Remote Control --

[slot 0] LightOnCommand LightOf£Command
[slot 1] NoCommand P r—
[slot 2] NoCommand NoCommand
[slot 3] NoCommand e ——
[slot 4] NoCommand pr—
[slot 5] NoCommand p——t
[slot 6] NoCommand poss—

[wndo] Lightof£Command

e e o Undo vas pressed.. the LightOR Conmand | vndo ol the
Tight O D) e e T ba Lfm 4 t;zhw“&:ma:, dw
sib 20 pes Commind ticknd

B G oot Ul dB e =

------ Remote Control --

{slot 0] LightonComand Lightof£Command
{slot 1] NoCommand Nocommand

[s1ot 2] NoCommand NoCommand

{slot 3] NoComnand E——n

(slot 4] NoCommand NoCommand

{s1ot 5] NoCommand NoCommand

{slot 6] NoCommand =

fundo] LightonCommand =

Light is ofe € Uindo was pressed, the light is back off. Now undo holds the LightOnCommand, the last

ommand invoked.

OEBPS/Image00081.jpg
Conditions 1s O
e evert dsplaY
ek eather

Cuvven’
of thwee dif 3

wsex can alse
I::&;;A 3 fovetast

Humidity displays

sensor device

Oi

Temperature
sensor device WeatherData

object

Weather Station .
Display device

Pressure
sensor device

Weather-O-Rama provides What we implement

OEBPS/Image00323.jpg
PIRAN0 -CLENN ROty £

public static void main(String[] args) {
RemoteControlWithUndo remoteControl = new RemoteControlWithUndo () ;

Light livingRoomLight = new Light("Living ROOm"); ¢ (yeste a Light, and our nev. w«do()d
enabled Light On and 0% Commands
LightOnCommand livingRoomLightOn = /
new LightOnCommand (1ivingRoonLight) ;
LightOffCommand 1ivingRoomLightOff =
new LightOf£Command (LivingRoonLight) ;

remoteControl.setCommand (0, livingRoomLightOn, livingRoomLightOff);

teControl .onButtoniasPushed (0) ; T fif:eta:i C"':"”Z”g‘
remoteControl .offButtonWasPushed (0) ; e
System.out.println (remoteControl) ;
| T be

xe teControl .offButtonWasPushed(0) ;
remoteControl .onButtonWasPushed (0) ;
System.out.println(remoteControl) ;
remoteControl .undoButtonWasPushed () ;

Then, turn the light off, back on and undo.

OEBPS/Image00084.jpg

OEBPS/Image00326.jpg
PUBLLO Diase Cakilbgran |
public static final int HIGH
public static final int MEDIUM = 2;
public static final int LOW = 1
public static final int OFF = 0;
String location;
int speed;

public CeilingFan (String location)
this.location = location;
speed = OFF;

public void
speed =
// code

high() {
HIGH;
to set fan to high

public void
speed =
// code

medium() {
MEDIUM;
to set fan to medium

public void
speed =
1/ code

low()
LowW;
to set fan to low

1

public void
speed =
// code

off() {
OFF;
to turn fan off

public int getSpeed() {
return speed;

We tan

Notiee that the CeilingFan class
holds local state vepresenting the
speed of the ceiling fan.

[§

S These methods set the

speed of the ceiling fan

ek the turvert
he eelling $on

Syeed)

OEBPS/Image00565.jpg
Let's take a look at this
diagram and see what the
Mighty Gumball guys war...

OEBPS/Image00083.jpg
Remember, this Curvent Conditions
s just ONE of thee different
display sereens. |

current

Conditions

Display device

OEBPS/Image00325.jpg
high()
medum()

low()
off)
getSpeed()

OEBPS/Image00566.jpg
Heve ave the states - four in total

OEBPS/Image00086.jpg
Current
Conditions

Display One

Display Three

OEBPS/Image00085.jpg

OEBPS/Image00559.jpg
import java.util.Iterator;
import java.util.Calendar;

public class AlternatingDinerMenulIterator

MenuItem[] items;

int position;

public AlternatingDinerMenuIterator (Menultem[] items) 'B

this.items

items;

position = Calendar.DAY_OF WEEK % 2;

public boolean hasNext() {

if (position >= items.length || items(position]

null) {
return false;
} else {

return true;

Public MenuItem next() {

MenuItem menultem = items[position];

position = position + 2;

return menuItem;

public void remove() {

throw new UnsupportedOperationException (

Notice that this [terator
/ implementation does not
support vemovel)

"Alternating Diner Menu Iterator does not support remove()");

OEBPS/Image00560.jpg
Pattern Description

Strategy Clients treat collections
of objects and individual
objects uniformly

Adapter Provides a way to traverse
a collection of objects
without exposing the
collection’s implementation

Herates Simplifies the interface of

a group of classes

Facade Changes the interface of
one or more classes

Allows a group of objects to

Comporite be notified when some state
changes

Encapsulates nterchangeable

Observer behaviors and uses delegation to
decide which one to use

OEBPS/Image00318.jpg
Great jobs it looks like
You've come up with a terrific
design, but aren't you forgetting one
little thing the customer asked for?
LIKE THE UNDO BUTTON?!

OEBPS/Image00557.jpg

OEBPS/Image00317.jpg
The RemoteControl manages a set of Command
objects, one per button. When a button is pressed, |
the corresponding ButtonWasPushed(method is

‘ called, which invokes the execute() method on the ‘
Command. That s the full extent of the remote’s |

e
The RemoteLoader creates a ‘ ‘ knowledge of the classes it's invoking as the ————
number of Command objects Command object decouples the remote from the | | AiRemotecontrol commands |
that are loaded into the slots Clagses doing the actual home-automation work. | implement the Command
? |

‘ of the Remote Control. Each ‘ L interface, which consists of one

command object encapsulates method: execute(). Commands
arequest of a home ‘ | encapsulate aset of actions on a |

automation device. ‘ specific vendor clas. The remote |
P .| invokes these actions by calling

= 7 S | the execute method. |

[RemoteControl

<cinterface>>

[RemoteLoader
Command

‘onCommands
offCommands
setCommand()

onButonWasPushed!)
offButionWasPushed)

execute()

LightonCommand

| " Lightoficommand
H““M — .
[pumtic void exscutel) {
sone.on0l
[[puptic void execute() {
Light.of£0)

|

The Vendor Classes are used to pe(ﬁﬂmj
the actual home-automation work of s
controlling devices. Here, we are using [[Using the Command terface, we implement each action |
| e e dass = an example. | that can be invoked by pressing a button on the remote |
e = with a simple Command object, The Command object holds
| rference o an object tht s n instance of a Vendor Class
2nd implements an execute method that calls one or more
| methods on that object. Here we show two such classes |
| that tn alight on and oft respectively. |

OEBPS/Image00558.jpg

OEBPS/Image00078.jpg
Hey Jerry, T'm notifying
everyone that the Patterns Group
meeting moved to Saturday night.
We're going fo be talking about the
Observer Pattern. That pattern s the
best! Tt's the BEST, Jerryl

OEBPS/Image00320.jpg
PERAE Goaba. Fon EUnL AN LPIDNEIREN, SO,
Light light;

public LightOnCommand (Light light) {

this.light = light;

public void execute() {
light.on();

I
public void undo() { gxgaut:(zb;v:;*)ﬂ hﬂmt
ML T Tk bk ,E?

OEBPS/Image00563.jpg

OEBPS/Image00077.gif
z
~ -
L < HODxwn < w
w © a ©
¥ D> w <O MawZZ >
© o z w < 1
O o nwa>uwa S
3 w w o o
W< W > o)
w - z w o @
- S <o Z W g
< o IR
S 0w < FTwROAaNXH O
> o~ w W o>
W o a@HZOKHA WY O
o < © ©
< - 4= < D K
VO =aO0unHkHOZ =0
w

R
E N

OEBPS/Image00319.jpg
PUSHLEEL SILMTLRON “SEMRaIE ¥
public void execute();

public void undo(); < Heve's the new undol) method

OEBPS/Image00564.jpg
o?

Mighty Gumbal. c.

Here's the way we think +the gumball machine controller needs to
Tk Welve hoping o tan inplement £his in Java for usl - We may
e 2dding more behavior in the futures so o need o keep the
design as Flexible and maintainable as possible!

_ Mgty Gumball Engncers

OEBPS/Image00080.jpg

OEBPS/Image00322.jpg
public class RemoteControlWithUndo {

Command[] onCommands ; s is wheve well stash the last
Sosmandll SIIcomand J i evetuted for the wndo bitton
Command undoCommand ;

public RemoteControlWithUndo() {
onCommands = new Command[7] ;
offCommands = new Command (7] ;

Command noCommand = new NoCommand () ;
for (int i=0;i<7;i+4) {

a T s scsmnnd: Just like the other slots, undo
s S starts off with a NoCommand,

, 0 pressing undo before any other
— - button won't do anything 3t all

1

public void setCommand(int slot, Command onCommand, Command offCommand) {
onCommands [slot] = onCommand;
offCommands [slot] = offCommand;

¥

When 3 butbon is pressed, we take

public void onButtonWasPushed (int slot) { the command and Flﬂt exetute
onCommands [slot] .execute() ; & th save a vefevente 4o
% Hhen ve sav .
)Commas = onCommands [s1c 4 ’
e neatazet] £ i the undoCommand instance

variable. We do this for both “on”
commands and “off” commands

}

public void offButtonWasPushed(int slot) {
offCommands[slot] .execute() ;
‘undoCommand = offCommands[slot];
¥
When the undo button is pressed, we
public void undoButtonWasPushed() { invoke the undol) method of the
undoCommand. undo () ; Command stored in undoCommand.
This veverses the opevation of the
last command executed.

}

public String toString() {
// tostring code here.

¥

OEBPS/Image00561.gif
N

o

[% [elclulrls|r]

OEBPS/Image00079.jpg
Weather-O-Rama, Inc.
100 Main Street
Tornado Alley, OK 45021

OEBPS/Image00321.jpg
public class LightOffCommand implements Command f{
Light light;

public LightOffCommand (Light light) (

this.light = light;

public void execute() {
light.off () ;

public void undo() { And heee, undol) turns
Bight.on0; € ok back on

OEBPS/Image00562.jpg
T thought things in
Objectille were going o be so easy, but
now every time I turn around there's
another change request coming in. I'm at
the breaking point! Oh, maybe T should
have been going to Betty's Wednesday
right patterns group all along. I'm in such
astate!

OEBPS/Image00291.jpg
You can defiritely
say the waitress and
T are decoupled. She's
not even my typel

OEBPS/Image00534.jpg
PEDLLE 'OLARE: NEGULIE @REEnos Moui-ospaamt; |
String name;
String description; lk/
boolean vegetarian;
double price;

public MenuItem(String name,
String description,
boolean vegetarian,
double price)

—

{
this.name = name;
this.description = description;
this.vegetarian = vegetarian;
this.price = price;

}

public String getName() {
return name;

}

public String getDescription() {
return description;

}

public double getPrice() {
return price;

}

public boolean isVegetarian()
return vegetarian;

{
}

public void print() {
System.out.print(" " + getName());

if (isVegetarian()) {
System.out.print (" (v)"

}
syst
syst:

.out.println(",
-out.println("

" + getPrice());

Firsk we need to extend
the MeruComponent
interface.

The consbructor just takes the
name, deseription ete. and
keeps a veferente to them al
This i prebby much like ow
old menu item implementation

Here's our getter methods
— jusk ke our previous
implementation.

This is difevent from the previous implementation
Here we've overriding the print() method in the
MenuComponent. elass. For Menultem this method
prinks the complete menu entry: name, destription,
price and whether or not it's veggie

£

-- " + getDescription()) ;

OEBPS/Image00290.jpg
Don't ask me to cook,
T just take orders and

yell *Order upl"

OEBPS/Image00535.jpg
Menu s also a MenuComponent, Mena can have any number o childven

s
Jjust like Menultem. £ 4ype MenuComponent. We

4 \[o) AveayList o hald these
public class Menu extends MenuComponent {

ArrayList<MenuComponent> menuComponents = new ArrayList<MenuComponent>() ;
String name;

String description; This is different than our old

implementation: we've going 4o give cath
Menu 3 name and a deseription. Before,

we just velied on having different classes
for each men.

public Menu(String name, String description) (
this.name = name;
this.description = description;

)
public void add (MenuComponent menuComponent) {
menuComponents . add (menuComponent) ; Heve's how you add Menultens o
' " gther Menss to a Mena. Because
both Menultems and Menus ave
B TR e e peE el MenComponents, we st need one
menuComponents . remove (menuComponent) ; method to do both.

) You tan also vemove @ MenuComponent

mponent.
public MenuComponent getChild(int i) { or get MenConfone

returnmenuComponents.get (i) ;

)

Heve ave the getter methods for getting the name
public String getName() { and deseription
, Emies Notice, we aren't overviding getPricel) or

.;ng;eamo betause thase methods don't make
)) o sense for a Menw (althoush you could arque that
publ::;:x:;i:g:::wu’"“ t isVegetarian() might ke sl\s:) 1 mSZi, tries
, 4 to €all those methods on a Mens, theyll get an
UnsupportedOperationException
public void print() {
out.print ("\n" + getName()) ;

out.println(", " + qemeaczipuix_xﬂ:i To pint the Mens, we pink he

d Menw's name and destription

OEBPS/Image00293.jpg
The Waibress 4akes the arden and when she gets arand
{o it she calls s gl method o begn ¢
arders pregaration

what e
e om0
‘ ks e T e "
takeOrder() % P

&
& The Shork Ovder
- Codk falows the
; nsbruckions of the
o 0:‘& o Order and produtes
the mel

makeBurgeih, makeShakeO

s
S
S

OEBPS/Image00532.jpg
MenuComponent provides default
implementations 5 every method

%

public abstract class MenuComponent {

public void add(MenuComponent menuComponent) {
throw new UnsupportedOperationException () ;

}
public void remove (MenuComponent menuComponent) (
throw new UnsupportedOperationException () ; 3
) upp ception () ﬂ Neve grouped tonether the
public MenuComponent getChild(int i) { Composite” methods — that is,
throw new UnsupportedOperationException () ; methods to add, vemove and
3 get MenuComponents.

public String getName() {

throw new UnsupportedOperationException() ; ave the “operation methods;

Heve
} lbems
public String getDescription() { these are used by tmyMz t\t;
throw new UnsupportedOperationException() ; H: s e hais r;
; touple of them in Menu too, ash
public doubls. getPrice() ol see n @ covle of pages when
S e OnapRostedORerasionneepion e show the Menu code.

}
public boolean isVegetarian() {
throw new UnsupportedOperationException () ;
3 print() is an “opevation” method
public void print() { that both our Menus and
throw new UnsupportedoperationException(); | & Merultens will mplemert, but ve
3 Provide a default operation here.

OEBPS/Image00292.jpg
Okay, we have a Diner with
Waitress who is decoupled from
the Cook by an Order Slip, so
what? Get to the point!

OEBPS/Image00533.jpg

OEBPS/Image00295.jpg

OEBPS/Image00294.jpg
The acti
L rovid e b o e
™ 3 -ovides i
To Comnind 000, ok iy | o n bhe
e ! ! vex .act P
;Laysu\ab:s the attions and w3
¢an be talled Lo invoke the

atkions on the Receiver

The client s vesponsible for
treating the command object
The command objeck. conists of
a sek of attions on a veceiver:

The client ealls setCommand()
on

an Invoker object
heesmis dJ t and passes it
ook where ks

is needed.

e
e 3o% pormand o
B s Lo 02V hamers hvoker
e \“’(:s zuc»{c.o !
oyt &
o

whith vesults
in the actions
being imioked

on the Reeeiver-
COmma(b __/

action0,action20 o &
ecelV

OEBPS/Image00536.jpg

OEBPS/Image00296.jpg
lic interface Command {

o/ Simple. All we need is one method called execute()

public void execute() ;

OEBPS/Image00527.jpg
Al per? == Mcnus
é/
/
g g Subvncnu
N
AN R
o AN
Henme® Henmen Moo & & Q °§ o
i o enis t
MCNZH',CMS jﬂ \H"\‘ @ Mo Mo

AT temes Hogen e

OEBPS/Image00287.jpg
e
owt_
T

9

o’
y
L @ The Waitress

takes the Order,
You, the Customer, places it on the
give the W order counter,
your Order. and says “Order

up?”

Q The Short-Order Cook prepares your meal
from the O

OEBPS/Image00530.jpg
The Component dekines an

The Client uses the

Sbietks in the The Component may i lement
in{;&a&iﬁ:& {%\t tompost a default lzehaviovzc ey

siti 0, set (wadd(),
elace to ettt vemouel), aetChld() and sts
Compomert e and the le it
ipulate the obje
o b N \ /
Client

operation()
2ok Comparent)

remove{Component)
getChid(in)

Note that the eaf also
inherits methods like add(),
vemove() and getChild(),
which don’t necessarily make aﬂ
lot of sense for 5 leaf node.
We're 90ing to tome back 4o

his issue.

Leaf Composite

n add(Component)
i) mm::cv:mm) h & \m&»‘v aso .
A leaf has no getChid(n T"\‘\ enks the L7
children, opoaten) g s
vel
at some
Noke £ & make
A leaf defines the behavior for nese njja'ng osike
the elements in the tomposition.) . sense © A
1t docs this by implementing the The Composite’s ZZ‘:{ ff to som 2t -L«u:,h’c N
operations the Composite supports. define behavior h Ied - excegtion
tomponents having children -

1o skove ¢hild components.

OEBPS/Image00531.jpg
i the
The Waitress is 5?\.3 3{; ::c{,, 2 s

MenuComponent represents the interface

for both Menultem and Menu. We've used an
abstract ¢lass heve betause we want to provide
default implementations for these methods.

Waitress MenuComponent
getName() .
j’ getDescripion() We have some of the same

getPrice() methods you'll vem:mb‘cr
isVegetarian() from our previous versions
0 of Menultem and Meny,
‘add(MenuComponent) and we've added printO),
remove(MenuComponent) o0 and

Heve are the methods for _—> aeChikn) a,::g:“r:()_o;;e'u ol

manipulating the components. o

The tomponents are
Menultem and Menu.

Ehese soon, when we
implement our new Menw
and Menultem classes.

Menultem
Both Menultem and

Menu

getName()
getDescripton()
gelPrice()
isVegetarian()
print()

Menus overvide print0).

Koy

Menultem overvides the met]

hods that
sense; and uses the default implemcnfat'i";k:
in MenuComponent. for those that don’t
make sense (like add() — it doesn’t make
sense {0 Ponent to 3 Menultem..
we tan only add Components to 3 Menu)

menuComponents
gethame()
getDescription()

pint)
add(MenuComponent)
remove(MenuComponent)
getChid(n)

i that
lso overvides the methods
f;:: :e:: like a way to add and vemove
menu items (or other menusl) Fn;wn its
e Comforerts. In addition v e {;gb
o ipth oas
getName) and getDeseription ':c‘; e

vetuen the name and deseription

OEBPS/Image00289.jpg

OEBPS/Image00528.jpg
And Lreat them as 3 whole... /2

SR R

1
MCnuH‘,Cms
Q &

....O0F 3$ PaY"tS.'B

OEBPS/Image00288.jpg
s of an ovder
The Ovder consist & "
s‘v; and the tustomer's mEn

j Tl have a Burger
A o ek ave wrtken on

with Cheese and a
Malt Shake.

2]
Q)

Y

The tustomer knows
what he wants and
ereates an order.

The Waitvess 4akes the Order,
gebs arcund bo st :
j method bobegin &

and when she
she ¢alls its orderllp()
he Order’s preparation.

& -

5 y
D The Short. Or ey
Cook follows the
instructions of the

Order and prog,
S e and produces

makeBurger(), makeShake()

Y

OEBPS/Image00529.jpg
\w-'\v\‘h()

Menus

—
/

e

AN
00

Henie®

o N
vv’m‘ho

OEBPS/Image00302.jpg
public class GarageDoorOpenCommand

implements Command {

T Your code here

OEBPS/Image00545.jpg

OEBPS/Image00301.jpg
()
down()

stop()
ghtOn()
ghtOr ()

OEBPS/Image00546.jpg
Like all itevators, weve
mplementing the. jpiaubl
Tport Java.util.ts [tevator nberface

public class CompositeIterator implements Iterator
Stack<Iterator<MenuComponent>> stack = new Stack<Iterator<MenuComponent>>() ;

The iterator of the Lop-level composite

we've going bo iterate over is passed in.

We throw that in a stack data sbuctuve

public CompositeIterator(Iterator iterator) { 4~
stack.push (iterator) ;
3

Okay, when the client wants to get the next element

public Object next() {
we first make sure there is one by ealling hasNext().

if (hasNext()) {
Iterator<MenuComponent> iterator = stack.peek() ;
MenuComponent component = iterator.next(); y<
1€ theve is a next element,
n ment, we

stack.push (component . createIterator () ; get the curvent iterator off the
stack and get its mext element.
return component; \

else

' xm(xrn null; We then throw that component’s iterator on the stack. I£
the Component is a Menu, it vill iterate over all its items
I£ the component: is 3 Menultem, we aet the Nulllterator,
and no iteration happens. Then we reburn the component.

}
}

public boolean hasNext() {
if (stack.empty()) (
return false;

& Tosee if there is 3 next clement, ve check to
see if the stack is empty; if so, there it

} else {
Iterator<MenuComponent> iterator = stack.peek() ;
£ (14 X
) (,::;?:Z:(T“m(” ! Othervise, we et the .mtm;u
> hasve Ehe top of the stack and see if it
h: ; §
yormm ey & Lt s mext clement [f i doeart
roburnitrue; &) we pop it ofF the stack and call
) Othervise theve is 3 next hasNext() vetursively.
) clement and ve vetuen true)
' We've not supporting vemove, so wie don't
] implement it and leave it up to the

default behavior in javautil [tevator.

OEBPS/Image00304.jpg
An encapsulated vequest

OEBPS/Image00543.jpg
‘MenuComponent

gethlame()
getDescripion()
getPrice()
isVegetarian()

print)
add(Component)
remove(Component)
getChid(n)
createlterator()

We've added a treatelterator() method
to the MenuComponent. This means
that each Menu and Menultem will
need to implement this method. [t also
means that calling ereatelterator() on
a tomposite should apply to all childven
of the tomposite.

OEBPS/Image00303.jpg
Edit_Window

%java RemoteControlTest

»

Your output here

OEBPS/Image00544.jpg
public class Menu extends MenuComponent {

Iterator<MenuComponent> iterator = null; Here we've using a new iterator called
// other code here doesn't change e Compositelterator. [t knows how to
itevate over any composite. We pass it
public Iterator<MenuComponent> createIterator() { the curvent composite’s itevator.
if (iterator == null) {
iterator = new CompositeIterator (menuComponents.iterator () ;
}
return iterator;
)
b
public class MenuItem extends MenuComponent {
// other code here doesn’t change Now for the Menultem
Whoa! What's this Nulllterator?
public Iterator<MenuComponent> createIterator() { You'll see in two pases.

return new NullIterator () ;

OEBPS/Image00306.jpg
The [nvoker holds

3 tommand and at
some point asks the
command to carry

The Client is vesponsible for

ereating ContreteCommand and out a vequest b
sekking its Receiver: calling iéu:xeLuLl)
g method.
Client

Invoker
setCommand() xecuel)
undo()
Receiver
c
ﬂ oncreteCommand

Command detlaves an interface for all commands. As
you alveady know, a tommand is invoked through its
exetutel) method, whith asks a veteiver 4o perform an
attion. You'l also notice this intecface has an undo()
o which well cover a bit later in the chapter:

The exetute
method invokes
the action(s)

on the veeeiver
needed o Fulfill
Lhe veauest

The Reteiver knows how to .j

perkorm the work needed to
cavry out the vequest. Any class
ean att as a Receiver.

>

execute() {
receiver.action()

The ContreteCommand defines a binding between an

atkion and a Reteiver. The [nvoker makes 3 veauest bl_
ealling exeeute)) and he ContreteCommand caveies ¥

out by calling one or

ove atkions on the Receiver:

OEBPS/Image00305.jpg
oy
&

@

O)

An invoker — for instante,
one slot of the vemote -
¢an be parameterized vith
diffevent vequests.

OEBPS/Image00537.jpg
public class Menu extends MenuComponent {
ArrayList<MenuComponent> menuComponents = new ArrayList<MenuComponent> () ;
String name;
o ink0) method
String description; need ko do is thange he print

}:2 :ak: it print ot only £he i mation about.

e Mens, b all of his Menw's tomponents
ther Menus and Menultens

// comstructor code here

// other methods here

public void print() { Look! We get. to use an [terator. We
System.out.print ("\n" + getName()) ; use it 4o iterate through all the Menu's
System.out.println(", " + getDescription()); Components.. those could be other

System.out.println ("~ —ny

Menss, or they eould be Merultens

Iterator<MenuComponent> iterator = menuComponents.iterator ()
while (iterator.hasNext()) {

MenuComponent menuComponent = Sinte both Menus and Menuttems
e / implement print(), ve just call
menuComponent.print () ; print() and the vest is up to them.

OEBPS/Image00538.jpg
i e ana s Crans & Yopl The Waikvess code reall is Ehis smle
MenuComponent allMenus; N e sk hand hev e top-level mers

ot the ane that contans al be
prblic Waitress MennConponant allMemss (other mews Weve called that alfenss

this.allMenus = allMenus;

All she has 4o do 4o print the entive menu
£ hierarthy - all the menus, and all the menu

public void printMenu() { items — is call print() on the top level men

allMenus.print() ;

We've goma have one happy Waikvess,

OEBPS/Image00298.jpg
This is a tommand, o we need to
implement the Command interface.

public class LightOnCommand implements Command {

Light light; The consbruckor is passed the specific
o gk that this comnarnd s g0y to
public LightOnCommand (Light light) { eontrol — say the living voom light—

and stashes it in the light instance

) variable. When exeeute gets called,
this is the light object that is aoing

4o be the Receiver of the vequest.

this.light = light;

PiBLic void exacuta((The exceutd methed 31
Lghtron 0] e on) method on the
! veteining bjects which is
e ligpt, ve ave contrallnd

OEBPS/Image00541.jpg
% java MenuTestDrive

ALL MENUS, All menus combined

- S Here's oll ur et e pinted al

PANCAKE HOUSE MENU, Breakfast this just by ¢alling print() on the

top level men.

KgB's Pancake Breakfast(v), 2.99

-- Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast, 2.99

-- Pancakes with fried eggs, sausage
Blueberry Pancakes(v), 3.49

-- Pancakes made with fresh blueberries, and blueberry syrup
Waffles(v), 3.59

-- Waffles, with your choice of blueberries or strawberries

DINER MENU, Lunch

Vegetarian BLT(v), 2.99

-~ (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99

-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29

-- A bowl of the soup of the day, with a side of potato salad
Hotdog, 3.05

-- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice(v), 3.99

-- Steamed vegetables over brown rice
Pasta(v), 3.89

-- Spaghetti with Marinara Sauce, and a slice of sourdough bread

DESSERT MENU, Dessert of course!

Apple Pie(v), 1.59

-- Apple pie with a flakey crust, topped with vanilla icecream
Cheesecake(v), 1.99

-- Creamy New York cheesecake, with a chocolate graham crust
Sorbet(v), 1.89

-- A scoop of raspberry and a scoop of lime

CAFE MENU, Dinner

Veggie Burger and Air Fries(v), 3.99

- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
Soup of the day, 3.69

~- A cup of the soup of the day, with a side salad
Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole

o &e—

The new
desert mens
—"
when we are
prinking all the
Diner mena

Components

OEBPS/Image00297.jpg
Light

on)
o)

OEBPS/Image00542.jpg
What's the story?
First you fell us One Class, Ore
Responsibility, and row you are giving us a
pattern with fwo responsibilifies in one class.
The Composite Pattern manages a hierarchy
AND it performs operations related o Menus.

OEBPS/Image00300.jpg
n Command Pattern—speak

Tis s aue Clent The vemoke is our Invokeei .,
mman
& il be passed 2 co
public class RemoteControlTest { e :,\,;L{ hat tan be vsed to

public static void main(String[] args) { make vequests

simpleRemoteControl remote = new SimpleRemoteControl () ; i
: : . ereate 3 Lig)
Light light = new Light(); Now we
- dbject. This vill be the

LightOnCommand lightOn = new LightOnCommand (light) ; Retciver of the vequest.
\ Here, eveate a command and
pass the Receiver 4o it

remote. setCommand (1ightOn) ;

remote.buttonWasPressed () ;

} Here, pass the com
+ mand
' to the Ivoker.

Fie ot Vindow Fielp DinerFooavarn

%java RemoteControlTest

And then we simulate the Light is On

button being pressed Werd's the output of —D
cunving his test code %

OEBPS/Image00539.jpg
The top—level mep, holds
all menus and items.

Combics
omposite - l/

Al s

Cw]?osi{:eL / l\

og Eath Menu
B holds items.. Opane® €~ Composite =7
e ot ~.or items and O\ T M
/ l \ pritianin ‘// \\‘ L \
00 220 O 9969

Heni
N Z Ll-f 7 N TJ
Lea ° ° ° ° e

P AR

4
& Lot

OEBPS/Image00299.jpg
and,
: We have one slot o hold our comman
lic class SimpleRemoteControl { ld o

il contral on
Command slot; <_/ which v

i We have a method for setting the
ubl. 1
BIbIiS Simplessotacontott) ﬁ tommand the slok is aoing to eortrol

This could be called multiple times if the
public void setCommand(Command command) { client of this tode wanted to change
slot = command; the behavior of the vemote button

}

public void buttonWasPressed() { TN This method i called S
n the button

is pressed. All we do is 4ake 1)
) curvent commard bound o the sok
| and call its exceutel) method.

slot.execute () ;

OEBPS/Image00540.jpg
public class MenulestDrive {
public static void main(String args[l) { Leb's Fiest eveate

MenuComponent pancakeHouseMenu = all the menu objects
new Menu ("PANCAKE HOUSE MENU", "Breakfast");

MenuComponent dinerMenu =
new Menu ("DINER MENU", "Lunch");

MenuComponent cafeMenu We also need 3 top=
new Menu ("CAFE MENU", "Dinner"); level meny that we'l

MenuComponent dessertMenu = name allMenus.
new Menu("DESSERT MENU", "Dessert of course!");

MenuComponent allMenus = new Menu("ALL MENUS", "All menus combined");

, We're using the Composite add() method 4o add
allMenus.add (pancakeHouseMenu) ;

Mo a0 (Ginomonny 1T ETT cath mena o the top-level memw, allMenss
allMenus.add(cafeMenu) ;

Now we need to add all

&—— the menu items Here's one
example; for the vest, lock at
Lhe complete sourte code

// add menu items here

dinerMenu.add (new MenuItem(

"Pasta",

"Spaghetti with Marinara Sauce, and a slice of sourdough bread",
true,

3.89)); And we've also adding a menu to 3

e Al e G ot ¢ tat
dinestienu. add (dessertiiens) ; venybhing it holds, whebher it's 3 mena
om or 3 men, is 3 MenConponent
dessertMenu.add (new MenuItem(
"Apple Pie,
"Apple pie with a flakey crust, topped with vanilla icecream",
true,

1.59)); Add some apple pie to the

dessert menw
// add more menu items here

£ Onte wéve consbriched s

entive menu hierarchy, ve hand

waitress.printMenu() ; the whole thing to the Waikress,
) and as you've seen, it's as easy as

’ apple pie for her 4o print it vt

Waitress waitress = new Waitress(allMenus);

OEBPS/Image00276.gif

OEBPS/Image00269.jpg
public class Singleton { 6o ahead and ereate an

private static Singleton uniquelnstance = new Singleton(); "*"¢¢ of Singleton
in a static initilieen

This code is guaranteed
private Singleton() {} o be thread safel

public static Singleton getInstance() {

’ return uniqueInstance; -— \{S;Z::r}ugi :t“m ®

OEBPS/Image00512.jpg
By gjving her an [terator

we have decoupled her

Lrom the implementation
¥ of fhe menu items, so we

¢an easily add new Menus
/ if we want.
. _——next() \
‘ I $
ZVhizh is better for N, Trexd®
CL3USE now she ¢an use 'ﬂ\e
{

sa :
me tode to iterate over

! 3nY group of ob;
ﬂ e bt o ﬁlli:éihd
R the implementation dcéailes

aren’t exposed.

We casily added another

implementation of menw
[ikems, and sinte we
provided an [terator,

Lhe Waikvess knew what

HashMap - do

Making an [tevator
o,v the Hashiap
Values was easy;
k when you ¢all L
values.itevator()
You 9et an [evator.

OEBPS/Image00754.jpg
You ¢an start the You use the Stop

botlon b st
VAR k'”“&{"‘ down bhe beat
L,,‘.::‘\hw e 'DJ generation L
Tonbrol mere
Notice Stop i Nobiee Start is
K G diabled aFter
stort he beal. Yhe beat has
storked

All user actions are
sent 4o the controller.

.

The conbroller takes input
From the user and fFigures
out how 4o translate that
into veauests on the model

Controller

OEBPS/Image00268.jpg
T agree this fixes the
problem. But synchronization
is expensive; is this an issue?

OEBPS/Image00513.jpg
Java gives You a lot of “collection”
classes that allow you to store
and vetrieve groups of objects.
For example, Vettor and

LinkedList. LinkedList
/X

Mengre® Mengpre® Henge® Mongr®

Most have diffevent
interfaces.

Buk almost all of

them support 2
w:y 4o obtain an

[tevator-

and wore!

#nd if they don’t support
[terator, that's okay, because now
You know how to build Your own.

OEBPS/Image00755.jpg
The BeatModel is the heart of
the application. [t implements
the logic 4o start and stop the
beat, set the beats per minute
(BPM), and generate the sound.

The model also allows us to
dbtiin its current state hrough
the etBPMO method.

OEBPS/Image00271.jpg

OEBPS/Image00510.jpg
Arraylist

We wanted to give the
Waitress an easy way to /7

l) ‘ st e Our menu items had bf"
| different im \ementations

; and two di event.

\ “nkecbaces for ikerating:
. and we didw't want her to K_!;

know about how the menu
items are implemented.

OEBPS/Image00752.jpg

OEBPS/Image00270.jpg
PERAAE BASNE SADQIEEOn 1
private "n_au: Singleton uniqueInstance;

private Singleton() {}

nd
public static Singleton getInstance() { Cheek for an instante 3

’% one, enter 3
if (uniqueInstance == null) { e— if theee .snd{\; ;‘kt
synchronized (Singleton.class) { synehronize
if (uniquelnstance == null) (

uniqueInstance = new Singleton() ; Note we only synchronize

) the fiest time through!
) k

Once in the block, check again and

) # still null, eveate an instance.

return uniqueInstance;
#The volatile keyword ensures that multiple threads

» handle the uniquelnstance variable corvectly when it
is being initialized to the Singlebon instante.

OEBPS/Image00511.jpg
Awayl_\st has 3
So we gave the Waitress an nilkin ibevator-- A(ray[_isf
[tevator for cach kind of S
aroup of objetts she needed
1o iterate over.. .. one for
\ AveayList.

. Away
/ Zterat® doesn't have Array
3 built-in
. [terator so
g .. and one for Aveay. o
———next() _, o

Zterat®

< Now she doesn’t have to worry about which
implementation we used; she always uses the same
intevfae — [terator — to itevate over menu items.
She's been decoupled from the implementation.

OEBPS/Image00753.jpg
A pulsing bar shows the beat in veal Ttime.

A display shows the eurvent BPMs and is

automatically set whenever the BPM ehanges.
The view has two j
arts, the part

Jiewing the
;;J:I 2».; model
and the park for
Conbroling things

You can enter a specifie BPM and click
S the Set button to set a specific beats

—] Per minate, or you tan use the increase
and detrease bubkons for Fine turing

Detveases Ineveases
e BPMby the BPM by
one beat e one beat per

S minute.

OEBPS/Image00273.gif

OEBPS/Image00516.jpg
MenuItem menultem = items[position];

position = position + 2;

return menultem,

import java.util.Iterator;

import java.util.Calendar;

public Object next() {

public AlternatingDinerMenuIterator (Menultem[] items)

this.items = items;
position = Calendar.DAY OF WEEK % 2;

implements Iterator<MenuItem> || public void remove() {

public class AlternatingDinerMenuIterator '

public boolean hasNext() {

MenuTtem[] items;

int position;

throw new UnsupportedOperationException (

"Alternating Diner Menu Iterator does not support remove()");

null) {

if (position >= items.length || items[position]
return false;

} else {
return true;

OEBPS/Image00272.jpg
00 Pentiples
Encapuilate W3t
Favor ompsition V€ inheritante:
Peogeam & wkerbates, mot
nplementaben
hrive for osely cowpled desigps
e ot nkeract

\
Tekween I

Classes shoud e apen for exkension
ot losed for modification

on dostrattior® Do vot

v on et 356

oy have ont I

A you need to ensE I
ckante of 3 £1ass

OEBPS/Image00275.jpg
pUnLio alasy Chooblsvesolier 1
private boolean empty;
private boolean boiled;

private static ChocolateBoiler uniquelnstance;

[private]ChocolateBoiler () {

empty = true;

boiled = false;

public static ChocolateBoiler getInstance() {
if (uniqueInstance

null) {
uniqueInstance = new ChocolateBoiler();
}

return uniqueInstance;

public void £i110) {
if (isEmpty()) {
empty = false;
boiled = false;

// £ill the boiler with a milk/chocolate

}
// rest of ChocolateBoiler code...

mixture

OEBPS/Image00514.jpg
’< all kinds
s there's all
I Yayx ot
pe o 5 lements from you
and remove ele Vet
de) tolleckion without e;tn
e o s implemented:
containsAll)
ueis) A
P Here's our od friend, the
i) terator) mebhod. With this
ot method, you tan get an [tevator
o for any tlass that implements
zgmf(, the Collection interface.
s
toAray()

Other handy methods intlude
size0), £0 et the mumber of
elements, and toArray() to furn

Your ¢ollection into an arvay.

OEBPS/Image00756.jpg
View

The beat is set at 119 BPM and you
would like bo inerease i 4o 120 J

©0 6 Control _

Click on the
inerease beat.
button

View
~whith vesults in the

controllr being invoked.

The tontroller asks
the model 4o update

its BPM by one.
Controller
You see the beat bar
pulse every 1/2 setond.
2 Because the BPM is 120, the %eo*MOde/
view gets a beat notification
every 1/1 setond.
Sy ————
T isted View is notified that the
4 120 BPML BPM changed. 4 ealls

4etBPMO on the model state.

OEBPS/Image00274.jpg
Thead

One

Thead
Two

public static ChocolateBoiler
getInstance() {

if (uniqueInstance

null) {

uniqueInstance
new ChocolateBoiler() ;

return uniqueInstance;

Value of
unjquelnstance

null

public static ChocolateBoiler
getInstance () {

null

if (uniqueInstance

null)

p—

<objectl>

<objectl>

uniqueInstance

new ChocolateBoiler ()

return uniqueInstance;

<object2>|

<object2>,

Uh oh, £his
doesn't look
g00d!

\

Two different
objects are
el

We have two

ChotolateBoiler
instances/!!

OEBPS/Image00515.jpg
The nice thing about Collections
and Iterator is that each Collection
object knows how to create its own
Tterator. Calling iterator() on an Arraylist
returns a concrete Iterator made for
ArrayLists, but you never need to see or
worry about the concrete class it uses;
you just use the Tterator inferface.

OEBPS/Image00747.jpg

OEBPS/Image00508.jpg
public class MenuTestDrive {
public static void main(String args[l) {
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ; Create a CafeMenn.

DinerMenu dinerMenu = new DinerMenu() ; C—’—’—/
CafeMenu cafeMenu = new CafeMenu() ; and pass it 4o the waitvess.

Waitress waitress = new Waitress (pancakeHouseMenu, dinerMenu, cafeMenu) ; 4——)

waitress.printhent0 ;€ Now, when we print we should see all three mens.

OEBPS/Image00750.jpg
Q&w{rn\l:v is the

e Sor the view
sbrateny for
e R ottt

m k ows how 0 handle
i Controller the user attiors

delegates 4,

the Zomtrat
ntroller We can suap in

- e

e \/ ot L,
e view by chang;

View i men .

Controller

OEBPS/Image00509.jpg
% java DinerMenuTestDrive Fiest we itevate
MENU through the
i f pancake men
'BREAKFAST

K&B's Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries nd then

Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries iro gy
=

LUNCH

Vegetarian BLT, 2.99 -- (Fakin') Bacon with lettuce & tomato on whole wheat

BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad

Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice

Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread
& \And finally
DINNER the new cafe
Soup of the day, 3.69 -- A cup of the soup of the day, with a side salad ... il with
Burrito, 4.29 -- A large burrito, with whole pinto beans, salsa, guacamole {he same
Veggie Burger and Air Fries, 3.99 -- Veggie burger on a whole wheat bun, iteration code.

lettuce, tomato, and fries

%

OEBPS/Image00751.jpg
pai nf()/\

o The view is @ composite
- ——— TH Gl components (abes
: e, text enbry, €42

% The top-level component
= / tonkains other components
& \hich contain other
M‘ Somponents, and 50 on urt

You gt to the leaf nodes:

OEBPS/Image00267.jpg
PR DN, sang et Y

private static Singleton uniqueInstance;

By adding the synchronized keyword to

d to
// other useful instance variables here gttlnstav‘“o‘;'i Emi :;:rz tz":m
wen befove it can enter
wavt»‘:j tT;at -es no two threads may
Tt ::w Lhe method 3t the same time

public static synchronized Singleton getInstance() {

if (uniqueInstance == null) {

uniquelnstance = new Singleton();
}
return uniqueInstance;

// other useful methods here

OEBPS/Image00748.jpg
Strategy

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller for any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

/7

The user did
something

U]

Q,oﬂ\vo l

The display consists of a nested set of
windows, panels, buttons, text labels and so
on. Each display component is a composite
(like a window) or a leaf (like a button).
When the controller tells the view to update,
it only has to tell the top view component,
and Composite takes care of the rest.

{
——\h)
Change you
Controller
/ state ob S erVer
Change your
display i ayer
P20 00
zip((]
Dum ()}
T've changed! ————__

View
T need your state

information

e

The model implements the Observer Pattern
to keep interested objects updated when
state changes occur. Using the Observer
Pattern keeps the model completely
independent of the views and controllers. It
allows us to use different views with the same
model, or even use multiple views at once.

OEBPS/Image00507.jpg
public class Waitress { The cafe menu is passed into the Waitress
in the construttor with the other menus,

Menu pancakeHouseMenu;
and we stash it in an instance variable
Menu dinerMenu;

Menu cafeMenu;

public Waitress(Menu pancakeHouseMenu, Menu dinerMenu, Menu cafeMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;
this.cafeMenu = cafeMenu;

public void printMenu() {
Iterator<MenuItem> pancakeIterator = pancakeHouseMenu.createIterator () ;
Iterator<Menultem> dinerIterator = dinerMenu.createIterator();
Iterator<Menultem> cafelterator = cafeMenu.createIterator();
S We've using the eafe's
-\nBREAKFAST") ; menu for our dinner
menu. All we have to do
4o print it is create the

. . iterator, and pass it to
printMenu(dinerIterator); va‘:Mcnu() That's ‘{’

System.out.println ("\nDINNER") ;
printMenu(cafelterator) ;

System.out.println ("MENU\n-
printMenu (pancakeIterator) ;
System.out.println ("\nLUNCH") ;

private void printMenu(Iterator iterator) {
while (iterator.hasNext()) {
MenuItem menultem = iterator.next(); +—— Nothing changes here.
System.out.print (menultem.getName() + ", ") ;
System.out.print (menultem.getPrice() + " -= ") ;

System.out.println(menultem.getDescription()) ;

OEBPS/Image00749.jpg
) All these observers will be
notified whenever state
changes in the model

Observers

Observable

My state has
charged!

t ! Py object {»:t’su
’ l inkerested in

I'd

o sbaer — Chngs n e ol

View yegisters with the
" J1el 35 an dbserver

The model has no dependenies on
viewers or eontrollers!

OEBPS/Image00280.jpg

OEBPS/Image00523.jpg
There comes a time when we
must refactor our code in order

for it fo grow. To not do so would
leave us with rigid, inflexible code
that has no hope of ever sprouting
new life.

OEBPS/Image00765.jpg
PEOLEE CHAs araanaeTs. 1

public static void main (Stringl] args) (
4 First teeate 3 moe)
BeatModelInterface model = new BeatModel () ;
ControllerInterface controller = new BeatController (model) ;

}
) ’K_, Ahen eveate a controller and

pass it the model. Remember,
the controller eveates the view
o v Ao baig s da hat.

OEBPS/Image00279.jpg

OEBPS/Image00524.jpg
o We need to = \
X 8 atcommodate
e ot Menus- Oingr 0¥ °

<IN

O ° ° °
© 090 ¢ Q
femirre™

o and submenus.. Grene’

Q@ 9909 M
fenne® A AP A ‘(j menu items.
We skill need o be able “//

o traverse all the items

in the tree

We 4.
‘ <0 need {5 be gh, 4o

raverse
: more Llexi
n IexXi
ntance over ge m'fly, for
hu.

0 999

4

OEBPS/Image00766.jpg
[File

indow Help LetThet

éj

% java DJTestDrive

3 Run this.

OEBPS/Image00282.jpg

OEBPS/Image00521.jpg
T just heard the Diner is
going to be creating a dessert
menu that is going to be an insert
into their regular menu.

OEBPS/Image00763.jpg
The tontroller implements

[‘ the Controllerlnterface

public class BeatController implements ControllerInterface {

BeatModelInterface model;
DaView view;

public BeatController (BeatModelInterface model) {

.model = model;

new DJView(this, model);
.createView() ;
.createControls () ;
-disableStopMenuIten() ;
.enableStartMenuIten() ;
model.initialize();

}

%

public void start() {
model.on() ;
view.disableStartMenuItem() ;
view.enableStopMenuItem () ;

3

public void stop() {
model.off () ;
view.disableStopMenulten () ;
view.enableStartMenultem() ;
)

public void increaseBRM() {
int bpm = model.getBEM() ;
model . setBRM(bpm + 1) ;

public void decreaseBRM() {
int bpm = model.getBEM() ; \
model. setBEM(bpm - 1) ;

)

public void setBPM(int bpm) {
model. setBEM (bpm) ;
3

—

£ the increase button is ¢licked,
the controller gebs the curvent
¥ BPM from the model, adds one,
and then sets 3 new BPM

The eontroller is the treamy stuff
in the middle of the MVC oreo
caokie, so it is the object that
gets 4o hold on o the view and the
model and glues it all together.

The contrller s passed the
model in the constructor and
then ereates the view

Q

When you choase Start fram the wser
interface menw, the controller tuens
the model on and then alters the user
inbevfate so that the stark menu
them is disabled and the stop men
item is enabled

Likewise, when You ¢hoose Stop from
the menu, the controller turns the
model off and alters the user interface
s0 that the stop menu rbem is disabled
and the stavt menu item is enabled

NOTE: the eantroller is
making the intelligent
detisions for the view.
The view just knows how
o turn menu items on
and off; it doesn't know
the situations in which

£ should disable them,
Same thing heve, only ve subbract hone, disble the

one from the curvent BPM

Finally, if the user interface is used 4o
set an arbitrary BPM, the controller
trebrucks B wodel 45 sebiks BEM

OEBPS/Image00281.jpg
There are “on” and
“ofE” buttons for cach
of the seven slots.

3 Joks to prodram™
R 4 S
i ul
ot and tontral it V2 o

wed o contral 1,
household device sforeg

infal one...

- and these fo ool
€ houschold devier
4 slt .

wond 0 o,

Shargie out and
i:'t('}o;;« device names heve:

Heve's the global “undo” button that
undoes the last button pressed.

OEBPS/Image00522.jpg
Here's our AvrayList
~ that holds the menus
of eath vestaurant.

Café Menu

{

¢

1

e
(00«

HashMap
~—

oa

‘/; A
‘\i

Aecayist Pessert Meny

We need for Diner Menu to hold a submens,

but we ean't actually assign a menu 4o a
£ Meulhom aveay betuse the types ave

diffevent, so this isn't going to work.

OEBPS/Image00764.jpg

OEBPS/Image00284.jpg
Well, we've got another design to
do. My first observation s that we've
got a simple remote with on and off
buttons but a set of vendor classes
that are quite diverse.

OEBPS/Image00283.jpg
CeilingLight

off)

ApplianceControl

OutdoorLight

setinputChannel()
setolume()

CeilingFan

hight)
Gardenight medium()
low()

off)
getSpeed()

selDuskTime()
setDawnTime)
manualon()

manualOf()

lightoff)

waterOn()

on)
off()
selCd)

selDvd)
setRadiol)
setvolume()

SecurityControl

seffemperature()

openvalve()
closeValvel)

Thermostat

setTemperaturel)

waterOff()

am()

disam()

OEBPS/Image00286.jpg
. O[ajectviﬂz Diner

— T el

OEBPS/Image00525.jpg
Elements with
ehild c\cmenb

ave talled nodes °
o @
Leaf ‘ Leot

Ledk
L.
Elements without childven
ave called leaves.

OEBPS/Image00285.jpg
Hey, I couldn't help
overhearing. Since Chapter 1
T've been boring up on Design

Patterns. There's a pattern
called *Command Pattern" I think
might help.

OEBPS/Image00526.jpg
We can vepresent q

our Menu and

Menultems in 3
tree structure °

M
o
Men

Henr®
Hengs®
T2

Menus ave rodes and
Menultems ave leaves:

OEBPS/Image00757.jpg
Lo the
public interface BeatModelInterface { This 9¢® "“d,:\i iated
akModel 18 "

void initialize(); B¢
These ave the methods

the controller will void on) ; £ These methods turm the
use to divect the P beat generator on and off
model based on user

interatdion. yaldiese s

This method seks the beats per
minae. Abter it is called, the

void setBRM(int bpm) ; beat Frequency changes immediately.

int getBRM() ; & The getBPMO method

These methods allow veburns the turvent BPMs,
tnf:w and the void registerbserver (Beatobserver o) ; o O if the generator is off
controller 4o act
s:u and o betome void removeObserver (BeatObserver o) ;

servers

void registerObserver (BRMObserver o) ;

void removeObserver (BPMObserver o) ;
A
This shoud lock fanilar. We've split this into two kinds of observers:
These methods allow i
eoiyiennd dbservers that vant. 4o be notified on every

beat, and observers that just vant 4o be
abservers for state changes votified ith £he beats por minete chavge.

OEBPS/Image00758.jpg
This is needed for
We implement: the BeatModellnterface (the WD e
public class BeatModel implements BeatModelIntebface, MetaEventListener { 1€ sequenter is the
Sequencer sequencer; E object that knows how

Arraylist<BeatObserver> beatObservers = new ArrayList<BeatObserver>(); t generate real beats
ArrayList<BPMObserver> bpmObservers = new ArrayList<BRMObserver>(); (that you tan hearl).

int bpm = 90;
77 other Sastesics wasiusied Hase R These ArvayLists hold the b lds of
This method dots obsevvers (Beat and BPM observer:
setup on the The bpm instance variable holds the
freauency of beats — by default, 90 BPM

public void initialize() { £~
setupidi () 1
buildTrackAndStart() ; Acoenten: and sets

) up the beat tracks

" us.
public void on() {

sequencer.start() ; < The onl) method starts the sequencer and

, R sets the BPMs bo the defautt: 90 BPM
P“"’iz;&i‘;f“’ ¢ & And ofFO shuts it down by setting BPMs
sequencer . stop () ; t0.0 and stopping the sequenter.
3 . The setBPMO method is the vay the contraller
manipulates the beat. [t does three things:

public void setBPM(int bpm) {
this.bpm = bpm; < (1) Seks the bpm instance variable

sequencer . setTempoInBEM (getBRM()) ;
e N (2) fsks the sequenter to hange its BPMs

) S~ (3) Nofifies all BPM Observers that the BPM

has changed.
public int getBBM() (
RORUER Diow k\m aetBPMO mebhod just veturns the bpm instante vaviable, which
} indicates the curvent beats per minute.

void beatEvent() {
noti fyBeatObservers () ;

The beatEverk() method, which s not in the BeatModelinterface, s
A aled. by the MIDI cade vhenever 3 new beat starts. Thi methed
O ities all BeakDbsevvers Ehak 3 new beat has just otturved

// Code to register and notify cbservers
// Lots of MIDI code to handle the beat

3

OEBPS/Image00519.jpg

OEBPS/Image00761.jpg
public class DJView implements Actionlistener, BeatObserver, BFMObserver {
BeatModellInterface model;
ControllerInterface controller;
JLabel bpmLabel ;
JTextField bpmTextFiel
JButton setBRMButton;
JButton increaseBPMButton;
Toncton dacrensemmmation; §
JMenuBar menuBar;
JMenu menu;
JMenuTtem startMenuItem;
MenuTtem stopMenuItem;

public void createControls() { K e method ersaleralling.d

// Create all Swing components here ontrols and places them

in the interfate. [£ also Lake

o takes eare of the meme When
the stop or start items are chosen, the cmsm.,;
el oroiih anaiildiiboglbmiibntif 1 methods are called on the controller.
stopMenuItem.setEnabled (true) ;

)

¥
Al these methods allow the start and
public void disableStopMenultem() { stop items in the menu 4o be ensbled and
e dissbled. We'll see that. the omtroller wses

: these 4o change the interCace

public void enableStartMenuItem() {
startienulten. setEnabled (true) ;
)

This method is called when a button is clicked

public void disableStartMenuItem() (
startMenulten. setEnabled (false) ;
) € the Set butbon is
clcked then it s passed
public void actionPerformed (ActionEvent event) { on 4o the controller

if (event.getSource() setBPMButton) { along with the new bpm.
int bpm = Integer.parselnt (bpmTextField.getText () ;
controller. setBPM(bpm) ;

} else if (event.getSource() increaseBPMButton) { Likevise, if the inerease
controller.increaseBRM() ; T or deerease buttons ave

} else if (event.getSource() decreaseBPMButton) { ¢licked, this information is
controller.decreaseBRM() ; passed on fo the controller.

)

OEBPS/Image00520.jpg
DESIEEEL QLA PALENe. L

ArrayList<denu> menus; V) :f:;: ifvtk;f

public Waitress (ArrayList<Menu> menus) {
this.menus = menus;

pribilie voidpriutimmil § Aind we iterate through the
e menus, passing eath menu's

iterator to the overloaded

printMen() method

Iterator<Menu> menulterator = menus.iterator () ;
while (menulterator.hasNext()) {
Menu menu

menulterator.next () ;
printMenu (nenu. createIterator ()) ;

void printMenu(Iterator<Menu> iterator) {
while (iterator.hasNext()) { A~ No tode
Menultem menultem = iterator.next () ; changes here
Systen.out.print (nenultem.getName () + ",
System.out.print (menultem.getPrice() + " - ");
System.out.println (menultem.getDescription()) ;

OEBPS/Image00762.jpg
tieve ave all the
methods the view can
¢all on the controller.

X These should look familiar o you after secing
RO the model's interface. You ean stop and stark.
void increaseBEM() ; S the beat generation and change the BPM
&— This 'mtzviau is “vicher” £han the BeatModel
interface because you ean adiust the BPMs

with intrease and detrease.

public interface ControllerInterface {
void start();

void stop() ;

void decreaseBEM() ;
void setBRM(int bpm) ;

OEBPS/Image00278.jpg

OEBPS/Image00517.jpg

OEBPS/Image00759.jpg
We've sepavated
the view of the
model from the

Mew view vith the
e)
The DJ view

displays two
aspecks of the C

BeatModel..
he curvent and a pusing “beat
beats per bar” pulses in synch
minute, from the with the beat, driven
BPMObserver by the BestObserver

notifications notifications.

OEBPS/Image00277.jpg
These top secret drop
boxes have revolutionized the spy
industry. T just drop in my request and
people disappear, governments change
overnight and my dry cleaning gets done. T
dorit have to worry about when, where, or

how it just happens!

OEBPS/Image00518.jpg
[hree eveateltevator() calls.

public void printMenu() (
Iterator<MenuItem> pancakeIterator = pancakeHouseMenu.createIterator () ;
Iteratordenultem> dinerIterator = dinerMenu.createlterator () ;
Iteratordenultem> cafelterator = cafeMenu.createlterator () ;

System. out.println ("MENU\n----\nBREAKFAST") ;

printMenu (pancakeIterator) ;
N

System.out.println("\nLUNCH") ; Three ealls to

printMenu (dinerIterator) ; v printMens

System.out.println("\nDINNER") ;
printMenu (cafeTterator) ;

Every time we add or vemoe 3 menu we've going
o have +o open this ode up for changes.

OEBPS/Image00760.jpg
DJView is an observer for both veal—time beats and BPM changes

L

public class DJView implements ActionListener, BeatObserver, BEMObserver {

BeatModelInterface model;
i <~ The view holds a refevente to both the model and
Conerol sTinterface controller) e~ the controller- The controlle is only wsed by the
Tane viewFrame; eontrol interface, which we'l go over in sec.
JPanel viewPanel; He
ere, we treste 3 few

BeatBar beatBar;
JLabel bproutputiavel;) ‘mForents for the displyy

public DView(ControllerInterface controller, BeatModelInterface model) {
this.controller = controller;

this.model = model; ST The constructor gets a veference

model. registerObserver ((BeatObserver) this) ; 4o the controller and the model

model . registerObserver ((BPMObserver) this) ; and we stove veferentes to those
} in the instance varibles.
public void createView() { We also register 35 a BeatObserver and

// Create all swing components here 3 BPMObserver of the mod,

1
L The updateBPMO method is ealled when a state

public void updateBPM() { ¢hange otturs in the model. When that happens we
int bpm = model.getBEM() ; — update the display with the eurvent BPM. We can get
if (bpm == 0) { this value by vequesting it directly from the model.
bprOutputLabel . setText ("offline") ;
) else (

bpmOutputLabel . setText ("Current BPM: " + model.getBEM()) ;
)
1}
& Likevise, the updateBestO) method is called

T —— when the model starts a new best. When that
beatBar . setValue (100) ; happens, we need o pulse our ‘beat bar.” We do
§ his by setting it 4o its maximum value (100)

) and letting it handle the animation of the ulse

OEBPS/Image00496.jpg
3 the
Now, Waitress We've detovpled Waitress i‘:’"so i
only needs to m‘,le...en’rﬁl:'mn :*‘;';p _‘{;Y ste
) be tonterned e an |terator)
Here's our new Mens inferface. s Mo and we an use B0 17 ems vithout

It specifies the new method,
ereatelterator().

2 &/Itcrahws-

over any list of
jing) £o
g ‘.ﬁ::? s implemented:

\now about. how

PancakeHouseMlenu DinerMenu

menultems menultems
createteralor) createlorator)

‘Q .PantakeHouseMenu and DinerMenu now
implement the Menu interface, which

means they need 1o impl & the
ereatelberstor) methed

A

Waitress
printenu()
hashiext()

next()
romove()

<<interface>>
Iterator

PancakeHouseMenulterator

DinerMenulterator

hasNext()
next()
removel)

We've now using the
AvrayList iterator
supplied by javautil. We
don't need this anymove.

Eath eontrete Menu is vesponsible
for eveating the appropriate

etontrete [tevator elass.

hasNext)
nex)
remove()

3

DinevMenu veturns
an DinevMenulterator
from its
eveatelterator)
method beeause
+that's the kind of
iterator vequived

o itevate over its
Avray of menu items.

OEBPS/Image00490.jpg
These bwo menus implement the
same evact set of methods, but
they aren't implementing t!xz same
oakerfate. We've going to Lix this
and frec the Waitress feom any
dependenties on contrete Menus:

N

The [tevator allows the Waitress to be decoupled
Srom the ackual implementation of the contrete
tlasses. She doesn't need to know if @ Menu is
implemented with an Areay, an Areaylist, or with
Post—it® notes. All she cares is that she ean get an
[terator 4o do her iterating.

We're now using 3
Ctommon [tevator
interface
and we've

imPlemented two

/ \‘ \/ Contrete elasses.

" PancakeHouseMenu

Waitress

menutems

createlerator)

Dinerhenu

createlterator()

printhlenu()

—>{ PancakeHouseMenulterator

hashext)
next()

Note that the iterator

jves
step through the :Ien.en(?s anaa;:lg?te

without \fomng the a i
s e et s ce et

support. traversal of its elements. [£ also allows

A

the implementation of the itevator bo live

outside of
entapsulated the interation.

the aggreqate; in other words, we've

DinecMenw

PantakefouseMens and
\:Y\cmen{ e ew treatelteratord)

_ ;
mekhod; they 2re (T ettive mens

onsible For ereatiny

oS mplementations

OEBPS/Image00732.jpg
Stop looking at me.
You're making me
nervous!

°

QuaLkobwvcrable

OEBPS/Image00491.jpg
& This looks just like our previous dekinition.

<cinterface>>
Iterator

hasNext()

nest)

Except we have an additional method that
remove)

< allows us to vemove the last item veturned
by the nextO) method from the agoreaate.

OEBPS/Image00733.jpg
bserable implements all the functional %Y

+ 4o be an dbservable. We Observable must implement. QuackObservable
. ﬁ“:‘::‘t ;T:: v:‘;n(: a class and have because these are the same method calls
st clase delegate to Observable gmc are g0ing to be deleaated 4o it
I the consbruttor we act
public class Observable implements QuackObservable { passed the Quabkmﬂﬁf\"e
Arzaylist<Cbserver> observers = new Arraylist<observer> () ;| that it using this obict

QuackoObservable duck; £o manage its dbservable

behavior. Check out the

nokidyDbserversO) method
public Observable (QuackObservable duck) { below; you'l see that when
this.duck = duck; a notify oturs, Obsevvable
)

pases i aeject alorg 0
4hat the obsevver knows
public void registerObserver (Observer observer) { hich gtk s qackiny
observers.add (cbserver) ;

K~ Here's the code for
}

vegjstering an observer
public void notifyObservers() {
Iterator iterator = observers.iterator();
while (iterator.hasNext()) {
Observer observer = iterator.next();
observer . update (duck) ;

i TN And the code for doing
Y the notifications.

Now let’s see how a Quatkable ¢lass uses this helper...

OEBPS/Image00488.jpg
it _Wind.

% java DinerMenuTestDrive

Help_GreenEggeiHam

MENU First we itevate

Ehrough the

BREAKFAST pancake menu.

K&B's Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast

Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage And then

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries the lunch

Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries menu, all
with the

LUNCH (?&:{wn

Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat , i -

BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad

Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

OEBPS/Image00730.jpg
QuatkObservable is the interrace

nt
hst. Quackables should impleme
ﬁ %f :hfy wank 4o be observed

public interface QuackObservable {

public void registerObserver (Observer observer) ;
It has a method for vegistering

ubl.: d notifyOb: 0
public void notifyObservers N Observers. Ay obieet implementing
} the Observer intevface can listen
s i i e e

notifying the observers.

OEBPS/Image00489.jpg
Woohoo! No

code changes other
‘than adding the

createIterator() method.

Veagie burger

OEBPS/Image00731.jpg
public interface Quackable extends QuackObservable {

public void quack(); K
) So, we extend the Quackable

interface with QuatkObserver.

OEBPS/Image00494.jpg
“ This is 3 simple interface that

Jut leks elients get an sterator
public Iterator<Menultem> createlterator(); fov the ibems in the menu.

public interface Menu {

OEBPS/Image00736.jpg
We need to implement. the Observable intevkace or else
we vor't be able 4o vegister with 2 QuackObservable

y

public class Quackologist implements Observer {

public void update (QuackObservable duck) {
System.out.println("Quackologist: " + duck + " just quacked.");

| i)

The Quackologist

method, update()
Quackable that

is simple it just has o
) which prints out the”
just quacked

OEBPS/Image00495.jpg
e £ Now the Waitress uses the Jjavautil terator as wel

public class Waitress {

Menu pancakeHouseMenu We need to veplace the
Menu dinerMenu; /—\ tonerete Menu elasses with
the Menu Interkace.

public Waitress(Menu pancakeHouseMenu, Menu dinerMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

public void printMenu() (
Iterator<Menultem> pancakelterator = pancakeHouseMenu.createIterator();
Iterator<MenuItem> dinerIterator = dinerMenu.createIterator();
System.out.println ("MENU\n----\nBREAKFAST") ;
printMenu (pancakeIterator) ;
System.out.println("\nLUNCH") ;
printMenu (dinerIterator) ;

Nothing changes

private void printMenu(Iterator iterator) { here.

while (iterator.hasNext()) {
MenuItem menultem = (Menultem)iterator.next();
System.out.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ");
System.out.println(menulten.getDescription()) ;

// other methods here

OEBPS/Image00492.jpg
1 T 'telterator() {

PRAEeE SHSERECESINEL B0 :‘ei‘: £ Instead of eveating cur own evator

return menultems.iterator(); now, thu:(: call the itevator()
method on the menulbems ArvayLish

OEBPS/Image00734.jpg
Each Quackable has an

public class MallardDuck implements Quackable {
Obsevvable instance variable.

Observable observable;

public Mallardbuck() { In the onstructor, we ereate an
observable = new Observable(this); (2~ Observable and pas it 3 reference
o the MallardDuck object

public void quack() {

System.out.println("Quack") ; When we quack, we need
notifyobservers () & tolet the observers know
) about it.

public void registerObserver(Observer observer) {
observable. registerCbserver (cbserver) ;

public void notifyObservers() {

observable.notifyObservers () ; Heve are owr two QuatkObservable
S methods. Notice that e just

1
delesate +o the helper.

OEBPS/Image00493.jpg
S S) ET T Futwimpert javaucilerator, the
interface we've gaing 4o implement

public class DinerMenuIterator implements Iterator {
MenuItenm[] list;
int position =

public DinerMenuIterator (MenuItem[] list) {
this.list = list;

None of our turvent.
jon thanges
public MenuItem next() { implementatior thange
//implementation here

but ve do need to implement vemove()
e ey Heve bcause the chek s ing 3 Fricd-ize
) Avvay, we just shift all the elements up one
when vemove() is ealled.

public void remove() {
if (position <= 0) {
throw new IllegalStateException

You can't remove an item until you've done at least one next()

}
if (list[position-1]

null) {

for (int i = position-1; i < (list.length-1); i++) {
list[i] = list[i+l];

}

list[list.length-1] = null;

OEBPS/Image00735.jpg
The Observer interface just has one
nethod updatel), whieh s passed tpe
QuatkObservable tht ;s quacking

public interface Observer {
ic interface Ob)
lic void update (QuackObservable duck)
public

OEBPS/Image00728.jpg
% java DuckSimilator

Duck Simulator: With Composite - Flocks
Duck Simulator: Whole Flock Simulation
Quack

Kwak /
Squeak

Honk

Quack

Quack

Quack
Quack

Weve's the first flotk

Duck Simulator: Mallard Flock Simulation

Quack And now the mallavds.
e
Quack
The data lodks
gac)‘: (vemember the
28 aoose doesnt gt
Counted)-

The ducks quacked 11 times

OEBPS/Image00487.jpg
we treate The new menus.
public class MenuTestDrive { First we

public static void main(String args[l) { \[
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ;

DinerMenu dinerMenu = new DinerMenu() ;

Waitress waitress = new Waitress(pancakeHouseMenu, dinerMenu); &- Then we ereate 3
Waitvess and pass

her the menus.
waitress.printMenu() ;

Then e print them

OEBPS/Image00729.jpg

OEBPS/Image00727.jpg
Paale: CLASE DackSLmLIATOE 1
// main method here Create all the
void simulate (AbstractDuckFactory duckFactory) { &“‘;L‘kabf’;
Quackable redheadDuck = duckFactory.createRedheadDuck () Just e betore
Quackable duckCall = duckFactory.createDuckCall () ;
Quackable rubberDuck = duckFactory.createRubberDuck () ;
Quackable gooseDuck = new GooseAdapter (new Goose())

System.out.println("\nDuck Simulator: With Composite - Flocks");

S~ First we ereate a Flotk, and

#£1ockO£Ducks . add (redheadDuck) ; load it up with Quackables.

£lockOfDucks . add (duckCall) ; /
£lockOfDucks . add (rubbezDuck) ;

£lockOfDucks . add (gooseDuck) ;

Flock flockOfDucks = new Flock () ;

Then we treate 3 new

Flock of mallards.
Flock £lockOfMallards = new Flock() ; /
Quackable mallardone = duckFactory.createMallazabuck(); & N fere wele
Quackable mallardTwo = duckFactory.createMallardDuck () ; ereating 3
Quackable mallardThree = duckFactory.createMallardDuck () ; little family of
Quackable mallardFour = duckFactory.createMallardDuck () ; mallards.
f£lockOfMallards . add (mallardone) ; sid adding thes o the

flockOfMallards. add (mallardTwo) ; Flotk of mallavde
f£lockOfMallards .add (mallardThree) ; e
flockOfMallards . add (mallardFour) ; Then we add the Flock of

& mallards to the main Flock

£lockOfDucks . add (flockofMallards) ;

System.out.println("\nDuck Simulator: Whole Flock Simulation");
simulate (flockOfDucks) ; < Let's test out the entive Floek!
System.out.println("\nDuck Simulator: Mallard Flock Simulation");
simulate (flockOfMallards) ; ’
ST Then lets just best aut.the mallards Flock

System.out.println("\nThe ducks quacked " +
QuackCounter .getQuacks () +

) " times") ; Ko Finlly let’s gue the

Quatkologjst, the data
void simulate(Quackable duck) {

duck.quack () ;
) TN o Holllement i hasne e Pl fodd

OEBPS/Image00501.jpg
Game

login(
signup()
move()

e

rest()
getighScore()
getName()

GameSession

login()
signup()

PlayerActions

Player
gethighScore()
getName()

OEBPS/Image00743.jpg
p - ST S

OEBPS/Image00502.jpg
Good thing you'e
learning about the Iterator
pattern because I just heard that
Objectville Mergers and Acquisitions
has done another deal... we're merging
with Objectville Café and adopting their
direr menu.

OEBPS/Image00744.jpg
Cute song, but is that really supposed
to teach me what Model-View-

Controller is? T've fried learring MVC
before and it made my brain hurt.

OEBPS/Image00499.jpg
Game
login()
signup()
move()
fre()
rest()

DeckOfCards

hasNext)
next)
remove()
addCard()
removeCard()
shuffe()

Person

Sehanel) Phone

selAddress()

setPhoneNumber() dial)

savel) ‘hangUp()

load) a0
sendDatal)
fash)

ShoppingCart
add)
removel)

checkOut)
saveForLater()

GumballMachine

getCount()
getState()
getLocation()

terator
hasNext)
next()
remove()

OEBPS/Image00741.jpg
o el mit mplenent
e DuckSimaatr i 3 by o rate Dok o

Each Guakale s an

instante of Observable
to keep brack of thew
S sy i
oo witolenn
e
™
Yo e it
ek ey -
O 2 The Doy
ke
et &Y oy
M) m)u dutks wagped in
s e et dtmaors =
oo - We have bwo kinds
bserve Quackable, pkables: dutks ard.
i (e s M“
beenil k behavior: lv\z
xeg T Omchciogn the ét«scir\: ::LLK
_—wm——'l ey e
Pt ‘q ” Flotk, whith s 3
or o glemented one I
e :At i e “‘k&::f %mj QuatkCaunter, which 38ds
e e i
" o e
Penertg s Brggtyse o S

OEBPS/Image00500.jpg

OEBPS/Image00742.jpg
viee 7),

Creamy
Contal
Contraller

»

K Model

OEBPS/Image00505.jpg
CafeMenu implements the Menu intevkate, so the
5 £ Waitress ¢an use it just like the other two Menus.
public class CafeMenu implements Menu {

HashMap<String, MenuItem> menultems = new HashMap<String, Menultem>() ;
public CafeMenu() { —~ We've wsing HashMap beeause it's 3

// constructor code here common data structure for storing value

public void addTtem(String name, String description,
boolean vegetarian, double price)

MenuItem menultem = new MenuItem(name, description, vegetarian, price);

menuTtens.put (menultem.getName() , menultem) ;

i i e e dow. exose the implementation of
enultems b the Waikress

5

public Iterator<Menultem> createlterat And here's where we implement the
TRLor0 L estelberatorl) method. Notie that

return menuTtems.values () .iterator();
we've not aekking an [terator for the

)
} S hole HashMap, Just for the values

e dust ke bebove, we can get vid of aetftens(

OEBPS/Image00506.jpg
public Iterator<Menultem> createlterator() {
return menultems.values().iterator();
¥
Firsk we aet the values of the Luckily that eolleetion supports the

Hashtable, which is just a collection of st st
all the objetks in the hashtable. objeck of éw:;va:t:fu:fgfx B

OEBPS/Image00503.jpg
Wow, and we thought things
were already complicated.
Now what are we going to do?

Come on, think positively.
T'm sure we can find a way o
work them into the Iterator
Pattern.

OEBPS/Image00745.jpg
Yo'/ Yousee the sorg

display update and

playing

Model tells the
view the sfate has
changed
the
m
the 'Ode/

e
n stagg” OF

Notifies

? hange

The model tontains all the state, / Model

data, and application logic needed
1o maimtain and play mp3s.

*Play new sorg"

Controller

Controller asks
Player model to
begin playing
song

controller
manipulates
the model

OEBPS/Image00504.jpg
& our mew Ment

CafeMens dotsn't v,.yvml; o

Lo , ms in a HashMap.
inkerlate, but B 1 €28 The café is storing Eheir menu items in @
public class cat‘e&de{(\ £ Does that support fberator? Wel see shorty.

HashMap<String, Menultem> menultems = new HashMap<String, MenuItem>();

Lhe other Menus, the menu items

public CafeMenu() { Like
ruttor.
addTtem("Veggie Burger and Air Fries", O e m the cons
“"Veggie burger on a whole wheat bun, lettuce, tomato, and fries’,
true, 3.99);

addTtem("Soup of the day",
"A cup of the soup of the day, with a side salad",
false, 3.69);
addItem("Burrito",
"A large burrito, with whole pinto beans, salsa, guacamole",
true, 4.29);
} Heve's wheve we create 3 new Menultem
L 0 add 4o the meltens hashtable
public void addItem(String name, String description,
boolean vegetarian, double price)
{
MenuItem menultem = new MenuItem(name, description, vegetarian, price);
menultems.put(menultem.getName (), menultem);

~_
NMThe key s e s, T vl i the membben chict

public Map<String, Menultem> getItems() {
return menultems;

N R We've not going o need this anymore.

OEBPS/Image00746.jpg
VIEW

Gives you a presentation
of the model. The view
usually gets the state
and data it needs to

display directly from
the model.
The user did
something

This is the user
inkerface

CONTROLLER

Takes user input and figures out
what it means to the model

Bere's the exeamy
controller; it lives in

the middle

€ ®

Change your
Controller state
@) Change your
display

0]

Tve changed! ————

/
TView \1 e /

information

MODEL

The model holds all

‘the data, state and
application logic. The
model is oblivious to
the view and controller,
although it provides an
inferface o manipulate
and retrieve its

state and it can send
notifications of state
changes to observers.

Bere's the
model; it
handles all
apglication data
ard logic.

OEBPS/Image00497.jpg
Having @ common interface for your
aggregates is handy for your tlient;
£ decouples your client trom the

implementation of your collection of objects

The [terator interface
provides the intevface

+that all iterators
must implement, and
a set of methods

.

for traversing over

“‘;’m B elements of a collection.
R Here we've using the
b javautil erator. €
o You don't want to

use Java's [tevator
interfate, you tan
always ereate your own.
Concretelerator
hasNext()
next()
remove()

Concms:lgaregm >
createlterator()
\ Each
Conereteagrenate
i bl
e bl it
has a eollection of Conevetelterator that

objects and implements
the method that
veturns an [terator for
its eolleetion.

¢an iterate over its
callection of objects.

|

The Coneretelterator is
vesponsible for managin
the turvent position o(?
the itevation.

OEBPS/Image00739.jpg
That was quite a Design Pattern
workout. You should study the
class diagram on the next page
and then take a relaxing break before
continuing on with the Model-View-
Controller.

OEBPS/Image00498.jpg
.- g

OEBPS/Image00740.jpg

OEBPS/Image00737.jpg
POl OISR R LeonT §
public static void main(String[] args) {
DuckSimulator simulator = new DuckSimulator () ;

AbstractDuckFactory duckFactory = new CountingDuckFactory () ;

simulator.simulate (duckFactory) ;

void simulate (AbstractDuckFactory duckFactory) {
// create duck factories and ducks here
// create flocks here

System.out.println("\nDuck Simulator: With Observer");

All we do heve is treate

Quackologist quackologist = new Quackologist(); <, Quackelosst and sct
£lockOfDucks . registerObserver (quackologist) ; him as an observer
the flotk.
simulate (£lockofDucks) ; (—\
System.out.println("\nThe ducks quacked " + The *{"‘ WT"L
we just simula
QuackCounter. gotguacks) + U ebive itk
" times") ;
¥
void simulate(Quackable duck) { Let's gve it a try

duck. quack () and see how it works/

OEBPS/Image00738.jpg
% java DuckSimulator

Duck Simulator: With Observer

Quack.
Quackologist:
Kwak
Quackologist:
Squeak
Quackologist:
Honk
Quackologist:
Quack
Quackologist:
Quack.
Quackologist:
Quack.
Quackologist:
Quack.
Quackologist:

Redhead Duck just quacked. &~ ::?jc::uk
Duck Call just quacked. obsevver aets 3
Rubber Duck just quacked.

Goose pretending to be a Duck just quacked.
Mallard Duck just quacked.

Mallard Duck just quacked.

Mallard Duck just acked.
Sk o And the

Mallard Duck just quacked, ::tk‘:l:gti séj}lt

The Ducks quacked 7 times.

OEBPS/Image00151.jpg
LN

Whip is 3 decorator, so it alo
miveors DarkRoast's 4ype and
includes a cost() method.

OEBPS/Image00150.jpg
The Motha dbject s 2 detorator- [&
\9)\: oojeet it is detorating

T s
o s case, 3 Beverdde (By “mivvors
)

it i the same bR

we med

o, Motha has 3 Lost() method o0,
I\ and throwdh potymarphism v E30 freat
any Beverase wapged im Moth2 2
B evevage, boo (oecause Motha is 3
“wbbype of Beverage)

OEBPS/Image00153.jpg
Eath component ¢an be used on its
own, or wrapped by a detorator.

c
Mmﬂgm o component
methodB()
The ContreteComponent Il other methods T
is the objeet we've goin ch decora -
to dyna-;)ucaliy add Eewg (wraps) a tomponent, which
behavior to. [t extends means the detorator has an
Component. instance variable that holds a
ConcreteComponent Decorator veferente 4o a tomponent.
methodA) methodh)
methodB() methodB()
Ifother methods ter methods \/ Deeorators implement. the
<ame interkate o absbract

ss as the componen’ they

ela Lo detovate:

ave 9oing

ConcreteDecoratorA ConcreteDecoratorB
| Componenturappedon Companent wrappedObi
Object newState

has a ey
The ContrekeDecorator has an | metodh) Decorators tan € ebend e

inskance vaviable for the thing it | methocB methodh) i
newBeh the ¢ ent
detorates (the Compoent the i um;,::&s methodB) state of ompon
Il other methods

Detorator wraps):

Detorators tan add new methods; however, new
behavior is typically added by doing computation
bebore or after an existing method in the tomponent.

OEBPS/Image00152.jpg
(You'll see ».o)w -
Tew pases
© Whip calls cot) on Motha f/[a fow e

© First, we call cost() on the
oubmost decorator, Whip- @ Mocha calls costO) on
DarkRoast.

@ DavkRoast veburn:

its cost, 99 tents.
o th; adds its Enh\, 10 cents,
€ vesult from Mocha, and
bhetetleqkicn S

| veburns the new total, 7119

OEBPS/Image00155.jpg
Okay, I'm a little confused..
thought we weren't going to use
inheritance in this pattern, but rather
we were going to rely on composition
instead.

OEBPS/Image00154.jpg
Peverage aLts s 4
Sosbrack compon®

nt tlass:

HouseBlend

cost)

cost()

component

The four contrete

¢omponents, one per
wé:z type:

Milk

Beverage beverage

Beverage beverage

cost()

cost)
geiDescription)

And heve are our tondiment decorators; notice
{hzéneed to implement ot only eost) but also

getDeseription). We'll see why in a moment..

OEBPS/Image00156.jpg
ip calls ost() on Mocha-
© First, ve call costO) on the @ Motha talls costO on
auter most. detorator, Whip X DarkRoast

© DarkRosst veturns
its cost, 99 cents.

© Whip adds its total, 10 eents,

4o the vesut from Maths
) and
RIS Ouniiia
DarkRoast, and vetuens

Ehe new dotal, 119

: for
This Y\b’vNC was
3 “dark voast moth?
whip \beverade:

OEBPS/Image00147.jpg
CLOSED

BUSINESS HouRs:

OEBPS/Image00149.jpg
arkRoT

OEBPS/Image00148.jpg
Okay, enough of the
*Object Oriented Design Club." We
have real problems here! Remember

us? Starbuzz Coffee? Do you think you
could use some of those design principles fo

actually help us?

OEBPS/Image00162.jpg
AR

Fiest we extend the Bererdx
o, snce s s 2 bevera%
public class Espresso extends Beverage {

public Espresso() {

description = "Espresson; &——— © Lake cave of the desription, we set
) ! Lhis in the construttor for the class.
Remember, the destription instance
saviable is inhevited from Beverage
public double cost() (
return 1.99;
)

‘ L Fially, ve veed Compute th

¢ tost of an Bspresso We dmx’{:t
" bo worvy about adding ondiments in Ehis 6255 ¥ 3
et

:tcd 1o vekuen the price E

o Espressor 111
public class HouseBlend extends Beverage (
public HouseBlend() {
description

"House Blend Coffee";

Starbuzz Coffee
i ffees
public double cost() { ?WBE glend 82
return .89; Dark RO2SE -?5
1.
) Okay, here's anobher Beverage. Al ve ecs SN =2
o ekt syt derpbon e
‘House Blend Cotfee,’ and then veturn Condiments
the corveth cosk: 8% Crennad W 0
Mocha '
You can create the other bwo Beverane classies

15
soy .10
Whip
(DarkRoast and Detak) in exattly the same vay

OEBPS/Image00161.jpg
d o be
Firk, vt) B

/ o the Bevera 2%

public abstract class CondimentDecorator extends Beverage {

public abstract String getDescription() ; C_\
}

Welve also aoing to veauire
that the condiment

decorators all veimplement the
aetDescriptionl) method. Agin

we'll see why in a set.

OEBPS/Image00164.jpg
public class StarbuzzCoifee {

diments,
dex up an espresso no CoN
« g:dt\:n:{ ks deseription and tost

public static void main(String args(]) (

Beverage beverage = new Espresso() ;

System.out.println (beverage.getDescription ()

T e o Make 3 DarkRoast dojett
Beverage beverage2 = new DarkRoast() ; ¢ Wrap it with a Motha
beverage2 = new Mocha (beverage?) ; & —
beverage2 = new Mocha (beverage2) ; & //*3P it in a setond Motha
beverage2 = new Whip (beverage2); <—— Wrapitina Whip.
System.out.println (beverage2.getDescription ()
+ 7 §" + beverage2.cost());

Beverage beverage3 = new HouseBlend() ;

€ Finally, give us 3 HouseBlend

beverage3 = new Soy (beverage3) ; with oy, Motha, ard Whip
beverage3 = new Mocha (beverage3) ;

beverage3 = new Whip (beverage3) ;
System.out.println (beverage3.getDescription ()

+ " $" + beverage3.cost()) ;

OEBPS/Image00163.jpg
ol

Lo
Motha is a decorator, so we enbee (:mvd"“"wc
extend CondimentDetorator. K:L " Deiecd¥ e g e mskantiote Motha with 2

vekevente to 3 Beverase vn%
l (1) An instance Laiable to hold the

public class Mocha extends CondimentDecorator (
Leverane v are WWaRENS

Beverage beverage; everdy stante
W hwyte sek his instan .
Jble o the ob; etk e ave WrapFy
public Mocha (Beverage beverage) { b sl aona i, pass the beverdse

welve 3

this.beverage = beverage; “‘T:; wwapping &0 the detorator's

we
) eonstruttor

public String getDescription() {

return beverage.getbescription() + ", Mocha";
) L We vant our destription to not only
include the beverage — say “Dark
public double cost() { Roast” — but also 4o intlude each
return beverage.cost() + .20; item decorating the beverage (for
, instance, “Dark Roast, Motha). So
, we twt delegate to the object we are
beverase detorating to get its description, then
ed ko tompute the tost of o append *, Mocha” +o that descripki
o roona. Frs, e delegte the dl 2 the Pre Hhat deseription.

Yoot it can compute the

aejeck v detorabng 50 Nt the it

St then, we add the tost

OEBPS/Image00166.jpg
'A—IIMNmb&]nFu(‘ShQAm s
Is0 a tonerete decorator.
It adds the ability WE
count. the line numbers as
it veads data

A text file for veading.

J

o A comerert
qesocated T

£ lies severd)
\/0 W-ﬂ;ﬁ FlelnputStred™

erts, e
BubferedinputStrean is e ST g
: c&nm&g decorator Arvaying &i “;I“;e " base
 EhevednputShream adds ers NI] o
bufeving behavior £ 3 ok from WO 4y vead DI

FlelnpubStream: # bufers
input £o improve performance.

OEBPS/Image00165.jpg
Fi

Edit_Window_ Help Clo. fee

% java StarbuzzCoffee

Espresso $1.99

Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34
%

OEBPS/Image00158.jpg

OEBPS/Image00157.jpg
Okay, T need for you fo
make me a double mocha,
soy latte with whip.

[
o
Storbuzz Coffee
Cottaes
House Blend g
Dark Roast og
Decat N
Espresso 199
Condiments
Steaned Milk 10
Hocha o
=oY) .15
Whip .10

—————

OEBPS/Image00160.jpg
public abstract class Beverage {

String description = "Unknown Beverage";

public String getDescription() {

return description;

public abstract double cost();

a0e is an abstract
Dot e b ks

eDescription ard tost0).

aetDeseription is aleady
implemented for us, but ve
need 4o implement costO)
in the subelasses.

OEBPS/Image00159.jpg

OEBPS/Image00136.jpg
T used fo thirk real men
subclassed everything. That was
until T learned the power of
extension at runtime, rather than
at compile time. Now look at el

OEBPS/Image00129.gif

OEBPS/Image00128.jpg
00 Basies

Postrattion

00 Printiples
Ema\vsu\at: what varies:

v
Favor Compasition V€
inhexitante:

1 st
Here's your newes
e Renerber
(Toosly cougled desons 3¢
ot more Hlexble and
vesilient £o change

A new patiern for commuricating state to a

set of objects in a loosely coupled manner. We
haven't seen the last of the Observer Pattern—
just wait until we 4alk about MVC!

OEBPS/Image00131.jpg

OEBPS/Image00130.jpg

OEBPS/Image00133.jpg

OEBPS/Image00132.jpg

OEBPS/Image00135.jpg
nnoa LIS T E NN e
S nannanen
aon ‘o3 s elrlviele]

a _n s
aHngnoonononon

s
ol el e e el
O Oon o0 ANy
o T an
o non [I |
O BDo@a N
O Bon]
e Al e ls sy e
ﬂﬂﬂﬂgﬂﬂﬂﬂ E on H

T
[(W r ele e ialolefn P lule (L1 ls n e]

OEBPS/Image00134.jpg
import java.util.Observable.
import java.util.Observer;

lements

public class Forecastbisplay i
Observer, DisplayElement {

i
Private float currentoressure = 75, 921)
Private float lastPressure; ’

public Forecastpisplay (Observable
cbservable) {

WeatherData weatherbata
(WeatherData) observable;

observable.addobserver (this) ;

(Observable cbservable:

uplic void vpdate
object arg) {

if (observable instanceof WeatherData) {

= currentPressur

lastpressure =
currentPressure = eatherData.getpressure() ;

Public void display() (
// display code here

OEBPS/Image00127.jpg
public class SwingObserverExample {
JFrame frame;
public static void main(String(] args) (
SwingObserverExample example = new SwingObserverExample () ;
example.go() ;
yiblic void 900 { We've veplated the AnaclLM\f‘fn:; and
frame = new JFrame() ; DevilListener obiects vith lambda
expressions that implement the same

Lunckionality that ve had before

JButton button = new JButton("Should I do it?");
button.addActionListener (event ->
System.out.println("Don't do it, you might regret it!"));
button.addActionListener (event -> \
System.out.println("Come on, do it!")); When you elick the button, the
S function objects created by the
, // Set frame properties here lambda expressions are notified and
) the method they implement is vun
We've vemoved the two AttionListener classes

(DeviListener and AngeLikener) completely Vo Iobda cxpresions pakes i

¢ode a lot more contise.

For more on lambda expressions, check out the Java does, and Chapter b.

OEBPS/Image00140.jpg
Whoal
Can you say
“class explosion"?

OEBPS/Image00139.jpg
Beverage

descripion

getDescription()
cost)

] Other useful methods

EspressoWithSteamedilk
HouseBlendWithSteamedilk DarkRoasti
ndochs o | DecahSasmaalik LT
HouseBler 0 andMocha ol
0 as)
aost) Espr
= DarkRoastWithSteamedHilk sndCaramel
Hou andCaramel andCaramel cost)| EspressoWithWhipandMocha
cost) DarkRoastWith %) Decafith
costl HouseBle cost)
HouseBlendWi
| ande. cost) DarkRoasti 5 Decaf] 0 o
st p— cos), - DecafWithSoy
HouseBlendWith| cost) q DarkRoastWithSteamedilk DecafwithSteamedMilk cost)
—] andSoy L A ressoWiths
o N s Stoamed =] Decaiiseamedhih |_{
T costy DarkRoa DecafWithSoyandMocha
HouseB| cost) cost) ol
o) B cost)
HouseBlendWithWhipandSoy Dar costf) cost()
= oost) ol EspressoWithSteamedilk
andWhip.
DarkRoastWithSteam DecitvRiStis
an . 2 EspressoWithWhipandSoy
DarkRoastWithWhipandSoy DecafWithWhipandSoy
cost)
cast)
es the
Eath tost method Lar\’“{" th the
Wi
cost of the eokfee alony
in the order-

other tond'\mtl\b

OEBPS/Image00142.jpg
Beverage

description
mik

soy
mocha
whip

getDescription()
cost()

hasMik()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMochal)
hasWhip()
setWhip()

1 Other useful methods...

New boolean values for
eath condiment.

Now we'll implement ¢ost() in Beverage (instead of
keeping it abstract), so that it can caleulate the
tosts assotiated with the condiments for a particular
beverage instante. Subelasses will still overvide

¢ost(), but they will also invoke the super version so
that they ean caleulate the total cost of the basie
beverage plus the costs of the added condiments

These ok and set the boolean
values tor the eondiments:

OEBPS/Image00141.jpg
This is
stupid; why do we need all
these classes? Car't we just use
instance variables and inheritance in
the superclass to keep frack of the
condiments?

OEBPS/Image00144.jpg
See, five classes
total, This is definitely
the way to go.

I'm not so sure; I can see some
potential problems with this approach

by thinking about how the design might
need to change in the future.

OEBPS/Image00143.jpg
The superelass tost() will caleulate the
costs for all of the condiments: while
the overvidden tost() in the subtlasses
il extend that unckionality to

include tosts for that spetific beverage

ype:

Eath costl) method needs &2 tompute
Lhe cosk of the beverdde and then
334 m the condments by calind the
supertlass implementation of tost():

PSS

HouseBlend

Beverage

descrption
milk

S0y
mocha
whip

|, geescipion)

b cost)

hashik()
setMik()
hasSoy()
setSoy()
hashocha()
selMochal)
hasWhip()
selWnip()

11 Other useful methods.

DarkRoast

Decaf

Espresso

cost()

cost)

cost()

cost)

OEBPS/Image00146.jpg

OEBPS/Image00145.jpg
Price thanges for condiments will foree us to alter existing tode.

New eondiments will forte us £o add new methods and alter the cost method in the supertlass.

As we saw n
We may have new beverages. For some of these beverages (iced tea?), the tondiments C\\GYJ‘"L l;‘j\’d“;r
ad idea!

may not be appropriate, yet the Tea subelass will still inherit methods like haswhiz(). 3 very

What if a eustomer wants a double moeha?

oue b0

OEBPS/Image00138.jpg
Beverage is an absbract €55
ahelassed by all beverages
“Cfered in the coffee shop-

The tost() method is
abstract; subelassses
need to define their

ovn implementation

S

Beverage
description

getDescription()
cost)

1/ Other useful methods...

The deseription instance variable

is set in each subtlass and holds 3
destription of the beverage, like

“Most Excellent Dark Roast”

The aetDescriptionl) method
veburns the destription

HouseBlend

Espresso

cost)

cost)

Eath subélass implements tost() +o veturn the cost of the beverage.

OEBPS/Image00137.jpg
)

OEBPS/Image00115.jpg
The Obsevvable lass keeps
tratk of all your observers
and rotifies them for you

Obsevrvable is a
CLASS, not an
intecfate, so
WeatherData
extends
Observable.

This doesnt \ook
Lamiliar! Hold

iohts well ot &0

Lhis in 3 seb-

\

Observable
‘addObserver()
deleteObserver()
notifyObservers()
selChanged()

WeatherData
getTemperature()

getHumidity()
getPressure()

Heve's our Subjeet, which we can
now also call the Observable. We
don't need the vegistec(), vemove(),

observers

subject

and notifyObservers() methods

anymore; we inherit that behavior

Lrom the superelass.

This should look familiar- In
Lact, W's exactly the same as
our previous ¢lass diagram! 2

We left out the
DisplayElement.
interfate, but all
+the displays still

implement it too
GeneralDisplay ||| StatistcsDisplay ForecastDisplay
updatel) update() update()
dspay) dispay) diply)

A ' .
Theve vill be a few thanges to make 4o the updateQ)

mebhod in the contrete Observers,
the same idea... we have 3 tommon

but basieally it's
Observer interkace,

with an update() method that's called by the Subjeet.

OEBPS/Image00114.jpg
With Javefs built-in support,
all you have to do is extend

Observable and tell it when to
notify the Observers. The APT
does the rest for you.

OEBPS/Image00356.jpg
We add two methods
£or logging:

OEBPS/Image00116.jpg
This version takes an
arbitravy data object
that gets passed
each Observer when it
either notifyobservers () is notified-

Or notifyObservers (Object arg)

update (Observable o, Object arg)
A
The Subject that sent
Ehe nolbication s posed T will be e dota object that vas
in s Ehis avqument passed o notifyObsevverst), or mll if
a data object wasn't specified

OEBPS/Image00107.jpg
Heves our sub et '\n.’o.:r(:au.
This should look Lamiliar-

<<interface>>
L it |
TegelerCBsenser])

removeObserver()
notyOpseners(

WeatherData
registerObsenver()
removeObsenver()
noffyObservers(

gefTemperature()
‘getHumidity()
gePressure()
measurementsChanged()

WeatherData now
mplements the Subject
intecfate.

All our weather tomponents
implement the Ohs:w{c:;
inkerfate. This gives the
Zu\ga{ 2 tommon interface to
alk to when it comes time to
update the observers.

Let’s also treate an interface
for all display elements

to implement. The display
elements just need 4o
implemcn\t,) a display() method.

)

observers

<<interface>>
DisplayElement

CurrentConditionsDisp
update()
display() {//display current
measurements |

This display element
shows the eurvent
measurements from the

WeatherData object.

update()
display() { isplaythe aver-
age, min and max measure-

ments)

This one keeps 4rack
of the min/avg/max
measurements and
displays them.

display()

ThirdPartyDisplay
update()

display() { display
something else based on
measurements)

N

Developers tan

implement the
Obsevver and
: DisplayElement
ForecastDisplay inkevfates to
update() treate their own
display() { / display the display element.
forecast)

This display shows the weather
&fua'stv szcd on the barometer:

These three display elements should have a pointer to
WeatherData labeled “subject” too, but boy would
+this diagram start to look like spaghetti if they did.

OEBPS/Image00349.jpg
remoteControl .setCommand (0, livingRoomlLight::on, livingRoomLight::off);

This is a veferente 4o the on() method f ’Q This is a veferene to the off0)
of the livingRoomLight object method of the livingRoomLight obect

OEBPS/Image00348.jpg
onCommands[slot].execute() ;
There's only one method in 3 Command, so that’s
e Ehe mekhod the lambda expression stands in for.

xecute 0 i[> { Tivi s

public interf
public void €

¥

OEBPS/Image00109.jpg
Here we implement the Subject interface

public class WeatherData implements Subject { & WeatherData now implements

private ArrayList<Observer> observers; the Subject interface
private float temperature;

private float humidity; We've added an AvvayList to
private float pressure; hold the Observers, and we

eveate it in the tonstruttor.
public WeatherData() {

observers = new ArrayList<Observer>() ;

! When an observer vegisters, we

public void registerObserver(Observer o) { & jutadd it to the end of the list
observers.add (o) ;

1 Likevise, when an observer wants £o un-

€ vegister, we just take it off the list

public void removeObserver (Observer o) {
int i = observers.indexOf (o) ;

E ok U Heve's the fun part; this is wheve
SHARCvE, BRIV we ell all dhe observers about
X the state. Because they are

! all Obsevvers, we know they all

implement update0, so we know
public void notifyObservers() { ik
for (Observer observer : observers) { oW 1o notity

observer.update (temperature, humidity, pressure);
}

b
) We votify G e

dated
public void measurementsChanged() { & 5&{ ;Eea&h" Shation
notifyObservers () ; ¢

e
¢ Dbsexvers when

om
)

public void setMeasurements(float temperature, float humidity, float pressure) |
this.temperature = temperature;

this.humidity = humidity; -
beert o Qo S:XL:T& we wanftd to ship a nice little
Foite o N - er station with each book, the publisher
1 wouldn't go for it. So, vather than veading
actual weather data off a device, we've going
/7 other WeatherData methods heze to use this method to test our display elements

Or, for fun, you could write code £ grab
measurements off the Web.

OEBPS/Image00351.jpg
public class Remotaloader {

public static void main(String[] args) {

RemoteControl remoteControl = new RemoteControl() ; We've vemoved all the

tode to treate toncrete
Command objetks (and we
deleted all hose classes
4p0). Now our tode's a lot
ore tontise (and we've

qone from 22 dlasses to D)

Light livingRoomLight = new Light("Living Room") ;
Light kitchenLight = new Light("Kitchen");

CeilingFan ceilingFan = new CeilingFan("Living Room") ;
GarageDoor garageDoor = new GarageDoor ("Main house") ;
Stereo stereo = new Stereo("Living Room") ;

remoteControl . setCommand (0, livingRoomLight::on, livingRoomLight::off);
remoteControl.setCommand (1, kitchenLight::on, kitchenLight::off);
remoteControl.setCommand (2, ceilingFan::high, ceilingFan::off);

Command stereoOnWithCD = () -> {
sterec.on(); stereo.setCD(); stereo.setVolume(1l);

Yi

remoteControl.setCommand (3, sterecOnWithCD

remoteControl . setCommand (4, garageDoor:

7 stereo: :off) ;
up, garageDoor: :down) ;

System.out.println(remoteControl) ; Q

We've wsing method veferentes everywhere we
have simple one-method commands, and a full
lambda expression for where we need 4o do
more than one method call

remoteControl . onButtonWasPushed (0) ;
remoteControl . of fButtonWasPushed (0) ;
remoteControl . onButtonWasPushed (1) ;
remoteControl . of fButtonWasPushed (1) ;

A B e sbaaned (35 (You tan think of a method veferente as a
remoteControl . of fButtonWasPushed (2) ; compact lambda expression. They're veally
remoteControl . onButtonWasPushed (3) ; the same thing; a method veferente is just
remoteControl . of£ButtonWasPushed (3) ; shorthand for a lambda expression that calls

) Just one method)

OEBPS/Image00108.jpg
public interface Subject { Both of these methods take an

Observer as an argument; that is, the
public void registerObserver (Observer o) ; } Observer 1o be vegistered or vemoved
public void removeObserver(Observer o) ;

public void notifyObservers() ; This method is called to notify all obsevvers

) S when the Subject’s state has changed.
public interface Observer {
public void update(float temp, float humidity, £loat pressure)
} 2 T * The Observer interface
These are the state values the Observers get from is implemented by all
the Subject when a weather measurement changes bservers, so they all

have 4o implement, the
update() method. Here

public interface DisplayElement { €— wve Sollowing Mary and

public void display() ; The DisplayElement interface Sue's lead and passing
) ust includes one method, display0), the measurements to the
that we will call when the display observers.

element needs to be displayed

OEBPS/Image00350.jpg
This lambda expression does three things

BT (gt ke the stereaOnithCDComnard's
exeeutel) method did).

Command sterecOnWithCD = () -> {
stereo.on() ; stereo.setCD(); stereo.setVolume(1l);
b

remoteControl . setCommand (3, sterecORWithCD, stereo::off); We tan pass the lambda
&_’_/ expression using its name.

OEBPS/Image00111.jpg
public class WeatherStation { First, treate the

WeatherData abject

public static void main(String[] args) { —

£ you don't
want to
download the
tode, You tan
comment ovt
these two lines
and vun it

1

WeatherData weatherData = new WeatherData() ;

CurrentConditionsDisplay currentDisplay =

new CurrentConditionsDisplay (weatherData) ;
StatisticsDisplay statisticsDisplay = new StatisticsDisplay(weatherData) ;
ForecastDisplay forecastDisplay = new ForecastDisplay (weatherData) ;

N Create the three
weatherData. setMeasurements (80, 65, 30.4f); displays and
weatherData. setMeasurements (82, 70, 29.2f) ; pass them the
weatherData.setMeasurements (78, 90, 29.2f); WeatherData object

Simulate new weather
TE——

OEBPS/Image00353.jpg
Pl0 nianE Ssnlahonaess &
Command[] onCommands ;
Command[] offCommands ;

public RemoteControl() {
onCommands = new Command([7]; We've vemoved the eode to
offCommands = new Command[7]; 4/ eveate a NoCommand object
N e s B Instead of a NoCommand object,
CEEETTRELIEN] — () = (g T sl exprestion
e = O == 1 that does nothing! (Just like
the exceute() method of the

}
NoCommand abject did nothing)

}
// rest of the code here

OEBPS/Image00110.jpg
It also implements DisplayElement,
This display implements Observer P! playElement,
i Sy from bhe l’:;‘:‘: a‘l”"d";i = 409 tb
e s elemen
WestherData dbject. \ e e o

¢

public class CurrentConditionsDisplay implements Observer, DisplayElement (
private float temperature;
private float humidity;
; " The construttor is passed the
rivate Subject weatherData; ‘
i > £ weatherData ohject (the Subject)
public CurrentConditionsDisplay (Subject weatherbata) { ond weuse it t’ vegister the
this.veatherData = weatherData; display as an cbsevver.
weatherData. registerObserver (this) ;

public void update(float temperature, float humidity, float pressure) {

this. temperature = temperature; Grsedlodive
this.humidity = humidity; & When update() is ¢al .“
display() ; save the temp and humidity
) and ¢all display0)
public void display() {
System.out.println("Current conditions: " + temperature
"F de d " + humidi "% humidity") ;
, + 'F degrees and " + humidity + umidi ty™) The dilaf) methed
) \ st prinks out the mest
S ent temp and humidity

OEBPS/Image00352.jpg
Wow, we got
that implementation
from 22 classes down to
9. That's a lot easier to
manage.

OEBPS/Image00113.jpg
%java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

T Forecast: Improving weather on the way!

changed in Heat index is 82.95535

his output Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather

Heat index is 86.90124

Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

Heat index is 83.64967

%

OEBPS/Image00355.jpg
Objects implementing the

eckate ave
added to the queve i

tommand in

Threads vemove tommands
from the queue one by one
and ¢all theiv exetute()
method. Once tomplete,

&
a

—

they go batk for a new
command object. @
Thread .
Thread
Threads computing

jobs

This gjves us an effective way
4o limit Lcm\?u‘h{ion toa
Lixed number of threads.

Thread

Thread

OEBPS/Image00112.jpg
File Edit_Windoy

Help StormyWeat
%java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

%

OEBPS/Image00354.jpg
[slot 0] Remoteloader§§Lambda$l/168423058 RemoteLoader§SLambda$2/1247233941
[slot 1] Remoteloader$§Lanbda$3/258952499 RemoteLoader$SLambda$d/603742814

[slot 2] Remoteloader§§Lambda$5/1325547227 RemoteLoader$SLambda$6/980546781

[slot 3] Remoteloader§§Lanbda$9/1706377736 RemoteLoader$SLambda$10/1804094807
[slot 4] RemoteControl$$Lambda$l/713338599 RemoteControl$§Lambda$2/1247233941
[slot 5] RemoteControl$$Lambda$l/713338599 RemoteControl$$Lambda$2/1247233941
[slot 6] RemoteControl§$Lambda$l/713338599 RemoteControl$$Lambda$2/1247233941

ﬁ /’ Now when we display th ote
. Ondobs Offdebs see hese weid v kond o e

Tttraan gt 1a o lass rames. Not a partieuarly useul display
Kitchen light is off

Living Room ceiling fan is on high &~ Onte 39ain, our ommands in attion. Only this

iy o ommidr time, our commands are defined with lambda

iy R tarastialaat fro o expressions instead of Command objects.
Living Room Stereo volume set to 11

Living Room stereo is off

5

OEBPS/Image00347.jpg
No arguments...

public void setCommand(int slot, " no{hmg veturned.
(Command)onCommand,
‘ommand offCommand) {
37 Yup, the siapabure of the lambda expression matzhes the
signature BF the only method in Command. We've good to g0l

nothing veturned

OEBPS/Image00126.jpg
T've been using lambda
expressions in place of simple
action listeners in my Swing
code. Am I still using the

Observer Pattern?

OEBPS/Image00125.jpg
Suing applieation 3¢

public class SwingObserverExample (Simple 2
JFrame frame; ok ereates 2 £r3mc£
Feows 3 bukton in ¢

public static void main(String[] args) (
SwingObserverExample example = new SwingObserverExample();
example.go() ;

)

public void go() {
frame = new JFrame();

Makes the devil and
JButton button = new JButton("Should I do it?")

angel objects lsteners
button. addActionListener (new Angellistenex()) ; (dbservers) of the button

button.addActionListener (new DevilListener());

// Set frame properties here & (Code fo set up the frame goes here

o Here are the clasc definitions for
class Angellistener implements ActionListener { the observers, defined as inner
public void actionperformed(ActionEvent event) { tlasses (but they dor't have 4o be)

System.out.println("Don't do it, you might regret it

class Devillistener implements ActionListener {
public void actionPerformed (ActionEvent event) {

System.out.println("Come on, do it!"); (—\

Rather than update0), the actionPerformed()
J method gets called when the state in the
subject Gin bhis case the bubbon) changes

OEBPS/Image00118.jpg
setChanged() { The setChanged() method sets

changed = true v 3 thanged flag to true
}

notifyObserversO) enly

notifyObservers(Object arg) {]
if (changed) (P obifies its observers ifue
for every observer on the list { the thanged Flag is TRUE:

/7 call update (this, arg)
: And after it notifies

Peudotode for the ” ehanged =ifalse R e ohiemers b ek e
Dbsevvable ¢lass) changed Flag batk to false.

notifyObservers() {
notifyObservers(null)
}

OEBPS/Image00360.jpg
Diner Command Pattern

Wattress Command
Short Order Cook execute()
orderUp() Client
Order Invoker
Customer Receiver

takeQrder() ——————————————— setCommand()

OEBPS/Image00117.jpg
Wait, before we get to
that, why do we need this
setChanged() method? We
didn't need that before.

OEBPS/Image00359.gif

OEBPS/Image00120.jpg
\gain, make sure we are importing

A
© L vight Observer/ Observable

/ @ Ve row ave implementing the Observer interface from jauauti

import java.util.Observable;
import java.util.Observer;

public class CurrentConditionsDisplay implements Observer, DisplayElement {
Observable observable;
private float temperature;

i Our tonstruttor now takes an
privess Sost hemtey ﬁ © Obsevvable and we use this to
add the urvent conditions
public CurrentConditionsDisplay (Observable observable) { dbject as an Observer

this.observable = observable;
observable.addObserver (this) ;

i i 7 @ We've thanged the
public void update (Observable obs, Object arg) { w oot s

if (obs instanceof WeatherData) { 4o take both an
WeatherData weatherData = (WeatherData)obs; Observable and the
this.temperature = weatherData.getTemperature () ; optional data argument.
this. humidity = weatherData.getHumidity() ;
display() ;
}
) © I vpdated), ve First
make sure the observable
public void display() { is of type WeatherData
System.out.println("Current conditions: " + temperature and then we wse its

getter methods to

bt the onperatiie
4 and humidity

) measuvements. After

that we call display0)

+ 'F degrees and " + humidity + "$ humidity");

OEBPS/Image00362.gif
- Lv]olc ele]

w

amgnmnmnsmgummm
A T

0 i el

-]
man
AnaEne

n

OEBPS/Image00119.jpg
Make sure we are importing @ We don't need to keep tratk of our
the right Observable o

observers anymore, or manage their

We are now ymre, y

Jbelossinn Observable, vegistration and vemoal (the superclass
e will handle that), so we've vemoved the

vegisterObsevver(), vemoveObserver() and

import java.util.Observable; notifyObservers() methods

public class WeatherData extends Observable { for o |
private float temperature; Our tonstruttor no longer
private £loat humidity; needs o treate a data
private float pressure; structure to hold Obsevvers.

public WeatherData() { } ¥ Notice we aven’t sending a data object

with the notifyObservers() call. That

Lic voi ;
Pl g S ementaChanged () { means we've using the PULL. model

setChanged() ;
notifyObservers () ; ¥

public void setMeasurements (float temperature, float)humidity, float pressure) |
this. temperature = temperature;
this.humidity = humidity;

this pressure = pressure; We now First. eall setChanged() to
measurementsChanged () ; indicate the state has thanged
} before ealling notifyDbservers(.

public float getTemperature() {
return temperature;
)

public float getHumidity()
return humidity;

) ’\
\ @ These methods aren't new, but because

o Lyt i
) we'd vemind you they are here. The
¥ Obsevvers will use them to get at the
WeatherData object's state

OEBPS/Image00361.jpg
%$java RemoteControlTest

Light is on

Garage Door is Open
%

OEBPS/Image00122.jpg
%java WeatherStation

Forecas'
Avg/Max/Min temperature = 80.0/80.0/80.0
Current conditions: 80.0F degrees and 65.0% humidity

Improving weather on the way!

Forecast: Watch out for cooler, rainy weather
Avg/Max/Min temperature = 81.0/82.0/80.0

Current conditions: 82.0F degrees and 70.0% humidity
Forecast: More of the same

Avg/Max/Min temperature = 80.0/82.0/78.0

Current conditions: 78.0F degrees and 90.0% humidity
%

OEBPS/Image00364.jpg
British Wall Qutlet

AC Power Adapter
Standard AC Plug

D B

The US laptop expetts
another intevface.

e M\sm b ‘é ,tm o
i

The adapter converts one
interLace inbo another.

OEBPS/Image00121.jpg
public ForecastDisplay (Observable
observable) {

£ (observable instanceof WeatherData) { '

ass ForecastDisplay implements
DpisplayElement {

public cl
Observer,

Ppublic void display() (
// display code here

astPressure = currentPressure;
weatherbata.getPressure ()’

currentPressure

x
private float currentPressure = 29.92¢
Pprivate float lastbressure; o

therDat;
A weatherData = (WeatherData)observable;

observable,

public void update (Observable
Object azg) {

import java.util.Observable;

import java.util.Observer;

OEBPS/Image00363.jpg

OEBPS/Image00124.jpg
inteckate:

Hrere's our faney

Should | do it?
And here's the output when
we tliek on the button:
43 ;
Devil answer java SwingObserverExample

Come on, do it!
PR oon & do it
% St Ayoutmightiregretiicl

OEBPS/Image00366.jpg
Your Adapter Vendor
Existing i
System

The adapter implements the

he vendor interfate
interface Your clases expect, And alls to the verdo

o sevvice Your veqests.

OEBPS/Image00123.jpg

OEBPS/Image00365.jpg
Your Vendor

Exlsting Class
System >

C Their inberfate doesr't match the one youve weitter
Jou cade anainst, This 't aoind b0 vork

OEBPS/Image00358.jpg
00 Pr\nt.'\\a\cs

Eneapslate what varies:

When you need o detovple an
object making vequests rom
fhe objects Phat know how to

peform he vequests; use the
\ Command Patterm

OEBPS/Image00357.jpg
Abter a system
Tailure, the objects are
veloaded and exetw

in the torveet order:

Crash!
* Restore
,\/

As eath ommand

s execuked, it s
stoved on disk:

e Y1,

OEBPS/Image00093.jpg

OEBPS/Image00335.jpg
Hold on, Sue, don't be
so sure. I think we can do
this without changing the.
remote at alll

OEBPS/Image00092.jpg
The observers have subscribed to
(vesjstered with) the Subiect
{o veceive updates when the
Subjeck’s data changes.

When dsta in the Sibject changes
Ehe bservers ave natitied:

Gk obipek manat

<ome bt \

o 'S
“jecy 00

New data values are
communicated 4o the

observers in some form

when they thange.

LN Ths bk b an

osevver, so it doesn

td ok nobitied when the
L heck's data chavaes

OEBPS/Image00334.jpg
Hmm, our remote
control would need a
button for each device, T
don't think we can do this.

OEBPS/Image00095.jpg

OEBPS/Image00094.jpg
O;
§

o

OEBPS/Image00336.jpg
Mary's idea is to make a new
kind of Command that can
exetute other Commands.
and more than one of them
Pretty good ides, huh?

public class MacroCommand implements Command {
Command[] commands ;

public MacroCommand (Command([] commands) (
this.commands = commands;

R Take an arvay of Commands and shore
¥ them in the MacroCommand.
public void execute() {

for (int i = 0; i < commands.length; i++) {

commands [4] . execute () ;

] R_
, When the macro gets exctuted by the vemote,
i exetute those tommands one at 3 Lime.

OEBPS/Image00096.jpg

OEBPS/Image00327.jpg
Himm, 5o o properly
implement undo, Td have
to take the previous speed of
the ceiling fan info account...

OEBPS/Image00087.jpg
Future displays

OEBPS/Image00329.jpg
public class CeilingFanHighCommand implements Command { ve added lotd! state 0
Weve 20ed BEE T o

CeilingFan ceilingFan; frack
keep b
int prevspeed; —~ s\m‘:d of the fan

public CeilingFanHighCommand(CeilingFan ceilingFan) {
this.ceilingFan = ceilingFan;

} In execute, before we
f\ chanae the speed of the
public void execute() { fan, we need to first
prevSpeed = ceilingFan.getSpeed () ; vetord its previous state,
ceilingFan.high() ; just in ease we need to
¥ undo our actions

public void undo() {
if (prevSpeed

CeilingFan.HIGH) { To undo, we set the
ceilingFan.high() ; S speed of the fan back
} else if (prevSpeed CeilingFan.MEDIUM) {
ceilingFan.medium() ;
} else if (prevSpeed
ceilingFan.low() ;
} else if (prevSpeed == CeilingFan.OFF) {

to its previous speed

CeilingFan.LOW) {

ceilingFan.off() ;

OEBPS/Image00328.jpg

OEBPS/Image00089.jpg
PERINE, WAt TRRRELE NN ERRROE L

float temp = getTemperature();
float humidity = getHumidity(); Frearel

vea of change. We
£loat pressure = getPressure () ;
need 4o encapulate this
urrentConditionsDisplay.update (temp, humidity, pressure);
statisticaDisplay.update\temp, humidity, pressure);

, humidity, pressure);

At least we seem o be wsing 2

common imtevbate £ £k £ the
By codn o concrte diplay clements... they al have an
implementations we have no way APAse0 metbod thot Lakes the
Gor i or vemove obher display Lomp, humidity, and pressre salues.
enents withant making changes £

the program

OEBPS/Image00331.jpg
PESL1C CiasE hpotelosder 1

public static void main(String[] args) {
RemoteControlWithUndo remoteControl = new RemoteControlWithUndo () ;

CeilingFan ceilingFan = new CeilingFan("Living Room") ;

‘anMe Heve we instantiate three
CeilingFanMediumCommand ceilingFanMedium = v metom r

new CeilingFanMediumCommand (ceilingFan)

CeilingFanHighCommand ceilingFanHigh = Heve e puk medium in
new CeilingFanHighCommand (ceilingFan) ; slot O, and high in slot

CeilingFanOffCommand ceilingFanOff = V\ 1. We also load up the
new CeilingFanOffCommand (ceilingFan) ; off command.

remoteControl.setCommand (0, ceilingFanMedium, ceilingFanOff) ;
remoteControl.setCommand (1, ceilingFanHigh, ceilingFanOff) ;
remoteControl .onButtonWasPushed (0) ; First, tuen the fan on medium
remoteControl.offButtonWasPushed (0) ;
System.out.println(remoteControl) ;
remoteControl .undoButtonWasPushed() ;

<~
<« Then turn it off.

<——— Undol [£ should 90 back to mediwm.

remoteControl .onButtonWasPushed (1) ; € Turn it on o high this time
System.out.println(remoteControl) ; And, one more undo; it should go back
remoteContzol .undoButtonWasPushed () ; & 1 dium

OEBPS/Image00088.jpg
public class WeathexData {
// instance variable declarations

public void measurementsChanged() {
Grab the most vetent measurements

float temp = getTemperature(); by calling the WeatherData's getter
float humidity = getHumidity(); methods (alveady implemented).

float pressure = getPressure();

currentConditionsDisplay.update (temp, humidity, pressure);
statisticsDisplay.update (temp, humidity, pressure);
forecastDisplay.update (temp, humidity, pressure);
' Rt
Call each display clement 4o
// other WeatherData methods here wpdate its display, passing it
the most vetent measurements.

Now update
the displays.

OEBPS/Image00330.jpg

OEBPS/Image00091.jpg
Miss what's going on in
Objectville? No way, of
course we subscribe!

OEBPS/Image00333.jpg
onl)
offl)
seCd)
sefDvd()
sefRadiol)
sefvolume()

E
oy

circulate()
JetsOn()

oo
setTemperature()

dim()

on)
off)
setinputChannel)
setVolume()

OEBPS/Image00090.jpg
Umm, T know T'm
new here, but given that we.
are in the Observer Pattern
chapter, maybe we should
start using it?

OEBPS/Image00332.jpg
Turn the ceiling £an on
ST medium, then furn it off.

Living Room ceiling fan is on medium
Living Room ceiling fan is off

Here are the commands

CeilingFarMediumCommand CeilingFanOf£Command s in the vemote eontrol-
CeilingFanHighComand CeilingFanOf£Command

NoCommand NoCommand

NoCommand NoCommand

NoCommand NoCommand

NoCommand. NoCommand

~and undo has the last command
executed, the CeilingFan0ffCommand,
with the previous speed of medium.

NoCommand NoCommand
[undo] CeilingFanOffCommand —

Living Room ceiling fan is on medium ¢— Undo the last command, and it goes back to medium
Living Room ceiling fan is on high

Now, turn it on high.
------ Remote Control -
[slot 0] CeilingFanMediumCommand CeilingFanOffCommand

[slot 1] CeilingFanHighCommand CeilingFanOffCommand
[slot 2] NoCommand NoCommand
[slot 3] NoCommand NoCommand
[slot 4] NoCommand NoCommand
[slot 5] NoCommand NoCommand
[slot 6] NoCommand NoCommand

[undo] CeilingFaniiiohComand & Now, high is the last

ommand exeeuted.
Living Room ceiling fan is on medium
One more undo, and the ceiling
. Han goes back o medium speed.

OEBPS/Image00104.jpg
ONE-TO-MANY RELATIONSHIP

Object that —— >

holds state

DePChdgmg 05\)_“ .

OEBPS/Image00346.jpg

OEBPS/Image00103.jpg

OEBPS/Image00345.jpg
remoteControl .onButtonWasPushed (0) ; — ;nbl:ccvoxd :n?\l;—to;ﬂasp“sbed(lﬂt e
)nCommands [slot] .execute () ;

}

What's stored in the onCommands arvay at slot O
s the lambda expression we passed to setCommand

in Skep 2. The exetute() method is matthed to V

webhod in the lambda expression, and exeeuted.

OEBPS/Image00106.jpg
So, how are we going
o build this thing?

OEBPS/Image00105.jpg
All potential observers need
to implement the Observer

intevface. This interface
5 0“’5“*} Eath subject Jjust has one method, update(),
et w,@sw ® e ¢an have many that gets called when the
peves B¢ =] &fp YY"'-\O\‘C Aner obsevvers. Subject’s state changes.
e o \(
st 2\
\’wvuf NECS
oﬁrow £ Jose L’) - ? 5:.”1» observers prere——
ubject Observer
registerObserver()
removeObserver) o0
notifyObservers()

contrete subjett always
f\mvlcmtnb the Su.\r‘leoi
devlate. In addition to
ister and vemove
?:{::3; the contrete su\chL{(:)
implements 3 notifyDbservers
method that is wsed 4o vpdate
all the curvent Jbsexvers
whenever state ehanges:

subject

ConcreteSubject

ConcreteObserver

registerOpsenver() (.}
removeObserver() (.}
notifyObservers() {..)

updatel)
Jother Observer speciic:
methods

getState()
setState()

bjeek may alse
T seking =
qcbbng s <bate (move abow
Lhis later)-

The tontrete
have methods

Contrete observers tan be

any ¢lass that implements the
Observer intevface. Eath observer
vegisters with a conerete subject
4o veteive updates.

OEBPS/Image00338.jpg
Create an avvay ¥or
On and an array Tor

T G ommanis
Command[] partyOn = { lightOn, stereoOn, tvOn, hottubOn};
Command[] partyOff = { lightOff, sterecOff, tvOff, hottubOff};

and ereate two
€ corvesponding matros
MacroCommand partyOffMacro = new MacroCommand (partyOff) ; £o hold +hem.

MacroCommand partyOnMacro = new MacroCommand (partyOn) ;

OEBPS/Image00337.jpg
Create all the deviees: a light,
Light light = new Light("Living Room") ; 4y, stereo, and hot £ub.
Stereo stereo = new Stereo("Living Room") ;

Hottub hottub = new Hottub() ; Now treate all the On
& tommands to control them

LightOnCommand 1ightOn = new LightOnCommand (light) ;
StereoOnCommand stereoOn = new StereoOnCommand (stereo) ;
TVOnCommand tvOn = new TVOnCommand (tv) ;

R R e R e i R

OEBPS/Image00098.jpg

OEBPS/Image00340.jpg
System.out.println(remoteContro.

System.out.println("--- Pushing Macro On-

remoteControl .onButtonWasPushed (0) ; Here's the output

System.out.println("--- Pushing Macro Off-
remoteControl . offButtonWasPushed (0) ;

51 Virow Holp Yo GonBeaiA
% java RemoteLoader /Z_ Here are the two matro commands.

[slot 0] MacroCommand MacroCommand

[slot 1] NoCommand NoCommand
[slot 2] NoCommand NoCommand
[slot 3] NoCommand NoCommand
[slot 4] NoCommand NoCommand
[slot 5] NoCommand NoCommand
[slot 6] NoCommand NoCommand

[undo] NoCommand

All the Commands in the
matro are exeeuted when we
invoke the on matvo...

--- Pushing Macro On---
Light is on
Living Room stereo is on
Living Room TV is on
Living Room TV channel is set for DVD
Hottub is heating to a steaming 104 degrees
Hottub is bubbling!

and when we invoke the off
--- Pushing Macro Off--- & matro. Looks like it works.
Light is off
Living Room stereo is off
Living Room TV is off
Hottub is cooling to 98 degrees

OEBPS/Image00097.jpg
2,
&)
§

)i

OEBPS/Image00339.jpg
¢ fissign the macro
commard 4o a button as

remoteControl.setCommand (0, partyOnMacro, partyOffMacro) ;
we would any command.

OEBPS/Image00100.jpg
“This is Lori. T'm looking
for a Java development
position. Tve got five years

of experience and.

Software
Developer #1

development.

(i

!]
Software

Developer #2

Hi, T'm Jill. Tve.
writtena lot of EJB
systems. Tm interested in

any job you've got with Java

Un, yeah, you and
everybody else, baby.
T'm putting you on my list of
Java developers. Dor't call
me, T'l call you!

)

Headhunter/Subject

Tl add you fo the list-
youlll know along with
everyone else.

OEBPS/Image00342.jpg
All the RemoteControl caves about
is having a Common interface for the
commands it needs to exetute.

RemoteLoader RemoteControl <<interface>>

Command
execute()

onCommands
offCommands
setCommand()
onButtonWasPushed()
offButtonWasPushed()

execute()

N

Lots more of these; two for

cvery veceiver we have.

i ode in the
1l we veally need is the ¢
ﬁ*e\::ﬂ m:l{hod of eath command-

LightOnCommand

Note: this is our

Covtrol uithont St Remate

undo or macros).

We have lots of command
elasses just so we ean
weap up a small bit of
eomputation.

/

public void sxseutal) (

Light.on() § y

public void execute() {
light.of£() ;

OEBPS/Image00099.jpg

OEBPS/Image00341.jpg
public class MacroCommand implements Command {
Command[] commands ;

public MacroCommand (Command[] commands) {
‘this.commands = commands;
)

public void execute() {
for (int i = 0; i < commands.length; i++) {
commands[i] .execute () ;
}
¥

public void undo() {

OEBPS/Image00102.jpg

OEBPS/Image00344.jpg
o Here are the tuo lambda expressions. 3

remoteControl .setCommand (0, () -> { livingRoomLight.on(); }, () -> { livingRoomLight.off(); });

The lambdas get passed as commands to setCommand f\

N
public void setCommand(int slot, Command onCommand, Command offCommand) {

onCommands [slot] = onCommand;

offCommands[slot] = offCommand;

OEBPS/Image00101.jpg
Mearwhile, for Lori and Jill life goes
on if a Java job comes along, theyl get
notified. After all, they are observers.

Tharks, Tl serd my
resume right over.

Hey observers, there's
a Java opening down af

JavaBears-R-Us. Jump on
it! Dorit blow it!

Buchaha, money in
the bark, baby!

This guy is a real jerk.
Who needs him. I'm
lookirg for my own ob.

Q
‘ |

Observer

Subject

Arghhhll Mark my
words Jill, you'll never
work in this town again if T
have anything to do with it

)
Jilllands her own jobl Youre of f my calllistll

You can take me
of f your calllst. T

o0
found my own jobl

Observer

OEBPS/Image00343.jpg
Light
on()

offf)

OEBPS/Image00595.jpg
ode veally hasnt changed 3t 2

his &
\[b ok thorkened € 3 bit

public class GumballMachineTestDrive { Once, again, start with a gumball

e with 5 quballs

public static void main(String[] args) {
GumballMachine gumballMachine = new GumballMachine(5) ;

System.out.println(gumballMachine) ;

gumballMachine.insertQuartex() ;
gumballMachine. turnCrank () ;

o Wevark toaet a vimning state
50 we just keep pumping in those
quarters and furning the evank. We
System. out.println(gumballMachine) ; print out the state of the gqumball
mathine every so often
gunballMachine. insertQuarter () ;
gumballMachine. turnCrank () ;
gumballMachine.insertQuarter() ;
gumballMachine. turnCrank () ;

System.out.println(gumballMachine) ;

OEBPS/Image00596.jpg
The whole engineering team 1 waiting
oubside the onferente voom 4o see
if the new State Patbern-based
desion s 90m3 £ workl!

OEBPS/Image00589.jpg
D
'an"w,\a\"‘

OEBPS/Image00831.jpg
Noskratkion The velationship between Implementation elass hierarchy.
tlass Wievarthy « the twois vefevved to s_o
the “bridge”

RemoteControl
implementor

Has-A

- o)
setChannel() oA

implementor . tuneChannel (channel) ; ' tuneChannel()

All methods in the abstrattion
ave implemented in Lerms of
the implementation

I more methods

ConcreteRemote.

curentStation

onl)

offf)

on)
tuneChannel() tuneChannel()

offf) %

selChamnel) -"'| setchannel (currentstation + 1) ; ' I/ more methods /more methods
nextChannel() **

previousChannel()

Il more methods

,R Contrete sublasses ave implemented in teems of the
abstraction, not the implementation.

OEBPS/Image00590.jpg
The Context is the class that
¢an have a number of internal
states. In our example, the
GumballMathine is the Context.

€

The State intecface defines a common

interface for all contrete states; the

states all implement the same interface,
so they are interehangeable.

Context State
request() ‘handle()
state handle() ' ConcreteStateA ConcreteStateB
/7 handle() handle() any eonerete
< dre possible.
Whenever the vequest() is }\\
made on the Context it from b
is delegated 4o the sfate ContvebeStates handle vequests from e
to handle. Conbext. Eath ConereteState provides G
own implementation for a vequest. In this
way, when the Context ehanges state, its

behavior will ¢hange as well.

OEBPS/Image00832.jpg
Eath vatation is planned

? over some number of days.

/T\
owrﬂ
AN~
009 009¢Q Q09

\
\
‘ "%‘*’ g ‘2.‘\,;5

Dine® ms o

B

K/ Each day ¢an have any tombination
of hotel veservations, tiekets,

'+ eals and spetial events.

OEBPS/Image00587.jpg
The Gumbal Mathine now holds an

mstante of €t Shake class S camball N e

@

%Q)n(\(f

current state .'2

A’Qmﬁé

{/f"baIIMoC““Q

The urrent state of the
machine is always one
Lhese elass instances

Soldost

OEBPS/Image00829.jpg

OEBPS/Image00588.jpg
When an action is ¢alled, itis
delesated o the curvent state

—

turnCrank()

Gumball Machine States

o™

tunCrank() @m
5 o
q’”'banmﬁ"‘g

I this case the turnCrank()
method is being called when the
machine is in the HasQuarber
state, s0 a5 a vesult. the mathine
transitions to the Sold state.

The mathine ente™

d 3
Sold state 3
f:'u:\,a\\ is dspensed

dispense()

Rt

0.
@

SoldOst

TRANSITION TO SOLD STATE

States
Gamball Machine More apmodls
e -) ...and then the
AoQuer'® machine will
cither go to
the Soldout
@ or NoQuarter
Hasque® state depending

on the number of
gumballs vemaining
in the machine.

Sold out

/

OEBPS/Image00830.jpg
This is an abstraction. It could be

an inkerbate o an abstract class:

RemoteControl
Every vemote has the -
same abstrattion: — |

setChamel)

// more methods

RCAControl SonyControl
Lots of onl) on)
implementations, off) off)
one for each TV. se(Channel) .. setChannel()

{1 more: mzmods"v_ /1 more methods

{

tuneChannel (channel) ;

}

OEBPS/Image00593.jpg
public class WinnerState implements State {

// instance variables and constructor Jusk like SoldState
// insertQuarter error message
// ejectQuarter error message

il h
// turnCrank error message Heve we velease two qumballs and then

either g0 to the NoQuarkerState or

public void dispense() { +the SoldOutState.

gumballMachine.releaseBall () ;
if (gumballMachine.getCount () 0
gumballMachine.setState (quuballMachine.getSoldOutState () ;
} else {
gumballMachine.releaseBall () ;
System.out.println("YOU'RE A WINNER! You got two gumballs for your quarter");
if (gumballMachine.getCount() > 0) { N
gumballMachine.setState (qumballMachine.getNoQuartersState()) ;
} else {
System.out.println("Oops, out of gumballs!");
gumballMachine.setState (quuballMachine.getSoldOutState () ;

— 16 we have 3 setond qumball ve velease it

1€ we were able
4o velease two
qunbals, we let
The user know
he was @ winnex.

OEBPS/Image00835.jpg
successor

handleRequest()

‘SpamHandier

FanHandler

ComplaintHandler NewLocHandler

handleRequest()

handleRequest()

handleRequest()

handleRequest()

OEBPS/Image00594.jpg
w a
public class HasQuarterState implements State { ¢ Festwe ad:“
Random randomWinner = new Random(System.currentTimeMillis()); vandom

evator to
GunballMachine gumballMachine; Senevate the 10

hante of winning
public HasQuarterState(GumballMachine gumballMachine) {

this.gumballMachine = gumballMachine;

public void insertQuarter() {

System.out.println("You can't insert another quarter");

public void ejectQuarter() {
System.out.println("Quarter returned");
gumballMachine.setState (gumballMachine.getNoQuarterState()) ;
) then we determine
if Ehis tustomer won
public void turnCrank() {
System.out.println("You turned...");
int winner = randomWinner.nextInt(10);
if ((winner == 0) && (gumballMachine.getCount() > 1)) {
gumballMachine.setState (gumballMachine.getWinnerState()) ;
} else {
gumballMachine.setState (gumballMachine.getSoldState()) ;

1€ they won, and there's enough qumballs
) 1eft £or them 4o gt two, we g0 o the
WinnerState; othervise, we g0 bo the
public void dispense() { SoldState (just like we aluays did)

System.out.println("No gumball dispensed") ;

OEBPS/Image00836.jpg
Email is not handled it it

falls off the end of the
Eath emal i passed & chain — although you can always
the first handler- \mylmen(: a cateh-all handler.

N
000”

OEBPS/Image00591.jpg
Wait a sec, from what
I remember of the Strategy
Pattern, this class diagram is
EXACTLY the same.

OEBPS/Image00833.jpg
(\

The tlient uses an
abstract intecface to
build the planner-

Client

The Client divetts
the builder to
construtt the
planner-

constructPlanner()

builder

uilder.buildDay (date) ;

ilder.addHotel (date, "Grand Facadian") ;

ilder.addTickets ("Patterns on Tca") ;

// plan rest of vacation

Planner yourPlanner =
builder. getVacationPlanner () ;

The Client divects the builder 4o eveate
the planner in 3 umber of steps a(nd
Lhen calls the 5:{\/aoa{ionPla.mu) g
= othod 4o vetrieve Lhe complete dbet

AbstractBuilder

buildDay()
addHotel()
addReservation()
addSpecialEvent()
addTickets()
getVacationPlanner()

The contrete builder
eveates veal products
and stoves them in

il

VacationBuilder
vacation

buildDay()
addHotel()
addReservation()
addSpecialEvent()
addTickets()

getVacationPlanner()

Lhe vatation compost
sbrutture

OEBPS/Image00592.jpg
public class GumballMachine {

State soldOutState;

st y

State mesteareossiate Al you need o add here is
e v The mew WinnecState and

stete seldstate: T gl itin the consbrctor
State winnerState;

State state = soldOutState; Don't forget you also have
int count = 0; 1o add a aetter method for
// methods here WinnerState too

OEBPS/Image00834.jpg
You've got to help us
deal with the flood of email we're
getting since the release of the
Java Gumball Machire.

OEBPS/Image00827.jpg

OEBPS/Image00828.jpg
Pattern Description

Dodirasr Wraps an ebject and provides a different
interface to it.

Subclasses decide how to implement steps in an
algorithm.

e Subelasses decide which concrete classes to

create.

Ensures one and only one object fs created.

Encapsulates fnterchangeable behaviors and uses

delegation to decide which one to use.

Clients treat collections of objects and individual

Factory Method objects unifermly.

1 Encapsulates state-based behaviors and uses
delegation to switch between behaviers.

> Provides a way to traverse a collection of objects

without expesing its implementation.

Template Method Simplifies the interface of a set of classes.

Compostte Wraps an ebject to provide new behavior.
Allows a client to create families of objects

Singleten without specifying their concrete classes.

. Allows objects to be notified when state changes
Abstract Factory
Wraps an ebject to contrel access te it.

Command ————————Encapsulates a request as an object.

OEBPS/Image00606.jpg

OEBPS/Image00600.jpg
You've done some amazing work!
TIve got some more ideas that
are going fo change the gumball
industry and I need you o implement
them. Shhhhh! Tl let you in on these
ideas in the next chapter.

OEBPS/Image00842.jpg
Alarm

onEvent () {
checkCalendar ()
checksprinkler ()
startCoffee ()
// do more stuff

Calendar

onEvent () {
checkbayofWesk ()
dosprinkler ()
doCottee ()
doAlarm ()
/1 do more stufs

CoffeePot

onEvent () {
checkCalendar ()
checkalarm ()
// do more stuff

Sprinkler

onEvent () {
checkCalendar ()
checkshower ()
checkTemp ()
checkWeather ()
// do more stuff

OEBPS/Image00601.jpg
n
00 Printiples
st
Favor compasition V€ inheritante

Progeam 2 kerlates, mob

mplemert

Shive Fu« \oasely corted azs-,
e cigts Bt nkevatk

C\tﬁa w.\A e SR
or wodt Fcsbn

Degend on \stv ctiors. Do 7ot
depend o ontreke 355
only balk 1o 1 fiends
Dot call v vl aall o

A clas shold ¥ any one v
o chana

o t
ad P‘? »l_,. MJ\.A
Genlrbe A

d]

¢

a p (‘ - -

‘;‘“\: ", hda vhr_a:mum —
13 Farade Fupamalaber amunsh-

1 ;'?wiwvhgnrb

4 |17 1 sate -l 20 etk b 4 atber 5
ckate chandes

. " ¥ e objert e b % s

v\nbvv\cs s
sk gves ¥
Jeeg on them

Here's our new
pattern. |€ you'e
:ﬂaﬂevni state in
ass, the S
Pattern ngf::
a teehnique for
encapsulating that

sbt)

OEBPS/Image00843.jpg
L)
@

@*ﬂ

It's such a relief,
not having to figure
out that Alarm clock's
picky rules!

Mediator

if (alarmEvent) {
checkCalendar ()
checkshower ()
checkTenp ()
)
if (weekend) {
checkWeather ()
// do more stuff
)
if (trashDay) {
resetalarm()
// do more stuff
)

OEBPS/Image00598.jpg
Bravol Great job,
gang. Our sales are already
going through the roof with the new
‘game. You know, we also make soda

machines, and I was thinking we could put
one of those slot machine arms on the

side and make that a game too. We've got
four-year-olds gambling with the
gumball machines; why stop there?

OEBPS/Image00840.jpg
isTine
expression £ors]

i
tJ;Y:?:nui Lo:nnands ::t :
S ons (Cwil” stater
o A seqpente s a sek of
expressions separated

expression <command> | <sequence> | <repetition> — | icclons

sequence <expression> ';' <expression>

command right | quack | fly We have three

while ' (' <variable> ') '<expression> commands: vight,

- iie ¢ quatk, and £ly.
N ke satement is jut

3 ¢onditional variable 3ng
an expression.

repetition

variable

OEBPS/Image00599.jpg
Tveles v rawition e forgot o ok in be ovignal spet. ve
; need 3 way to vefill the qumball machine when it's out o? gumlzalls’
| Hteve’s the mew diagram — ¢an you implement it For us You did
| Mighty Gumba]], Tnc. suth a good job on the vest of the qumball mathine we have no
Where the GumballMaching doubtk You ¢an add this in 3 iy
et e !
‘ buidB _ The Mighty Gurball Engincers

vefill T

gl
ey

[gsgerst
qprioal

OEBPS/Image00841.jpg
Expression
interpret(context)

Repetition Sequence
variable expressiont
L expression expression2

interpret(context)

interpret(context)

Variable

QuackCommand

RightCommand

FlyCommand

interpret(context)

interpret(context)

interpret(context)

interpret(context)

OEBPS/Image00604.jpg

OEBPS/Image00846.jpg
Yikes! Just the act
of creating all of these different

kinds of monster instances is getting
tricky... Putting all sorts of state detail in the
constructors doesn't seem to be very cohesive. Tt
would be great if there was a single place where
all of the instantiation details could be
encapsulated...

It would be a lot cleaner if we
could decouple the code that handles
the details of creating the monsters
from the code that actually needs to
create the instances on the fly.

OEBPS/Image00605.jpg

OEBPS/Image00602.jpg
Mighty Gumbal]. Ine.

Where the Gumball Maching
s Never Half Empty.

OEBPS/Image00844.jpg
Just be careful how you go about
saving the game state. It's pretty
complicated, and T don't want anyone
else with access to it mucking it up and
breaking my code.

OEBPS/Image00603.jpg

OEBPS/Image00845.jpg
While Ehis isn't

a bevvibly fancy
implementation, notice
that the Client has
no attess to the
Memento's data

GameMemento

savedGameState

Client

MasterGameObiject

// when new level is reached
Object saved =
(Object) mgo.getCurrentState () ;

// when a restore is required

ngo. restorastate (saved) ;

gameState

Object getCurrentstate() {
// gather state
return(gameState) ;

restoreState (Object savedState) {
1/ restore state

/1 do other game stuff

OEBPS/Image00000.jpg
oRELL
Head First

Design Patterns:

A Brain-Friendly Guide

Learn why everything
your friends know about
Fagctory pattern is

probably @

Avoid those |
embarrassing
coupling mistakes |

Load the patterns
that matter straight

-«" /; } mmya?im

See why Jim's

~" | love life improved
)| when he cut down

his inheritance

B S
Discover the secrets
of the Patterns Guru

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Eric Freeman & Elisabeth Robson
with Kathy Sierra & Bert Bates

OEBPS/Image00838.jpg
Al the state, for ALL
of your virtual Tree
dbjecks,is stoved in this
2D-aeray

One, sing)
Tree a2t

Tree

TreeManager
treeArray
displayTrees() {

// for all trees {
P

assplay(x, v, age);
}

display(x, v, age) (
/1 use X-¥ coords

/1 & complex age
// related calcs

OEBPS/Image00597.jpg
ST Vo Ty VAT
Yes! That rocks! %java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine is waiting for quarter

You inserted a quarter
You turned.
A gumball comes rolling out the slot
A gumball comes rolling out the slot...
YOU'RE A WINNER! You got two gumballs for your quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs

Machine is waiting for quarter

You inserted a quarter
Gee, did ve get k) ORI,
PRRRWERPPEG 2 gunball comes rolling out the slot...
PIRTNC TRV vou inserted a quarter

AR o cucnoa. .
e A gumball comes rolling out the slot...
(Rl » gumball comes rolling out the slot...

YOU'RE A WINNER! You got two gumballs for your quarter

Oops, out of gumballs!

Mighty Gumball, Inc
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

%

OEBPS/Image00839.jpg
Tyen the dutk vight

right; Fly all day.
while (daylight) fly;

quack ;
and then quack

OEBPS/Image00837.jpg
Eath Tre, ;
maintaing eiéy:?:..n‘:bh

Tree

xCoord
yCoord
age

display() {
// use X-Y coords
// & complex age
// related cales

OEBPS/Image00575.jpg
Mighty Gumbal], Inc.

Where the Gumball Machine

s Never Half Empty.

Use Mighty Gumball’s stationery to draw your state disgram

OEBPS/Image00576.jpg
final static
final static
final static
final static

int SOLD_OUT = 0;
int NO_QUARTER
int HAS_QUARTER =
int SOLD = 3;

¢

public void insertQuarter() {
// insert quarter code here

public void ejectQuarter() {

// eject

quarter code here

public void turnCrank() (
// turn crank code here

public void dispense() {
// dispense code here

}

First, you'd have to add a new WINNER state

J here. That isn't 4oo bad.

R\ . buk them, you'd have 4o add 3 new conditiond
£ in every single method to handle the WINNER
et Toats ok of code bo modify.

e

uenCrank() will get especially messy, because you'd
have +o add code to thetk 4o see whether you've
a0t 3 WINNER and then switzh 4o either the
WINNER state or the SOLD state

OEBPS/Image00573.jpg
public class Gumballachinetostozive |

Public statsc void masn(String(] age) (

Gumbalachine

Systen. vt princin (qubalidachine) ; £ Frint et be state of the machne

ubativachine
uebaliachine.

gumbalivachine.

insersquarter ()

eusnceank

-

Systen.out. printin gusbaliachine)

uebanachine.
uebalachine.
uebalachine.

Snsozctuacte)
osectguarter(
fe——.

Systen. ot printin(gumbsliachine)

qubaiivachine

quebaliachine.
quebaiiachine.

uebaliachine.

e

insersquarter () ;
-
e
wuncrank) -
osectguarter(

-

Systen.out. printin(guabalMachine)

ubalichine
p—
p—
p——

uebalachina.
quabaiiachine.

quebaliachine.

P —r
snsozciuacter)
fu——
snsertquarter () ;
e
insorquarter ()
euncrank(

Systen.out. printin (gusbsl Iiachine)

-

Gembativachina ()

Threw 8 arter in

e Torn bhetriki e held ek o bl

it ak e

<

E— Throvs qurkerin b)
Ak fa ik
T the ek we shld't gt o onbil

G i ke st o b machin, s

L e ——
T qaricr

o Tom the erki e

Print ok the shate of dhe michne 3g9n

=

Now for e sress &

wo)

e Pt

e of bhe mithne,293m

~ oo s qarter &

Thvow THD sartersin
ki e shsld st or bl

N

2

Nignty Gusball, Tae.
Java-snsbied Standing Gusball

el #2004

Tou inserted quarter

Migney Gusball, Tnc

Sava-anabled Standing Gusball Model #2004

You snserted a quarter
Quaxter raturned

Mighey Gusball, Tnc.
Iava-anabied Standing Gusball Model 2
Tovantory: 4 gubails

Tou dnserted a quarter
You tarnad.

X mbald comes zolting out the ot
A Gumball Gomas xolling aut the slot
Tou haven't inserted & quarter

Sava-anabled Standsng
Inventory: 2 gusbal
Maching 1s waiting for quarter

You snserted a quarter
You can't insaxt sother quarter

X mbal] comes zolting out the ot

ou turnad.

A guahall Gomas rolling out the slot

Sopee out oF uaitat” " .
Tou tatned, but thote sre Ao guballs

Mignty Gusball, Tnc.
a-enabied Standisg Gusball Model #2004

e

Machine 1# sold out

OEBPS/Image00815.jpg
Christopher Alexander invented
patterns, which inspired applying similar
solutions to software.

OEBPS/Image00574.jpg
We think that by turning
*gumball buying" into a game we
can sigrificantly increase our
sales. We're going o put one of
these stickers on every machire.
We're 5o glad we've got Java
in the machines because this is
going to be easy, right?

10 of the bimes
when the trank
s tuvned the
cuskomer a¢ts
fuo qumballs
Guwbadlls ckead of one

CEO, Mighty
Gumball, It

JawBreaker o
Gumdrot?

OEBPS/Image00816.jpg
900 Ymimmnen g -
coca

e
£k Welcome Visitors

@ comiepiwikecomeviiors i

Weloome 1o the WikiWikiWeb, also kaown as Wiki. A lotof people had theis frs wiki eaperiene here, This
community has been uround since 1995 and consits of many peop. We always accept neweomers with
valuable contributions, If you haven'tused a wiki before, be propared or bit of CultureShas. The usefulness
of Wiki i inthe frecdom, simpliciy, and power it offers

‘This site's primary focus is PeapleProjects AndPatterns in SoftwareDevelopment. However,it s more than just
an InformalHistoryOfProgrammingldeas. It started there, but the theme has created & culture and

allts own. All Wiki cotent is WorklaPCO8 600/ 5 mepunec s s~ o

. shae et It changes e peape come and go. Much of e o

for 1 dedicated reference site, try WikiPedia; WikilsNotWikips € 7 C

Browse via StatingPoints,or use the FindPage search
‘Bookmrk Recen(Changes and watch how things change.
Plcase pay attation 1o he tone of artcles. Sce Wel

If you have beginner questions, you can see

‘When learming TextFormtingRules t cdit pugcs, please
it

18 you have any other questions, ask the WikikelpDesk. ar
‘The WikiEingines page provides areference to Wikilmales
‘You can elso select one of the RandomPages. 5o with som|
People should know & ltle Wikiistory.

Please read widely on this Wiki before sdding new wiki pages
umnecessary clutter.

* WikiSquatting (using Wiki as pecsonal Web space), WalledGai
larger wiki), ChatMods (ThieadMode without cleanup), and esj.
ac ll frowned pon. We have sevral rlatd SiserSics - el
suited to TheAdjunt; purely artistic or whimsical stuff goes to|

1 you like the wiki concept and want 1 use a wiki for your ow
those mentioned above).piease consider ther PublicWikiForu
here are many WikiWikiClones and WikiEngines available. }
overwhelmed by the big list of options.

Hiside net m

G Feed Entries

Monday, Apr 21, 2014

Books Contact Conferences Potems Vison Wikl

EuroPLoP 2014
EUPLoP 014 h e Europesn
Conferench on pters and i
B {angieses.EurohLop 201 wilbe held
. forthe 19 tme t iser o,
* by s, Garmany. A s antasic
S Ve you il experience acesive
R omsicive sorashere
Nerbersnp s your work. il he EwGPLSP
o et | | Orhia See.
= =
- Bowa
e IR 2013 marks the 2001 PLoP™ conersnce April 1994: Mambers o the sl sclectiO
+ Contact
[PLoP ConFERBNCE NEvs]
R
- e Desin Paters Book o Grupiop 214
Patams. ‘Series showcases many & Design Pattern
» Vision ‘pattems from PLOP Detinition February 21-3, 2014
Conferences aa esing
> Wikl experts in the pattems field. A mk"':, ol asanPLop 2014
P the rules to combine them March -8, 2014
i i an artecurl s,
(i R e
8 Do Pt Cotaon e

Acollection of pattem
== resources on the web. Sign

5 for an account to add
your own.

& SerumPLep 2014
1823, 2014
See our Pattern Book Livrary i

filled with over 80 Paem

sttt & EuroPlop 2014

< Tools foe weiins

OEBPS/Image00567.jpg
Let's just call “Out of Gumballs”

“Sold Dut” for short.

final static
final static
final static
final static

~

int SOLD_OUT
int NO_QUARTER
int HAS_QUARTER = 2;

Bere's cach state vepresented
3¢ 3 wniaue inteer

int SOLD = 3;
.and here’s an instante variable that holds the

int state = sop_our; & turvent state. We'll g0 ahead and set it to "Sold

Out” sinte the mathine vill be unfilled when it's
Larst taken out of its box and turned on

OEBPS/Image00809.jpg
Wait a minute: 've
read this entire book and
now youre telling me NOT to
use patterns?

OEBPS/Image00568.jpg
serks quarber These attions are
L

turns erank the o Eml;all mathine’s
; interfate — the things
ejeets quarter You ean do vith it-
/’ dispense
ecking ak the diaaam, vkind any of Disgense is mre of an internal
Phese atkions causes a state transition

attion the machine invokes on itself.

OEBPS/Image00810.jpg
So T created this broadcast class. It
keeps track of all the objects listening fo it
and any time a new piece of data comes along
it sends a message to each listener. What's cool
is that the listeners can join the broadcast at any

fime or they can even remove themselves. And the
broadcast class itself doesn't know anything about
‘the listeners; any object that implements the
right inferface can register.

r T
Incomplete i

N
)
J

Time-consuming

OEBPS/Image00807.jpg
S

INTERMEDIATE
MIND

OEBPS/Image00808.jpg
©)

ZEN MIND

OEBPS/Image00571.jpg
dates; they mateh the

e e e o S ke g

public class GumballMachine {

static
static
static
static

£inal int SOLD_OUT = 0;
int NO_QUARTER
int HAS_QUARTER

int SOLD = 3;

f£inal i;

f£inal
f£inal

int state = SOLD_OUT;
int count = 0;

public GumballMachine(int count) { f

this.count = count;
if (count > 0) {
state = NO_QUARTER;

Now e start implemerting
(7 the ackions as methods

public void insertQuarter() {
if (state == HAS_QUARTER) {

' the instance vaviable that is going
e ook o the cument. tate we'e
i We start in the SOLD_OUT state

We have a second instance variable that

Keeps track of the number of gumballs
in the machine.

The tonstructor £akes an initial inven

of gunballs. £ the inventory isn't ufff !
the mathine enters state NO_QUARTER,
meaning it is waiting {for someone 4o
insert 3 quarter, othervise it stays in
the SOLD_OUT state.

When a quarter s inserted, i

a quarker is alveady
imserbed we ell the
tustomer

-

System.out.println("You can't insert another quarter");

} else if (state == NO_QUARTER) {
state = HAS_QUARTER;

System.out.println("You inserted a quarter");

} else if (state == SOLD_OUT) {

othervise we accept the
auarker and trarsition o
£he HAS_QUARTER state

System.out.println("You can't insert a quarter, the machine is sold out");

} else if (state == SOLD) {

System.out.println("Please wait, we're already giving you a gumball");

' S £ the customer juk bought 2
qumball he needs o wait until the
Teansatkion is complete before
insevting another quarter.

And if the machine is sold
out, e vejett the quarter

OEBPS/Image00813.jpg
Today
there are more
patterns than in the
GoF book; learn about
them s well,

Shoot for practical
extensibility. Dor't
provide hypothetical
generality; be extensible
inways that matter.

Go for simplicity
and don't become over-excited.
If you can come up with a
simpler solution without using a
pattern, then go for it.

Rithard
Helm
- Patterns are tools not
- / rules—they need o be
: tweaked and adapted to
your problem.

John Vlissides™

Cw‘/!'/‘/‘////”llm\’

*John Vlissides passed away in 2005. A aveat loss 4o the Design Pat

tevns Community.

OEBPS/Image00572.jpg
pebliorvold eleotpuantes () 4 Now, if the tustomer tries o vemove the quarter

if (state == HAS QUARTER) { &~ 1§ there is a auarter, ve
System.out.println("Quarter returned"); vebuvn it and g0 batk o the
state = NO_QUARTER; e
} else if (state == NO_QUARTER) { L No_QUARTER sl
System.out.println("You haven't inserted a quarter"); Otherviise, if there isn't
} else if (state == SOLD) { &———— one we tan't give it back.
System.out.println("Sorry, you already turned the crank");
} else if (state == SOLD_OUT) {
System.out.println("You can't eject, you haven't inserted a quarter yet");
3
) R You can't cject if the machine is sold I£ the customer just
out, it doesn't aceept quarters! Lurned the erank, ve
Y can't give a vefund; he
The tustomer Lries to turn the erank.. alveady has the qumballl
public void turnCrank() {
if (state == SOLD) { L Someone’s trying to cheat the mathine

System.out.println("Turning twice doesn't get you another gumballl");
} else if (state == NO_QUARTER) {

System.out println("You turned but there's no quarter"); o — Neneed?
} else if (state == SOLD_OUT) { qarter first

Systen.out.println("You turned, but there are no gumballs");

We can't deliver

} else if (state == HAS_QUARTER) (
System.out.println("You turned..."); k_ qumballs; there
saie= Sin; st

. ; L
j [memEap Gucessl They aet 2 gumball. Change
) the state o SOLD and call the
Called o dispense & qumbill mthine’s dispensel) method
public void dispense() { I
; = e in
if (state soLp) { [- SOLD su{c, aue

System.out.println("A gumball comes rolling out the slot");
count = count - 1;
if (count == 0) {

System.out.println("Oops, out of gumballs!");

om 3 quball

Here's wheve we handle the

“out of qumballs” condition’ |

state = SOLD_OUT; e a5t e seb
) else { Lhis was the last one, i
state = NO_QUARTER; \ the machine's state to SOLD_
} OUT; otherwise, we've batk to
} else if (state == NO_QUARTER) { nok having 3 quarter.
System.out.println("You need to pay first");
} else if (state == SOLD_OUT) {) €~ None of these should ever
System.out.println("No gumball dispensed") ; — ¢
¢ happen, but if they do,
} else if (state == HAS_QUARTER) {

System.out.println("No gumball dispensed") ; :‘55“’;""“ an ervor, not
url

}
1

// other methods here like toString() and refill ()

OEBPS/Image00814.jpg
Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph

jan Patterns ave ,
T “ﬁ@ﬂ?ﬁfﬁs e vang of For!
& o

o GoF for short.

OEBPS/Image00569.jpg
public void insertQuarter() { Eath possible
state is checked

HAS_QUARTER) { - :1::‘ : ::Ea.tml

System.out.println("You can't insert another quarter");

if (state

(ks the appropriate
and estibits 0 ST tate

behavior for €3

state = HAS_QUARTER;
System.out.println("You inserted a quarter");

bt cam alo dvarsition b0 other states
SHER I ok as degicted in the dizgram.

} else if (state

NO_QUARTER) {

} else if (state

System.out.println("You can't insert a quarter, the machine is sold out");

} else if (state

soLp) {

System.out.println("Please wait, we're already giving you a gumball");

OEBPS/Image00811.jpg
Precise _

Complete —1

OEBPS/Image00570.jpg
Here we're talking
about a common technique:
modeling state within an object
by creating an instance variable o hold
the state values and writing conditional
code within our methods to handle
the various states.

OEBPS/Image00812.jpg
The GoF launthed the sottwave
patterns movement, but many others
have made significant contributions,
intluding Ward Cunningham, Kent
Beck, Jim Coplien, Grady Booth, Brute
Anderson, Richard Gabriel, Doug Lea,
Peter Coad, and Douy Sehmidt, to

name just a tew.

OEBPS/Image00586.jpg
all the

Heve ave
public class SoldState implements State { wapriate
//constructor and instance variables here atkions for

skate.

public void insertQuarter() {
System.out.println("Please wait, we're already giving you a gumball");

public void ejectQuarter() {
System.out.println("Sorry, you already turned the crank");

public void turnCrank() {
System.out.println("Turning twice doesn't get you another gumbal

}

And here's wheve the

veal work begins. We've in the SoldState, which means the
public void dispense() { L/_’ customer paid. So, we Kiest need o ask
C} gumballMachine. releaseBall () ; the machine o velease 2 gumbal

if (gumballMachine.getCount() > 0) {
gumballMachine.setState (qumballMachine.getNoQuartersState () ;

) else (
System.out.println("Oops, out of gumballs!");
gumballMachine.setState (qumballMachine.getSoldOutState()) ;

) Then e ask the machine what the gumball
! tount is, and either transition o the
NoQuarterState or the SoldOutState

OEBPS/Image00584.jpg
public class GumballMachine { Heve ave all the States agan--
State soldoutState;
State noQuarterState;
State hasQuarterState;
State soldState;

and the State instance variable.

/% The count instante vaviable holds the count

P of qunballs — initially the machine is empty
L Our constructor takes the initil

public GumballMachine(int numberGumballs) { momber of qunballs and stores ¢
soldOutState = new SoldOutState (this); in an instance variable.
noQuarterState = new NoQuarterState (this); SN [t also ereates the State
hasQuarterState = new HasQuarterState (this): o bk
soldState = new SoldState(this); e

State state;
int count = 0;

this.count = numberGumballs;

if (numberGumballs > 0) {

state = noQuarterState;

} else {
state = soldoutState;
}
1

public void insertQuarter() {
state.insertQuarter() ;

¥

public void ejectQuarter() {
state.ejectQuarter () ;

}

public void turnCrank() {
state. turnCrank () ;
state.dispense() ;

}

void setState(State state) {
this.state = state;
}

void releaseBall() {

1€ theve are more than O gumballs we
€ et the shate bo the NoBuarkerShate;
otherwise, we start in the SoldOutState

Now for the attions. These are

We
VERY EASY to implement row
st delegate b he carvent state

v

—

Noke that we dor't need an
attion method for dispense() in
GumballMachine betause i's just an
internal attion; a user can't ask the
mathine 4o dispense divectly. But we
do call dispense() on the State object
£rom the furnCrank() method.

This mebhod allows obher objects (1ke
€T e Shake okjerks) do dransiton the
michine 4o & difevent, state

System.out.println("A gumball comes rolling out the slot...");

if (count = 0) {
count = count - 1;
¥
1

// More methods here including getters for each State

TR The nathine suports a releaeBall)

helper method that veleases the ball and
detrements the count instante variable.

A This includes methods like getNouarterState() for getting each
state object, and getCount() for aetting the aumball count.

OEBPS/Image00826.jpg
The time has come

for you to 90 out and
distover move patterns
on Your own. There are
many domain—spetific
paherns we haven't ever
mentioned and there are
also some foundational
ones we didn't eover.
You've also got. patterns
of your own to create

Chetk out the
Appendix; we'll
give you 3 heads
up on some more
foundational
patherns youll

probably want. o
have a look at-

OEBPS/Image00585.jpg
te to the
% 3 veherer
public class HasQuarterState implements State { 2‘ Y:szaLM'ht This is vsed R
o in
GumballMachine gumballMachine; to transibion the mathine
dibfevent
public HasQuarterState (GumballMachine gumballMachine)
this.gumballMachine = gumballMachine;
)
B inap w{':*‘
jon or this
public void insertQuarter() (e
System.out.println("You can't insert another quarter") ;
&
public void ejectQuarter() { Return the customer’s
System. out. println (‘Quartes setuned T
i ansition
gunballMachine. setState (quaballMachine. getNoguarterstate () ; |\ n .t Chate
}

public void turnCrank() { When the trank is

System.out.println("You turned..."); < turn:d :c ‘cv::i&w
he machine e
) gunballMachine. setState (qunballMachine . getSoldState () ; ColdCkate state by

calling its setState)

ebhod and passing it
public void dispense() {

{he SoldState object:
St e i, A The Sachate st
) getSoldState))
/> aetter method
Another Utheve is one of these
mav?"’y"“ aetter methods for
Sekion vor £ each state).

hate.

OEBPS/Image00578.jpg

OEBPS/Image00820.jpg

OEBPS/Image00579.jpg
Heve's the intevfate for all states. The methods map directly
4o ackions that tould happen to the Gumball Mathine (these
are the same methods as in the previous tode).

<<interface>>
State
insertQuarter()
ejectQuarter()
tumCrank()

dispense()

To figure out what
states we need, we look

SoldOutState NoQuarisrSate

3t our previous code-- SoldState
‘ HasQuarterState
inserQuarter) insertQuarter() insertQuarter() insertQuarter(
fm:;?n) ejectQuarter) ejectQuartr() ejectQuarter)
tumCrank() tumCrank() t
dispense() dispense() dispensel) d:,:::(?

<17
.. and we map each state
direetly to a elass.

public class GumballMachine {

final static int SOLD_OUT =

final static int NO_QUARTER
final static int HAS_QUARTER = 2;
Don't forget, we need a new “winner” state
oo that implements the state intecface. We'll
come back 4o Lhis after we veimplement the

Livst vevsion of the Gumball Machine-

final static int SOLD = 3;

int state = SOLD_OUT;
=0;

WinnerState
insertQuarter()
ejectQuarter()
tumCrank()
dispense()

OEBPS/Image00821.jpg

OEBPS/Image00818.jpg
L

OEBPS/Image00577.jpg
Okay, this isr't good. I think
our first version was great, but it isr't
going to hold up over time as Mighty Gumball

keeps asking for new behavior. The rate of bugs
is just going to make us look bad, not to mention
the CEO will drive us crazy.

OEBPS/Image00819.jpg

OEBPS/Image00582.jpg
What we're doing is
implementing the behaviors that
are appropriate for the state
we're in. Tn some cases, this behavior
includes moving the Gumball
Machine to a new state.

OEBPS/Image00824.jpg

OEBPS/Image00583.jpg
final static

final static

final static

final static

0ld code

public class GumballMachine {

int SOLD_OUT =
int NO_QUARTER
int HAS_QUARTER
int SOLD = 3;

int count = 0;

int state = SOLD_OUT;

New tode

the
umballMachine, we update
|:°::té MX:’ a{hc new tlasses vather t:an
the static lhhsc“{_-nm Lmjja: .}: e
imilav, extept that in one
ot ober Ry

public class GumballMachine {

State soldoutState;
State noQuarterState;
State hasQuarterState;
State soldstate;

State state = soldOutState;

int count = 0;

All the State objecks ave created
and assigned in the constructor.

This now holds 3
Shate objeet, not
o inkeaer

OEBPS/Image00825.jpg

OEBPS/Image00580.jpg
Go 1o HasQuarterState /_"\)
Tell the eustomer, “You haven't inserted a quarter.”

)

o to SoldState. =,

Tell the customer, ‘Please wait, we've alveady giving you a qumball.”

=4

Dispense one qumball. Chetk mumber of qumballs; if > 0,
30 to NouarterState; othervise, 3o to SoldOutState, ————

Tell the customer, “There ave no qumballs.”

T

6o ahead and £ill this out even though we've implementing it |

insertQuarter()
‘ejectQuarter()
tumCrank()

dispense)

insertQuarter()
ejectQuarter)
tmCrank()

dispense()

insertQuarer)
ejectQuarter)
tmCrank()

dispense()

sjectQuartr()
tumCrank()
dispense()

WinnerState
insertQuarter()
efecQuarter)
tumCrank()
dispense()

.

OEBPS/Image00822.jpg
Y~ Seen hanging around Corporate

badrdrooms and project
mangement. meefings

OEBPS/Image00581.jpg
interlace: We get passed a veference to
e State the Gumball Machine throuh the
consbruckor. We'e just goird o
ok bhi n an mcbone vnble

Fiesk we need to implement th

public class NoQuarterState implements State {
GumballMachine gumballMachine;

1§ someone inserts 3 quarter,

public NoQuarterState (GumballMachine gumballMachine) { 2,
we e 3 message saying the

this.gumballMachine = gumballMachine;

) oo was aceepted and then
/ Lhinae the machine’s state to
public void insertQuarter() { the ftasQuarterState
System.out.println("You inserted a quarter"):
gumballMachine. setState (qunballMachine.getHasQuarterState()) ; You'l see how these

¥ R/ workiin just a sec

public void ejectQuarter() {
System.out.println("You haven't inserted a quarter"); — _ You tan't gebmoney

} back if you never gave

it 4o us!

public void turnCrank() {

System.out.println("You turned, but there's no quarter”);
. R ol youcart et s gunbal
i You don't pay us

public void dispense() {

System.out.println("You need to pay f£irst");

We an't be dispensing

) qumballs vithout payment.

OEBPS/Image00823.jpg

OEBPS/Image00817.jpg
SASH 2014 00RsiA ~

|8 2014 s0lashcon.org.

Attending - Planning - Contributing - Committees -

Signin ~ Signup

OOPSLA

The s00po of OOPSLA Includes allaspects of

programming languages and software engineering,
broadly construed. Mar25, Submissions

2014 Due
Papers that address any aspect of software development

are weicome, Including requirements, modeling, May8- Author
prototyping, design, implementation, generation, analysis, | 9,2014 Response
verification, testing, evaluation, maintenance, reuse,
replacement, and retirement of software systems. Papers | May 26, First-Phase
may address these topics In a variety of ways, Including 2014 Notifioation
new 00 (such as languages, program anlyses, and

runtime systems), new techniques (such as szl Revions

methodologies, design processes, code organization Cabs)
approaches, and management techniques), and new Aug3, Final
‘evaluations (such as formalisms and proofs, corpora 2014 Notification
analyses, user studies, and surveys).

Aug 10, Camera-
Call for Papers 201470 Reacyoue

The scope of OOPSLA includes all aspects of

programming languages and software engineering,
broadly construed.

| Todd Mistein
Papers that address any aspect of software development | (\niversity of

are welcome, including requirements, modeling, Calflonia, Los
prototyping, design, implementation, generation, analysis, | Angeles)

verification, test g, evaluation, maintenance, reuse,

OEBPS/Image00795.jpg
T wish T'd known
about patterns catalogs
along time ago..

JC:J{)

Frank

OEBPS/Image00796.jpg
Al patterns in a eatalog start with
3 name. The name is a vital part of
a pakier = sithoet #'g00d havis
a pattern can't become part of
e votabulary £hat you shave vith
other developers

The motivation gives you a contrete

stenario that describes the problem and

how the slution salves the problem.
The applicability deseribes situations
in which Ehe y;{{zrh ¢an be applied

The participants ave the elasses and
objecks in the desion- This section

deseribes theiv vesponsibilities and voles

in the pattern

The consequentes desevibe the
ekbects that using this pattern
may have: good and bad.

Inplementation provides ——2
tethniques You need to use when
implementing this pattern, and
issues You should wateh out for.

Known Uses deseribes ~ >
examples of this pattern
found in veal systems.

Snauroy

O
-

category. Well Lalk
about these in a few
Pages.

The intent destribes what
the pattern does in 3 short
statement. You ean also think
of this as the pattern's
definition Gust.lke ve've been
using in this book).

S The sbruckure provides a
diagram llusbrating the
velationships among the
elasses that participate
in the pattern.

Collborations 4els us
how he participants work
Logether in the pattern

S—— Sample Coge
frovdes code
Yagments {hot
might help vit),
inlementrta 19

Related Patterns
destribes the
velationship between
this patteen and others

OEBPS/Image00793.jpg

OEBPS/Image00794.jpg
Next time someone
tells you a patternis a
Solution to a problem ina context, just
nod and smile. You know what they mean, even
if it isn't a definition sufficient to describe
what a Design Pattern really is.

OEBPS/Image00787.jpg
ekCounter is 3 Quackable, so
Q By GuackObserable oo

public class QuackCounter implements Quackable {
Quackable duck;

static int numberOfQuacks; Heve's the duck that the
QuatkCounter is decorating. [¥s this
public QuackCounter (Quackable duck) { duck that veally needs to handle the

2 le m
this.duck = duck, observable methods.

public void quack() {
duck. quack () ; Al of s code is the
uck. quack () W e proins

numberOfQuacks++; of QuatkCounter

version

public static int getQuacks() {
return numberOfQuacks ;

public void registerObserver (Observer observer) {
duck. registerObserver (cbserver) ; R Here are the tuo
3 QuackObservable
b mebhods Nobie
it v st el
2

both ¢alls 4o the
duck.notifyObservers () ; duek that we've

) decorating

public void notifyObservers() {

OEBPS/Image00788.jpg
Flotk is a Quatkable, so now
itsa Quatwbsewa\;l: too.
public class Flock implements Quackable {

ArrayList<Quackable> quackers = new ArrayList<Quackable>();
N Here’s the Quackables
public void add(Quackable duck) { that ave in the Flock
ducks . add (duck) ;

public void quack() {
Iterator<Quackable> iterator = quackers.iterator();
while (iterator.hasNext()) {
Quackable duck = iterator.next();

duck . quack () ; When ou vegister 35 an Observer
n

©ith the Flock, you actually
gck vegsteved with everything
hat's IN the flocks w{»h.u\ .z ,
le, whether its
public void registerObserver (Observer observer) { every Quatkable, ¥

dutk or another Flotk.
Iterator<Quackable> iterator = ducks.iterator();

while (iterator.hasNext()) { We iterate through all the

Quackable duck = iterator.next(); Quackables in the Floek
duck. registerObserver (observer) ; & and delegate the call o
; eath Quackable. [f the

Quatkable is another Flock,
it will do the same.

public void notifyObservers() { }

t Eath Quackable does its own notification, so
Flock doesn’t have to worvy about it. This

happens when Flotk deleaates quack() £o each
PRV A

OEBPS/Image00791.jpg

OEBPS/Image00792.jpg

OEBPS/Image00789.jpg
The view delegates
behavior o {?
controller. The
behavior it
delegates is how to
tontrol the model
based on user

nput.

controler

createView)
updateBPM(
updateBeat()
createControls()
enableStopMenultem()
disableStopMenultem()
enableStarthlenuliem()
disableStartMenultem()
actonPeromed()

/\m

<<interface>>
Controllerinterface
setBPM()

increaseBPM()
decreaseBPM()

i

Controller

SetBPM)
increaseBPM()
decreaseBPM()

ControllerInterface
is the intecface
hat all contrete
tontrollers
imy\cmcn{; This

is the strategy
interkace

k‘)

We ¢an plug
in different
controllers
o provide
different
behaviors for
+he view.

OEBPS/Image00790.jpg

OEBPS/Image00806.jpg
BEGINNER MIND

OEBPS/Image00804.jpg
Center your thinking on
design, not on patterns. Use
patterns when there is a natural
need for them. If something

simpler will work, then use it.

o
o

OEBPS/Image00805.jpg
o

OEBPS/Image00798.jpg
Pattern Description
o— Wraps an object and provides a different

interface to it.
State Subelasses decide how to fmplement steps in an
. algorithm.
Herator

Subelasses decide which concrete classes to
Facade Sreate;

sures one and only one object is created.

Strategy Encapsulates interchangeable behaviors and uses
Proxy delegation to decide which one to use.

Clients treat collections of objects and individual
Factory Method objects uniformly.

Encapsulates state-based behaviors and uses
Adapter delegation to switch between behaviors.
T — Provides a way to traverse a collection of objects

without exposing its implementation.
Template Method Simplities the interface of a set of classes.
Compestts Wiaps an ebject to provide new behavior.

Allows a client to create families of objects
Singleton without specifying their concrete classes.

Allows objects to be netified when state changes.
Abstract Factory

Wraps an ebject to control access to it.
Command Encapsulates a request as an object.

OEBPS/Image00799.jpg
Abstract Factory
Decorator

[Factory Method

)

Creational Patterns involve object
instantiation and all provide a

way to decouple a client from the
objects it needs to instantiate.

Creational

e et

Eath of

in one o

Structural

e <

Template Method

Read each category description and
see if you can corral these patterns

into their correct categories. This is
atoughy! But give it your best shot
and then check out the answers on

the next page.

{hese patterns belonds
§ fhose categories

Any pattern that is a Behavioral
Pattern is concerned with how
classes and objects interact and
distribute responsibility.

Behavioral

Structural Patterns let you
compose classes or objects
into larger structures.

OEBPS/Image00797.jpg
Use one of the existing
pattern templates to
define your pattern. A lot
of thought has gone into
Ehese templates and other
pattern usevs will vecognize
the format.

fipe

OEBPS/Image00802.jpg

OEBPS/Image00803.jpg
Vi Beamron Pt bam

OEBPS/Image00800.jpg
Creational Patterns involve object

instantiation and all provide a
way to decouple a client from the
objects it needs to instantiate.

Any pattern that is a Behavioral
Pattern is concerned with how
classes and ob jects interact and
distribute responsibility.

Creational Behavioral
Singleton Builder TR Nistoreas o
Prototype Smpate el Tterator
Command ‘Memento
Abstract Factory Interpreter gt
Factory Method Chain of Responsibility
State
Strategy
Structural
Pr
Decorator L
Composite Facade
Flyweight Bridge
e We've got a Few paterns

N

(in ayey) that you haven't
e yet. You'll find an
overview of these patters
in the Appendix.

Structural Patterns let you
compose classes or objects
into larger structures,

OEBPS/Image00801.jpg
Class Patterns describe how relationships between
classes are defined via inheritance. Relationships in
class patterns are established at compile time.

Object Patterns describe
relationships between objects
and are primarily defined by
composition. Relationships in
object patterns are typically
created at runtime and are
more dynamic and flexible.

lass
¢ Object
empite e tied Composite Visitor
Adapter Tterator
Factory Method Decorator. FacadeCommard Nemerto
TInferpreter et Proxy e e
"D Chain of Responsibility
Bridge Mediator g
rate
Fiweight Prototype
Abstract Factory Builder
Singleton Notice there are.
3 lok more 3L
gatterns than

Ylass patterns’

OEBPS/Image00773.jpg
Edit_Window_Help_CheckMyPL

% java HeartTestDrive

% Run this.

OEBPS/Image00774.jpg
nd you'll see this. —-\/

(O 0O Control

D) Control

Current BM: 68

Nice healthy
heart vate.

OEBPS/Image00771.jpg
The HeartController implements
f the Controllecinterfate, just
like the BeatController did.

public class HeartController implements ControllerInterface {
HeartModelInterface model;

Daview view;
Like before, the
public HeartController (HeartModelInterface model) { controller ereates the
this.model = model; view and gets everything
view = new DJView(this, new HeartAdapter(model)) ; glued together.
view.createview() ;
view.createControls() ; There is one thange: we are passed
view.disableStopMenuItem() ; a HeartModel, not a BeatModel
view.disableStartMenuIten() ;
) -and we need to wrap that
_ model with an adapter before
public void start() {} we hand it o the view.
Gasiis weiaTeteR T (T Finally, the HeartController disables the
menu ibems because they aven't needed
public void increaseBPM() {}
public void decreaseBRM() {} <_\Thzu's not a lot to do here; after all,
we tan't veally control hearts like we
public void setBEM(int bpm) {}

¢an beat mathines.

OEBPS/Image00772.jpg
public class HeartTestDrive {

public static void main (String[] args) {
HeartModel heartModel = new HeartModel() ;
ControllerInterface modsl = new HeartController (heartModsl) ;
}
» i
All we need 4o do is ereate the
controller and pass it 3 heart monitor.

OEBPS/Image00775.jpg
isp/view

model/DB/
business logic

OEBPS/Image00776.jpg
You don't even want to know
what life was like before

Model 2 came on the scene.
Tt was ugly

Eoemer DOT Ct

fex

OEBPS/Image00769.jpg
Wee ot method for actting

getHeariRate() Lhe turvent heart vate.

registerBeatObserver()
registerBPMOBserver()
Jother heart methods

ST And lckily, ks developers knew about th
Beat and BPM Observer interfaces!

OEBPS/Image00770.jpg
We need to implement the
{araet interbate — in this

pub tase, BeatModellnterface
lic class HeartAdapter implements BeatModelInterface {

HeartModelInterface heart;

public HeartAdapter (HeartModelInterface heart) { \ Here, we store 3 veferente
this.heart = heart;

) L/ 4o the heart model

public void initialize() (}

K We don't know what these would
€ dotto 3 heark, but it sounds weary

public void on() {}

At leave them 3 “no ops”
public void of£) () o Sowellpot e e 4
L G o When setBPMO is called, we'l just
roturn heart.getHeartRate(); < tuandate it ko 2 getHeartRated)
! callon the heark model
pibtte votd semRline Fem 0 ST e dor't vank o do bhis on 3 heard
public void registerObserver (BeatObserver o) { Again, let's leave it as a “no o

heart.registerObserver (o) ;
1

public void removeObserver (BeatObserver o) { Here ave our observer methods
¥ S !
, heart. removeObserver (o) ; We just delegate them to the
weapped heart model.
public void registerObserver (BPMObserver o) {
heart.registerObserver (o) ;
)

public void removeObserver (BPMObserver o) {
heart. removeObsexrver (o) ;

1

OEBPS/Image00767.jpg
~and you'l see this. 2 \

6 O 6 View © O 6 Control

Current BPM: 120

OEBPS/Image00768.jpg

OEBPS/Image00784.jpg
Web
browser
—_—
Here's a new page

to display i \6

User has done

something
bean
Update your display:
= here's the new model
state RS /1
JSP/HTML View
Controller
Okay, I changed
The view now YECENES 1y state
notifications n,;
fhe tontroller when a .
is needed ather engeyour
page is meeded ¥ o

y state

Lhan on ever
ehange in the model

OEBPS/Image00785.jpg
Web
browser
—
Heres a new page

bean

User has done
something

Update your display:
«— here's the new model
state (

JSP/HTML View Controller
Okay, T changed
my state

(

Change'your
state

OEBPS/Image00782.jpg
LX) 0 View P

3

ocalnost8080 1 1 |

D] View (1) User elicks the
on button

Beats per minutes = 90

This is the view
of the mode!

(2) Reauest is sent to

feve's the set of
trols; when B8PM: (90 | [set]
e these &= conbroller via HTTP:
sent Vi3 [on] [off|
WTTP to the
senlet tonbroller
for e (3) Beat is turned
) View on and set at
[ocanost8080 - -1 e C default 90 BPM.
i () View s
DJ View veburned via HTTP
and displayed-

Beats per minutes = 90

8PM: (et
PM: (150 | [set| (5) User enters

=) 22

J new BPM in

(en) (o) text field-
(6) User clicks
Set button.

() WTTP vequest is made

OEBPS/Image00783.jpg
D) view
localhost80801 4 e servlt |

eoo

©

(8) Controller
thanges model to
150 BPMs

(9) View veburns f
HTML vefleeting

the eurvent model-

DJ View

Beats per minutes = 150

OEBPS/Image00786.jpg
00 PY"mClY\es

Encapsidte what vavies
Favor compuiten heritarte

Progeam o kerkaees, mob
wplementater®

hvive for Vool Conpled des3s
e anjecs $3 nkeratt

Clases hold be F for extension
ot closed for modification

gt o TS Do vok
deperd on Lontrete 6356

Dt all s el 68

B dass shold Y€ any one YEE
1o charae

‘; Pvdﬂ—?mhdeaw"qa*ﬂu i
Y\aubw\ur Sor another Jn:)w‘cl‘n /e have 3 new
Conted) actess ¥ * eabeqoryl MVC

and Model 2 ave
compound paterns

OEBPS/Image00777.jpg
DJ View

Beats per minutes = 90

| B

OEBPS/Image00780.jpg
PuRLin yeid doVosmAptpisrviathsquast Daguast,

HttpServletResponse response) First we grab the model from

throws IOException, ServletException the sevvlet context. We ean't

(manipulate the model without
BeatModel beatModel = a v:—Eevant toit

(BeatModel) getServletContext () .getAttribute ("beatModel") ;

String bpm = request.getParameter ("bpm") ;
if (bpm == null) {
bpm = beatModel.getBRM() + ";

. S Next we grab ll he HTTP

commands/parameters.
String set = request.getParameter("set");
if (set != null) AT 1F ve gt 3 set command,
int bpmNumber = 90; then we get the value of the
bpmNumber = Integer.parselnt (bpm); set, and tell the model.

beatModel . setBPM (bpmNumber) ;
1

String decrease = request.getParameter ("decrease") ; i
if (decrease != null) { deerease, we €
intrease of
beatModel . setBPM (beatModel . getBPM() - 1) ; ~ I; “i:rr:n{ BPMs From the model,
e
) 3 adiustk up or down by one
String increase = request.getParameter ("increase") ; and 6y
if (increase != null) (
beatModel . setBEM (beatModel . getBRM() + 1) ;

1

String on = request.getParameter("on") ; L 1§ we get an on or off
if (om != null) { command, we tell the model
beatModel.on() ; to turn off or on

¥
String off = request.getParameter ("off");
if (off !'= null) {

beatdodel .o££ () ; Following the Model 2 definition,
, we pass the JSP a bean vith the
model state in it. In this case, we
request.setAttribute ("beatModel", beatModel) ; pass it the actual model, since it
happens 4o be a bean
RequestDispatcher dispatcher =
request.getRequestDispatcher ("/djview.jspn) ; &—— Fimally, our job as a eontroller
dispatcher . forward (request, response) ; is done. All we need to do is
; ask the view to take over and
ereate an HTML view.

OEBPS/Image00781.jpg
Here's our bean, which

[‘ the sevvlet passed us
<jsp:useBean id="beatModel" scope="request"

class="headfirst.designpatterns.combined.djview.BeatModel" />
<!doctype html>

<html> Beginning of the HTML.

<head> e}
<meta charset="utf-8">

<title>DJ View</title>

le>, . . tyle
(/:m e>.. .</style> Here we use the model bean 4o
o extract the BPM property,
<body>

<h1>DJ View</hl> \/),

Beats per minutes = <jsp:getProperty name="beatModel" property="BEM" />

<hr>

Now we

<form method="post" action="/djview/servlet/DiViewServlet"> generate the

BPM: <input type=text name="bpm" :::’{;:f:

value="<jsp:getProperty name='beatModel' property='BEM' />" the eurrent

beats per

<input type="submit" name="set" value="set">
 minute

<input type="submit" name="decrease" value='<<"> And here's the conrol part

<input type="submit" name="increase" value=">>">
 of the view. We have a text

<input type="submit" "on" value=ron"> entry for entering a BPM

along with inerease/decrease

<input type="submit" name="off" value="off">

pat e and ‘on/ofF buttons

</form>

</body> £ —
/Bl And here's the end

of the HTML.

OEBPS/Image00778.jpg
o haa 20
Pulttc gy g0
Wettog,

OEBPS/Image00779.jpg
We extend the fttpSevviet elass
<o that we can do servlet kinds of

L/“ things, like veteive HTTP vequests.

oublic class DiViewServlet extends HttpServiet e reed e sm\ahwﬁgjms.d ;ti:\,t
private static final long serialVersionUID = 2L; HttpServlet implements Seviali

Heve's the init method;
public void init() throws ServletException { /L— {hisis called when the
BeatModel beatModel = new BeatModel () ; cervlet is first ereated

beatModel .initialize() ; “
getServletContext () .setAttribute ("beatModel", beatModel) ; ~ , fivst eveate a
BeatModel object..

// doGet method here /R ~and place a veference 4o it
in the servlet’s context so
public void doPost (HttpServletRequest request, that it's easily aceessed.
HttpServietResponse response)
throws IOException, ServletException é)
«

// implementation here

Here's the doPost() method. This is where the veal verk
hapens. We've got. s implementation on the next. page

