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Preface
      

      
      
      
      The idea for this book came to me in the summer of 2018 after working with some especially talented developers who had managed
         to go a significant portion of their careers without learning how to write scalable code. I realized then that a lot of the
         techniques for “big data” work, or what we’ll refer to in this book as “large dataset” problems, are reserved for those who
         want to tackle these problems exclusively. Because a lot of these problems occur in enterprise environments, where the mechanisms
         to produce data at this scale are ripe, books about this topic tend to be written in the same enterprise languages as the
         tools, such as Java.
      

      
      This book is a little different. I’ve noticed that large dataset problems are increasingly being tackled in a distributed
         manner. Not distributed in the terms of distributed computing—though certainly that as well—but distributed in terms of who’s
         doing the work. Individual developers or small development teams, often working in rapid prototyping environments or with
         rapid development languages (such as Python), are now working with large datasets.
      

      
      My hope is that this book can bring the techniques for scalable and distributed programming to a broader audience of developers.
         We’re living in an era where big data is becoming increasingly prevalent. Skills in parallelization and distributed programming
         are increasingly vital to developers’ day-to-day work. More and more programmers are facing problems resulting from datasets
         that are too large for the way they’ve been taught to think about them. Hopefully, with this book, developers will have the
         tools to solve those big data problems and focus on the ones that got them interested in programming in the first place.
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         Deirdre Hiam, Carl Quesnel, Keri Hales, and Barbara Mirecki. Also thank you to my technical proofer, Al Krinker, and technical
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         a better book.
      

      
      


About this book
      

      
      
      
      
      Who should read this book
      

      
      The goal of this book is to teach a scalable style of programming. To do that, we’ll cover a wider range of material than
         you might be familiar with from other programming or technology books. Where other books might cover a single library, this
         book covers many libraries—both built-in modules, such as functools and itertools, as well as third-party libraries, such
         as toolz, pathos, and mrjob. Where other books cover just one technology, this book covers many, including Hadoop, Spark,
         and Amazon Web Services (AWS). The choice to cover a broad range of technologies is admitting the fact that to scale your
         code, you need to be able to adapt to new situations. Across all the technologies, however, I emphasize a “map and reduce”
         style of programming in Python.
      

      
      You’ll find that this style is a constant throughout the changing environment in which your code is running, which is why
         I adopted it in the first place. You can use it to rapidly adapt your code to new situations. Ultimately, the book aims to
         teach you how to scale your code by authoring it in a map and reduce style. Along the way, I also aim to teach you the tools
         of the trade for big data work, such as Spark, Hadoop, and AWS.
      

      
      I wrote this book for a developer or data scientist who knows enough to have gotten themselves into a situation where they’re
         facing a problem caused by having too much data. If you know how to solve your problem, but you can’t solve it fast enough
         at the scale of data with which you’re working, this book is for you. If you’re curious about Hadoop and Spark, this book
         is for you. If you’re looking for a few pointers on how to bring your large data work into the cloud, this book could be for
         you.
      

      
      
      
      
      How this book is organized: A roadmap
      

      
      In chapter 1, I introduce the map and reduce style of programming and what I’ll cover in this book. I discuss the benefits of parallel
         programming, the basics of distributed computing, the tools we’ll cover for parallel and distributed computing, and cloud
         computing. I also provide a conceptual model for the material that I cover in this book.
      

      
      In chapter 2, I introduce the map part of the map and reduce style, and we look at how to parallelize a problem to solve it faster. I
         cover the process of pickling in Python—how Python shares data during parallelization—and we’ll tackle an example using parallelization
         to speed up web scraping.
      

      
      In chapter 3, we’ll use the map function to perform complex data transformations. In this chapter, I teach how you can chain small functions together into
         function pipelines or function chains to great effect. I also show how you can parallelize these function chains for faster
         problem solving on large datasets.
      

      
      In chapter 4, I introduce the idea of laziness and how you can incorporate laziness to speed up your large data workflows. I show how
         lazy functions allow you to tackle large dataset problems locally, how you can create your own lazy functions, and how to
         best combine lazy and hasty approaches to programming. We’ll use these lazy methods to solve a simulation problem.
      

      
      In chapter 5, I cover accumulation transformations with the reduce function. I also teach the use of anonymous or lambda functions. In this chapter, we’ll use the reduce function to calculate summary statistics on a large dataset.
      

      
      In chapter 6, I cover advanced parallelization techniques using both map and reduce. You’ll learn advanced functions for parallelization in Python, as well as how and when to pursue a parallel solution to
         your problem. In this chapter, you’ll also learn how to implement parallel reduce workflows.
      

      
      In chapter 7, I introduce the basics of distributed computing as well as the technologies of Hadoop and Spark. You’ll write introductory
         programs in Hadoop and Spark, and learn the benefits of each framework. We’ll also cover the situations in which Hadoop is
         preferable over Spark, and when Spark is preferable over Hadoop.
      

      
      In chapter 8, I cover how to use Hadoop streaming to run your map-and-reduce–style code on a distributed cluster. I also introduce the
         mrjob library for writing Hadoop jobs in Python. We’ll cover how to move complex data types between Hadoop job steps. We’ll
         cement these principles with hands-on examples analyzing web traffic data and tennis match logs.
      

      
      In chapter 9, we dive into using Spark for distributing our Python code. I cover Spark’s RDD data structure as well as convenience methods
         of the RDD that you can use to implement your code in a map and reduce style. We’ll also implement the classic PageRank algorithm on
         the tennis match log data from chapter 8.
      

      
      In chapter 10, we look at one of the most popular applications of Spark: parallel machine learning. In this chapter, we cover some of the
         basics of machine learning. We’ll practice these principles by implementing decision trees and forests to predict whether
         mushrooms are poisonous or not.
      

      
      In chapter 11, I cover the basics of cloud computing and the nature of cloud storage. We’ll put our learning into practice by loading data
         into Amazon S3 using both the web GUI and the boto3 AWS API wrapper library for Python.
      

      
      In chapter 12, we use Amazon ElasticMapReduce to run distributed Hadoop and Spark jobs in the cloud. You’ll learn how to set up an elastic
         Hadoop cluster from the console using mrjob and from the AWS browser-based GUI. Once you’ve mastered this chapter, you’ll
         be ready to tackle datasets of any size.
      

      
      
      
      About the code
      

      
      On the journey to mastering large datasets with Python, you’ll need a few tools, the first of which is a recent version of
         Python. Throughout this book, any version of Python 3.3+ will work. For the most part, you can install the remainder of the
         software you’ll need with a single pip command:
      

      
      pip install toolz pathos pyspark mrjob --user

      
      If you’d like to set up a virtual environment to keep the packages installed with this book separate from Python packages
         you currently have installed on your path, you can do this with a few lines of code as well:
      

      
      $ python3 -m venv mastering_large_datasets
$ pip install toolz pathos pyspark mrjob --user
$ source mastering_large_datasets/bin/active

      
      If you set up a virtual environment, remember that you’ll need to run the source command to activate it so you can access
         the libraries inside of it.
      

      
      Beyond Python, the only software that you’ll need for this book is Hadoop. The easiest way to install Hadoop is to go to the
         Hadoop website and follow the instructions for downloading Hadoop there: https://hadoop.apache.org/releases.html. Hadoop is written in Java, so you’ll also need to have a Java Development Kit installed to run it. I recommend OpenJDK.
         You can download OpenJDK from the OpenJDK website: https://openjdk.java.net/.
      

      
      Finally, to complete the last two chapters of the book, you’ll need an AWS account. You can create a new AWS account by going
         to https://aws.amazon.com, selecting “Sign in to the Console,” and then creating a new AWS account. To set up your account, you’ll need to provide
         a payment method. Amazon will use this method to charge you for resources you use. For this book, you won’t need more than
         $5 of resources from AWS. To ensure you don’t spend more than you’re comfortable with, you can get a prepaid Visa card and
         set that up as your payment method. You can find prepaid Visa cards at stores like CVS, Walgreens, Rite-Aid, Target, and Walmart,
         as well as many convenience stores and gas stations. You won’t need an AWS account until chapter 11.
      

      
      
      
      
      liveBook discussion forum
      

      
      Purchase of Mastering Large Datasets with Python includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/mastering-large-datasets/welcome/v-5/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions,
         lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
         as long as the book is in print.
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      J.T. Wolohan is a senior artificial intelligence and natural language processing architect at Booz Allen Hamilton. He has
         taught programming to learners of all levels: from elementary and middle school students up to graduate students and professionals.
         In addition to his interests in distributed and parallel computing, J.T. enjoys running, cooking, and spending time with his
         family.
      

      
      
About the cover illustration
      

      
      
      
      The figure on the cover of Mastering Large Datasets with Python is captioned “Costumes civils actuels de tous les peuples connus,” or “Current Civilian Costumes of All Known Peoples.” The
         illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810),
         titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
         collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
         each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
         they lived and what their trade or station in life was just by their dress.
      

      
      The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
         tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
         cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.
      

      
      At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
         computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
         by Grasset de Saint-Sauveur’s pictures.
      

      
      
      
      


Part 1. 

      
      
      Part 1 explores the map and reduce style of computing. We’ll introduce map and reduce, as well as the helper and convenience functions
         that you’ll need to get the most out of this style. In this section, we’ll also cover the basics of parallel computing. The
         tools and techniques in this part are useful for large data in categories 1 and 2: tasks that are both storable and computable
         locally, and tasks that are not storable locally but are still computable locally.
      

      
      
      
      
      


Chapter 1. Introduction
      

      
      This chapter covers

      
      

      
         
         	Introducing the map and reduce style of programming

         
         	Understanding the benefits of parallel programming

         
         	Extending parallel programming to a distributed environment

         
         	Parallel programming in the cloud

         
      

      
      This book teaches a set of programming techniques, tools, and frameworks for mastering large datasets. Throughout this book,
         I’ll refer to the style of programming you’re learning as a map and reduce style. The map and reduce style of programming is one in which we can easily write parallel programs—programs that can do
         multiple things at the same time—by organizing our code around two functions: map and reduce. To get a better sense of why we’ll want to use a map and reduce style, consider this scenario:
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      Two young programmers have come up with an idea for how to rank pages on the internet. They want to rank pages based on the
         importance of the other sites on the internet that link to them. They think the internet should be just like high school: the more the cool kids talk about you, the more important you are. The two young
         programmers love the idea, but how can they possibly analyze the entire internet?
      

      
      
         
            
         
         
            
               	
            

         
      

      
      A reader well versed in Silicon Valley history will recognize this scenario as the Google.com origin story. In its early years,
         Google popularized a way of programming called MapReduce as a way to effectively process and rank the entire internet. This style was a natural fit for Google because
      

      
      

      
         
         	Both of Google’s founders were math geeks, and MapReduce has its roots in math.

         
         	Map and reduce-centric programming results in simple parallelization when compared with a more traditional style of programming.

         
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         map and reduce vs. MapReduce
         
         I’m going to refer to a map and reduce style of programming a lot in this book. Indeed, this style is the primary means through
            which I’ll be teaching you how to scale up your programs beyond your laptop. Though this style is similar in name and functionality
            to MapReduce, it is distinct from and more general than MapReduce. MapReduce is a framework for parallel and distributed computing.
            The map and reduce style is a style of programming that allows programmers to run their work in parallel with minimal rewriting
            and extend this work to distributed workflows, possibly using MapReduce, or possibly using other means.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      In this book, we’ll tackle the same issues Google tackled in their early stages. We’ll look at a style of programming that
         makes it easy to take a good idea and scale it up. We’ll look at a way of programming that makes it easy to go from doing
         work as an individual to doing work on a team, or from doing work on your laptop to doing work in a distributed parallel environment.
         In other words, we’ll look at how to master large datasets.
      

      
      
      1.1. What you’ll learn in this book
      

      
      In this book, you’ll learn a style of programming that makes parallelization easy. You’ll learn how to write scalable, parallel
         code that will work just as well on one machine as it will on thousands. You’ll learn how to
      

      
      

      
         
         	chunk large problems into small pieces

         
         	use the map and reduce functions
         

         
         	run programs in parallel on your personal computer

         
         	run programs in parallel in distributed cloud environments

         
      

      
      and you’ll learn two popular frameworks for working with large datasets: Apache Hadoop and Apache Spark.

      
      This book is for the programmer who can write working data-transformation programs already and now needs to scale those programs
         up. They need to be able to work with more data and to do it faster.
      

      
      
      
      1.2. Why large datasets?
      

      
      You’ve probably heard conversations about an amorphous set of problems in modern computing that revolve around the notion
         of big data. Big data tends to mean different things to different people. I find that most people use that phrase to mean that the data
         “feels” big—it’s uncomfortable to work with or unwieldy.
      

      
      Because one of the goals of this book is to get you comfortable with any size dataset, we’ll work with large datasets. As I think of it, large dataset problems come in three sizes:
      

      
      

      
         
         	The data can both fit on and be processed on a personal computer.

         
         	The solution for the problem can be executed from a personal computer, but the data can’t be stored on a personal computer.

         
         	The solution for the problem can’t be executed on a personal computer, and the data can’t be stored on one either.

         
      

      
      You likely already know how to solve problems that fall in the first category. Most problems—especially those that are used
         to teach programming—fall into this first category. The second group of problems is a bit harder. They require a technique
         called parallel computing that allows us to get the most out of our hardware. Lastly, we have the third group of problems. These problems are expensive,
         requiring either more money or more time to solve. To solve them, we’ll want to use a technique called distributed computing.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Dask—A different type of distributed computing
         
         The map and reduce style of programming puts data at the forefront and is excellent for working with data, from small data
            transformations up to large distributed data stores.
         

         
         If you aren’t interested in learning a style of programming that will make your Python code easier to read and easier to scale,
            but you still want to be able to manage large datasets, one tool out there for you is Dask. Dask is a Python framework for
            distributed data frames with a NumPy and pandas look-alike API. If that sounds like something you’re interested in, I recommend
            Data Science with Python and Dask, by Jesse Daniel (Manning, 2019; http://mng.bz/ANxg).
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Through this book, you’ll learn a style of programming that allows you to write code in the same way for problems of all three
         sizes. You’ll also learn about parallel computing and two distributed computing frameworks (Hadoop and Spark), and we’ll explore
         how to use those frameworks in a distributed cloud environment.
      

      
      
      
      
      1.3. What is parallel computing?
      

      
      Parallel computing, which I’ll also refer to as parallel programming and parallelization, is a way to get your computer to do multiple things at once. For example, referring to the scenario you saw earlier, our
         young programmers are going to need to process more than one web page at a time; otherwise, they might never finish—there
         are a lot of web pages. Even processing one page per half second wouldn’t bring them to 200,000 pages a day. To scrape and
         analyze the entire internet, they’re going to need to be able to scale up their processing. Parallel computing will allow
         them to do just that.
      

      
      
      1.3.1. Understanding parallel computing
      

      
      To understand parallel programming, let’s first talk about what happens in standard procedural programming. The standard procedural
         programming workflow typically looks like this:
      

      
      

      
         
         	A program starts to run.

         
         	The program issues an instruction.

         
         	That instruction is executed.

         
         	Steps 2 and 3 are repeated.

         
         	The program finishes running.

         
      

      
      This is a straightforward way of programming; however, it limits us to executing one instruction at a time (figure 1.1). Steps 2 and 3 need to resolve before we can move on to Step 4. And Step 4 routes us back to Steps 2 and 3, leaving us in
         the same pickle.
      

      
      
      
      Figure 1.1. The procedural computing process involves issuing instructions and resolving them in sequence.
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      In a standard linear program, if the instructions in Step 2 take a long time to execute, then we won’t be able to move on
         to the next section of the problem. Imagine what this looks like for our young programmers trying to scrape the entire internet.
         How many of their instructions are going to be “scrape web page abc.com/xyz”? Probably a lot. What’s more, we know that the
         scraping of one web page (like the Amazon homepage, for instance) is in no way going to alter the content of other web pages
         (such as the New York Times homepage).
      

      
      Parallel programming allows us to execute all of these similar and independent steps simultaneously. In parallel programming,
         our workflow is going to look more like this:
      

      
      

      
         
         	A program starts to run.

         
         	The program divides up the work into chunks of instructions and data.

         
         	Each chunk of work is executed independently.

         
         	The chunks of work are reassembled.

         
         	The program finishes running.

         
      

      
      By programming this way, we free ourselves from the instruction-execution loop we were trapped in before (figure 1.2). Now we can split our work up into as many chunks as we’d like, as long as we have a way of processing them.
      

      
      
      
      Figure 1.2. The parallel computing process divides work into chunks that can be processed separately from one another and recombined when
         finished.
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      This process would be much better for the young programmers wishing to scrape the entire internet. They still need to find
         a way to get enough computing resources to process all of the chunks, but every time they acquire a new machine, they make
         their process that much faster. And indeed, even early-stage Google was running on a cluster of thousands of computers.
      

      
      
      
      1.3.2. Scalable computing with the map and reduce style
      

      
      When we think about the map and reduce style of computing, it’s important to do so in the context of both the size of our
         data and the capacity of the compute resources available to us (figure 1.3). With normal-sized data—which allows us to use personal computer-scale resources to work on data we can store on a personal
         computer—we can rely on the fundamentals of the map and reduce style and standard Python code. In this area, we won’t see
         much difference from other styles of programming.
      

      
      
      
      Figure 1.3. We can think of the map and reduce style of programming as a construction project: from blueprints, which help us organize
         our work; to the transformation of raw material; to the assembly of parts into a final product.
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      Moving up in size of data, we arrive at a place where we can use our personal computer hardware to process the data, but we’re
         having trouble storing the data on a personal computer. At this point, we could, if we wanted to, work on our job in a cluster, but it’s not a necessity. Here,
         the benefits of the map and reduce style start to become apparent. We can use a slightly modified version of our code from
         the smaller sized data to work on data in this size category.
      

      
      And finally, we arrive at the final and largest category of data. This is data that we need to both process and store in a
         distributed environment. Here, we can use distributed computing frameworks such as Hadoop and Spark. And although we can’t
         use the exact same code, we can use the principles and patterns from the smaller sizes. We’ll often also need to use a cloud
         computing service, such as AWS.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Other large data technologies: Splunk, Elasticsearch, Pig, and Hive
         
         Because this book focuses on scalable workflows, I intentionally omitted big data tools that only make sense to operate once
            you’re already in a high-volume environment, including Splunk, Elasticsearch, Apache Pig, and Apache Hive. The latter two,
            built on the Hadoop stack, are natural bedfellows with Hadoop and Spark. If you’re operating with a large volume of data,
            investigating these tools is well worth your while.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      We can see this at play in figure 1.3. Figure 1.3 shows how the techniques taught in this book match up against the various sizes of data and the compute resources available.
         We begin by covering techniques that you can use on your laptop or personal computer: the built-in map and reduce and parallel
         computing abilities of Python. In the final two sections (from chapter 7 and on), we cover distributed computing frameworks such as Hadoop and Spark, as well as how to deploy these services on the
         cloud using Amazon Web Services EMR.
      

      
      
      
      1.3.3. When to program in a map and reduce style
      

      
      The map and reduce style of programming is applicable everywhere, but its specific strengths are in areas where you may need
         to scale. Scaling means starting with a small application, such as a little game you might build on your laptop in an evening
         as a pet project, and applying it to a much larger use case, such as a viral game that everyone is playing on their cell phones.
      

      
      Consider one small step in our hypothetical game: improving the AI. Say we have an AI opponent against which all the players
         compete, and we want the AI to improve every 1,000 matches. At first, we’ll be able to update our AI on a single machine.
         After all, we only have 1,000 matches, and it’s trivial to process them. Even as the number of players picks up, we’ll only
         have to run this improvement every few hours. Eventually, however, if our game gets popular enough, we’ll have to dedicate
         several machines to this task—the amount of information they’ll need to process will be larger (there will be more matches
         in the match history), and they’ll need to process the information faster (because the rate of plays will be faster). This
         would be an excellent application for a map and reduce style because we could easily modify our code to be parallel, allowing
         us to scale our AI improvements up to any number of users.
      

      
      
      
      
      1.4. The map and reduce style
      

      
      The parallel programming workflow has three parts that distinguish it from the standard linear workflow:

      
      

      
         
         	Divide the work into chunks.

         
         	Work on those chunks separately.

         
         	Reassemble the work.

         
      

      
      In this book, we’ll let the functions map and reduce handle these three parts for us.
      

      
      
      1.4.1. The map function for transforming data
      

      
      map is a function we’ll use to transform sequences of data from one type to another (figure 1.4). The function gets its name from mathematics, where some mathematicians think of functions as rules for taking an input
         and returning the single corresponding output. Considering again our young and ambitious programmers, they may want to map a sequence of web pages (or the sequence of all web pages) into the URLs that those pages contain. They could then use those
         URLs to see which pages were linked to most often and by whom.
      

      
      
      
      Figure 1.4. We can use the map function to transform a sequence of data from one type to another, such as transforming web page URLs into lists of links
         found on those pages.
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      A key thing to remember about map is that it always retains the same number of objects in the output as were provided in the input. For example, if we wanted
         to get the outbound links on 100,000 websites with map, then the resulting data structure would be 100,000 lists of links.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      map and reduce have their roots in a style of programming called declarative programming. Declarative programming focuses on explaining
         the logic of our code and not on specifying low-level details. That’s why scaling our code is natural in the map and reduce
         style: the logic stays the same, even if the size of the problem changes.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      It’s worth taking a look at a small example of map in action now because of how fundamental it is to what we’ll be doing throughout this book. Let’s imagine we want to add
         seven to a sequence of four numbers: –1, 0, 1, and 2. To do this, we write a small function called add_seven that takes a number n and returns n+7. To do this for our sequence of numbers, we’d simply call map on add_seven and our sequence (figure 1.5).
      

      
      
      
      Figure 1.5. A basic use of map would be to increment a sequence of numbers, such as changing –1, 0, 1, and 2 into 6, 7, 8, and 9.
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      You’ll note that, like we touched on previously, we have the same number of inputs (4) as outputs (4). Also, these inputs
         and outputs have a direct 1 to 1 relationship: a particular output corresponds to each and every input.
      

      
      
      
      
      1.4.2. The reduce function for advanced transformations
      

      
      If we want to take that sequence and turn it into something of a different length, we’ll need our other critical function:
         reduce. reduce allows us to take a sequence of data and transform it into a data structure of any shape or size (figure 1.6). For example, if our programmers wanted to take those links and turn them into frequency counts—finding which pages are
         linked to the most—they would need to use reduce, because it is possible that the number of pages linked to is different from the number of pages crawled. We can easily imagine
         that 100 web pages might link to anywhere between 0 and 1 million external pages, depending on what the web pages in question
         are.
      

      
      
      
      Figure 1.6. We can use the reduce function to turn a sequence of data of one type into something else: another sequence or even a primitive.
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      We can even use reduce to turn a sequence of data into a primitive data type if we’d like, such as an integer or a string. For example, we could
         use reduce to find the number of outbound links on 100 web pages (an integer) or we could use it to find the longest word in a long text document, such as a book (a string). In this way, reduce is a lot more flexible than map.
      

      
      
      
      1.4.3. Map and reduce for data transformation pipelines
      

      
      Often, we’ll want to use map and reduce together, one right after another. This pattern gives rise to the MapReduce programming pattern. The MapReduce programming pattern relies on the map function to transform some data into another type of data and then uses the reduce function to combine that data. A mathematical example might be taking the sum of the greatest prime factor of a sequence
         of numbers. We can use map to transform each number into its greatest prime factor and then use reduce to take their sum. A more practical example may be finding the longest word on a sequence of web pages, when all we have
         is the URLs. We can use map to turn the URLs into text and reduce to find the longest word (figure 1.7).
      

      
      
      
      Figure 1.7. The functions map and reduce are often used together to perform complex transformations of large amounts of data quickly.
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      1.5. Distributed computing for speed and scale
      

      
      To get the most out of parallel programming, we need to be working in a distributed environment, that is, an environment where
         it’s possible to spread the workload out across several machines. Consider the following scenario.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      A financial trading firm has come up with a way of forecasting the next day’s market activity based on the overnight taxi
         and rideshare traffic in New York City, combined with the morning’s fish prices. The firm’s simulation is perfect, but it
         takes five hours to run. The traffic results are considered final at 3:00 a.m., and the markets don’t open until 9:00 a.m.
         That would give it plenty of time, except the fish prices aren’t available until 6:00 a.m. on some days. How can the trading
         firm get its model to run in time?
      

      
      
         
            
         
         
            
               	
            

         
      

      
      In the above scenario, our traders are out of luck if they are hoping to input the actual fish price data for that day. Lucky
         for them, it’s possible to distribute this problem over a network of computers and have them each compute a separate scenario.
         That way, no matter what the fish price data says, they’ll already have the results on hand.
      

      
      Distributed computing is an extension of parallel computing in which the compute resource we are dedicating to work on each
         chunk of a given task is its own machine. This can get complex. All of these machines have to communicate with the machine
         that splits the tasks up and combines the results. The benefit is that many, many complex tasks—like financial simulations—can
         be performed simultaneously and have their results brought together (figure 1.8).
      

      
      
      
      Figure 1.8. We can use distributed computing to run sophisticated scenarios simultaneously and return the results to a single location.
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      Importantly, for problems that we can execute in a distributed manner, we can often speed them up simply by distributing the
         work over more and more machines or by improving the capability of the machines that the tasks are being distributed across.
         Which, if either, solution is going to result in faster code depends on the problem. The good news for our financial trading
         firm, though, is that they probably have the money for either one.
      

      
      
      
      
      1.6. Hadoop: A distributed framework for map and reduce
      

      
      To learn more about distributed computing, we’ll first look at a specific form of distributed computing called Apache Hadoop, or simply Hadoop. Hadoop was designed as an open source implementation of Google’s original MapReduce framework and has evolved into distributed
         computing software that is used widely by companies processing large amounts of data. Examples of such companies include Spotify,
         Yelp, and Netflix.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      Spotify is a cloud music provider that has two signature offerings: free music over the internet and customized, curated playlists
         that help you discover new music. These custom playlists work by comparing songs you like and listen to with what other users
         listen to, then suggesting songs that you may have missed. The challenge is that Spotify has hundreds of millions of users.
         How can Spotify compare the musical taste of all these users?
      

      
      
         
            
         
         
            
               	
            

         
      

      
      To create their music recommendations, Spotify uses Hadoop. Hadoop allows Spotify to store its listening logs (petabytes of
         information) on a distributed filesystem and then regularly analyze that information. The volume of data is the reason Hadoop
         is so valuable.
      

      
      If Spotify had a smaller amount of information, it could use a relational database. With many petabytes of data, though, that
         becomes infeasible. For comparison, since we’re talking about music, a 10 PB playlist of MP3s would take about 20,000 years
         to play. If someone started playing it before humans domesticated livestock, you could finish the playlist in your lifetime.
      

      
      Using Hadoop means that the data storage and the processing both can be distributed, so Spotify doesn’t have to pay attention,
         necessarily, to how much data it has. As long as it can pay for new machines to store the data on, it can pull them together
         with Hadoop (figure 1.9).
      

      
      
      
      Figure 1.9. Hadoop allows us to store data on a distributed file system of nodes and analyze the data with a highly parallel MapReduce
         process.
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      1.7. Spark for high-powered map, reduce, and more
      

      
      We’ll also touch on Apache Spark (or simply Spark) as a distributed computing framework. Spark is something of a successor to the Apache Hadoop framework that does more of
         its work in memory instead of by writing to files. The memory referenced in this case is not the memory of a single machine
         but, rather, the memories of a cluster of machines.
      

      
      The result is that Apache Spark can be much faster than Apache Hadoop. By Apache’s own estimations, Spark can run more than
         100 times faster than Hadoop, though both will significantly increase your speed when compared to a linear process on a single
         machine. Spark also has some nice libraries for machine learning that we’ll take a look at.
      

      
      Ultimately, whether you decide you want to use Spark or Hadoop for your work will be up to you. Spark, like Hadoop, is being
         used by a lot of large organizations, such as Amazon, eBay, and even NASA. Both are excellent choices.
      

      
      
      
      1.8. AWS Elastic MapReduce—Large datasets in the cloud
      

      
      One of the most popular ways to implement Hadoop and Spark today is through Amazon’s Elastic MapReduce. Elastic MapReduce
         (EMR) joins the MapReduce framework we’ve been talking about with Amazon’s “elastic” series of cloud computing APIs, such
         as Elastic Cloud Compute (EC2). These tools have a very relevant purpose: allowing software developers to focus on writing
         code and not on the procurement and maintenance of hardware.
      

      
      In traditional distributed computing, an individual—or more often a company—has to own all the machines. They then have to
         unite those machines into a cluster, ensure those machines stay up to date with all the latest software, and otherwise ensure
         that all of the machines stay running. With EMR, all we need to dabble in distributed computing is some spare change, and
         Amazon handles the rest.
      

      
      Because EMR allows us to run distributed jobs on demand, without having to own our own cluster, we can expand the scope of
         problems we want to solve with parallel programming. EMR allows us to tackle small problems with parallel programming because
         it makes it cost effective. We don’t have to make an up-front investment in servers to prototype new ideas. EMR also allows
         us to tackle large problems with parallel programming because we can procure as many resources as we need, whether that’s
         tens or thousands of machines (figure 1.10).
      

      
      
      

      
      
      Figure 1.10. EMR allows us to run small parallel jobs more cheaply, while also allowing us to expand when we need to run large jobs.
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      Summary
      

      
      

      
         
         	We can use the map and reduce style of programming to solve problems on our local machine or in a distributed cloud environment.

         
         	Parallel programming helps us speed up our programs by running many operations at the same time on different processors or
            on different machines.
         

         
         	The map function performs one-to-one transformations and is a great way to transform data so it is more suitable for use.
         

         
         	The reduce function performs one-to-any transformations and is a great way to assemble data into a final result.
         

         
         	Distributed computing allows us to solve problems rapidly if we have enough computers.

         
         	We can do distributed computing a number of ways, including using the Apache Hadoop and Apache Spark libraries.

         
         	AWS is a cloud computing environment that makes it easy and cost-effective to do massive parallel work.

         
      

      
      
      
      
      
      
      


Chapter 2. Accelerating large dataset work: Map and parallel computing
      

      
      This chapter covers

      
      

      
         
         	Using map to transform lots of data
         

         
         	Using parallel programming to transform lots of data

         
         	Scraping data from the web in parallel with map

         
      

      
      In this chapter, we’ll look at map and how to use it for parallel programming, and we’ll apply those concepts to complete two web scraping exercises. With map, we’ll focus on three primary capabilities:
      

      
      

      
         
         	We can use it to replace for loops.
         

         
         	We can use it to transform data.

         
         	Map evaluates only when necessary, not when called.

         
      

      
      These core ideas about map are also why it’s so useful for us in parallel programming. In parallel programming, we’re using multiple processing units
         to do partial work on a task and combining that work later. Transforming lots of data from one type to another is an easy
         task to break into pieces, and the instructions for doing so are generally easy to transfer. Making code parallel with map can be as easy as adding four lines of code to a program.
      

      
      
      
      2.1. An introduction to map
      

      
      In chapter 1, we talked a little bit about map, which is a function for transforming sequences of data. Specifically, we looked at the example of applying the mathematical
         function n+7 to a list of integers: [–1,0,1,2]. And we looked at the graphic in figure 2.1, which shows a series of numbers being mapped to their outputs.
      

      
      
      
      Figure 2.1. The map function applies another function to all the values in a sequence and returns a sequence of their outputs: transforming [–1,
         0, 1, 2] into [6, 7, 8, 9].
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      This figure shows the essence of map. We have an input of some length, in this case four, and an output of that same length. And each input gets transformed by
         the same function as all the other inputs. These transformed inputs are then returned as our output.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Some Python knowledge required
         
         We will cover some advanced topics in this book as we work up to dealing with large datasets. That said, in the first section
            of this book (chapters 1 through 6), one of my goals is to provide all my readers with background knowledge that may be missing from their programming education.
            Depending on your experience, you may already be familiar with some of the concepts, such as regular expressions, classes
            and methods, higher order functions, and anonymous functions. If not, you will be by the end of chapter 6.
         

         
         By the end of this first section, my goal is to have you ready to learn about distributed computing frameworks and processing
            large datasets. If at any point you feel like you need more background knowledge on Python, I recommend Naomi Ceder’s The Quick Python Book (Manning, 2018; http://mng.bz/vl11).
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      That’s all fine and good, but most of us aren’t concerned with middle-school math problems such as applying simple algebraic
         transformations. Let’s take a look at a few ways that map can be used in practice so we can really begin to see its power.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      
      You want to generate a call list for your sales team, but the original developers for your customer sign-up form forgot to
         build data validation checks into the form. As a result, all the phone numbers are formatted differently. For example, some
         will be formatted nicely—(123) 456-7890; some are just numbers—1234567890; some use dots as separators—123.456.7890; and others,
         trying to be helpful, include a country code—+1 123 456-7890.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      First, let’s tackle this problem in a way that you’re probably familiar with already: for looping. We’ll do that in listing 2.1. Here, we first create a regular expression that matches all numbers and compile that. Then, we go through each phone number
         and get the digits out of that number with the regular expression’s .findall method. From there, we count off the digits from the right. We assign the first four from the right as the last four, the
         next three as the first three, and the next three as an area code. We assume any other digits would just be a country code
         (+1 for the United States). We store all of these in variables, and then we use Python’s string formatting to append them
         to a list to store our results: new_numbers.
      

      
      
      
      Listing 2.1. Formatting phone numbers with a for loop
      

      import re

phone_numbers = [
    "(123) 456-7890",
    "1234567890",
    "123.456.7890",
    "+1 123 456-7890"
]

new_numbers = []

R = re.compile(r"\d")                         1

for number in phone_numbers:                  2
  digits = R.findall(number)


  area_code = "".join(digits[-10:-7])         3
  first_3 = "".join(digits[-7:-4])
  last_4 = "".join(digits[-4:len(digits)])

  pretty_format = "({}) {}-{}".format(area_code,first_3,last_4)
  new_numbers.append(correct_format)          4

      
      

      
         
         	1 Compiles our regular expression

         
         	2 Loops through all the phone numbers

         
         	3 Gathers the numbers into variables

         
         	4 Appends the numbers in the right format

         
      

      
      How do we tackle this with map? Similarly, but with map, we have to separate this problem into two parts. Let’s separate it like this:
      

      
      

      
         
         	Resolving the formatting of a phone number
         

         
         	Applying that solution to all the phone numbers we have

         
      

      
      First up, we’ll tackle formatting the phone numbers. To do that, let’s create a small class with a method that finds the last
         10 numbers of a string and returns them in our pretty format. That class will compile a regular expression to find all the
         numbers. We can then use the last seven numbers to print a phone number in the format we desire. If there are more than seven,
         we’ll ignore the country code.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      We want to use a class (instead of a function) here because it will allow us to compile the regular expression once but use it many times. Over
         the long run, this will save our computer the effort of repeatedly compiling the regular expression.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      We’ll create a .pretty_format method that expects a misformatted phone number (a string) and uses the compiled regular expression to find all of the numbers.
         Then, just as we did in the previous example, we’ll take matches at positions –10, –9, and –8, using e slice syntax, and assign
         them to a variable named area code. These numbers should be our area code. We’ll take the matches at positions –7, –6, and –5 and assign them to be the first
         three numbers of the phone number. And we’ll take the last four numbers to be the last four of the phone numbers. Again, any
         numbers that occur before –10 will be ignored. These will be country codes. Lastly, we’ll use Python’s string formatting to
         print the numbers in our desired format. The class would look something like the following listing.
      

      
      
      
      Listing 2.2. A class for reformatting phone numbers with map

      import re

class PhoneFormatter:                              1
  def __init__(self):                              2
    self.r = re.compile(r"\d")

  def pretty_format(self, phone_number):           3
    phone_numbers = self.r.findall(phone_number)
    area_code = "".join(phone_numbers[-10:-7])     4
    first_3 = "".join(phone_numbers[-7:-4])
    last_4 = "".join(phone_numbers[-4:len(phone_numbers)])
    return "({}) {}-{}".format(area_code,          5
                               first_3,            5
                               last_4)             5

      
      

      
         
         	1 Creates a class to hold our compiled regular expression

         
         	2 Creates an initialization method to compile the regular expression

         
         	3 Creates a format method to do the formatting

         
         	4 Gathers the numbers from the phone number string

         
         	5 Returns the numbers in the desired “pretty” format

         
      

      
      Now that we’re able to turn phone numbers of any format into phone numbers in a pretty format, we can combine our class with
         map to apply it to a list of phone numbers of any length. To combine the two, we’ll instantiate our class and pass the method
         as the function that map will apply to all the elements of a sequence. We can do that as shown in the following listing.
      

      
      
      
      Listing 2.3. Applying the .pretty_format method to phone numbers
      

      phone_numbers = [                                   1
  "(123) 456-7890",
  "1234567890",
  "123.456.7890",
  "+1 123 456-7890"
]

P = PhoneFormatter ()                               2
print(list(map(P.pretty_format, phone_numbers)))    3

      
      

      
         
         	1 Initializes test data to validate our function

         
         	2 Initializes our class so we can use its method

         
         	3 Maps the .pretty_format method across the phone numbers and prints the results

         
      

      
      You’ll notice at the very bottom that we convert our map results to a list before we print them. If we were going to use them in our code, we would not need to do this; however, because maps are lazy if we print them without converting them to a list, we’ll just see a generic map object as output. This isn’t as satisfying as the nicely formatted phone numbers that we expected.
      

      
      Another thing you’ll notice about this example is that we were set up perfectly to take advantage of map because we were doing a 1-to-1 transformation. That is, we were transforming each element of a sequence. In essence, we’ve
         turned this problem into our middle-school algebra example: applying n+7 to a list of numbers.
      

      
      In figure 2.2, we can see the similarities between the two problems. For each problem, we’re doing three things: taking a sequence of data,
         transforming it with some function, and getting the outputs. The only difference between the two is the data type (integers
         versus phone number strings) and the transformation (simple arithmetic versus regular expression pattern matching and pretty
         printing).
      

      
      
      
      Figure 2.2. We can use map to clean text strings into a common format by applying a cleaning function to all of them.
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      The key with map is recognizing situations where we can apply this three-step pattern. Once we start looking for it, we’ll start to see it
         everywhere. Let’s take a look at another, and more complex, version of this pattern: web scraping.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      In the early 2000s, your company’s archrival may have posted some information about their top-secret formula on their blog.
         You can access all their blog posts through a URL that includes the date the post was made (e.g., https://arch-rival-business.com/blog/01-01-2001). Design a script that can retrieve the content of every web page posted between January 1, 2001, and December 31, 2010.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Let’s think about how we’re going to get the data from our archrival’s blog. We’ll be retrieving data from URLs. These URLs,
         then, can be our input data. And the transformation will take these URLs and turn them into web page content. Thinking about
         the problem like this, we can see that it’s similar to the others we’ve used map for in this chapter.
      

      
      Figure 2.3 shows the problem posed in the same format as the previous problems we’ve solved with map. On the top, we can see the input data. Here, however, instead of phone numbers or integers, we’ll have URLs. On the bottom,
         again, we have our output data. This is where we’ll eventually have our HTML. In the middle, we have a function that will
         take each URL and return HTML.
      

      
      
      
      Figure 2.3. We also can use map to retrieve the HTML corresponding to a sequence of URLs, once we write a function that can do that for a single URL.
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      2.1.1. Retrieving URLs with map
      

      
      With the problem posed like this, we know we can solve it with map. The question, then, becomes: How can we get a list of all these URLs? Python has a handy datetime library for solving problems
         like this. Here, we create a generator function that takes start and end date tuples in (YYYY,MM,DD) format and produces a list of dates between them. We use a generator instead of a normal loop because this prevents us from
         storing all the numbers in memory in advance. The keyword yield in the following listing distinguishes this as a generator, instead of a traditional function that uses return.
      

      
      
      
      Listing 2.4. A date range generating function
      

      from datetime import date                                     1

def days_between(start, stop):                                2
  today = date(*start)                                        3
  stop = date(*stop)
  while today < stop:                                         4
   datestr = today.strftime("%m-%d-%Y")
   yield http://jtwolohan.com/arch-rival-blog/"+ datestr      5
    today = date.fromordinal(today.toordinal()+1)             6

      
      

      
         
         	1 Imports the datetime library’s date class

         
         	2 Creates our generator function

         
         	3 Unpacks the date start and stop tuples to store them as dates

         
         	4 Loops through all the dates until we’ve reached our stop date

         
         	5 Returns the date as a path

         
         	6 Increments the date by one day

         
      

      
      
      Taking advantage of datetime
      

      
      The majority of the work this function does comes from Python’s datetime library’s date class. The datetime date class represents a date and contains knowledge about the Gregorian calendar and some convenience methods for working with
         dates. You’ll notice that we import the date class directly as date. In our function, we instantiate two of these classes: one for our start date and one for our stop date. Then, we let our
         function generate new dates until we hit our stop date.
      

      
      The last line of our function uses the ordinal date representation, which is the date as the number of days since January
         1, year 1. By incrementing this value and turning it into a date class, we can increase our date by one. Because our date class is calendar aware, it will automatically progress through the weeks, months, and years. It will even account for leap
         years.
      

      
      Lastly, it’s worth looking at the line our yield statement is on. This is where we output URLs. We take the base URL of the website—http://jtwolohan.com/arch-rival-blog/—and append the date formatted as a MM-DD-YYYY string to the end, just like our problem specified. The .strftime method from the date class allows us to use a date formatting language to turn dates into strings formatted however we want.
      

      
      
      
      
      Turning input into output
      

      
      Once we’ve got our input data, the next step is coming up with a function to turn our input data into the output data. Our
         output data here is going to be the web content of the URL. Lucky for us again, Python provides some useful tools for that
         in its urllib.request library. Taking advantage of that, a function like the following may work for us:
      

      
      from urllib import request

def get_url(path):
  return request.urlopen(path).read()

      
      This function takes a URL and returns the HTML found at that URL. We rely on Python’s request library’s urlopen function to retrieve the data at the URL. This data is returned to us as an HTTPResponse object, but we can use its .read method to return the HTML as a string. It’s worth trying this function out in your REPL environment on a URL for a website
         you visit often (like www.manning.com) to see the function in action.
      

      
      Then, like in previous scenarios, we can apply this function to all the data in our sequence, using map like this:
      

      
      blog_posts = map(get_url,days_between((2000,1,1),(2011,1,1)))

      
      This single line of code takes our get_url function and applies it to each and every URL generated by our days_between function. Passing the start and end dates ((2000,1,1) and (2011,1,1)) to our days_between function results in a generator of days between January 1, 2000, and January 1, 2011: every day of the first decade of the
         21st century. The values that this function returns are stored in the variable blog_posts.
      

      
      If you run this on your local machine, the program should finish almost instantly. How is that possible? Certainly we can’t
         scrape 10 years of web pages that quickly, can we? Well, no. But with our generator function and with map, we don’t actually try to.
      

      
      
      
      
      2.1.2. The power of lazy functions (like map) for large datasets
      

      
      map is what we call a lazy function. That means it doesn’t actually evaluate when we call it. Instead, when we call map, Python stores the instructions for evaluating the function and runs them at the exact moment we ask for the value. That’s
         why when we’ve wanted to see the values of our map statements previously, we’ve explicitly converted the maps to lists; lists in Python require the actual objects, not the instructions for generating those objects.
      

      
      If we think back to our first example of map—mapping n+7 across a list of numbers: [–1,0,1,2]—we used figure 2.4 to describe map.
      

      
      
      
      Figure 2.4. We initially thought about map as something that transforms a sequence of inputs into a sequence of outputs.
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      It is, however, a little more accurate to think about map like in figure 2.5.
      

      
      
      
      Figure 2.5. In Python, the base map turns a sequence of inputs into instructions for computing a sequence of outputs—not the sequence itself.
      

      
      [image: ]

      
      
      In figure 2.5, we have the same input values on the top and the same function we’re applying to all of those values; however, our outputs
         have changed. Where before we had 6, 7, 8, and 9, now we have instructions. If we had the computer evaluate these instructions, the results would
         be 6, 7, 8, and 9. Often in our programs, we will act like these two outputs are equal. However, as programmers, we’ll need
         to remember that there’s a slight difference: the default map in Python doesn’t evaluate when called, it creates instructions for later evaluation.
      

      
      As a Python programmer, you’ve probably already seen lazy data floating around. A common place to find lazy objects in Python
         is the range function. When moving from Python2 to Python3, the Python folks decided to make range lazy so that Python programmers (you and me) can create huge ranges without doing two things:
      

      
      

      
         
         	Taking the time to generate a massive list of numbers

         
         	Storing all those values in memory when we may only need a few

         
      

      
      These benefits are the same for map. We like a lazy map because it allows us to transform a lot of data without an unnecessarily large amount of memory or spending the time to generate
         it. That’s exactly how we want it to work.
      

      
      
      
      
      2.2. Parallel processing
      

      
      Great, so now we have a way to get all of our data from the internet using map. But using map to get that data offline one page at a time is going to be very slow. If it takes us 1 second to scrape a single webpage,
         and we need to scrape 3,652 web pages, then it will take us a little more than an hour to download all the data (3,652 pages
         × 1 second per page/60 seconds per minute = 61 minutes). This is not an incredibly long time to wait, but it’s long enough
         that we want to avoid it if we can. And we can.
      

      
      How can we avoid this wait? Well, what if instead of downloading a single page at a time, we downloaded multiple pages at
         once? Using parallel programming, we can do just that.
      

      
      Parallel programming means to program in such a way that we divide our problem into chunks that can then be processed separately
         and simultaneously. Typically, the work we’ll want to do on each of these chunks is going to be the same. For example, in
         our case, we want to process each URL (a separate piece of data, unrelated to any other URL) and retrieve a website at that
         URL (a common process).
      

      
      Figure 2.6 shows the difference between downloading URLs with standard linear processing and with parallel processing.
      

      
      
      
      Figure 2.6. Reading one web page at a time is slow; we can speed this up with parallel programming.
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      Using linear processing, we’d be processing URLs and turning them into web pages one at a time. We’d work on one URL, get
         the data, then work on the next URL. Parallel programming allows us to split this task up and process it faster. When we write
         parallel code, we assign a number of “workers” (typically CPUs) to the task. Each of these workers then takes a chunk of our
         data and processes it.
      

      
      In figure 2.6, the data is the same and the data transformation is the same. The only change in our setup is the number of tasks we’re
         performing at once. Where before we were doing one task at a time, now we’re doing four. This will make our work go four times
         more quickly.
      

      
      
      2.2.1. Processors and processing
      

      
      If four is better, why not eight? Why not 10? Why not 1,000? Well, that’s a really good question. Something most people don’t
         think about when they’re working on computers, something that most programmers don’t even think about, is the effect computer
         hardware has on how the computer behaves. Most people will know, for example, whether they have a Mac or a PC; however, unless
         they have an Intel sticker on their computer somewhere, most people probably couldn’t say what type of processor they have.
      

      
      In parallel programming, though, these processors are our heroes. Processors are little circuit boards that are capable of
         executing instructions, that is, actually doing work. Often, we think of our computer’s memory as the limiting factor to what
         we can do, and it certainly can be. But our CPU can be just as important. Having a lot of memory with a weak processor is
         like being in the buffet line with only one plate: sure, there’s a lot of food, but most of it won’t ever get eaten. If our
         CPU has multiple cores, it’s like getting extra plates: every time we go to the buffet, we’ll be able to bring that much more
         food back to the table.
      

      
      With CPUs, like with plates, more is better. The more we have, the more we can assign to tasks, and the more work we can do.
         You can check how many CPUs you have on your machine by running the following Python command in your Python REPL:
      

      
      import os
os.cpu_count()

      
      Alternatively, you can run the following command from the terminal:

      
      python3 -c "import os; print(os.cpu_count())"

      
      Both of these commands do the same thing. The first bit imports the os module from the Python standard library, and the second bit checks how many CPUs you have. The os module, if you’re not familiar with it, is stocked full of tools for interacting with your operating system. Depending on
         which operating system you’re using, the exact details of some of these functions will change. It’s worthwhile to familiarize
         yourself with the details before using too much of this module.
      

      
      These commands are useful because they tell you how much of a speed increase you’ll get from your standard parallel programming
         implementation. When we implement code in parallel in Python, by default Python will use all of our CPUs. If we don’t want
         it to, we’ll have to specify that we want it to use fewer.
      

      
      But that’s jumping a little ahead. What does it even look like to implement parallel code in Python? Let’s return to our URL
         downloading example. We want to scrape web pages in parallel. How much do we have to modify our code? The following listing
         will give you an idea.
      

      
      
      
      Listing 2.5. Web scraping in parallel
      

      from datetime import date                         1
from urllib import request

from multiprocessing import Pool

def days_between(start,stop):
  today = date(*start)
  stop = date(*stop)
  while today < stop:
    datestr = today.strftime("%m-%d-%Y")
    yield "http://jtwolohan.com/arch-rival-blog/"+datestr
    today = date.fromordinal(today.toordinal()+1)

def get_url(path):
  return request.urlopen(path).read()


with Pool() as P:                                2

  blog_posts = P.map(get_url,                    3
                     days_between((2000,1,1),    3
                                  (2011,1,1)))   3

      
      

      
         
         	1 Imports the multiprocessing library

         
         	2 Gathers our processors with Pool()

         
         	3 Performs our map in parallel

         
      

      
      As we can see in listing 2.5, the code doesn’t have to change very much at all. Because we organized our code using map in the first place, making our code parallel for this problem required only two new lines of code and adding two characters
         to a third line. If you have four CPUs on your machine, this program should run about four times faster than the nonparallel
         version. That would cut our hypothetical one-hour run time down to about 15 minutes.
      

      
      That was pretty easy, and it should be. This type of task falls under the umbrella of tasks that are dismissively referred
         to as embarrassingly parallel. In other words, the solution to speeding up these tasks is embarrassingly easy. That said, some problems can pop up when
         doing parallel programming.
      

      
      Some of the problems we may encounter when working with parallelization in Python are
      

      
      

      
         
         	The inability to pickle data or functions, causing our programs to not run

         
         	Order-sensitive operations returning inconsistent results

         
         	State-dependent operations returning inconsistent results

         
      

      
      
      
      2.2.2. Parallelization and pickling
      

      
      When we write code in parallel—for example, when we called our parallel map function previously—Python does a lot of work behind the scenes. When our parallelizations don’t work, it’s usually because
         we aren’t fully thinking through the work that Python is hiding from us. One of the things that Python hides from us is pickling.
      

      
      Pickling is Python’s version of object serialization or marshalling, with object serialization being the storing of objects
         from our code in an efficient binary format on the disk that can be read back by our program at a later time. The term pickling comes from Python’s pickle module, which provides functions for pickling data and reading pickled data.
      

      
      The pickling and unpickling process looks something like figure 2.7.
      

      
      
      
      Figure 2.7. Pickling allows us to save data and instructions in a machine-readable state so Python can reuse it later.
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      On the left, we begin the process with our original programming environment and our original code objects. Nothing special
         is going on at this point; we’re just programming in Python as usual. Next, we pickle our code objects. Now our code objects
         are saved in a binary file on a disk. Next, we read the pickled file from a new programming environment, and our original
         code objects become accessible to us in the new environment. Everything that we pickled in the first environment is now accessible
         to us in the new one just as it was previously.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Our code can sit in the pickled format for as long as we’d like. In parallel programming, usually we read the file back into
         a Python environment quickly, but there’s no reason we couldn’t leave the pickled objects on the disk for a longer amount
         of time. However, pickling data for long-term storage is not a good idea, because if you upgrade your Python version, the
         data may become unreadable.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Why do we use pickling in parallel programming? Remember how we talked about parallel programming allowing our program to
         do multiple things at the same time? Python pickles objects—functions and data—to transfer the work to each of the processors
         that will be working on our problem. That process looks something like figure 2.8.
      

      
      
      
      Figure 2.8. Pickling allows us to share data across processors or even across machines, saving the instructions and data and then executing
         them elsewhere.
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      We start with our code operating on only one processor; this is the standard way of coding. To work our code in parallel,
         Python then divides our problem into parts that can each be tackled by an individual processing unit. The master work stream
         then pickles these parts. This pickling ensures that the processor will know how to perform the work we need it to do. When the
         processing unit is ready to do the work, it reads the pickled file from the disk and does the work. Then, finally, the worker
         pickles the result and returns it to the master.
      

      
      Most of the time, this approach works flawlessly; however, only some types of Python objects can be pickled. If we try to
         use parallel methods on objects that can’t be pickled, Python will throw an error. Luckily for us, most standard Python objects
         are pickleable and, therefore, usable in parallel Python code. Python can naturally pickle the following types:
      

      
      

      
         
         	None, True, and False

         
         	Integers, floating-point numbers, complex numbers

         
         	Strings, bytes, bytearrays

         
         	Tuples, lists, sets, and dictionaries containing only pickleable objects

         
         	Functions defined at the top level of a module

         
         	Built-in functions defined at the top level of a module

         
         	Classes that are defined at the top level of a module

         
      

      
      We can’t pickle the following types of objects:

      
      

      
         
         	Lambda functions

         
         	Nested functions

         
         	Nested classes

         
      

      
      The easiest way to avoid problems with the unpickleable types is to avoid using them when working with Python’s built-in multiprocessing
         module. For situations where we absolutely must use them, a community library called pathos solves many of these problems with a module called dill (Get it? Dill pickles?). The dill module takes a different approach to pickling that allows us to pickle just about anything we’d like, including the three
         object types we weren’t able to pickle before.
      

      
      Using pathos and dill is not much different from using the multiprocessing module. The first thing we have to do is install the library. From the
         command line, run
      

      
      pip3 install pathos

      
      In addition to installing pathos, Python also will install some of the libraries pathos depends on, including dill. With pathos installed, we can now call on it, and it will use dill behind the scenes. If you remember back to our multiprocessing example, it looked something like this:
      

      
      from multiprocessing import Pool

# ... other code here ...

with Pool() as P:
  blog_posts = P.map(get_url,days_between((2000,1,1),(2011,1,1)))

      
      To convert this to pathos, we just have to make a few changes. Our new code will look like this:
      

      
      from pathos.multiprocessing import ProcessPool

# ... other code here ...

with ProcessPool(nodes=4) as P:
  blog_posts = P.map(get_url,days_between((2000,1,1),(2011,1,1)))

      
      Moving from multiprocessing to pathos requires only two real changes. First, we have to import from pathos instead of from
         multiprocessing. Also, in pathos the pool we want is called ProcessPool instead of just Pool. Just like Pool, ProcessPool is the function that will recruit worker processor units for us. We need to call ProcessPool in place of Pool. As with Pool, we only need to specify the number of nodes if we want to use fewer than the maximum number of nodes. We’re specifying it
         here for demonstration purposes. With our ProcessPool now accessible as P, we can call it just like we called our multiprocessing.Pool object: P.map.
      

      
      
      
      2.2.3. Order and parallelization
      

      
      Another condition that can cause us problems when we’re working in parallel is order sensitivity. When we work in parallel,
         we’re not guaranteed that tasks will be finished in the same order they’re input. This means that if we’re doing work that
         needs to be processed in a linear order, we probably shouldn’t do it in parallel.
      

      
      To test this for yourself, try running this command in Python:

      
      with Pool() as P:
  P.map(print,range(100))

      
      If we do this with a for loop, we expect to get a nice ordered list of every number between 0 and 99 printed to our screen. With our map construction, though, we don’t get this. With map, we get a somewhat ordered, somewhat mismatched sequence printed to our screen and a list of Nones. What’s going on?
      

      
      When Python parallelizes our code, it chunks our problem up for our processing units to work on. Our processing units, for
         their part, grab the first available chunk every time they have capacity to work on the problem. They then work this problem
         until it’s complete, then they grab the next available chunk to work. When chunks are available out of order, they will be
         completed out of order. We can visualize this process as shown in figure 2.9.
      

      
      
      
      Figure 2.9. Parallel processing doesn’t necessarily finish tasks in order, so we have to know if that is acceptable before we use parallel
         techniques.
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      In figure 2.9, our problem starts at the top. We’ve chunked the problem into 10 pieces and put them in a queue. As the processors become
         available, they’ll pull a task from the queue, work it, and send the results to the completed tasks area at the bottom. The
         processors then grab the next available tasks and process them until all of the tasks are finished. But the time it takes
         for these operations to finish varies. For example, in the completed tasks area we can see that tasks 1, 2, 3, and 5 have
         been completed, and tasks 4, 6, 7, and 8 are currently being worked. Tasks 9 and 10 are still queued up, unassigned to a processor. A situation like this can easily occur if tasks 1 (or 2 or 3) and 5 are short, but task
         4 is long, such that two tasks can be completed in the time it takes the single task 4 to finish.
      

      
      All that said, even though Python may not complete the problems in order, it still remembers the order in which it was supposed
         to do them. Indeed, our map returns in the exact order we would expect, even if it doesn’t process in that order. To demonstrate that, we can run the
         following code:
      

      
      def print_and_return(x):
  print(x); return x

with Pool() as P:
  P.map(print_and_return, range(20))

      
      The printed output won’t be ordered, but the list that’s returned will be. The printed output shows the order in which the
         chunks were worked; the list output shows the data structure that was returned. We can see that even though Python works the
         problem in the “wrong” order, it still orders the results properly. When is this going to cause problems for us? Well, if
         we rely on state for one.
      

      
      
      
      
      2.2.4. State and parallelization
      

      
      In object-oriented programming, we’ll often write methods that rely on the state of the class. Consider the fizz/buzz problem.
         The fizz/buzz problem is a problem that’s often used to introduce programming language syntax. It involves looping through
         numbers and returning fizz if a number is not evenly divisible by three (or five, or some other number), and returning buzz if it is. The expected output is a sequence of fizzes and buzzes at the appropriate intervals.
      

      
      In Python, we could solve the fizz/buzz problem with a class, as shown in the following listing.

      
      
      
      Listing 2.6. Classic fizz/buzz problem with a for loop
      

      class FizzBuzzer:
  def __init__(self):
    self.n = 0               1
  def foo(self,_):           2
    self.n += 1              3
    if (self.n % 3)  == 0:   4
      x = "buzz"             4
    else: x = "fizz"         5
    print(x)                 6
    return x                 6

FB = FizzBuzzer()            7
for i in range(21):          7
  FB.foo(i)                  7

      
      

      
         
         	1 The counter starts at 0.

         
         	2 foo function that decides on fizzes and buzzes

         
         	3 Increments the counter each time the function is run

         
         	4 If the counter is divisible by three, buzz.

         
         	5 If it’s not, fizz.

         
         	6 Both prints the statement and returns it

         
         	7 Tests that the class is working

         
      

      
      The class pays attention to how many times we’ve called its .foo method, and every third time it will print and return buzz instead of fizz. We use it in a loop to demonstrate that it’s
         working properly. If you run this on your local machine, you’ll see that this works just like we expect: we print out fizzes,
         with a buzz interjected in every third spot. However, something strange happens when we try to do the same thing using a parallel
         map:
      

      
      FB = fizz_buzzer()
With Pool() as P:
  P.map(FB.foo, range(21))

      
      What’s going on here? Why do we only get fizz and no buzz? Let’s return to something we talked about earlier when we were
         discussing map. Remember how we said that map doesn’t actually do the calculations, it simply stores the instructions for the calculations? That’s why we call it lazy.
         Well, in this case, the instructions to do the calculations for FB.foo include the state of FB at the time we ask for it. So since FB.n is 0 at the time we ask for the instructions, map uses FB.n = 0 for all of the operations, even if FB.n changes by the time we use it. And since FB.n = 0 will always produce a fizz, all we get is fizz.
      

      
      We can test this by changing FB.n to 2, which should always produce a buzz, and running the same command. That would look something like this:
      

      
      FB = FizzBuzzer()
FB.n = 2
with Pool() as P:
  P.map(FB.foo, range(21))

      
      Here, like we expect, we store the instructions for FB.foo when FB.n = 2, and the result is that we get all buzz and no fizz.
      

      
      What can we do instead? Often, situations like this simply require us to rethink the problem. A common solution is to take
         internal state and make it an external variable. For example, we could use the numbers generated by range instead of the internal values stored by FB. We could then also replace the class with a simple function, like this:
      

      
        def foo(n):
    if (n % 3) == 0:
      x = "buzz"
    else: x = "fizz"
    print(x)
    return x

      
      This function does exactly what the .foo method does, but it relies on the value of an external variable n instead of an internal state self.n. We can then apply this to the numbers generated by range with a parallel map and get our results back, just like we expect.
      

      
      with Pool() as P:
  print(P.map(foo, range(1,22)))

      
      When you run this, note that the printed values don’t return in the correct order. That’s because, as we noted in the previous
         section, the processors are grabbing the first available job off the stack and completing it as fast as they can. Sometimes,
         a fizz job will go slower than a buzz, and two buzzes will be printed in a row. Other times, a buzz will take longer, and
         we’ll see three or more fizzes in a row. The resulting data, though, will be in the proper order: fizz, fizz, buzz . . . fizz,
         fizz, buzz . . . fizz, fizz, buzz.
      

      
      It’s worth taking a second to look at how this would be depicted visually. We’ll look first at what happens when we attempt
         to do parallelization with state, then at what happens without it. To start, let’s recall figure 2.8 (as duplicated in figure 2.10).
      

      
      
      

      
      
      Figure 2.10. When we pickle work and distribute it with a parallel map, we’re pickling state information as well. This allows us to execute the work in parallel but may produce unexpected results.
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      This graphic demonstrates what’s happening when we’re performing parallel calculations: first we chop our task up into chunks—in
         this case, four—then we save those chunks to the disk in a pickled format. Our processors then grab them and work them until
         they’re all complete. With respect to state, it’s this second step—pickling the data—that we need to be most aware of.
      

      
      At the first step, map provides instructions for each part of the problem. This step is akin to our parallelization step, where we chunk the problem.
         Remember, map doesn’t do the work of the problem immediately, it writes the instructions and does them later—it’s lazy. Second, we save
         the instructions to a disk. map already captured these instructions, so it’s easy to do. However, note that we’re saving the instructions for the problem.
         That means that any state we needed is going to be stored as well, such as when we store FB.n. Then, the last step, our processors read the instructions and execute them.
      

      
      
      
      
      
      2.3. Putting it all together: Scraping a Wikipedia network
      

      
      We’ve covered a lot of powerful stuff in this chapter. To wrap it all up, let’s consider one final scenario involving creating
         a network graph, such as the one in Figure 2.11.
      

      
      
      
      Figure 2.11. A network graph is a series of nodes connected by edges that is often used to display relationships between objects, such
         as friendship between people, communication between systems, or roads between cities.
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      Scenario

      
      
      We want to create a topic network graph from Wikipedia. That is, we want to be able to enter a term (for example: parallel computing) and find all the Wikipedia pages in that page’s immediate network—pages that link to that page or that that page links to. The result will be a graph of all the pages in our network.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Let’s begin by thinking about the problem at hand and sketching out a solution. Wikipedia has a nice API for getting data
         about Wikipedia pages, so we’ll want to use that. And we know we’re going to start from a single page, so we’ll want to use
         that page as a starting point for our network. From that page, we’ll want to get all the inbound and outbound links, which
         will be other nodes in our graph. Then, for each of the other nodes, we’ll want to get the nodes to which those are related.
      

      
      We can break that down further into a to-do list:

      
      

      
         
         	Write a function that gets the inbound and outbound links of a Wikipedia page.

         
         	Get the inbound and outbound links from our initial page.

         
         	Gather those pages in one long list.

         
         	Get the inbound and outbound links from all of those pages.

         
         	We’ll do this in parallel, to speed things up.

         
         	Represent all our links as edges between pages.
         

         
         	Bonus: Use a graphing library (like networkx) to display the graph.

         
      

      
      Let’s first write a function to get the inbound and outbound links of a Wikipedia page based on its title. We’ll start by
         importing the JSON module and the requests class from the urllib module. You’ll remember urllib from before: this module helps us with getting data from the internet, which is exactly what we’ll want to be doing with
         our Wikipedia pages. The JSON module is a module for parsing data in JSON format. It reads JSON into native Python types. We’ll use this to convert the
         data Wikipedia provides us into an easily manageable format.
      

      
      Next, we’ll create a little function to help us turn Wikipedia page links into just the titles of those pages. Wikipedia naturally
         packages these links as JSON objects—we only want the title string.
      

      
      Then, finally, we get to creating our actual function for getting information from Wikipedia. Our function, get_wiki_links expects a page title and turns that into a dict of inbound and outbound links. This dict will allow us easy access to those links later on.
      

      
      The first thing we do in this function is create the URL for our query. If you’re curious about where the URL comes from,
         Wikipedia has a well-documented API online; however, I’ll explain the pertinent parts here. The /w/api.php tells Wikipedia that we want to use its API and not request a standard web page. The action=query tells Wikipedia that we’ll be doing a query action. Query is one of the many actions Wikipedia makes available. It’s tailored
         for getting metadata about pages, such as which pages link to and are linked from a given page.
      

      
      The prop=links|linkshere tells the Wikipedia API that the properties we’re interested in are the page’s links and which pages link to the page. pllimt and lhlimit tell the API that we want to get at most 500 results. This is the maximum number of results we can get without registering
         ourselves as a bot. The title parameter is where we put the title of the page we want, and the format parameters define how the data returned to us should be formatted. We’ll choose JSON for convenience’s sake.
      

      
      Next, with our URL set, we can pass it request.urlopen, which opens the URL with a get request. Wikipedia takes our request to its API and passes us back the information we requested. We can read this information
         into memory with the .read method, and we do. Since we asked Wikipedia to return this information as JSON, we can then read the JSON string with json.reads, which turns JSON strings into Python objects. The resulting object j is a dict that represents the JSON object that Wikipedia returns.
      

      
      Now we can wade through those objects and pull out the links, which will be four levels deep at page['query']['pages'][0]["links"] and page['query']['pages'] [0]["linkshere"]. The former object contains the pages to which our current page links, and the latter contains the pages that link to our
         current page. The Wikipedia API defines this structure, which is how we know where to find the data we need. These objects—the
         links and linkshere—as we noted before, are not the page titles but JSON objects, with the title as an element. To get just the title, we’ll use our link_to_title function. Because we’ll have more than one link and these links will be in a list, we’ll use map to transform all of the objects to just their titles.
      

      
      Finally, we’ll return these objects as a dict. Altogether, that will look like the following listing.
      

      
      
      
      Listing 2.7. A function for retrieving a Wikipedia page’s network from its title
      

      import json                                                  1
from urllib import request, parse

def link_to_title(link):                                     2
  return link["title"]

def clean_if_key(page,key):                                  3
    if key in page.keys():
        return map(link_to_title,page[key])
    else: return []

def get_wiki_links(pageTitle):                               4
    safe_title = parse.quote(pageTitle)                      5
    url = "https://en.wikipedia.org/w/api.php?action=query&
prop=links|linkshere&pllimit=500&lhlimit=500&titles={}&
format=json&formatversion=2".format(safe_title)
    page = request.urlopen(url).read()                       6
    j = json.loads(page)                                     7
    jpage = j["query"]["pages"][0]
    inbound = clean_if_key(jpage,"links")                    8
    outbound = clean_if_key(jpage,"linkshere")
    return {"title": pageTitle,                              9
            "in-links":list(inbound),
            "out-links":list(outbound)}

      
      

      
         
         	1 Imports the libraries we’ll need

         
         	2 Creates a helper function for getting the title from a link result

         
         	3 Creates a helper function that gets titles for the links found, if they exist

         
         	4 Defines our get_ wiki_links function

         
         	5 Quotes the title to ensure it’s URL-safe

         
         	6 Sends an HTTP request to the URL and reads the response

         
         	7 Parses the response as JSON

         
         	8 Cleans the inbound and outbound links if they exist

         
         	9 Returns the page’s title and its inbound and outbound links

         
      

      
      At this point, we’ve tackled item 1 on our to-do list and put ourselves in a good position to tackle 2 and 3. We can do that
         now by writing a small function and creating an only on execute section of our script. Let’s do that now.
      

      
      Next, here’s a simple function that will flatten the page’s inbound and outbound links into one big list:

      
      def flatten_network(page):
    return page["in-links"]+page["out-links"]

      
      And here’s the part of our code that will run if and only if we call this script with Python3:
      

      
      if __name__ == "__main__":
  root = get_wiki_links ("Parallel_computing")
  initial_network = flatten_network(root)

      
      The if __name__ == "__main__" tells Python only to use this code if it’s called directly as a script. The line after that says to get all the links from
         the parallel computing page on Wikipedia using our function. And the last line stores the network in a variable.
      

      
      Next, let’s use this list, and the function we just wrote, to get all of the Wikipedia pages in the network of the parallel
         computing page. We’ll do this in parallel to speed things up. To do that, we’re going to want to extend the run only when executed section of our code from before. We’ll add a few lines so it looks like this:
      

      
      if __name__ == "__main__":
    root = get_wiki_links ("Parallel_computing")
    initial_network = flatten_network(root)
    with Pool() as P:
        all_pages = P.map(get_wiki_links, initial_network)

      
      We’ve called Pool again to round up some processors to use in parallel programming. We then use those processors to get the Wikipedia page
         info for each page that either linked to or was linked to by our root page: parallel computing. Assuming we have four processors,
         we’re completing this task in one-quarter the time it would take if we got the info for the pages one by one.
      

      
      Now we want to represent each of these page objects as the edges between pages. What is this going to look like? A good representation
         of this will be a tuple, with the object in first position representing the page doing the linking and the object in second position representing
         the page being linked to. If Parallel_computing links to Python, we’ll want a tuple like this: ("Parallel_computing", "Python").
      

      
      To create these, we’ll need another function. This function will turn each page dict into a list of these edge tuples.
      

      
      def page_to_edges(page):
    a = [(page['title'],p) for p in page['out-links']]
    b = [(p,page['title']) for p in page['in-links']]
    return a+b

      
      This function loops through each page in a page’s network, creating a list of tuples for all the pages in the out-links, of the form (page,out-link), and for all the pages in the in-links, of the form (in-link,page). We’ll then add these two lists together and return them.
      

      
      We’ll also need to update the script portion of our code. That section now looks like this:

      
      from multiprocessing import Pool

if __name__ == "__main__":
    root = get_wiki_links ("Parallel_computing")
    initial_network = flatten_network(root)
    with Pool() as P:
        all_pages = P.map(get_wiki_links, initial_network)
        edges = P.map(page_to_edges, all_pages)

      
      We’ve added a line that applies this page_to_edges function to all the pages we gathered with our previous function. Because we still have all those processors handy, let’s
         just use them again to get this task done faster too.
      

      
      The last thing we’ll want to do is flatten this list of edges into one big list. The best way to do so is to use Python’s
         itertools chain function. The chain function takes an iterable of iterables and chains them together so they can all be accessed one after another. For example,
         it allows us to treat [[1,2,3],[1,2],[1,2,3]] as if it was [1,2,3,1,2,1,2,3].
      

      
      We’ll use this chain function on our edges object. At this point, we’re done needing our processors for parallelization, so we’ll out-dent, moving out of this block
         of code, and let our processors go.
      

      
      from itertools import chain

edges = chain.from_iterable(edges)

      
      The chain function is lazy by default, so we’ll need to wrap it in a list call, just like map, if we want to print it to the screen. If you do decide to print it to the screen, don’t expect to see much. You’ll be looking
         at 1,000,000 string-string tuples (1,000 tuples for each of the 1,000 pages in our network).
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      We just wrote about 50 lines of code, piece by piece. When we code like this, sometimes we can miss little things that cause
         our code to break. If you ever have trouble getting your code to run, remember that you can find the source code for this
         book online. Please refer to it if you ever spend more than a few minutes debugging: www.manning.com/downloads/1961.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      2.3.1. Visualizing our graph
      

      
      The best way to visualize our graph is to take it out of Python and import it into Gephi, a dedicated piece of graph visualization
         software. Gephi is well known in the social sciences for being an excellent network and graph visualization tool. It can work
         with data in many formats but prefers a custom format called .gefx. We’ll use a Python library called networkx to export our graph to this format. That whole process will look something like this:
      

      
      import networkx as nx

G = nx.DiGraph()
    for e in edges:
        G.add_edge(*e)
    nx.readwrite.gexf.write_gexf(G,"./MyGraph.gexf")

      
      What we’re doing here is creating a directed graph (nx.DiGraph) object and adding edges to it by iterating through our chained edges. The graph object has a method, .add_edge, that allows us to construct a graph by declaring its edges one by one. Once this is done, all that’s left to do is export
         the graph in the Gephi format, .gefx. The networkx library has a convenience function for that called write_gefx. We’ll use that on our graph object and provide a path name. The graph is then saved in .gefx format at that path. On my
         machine, the output file is just under 36 MB.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Gephi is excellent graph visualization software; however, this is not a book on visualizing graphs. If you don’t think you’ll
         find it satisfying to visualize your web scraping, or if you get frustrated using Gephi, feel free to skip ahead. We won’t
         use Gephi again in this book.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      From here, we can load up Gephi, import our .gefx file, and view our graph. If you don’t have Gephi installed, you can find
         it at https://gephi.org. Gephi is free software, distributed under an open source license, and runs on Windows, MacOS, and Linux.
      

      
      When you open Gephi, you may have to play around with the settings a bit with the graph to get it to show something pretty.
         I’ll leave the graph visualization up to you and your creativity because I’m far from an expert in this area.
      

      
      If you’re short on patience for learning how to visualize a graph with more than 100,000 nodes, change the settings on our
         query to retrieve a smaller number of pages. I’ll also leave it up to you to look back through the code and figure out how
         to do that. (Hint: It’s in our request to the Wikipedia API.)
      

      
      When I request only 50 neighbors from each page, I end up with a network of about 1,300 nodes that looks something like figure 2.12 by default in Gephi.
      

      
      
      
      Figure 2.12. Network of Wikipedia pages surrounding parallel computing
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      2.3.2. Returning to map
      

      
      Before we wrap up the chapter, it’s worth looking at how what we’ve done fits into the map diagrams we’ve been using. Coming back to the map data transformation diagrams is useful because it allows us to contextualize a complex task—web scraping and creating an
         entity network—in a simple way.
      

      
      First, let’s start with a diagram of the entire process (figure 2.13). On the left, we start with our seed document. We apply our get_wiki_links function to this document to get all the pages in our network: the inbound and outbound linking pages. From there, and secondly,
         we map the get_wiki_links function across all of these pages. This returns the extended network, that is, the pages that link to and are linked from
         the pages that link to and are linked from our seed page. Third, we convert all of these links into edges. This transforms
         the data from a more implicit data structure to a more explicit definition of a graph. And finally, we use each of these edges
         to construct the graph.
      

      
      
      
      Figure 2.13. We’ll turn a single seed page into a network of pages in four steps.
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      In this process, we used two map statements: one to turn our initial network into an extended network, and one to turn our
         extended network into edges. In the first instance, shown in figure 2.13, we take all of the links that we retrieved from our seed scrape, we scrape these, and we return the network of each link.
         The result is that where before we had a list of pages (or, if you remember what the data looked like, a dict with the page title, the inbound links, and the outbound links), we now have a list of lists of pages (or again: a list of
         these “page” dicts). Though there is a lot happening in between—we ping the Wikipedia API, the Wikipedia API fetches the page and returns the
         result, we parse that result into JSON, we sort through the JSON to find the values we want, we store them in a dict and return the dict—we can represent all of this as a data transformation from one object to the next.
      

      
      Next, we complete the third step of taking the networks retrieved in our second step and turning them into a list of edges
         that we can use to define a directed graph. We wrote a path_to_edges function to use for this purpose. What we’re doing is not that complicated: we’re taking two lists of strings and turning
         them into a single list of tuples; however, abstracting that away with the path_to_edges function allows us to visualize the entire transformation at a higher level. This higher-level understanding corresponds
         directly with our overall process and highlights what’s going on: our link networks are being transformed into edges.
      

      
      Looking back at the Wikipedia scraping, network creation program we just wrote, we can see that using map is quite natural for a lot of tasks. Indeed, anytime we’re converting a sequence of some type into a sequence of another
         type, what we’re doing can be expressed as a map. I like to refer to these situations as N-to-N transformations because we’re
         converting some number of data elements, N, into that same number of data elements but in a different format.
      

      
      In just this last example, we encountered two of these N-to-N situations. We first turned N links into N networks of links.
         Then we turned N networks of links into N edges. In each of these situations, we used a map, as we just diagrammed.
      

      
      We also used parallel programming in each of these situations to complete the task more quickly. They were excellent candidates
         for parallel programming because we had time-consuming, repetitive tasks that we could express neatly in self-contained instructions.
         We used a parallel map to accomplish this. The parallel map allows us to express our desire for parallelization and use syntax similar to what we’d use if we were doing a nonparallel
         map. All in all, the amount of effort it takes to make this problem parallel only adds up to four lines of code: one import;
         wrangling our processors with Pool(); and modifying our map statements to use Pool’s .map method.
      

      
      
      
      
      2.4. Exercises
      

      
      
      2.4.1. Problems of parallelization
      

      
      Parallelization is an effective way to speed up our programs but may come with a few problems. Earlier in this chapter, I
         named three. How many can you remember, and what are they?
      

      
      
      
      2.4.2. Map function
      

      
      The map function is a key piece of how we’ll approach large datasets in this book. Which sentence best describes the map function?
      

      
      

      
         
         	map transforms a sequence of data into a different, same-sized sequence.
         

         
         	map allows us to process data conditionally, replacing if-else statements.
         

         
         	map replaces conditional while loops with optimized bytecode.
         

         
      

      
      
      
      
      2.4.3. Parallelization and speed
      

      
      Parallelization is useful because it allows us to process large datasets more quickly. Which of the following explains how
         parallelization works?
      

      
      

      
         
         	Parallelization optimizes our code during compilation.

         
         	Parallelization computes similar tasks on several compute resources.

         
         	Parallelization removes duplication from our code and reduces the number of expensive operations.

         
      

      
      
      
      2.4.4. Pickling storage
      

      
      Which of the following is not a good use for pickling?
      

      
      

      
         
         	Short-term, single-machine storage

         
         	Sharing data between compute tasks on a cluster

         
         	Long-term storage where data integrity is key

         
      

      
      
      
      2.4.5. Web scraping data
      

      
      In web scraping, one of the most common things we’ll have to do is transform dicts into something else. Use map to transform a list of dicts into only the page text, with this as your input data:
      

      
      [{"headers":(01/19/2018,Mozilla,300),
  "response":{"text":"Hello world!","encoding"0:"utf-8"}},
     {"headers":(01/19/2018,Chrome,404),
  "response":{"text":"No page found","encoding":"ascii"}},
     {"headers":(01/20/2018,Mozilla,300),
  "response":{"text":"Yet another web page.","encoding":"utf-8"}}]

      
      Your resulting list should be ["Hello world!","No page found","Yet another web page."].
      

      
      
      
      2.4.6. Heterogenous map transformations
      

      
      So far, we’ve only looked at using map to transform homogenous lists, which contain data of all the same type. There’s no reason, though, why we couldn’t use map to transform a list of heterogenous data. Write a function that turns [1, "A", False] into [2,"B",True].
      

      
      
      
      
      Summary
      

      
      

      
         
         	map statements are an excellent way to transform a sequence of data (such as data in a list or a tuple) into a sequence of data
            of some other type.
         

         
         	Whenever we encounter a for loop, we should look for the opportunity to replace that loop with a map.
         

         
         	Because map defines rules for transformations, instead of performing the actual transformations, it is readily paired with parallel techniques
            that can allow us to speed up our code.
         

         
         	We can use map to scrape data from Wikipedia, or anywhere on the web, if we know a sequence of URLs that we want to scrape or APIs we want
            to call.
         

         
         	Because map creates instructions and doesn’t immediately evaluate them, it doesn’t always play nicely with stateful objects, especially
            when applied in parallel.
         

         
      

      
      
      
      
      
      
      


Chapter 3. Function pipelines for mapping complex transformations
      

      
      This chapter covers

      
      

      
         
         	Using map to do complex data transformations
         

         
         	Chaining together small functions into pipelines

         
         	Applying these pipelines in parallel on large datasets

         
      

      
      In the last chapter, we saw how you can use map to replace for loops and how using map makes parallel computing straightforward: a small modification to map, and Python will take care of the rest. But so far with map, we’ve been working with simple functions. Even in the Wikipedia scraping example from chapter 2, our hardest working function only pulled text off the internet. If we want to make parallel programming really useful, we’ll want to use map in more complex ways. This chapter introduces how to do complex things with map. Specifically, we’re going to introduce two new concepts:
      

      
      

      
         
         	Helper functions

         
         	Function chains (also known as pipelines)

         
      

      
      We’ll tackle those topics by looking at two very different examples. In the first, we’ll decode the secret messages of a malicious
         group of hackers. In the second, we’ll help our company do demographic profiling on its social media followers. Ultimately,
         though, we’ll solve both of these problems the same way: by creating function chains out of small helper functions.
      

      
      
      3.1. Helper functions and function chains
      

      
      Helper functions are small, simple functions that we rely on to do complex things. If you’ve heard the (rather gross) saying, “The best way
         to eat an elephant is one bite at a time,” then you’re already familiar with the idea of helper functions. With helper functions,
         we can break down large problems into small pieces that we can code quickly. In fact, let’s put forth this as a possible adage
         for programmers:
      

      
      
         
         The best way to solve a complex problem is one helper function at a time.

         
         
         J.T. Wolohan

      

      
      Function chains or pipelines are the way we put helper functions to work. (The two terms mean the same thing, and different people favor one or the other;
         I’ll use both terms interchangeably to keep from overusing either one.) For example, if we were baking a cake (a complex task
         for the baking challenged among us), we’d want to break that process up into lots of small steps:
      

      
      

      
         
         	Add flour.

         
         	Add sugar.

         
         	Add shortening.

         
         	Mix the ingredients.

         
         	Put the cake in the oven.

         
         	Take the cake from the oven.

         
         	Let the cake set.

         
         	Frost the cake.

         
      

      
      Each of these steps is small and easily understood. These would be our helper functions. None of these helper functions by
         themselves can take us from having raw ingredients to having a cake. We need to chain these actions (functions) together to
         bake the cake. Another way of saying that would be that we need to pass the ingredients through our cake making pipeline,
         along which they will be transformed into a cake. To put this another way, let’s take a look at our simple map statement again, this time in figure 3.1.
      

      
      
      
      Figure 3.1. The standard map statement shows how we can apply a single function to several values to return a sequence of values transformed
         by the function.
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      As we’ve seen several times, we have our input values on the top, a function that we’re passing these values through in the
         middle, and on the bottom, we have our output values. In this case, n+7 is our helper function. The n+7 function does the work in this situation, not map. map applies the helper function to all of our input values and provides us with output values, but on its own, it doesn’t do
         us too much good. We need a specific output, and for that we need n+7.
      

      
      It’s also worth taking a look at function chains, sequences of (relatively) small functions that we apply one after another.
         They also have their basis in math. We get them from a rule that mathematicians call function composition.
      

      
      Function composition says that a complex function like j(x) = ((x+7)2–2)*5 is the same as smaller functions chained together that each do one piece of the complex function. For example, we might
         have these four functions:
      

      
      

      
         
         	f(x) = x+7

         
         	g(x) = x2

         
         	h(x) = x – 2

         
         	i(x) = x * 5

         
      

      
      We could chain them together as i(h(g(f(x)))) and have that equal j(x). We can see that play out in figure 3.2.
      

      
      
      
      Figure 3.2. Function composition says that if we apply a series of functions in sequence, then it’s the same as if we applied them all
         together as a single function.
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      As we move through the pipeline in figure 3.2, we can see our four helper functions: f, g, h, and i. We can see what happens as we input 3 for x into this chain of functions. First, we apply f to x and get 10 (3+7). Then we apply g to 10 and get 100 (102). Then we apply h to 100 and get 98 (100–2). Then, lastly, we apply i to 98 and get 490 (98*5). The resulting value is the
         same as if we had input 3 into our original function j.
      

      
      With these two simple ideas—helper functions and pipelines—we can achieve complex results. In this chapter, you’ll learn how
         to implement these two ideas in Python. As I mentioned in the chapter introduction, we’ll explore the power of these ideas
         in two scenarios:
      

      
      

      
         
         	Cracking a secret code

         
         	Predicting the demographics of social media followers

         
      

      
      
      
      3.2. Unmasking hacker communications
      

      
      Now that we’re familiar with the concept of function pipelines, let’s explore their power with a scenario. Here, we’ll conquer
         a complex task by breaking it up into many smaller tasks.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      A malicious group of hackers has started using numbers in place of common characters and Chinese characters to separate words
         to foil automated attempts to spy on them. To read their communications—and find out what they’re saying—we need to write
         some code that will undo their trickery. Let’s write a script that turns their hacker speak into a list of English words.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      We’ll solve this problem like we’ve solved the previous problems in the book: by starting with map. Specifically, we’ll use the idea of map to set up the big picture data transformation that we’re doing. For that, we’ll visualize the problem in figure 3.3.
      

      
      
      
      Figure 3.3. We can express our hacker problem as a map transformation in which we start with hard-to-read hacker messages as input. Then, after we clean them with our hacker_translate function, they become plain English text.
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      On the top, we have our input values. We can see that they’re some pretty hard-to-read hacker communications, and at first
         glance they don’t make a lot of sense. In the middle, we have our map statement and our hacker_translate function. This will be our heavy lifter function. It will do the work of cleaning the texts. And finally, on the bottom,
         we have our outputs: plain English.
      

      
      Now this problem is not a simple problem; it’s more like baking a cake. To accomplish it, let’s split it up into several smaller
         problems that we can solve easily. For example, for any given hacker string, we’ll want to do the following:
      

      
      

      
         
         	Replace all the 7s with t’s.

         
         	Replace all the 3s with e’s.

         
         	Replace all the 4s with a’s.

         
         	Replace all the 6s with g’s.

         
         	Replace all the Chinese characters with spaces.

         
      

      
      If we can do these five things for each string of hacker text, we’ll have our desired result of plain English text. Before
         we write any code, let’s take a look at how these functions will transform our text. First, we’ll start with replacing the
         7s with t’s in figure 3.4.
      

      
      
      
      Figure 3.4. Part of our hacker translate pipeline will involve replacing 7s with t’s. We’ll accomplish that by mapping a function that
         performs that replacement on all of our inputs.
      

      
      [image: ]

      
      
      At the top of figure 3.4, we see our unchanged input texts: garbled unreadable hacker communications. In the middle, we have our function replace_7t, which will replace all the 7s with t’s. And on the bottom, we have no 7s in our text anywhere. This makes our texts a little
         more readable.
      

      
      Moving on, we’ll replace all the 3s in all the hacker communications with e’s. We can see that happening in figure 3.5.
      

      
      
      

      
      
      Figure 3.5. The second step in our hacker translate pipeline will involve replacing 3s with e’s. We’ll accomplish that by mapping a function
         that performs that replacement on all of our inputs.
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      At the top of figure 3.5, we see our slightly cleaned hacker texts; we’ve already replaced the 7s with t’s. In the middle, we have our replace_3e function, which works to replace the 3s with e’s. And on the bottom, we have our now more readable text. All the 3s are gone,
         and we have some e’s in there.
      

      
      Continuing on, we’ll do the same thing with 4s and a’s and 6s and g’s, until we’ve removed all our numbers. We’ll skip discussing
         those functions for the sake of avoiding repetition. Once we’ve completed those steps, we’re ready to tackle those Chinese
         characters. We can see that in figure 3.6.
      

      
      
      
      Figure 3.6. Subbing on Chinese characters is going to be the last step in our hacker_translate function chain, and we can tackle it with a map statement.
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      In figure 3.6, we see at the top we have mostly English sentences with Chinese characters smooshing the words together. In the middle,
         we have our splitting function: sub_chinese. And on the bottom, finally, we have our fully cleaned sentences.
      

      
      
      3.2.1. Creating helper functions
      

      
      Now that we’ve got our solution sketched out, let’s start writing some code. First, we’ll write all our replacement helper
         functions.
      

      
      We’ll write all of these functions at once because they all follow a similar pattern: we take a string, find all of some character
         (a number) and replace it with some other character (a letter). For example, in replace_7t, we find all of the 7s and replace them with t’s. We do this with the built-in Python string method .replace. The .replace method allows us to specify as parameters which characters we want to remove and the characters with which we want to replace
         them, as shown in the following listing.
      

      
      
      
      Listing 3.1. Replacement helper functions
      

      def replace_7t(s):             1
    return s.replace('7','t')
def replace_3e(s):             2
    return s.replace('3','e')
def replace_6g(s):             3
    return s.replace('6','g')
def replace_4a(s):             4
    return s.replace('4'.,'a')

      
      

      
         
         	1 Replaces all the 7s with t’s

         
         	2 Replaces all the 3s with e’s

         
         	3 Replaces all the 6s with g’s

         
         	4 Replaces all the 4s with a’s

         
      

      
      That takes care of the first handful of steps. Now we want to split where the Chinese text occurs. This task is a little more
         involved. Because the hackers are using different Chinese characters to represent spaces, not just the same one again and
         again, we can’t use replace here. We have to use a regular expression. Because we’re using a regular expression, we’re going to want to create a small
         class that can compile it for us ahead of time. In this case, our sub_chinese function is actually going to be a class method. We’ll see that play out in the following listing.
      

      
      
      
      Listing 3.2. Split on Chinese characters function
      

      import re

class chinese_matcher:                               1

    def __init__(self):
        self.r = re.compile(r'[\u4e00-\u9fff]+')     2

    def sub_chinese(self,s):
        return self.r.sub(s, " ")                    3

      
      

      
         
         	1 We compile our regular expression on initialization of the class.

         
         	2 In this case, we want to match one or more Chinese characters. Those characters can be found in the Unicode range from 4e00
               to 9fff.

         
         	3 Now we can use this compiled regular expression in a method that uses the expression pattern’s split method.

         
      

      
      The first thing we do here is create a class called chinese_matcher. Upon initialization, that class is going to compile a regular expression that matches all the Chinese characters. That regular
         expression is going to be a range regular expression that looks up the Unicode characters between \u4e00 (the first Chinese character in the Unicode standard) and \u9fff (the last Chinese character in the Unicode standard). If you’ve used regular expressions before, you should already be familiar
         with this concept for matching capital letters with regular expressions like [A-Z]+, which matches one or more uppercase English characters. We’re using the same concept here, except instead of matching uppercase
         characters, we’re matching Chinese characters. And instead of typing in the characters directly, we’re typing in their Unicode
         numbers.
      

      
      Having set up that regular expression, we can use it in a method. In this case, we’ll use it in a method called .sub_chinese. This method will apply the regular expression method .split to an arbitrary string and return the results. Because we know our regular expression matches one or more Chinese characters,
         the result will be that every time a Chinese character appears in the string, we’ll change that character to a space.
      

      
      
      
      3.2.2. Creating a pipeline
      

      
      Now we have all of our helper functions ready and we’re ready to bake our hacker-foiling cake. The next thing to do is to
         chain these helper functions together. Let’s take a look at three ways to do this:
      

      
      

      
         
         	Using a sequence of maps

         
         	Chaining functions together with compose

         
         	Creating a function pipeline with pipe

         
      

      
      
      A sequence of maps
      

      
      For this method, we take all of our functions and map them across the results of one another.

      
      

      
         
         	We map replace_7t across our sample messages.
         

         
         	Then we map replace_3e across the results of that.
         

         
         	Then we map replace_6g across the results of that.
         

         
         	Then we map replace_4a across the results of that.
         

         
         	Finally, we map C.sub_chinese.
         

         
      

      
      The solution shown in listing 3.3 isn’t pretty, but it works. If you print the results, you’ll see all of our garbled sample sentences translated into easily
         readable English, with the words split apart from one another—exactly what we wanted. Remember, you need to evaluate map before you can print it!
      

      
      
      
      Listing 3.3. Chaining functions by sequencing maps
      

      C = chinese_matcher()

map(C.sub_chinese,
        map(replace_4a,
            map(replace_6g,
                map(replace_3e,
                    map(replace_7t, sample_messages)))))

      
      
      
      Constructing a pipeline with compose
      

      
      Although we certainly can chain our functions together this way, there are better ways. We’ll take a look at two functions
         that can help us do this:
      

      
      

      
         
         	compose

         
         	pipe

         
      

      
      Each of these functions is in the toolz package, which you can install with pip like you would most python packages: pip install toolz.
      

      
      First, let’s look at compose. The compose function takes our helper functions in the reverse order that we would like them applied and returns a function that applies
         them in the desired order. For example, compose(foo, bar, bizz) would apply bizz, then bar, then foo. In the specific context of our problem, that would look like listing 3.4.
      

      
      In listing 3.4, you can see that we call the compose function and pass it all the functions we want to include in our pipeline. We pass them in reverse order because compose is going to apply them backwards. We store the output of our compose function, which is itself a function, to a variable. And then we can call that variable or pass it along to map, which applies it to all the sample messages.
      

      
      
      
      Listing 3.4. Using compose to create a function pipeline
      

      from toolz.functoolz import compose

hacker_translate = compose(C.sub_chinese, replace_4a, replace_6g,
                           replace_3e, replace_7t)

map(hacker_translate, sample_messages)

      
      If you print this, you’ll notice that the results are the same as when we chained our functions together with a sequence of
         map statements. The major difference is that we’ve cleaned up our code quite a bit, and here we only have one map statement.
      

      
      
      
      Pipelines with pipe
      

      
      Next, let’s look at pipe. The pipe function will pass a value through a pipeline. It expects the value to pass and the functions to apply to it. Unlike compose, pipe expects the functions to be in the order we want to apply them. So pipe(x, foo, bar, bizz) applies foo to x, then bar to that value, and finally bizz to that value. Another important difference between compose and pipe is that pipe evaluates each of the functions and returns a result, so if we want to pass it to map, we actually have to wrap it in a function definition. Again, turning to our specific example, that will look something like
         the following listing.
      

      
      
      
      Listing 3.5. Using pipe to create a function pipeline
      

      from toolz.functoolz import pipe

def hacker_translate(s):
        return pipe(s, replace_7t, replace_3e, replace_6g,
                       replace_4a, C.sub_chinese)

    map(hacker_translate,sample_messages)

      
      Here, we create a function that takes our input and returns that value after it has been piped through a sequence of functions
         that we pass to pipe as parameters. In this case, we’re starting with replace_7t, then applying replace_3e, replace_6g, replace_4a, and lastly C.sub_chinese, in that order. The result, as with compose, is the same as when we chained the functions together using a sequence of maps—you’re free to print out the results and prove this to yourself—but the way we get there is a lot cleaner.
      

      
      Creating pipelines of helper functions provides two major advantages. The code becomes

      
      

      
         
         	Very readable and clear

         
         	Modular and easy to edit

         
      

      
      The former advantage, increasing readability, is especially true when we have to do complex data transformations or when we
         want to perform a sequence of possibly related, or possibly unrelated, actions. For example, having just been introduced to
         the notion of compose, I’m pretty confident you could make a guess at what this pipeline does:
      

      
      my_pipeline = compose(reverse, remove_vowels, make_uppercase)

      
      The latter advantage, making code modular and easy to edit, is a major perk when we’re dealing with dynamic situations. For
         example, let’s say our hacker adversaries change their ruse so they’re now replacing even more letters! We could simply add
         new functions into our pipeline to adjust. If we find that the hackers stop replacing a letter, we can remove that function
         from the pipeline.
      

      
      
      
      A hacker translate pipeline
      

      
      Lastly, let’s return to our map example of this problem. At the beginning, we’d hoped to have one function, hacker_translate, that took us from garbled hacker secrets to plain English. We can see what we really did in figure 3.7.
      

      
      
      

      
      
      Figure 3.7. We can solve the hacker translation problem by constructing a chain of functions that each solve one part of the problem.
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      Figure 3.7 shows our input values up top and our output values on the bottom, and through the middle we see how our five helper functions
         change our inputs. Breaking our complicated problem up into several small problems made coding the solution to this problem
         rather straightforward, and with map, we can easily apply the pipeline to any number of inputs that we need.
      

      
      
      
      
      
      3.3. Twitter demographic projections
      

      
      In the previous section, we looked at how to foil a group of hackers by chaining small functions together and applying them
         across all the hackers’ messages. In this section, we’ll dive even deeper into what we can do using small, simple helper functions
         chained together.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      The head of marketing has a theory that male customers are more likely to engage with our product on social media than female
         customers and has asked us to write an algorithm to predict the gender of Twitter users mentioning our product based on the
         text of their posts. The marketing head has provided us with lists of Tweet IDs for each customer. We have to write a script
         that turns these lists of IDs into both a score representing how strongly we believe them to be of a given gender and a prediction
         about their gender.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      To tackle this problem, again, we’re going to start with a big picture map diagram. We can see that in figure 3.8.
      

      
      
      
      Figure 3.8. The map diagram for our gender_prediction_pipeline demonstrates the beginning and end of the problem: we’ll take a list of Tweet IDs and convert them into predictions about
         a user.
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      The map diagram in figure 3.8 allows us to see our input data on the top and our output data on the bottom, which will help us think about how to solve
         the problem. On the top, we can see that we have a sequence of lists of numbers, each representing a Tweet ID. That will be our input format.
         And on the bottom, we see that we have a sequence of dicts, each with a key for "score" and "gender". This gives us a sense of what we’ll have to do with our function gender_prediction_pipeline.
      

      
      Now, predicting the gender of a Twitter user from several Tweet IDs is not one task; it’s actually several tasks. To accomplish
         this, we’re going to have to do the following:
      

      
      

      
         
         	Retrieve the tweets represented by those IDs

         
         	Extract the tweet text from those tweets

         
         	Tokenize the extracted text

         
         	Score the tokens

         
         	Score users based on their tweet scores

         
         	Categorize the users based on their score

         
      

      
      Looking at the list of tasks, we can actually break down our process into two transformations: those that are happening at
         the user level and those that are happening at the tweet level. The user-level transformations include things like scoring
         the user and categorizing the user. The tweet-level transformations include things like retrieving the tweet, extracting the
         text, tokenizing the text, and scoring the text. If we were still working with for loops, this type of situation would mean that we would need a nested for loop. Since we’re working with map, we’ll have to have a map inside our map.
      

      
      
      3.3.1. Tweet-level pipeline
      

      
      Let’s look at our tweet-level transformation first. At the tweet level, we’ll convert a Tweet ID into a single score for that
         tweet, representing the gender score of that tweet. We’ll score the tweets by giving them points based on the words they use.
         Some words will make the tweet more of a “man’s tweet,” and some will make the tweet more of a “woman’s tweet.” We can see this
         process playing out in figure 3.9.
      

      
      
      
      Figure 3.9. We can chain four functions together into a pipeline that will accomplish each of the subparts of our problem.
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         Text classification
         
         Classifying a tweet by assigning scores to words it uses may seem simplistic, but it’s actually not too far from how both
            academia and industry approach the situation. Lexicon-based methods of classification, which assign words points and then
            roll those points up into an overall score, achieve remarkable performance given their simplicity. And because they are transparent,
            they offer the benefit of interpretability to practitioners.
         

         
         In this chapter, we only approximate the real thing, but you can find a state-of-the art classifier on my GitHub page: https://github.com/jtwool/TwitterGenderPredictor.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Figure 3.9 shows the several transformations that our tweets will undertake as we transform them from ID to score. Starting at the top
         left, we see that we start with Tweet IDs as an input, then we pass them through a get_tweet_from_id function and get tweet objects back. Next, we pass those tweet objects through a tweet_to_text function, which turns the tweet objects into the text of those tweets. Then, we tokenize the tweets by applying our tokenize_text function. After that, we score the tweets with our score_text function.
      

      
      Turning our attention to user-level transformations, the process here is a little simpler:
      

      
      

      
         
         	We apply the tweet-level process to each of the user’s tweets.

         
         	We take the average of the resulting tweet scores to get our user-level score.

         
         	We categorize the user as either "male" or "female".
         

         
      

      
      Figure 3.10 shows the user-level process playing out.
      

      
      
      
      Figure 3.10. We can chain small functions together to turn lists of users’ Tweet IDs into scores, then into averages, and, finally, into
         predictions about their demographics.
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      We can see that each user starts as a list of Tweet IDs. Applying our score_user function, across all of these lists of Tweet IDs, we get back a single score for each user. Then, we can use our categorize_user function to turn this score into a dict that includes both the score and the predicted gender of the user, just like we wanted at the outset.
      

      
      These map diagrams give us a roadmap for writing our code. They help us see what data transformations need to take place and where
         we’re able to construct pipelines. For example, we now know that we need two function chains: one for the tweets and one for
         the users. With that in mind, let’s start tackling the tweet pipeline.
      

      
      Our tweet pipeline will consist of four functions. Let’s tackle them in this order:

      
      

      
         
         	get_tweet_from_id

         
         	tweet_to_text

         
         	tokenize_text

         
         	score_text

         
      

      
      Our get_tweet_from_id function is responsible for taking a Tweet ID as input, looking up that Tweet ID on Twitter, and returning a tweet object
         that we can use. The easiest way to scrape Twitter data will be to use the python-twitter package. You can install python-twitter easily with pip:
      

      
      pip install python-twitter

      
      Once you have python-twitter set up, you’ll need to set up a developer account with Twitter. (See the “Twitter developer accounts” sidebar.) You can do that at https://developer.twitter.com/. If you have a Twitter account already, there’s no need to create another account; you can sign in with the account you already
         have. With your account set up, you’re ready to apply for what Twitter calls an app. You’ll need to fill out an application form, and if you tell Twitter that you’re using this book to learn parallel programming,
         they’ll be happy to give you an account. When you’re prompted to describe your use case, I suggest entering the following:
      

      
      
         
         The core purpose of my app is to learn parallel programming techniques. I am following along with a scenario provided in chapter 3 of Mastering Large Datasets with Python, by JT Wolohan, published by Manning Publications.
         

         
         I intend to do a lexical analysis of fewer than 1,000 Tweets.

         
         I do not plan on using my app to Tweet, Retweet, or “like” content.

         
         I will not display any Tweets anywhere online.

         
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Twitter developer accounts
         
         Because this scenario involves Twitter scraping, the automated collection of Twitter data, I would like to offer you the opportunity
            to do real Twitter scraping. Doing so requires you to request a Twitter developer account. These developer accounts used to
            be much easier to get. Twitter is beginning to restrict who can develop on its platform because it wants to crack down on
            bots. If you don’t want to sign up for Twitter, you don’t want to sign up for a developer account, or you don’t want to wait,
            you can proceed without signing up for a developer account.
         

         
         In the repository for this book, I include text that can stand in for the tweets, and you can omit the first two functions
            (get_tweet_from_id and tweet_to_text) from your tweet-level pipeline.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Once you have your Twitter developer account set up and confirmed by Twitter (this may take an hour or two), you’ll navigate
         to your app and find your consumer key, your consumer secret, your access token key, and your access token secret (figure 3.11). These are the credentials for your app. They tell Twitter to associate your requests with your app.
      

      
      
      
      Figure 3.11. The “Keys and Tokens” tab in your Twitter developer account provides you with API keys, access tokens, and access secrets
         for your project.
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      With your developer account set up and python-twitter installed, we’re finally ready to start coding our tweet-level pipeline. The first thing we do is import the python-twitter library. This is the library we just installed. It provides a whole host of convenient functions for working
         with the Twitter API. Before we can use any of those nice functions, however, we need to authenticate our app. We do so by
         initiating an Api class from the library. The class takes our application credentials, which we get from the Twitter developers website, and
         uses them when it makes calls to the Twitter API.
      

      
      With this class ready to go, we can then create a function to return tweets from Twitter IDs. We’ll need to pass our API object
         to this function so we can use it to make the requests to Twitter. Once we do that, we can use the API object’s .GetStatus method to retrieve Tweets by their ID. Tweets retrieved in this way come back as Python objects, perfect for using in our
         script.
      

      
      We’ll use that fact in our next function, tweet_to_text, which takes the tweet object and returns its text. This function is very short. It calls the text property of our tweet
         object and returns that value. The text property of tweet objects that python-twitter returns contains, as we would expect, the text of the tweets.
      

      
      With the tweet text ready, we can tokenize it. Tokenization is a process in which we break text up into smaller units that
         we can analyze. In some cases, this can be pretty complicated, but for our purpose, we’ll split text wherever white space
         occurs to separate words from one another. For a sentence like "This is a tweet", we would get a list containing each word: ["This", "is", "a", "tweet"]. We’ll use the built-in string .split method to do that.
      

      
      Once we have our tokens, we need to score them. For that, we’ll use our score _text function. This function will look up each token in a lexicon, retrieve its score, and then add all of those scores together to get an overall score for the tweet. To do that, we need a lexicon, a list of
         words and their associated scores. We’ll use a dict to accomplish that here. To look up the scores for each word, we can map the dict’s .get method across the list of words.
      

      
      The dict .get method allows us to look up a key and provide a default value in case we don’t find it. This is useful in our case because
         we want words that we don’t find in our lexicon to have a neutral value of zero.
      

      
      To turn this method into a function, we use what’s called a lambda function. The lambda keyword allows us to specify variables and how we want to transform them. For example, lambda x: x+2 defines a function that adds two to whatever value is passed to it. The code lambda x: lexicon.get(x, 0) looks up whatever it is passed in our lexicon and returns either the value or 0 (if it doesn’t find anything). We’ll often
         use it for short functions.
      

      
      Finally, with all of those helper functions written, we can construct our score_ tweet pipeline. This pipeline will take a Tweet ID, pass it through all of these helper functions, and return the result. For this
         process, we’ll use the pipe function from the toolz library. This pipeline represents the entirety of what we want to do at the tweet level. We can see
         all of the code needed in the following listing.
      

      
      
      
      Listing 3.6. Tweet-level pipeline
      

      from toolz import pipe                                      1
import twitter

Twitter = twitter.Api(consumer_key="",                      2
                      consumer_secret="",
                      access_token_key="",
                      access_token_secret="")

def get_tweet_from_id(tweet_id, api=Twitter):               3
    return api.GetStatus(tweet_id, trim_user=True)

def tweet_to_text(tweet):                                   4
    return tweet.text

def tokenize_text(text):                                    5
    return text.split()

def score_text(tokens):                                     6
    lexicon = {"the":1, "to":1, "and":1,                    7
             "in":1, "have":1, "it":1,
             "be":-1, "of":-1, "a":-1,
             "that":-1, "i":-1, "for":-1}
    return sum(map(lambda x: lexicon.get(x, 0), tokens))    8

def score_tweet(tweet_id):                                  9
    return pipe(tweet_id, get_tweet_from_id, tweet_to_text,
                          tokenize_text, score_text)

      
      

      
         
         	1 Imports the python-twitter library

         
         	2 Authenticates our app

         
         	3 Uses our app to look up tweets by their ID

         
         	4 Gets the text from a tweet object

         
         	5 Splits text on white space so we can analyze words

         
         	6 Creates our score_text function

         
         	7 Creates a mini sample lexicon for scoring words

         
         	8 Replaces each word with its point value

         
         	9 Pipes a tweet through our pipeline

         
      

      
      
      
      3.3.2. User-level pipeline
      

      
      Having constructed our tweet-level pipeline, we’re ready to construct our user-level pipeline. As we laid out previously,
         we’ll need to do three things for our user-level pipeline:
      

      
      

      
         
         	Apply the tweet pipeline to all of the user’s tweets

         
         	Take the average of the score of those tweets

         
         	Categorize the user based on that average

         
      

      
      For conciseness, we’ll collapse the first two actions into one function, and we’ll let the third action be a function all
         its own. When all is said and done, our user-level helper functions will look like the following listing.
      

      
      
      
      Listing 3.7. User-level helper functions
      

      from toolz import compose

def score_user(tweets):                            1
    N = len(tweets)                                2
    total = sum(map(score_tweet, tweets))          3
    return total/N                                 4

def categorize_user(user_score):                   5
    if user_score > 0:                             6
        return {"score":user_score,
                "gender": "Male"}
return {"score":user_score,                        7
        "gender":"Female"}

pipeline = compose(categorize_user, score_user)    8

      
      

      
         
         	1 Averages the scores of all of a user’s tweets

         
         	2 Finds the number of tweets

         
         	3 Finds the sum total of all of a user’s individual tweet scores

         
         	4 Returns the sum total divided by the number of tweets

         
         	5 Takes the score and returns a predicted gender as well

         
         	6 If the user_score is greater than 0, we’ll say that the user is male.

         
         	7 Otherwise, we’ll say the user is female.

         
         	8 Composes these helper functions into a pipeline function

         
      

      
      In our first user-level helper function, we need to accomplish two things: score all of the user’s tweets, then find the average
         score. We already know how to score their tweets—we just built a pipeline for that exact purpose! To score the tweets, we’ll
         map that pipeline across all the tweets. However, we don’t need the scores themselves, we need the average score.
      

      
      To find a simple average, we want to take the sum of the values and divide it by the number of values that we’re summing.
         To find the sum, we can use Python’s built-in sum function on the tweets. To find the number of tweets, we can find the length of the list with the len function. With those two values ready, we can calculate the average by dividing the sum by the length.
      

      
      This will give us an average tweet score for each user. With that, we can categorize the user as being either "Male" or "Female". To make that categorization, we’ll create another small helper function: categorize_user. This function will check to see if the user’s average score is greater than zero. If it is, it will return a dict with the score and a gender prediction of "Male". If their average score is zero or less, it will return a dict with the score and a gender prediction of "Female".
      

      
      These two quick helper functions are all we’ll need for our user-level pipeline. Now we can compose them, remembering to supply
         them in reverse order from how we want to apply them. That means we put our categorization function first, because we’re using
         it last, and our scoring function last, because we’re using it first. The result is a new function—gender_prediction_pipeline—that we can use to make gender predictions about a user.
      

      
      
      
      3.3.3. Applying the pipeline
      

      
      Now that we have both our user-level and tweet-level function chains ready, all that’s left to do is apply the functions to
         our data. To do so, we can either use Tweet IDs with our full tweet-level function chain, or—if you decided not to sign up
         for a Twitter developer account—we can use just the text of the tweets. If you’ll be using just the tweet text, make sure
         to create a tweet-level function chain (score_tweet) that omits the get_tweet_from_id and tweet_to_text functions.
      

      
      
      Applying the pipeline to Tweet IDs
      

      
      Applying our pipelines in the first instance might look something like listing 3.8. There, we start by initializing our data. The data we’re starting with is four lists of five Tweet IDs. Each of the four
         lists represents a user. The Tweet IDs don’t actually come from the same user; however, they are real tweets, randomly sampled
         from the internet.
      

      
      
      
      Listing 3.8. Applying the gender prediction pipeline to Tweet IDs
      

      users_tweets = [                                                 1
[1056365937547534341, 1056310126255034368, 1055985345341251584,
 1056585873989394432, 1056585871623966720],
[1055986452612419584, 1056318330037002240, 1055957256162942977,
 1056585921154420736, 1056585896898805766],
[1056240773572771841, 1056184836900175874, 1056367465477951490,
 1056585972765224960, 1056585968155684864],
[1056452187897786368, 1056314736546115584, 1055172336062816258,
 1056585983175602176, 1056585980881207297]]

with Pool() as P:                                                2
    print(P.map(pipeline, users_tweets))

      
      

      
         
         	1 First, we need to initialize our data. Here, we’re using four sets of Tweet IDs.

         
         	2 Then we can apply our pipeline to our data with map. Here, we’re using a parallel map.

         
      

      
      With our data initialized, we can now apply our gender_prediction_pipeline. We’ll do that in a way we introduced last chapter: with a parallel map. We first call Pool to gather up some processors, then we use the .map method of that Pool to apply our prediction function in parallel.
      

      
      If we were doing this in an industry setting, this would be an excellent opportunity to use a parallel map for two reasons:

      
      

      
         
         	We’re doing what amounts to the same task for each user.

         
         	Both retrieving the data from the web and finding the scores of all those tweets are relatively time- and memory-consuming
            operations.
         

         
      

      
      To the first point, whenever we find ourselves doing the same thing over and over again, we should think about using parallelization
         to speed up our work. This is especially true if we’re working on a dedicated machine (like our personal laptop or a dedicated
         compute cluster) and don’t need to concern ourselves with hoarding processing resources other people or applications may need.
      

      
      To the second point, we’re best off using parallel techniques in situations in which the calculations are at least somewhat
         difficult or time-consuming. If the work we’re trying to do in parallel is too easy, we may spend more time dividing the work
         and reassembling the results than we would just doing it in a standard linear fashion.
      

      
      
      
      Applying the pipeline to tweet text
      

      
      Applying the pipeline to tweet text directly will look very similar to applying the pipeline to Tweet IDs, as shown in the
         following listing.
      

      
      
      
      Listing 3.9. Applying the gender prediction pipeline to tweet text
      

      user_tweets = [                                                            1
        ["i think product x is so great", "i use product x for everything",
        "i couldn't be happier with product x"],
        ["i have to throw product x in the trash",
        "product x... the worst value for your money"],
        ["product x is mostly fine", "i have no opinion of product x"]]

with Pool() as P:                                                          2
    print(P.map(gender_prediction_pipeline, users_tweets))

      
      

      
         
         	1 First, we need to initialize our data. Here, we’re using four sets of Tweet IDs.

         
         	2 Then we can apply our pipeline to our data with map. Here, we’re using a parallel map.

         
      

      
      The only change in listing 3.9 versus listing 3.8 is our input data. Instead of having tweet IDs that we want to find on Twitter, retrieve, and score, we can score the tweet
         text directly. Because our score_tweet function chain removes the get_tweet_from_id and tweet_to_text helper functions, the gender_prediction_pipeline will work exactly as we want.
      

      
      That it is so easy to modify our pipelines is one of the major reasons why we want to assemble them in the first place. When
         conditions change, as they often do, we can quickly and easily modify our code to respond to them. We could even create two
         function chains if we envisioned having to handle both situations. One function chain could be score_tweet_from_text and would work on tweets provided in text form. Another function chain could be score_tweet_from_id and would categorize tweets provided in Tweet ID form.
      

      
      Looking back throughout this example, we created six helper functions and two pipelines. For those pipelines, we used both
         the pipe function and the compose function from the toolz package. We also used these functions with a parallel map to pull down tweets from the internet in parallel. Using helper functions and function chains makes our code easy to understand
         and modify and plays nicely with our parallel map, which wants to apply the same function over and over again.
      

      
      
      
      
      
      3.4. Exercises
      

      
      
      3.4.1. Helper functions and function pipelines
      

      
      In this chapter, you’ve learned about the interrelated ideas of helper functions and function pipelines. In your own words,
         define both of those terms, then describe how they are related.
      

      
      
      
      3.4.2. Math teacher trick
      

      
      A classic math teacher trick has students perform a series of arithmetic operations on an “unknown” number, and at the end,
         the teacher guesses the number the students are thinking of. The trick is that the final number is always a constant the teacher
         knows in advance. One such example is doubling a number, adding 10, halving it, and subtracting the original number. Using
         a series of small helper functions chained together, map this process across all numbers between 1 and 100. How does the teacher
         always know what number you’re thinking of?
      

      
      
      Example
      

      
      map(teacher_trick, range(1,101))
>>> [?,?,?,?,...,?]

      
      
      
      
      3.4.3. Caesar’s cipher
      

      
      Caesar’s cipher is an old way of constructing secret codes in which one shifts the position of a letter by 13 places, so A
         becomes N, B becomes O, C becomes P, and so on. Chain three functions together to create this cypher: one to convert a letter
         to an integer, one to add 3 to a number, and one to convert a number to a letter. Apply this cypher to a word by mapping the
         chained functions of a string. Create one new function and a new pipeline to reverse your cypher.
      

      
      
      Example
      

      
      map(caesars_cypher,["this","is","my",sentence"])
>>> ["wklv","lv","pb","vhqwhqfh"]

      
      
      
      
      
      Summary
      

      
      

      
         
         	Designing programs with small helper functions makes hard problems easy to solve by breaking them up into bite-sized pieces.

         
         	When we pass a function through a function pipeline pipe, it expects the input data as its first argument and the functions in the order we want to apply them as the remaining arguments.
         

         
         	When we create a function chain with compose, we pass the functions in our function chain as arguments in reverse order, and the resulting function applies that chain.
         

         
         	Constructing function chains and pipelines is useful because they’re modular, they play very nicely with map, and we can readily move them into parallel workflows, such as by using the Pool() technique we learned in chapter 2.
         

         
         	We can simplify working with nested data structures by using nested function pipelines, which we can apply with map.

         
      

      
      
      
      
      
      
      


Chapter 4. Processing large datasets with lazy workflows
      

      
      This chapter covers

      
      

      
         
         	Writing lazy workflows for processing large datasets locally

         
         	Understanding the lazy behavior of map

         
         	Writing classes with generators for lazy simulations

         
      

      
      In chapter 2 (section 2.1.2, to be exact), I introduced the idea that our beloved map function is lazy by default; that is, it only evaluates when the value is needed downstream. In this chapter, we’ll look at a few of the benefits
         of laziness, including how we can use laziness to process big data on our laptop. We’ll focus on the benefits of laziness
         in two contexts:
      

      
      

      
         
         	File processing

         
         	Simulations

         
      

      
      With file processing, we’ll see that laziness allows us to process much more data than could fit in memory without laziness.
         With simulations, we’ll see how we can use laziness to run “infinite” simulations. Indeed, lazy functions allow us to work
         with an infinite amount of data just as easily as we could if we were working with a limited amount of data.
      

      
      
      
      4.1. What is laziness?
      

      
      Laziness, or lazy evaluation, is a strategy that programming languages use when deciding when to perform computations. Under lazy evaluation, the Python
         interpreter executes lazy Python code only when the program needs the results of that code.
      

      
      For example, consider the range function in Python, which generates a sequence of numbers lazily. That is, we can call range(10000) and we won’t get a list of 10,000 numbers back; we’ll get an iterator that knows how to generate 10,000 numbers. This means
         we can make absurdly large range calls without being concerned that we’ll use up all our memory storing integers. For example, range(10000000000) has the same size as range(10). You can check this yourself with only two lines of code:
      

      
      >>> from sys import getsizeof
>>> getsizeof(range(10000000000)) == getsizeof(range(10))
True

      
      Lazy evaluation like this is the opposite of eager evaluation, where everything is evaluated when it’s called. This is probably how you’re used to thinking about programming.
         You write a piece of code, then when the computer gets to that point, it computes whatever it is you told it to compute. By
         contrast, with lazy evaluation, the computer takes in your instructions and files them away until it needs to use them. If
         you never ask the computer for a final result, it will never perform any of the intermediate steps.
      

      
      In that way, lazy evaluation is a lot like a high school student with an assignment due far in the future. The teacher can
         tell the student how to write the assignment at the beginning of the year. They can even warn the student that the assignment
         will be coming due in a few weeks. But it’s not until right before the deadline that the student actually begins to work on
         their assignment. The major difference: the computer will always complete the work.
      

      
      Furthermore, just like the student is putting off doing their assignment so they can do other things—like work on other assignments
         due sooner or just hang out with their friends—our lazily evaluated program is doing other things too. Because our program
         lazily evaluates our instructions, it has more memory (time) to do the other things we ask of it (other assignments) or even
         run other processes altogether (hanging out with its friends maybe?).
      

      
      
      
      4.2. Some lazy functions to know
      

      
      We’ve already discussed how two functions you’re familiar with—map and range—are lazy. In this section, we’ll focus on three other lazy functions you should know about:
      

      
      

      
         
         	filter— A function for pruning sequences
         

         
         	zip— A function for merging sequences
         

         
         	iglob— A function for lazily reading from the filesystem
         

         
      

      
      The filter function takes a sequence and restricts it to only the elements that meet a given condition. The zip function takes two sequences and returns a single sequence of tuples, each of which contains an element from each of the original sequences. And the iglob function is a lazy way of querying our filesystem.
      

      
      
      4.2.1. Shrinking sequences with the filter function
      

      
      The filter function does exactly what you expect it to: it acts as a filter. Specifically, it takes a conditional function and a sequence
         and returns a lazy iterable with all the elements of that sequence that satisfy that condition (figure 4.1). For example, in the following listing, we see how filter can take a function that checks if a number is even and return an iterable of only even numbers.
      

      
      
      
      Figure 4.1. The filter function produces a new sequence that contains only elements that make the qualifier function return True.
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      Listing 4.1. Retrieving even numbers from a sequence
      

      def is_even(x):
   if x%2 == 0: return True
   else: return False

print(list(filter(is_even, range(10))))
# [0,2,4,6,8]

      
      In listing 4.1, we call list on our filter to get it to print nicely, just like we did with map. We have to call list in both cases because filter and map are both lazy and won’t evaluate until we’re interested in specific values. Because lists are not lazy, converting our lazy
         objects to a list lets us see the individual values.
      

      
      The filter function is a valuable tool because we can use it to concisely define a common operation. Four related functions are also
         helpful to know about, all of which perform the same basic operation, with a twist:
      

      
      

      
         
         	filterfalse

         
         	keyfilter

         
         	valfilter

         
         	itemfilter

         
      

      
      Just like filter, all of these functions just do what we expect them to do. We can use the filterfalse function when we want to get all the results that make a qualifier function return False. We can use the keyfilter function when we want to filter on the keys of a dict. We can use the valfilter function when we want to filter on the values of a dict. And we can use itemfilter when we want to filter on both the keys and the values of a dict. We can see examples of all of these in action in listing 4.2.
      

      
      In listing 4.2, we use all four of these functions. The first, filterfalse, is from the itertools module that ships with Python. When we combine iterfalse with is_even from before, we get all the not-even (odd) numbers. For keyfilter, valfilter, and itemfilter, we need to input a dict. When we combine keyfilter with is_even, we get back all the items from the dict that have even keys. When we combine valfilter with is_even, we get back all the items from the dict that have even values. For itemfilter, we can evaluate both the keys and the values of the dict. In listing 4.2, we create a small function, both_are_even, that tests if both the key and the value of an item are even. As the listing shows, we do get back the items for which both
         the key and the value are even.
      

      
      
      
      Listing 4.2. Testing variations of the filter function
      

      from itertools import filterfalse
from toolz.dicttoolz import keyfilter, valfilter, itemfilter

def is_even(x):
    if x % 2 == 0: return True
    else: return False

def both_are_even(x):
    k,v = x
    if is_even(k) and is_even(v): return True
    else: return False

print(list(filterfalse(is_even, range(10))))
# [1, 3, 5, 7, 9]

print(list(keyfilter(is_even, {1:2, 2:3, 3:4, 4:5, 5:6})))
# [2, 4]

print(list(valfilter(is_even, {1:2, 2:3, 3:4, 4:5, 5:6})))
# [1, 3, 5]

print(list(itemfilter(both_are_even, {1:5, 2:4, 3:3, 4:2, 5:1})))
# [2, 4]

      
      
      
      
      4.2.2. Combining sequences with zip
      

      
      zip is another lazy function. We use zip when we have two iterables that we want to join together so that the items in the first position are together, the items
         in the second position are together, and so on. Naturally, it makes sense to think about the zip function like a zipper. When the zipper passes over each pair of teeth, it pulls them together into a pair (figure 4.2).
      

      
      
      
      Figure 4.2. The zip function behaves like a zipper, but instead of interlocking metal teeth, it interlocks the values of Python iterables.
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      We use the zip function when we have related sequences that we want to bring together. For instance, if an ice cream vendor knows how many
         ice cream cones they’ve sold in the last two weeks, they may be interested in zipping that together with the temperature to
         analyze if there are any trends, as shown in the following listing.
      

      
      
      
      Listing 4.3. Ice cream data and the zip function
      

      ice_cream_sales = [27, 21, 39, 31, 12, 40, 11, 18, 30, 19, 24, 35, 31, 12]
temperatures = [75, 97, 88, 99, 81, 92, 91, 84, 84, 93, 100, 86, 90, 75]

ice_cream_data = zip(ice_cream_sales, temperatures)
print(list(ice_cream_data))
# [(27,75), (21,97), (39,88), ... (12,75)]

      
      Having data paired in tuples like that is helpful because tuples can easily be passed to functions and unpacked. Because zip is lazy, the resulting iterator takes up hardly any memory. That means we can collect and move around massive amounts of
         data on our machine without holding it in memory.
      

      
      The resulting single sequence is also the perfect target for mapping a function across because map takes a function and a sequence to which you want to apply that function. Because map is lazy as well, we can calculate all of these sales figures without much memory overhead. Indeed, all of our lazy functions,
         like map, filter, and zip, play nicely with one another. And because they all take sequences as inputs in one way or another, they can all be chained
         together and maintain their nice low-memory overhead laziness.
      

      
      
      
      
      4.2.3. Lazy file searching with iglob
      

      
      The last function we’ll look at here is iglob. We can use the iglob function to find a sequence of files on our filesystem that match a given pattern. Specifically, the files match based on
         the standard Unix rules. For situations where filesystem-based storage is used, like in a lot of prototypes, this can be extremely
         helpful.
      

      
      For example, if we have blog posts stored as JSON objects in files, we may be able to select all of the blog posts from June
         2015 with a single line of code (the second line):
      

      
      from glob import iglob

blog_posts = iglob("path/to/blog/posts/2015/06/*.json")

      
      This type of statement would find all the JSON files in the 06 directory inside the 2015 directory inside the directory where
         we’re storing all our blog posts.
      

      
      For a single month, getting all the blog posts lazily may not be that big of a deal. But if we have several posts a day and
         several years of posts, then our list will be several thousand items long. Or if we’ve done some web scraping and stored each
         page as a .JSON object with metadata about when it was collected, we may have millions of these files. Holding that all in
         memory would be a burden on whatever processing we want to do.
      

      
      In just a minute, we’ll see an example where this lazy file processing can be useful, but first, let’s take a second to talk
         about the nitty gritty details of sequence data types in Python.
      

      
      
      
      
      4.3. Understanding iterators: The magic behind lazy Python
      

      
      So far, we’ve talked about the benefits of laziness and about a couple functions that can take advantage of them. In this
         section, we’ll dig into the details of iterators—objects that we can move through in sequence—and talk about generators—special
         functions for creating sequences. We touched on generators briefly in chapter 2, but this time we’ll dive even deeper, including a look at small generator expressions.
      

      
      It’s important that we understand how iterators work because they are fundamental to our ability to process big data on our
         laptop or desktop computer. We use iterators to replace data with instructions about where to find data and to replace transformations
         with instructions for how to execute those transformations. This substitution means that the computer only has to concern
         itself with the data it is processing right now, as opposed to the data it just processed or has to process in the future.
      

      
      
      4.3.1. The backbone of lazy Python: Iterators
      

      
      Iterators are the base class of all the Python data types that can be iterated over. That is, we can loop over the items of
         an iterator, or we can map a function across one, like we learned how to do in chapter 2. The iteration process is defined by a special method called .__iter__(). If a class has this method and returns an object with a .__next__() method, then we can iterate over it.
      

      
      
      
      Thank you, __next__(): The one-way nature of iterators
      

      
      The .__next__() method tells Python what the next object in the sequence is. We can call it directly with the next() function. For example, if we’ve filtered a list of words down to only the words that have the letter m in them, we can retrieve
         the next m word with next().
      

      
      Listing 4.4 demonstrates calling the next function on a lazy object. We create a small function to check if the string has an m in it. We then use that function with
         filter to winnow down our words to only the words containing m. Then, because the result of our filter is an iterable, we can call
         the next function on it to get an m word.
      

      
      
      
      Listing 4.4. Retrieving m words with next

      words = ["apple","mongoose","walk","mouse","good",
         "pineapple","yeti","minnesota","mars",
         "phone","cream","cucumber","coffee","elementary",
         "sinister","science","empire"]

def contains_m(s):
    if "m" in s.lower(): return True
    else: return False

m_words = filter(contains_m, words)

next(m_words)
next(m_words)
next(m_words)

print(list(m_words))
["mars","cream","cucumber","elementary", ... ]

      
      If you run this in the console, you’ll be unsurprised to find that the next() function gets you the next item every time you call it. Something you might be surprised by, however, is that filter (and map, and all our lazy friends) are one-way streets; once we call next, the item returned to us is removed from the sequence. We can never back up and retrieve that item again. We can verify this
         by calling list() on the iterable after calling next. (See figure 4.3.)
      

      
      
      
      Figure 4.3. When we call the .__next__() method or the next() function, we get the next item in the iterable.
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      Iterators work like this because they’re optimized for bigger data, but they can cause us problems if we want to explore them
         element-by-element. They’re not meant for by-hand inspection; they’re meant for processing big data. Losing access to elements
         we’ve already seen can make iterators a little clumsier than lists if we’re still tinkering with our code. However, when we’re
         confident our code is working like expected, iterators use less memory and offer better performance.
      

      
      
      
      
      
      4.3.2. Generators: Functions for creating data
      

      
      Generators are a class of functions in Python that lazily produce values in a sequence. They’re a simple way of implementing
         an iterator. In chapter 2, we used a generator function to produce URLs in a sequence. The benefit of that was we didn’t have to spend memory on holding
         the list in place. Indeed, that’s the primary advantage of generators and lazy functions: avoiding storing more in memory
         than we need to.
      

      
      As we saw in chapter 2, one way of designing a generator is by defining a function that uses the yield statement. For example, if we wanted a function that would produce the first n even numbers, we could do that with a generator.
         That function would take a number, n, and yield the value of i*2 for every i between 1 and n, as demonstrated in listing 4.5.
      

      
      
      Generator expressions: Infinite amounts of data in a single line of code
      

      
      If we’re planning on doing that kind of generation multiple times, the yield statement is great. However, if we’re only planning on using those numbers once, we can code this even more concisely with
         a generator expression. Generator expressions look like list comprehensions—short declarations of how to manipulate data into a new list—but instead of generating the list up front, they create a lazy
         iterator. This has the same advantage all our other lazy approaches have had: we can work with more data without incurring
         memory overhead.
      

      
      A generator expression for the first 100 even numbers is shown at the end of listing 4.5. You’ll note that the brackets around the expression are round instead of square. This is the syntactic distinction between
         a generator expression and a list comprehension.
      

      
      
      

      
      
      Listing 4.5. Even numbers generator function
      

      def even_numbers(n):
    i = 1
    while i <= n:
        yield i*2
        i += 1

first_100_even = (i*2 for i in range(1,101))

      
      To get an intuitive understanding of the difference between generator expressions and list comprehensions, let’s open up a
         Python console and run nearly identical commands: one with a generator expression and one with a list comprehension. For these
         statements, we’ll use a function from the itertools module called count. The count function produces a lazy sequence of numbers, similar to range, but it’s open-ended; the count function won’t stop.
      

      
      If we want an infinite string of even numbers, we can run a single command (after we’ve imported count from itertools):
      

      
      from itertools import count
evens = (i*2 for i in count())

      
      You’ll notice that this command runs instantly. If we call next() on the evens object we just created, we’ll get an even number. We also can take chunks from this sequence with the islice function from the itertools module (pronounced “i” “slice,” not “is” “lice”):
      

      
      from itertools import islice
islice(evens, 5,10)

      
      Compare this with the same from a list comprehension.

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      The following code is not going to finish running, so you may be better off running it in a web-based shell like https://repl.it.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Here’s the list comprehension version:

      
      evens = [i*2 for i in count()]

      
      Our generator expression runs quickly and easily, but our list comprehension never finishes. That’s because the list comprehension
         is attempting to generate all these numbers at once and store them in a list. That’s nice if we want access to a specific
         element, or if we’ll need repeated access to the sequence. Generators lose numbers that have been used, we can only access
         them once. But if we have to work with a large amount of data, our list comprehension is going to take quite a bit more time.
      

      
      
      
      
      
      
      4.4. The poetry puzzle: Lazily processing a large dataset
      

      
      Now that we’ve taken some time to review the ins and outs of iterators and lazy functions, let’s take a look at two practical
         scenarios where we’d want to use these tools.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      A new poem has taken global culture by storm, but nobody can definitively identify the mysterious author. Two poets are claiming
         the poem and have provided you with terabytes of their unpublished poems so you can validate which poet is more likely to
         be the true author of the poem.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      In this scenario, we need to process a large amount of data from two authors to confirm which one of them authored the popular
         mystery poem. We’ll use a simple but powerful technique: comparing the frequencies of function words. Function words are words that have little content value but help sentences do things. Among other words, function words
         include the articles a and the. We’ll use the ratio of those two words, a and the, to detect our true author (figure 4.4).
      

      
      
      
      Figure 4.4. Counting function words can give us an idea of the true author of a document.
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      4.4.1. Generating data for this example
      

      
      Because this scenario calls for a large dataset, large here being more than however much memory you have on the computer you’re
         following along on, I’ve opted to provide a data generation script in the book’s repository (https://github.com/jtwool/mastering-large-datasets). You can use that function to generate as much data as you want for this scenario. I suggest generating at least 100 MB
         if you can and then deleting it all after you’ve finished this section. That said, if you have a petabyte hard drive laying around, feel free to fill it up. The code in this section will be able to process it just fine—though it may take some
         time. Lazy functions are great at processing data, but hardware still limits how quickly we can work through it. Another great
         option: generate a tiny bit of data, finish the chapter, then generate more data and let the code process it overnight.
      

      
      Unfortunately, because each author has provided us with so much information, we’ll never be able to process it all in memory
         at once. So we’ll have to use lazy functions to process it bit by bit. We’ll also use some of the techniques we learned in
         chapter 3: breaking our large problem down into pieces we can solve with small, helper functions.
      

      
      First, let’s take a look at what we’ll need to do.

      
      

      
         
         	We want to eventually compare the ratio of a and the for each author.
         

         
         	To do that, we need to read in each file for each author.

         
         	We’ll also need a way to get word counts for a and the.
         

         
         	And to do that, we’ll need to break the poems into words.

         
      

      
      Ultimately, our process is going to look like figure 4.5. First, we’ll read the files in. Then, we’ll clean them so they’re nice workable lists of words instead of unstructured poems.
         Then, we’ll filter them down to just the words in which we’re interested. Finally, we’ll get counts and calculate a ratio.
      

      
      
      
      Figure 4.5. Lots of small steps will add up to help us determine the author of the mystery poem.
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      4.4.2. Reading poems in with iglob
      

      
      In section 4.2.3, we looked at iglob, a function for searching for files on a filesystem and returning a list of matching paths as an iterable. Because our poets
         were generous enough to provide us with reams of their unpublished works, we’ll want to use this function to limit the overhead
         we need to spend storing these paths.
      

      
      A straightforward step like this is also something that’s good to get out of the way first. To read in the poems by each author,
         let’s define two iterables using iglob: one for each author. This is a quick two-liner, as we can see in the following listing.
      

      
      
      
      Listing 4.6. Listing the authors’ poems using iglob

          author1_poems = iglob("path/to/author_one/*.txt")
    author2_poems = iglob("path/to/author_two/*.txt")

      
      
      
      4.4.3. A poem-cleaning regular expression class
      

      
      Now that we have the poems, we’ll need a way to munge them into a workable data format. As we’ve done before with text data,
         we’ll ultimately want to convert the long string of text data we get when we open and read the poem files into a list of words.
         Before that, however, we’ll want to remove all the punctuation using a regular expression. For poems, this would be especially
         important because poets are known for distinctive use of punctuation.
      

      
      Because we’ll be using a regular expression, we’ll want to create a class so that we can compile that regular expression once
         and use it as many times as we’d like. We’ll give that class an attribute with a compiled regular expression that matches
         all the punctuation we want to remove and a method that uses that regular expression to remove the punctuation. Since we’re
         using that method to make our text data easy to work with, it also makes sense to add lowercasing in there to normalize our
         text, and to split our words on whitespace.
      

      
      We can see how that would play out in figure 4.6, where we transform a poem into our desired data structure. We start with the raw poem text, as the poet intended it, but
         after it’s cleaned, the text is ready for us to analyze.
      

      
      
      
      Figure 4.6. We can use a class containing a regular expression to transform a poem into a list of words.
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      Ultimately, we should end up with a class that looks like the following listing. In the listing, I’ve chosen to remove all
         periods, commas, semicolons, colons, exclamation points, question marks, and hyphens with the regular expression.
      

      
      
      
      Listing 4.7. A poem cleaner class
      

      class PoemCleaner:
    def __init__(self):
        self.r = re.compile(r'[.,;:?!-]')           1

    def clean_poem(self, fp):
        with open(fp) as poem:
            no_punc = self.r.sub("",poem.read())    2
            return no_punc.lower().split()          3

      
      

      
         
         	1 Compiles the regular expression to match all punctuation

         
         	2 Removes punctuation from the poem

         
         	3 Returns the no-punctuation poem lowercased and split into a list of tokens

         
      

      
      
      
      
      4.4.4. Calculating the ratio of articles
      

      
      The next step we’ll work on, getting a ratio of articles, we’ll solve with two custom functions: the filter function we’ve already looked at in this chapter and the itertools.chain function we looked at in chapter 3, plus a new function from the toolz library: frequencies. And all of this is going to be inside a wrapper function that we can use to pass in our PoemCleaner class (figure 4.7).
      

      
      
      
      Figure 4.7. A large function will wrap all our smaller functions so we can readily apply our poem analysis pipeline.
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      The first custom function we’ll need is a function to determine if a word should be kept. We don’t want to spend time or memory
         counting all the words, because we’ll only use a and the to determine authorship. For this, we’ll use a filter in conjunction with a helper function to narrow a lazy sequence of
         all the words down to just a’s and the’s. That helper function has to return True if a word is a or the, and False otherwise. That helper function will look like listing 4.8.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      The function word method for detecting the true author of a text may seem overly simplistic, but it’s not far removed from
         a technique that was used in the most popular authorship analysis of all time: discovering the identity of the unattributed
         Federalist Papers. In that instance, a list of 30 function words was used to identify James Madison as the sole or primary author of the 12
         disputed essays.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      Listing 4.8. Function to test if a word is a or the

      def word_is_desired(w):
    return w in ["a","the"]     1

      
      

      
         
         	1 We check if w is in the list containing “a” and “the” and return the result.

         
      

      
      Once we’ve got that function built, we can use it as the condition part of our filter function. The input sequence for that filter is going to be our .clean_poem method mapped across the sequence of poem paths. We’ll apply the itertools.chain function to the resulting sequences of words so we can treat them as one big sequence.
      

      
      At this point, we’ve got a way to get a sequence for each author’s uses of a and the. Now we need to count them and find a ratio between them. For the counting, the toolz library has a function frequencies that can do just that. It takes a sequence in and returns a dict of items that occurred in the sequence as keys with corresponding values equal to the number of times they occurred (figure 4.8). In other words: it provides the frequencies of items in our sequence.
      

      
      
      
      Figure 4.8. The frequencies function takes a sequence and turns it into a dict of items from the original sequence and the number of times they occur.
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      From those counts, we can write another small function to calculate the ratios. That function needs to take a dict and return the value of the "a" key divided by the value of the "the" key. Because we’re doing division, it’s prudent to use the .get method of our dict with an ever-so-slightly larger than zero value so we don’t risk dividing by zero. That helper function and the combined poem analysis functions should look like the following listing.
      

      
      
      
      Listing 4.9. Poem analysis function
      

      def word_ratio(d):
    return float(d.get("a",0))/float(d.get("the",0.0001))

def analyze_poems(poems, cleaner):
    return word_ratio(
        toolz.frequencies(
            filter(word_is_desired,
                itertools.chain(*map(cleaner.clean_poem, poems)))))

      
      To tie all of this together, we’ll need to create an instance of our PoemCleaner class and apply our analyze_poems function to the iterables for each of our authors. Altogether, we’ll have the code in the following listing. At the very
         end of the listing, I’ve added a print statement that’ll show the authors’ different tendencies, as well as the value found in the original poem. Running this script
         will tell you who the true author is!
      

      
      
      
      Listing 4.10. Poem puzzle final script
      

      import toolz
import re, itertools
from glob import iglob

def word_ratio(d):
    return float(d.get("a",0))/float(d.get("the",0.0001))

class PoemCleaner:
    def __init__(self):
        self.r = re.compile(r'[.,;:!-]')
    def clean_poem(self, fp):
        with open(fp) as poem:
            no_punc = self.r.sub("",poem.read())
            return no_punc.lower().split()

def word_is_desired(w):
    if w in ["a","the"]:
        return True
    else: return False

def analyze_poems(poems, cleaner):
    return word_ratio(
        toolz.frequencies(
            filter(word_is_desired,
                itertools.chain(*map(cleaner.clean_poem, poems)))))

if __name__ == "__main__":

    cleaner = PoemCleaner()
    author1_poems = iglob("path/to/author_one/*.txt")
    author2_poems = iglob("path/to/author_two/*.txt")

    author1_ratio = analyze_poems(author1_poems, cleaner)
    author2_ratio = analyze_poems(author2_poems, cleaner)

    print("""
    Original_Poem:  0.3
    Author One:     {:.2f}
    Author Two:     {:.2f}
    """.format(author1_ratio, author2_ratio))

      
      With this script, we can parse a larger amount of data than we could handle in memory. Being able to do this is a key milestone
         in transitioning from a developer who can only work with small data to a developer who can work with big(ish) data. As we
         saw in this example with iglob and filter, laziness helps us a lot in this respect. Next, we’ll see how laziness can help us in generating data.
      

      
      
      
      
      4.5. Lazy simulations: Simulating fishing villages
      

      
      The poetry puzzle covered in section 4.4 showed us how we can work with big data on our local machine; however, we also can use the tools in this chapter for producing
         big data.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      An environmental conservation group has commissioned you to design a simulation that illustrates the problem of overfishing.
         They have outlined a scenario involving four small villages and a lake. The people in each of those villages have agreed to
         take only one fish per person per year; however, some years a village will cheat and take twice as many fish as they’re allowed.
         Each village has its own propensity for cheating, but if two villages get caught cheating in the same year, each village increases its propensity for cheating. The villages will also grow each year. How
         many years can these villages survive?
      

      
      
         
            
         
         
            
               	
            

         
      

      
      For simulation problems like this, it’s often useful to program in a slightly different way than we’ve been programming up
         to now. For simulations, we get a lot of value from writing classes, which we haven’t talked about much outside of a way to
         compile regular expressions. Classes are great because they allow us to consolidate the data about each piece of the simulation
         (figure 4.9). In this specific simulation, we have two actors that need special attention and deserve their own class:
      

      
      

      
         
         	The simulation as a whole

         
         	The villages

         
      

      
      
      
      Figure 4.9. We can use classes to represent actors in a complex simulation scenario, such as villages fishing a lake over time.
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      Considering the simulation as a class will give us a place to keep track of what year we’re in, how many fish are remaining,
         and which villages are associated with the simulation. It will give us an easy way to run lots of simulations in parallel,
         as we’ll see later on.
      

      
      Considering the villages as a class is useful for many of the same reasons. The villages are all going to have their own unique
         bits of data, like a unique population and a unique inclination toward cheating. The villages also will need to do certain
         things, like increase population (and maybe increase their rate of cheating) each year.
      

      
      You may notice that breaking the problem up into two classes is similar to how we were breaking large problems into chains
         of small helper functions in chapter 3. Indeed, we’ll further break up the large simulation inside those two classes. The Lake_Simulation class will get a method for handling the simulation itself, and the fishing villages will get methods for fishing and updating.
      

      
      
      4.5.1. Creating a village class
      

      
      Between the villages and the simulation, the village is a smaller chunk of work, so let’s start there. For the villages, we’ll
         create a class that has an attribute to store its population and an attribute to store its cheating rate (figure 4.10). Each of these two attributes will be unique to each village, and we don’t want to have to set them ourselves for each simulation,
         so we’ll use a random variable in their place. I’m going to keep the villages small—between 1,000 and 5,000—and the amount
         of cheating relatively low—between .05 and .15.
      

      
      
      
      Figure 4.10. The Village class represents everything the village is and can do, including going fishing and growing.
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      To generate random numbers for the population and cheat rate, we’ll need to import Python’s random module and use its uniform function, which selects a value between two points with uniform likelihood. In other words, every number in that range has
         the same likelihood of occurring. We can call the uniform function for both population and cheat rate, as we see in the following listing.
      

      
      
      
      Listing 4.11. The beginnings of a Village class
      

      import random
class Village:                                     1
  def __init__(self):                              2
    self.population = random.uniform(1000,5000)    3
    self.cheat_rate = random.uniform(.05,.15)      4

      
      

      
         
         	1 Defines a Village class

         
         	2 Customizes what happens when the class is initialized

         
         	3 Gives the class a population value uniformly selected between 1,000 and 5,000

         
         	4 Gives the class a cheating rate between 5% and 15%

         
      

      
      This lays out the core of the Village class, and we can move on to some of the stuff the village will do: like going fishing and updating itself every round. Let’s
         take a look at going fishing first.
      

      
      
      Gone Fishing: A first method for our simulation object
      

      
      Every year, when a village goes fishing, it has the option to cheat, and all villages cheat at a different rate. To account
         for that, we’ll generate a uniform random variable between 0 and 1. If that number is below the cheat rate, the village will
         cheat; otherwise, it’ll play by the rules. When a village cheats, it’ll take two fish per person. When it doesn’t, it’ll take
         only one fish. And then lastly, because our simulation will need to know if our village cheated and how many fish it took,
         we’ll return the amount of fish taken and if the village cheated, as shown in the following listing.
      

      
      
      
      Listing 4.12. A method for going fishing
      

        def go_fishing(self):
    if random.uniform(0,1) < self.cheat_rate:   1
      cheat = 1
      fish_taken = self.population * 2
    else:                                       2
      cheat = 0
      fish_taken = self.population * 1
    return fish_taken, cheat                    3

      
      

      
         
         	1 Checks if the village will cheat; if it does, apply the cheat rules.

         
         	2 If the village doesn’t cheat, apply the standard rules.

         
         	3 At the end, return the fish the village took and if they cheated or not.

         
      

      
      
      
      A yearly update function for the village class
      

      
      After going fishing, each village also will change a little each year. Every year, the population will grow, and, depending
         how many villages cheated that year, a given village may increase the rate at which it decides to cheat. To keep things simple,
         our villages will all grow at a rate of 2.5% each year.
      

      
      To decide whether or not we increase the cheat rate, we’ll need to know how many cheaters there were this year of the simulation.
         Because that information is contained inside the simulation class, we’ll need to pass the simulation to the .update method, as shown in the following listing.
      

      
      
      
      Listing 4.13. Updating our villages
      

        def update(self, sim):
    if sim.cheaters >= 2:                          1
      self.cheat_rate += .05
    self.population = int(self.population*1.025)   2

      
      

      
         
         	1 If we find more than two cheaters, increase the cheat rate.

         
         	2 Increase the population no matter what.

         
      

      
      
      
      
      4.5.2. Designing the simulation class for our fishing simulation
      

      
      Those two methods, .go_fishing and .update, round out our Village class. We’ll use that class to represent villages in our simulation (figure 4.11). Additionally, as mentioned earlier, we’ll need a class for the simulation itself. This class will keep track of the simulation-level
         variables, such as what year it is and how many fish remain. Additionally, our simulation class will have a rather large method
         for running the simulation itself.
      

      
      
      
      Figure 4.11. Our simulation is a cyclical process in which we go fishing, check if we need to stop the simulation, update the simulation
         if we’ll keep going, and then go fishing again.
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      Setting up the simulation with the .__init__ method
      

      
      The start of our simulation is its .__init__ method, which will set up the simulation (listing 4.14). To set up the simulation, we only need four things:
      

      
      

      
         
         	The villages— Represented by a list of village objects, in our case 4
         

         
         	The fish— In this case, just the number of fish
         

         
         	A start year— Also a number, in our case 1
         

         
         	The number of cheaters— Again, an integer indicating the number of cheating villages
         

         
      

      
      We’ll assign each of these variables to the simulation class itself, so as our simulation changes, the variables will carry
         with it.
      

      
      
      
      Listing 4.14. Setting up the simulation
      

      class Lake_Simulation:
  def __init__(self):
    self.villages = [Village() for _ in range(4)]
    self.fish = 80000
    self.year = 1
    self.cheaters = 0

      
      
      
      Writing simulation logic in our .simulate method
      

      
      The simulation logic will go in the simulation class’s .simulate method. That means this method will be responsible for
      

      
      

      
         
         	finding the results of a year of fishing

         
         	updating the simulation after each year

         
         	ending the simulation if we run out of fish

         
         	ending the simulation if we survive “long enough”

         
      

      
      Because our simulation can go on forever if the lake never gets overfished, we’ll start our .simulate method with an infinite loop; in this case, we’ll use an infinite for loop:
      

      
      for _ in itertools.count():

      
      The itertools.count() function returns a generator that produces an infinite sequence of increasing numbers (1, 2, 3, 4, . . . 1000, 1001, 1002,
         . . . infinity). By using “_” we tell Python to ignore the value returned by the for loop, since we won’t be needing it.
      

      
      
      
      Villages going fishing: Introducing methodcaller for map and classes
      

      
      With our loop set up, we can start finding the results of our year of fishing. For our simulation, each of our villages goes
         fishing individually. That’s why we set up the village classes with a .go_fishing method. To have all the villages go fishing, we can map their .go_fishing method across the list of classes in our simulation’s .villages attribute.
      

      
      To do this, we’ll need the operator.methodcaller function. methodcaller takes a string and returns a function that calls the method with the name of that string on any object passed to it. Because
         the map and reduce style of programming we’re looking at in this book is so function-oriented, being able to call class methods
         using a function is extremely helpful This capability allows us to use functions like map and filter on them.
      

      
      From there, because our .go_fishing method returns a tuple of fish caught and a number indicating if that village cheated or not, our output from mapping this function across a list
         of villages will look as if we used the zip function on a sequence of fish caught and a sequence of cheating indicators. Knowing this, we can unzip the sequence of tuples and take the sums of the individual sequences, which will give us the total number of fish caught and the total number of
         cheaters.
      

      
      Unzipping is the opposite of zipping. Whereas zipping takes two sequences and returns a list of tuples, unzipping takes a single sequence and returns two. We can call unzip by putting a star in front of the list when we call
         the zip function: zip(*my_ sequence). We can see unzip and the rest of the first phase of our simulate step in the following listing.
      

      
      
      
      Listing 4.15. All the villages go fishing
      

      for _ in itertools.count():
        yearly_results = map(methodcaller("go_fishing"), self.villages)
        fishes, cheats = zip(*yearly_results)                           1
        total_fished = sum(fishes)                                      2
        self.cheaters = sum(cheats)                                     3

      
      

      
         
         	1 Unzips the yearly_results into two lists: fishes and cheats

         
         	2 The fishes list contains the number of fish fished by each village, its sum being the total fish fished.

         
         	3 The cheats list contains a 1 for each village that cheated, its sum being the number of cheaters.

         
      

      
      After we figure out how many cheaters there were and how many fish were caught, we’ll check if the simulation should end or
         if we should keep going. For this, we’ll use two if checks, each of which will break our infinite for loop.
      

      
      

      
         
         	The first if check will check if we’ve made it through 1,000 simulated years.
         

         
         	The second if check will check if all the fish have been fished.
         

         
      

      
      If each of these conditions is triggered, we’ll print a message to the screen explaining what happened. If we wanted to store
         the results of our simulation, this would be a good place to write our simulation results to a file. The following listing
         shows what this short bit of our code looks like.
      

      
      
      
      Listing 4.16. Checking if the simulation should be over
      

      if self.year > 1000:
    print("Wow! Your villages lasted 1000 years!")
    break
elif self.fish < total_fished:
    print("The lake was overfished in {} years.".format(self.year))
    break

      
      
      
      Final calculations: Resolving the year
      

      
      If we make it past the year-end checks, we can update our simulation for the year. Updating the simulation involves removing
         the fished fish from the remaining fish, repopulating the fish some amount (fish do make more fish, after all), and updating
         all the villages. If you’d like, we also may want to add a print statement here so we can see what happens year over year.
      

      
      To update the amount of fish remaining, we’ll subtract total_fished from self.fish and then increase self.fish by 15%. To update all the villages, we’ll again map methodcaller across all our villages. This time, however, we’ll call for the .update method instead of .go_fishing. Lastly, for a print statement, I recommend including at least the year and the number of fish remaining. See the one shown in the following listing.
      

      
      
      
      Listing 4.17. The .simulate method
      

      else:
    self.fish = (self.fish-total_fished)* 1.15                   1
    map(methodcaller("update"), self.villages)                   2
    print("Year {:<5}   Fish: {}".format(self.year,
                                                 int(self.fish)))
            self.year += 1

      
      

      
         
         	1 Updates the fish remaining

         
         	2 Updates the villages by mapping the “update” method across them

         
      

      
      And with that, we’ve completed our fishing simulation! Initialize a Lake_Simulation class and call the .simulate method a few times to see what happens. You should get a different number of years survived each time you run the simulation.
         The following listing shows the full simulation code.
      

      
      
      
      Listing 4.18. Full fishing simulation
      

      import random, itertools
from operator import methodcaller

class Village:
  def __init__(self):
    self.population = random.uniform(1000,5000)
    self.cheat_rate = random.uniform(.05,.15)

  def update(self, sim):
    if sim.cheaters >= 2:
      self.cheat_rate += .05
    self.population = int(self.population*1.025)

  def go_fishing(self):
    if random.uniform(0,1) < self.cheat_rate:
      cheat = 1
      fish_taken = self.population * 2
    else:
      cheat = 0
      fish_taken = self.population * 1
    return fish_taken, cheat


class Lake_Simulation:
  def __init__(self):
    self.villages = [Village() for _ in range(4)]
    self.fish = 80000
    self.year = 1
    self.cheaters = 0

  def simulate(self):
    for _ in itertools.count():
        yearly_results = map(methodcaller("go_fishing"), self.villages)
        fishes, cheats = zip(*yearly_results)
        total_fished = sum(fishes)
        self.cheaters = sum(cheats)
        if self.year > 1000:
            print("Wow! Your villages lasted 1000 years!")
            break
        if self.fish < total_fished:
            print("The lake was overfished in {} years.".format(self.year))
            break
        else:
            self.fish -= total_fished
            self.fish = self.fish*1.15
            map(lambda x:x.update(self), self.villages)
            print("Year {:<5}   Fish: {}".format(self.year,
                                                 int(self.fish)))
            self.year += 1

if __name__ == "__main__":
    random.seed("map and reduce")
    Lake = Lake_Simulation()
    Lake.simulate()
    Lake.simulate()
    Lake.simulate()
    Lake.simulate()

      
      We can run this simulation a few times (commenting out or changing the random seed each time) to see different results. The
         output of our simulation will be years, printed to the terminal, with the amount of fish remaining in that year. Usually,
         we’ll see our simulation end after around 10 years, as shown in listing 4.19. Sometimes, though, it will go on for thousands of runs.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Simulations and random seeds
         
         When we run simulations, we’ll use lots of random number generators. Randomness in our code can cause confusion when we share
            it with others and they’re expecting to get the same results we got. One way we can get around this is by using a random seed. By setting a seed, we can ensure that we’ll get effectively random numbers, but that those numbers will be in the same sequence
            every time. Any other user running the same code with the same random seed will get the same results we do.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      

      
      
      Listing 4.19. Fishing scenario output
      

      Year 1      Fish: 77183               1
Year 2      Fish: 70035               1
Year 3      Fish: 65724               1
Year 4      Fish: 60766               1
Year 5      Fish: 49965               1
Year 6      Fish: 42644               1
Year 7      Fish: 30315               1
Year 8      Fish: 20046               1
Year 9      Fish: 8327                1
The lake was overfished in 10 years

      
      

      
         
         	1 In most runs of the scenario, the lake will be overfished in a dozen or so years.

         
      

      
      These long runs represent the scenarios in which the villages avoid cheating during the early stages of the simulation. You
         can play around with the cheat rate, number of fish taken, and fish population growth rate to see how the simulation behaves
         under different assumptions.
      

      
      
      
      
      
      4.6. Exercises
      

      
      
      4.6.1. Lazy functions
      

      
      Lazy functions are common when we use a map and reduce style in Python. Which of the following functions are lazy?

      
      

      
         
         	map

         
         	reduce

         
         	filter

         
         	list

         
         	zip

         
         	sum

         
         	range

         
         	len

         
      

      
      
      
      4.6.2. Fizz buzz generator
      

      
      A classic toy programming problem is the fizz buzz problem, where we want to replace any number divisible by 3 with fizz and
         any number divisible by 5 with buzz. If a number is divisible by both fizz and buzz, it should be replaced with fizz buzz.
         We implemented a version of this using classes in chapter 2. Create a generator that solves this problem. Hint: Remember, you can use the modulo operator (%) to check if division produces
         a remainder.
      

      
      
      
      4.6.3. Repeat access
      

      
      When we use a built-in generator function such as range, we can only iterate through it once. Why is that so?
      

      
      
      
      
      4.6.4. Parallel simulations
      

      
      There are many ways to run several simulations in parallel. One way is to map the .simulate method from our Lake_Simulation class over a sequence using the with Pool() as P: construction we introduced in chapter 2. Modify the code from listing 4.18 so you can run simulations in parallel.
      

      
      
      
      4.6.5. Scrabble words
      

      
      The popular game Scrabble involves spelling words by placing tiles on a board. Spelling long words and words with more rare
         letters in them earns you more points. In a simplified version, Z is worth 10 points; F, H, V, and W are worth 5; B, C, M,
         and P are worth three; and all other letters are worth one point. Using the functions map and filter, reduce this list of words to only the ones that are worth more than eight points: zebra, fever, charm, mouse, hair, brill,
         thorn.
      

      
      
      
      
      Summary
      

      
      

      
         
         	Lazy functions are those that evaluate only when we need the values they return—no sooner and no later. We can use lazy functions
            like map, filter, zip, and iglob to work with massive amounts of data on our laptops.
         

         
         	Python implements laziness through iterators, which we can create ourselves, receive from functions, or build with convenient
            generator functions and statements.
         

         
         	We can create generators with functions using yield statements or through concise and powerful list comprehension-like generator expressions.
         

         
         	We can only go through iterators one way; once we’ve seen an element from an iterator, we never have access to that same element
            again.
         

         
         	We can use the filter function to conveniently gather a subset of a list. There’s a whole family of functions just like the filter function: filterfalse, valfilter, keyfilter, and itemfilter.
         

         
         	We can use zip to combine two lists into a single sequence of tuples—a handy trick when combined with map.
         

         
         	We can use frequencies from the toolz library to get counts of the unique elements of a sequence.
         

         
         	We can apply lazy functions and generators toward solving data-intensive problems, such as text analysis and simulations.

         
         	We can use methodcaller to map an object’s method over a sequence of that object.
         

         
      

      
      
      
      
      
      
      


Chapter 5. Accumulation operations with reduce
      

      
      This chapter covers

      
      

      
         
         	Recognizing the reduce pattern for N-to-X data transformations
         

         
         	Writing helper functions for reductions

         
         	Writing lambda functions for simple reductions

         
         	Using reduce to summarize data
         

         
      

      
      In chapter 2, we learned about the first part of the map and reduce style of programming: map. In this chapter, we introduce the second part: reduce. As we noted in chapter 2, map performs N-to-N transformations. That is, if we have a situation where we want to take a sequence and get a same-sized sequence
         back, map is our go-to function. Among the examples of this that we’ve reviewed are file processing (we have a list of files and we
         want to do something to all of them; discussed in chapter 4) and web scraping (we have a list of websites and we want to get the content for each of them; discussed in chapter 2).
      

      
      In this chapter, we’ll focus on reduce for N-to-X transformations; that is, situations where we have some sequence but we want to get something back besides another
         same-sized sequence, usually a sequence of a different size or possibly not even a sequence at all. Note, however, that situations
         do exist where we’ll actually want to use reduce to get back a sequence of the same size. We’ll look at all of these situations, learning about reduce and using it in some common transformations that you’re already familiar with. Learning reduce will give us a handy tool to use in situations where map isn’t appropriate, but where we still want to benefit from using a common programming pattern.
      

      
      
      5.1. N-to-X with reduce
      

      
      When we say that reduce is a function for N-to-X transformations, we mean that whenever we have a sequence and want to transform it into something
         that we can’t use map for, we can happily use reduce. This is one of the reasons why map and reduce pair so neatly together: map can take care of most of the transformations in a very concise manner, whereas reduce can take care of the very final transformation, albeit in a somewhat less elegant fashion.
      

      
      An example of an N-to-X transformation that you’re already familiar with, and that we’ll take a look at in more detail in
         section 5.2, is the summation function. In math, this is typically represented with a Σ. In Python, we have access to the sum function from the base library. The summation function takes a sequence of numbers (integers, floats, imaginary numbers)
         and returns a single number that is the total of all the numbers in the sequence added together (figure 5.1).
      

      
      
      
      Figure 5.1. The sum function is a common example of the reduce pattern that most people already know.
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      For example, if we had a sequence with the numbers 10, 5, 1, 19, 11, and 203, we could sum them up and get a single number
         back. This would take us from our six original numbers down to only one resulting number. We would have transformed our data
         from size N (6) down to X (1). This is the essence of the reduce pattern: taking a sequence and transforming it into something
         else.
      

      
      
      
      
      5.2. The three parts of reduce
      

      
      Summing a sequence of numbers with reduce is simple, but it will still require all three parts of a reduce function (figure 5.2):
      

      
      

      
         
         	An accumulator function

         
         	A sequence

         
         	An initializer

         
      

      
      
      
      Figure 5.2. A reduce function has three parts: an accumulator, which specifies reduce’s behavior, a sequence, which we reduce over, and an initial value, which we use to start our reduce operation.
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      The accumulator function does the heavy lifting for reduce. It’s a special type of helper function, like the ones we were using for map in chapters 2, 3, and 4. A sequence is an object that we can iterate through, such as lists, strings, and generators. And our initializer is the
         initial value to be passed to our accumulator. In most implementations of reduce, this parameter is optional.
      

      
      If we were to sum up a sequence of numbers, we would want

      
      

      
         
         	to have our accumulator function be an addition function

         
         	our sequence to be the sequence of numbers we’d like to sum

         
         	our initial value to be 0 to start counting at zero

         
      

      
      In Python, that may look something like the following listing. To run this code, you’ll need to define an addition function—my_add. We’ll do that in the next subsection on accumulation functions.
      

      
      
      
      Listing 5.1. The three parts of reduce

      from functools import reduce   1

xs = [10,5,1,19,11,203]        2

reduce(my_add, xs, 0)          3

      
      

      
         
         	1 First, we need to import reduce from the functools library.

         
         	2 Then, we can set up our data to sum up.

         
         	3 When we call reduce, notice how the accumulator comes first, then the sequence, then the initial value.

         
      

      
      Listing 5.1 provides an example of how summation with reduce may look. Two things are worth noting about this short bit of code. First, we need to import reduce from the functools library. The reduce function is not a default import like map, though it is available with any distribution of Python. In deprecated versions of Python (2.7 and below), reduce was available by default.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Removing the reduce function from base Python
         
         In 2002, the creator of Python, Guido van Rossum, referred to including many of the approaches in this book as a mistake.
            He had the view that these approaches harmed readability and that the reduce method in particular was hard for most people
            to understand. I disagree. Reduce simply is not widely taught. Additionally, the rise of parallel and distributed computing
            makes these tools extremely valuable.
         

         
         In this chapter, you’ll learn about a powerful, versatile tool that the Python language maintainers don’t want you to know
            about.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Second, the order in which we place our parameters for reduce is specific. Like map, the accumulator or helper function comes first, then the sequence, and then our initializer comes last. The initializer
         comes last because it is an optional parameter.
      

      
      
      5.2.1. Accumulation functions in reduce
      

      
      Accumulator functions are all of a common prototype. They take an accumulated value and the next element in the sequence and
         return another object, typically of the same type as the accumulated value. For example, in our sum function, we’re going
         to want to take in the sum up to that point as our accumulated value, and the next element in the sequence as our next value,
         and add them together. The code for that will look like the following listing.
      

      
      
      
      Listing 5.2. An accumulator function for summation
      

      def my_add(acc, nxt):    1
    return acc + nxt     2

      
      

      
         
         	1 Our my_add function takes in an accumulated value (acc) and the next element (nxt).

         
         	2 It returns those two values added together, which will be another number, just like acc.

         
      

      
      The one thing you’ll want to note about this one-line function is the variable names. My preferred convention labeling the
         variables to a reduce accumulator function is to use acc for the accumulated value and nxt for the next value; however, there are others. Some more concise teams like to use a to represent the accumulator and b to represent the next value. You also may see left used to represent the accumulator and right used to represent the next value. To understand why the accumulator function needs to take in an accumulated value and the
         next element, it helps to understand how reduce does its transformations.
      

      
      
      How reduce works
      

      
      In its simplest implementations, reduce loops over a sequence, processing each element in conjunction with an accumulated value. This accumulated value starts as
         either the initializer value, if we provide one, or the first element of the sequence if we do not. For example, when reduce is summing up 10, 5, 1, 19, 11, and 203, it’s adding 10 to 0 to get 10, then adding 5 to the current total (10) to get 15,
         then adding 1 to that to get 16, then adding 19 to that to get 35, and so on until all the numbers are processed (figure 5.3). The total value is the accumulator value. The next value in the sequence is the next value.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Reducing from left to right
         
         Because reduce loops over a sequence from left to right, some teams, as we just mentioned, will call the accumulated value in their accumulator
            helper functions left and the next value passed to those functions right. Versions of the reduce function in other programming languages can reduce from right to left instead. In these situations, teams can easily tell
            which functions were written for left-to-right reductions and which were written for right-to-left reductions.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      Figure 5.3. The reduce function works by processing each element of a sequence and joining it with an accumulator value.
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      When these data structures and functions are simple, reduce can seem unnecessary; however, as the data structures, and the transformations we want to make of them, become more complex,
         we can use reduce to make our transformations more transparent. More sophisticated implementations of reduce, like we’ll see in chapter 6, also allow for parallel reductions, which provide the same performance improvements we saw with parallel map, with little to no rewriting of our code.
      

      
      
      
      Testing our summation function
      

      
      At this point, we have a working summation reduction. Feel free to run the combined code from listings 5.1 and 5.2. If you wrap the reduce call in a print function, you should see an integer printed to your screen. Unlike map and the lazy data types we looked at in chapter 4, reduce evaluates when it’s called.
      

      
      
      
      
      5.2.2. Concise accumulations using lambda functions
      

      
      As you may have been thinking while typing up the code for listing 5.2, sometimes it seems silly to create a whole function for a one-line statement like adding together two numbers. In cases
         like this, it’s common to use a lambda function instead of defining a function.
      

      
      Lambda functions are also known as anonymous functions because we don’t save them to the name space. Although we’re perfectly
         free to call our my_add function whenever and wherever we want, the anonymous function only exists inside of the reduce call and will not be available beyond the scope of that single command. For small operations, this is really nice. We don’t
         even have to worry about naming these functions. For larger operations, we’d rather have a callable function.
      

      
      Lambda functions in Python are defined in three parts (figure 5.4):
      

      
      

      
         
         	The lambda keyword

         
         	The parameters the function will take

         
         	A colon and the statement that the function will execute

         
      

      
      
      
      Figure 5.4. We can use lambda functions in place of standard functions in map or reduce operations when we won’t need to use the function’s behavior again.
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      For example, our my_add function could be a simple lambda function.
      

      
      You’ll notice the lambda keyword is the first thing in our statement, followed by our two parameters: acc and nxt. The two parameters are separated by a comma, just like they would be in a normal function declaration. Unlike a function
         declaration, however, we won’t find any name for the function. Additionally, we declare the function’s behavior immediately
         after the parameters on the same line, only separated by a colon and a space. Lastly, you’ll notice that this lambda statement
         returns a function. We could assign this to a variable and use it like a normal function if we wanted to; however, usually
         we’ll just want to be done with our anonymous, throwaway lambda function.
      

      
      The best use for a lambda function is to declare it right inside our reduce call. To do that, we just write the lambda statement in the first position of our reduce function where the accumulator function goes, leaving the latter two positions for our sequence and our initializer. For
         example, we could simplify the code from listings 5.1 and 5.2 down to the code in the following listing using a lambda function.
      

      
      
      
      Listing 5.3. Lambda function inside reduce for summation
      

      from functools import reduce

xs = [10, 5, 1, 19, 11, 203]
print(reduce(lambda acc, nxt: acc+nxt, xs, 0))    1

      
      

      
         
         	1 Our lambda addition function goes in the first position of our reduce statement.

         
      

      
      This code achieves the same end as our previous code. This time, though, we don’t need to save space for our addition function.
         In this specific case, using the lambda function works great because our task at hand is small: we’re adding two numbers.
         Other useful cases for using lambdas are when we want to expose class methods or attributes.
      

      
      For example, we can use a lambda function to expose the .get method from the dict class and sum the price of several products. We can see this play out in the following listing.
      

      
      
      
      Listing 5.4. Lambda functions can be used to expose class methods
      

      from functools import reduce

my_products = [
    {"price": 9.99,                                                1
     "sn": '00231'},                                               1
    {"price": 59.99,
     "sn": '11010'},
    {"price": 74.99,
     "sn": '00013'},
    {"price": 19.99,      "sn": '00831'},
]

reduce(lambda acc, nxt: acc+nxt.get("price", 0), my_products, 0)   2

      
      

      
         
         	1 Our product data is stored in dicts, each containing a price and a serial number (sn).

         
         	2 We can call the .get method of each dict in the lambda function to add the prices.

         
      

      
      Listing 5.4 shows a classic lambda function: we need to do something that’s a bit nuanced, like getting the value of the price key of
         a dict and adding it to another value, but not something that we’ll want to necessarily ever do again. Our lambda function is still
         very readable, and it would feel silly to create a whole function to get a value from a dict and add it to another value.
      

      
      
      
      5.2.3. Initializers for complex start behavior in reduce
      

      
      The last piece of the reduce puzzle is the initializer parameter. The initializer is the value that our reduce operation will use as the very first accumulated value. We can think of it as inserting that value at the head of our sequence
         and shifting all the other values to the right by 1 (figure 5.5).
      

      
      
      
      Figure 5.5. An initializer value shifts all the values to the right by 1, changing the start value of the reduce operation.
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      For our summation reduction, adding an initializer value of 10 would increase our entire reduce by 10. Instead of starting with the first value (the default) or with zero, we would start adding to 10. This might be useful
         if we wanted to add a $10 handling fee to all of the orders, for example.
      

      
      Most often though, we’ll want to use an initializer not when we want to change the value of our data but when we want to change the type of the data. By seeding our reduce with a value of a different type, our accumulator function can expect two different type parameters, even when we have a
         list in which all the values are of the same type. We can see this play out if we change the integer 0 in our summation reduction
         to a float 0, 0.0, as shown in the following listing.
      

      
      
      
      Listing 5.5. Seeding a summation function with a float
      

      from functools import reduce

xs = [10, 5, 1, 19, 11, 203]

print(reduce(lambda acc, nxt: acc+nxt, xs, 0.0))     1

      
      

      
         
         	1 Changing the last parameter from an integer (0) to a float (0.0) changes the output

         
      

      
      Inserting a float into our summation reduction, as seen in listing 5.5, changes the eventual output type of our summation to a float. This happens because a float plus an integer always returns
         a float in Python. This effect cascades across our reduction because the accumulator function always has a float for its accumulator
         parameter (figure 5.6).
      

      
      
      
      Figure 5.6. The type of the initializer often determines the behavior of our accumulator function.
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      This pattern, where we use the initializer to alter the type of our sequence, is going to be a common occurrence. We’ll often
         want our accumulator to take and return a type that is different from the type of elements that are in our list. This represents a wider variety of transformations than we could
         achieve with just a single data type. We’ll look at an example of that pattern shortly in section 5.3.2 and again later in this chapter.
      

      
      
      
      
      5.3. Reductions you’re familiar with
      

      
      Having looked at the basics of reduce with the summation function, let’s look at two more reductions that you’ve already seen in this book:
      

      
      

      
         
         	filter

         
         	frequencies

         
      

      
      We explored both functions in chapter 4. The filter function returns a list of items that evaluate True for a given condition. The frequencies function returns a dict whose keys are the unique elements of a list and whose values are the counts of those items in the list.
      

      
      
      5.3.1. Creating a filter with reduce
      

      
      For our filter reduction, let’s perform a filter operation that returns only even numbers. That way, we can compare this code to some of the examples we worked on in chapter 4. Before diving straight into the reduction, however, we should think about what this reduction is going to look like (figure 5.7).
      

      
      
      
      Figure 5.7. The filter reduction is an N-to-X transformation from a list of some size to a list of some smaller or equal size.
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      The filter function starts with a sequence of some sort, so we know that it’s a good candidate for reduction on that ground. Our output
         data in this instance is going to be a list of a length equal to or less than that of our previous sequence. For example,
         if we have a sequence where all the numbers are 2 (an even number), then our reduction should return the same sequence as a list. In contrast, if all the numbers are odd, our reduction should return an empty list.
      

      
      Thinking this through gives us some sense of how our reduction needs to behave and how we need to set it up. We know we’re
         going to need to be able to return an empty list in some cases, so it makes sense to initialize our reduction with an empty
         list. The rest of our reduction is going to depend on the accumulator function we design. Because we’re attempting to filter
         down to just the even numbers, I’m going to call this function keep_if_even.
      

      
      The keep_if_even function is going to need to take in two things:
      

      
      

      
         
         	An accumulated value (a list of even numbers)

         
         	The next value in our sequence

         
      

      
      The function will also need to return either the original accumulated value, if the next value is not even, or the accumulated
         value plus the new value, if the next value is even. This function is implemented in the following listing.
      

      
      
      
      Listing 5.6. An is it even? filter reduction
      

      from functools import reduce

xs = [1, 2, 3, 4, 5, 6, 7, 8, 9]

def keep_if_even(acc, nxt):           1
    if nxt % 2 == 0:                  2
        return acc + [nxt]            3
    else: return acc                  4

print(reduce(keep_if_even, xs, []))   4

      
      

      
         
         	1 Our accumulator function expects an accumulated value (a list) and the next item (a number).

         
         	2 Checks if the next item is even

         
         	3 If it is, we add it to our accumulator and return a new list.

         
         	4 If it is not, we return the original accumulator.

         
      

      
      Much of the code in listing 5.6 will be similar to code you’ve seen before, in either this chapter or chapter 4. One important thing to point out, however, is that we use the construction acc + [nxt] instead of acc.append(nxt). We first used the acc and nxt parameter names in listing 5.2 of this chapter, with acc representing the accumulated value and nxt representing the next element in our sequence.
      

      
      We don’t use the .append method here because although .append is the preferred way of adding values to a list, our accumulator function will always need to return a value. By design,
         the .append method modifies the list in place and returns None. This forces us to use acc + [nxt], which returns a new list.
      

      
      You’ll also note that this filter works as desired on the edge cases identified a few paragraphs ago. If we pass in a list
         of all 2s, we’ll get the same-sized list back. If we pass in a list of all odd numbers (say, 3s), we’ll get an empty list
         back.
      

      
      
      
      
      5.3.2. Creating frequencies with reduce
      

      
      The next type of reduction that we’ll tackle is the frequency reduction. Frequency, which we saw in chapter 4 as frequencies, is a way of counting the elements of a sequence. Again, let’s stop to think about the N-to-X transformation that’s going
         on in this function. We’ll start with a sequence (N), and we want to end up with a dict with some number of keys, each corresponding to a unique element in the sequence, and a value totaling their count within
         the sequence (figure 5.8).
      

      
      
      
      Figure 5.8. Our frequency reduction transforms a list into a dict with keys for each unique element and values totaling their counts. We need to initialize with a dict because the accumulation function takes two parameters of different types.
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      The accumulator function for our frequency reduction will take a dict as an accumulated value and a miscellaneous element as our next value. It will have to return a dict as well so that, as we move through our sequence, we can ensure we always have a dict as our accumulated value. It also will have to count the element. To do this, we’ll increment the value of that element as
         a key by 1. Also, this time, let’s wrap our reduce operation in a function so we can reuse it.
      

      
      Listing 5.7 provides the code for the accumulator and the reduction, along with test data and some print statements that demonstrate
         our function is working as desired. In those statements, we can see that our frequencies function can be used to count up sequences of all different types. We’re able to do this because reduce doesn’t care what type of objects we’re iterating over and because our accumulation function doesn’t rely on the objects
         in a sequence being of a specific type. We also see the importance of initializing our reduction with an empty dict so we can use the .get method from the start.
      

      
      
      
      Listing 5.7. Finding frequencies using a reduction
      

      from functools import reduce

def make_counts(acc, nxt):                1
    acc[nxt] = acc.get(nxt, 0) + 1        2
    return acc                            3

def my_frequencies(xs):                   4
    return reduce(make_counts, xs, {})    5

xs = ["A", "B", "C", "A", "A", "C", "A"]
ys = [1, 3, 6, 1, 2, 9, 3, 12]

print(my_frequencies(xs))
print(my_frequencies(ys))
print(my_frequencies("mississippi"))

      
      

      
         
         	1 Our make_counts function has the standard accumulator function parameters: acc and nxt.

         
         	2 For each element we come across, we increment the number of times we’ve seen that element by 1.

         
         	3 Returns the accumulated value at the end of the function

         
         	4 Our frequency reduction function will only need to take a sequence of some kind.

         
         	5 Our reduce statement uses the make_counts function we just made, as well as an empty dict as an initializer object.

         
      

      
      
      
      
      5.4. Using map and reduce together
      

      
      At this point, we’ve covered the basics of reduce. If you can decompose a problem into an N-to-X transformation, all that stands between you and a reduction that solves that
         problem is a well-crafted accumulation function. That said, I’d be remiss if we wrapped up our discussion of reduce without discussing how we can use it in conjunction with map in the eponymous map-reduce pattern.
      

      
      So far, we’ve focused on situations where at least some of the data we want to end up with comes directly from our sequence.

      
      

      
         
         	In the sum reduction (listing 5.3), we needed the values in the list.
         

         
         	In the filter reduction (listing 5.6), we wanted to end up with the values that met a given condition.
         

         
         	In the frequency reduction (listing 5.7), we used the sequence elements as keys for our dict.
         

         
      

      
      This is not always the case. Sometimes we don’t want to work with the data in our sequence, only data that is somewhat related
         to our sequence. The classic example is that we have a sequence of file paths and want to open those files and do something
         with them. We saw that in chapter 4 in the poetry puzzle example. In that example, we had a bunch of files; however, it was the content of those files that was
         interesting to us, not the files themselves.
      

      
      Another version of this problem could be a twist on the Scrabble exercise at the end of chapter 4. What if instead of filtering our list down to the words that met some point threshold, we summed all the points represented
         by the words in a list? In that example, the list may contain the words we’ve scored to date, and their sum would equal our
         total score. To find our total score, we want to convert the words to their scores (an N-to-N transformation) and then reduce
         those scores into a total score (an N-to-X transformation) (figure 5.9). Because this process represents both an N-to-N transformation and an N-to-X transformation, we can use both map and reduce: map to transform the words to scores and reduce to sum them up.
      

      
      
      
      Figure 5.9. We can use the map and reduce pattern to transform words into scores and then calculate a sum of those scores.
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      To do this, we’ll need to concoct two helper functions: one for map and one for reduce. If you completed exercise 4.6.5, you already have both of them on hand. (If you don’t have them, you can either complete
         the exercise now or find the code in this book’s source code repository at https://github.com/jtwool/mastering-large-datasets.) The helper function for map will need to take in a word and return a score. Just like in exercise 4.6.5, we’ll use the simplified scoring scheme: Z is
         worth 10 points; F, H, V, and W are worth 5; B, C, M, and P are worth 3; and all other letters are worth 1 point. The helper
         function for reduce will be either the helper function from listing 5.2 or the lambda expression from listing 5.3—either will work.
      

      
      With those two helper functions in place, to find our total score we map the scoring function across our words and reduce over the results of that map. We can see this entire process in the following listing.
      

      
      
      
      Listing 5.8. Scoring words with map and reduce

      from functools import reduce

def score_word(word):
    points = 0
    for char in word:
        if char == "z": points += 10
        elif char in ["f", "h", "v", "w"]: points += 5
        elif char in ["b", "c", "m", "p"]: points += 3
        else: points += 1
    return points

words = ["these", "are", "my", "words"]

total_score = reduce(lambda acc,nxt: acc+nxt,    1
                     map(score_word, words))     1
print(total_score)

      
      

      
         
         	1 This reduction is identical to the summation reduction we used at the beginning of the chapter, except instead of passing
               reduce a sequence of numbers, we pass it the result of our map operation.

         
      

      
      The power of map and reduce is in the simplicity of its execution. When we actually go to execute our reduce and map statements, we do so in a single line of code, though this one line implements complex behavior through the invoked helper
         functions. We can use the map and reduce pattern to decouple the transformation logic—the things we want to do to our data—from
         the actual transformation itself. This permits simplicity and leads to highly reusable code. When working with large datasets,
         keeping our functions simple becomes paramount because we may have to wait a long time to discover we made a small error.
      

      
      
      
      5.5. Analyzing car trends with reduce
      

      
      Before we move on from chapter 5 and start looking at reduce in parallel, let’s try our hand at a more complex reduction scenario.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      Your customer is a used car dealer. They have data on cars that they’ve bought and sold in the last six months and are hoping
         you can help them find what type of used cars they make the most profit on. One salesman believes that highly fuel-efficient
         cars (those that get more than 35 miles per gallon (mpg)) make the most money, while another believes that medium-mileage
         cars (with odometers at 60,000 to 100,000 miles) result in the highest average profit on resale. Given a CSV file with a variety
         of attributes about some used cars, write a script to find the average profit on cars of low (<18 mpg), medium (18–35 mpg),
         and high (>35 mpg) fuel efficiency, as well as low (<60,000 miles), medium (60,000–100,000 miles), and high mileage (>100,000
         miles), to settle the debate.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Before we dig into the details of the problem, let’s take a look at its fundamentals: the data transformations. We’ll start
         with a series of dicts, each of which represents a vehicle. By default, these dicts will have a lot of information we’re not interested in and won’t have some of the information we do want, so it’ll be a
         good idea to transform the data into a better format for analysis. We’ll tackle that with a map because we want to clean up each dict. From there, we want to roll that data up into a dict that can help us understand the profit that each type of car produces. This will require a reduction.
      

      
      Overall, the whole problem will look something like figure 5.10. On the left, we start with the data our customer hands us. We’ll concoct a function to clean up each record and map that across our data. Then, we’ll pass that into reduce, which itself has an accumulator function we’ve designed to collect the necessary information. For this, we’ll want to gather
         both sum and count by group—the two figures necessary to calculate an average.
      

      
      
      
      Figure 5.10. We can solve our car data analysis task using a map step that cleans up car data and a reduce step that accumulates the data into one data structure that answers our question.
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      5.5.1. Using map to clean our car data
      

      
      To design our cleaning helper function, let’s first take a closer look at the individual elements with which we’ll be working.
         Each car in our dataset is going to look something like figure 5.11.
      

      
      
      

      
      
      Figure 5.11. Each car in our dataset will have many attributes, only four of which we really care about: price-buy, price-sell, mpg, and
         odo. We’ll use map plus a helper function to transform those numerical variables into categorical variables for easier comparison.
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      For each entry, we’ll have a dict with lots of attributes we’re not particularly interested in, along with the four that we are interested in: price-buy, price-sell, mpg, and odo. These four keys in our dict represent the price the car was bought at, the price the car was sold at, the manufacturer-listed miles per gallon of the
         vehicle, and the number of miles on the car. However, we’re not actually interested in the values of any of these variables
         directly. Rather, we’re interested in values that we can calculate from them.
      

      
      

      
         
         	Instead of price bought and sold, we’re interested in total profit.

         
         	Instead of absolute miles per gallon, we’re interested in low, medium, and high mpg.

         
         	Instead of absolute number of miles, we’re interested in low, medium, and high mileage.

         
      

      
      To that end, to clean each data entry, we’ll want to do three things:

      
      

      
         
         	Calculate profit on the vehicle from price bought and sold

         
         	Sort the vehicle into low, medium, and high mpg

         
         	Sort the vehicle into low, medium, and high mileage

         
      

      
      To do this, we’ll create three separate functions that each handle a piece of the problem and wrap them in a single function
         we can map across all our data. Let’s design each of these three helper functions now, starting with calculating profit.
      

      
      The profit calculation function is only a small change from a basic operation: arithmetic. In other conditions, this might
         be a good case for a lambda function; however, because we’re planning on using this function inside another function, we’ll want to give it a name. Our get_profit function will find the difference between the price the car was sold at and the price the car was bought at. We can see it
         in the following listing.
      

      
      
      
      Listing 5.9. Lambda function for calculating price differences
      

      def get_profit(d):
    return d.get("price-sell",0) - d.get("price-buy",0)

      
      One thing to note about listing 5.9 is that we use the .get method of the dict instead of the [<key>] syntax because with get we can provide a default value. We do this to preempt the errors that a missing value would throw (though there are no missing
         values in the data you’ve been provided).
      

      
      Next up, we have two helper functions that provide similar functionality: one that buckets mpg into three categories—low,
         medium, and high—and one that buckets mileage into three categories—low, medium, and high. Because these functions are so
         similar, let’s work on them at the same time.
      

      
      Both of these functions share a common behavior: comparing a value to a series of break points and then assigning them to
         either low, medium, or high. We can write a general function that takes a dict, a key, and two break points and returns low when the value of the dict at the key specified is below the first break point, medium when it’s below the second, and high when it’s above both. That function will look like the code in the following listing.
      

      
      
      
      Listing 5.10. A generic low-medium-high function
      

      def low_med_hi(d, k, low, high):
    if d[k] < low:               1
        return "low"
    elif d[k] < high:            2
        return "med"
     return "high"               3

      
      

      
         
         	1 If the value of the dict at the key of interest is below our first break, we return low.

         
         	2 If that value is below the second break, we return medium.

         
         	3 If it’s not lower than either break, we return high.

         
      

      
      With this function written, we can start to assemble all of the pieces together. We’ll want to do three things:

      
      

      
         
         	Take in a dict

         
         	Clean the dict with our select_keys function
         

         
         	Return a dict that has three keys
            
            

            
               
               	A profit key indicating the profit made on the vehicle

               
               	An mpg key indicating the vehicle’s mpg category

               
               	An odo key indicating the vehicle’s mileage

               
            

         

         
      

      
      A wrapper function for that process may look like the following listing.
      

      
      
      
      Listing 5.11. Wrapping our car helpers into a single function
      

      def clean_entry(d):
    r = {}                                         1
    r['profit'] = get_profit(d)                    2
    r['mpg'] = low_med_hi(d,'mpg',(18,35))         3
    r['odo'] = low_med_hi(d,'odo',(60000,100000))  3 4
    return r

      
      

      
         
         	1 Initializes a new dict for our output data

         
         	2 Uses our profit function to get the profit

         
         	3 Uses the low-medium-high function twice to get our mpg and odo categories

         
         	4 Each use takes different parameters corresponding to the specifics of those variables.

         
      

      
      
      
      5.5.2. Using reduce for sums and counts
      

      
      With our map wrapper function written, it’s time to move on to our reduction (figure 5.12). Knowing what our map will begin returning, we can use reduce to convert those items into our desired output data. What we want is a dict with six keys: one each for high, medium, and low mpg and one each for high, medium, and low mileage. The values of each
         of these keys should contain the average profit on vehicles of that type. Because we’ll need the total profit and the total
         number of cars sold to calculate average profit, we’ll keep track of those values as well. For readability, it makes sense
         to throw those values into a dict too. This will leave us with a dict with six keys—one for each of the categories, each of which points to another dict with three keys: one for average profit and two for the values necessary to calculate the average profit.
      

      
      
      
      Figure 5.12. We’ll reduce over the profit and vehicle category data to produce a single dict that contains the total, count, and average for each category.
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      To do this, our accumulator function will roll the profit of each observation of our dataset into keys of our accumulated
         value: one based on its mileage category and one based on its mpg category. Because calculating the total profit, count, and
         average is a little involved—more than we can accomplish with a single expression—let’s wrap this behavior in a helper function.
         That helper function will take the accumulated total, count, and average of the category of car and mix in the profit for
         the new car, while also incrementing the count and calculating a new average. We can see these two functions together in the
         following listing.
      

      
      
      
      Listing 5.12. Profit average accumulator and helper function
      

      def acc_average(acc, profit):                               1
    acc['total'] = acc.get('total',0) + profit              2
    acc['count'] = acc.get('count',0) + 1
    acc['average'] = acc['total']/acc['count']              3
    return acc

 def sort_and_add(acc, nxt):                                4
     profit = nxt['profit']                                 5
     nxt_mpg = acc['mpg'].get(nxt['mpg'],{})
     nxt_odo = acc['odo'].get(nxt['odo'],{})
     acc['mpg'][nxt['mpg']] = acc_average(nxt_mpg,
                                          profit)           6
     acc['odo'][nxt['odo']] = acc_average(nxt_odo,, profit)
     return acc

      
      

      
         
         	1 Defines a helper function that calculates averages

         
         	2 Uses the .get method in case we find an empty dict

         
         	3 Our average value will be the profit divided by the count.

         
         	4 Again, our accumulator function will take an acc and a nxt.

         
         	5 Because we’ll use profit twice, we’ll store it in a variable for easy access.

         
         	6 We’ll modify the accumulated value for each of the two categories in which the car belongs.

         
      

      
      Again, in listing 5.12, as occurred several times previously in this chapter, we’re using the dict .get method to access the key of a dict and provide a default value. In each of these cases, we want to have a default value that provides the expected type of data
         to the function using the resulting data. In our acc_average function, we use get because our addition operation needs a number. In this case, we specify the integer 0 if we don’t have the key in question.
         In our sort_and_add accumulator function, we specify an empty dict because our acc_average function expects a dict in its first position. Because we use the .get method in both places, we can go from having no data to having a fully populated data structure without making any assumptions
         about what categories are in the underlying data. This is the same trick we used in our frequencies reduction example, just on a bigger scale.
      

      
      
      
      
      5.5.3. Applying the map and reduce pattern to cars data
      

      
      With all of our helper functions written, including the data transformation for map and the accumulator for reduce, we’re ready to process our data. One of the great things about using a map and reduce style is that this takes only a single
         line of code:
      

      
      reduce(sort_and_add, map(clean_entry, cars_data), {})

      
      We use map to apply the clean_entry function to each entry in our cars data, resulting in a cleaned sequence of data that is ready for us to reduce through.
         Then we call reduce with its three parameters: the accumulator function, the data, and an optional initializer. For the accumulator function,
         we use the accumulator we designed: sort_and_add. For the data, we use the results from our map operation. For the initializer, we use an empty dict.
      

      
      Altogether, our code will look like the following listing. Run the code and settle the debate between the two car salesmen:
         Which car category makes the most profit?
      

      
      
      
      Listing 5.13. Map and reduce to find average used car profit
      

      from functools import reduce

def low_med_hi(d,k,breaks):
    if float(d[k]) < breaks[0]:
        return "low"
    elif float(d[k]) < breaks[1]:
        return "medium"
    else:
        return "high"

def clean_entry(d):
    r = {'profit':None, 'mpg':None, 'odo':None}
    r['profit'] = float(d.get("price-sell",0)) - float(d.get("price-buy",0))
    r['mpg'] = low_med_hi(d,'mpg',(18,35))
    r['odo'] = low_med_hi(d,'odo',(60000,100000))
    return r

def acc_average(acc, profit):
    acc['total'] = acc.get('total',0) + profit
    acc['count'] = acc.get('count',0) + 1
    acc['average'] = acc['total']/acc['count']
    return acc

def sort_and_add(acc,nxt):
    p = nxt['profit']
    acc['mpg'][nxt['mpg']] = acc_average(acc['mpg'].get(nxt['mpg'],{}), p)
    acc['odo'][nxt['odo']] = acc_average(acc['odo'].get(nxt['odo'],{}), p)
    return acc

if __name__ == "__main__":
    import json
    with open("cars.json") as f:
        xs = json.load(f)
    results = reduce(sort_and_add, map(clean_entry, xs), {"mpg":{},"odo":{}})
    print(json.dumps(results, indent=4))

      
      
      
      
      5.6. Speeding up map and reduce
      

      
      Looking back on the exercise from section 5.5, we can see that we didn’t do anything to make our map and reduce operation any faster. From the techniques we’ve covered
         so far in this book, we might think about using a parallel map from chapter 2 to speed up this process. Unfortunately, using a parallel map will counterintuitively make our work slower—not faster.
      

      
      A parallel map will slow down our map and reduce workflow because it will force us to iterate over the dataset twice, incurring the associated
         costs of storing and retrieving data from memory. This happens because map, as we’ve mentioned before, is naturally lazy. It stores instructions; it doesn’t evaluate. That means that we don’t evaluate
         our lazy map until we’re in the reduce loop. Our parallel map, on the other hand, is eager: it evaluates immediately. This means that by the time we’re reducing, we’ve already looped
         through our data once (figure 5.13).
      

      
      
      
      Figure 5.13. Using a parallel map can counterintuitively be slower than using a lazy map in map and reduce scenarios—we’ll want to choose the right combination of map and reduce for the best performance.
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      That we’re prevented from using parallelization here is a pretty undesirable side effect. After all, one of the big reasons
         we’re exploring these techniques is that they’re supposed to be good for big datasets. If we can’t use parallelization, we
         can’t scale our processing with our data and we’ll ultimately be limited in the size of data we can use. Fortunately for us, we can always
         use parallelization at the reduce level instead of at the map level. We’ll take a look at that in the next chapter, on parallel reduce.
      

      
      
      
      5.7. Exercises
      

      
      These exercises test your knowledge of reduce and accumulator functions and reinforce the material in this chapter.
      

      
      
      5.7.1. Situations to use reduce
      

      
      The reduce function is a powerful and flexible tool. In which of the following situations would you use reduce, and in which should you use another tool we’ve covered in this book?
      

      
      

      
         
         	You have a long sequence of words and you return only a sequence containing the letter A.
         

         
         	You have a sequence of users and you want to transform them into just their User ID number.

         
         	You have a series of users and you want to find the five who have purchased the most from you.

         
         	You have a sequence of purchase orders and you want to find the average price of a purchase.

         
      

      
      
      
      5.7.2. Lambda functions
      

      
      We can use lambda functions for simple functions that we are only planning on using once; however, there is no difference
         at bytecode level between these functions and normal Python functions. Replicate the following functions with lambda functions.
      

      
      def my_addition(a, b):
    return a+b

def is_odd(a):
     return a % 2 == 1

def contains(a, b):
    return b in a

def reverse(s):
     return s[::-1]

      
      
      
      5.7.3. Largest numbers
      

      
      In Python, we can use the max function to find the maximum value in a sequence and the min function to find the minimum value in a sequence. However, sometimes we don’t want just the largest or smallest value, we
         want the largest or smallest several values. Use reduce to write a function that gets the five largest (or smallest) values from a sequence.
      

      
      Once you have it written, try extending the function to collect the largest (or smallest) N values.

      
      
      
      Example
      

      
      five_largest([10,7,3,1,9,8,11,21,15,72])
>>> [72,21,15,11,10]

n_largest([10,7,3,1,9,8,11,21,15,72], n=3)
>>> [72,21,15]

      
      
      
      
      5.7.4. Group words by length
      

      
      Group by is a useful reduction where we take the elements of a sequence and group them based on the results of some function applied
         to them. Use reduce to write a version of this function that can group words based on their length.
      

      
      
      Example
      

      
      group_words(["these", "are", "some", "words", "for", "grouping"])
>>> {3: ["are","for"],
     4: ["some"],
     5: ["these","words"],
     8: ["grouping"]}

      
      
      
      
      
      Summary
      

      
      

      
         
         	The reduce function accumulates a sequence of data (N) into something else (X), with the help of an accumulator function and an initializer.
         

         
         	Accumulator functions take two variables: one for the accumulated data (often designated as acc, left, or a), and one for the next element in the sequence (designated nxt, right, or b).
         

         
         	reduce is useful in situations where you have a sequence of data and want something other than a sequence back.
         

         
         	reduce’s behavior is heavily customizable based on the accumulator function we pass to it.
         

         
         	Anonymous lambda functions can be useful when our accumulation function is concise, clear, and unlikely to be reused.

         
         	We can use map and reduce together to break complex transformations up into small contingent parts.
         

         
         	map, counterintuitively, provides better performance than parallel map when we’re using both map and reduce.
         

         
      

      
      
      
      
      
      
      


Chapter 6. Speeding up map and reduce with advanced parallelization
      

      
      This chapter covers

      
      

      
         
         	Advanced parallelization with map and starmap

         
         	Writing parallel reduce and map reduce patterns
         

         
         	Accumulation and combination functions

         
      

      
      We ended chapter 5 with a paradoxical situation: using a parallel method and more compute resources was slower than a linear approach with fewer
         compute resources. Intuitively, we know this is wrong. If we’re using more resources, we should at the very least be as fast
         as our low-resource effort—hopefully we’re faster. We never want to be slower.
      

      
      In this chapter, we’ll take a look at how to get the most out of parallelization in two ways:

      
      

      
         
         	By optimizing our use of parallel map

         
         	By using a parallel reduce

         
      

      
      Parallel map, which I introduced in section 2.2, is a great technique for transforming a large amount of data quickly. However, we did gloss over some nuances when we were
         learning the basics. We’ll dig into those nuances in this chapter. Parallel reduce is parallelization that occurs at the reduce step of our map and reduce pattern. That is, we’ve already called map, and now we’re ready to accumulate the results of all those transformations. With parallel reduce, we use parallelization in the accumulation process instead of the transformation process.
      

      
      
      6.1. Getting the most out of parallel map
      

      
      Back in chapter 2, when we introduced parallel map, we covered a few of its shortfalls:
      

      
      

      
         
         	Python’s parallel map uses pickling, a method of saving Python objects to the disk, to share work; this causes problems when working with some
            data types.
         

         
         	Parallel map sometimes can result in unintended consequences when we’re working with stateful objects, such as classes.
         

         
         	The results of a parallel map operation are not always evaluated in the order that we would expect.
         

         
      

      
      Ultimately, however, we concluded that there were more situations in which we could live with those constraints than those
         in which we couldn’t. Indeed, up until chapter 5, we hadn’t seen a scenario where we needed to worry about parallel map. And then we came across the first of two situations where parallel map is slower than the lazy map. Parallel map will be slower than lazy map when
      

      
      

      
         
         	we’re going to iterate through the sequence a second time later in our workflow

         
         	the size of the work done in each parallel instance is small compared to the overhead that parallelization imposes

         
      

      
      In the first situation, when we’re going to iterate through the sequence a second time—that is, we’re going to map over a sequence and then do something later with all of its elements—using lazy map allows us to sidestep the first iteration. Instead of iterating through our sequence to transform all the elements, with
         lazy map we can perform the transformations in what would have been the second iteration. We visualized this in figure 5.13, shown again in figure 6.1.
      

      
      Figure 6.1 shows how the lazy map outputs a lazy map object, no iteration involved, whereas the parallel map iterates through the entire sequence. We’ll look at solving this problem using parallel reduce in section 6.2.
      

      
      
      
      Figure 6.1. Lazy map can be faster than parallel map when we’ll follow up our map statement by iterating over the results.
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      6.1.1. Chunk sizes and getting the most out of parallel map
      

      
      The second situation—when the sequence is split into a large number of chunks whose overhead is large compared to the amount
         of work being done on those chunks—is one we haven’t encountered yet. In these instances, parallel map will be slower than lazy because we’re adding overhead to the task.
      

      
      If we imagine our programs as a software project, we can imagine parallelization as the contractor. The contractor wants to
         get the job done with as few workers as possible because every new worker added requires the contractor to explain the task
         to them (which costs time) and pay them (which costs money). Around the margins, this might not matter. But if the contractor
         has workers sitting around not doing work but getting paid, or they’re spending so much time explaining the project to new workers that they can’t oversee it,
         the contractor would be better off with a smaller team.
      

      
      The same is true for our parallel processing. For example, imagine we have 100 seconds of work to do, and each time we add
         a new parallel worker, we need to spend 1 second communicating with that worker. If we have
      

      
      

      
         
         	2 workers working 50 seconds each, we can get the job done in 52 seconds

         
         	4 workers working 25 seconds each, we can get the job done in 29 seconds

         
         	25 workers working 4 seconds each, we’ll complete the task in 29 seconds

         
         	100 workers working 1 second each, we’ll take 101 seconds

         
      

      
      After a point, the amount of work being done is too small to justify the cost of communicating it. We need to ensure that
         when we assign work to our parallel jobs, we’re assigning enough work that the processors spend a large enough amount of time
         doing the work to justify taking the time to communicate it to them. The way we do that is by specifying a chunk size.
      

      
      Chunk size refers to the size of the different pieces into which we break our tasks for parallel processing. Larger chunk
         size tasks will require the processors to spend more time working on them, whereas smaller chunk size tasks will be finished
         more quickly.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      It’s ideal to pick a chunk size that’s large—we’ll learn how to pick the right size later in this chapter—but that still allows
         all the processors to finish their final task at approximately the same time. If we choose a chunk size that’s too small,
         we end up in the situation described at the beginning of the chapter: communicating the instructions takes longer than processing
         our jobs. If we choose a chunk size that’s too large, we’ll end up in a position where only one processor is working the final
         chunk, while the others are waiting.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      We can intuitively understand these limit behaviors by thinking about their extremes. If we ask each of our processors to
         handle only a single element at a time, we then have to
      

      
      

      
         
         	transfer that element and the instructions for processing it,

         
         	process it,

         
         	and transfer that element back.

         
      

      
      Then we have to repeat those steps for every single element. Assuming a reasonable- sized task, this is certainly more work
         than just processing each element one-by-one. In linear processing, we don’t have the added communication steps we have in
         parallel processing.
      

      
      For the large chunk size problem, it helps to first think about an infinitely large chunk size. Well, that’s the same as using
         just a single processor, because we’ll only have one chunk. If our chunk size is half the size of our sequence, we’ll only
         be using two processors. If it’s a third of our sequence, we’ll only use three. It may seem like this might not be a problem,
         especially if we have a computer with only a few processors, but think about what happens when our second processor gets all
         the easy work and the first processor gets all the hard work. Our first processor will continue to work long after the second
         processor has stopped.
      

      
      The optimal chunk size is somewhere in between these two extremes. Unfortunately, beyond this general notion that chunking
         too small and chunking too large are bad, giving advice about specific chunk sizes is hard. The very reason why Python makes
         chunksize available as an option is because we’ll want to vary it according to the task at hand. I recommend starting with the default
         value, then increasing your chunk size until you see runtime start to decrease.
      

      
      
      
      6.1.2. Parallel map runtime with variable sequence and chunk size
      

      
      Now that we know more about chunk size and differences in the behavior of parallel map and lazy map, let’s look at some code. We’ll start by seeing how lazy and parallel map behave over different-sized sequences, and how, for simple operations on small data, there’s really no benefit to parallelization.
         Then we’ll test out parallel map with a few different chunk sizes and see how that impacts our performance.
      

      
      
      
      Sequence size and parallel map runtime
      

      
      What’s the optimal size at which we should start thinking about parallelization? Well, a lot of that depends on how complex
         our task is.
      

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      When our tasks are complex, we benefit quickly from parallelization. When our tasks are simple, we benefit only when there’s
         a large amount of data.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Consider the example at the end of chapter 2 when we were scraping data from the web and there was web-related latency with every request. In these situations, parallelization
         is almost always going to make sense.
      

      
      But what about when our tasks are small, such as doing arithmetic or calling methods of Python data types? Here, the situation
         is murky and depends on the size of the sequence. We can prove this to ourselves if we run a lazy map and a parallel map. The following listing shows how this can be done, using a times_two function as a simple operation and comparing parallel map and lazy map on sequences with between 1 and 1 million elements.
      

      
      
      
      Listing 6.1. Comparing parallel map and lazy map on different-sized sequences
      

      from time import clock
from multiprocessing import Pool

def times_two(x):
  return x*2

def lazy_map(xs):
  return list(map(times_two, xs))

def parallel_map(xs, chunk=8500):
  with Pool(2) as P:
    x =  P.map(times_two, xs, chunk)
  return x

for i in range(0,7):
  N = 10**i
  t1 = clock()
  lazy_map(range(N))
  lm_time = clock() - t1

  t1 = clock()
  parallel_map(range(N))
  par_time = clock() - t1
  print("""
-- N = {} --
Lazy map time:      {}
Parallel map time:  {}
""".format(N,lm_time, par_time))

      
      In the output of that code, we can see a pattern appear.

      
      -- N = 100 --
Lazy map time:      6.0999999999991616e-05
Parallel map time:  0.007081000000000004

-- N = 1000 --
Lazy map time:      0.0003589999999999982
Parallel map time:  0.007041999999999993

-- N = 100000 --
Lazy map time:      0.037799999999999986
Parallel map time:  0.019601000000000007

      
      For small sequence sizes or processes that complete quickly, not only is it not beneficial to use parallel map, it’s counterproductive. Lazy map is actually faster. However, when we start to notice that our code is taking a while to run—when we start facing delays of
         seconds or minutes—using parallel map is faster.
      

      
      
      
      Chunk size and parallel map runtime
      

      
      We can run the same experiment with chunk size as well. For this experiment, instead of varying the size of the sequence,
         we’ll hold the sequence constant and only vary the size of the chunks our parallelization approach uses. We’ll have to use
         a large enough sequence that we’ll see some variation, but not so long that we’ll be waiting forever for our results. Based
         on our previous experiment, about 10 million will do. The code for this experiment appears in the following listing.
      

      
      
      
      Listing 6.2. Comparing the effect of chunk size on parallel map runtime
      

      from time import clock
from multiprocessing import Pool

def times_two(x):
  return x*2+7

def parallel_map(xs, chunk=8500):
  with Pool(2) as P:
    x =  P.map(times_two, xs, chunk)
  return x

print("""
{:<10}  |  {}
-------------------------""".format("chunksize","runtime"))

for i in range(0,9):
  N = 10000000
  chunk_size = 5 * (10**i)

  t1 = clock()
  parallel_map(range(N), chunk_size)
  parallel_time = clock() - t1

  print("""{:<10}  |  {:>0.3f}""".format(chunk_size, par_time))

      
      The results of this code appear in the following output snippet. We can see that for small chunk sizes, our runtime is high.
         This is because the amount of time spent on communicating between all the workers is high, relative to the performance gained.
         By splitting the problem up into too many pieces, we make it inefficient. With too large of a chunk size, though, we get the
         reverse problem: we’re not using enough workers to solve the problem efficiently. Most of the sizes in the middle, however,
         give us reasonably good performance when compared to the two extremes.
      

      
      chunksize   |  runtime
-------------------------
5           4.849
50          0.753
500         0.192
5000        0.188
50000       0.195
500000      0.146
5000000     0.167
50000000    0.171
500000000   0.168

      
      
      
      
      6.1.3. More parallel maps: .imap and starmap
      

      
      We should be familiar with two more types of parallel maps in Python:

      
      

      
         
         	.imap for lazy(ish) parallel mapping
         

         
         	starmap for parallel mapping over sequences of tuples
         

         
      

      
      We can use the .imap method to work in parallel on very large sequences efficiently and starmap to work with complex iterables, especially those we’re likely to create using the zip function.
      

      
      
      Using .imap and .imap_unordered for large sequences
      

      
      We discussed the benefits to laziness in chapter 4, and when working in parallel there’s no reason we have to give them up. If we want to be lazy and parallel, we can use the
         .imap and .imap_unordered methods of Pool(). These methods both return iterators instead of lists, as shown in the following listing. Other than that, .imap behaves just like parallel map.
      

      
      
      
      Listing 6.3. Variations of parallel map

      from multiprocessing import Pool

def increase(x):
  return x+1

with Pool() as P:
  a = P.map(increase, range(100))

with Pool() as P:
  b = P.imap(increase, range(100))

with Pool() as P:
  c = P.imap_unordered(increase, range(100))

print(a)                                                 1
# [1, 2, 3, ... 100]
print(b)                                                  2
# <multiprocessing.pool.IMapIterator object at            2
[image: ] 0x7f53207b3be0>                                        2
print(c)                                                  2
# <multiprocessing.pool.IMapUnorderedIterator object at   2
[image: ] 0x7fbe36ed2828>                                        2

      
      

      
         
         	1 Our standard parallel map returns a list.

         
         	2 Both lazy parallel maps return iterator objects.

         
      

      
      .imap_unordered behaves the same, except it doesn’t necessarily put the sequence in the right order for our iterator. That’s why it’s called
         unordered: the values are placed in the iterator in the exact order our processor processes them. When we’re dealing with
         big datasets, the laziness of these two methods can mean a big decrease in runtime for our programs.
      

      
      
      
      Using starmap for working with zip in parallel
      

      
      We’ve seen how useful map can be for transforming data and how we can use it in parallel to speed up operations on large datasets; however, map has a disappointing shortcoming: it can only be used on functions that take a single parameter. Sometimes, this isn’t enough.
         We’ll want to use functions that take two or more parameters. We can use starmap in those situations to get the same benefits.
      

      
      The starmap function unpacks tuples as positional parameters to the function with which we’re mapping, and we can use it as a lazy function (from itertools.starmap) or a parallel function (as a method of a Pool() object, typically P.starmap). If we zip two sequences together, as we learned how to do in chapter 4, then we’ve got an iterable primed and ready to go for use with starmap.
      

      
      For example, we might want to find the largest element at each position in two sequences. Instead of looping through the sequences
         and comparing them, we could zip the sequences together and map over them. Listing 6.4 shows a comparison between these two methods. In the first, we use a list comprehension and an enumerate to compare the elements
         in the same places. In the second, with starmap, we zip together our parameters and then map the relevant function across them.
      

      
      
      
      Listing 6.4. Using starmap to use map with multiple variables
      

      from itertools import starmap                            1
xs = [7, 3, 1, 19, 11]                                   2
ys = [8, 1, -3, 14, 22]

loop_maxes = [max(ys[i], x) for i,x in enumerate(xs)]    3
map_maxes = list(starmap(max, zip(xs, ys)))              4

print(loop_maxes)
# [8, 3, 1, 19, 22]
print(map_maxes)
# [8, 3, 1, 19, 22]

      
      

      
         
         	1 To use starmap, we need to import it from itertools.

         
         	2 First, let’s create some testing data.

         
         	3 A list comprehension to show how this could be done without map

         
         	4 Uses starmap and zip to achieve the same effect

         
      

      
      In addition to simplifying the code and bringing it into a pattern we’re familiar with by now, starmap brings along all the benefits we’ve grown to expect from map. Both zip and starmap are lazy, so we can work with big datasets with greater piece of mind that we’re only holding the data we need in memory.
         We can also quickly convert our starmap to work in parallel by making it a method call to a Pool() object.
      

      
      
      
      
      
      6.2. Solving the parallel map and reduce paradox
      

      
      At the end of chapter 5, we noticed a problem—our parallel map and reduce was slower than our lazy map and reduce. Then in section 6.1, we explored the behavior of parallel map in more depth. Although that helps us understand the problem better, it doesn’t necessarily help us solve it. To solve the
         problem, we’ll have to do something different: use a parallel reduce. In this section, we’ll take a look at implementing parallel reduce to speed up our reduction operations.
      

      
      
      6.2.1. Parallel reduce for faster reductions
      

      
      The easiest way to think of parallel reduce is as a cross between our parallel map and our linear reduce. Parallel reduce will share the costs and benefits of parallel map, while having the signature of linear reduce. Just like with parallel map, parallel reduce will
      

      
      

      
         
         	break a problem up into chunks

         
         	make no guarantees about order

         
         	need to pickle data

         
         	be finicky about stateful objects

         
         	run slower than its linear counterpart on small datasets

         
         	run faster than its linear counterpart on big datasets

         
      

      
      Like linear reduce, parallel reduce will
      

      
      

      
         
         	require an accumulator function, some data, and an initial value

         
         	perform N-to-X transformations

         
      

      
      All things considered, we can use parallel reduce to solve the problem we faced at the end of chapter 5. We can perform transformations and accumulate the results in a time-friendly way.
      

      
      
      Breaking down the parallel reduce parameters
      

      
      When we first looked at reduce in chapter 5, one of the graphics we looked at showed the parts of our reduce function. We saw that reduce had three parts:
      

      
      

      
         
         	An accumulation function

         
         	A sequence

         
         	An initializer value

         
      

      
      That figure, shown here again in figure 6.2, lays out what we need to be able to use reduce. In comparison to map, reduce is a little more complex—map has two parts, whereas reduce has three—but not overly so. Parallel reduce ups the ante.
      

      
      
      

      
      
      Figure 6.2. The reduce function takes three parameters: an accumulator, a sequence, and an initial value.
      

      
      [image: ]

      
      
      The implementation of parallel reduce we’ll be looking at has six parts:
      

      
      

      
         
         	An accumulation function

         
         	A sequence

         
         	An initializer value

         
         	A map

         
         	A chunksize

         
         	A combination function

         
      

      
      You should recognize most of these six parts, which are diagrammed in figure 6.3. The first three—the accumulation function, sequence, and initializer value—come directly from reduce. We just finished talking about chunksize in section 6.1.2. That leaves us with two new parameters, and even these two are only new-ish.
      

      
      
      
      Figure 6.3. Parallel reduce has six parameters: an accumulation function, a sequence, an initializer value, a map, a chunksize, and a combination function—three more than the standard reduce function.
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      The map parameter to parallel reduce is exactly what we would expect it to be, given its name: it’s a map function. The parallel reduce implementation we’ll use piggy-backs off the parallelism we implemented in our parallel map. That’s why our parallel reduce will share all of its benefits and drawbacks—a lot of the behavior is directly inherited.
      

      
      That being said, we don’t have to pass our parallel reduce a parallel map. We are free to pass it a lazy map. For example, we could pass it the lazy map that comes standard with Python. If we do this, we won’t have a parallel reduce, we’ll have a lazy reduce. This is much less useful than a lazy map, however, because reduce only results in a single accumulated value—even if that value is a complex data structure—and we have to operate on the entire
         sequence to know what it is.
      

      
      The last parameter is a combination function. The combination function is like an accumulation function, except for the parts
         of our parallel reduction problem. To understand how combination functions work, let’s take a look at the parallel reduce workflow in greater depth.
      

      
      
      
      
      6.2.2. Combination functions and the parallel reduce workflow
      

      
      Because parallel reduce is based on parallel map, the parallel reduce workflow has the same primary parts that our parallel map workflow does (figure 6.4). We will
      

      
      

      
         
         	break our problem into pieces

         
         	do some work

         
         	combine the work

         
         	return a result

         
      

      
      
      
      Figure 6.4. Parallel reduce workflows involve doing one operation in parallel on chunks of our original sequence with an aggregation function and another
         operation on the data that results from the aggregation (combination).
      

      
      [image: ]

      
      
      For parallel map, we need to understand all of these steps, but most of our code writing effort will go into the second step: doing the work
         of transforming our data. In some situations—when we’re specifying the chunk size—we’ll be concerning ourselves with the first
         step as well: breaking the problem into pieces. With parallel reduce, we also need to consider the third step: combining the work. This is where our combination function comes into play.
      

      
      
      
      The implicit combination function in parallel map
      

      
      In parallel map, we don’t need to call a combination function because the data is always joined in the same way. As a result, the combination
         function is hardcoded into the parallel map operation itself. Because map is performing an N-to-N transformation of data—a concept introduced in chapter 2, which describes how map transforms sequences into sequences of the same size with different elements—we know that our combination function will always
         be some form of adding two sequences together.
      

      
      For any two pieces of work that our parallel map function completes, the master can reassemble those pieces by combining them in the right order. The piece that corresponds
         to the earlier elements of the sequence goes first, and the piece that corresponds to the later elements of the sequence goes
         next. We can imagine this function as both the image in figure 6.5 and the code in the following listing.
      

      
      
      
      Listing 6.5. The implicit combination function in parallel map

      def map_combination(left, right):      1
  return left + right

xs = [1, 2, 3]
ys = [4, 5, 6]
print(map_combination(xs, ys))
# [1,2,3,4,5,6]

      
      

      
         
         	1 Notice how the signature of the function looks like the signature of our accumulators—it takes a left and a right object
               and returns an object of the same type as the left.

         
      

      
      In listing 6.5, we can see what a map combination function would look like if we had to write it ourselves. We can imagine that two sequences—in this case xs and ys—are the parts returned by our parallel map operation, and we can use the map_combination function to combine them. We also see that the map_combination function is similar to an accumulation function. We’re even using two of the variant parameter names for accumulation functions:
         left and right.
      

      
      
      
      Figure 6.5. A parallel reduce summation workflow is a simple case where we have the same function for the accumulation step and combination step.
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      Custom combination functions for parallel reduce
      

      
      With parallel reduce, however, we trade the simplicity of always having the same combination function for the flexibility of more possible transformations.
         Let’s consider three cases and see how we would handle the combination function in each case:
      

      
      

      
         
         	Summation

         
         	filter

         
         	frequencies

         
      

      
      We implemented summation with reduce in section 5.2—the purpose of this function is to add a sequence of numbers. When we use reduce for summation, we accumulate a partial sum and continuously add new values to this partial sum until there are no more elements
         in our sequence. Combining this with our parallel workflow, we get a process that looks like figure 6.5.
      

      
      The process follows the basic parallel workflow steps we outlined at the beginning of section 6.2.2. We first break the problem into pieces, turning our sequence into several smaller sequences, then do some work:
      

      
      

      
         
         	First, we sum each of the smaller sequences.

         
         	Then, we combine our results. Combining the partial sums requires us to take the sum of sums.

         
         	Finally, we can return this value as our result.

         
      

      
      In summation, we get lucky because the combination function is the same as the accumulation function. The accumulation function
         takes two values—both of which are numerical—adds them together, and returns their result to get an intermediary sum. Combining
         our subsequence sums is the same process: we add together pairs of the sums, each of which is a numerical value. The following
         listing approximates this process and shows how we can use the accumulation function to our reduce again to combine our partial results.
      

      
      
      
      Listing 6.6. Approximation of parallel reduce summation
      

      from functools import reduce

def my_add(left, right):                      1
  return left+right

xs = [1,2,3,4]                                2
ys = [5,6,7,8]
zs = [9,10,11,12]

sum_x = reduce(my_add, xs)                    3
sum_y = reduce(my_add, ys)                    3
sum_z = reduce(my_add, zs)                    3

print(my_add(my_add(sum_x, sum_y), sum_z))    4
# 78

      
      

      
         
         	1 Our accumulation function is simple addition.

         
         	2 We break our long sequence into three parts.

         
         	3 We work each of those parts independently.

         
         	4 Then, finally, we combine those parts—notice how we use my_add in both of the final two steps.

         
      

      
      We’re not always lucky enough that we get to use the same function, however. Next, we’ll explore the parallel reduce workflow for the filter function. We first saw filter in chapter 4, and we implemented a reduce-based version of it in section 5.3.1. The idea behind filter is that we have a large sequence and we want to create a subsequence that contains only the elements of that sequence that
         cause a function to return True.
      

      
      Our standard filter workflow is to start with an empty sequence and move through our sequence element by element, adding only the elements that
         make our condition function return True to our accumulated sequence. To make this parallel, we will
      

      
      

      
         
         	break our sequence into smaller sequences

         
         	accumulate the elements of those small sequences that make our condition return True in a new sequence
         

         
         	join those new sequences together

         
         	return the composite sequence

         
      

      
      We can see this entire process in figure 6.6. Notice that the function for step 2, which takes a sequence and produces a subsequence, is different from our function for
         step 3, which joins the sequences together. The function for taking sequences and returning subsequences is our accumulation
         function for our filter reduction from chapter 5. The function for joining the sequences is actually the implicit combination function from map.
      

      
      
      
      Figure 6.6. In our workflow for the parallel filter, we need to use a different function for our accumulation step than for the combination step. This makes the operation more
         complex than our parallel summation.
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      We can modify our example approximating parallel summation from listing 6.6 to approximate a parallel filter to see this in action. First, we’ll have to create a new accumulation function. Here we’ll use the keep_if_even function we wrote in section 5.3.1. We’ll also need to add a combination function. Because we already identified this function to be the same function from
         parallel map’s implicit combination step, let’s use the function we wrote in listing 6.5. We can see the combination of the two, approximating a filter function using parallel reduce, in the following listing.
      

      
      
      
      Listing 6.7. Parallel filter using different accumulation and combination functions
      

      from functools import reduce

def map_combination(left, right):             1
  return left + right

def keep_if_even(acc, nxt):                   2
    if nxt % 2 == 0:
        return acc + [nxt]
    else: return acc

xs = [1,2,3,4]
ys = [5,6,7,8]
zs = [9,10,11,12]

f_acc = keep_if_even                          3
f_com = map_combination                       3

res_x = reduce(f_acc, xs, [])                 4
res_y = reduce(f_acc, ys, [])                 4
res_z = reduce(f_acc, zs, [])                 4

print(f_com(f_com(res_x, res_y), res_z))      5
# [2, 4, 6, 8, 10, 12]

      
      

      
         
         	1 Creates our combination function

         
         	2 Creates our accumulation function from filter

         
         	3 Assigns our accumulation and combination functions to differentiate them

         
         	4 Uses the accumulation function on our broken-up sequences, returning intermediate results

         
         	5 Uses our combination function on those results, returning a final result

         
      

      
      In listing 6.7, we can see that our accumulation function (represented by f_acc) and our combination function (represented by f_com) are different. Like we mentioned earlier, the accumulation function is keep_if_even, from chapter 5, and the combination function is map_combination from listing 6.5. We need both of these functions to take our broken-up work and achieve the desired result.
      

      
      It’s important to notice that these functions expect different types of parameters. The keep_if_even function takes a list in first position and a numerical value in second position. The map_combination function expects lists in both positions. In our case with filter, we know that the accumulation step always results in a list, so our combination function takes two lists.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      Combination functions always take two parameters of the same type because each parameter is the result of the same process.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      We can see this rule in our frequencies example as well. We first implemented the frequencies function, which returns a dict of elements and their counts when provided with a sequence, in section 5.3.2. In its linear form, we went through each element of the sequence and incremented the count of each element by one every
         time we saw it. In parallel, we’re going to need to do four things:
      

      
      

      
         
         	Break up our sequence into smaller sequences

         
         	Obtain counts from those smaller sequences

         
         	Combine the counts together

         
         	Return our combined counts

         
      

      
      Figure 6.7 shows that, like filter, the frequencies process will use different functions for the accumulation and combination steps. For the accumulation step, we’ll use the
         make_counts function from listing 5.7. For the combination step, we’ll have to write an entirely new function. This function will have to go through the unique
         keys of our two dicts and add the values of those keys together in a new dict. We can see that even though our frequencies process can take iterables with any number of types of elements, we’ll always be passing dicts to our combination function because that’s the type that our make_counts accumulation function returns.
      

      
      
      
      Figure 6.7. The parallel frequencies reduction workflow can take a number of types as its input, but it will always pass dicts into its combination step and return dicts as a result.
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      Listing 6.8 shows an approximation of the parallel reduce version of filter. We can see the original make_counts accumulation function and our new combination function, in the same general pattern we saw with both our summation example
         and our filter example. Again, we see one of the major benefits of adopting a map and reduce style: we can use the same patterns of programming
         to solve a diverse set of problems.
      

      
      
      
      Listing 6.8. Approximating a parallel reduce frequencies

      from functools import reduce

def combine_counts(left, right):            1
  unique_keys = set(left.keys()).\          2
                union(set(right.keys()))    2
  return {k:left.get(k,0)+right.get(k,0)    3
          for k in unique_keys}             3

def make_counts(acc, nxt):                  4
    acc[nxt] = acc.get(nxt,0) + 1
    return acc


xs = "miss"
ys = "iss"
zs = "ippi"

f_acc = make_counts                        5
f_com = combine_counts                     5

res_x = reduce(f_acc, xs, {})              6
res_y = reduce(f_acc, ys, {})              6
res_z = reduce(f_acc, zs, {})              6

print(f_com(f_com(res_x, res_y), res_z))   7
# {'i': 4, 'm': 1, 's': 4, 'p': 2}

      
      

      
         
         	1 Creates a unique sequence of keys by finding a set that represents the union of both sets of keys

         
         	2 Because dict keys are of the keys type, we’ll have to use explicit set conversion.

         
         	3 Loops through the keys and returns a dict mapping keys to the sum of its value in each dict

         
         	4 The make_counts function is our old accumulator from chapter 5.

         
         	5 Assigns make_counts as the accumulation function and combine_counts as the combination function

         
         	6 Works on the split-up sequences using our accumulation functions

         
         	7 Combines the intermediate results using our combination function

         
      

      
      We can see this reusable pattern in how similar listings 6.7 and 6.8 are. Having abstracted the combination and accumulation into f_acc and f_com, all we needed to change to get from one to the other was how those functions resolve. Now that we’ve seen how summation,
         filter, and frequencies will work in parallel, let’s take a look at how we can actually implement these three functions with parallel reduce.
      

      
      
      
      
      6.2.3. Implementing parallel summation, filter, and frequencies with fold
      

      
      So far in this chapter, we’ve looked at implementation nuances of parallelism. Specifically, we’ve looked at when we should
         use parallel workflows and how the parallel reduce workflow differs from the parallel map workflow with which we were already familiar. Now that we’ve got that down, we can finally solve the problem we noticed at
         the end of chapter 5 of reduce working more slowly in parallel. We’re finally ready to use parallel reduce.
      

      
      Like our standard map and our parallel map, the moving from standard reduce to parallel reduce is a little anticlimactic. Assuming that we have our accumulation and combination functions in place, implementing parallel
         reduce requires only three steps:
      

      
      

      
         
         	Importing the proper classes and functions

         
         	Rounding up some processors
         

         
         	Passing our reduce function the right helper functions and variables
         

         
      

      
      For the first of these three steps, we have to move beyond what base Python gives us. Python doesn’t natively support parallel
         reduce. One of the libraries we’ll need for this is the pathos library, which we discussed in chapter 2 when we first introduced parallelism and discussed some problems related to pickling. We can use pathos to get around Python’s
         weaknesses in pickling and chunk up our problem up for parallel reduce.
      

      
      We’ll also need to reach into the toolz library for an implementation of parallel reduce. We used the toolz library before in chapters 2 and 4 when we borrowed handy functions that fit the map and reduce style of programming. The parallel reduce implementation in the toolz library is called fold. fold is an alternative name for reduce, which is useful as a metaphor for reduce: folding each element into the accumulator, one at a time, until only the accumulator is left.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         The toolz library
         
         The toolz library is intended to be the functional utility library that Python never came with. Many functional programming
            languages—Scala, Clojure, Haskell, and OCaml—come with handy utilities for common sequence transformation patterns. Python
            does not, and toolz fills in those convenience functions. A high-performance version of the library is available as CyToolz.
            You can install CyToolz with pip install cytoolz.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Once we have these imports, all we need to do is call Pool to round up some processors and call our parallel reduce with all the right parameters. With summation, for example, we’ll need to make our imports, call Pool, and pass our parallel reduce (fold) our addition function. We can see this all in action in the following listing.
      

      
      
      
      Listing 6.9. Summation in parallel with reduce

      import dill as pickle                        1
from pathos.multiprocessing                  1
   [image: ] import ProcessingPool as Pool          1
from toolz.sandbox.parallel import fold      1
from functools import reduce                 1

def my_add(left, right):                     2
  return left+right

with Pool() as P:                            3
    fold(my_add, range(500000), map=P.imap)  4

print(reduce(my_add, range(500)))            5
# 124750

      
      

      
         
         	1 We’ll need features of the dill, pathos, and toolz libraries to perform a parallel reduce.

         
         	2 Creates our accumulation and combination function, which are the same for summation

         
         	3 Rounds up the processors we want to use

         
         	4 Passes the parameters to our parallel reduce function: fold

         
         	5 Includes a linear reduce for comparison

         
      

      
      Listing 6.9 shows that, just like calling map in parallel versus calling our regular lazy map, calling reduce in parallel requires almost no modification to our base code. We need to import some capabilities that are not included in
         base Python, sure, but there are no substantial changes to the workflow. Importantly, we use exactly the same accumulation
         function in each case.
      

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      Listing 6.9 also shows how we call parallel map as a parameter to parallel reduce. This is because the parallel reduce implementation in the toolz library does not actually implement parallelism. This function has to sit on top of a parallel
         map to do its parallel magic. If we wanted to, we could pass our normal lazy map function to the fold function and we would get a linear reduce back. This can be useful if we’re testing our code on a small subset of a larger dataset because we can use the fold function without parallelism and then add the parallelism later when we’re working with a big dataset.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      For a parallel filter, we see that the process is mostly the same, except that now we need to add our combination function and an initializer.
         We can see this process in the following listing.
      

      
      
      
      Listing 6.10. filter in parallel with reduce

      import dill as pickle                               1
from pathos.multiprocessing import ProcessingPool as Pool
from toolz.sandbox.parallel import fold
from functools import reduce

def map_combination(left, right):                   2
  return left + right

def keep_if_even(acc, nxt):                         3
    if nxt % 2 == 0:
        return acc + [nxt]
    else: return acc

with Pool() as P:
    fold(keep_if_even, range(500000), [],
         map=P.imap, combine=map_combination)       4

print(reduce(keep_if_even, range(500), []))         5
# [0, 2, 4, 6, 8, 10, 12, ... 484, 486, 488, 490, 492, 494, 496, 498]

      
      

      
         
         	1 Our parallel reduce implementation requires the same imports as before.

         
         	2 As in listing 6.7, map_combination is our combination function.

         
         	3 keep_if_even, from chapter 5, is our accumulation function.

         
         	4 Notice the empty list being used as an initializer and the combination function map_combination.

         
         	5 Our standard reduce workflow for comparison

         
      

      
      Listing 6.10 shows how the parallel filter workflow incorporates the combination function and the initializer. Just like our linear filter, we put the initializer—an empty list—in third position. Again, we use an empty list for filter because we want to return a list. Also, we can see how the combination function is passed to our parallel reduce function in final position as a named parameter. This combination function and the parallel map parameter are the only things that distinguish our linear reduce from our parallel reduce.
      

      
      We can see the same limited changes between linear and parallel frequencies, as shown in the following listing. Again, what’s important is that we pass the combination function and the parallel map.
      

      
      
      
      Listing 6.11. Implementing frequencies in parallel with parallel reduce

      import dill as pickle                                           1
from pathos.multiprocessing import ProcessingPool as Pool
from toolz.sandbox.parallel import fold
from random import choice                                       2
from functools import reduce


def combine_counts(left, right):                                3
  unique_keys = set(left.keys()).union(set(right.keys()))
  return {k:left.get(k, 0)+right.get(k, 0) for k in unique_keys}

def make_counts(acc, nxt):                                      4
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

xs = (choice([1, 2, 3, 4, 5, 6]) for _ in range(500000))        5

with Pool() as P:                                               6
    fold(make_counts, xs, {},
         map=P.imap, combine=combine_counts)
rand_nums = (choice([1, 2, 3, 4, 5, 6]) for _ in range(500))
reduce(make_counts, rand_nums, {})                              7
# {6: 87, 1: 59, 5: 88, 4: 85, 3: 93, 2: 88}

      
      

      
         
         	1 Uses the same three imports: dill, ProcessingPool, and fold

         
         	2 Implements choice to generate some example data

         
         	3 combine_counts will be our combination function.

         
         	4 make_counts will be our accumulation function.

         
         	5 Uses a generator expression to create a lot of dummy data

         
         	6 Calls our parallel reduce on this data, passing our accumulation function, the data, a dict as an initializer, our parallel
               map, and the combination function

         
         	7 Includes a linear reduce for comparison

         
      

      
      We can see again how similar the parallel reduce and the linear reduce are. With the key exception of the combination function and the parallel map, they both use the same parameters: the same accumulation function, the same data inputs, and the same initializer. Across
         all three examples—parallel reduce summation, parallel reduce filter, and parallel reduce frequencies—we have seen our combination functions increase in complexity. Getting this combination function right is the key to successfully
         using parallel reduce.
      

      
      
      
      
      Summary
      

      
      

      
         
         	Sometimes, parallel map can be slower than a lazy map, especially when the amount of data is small or the work to be done is easy.
         

         
         	There are several variations of map, such as starmap and .imap, that can be useful in the right situation.
         

         
         	We can use parallel reduce in conjunction with lazy maps for a fast map and reduce workflow.
         

         
         	Parallel reduce takes five parameters: an accumulator function, a sequence, an initializer, a parallel map function, and an optional combiner.
         

         
         	The parallel map function tells parallel reduce how to split up the workload.
         

         
         	The optional combiner tells reduce how to join chunks of work completed in parallel whose data type may be different from that of items in the sequence.
         

         
         	To use parallel reduce, we need to design a combine function that can combine the different accumulated chunks.
         

         
      

      
      
      
      
      
      
      


Part 2. 

      
      
      Part 2 teaches how to use two popular open source distributed computing frameworks: Hadoop and Spark. Hadoop is the originator and
         foundation of contemporary distributed computing. We’ll explore how to use Hadoop streaming and how to write Hadoop jobs with
         the mrjob library. We’ll also learn Spark, a modern distributed computing framework that can take full advantage of the latest,
         high-memory compute resources. You can use the tools and techniques in this part for large data in categories 2 and 3: tasks
         that needs parallelization to finish in a reasonable amount of time.
      

      
      
      
      
      


Chapter 7. Processing truly big datasets with Hadoop and Spark
      

      
      This chapter covers

      
      

      
         
         	Recognizing the reduce pattern for N-to-X data transformations
         

         
         	Writing helper functions for reductions

         
         	Writing lambda functions for simple reductions

         
         	Using reduce to summarize data
         

         
      

      
      In the previous chapters of the book, we’ve focused on developing a foundational set of programming patterns—in the map and
         reduce style—that allow us to scale our programming. We can use the techniques we’ve covered so far to make the most of our
         laptop’s hardware. I’ve shown you how to work on large datasets using techniques like map (chapter 2), reduce (chapter 5), parallelism (chapter 2), and lazy programming (chapter 4). In this chapter, we begin to look at working on big datasets beyond our laptop.
      

      
      In this chapter, we introduce distributed computing—that is, computing that occurs on more than one computer—and two technologies
         we’ll use to do distributed computing: Apache Hadoop and Apache Spark. Hadoop is a set of tools that support distributed map
         and reduce style programming through Hadoop MapReduce. Spark is an analytics toolkit designed to modernize Hadoop. We’ll focus
         on Hadoop for batch processing of big datasets and focus on applying Spark in analytics and machine learning use cases.
      

      
      
      7.1. Distributed computing
      

      
      In this chapter, we’ll review the basics of distributed computing—a method of computing where we share not just a single workflow,
         but tasks and data long-term across a network of computers. Computing in this way has challenges, such as keeping track of
         all our data and coordinating our work, but offers large benefits in speed when we can parallelize our work.
      

      
      In chapter 1, I laid out three sizes of datasets. Those that are
      

      
      

      
         
         	small enough to work with in memory on a single computer

         
         	too big to work with in memory on a single computer but small enough that we can process them with a single computer

         
         	both too big to fit into memory on a single computer and too big to process on a single computer

         
      

      
      The first dataset size poses no inherent challenges: most developers can work with these datasets just fine. Somewhere between
         the second size—too big for memory, but we can still process it locally—and the third size, however, most people will start
         to say they’re working with big datasets. In other words, they’re starting to have problems doing what they want to do with the datasets, and sometimes rightfully
         so—if we have a dataset of the third size and only a single computer, we’re out of luck.
      

      
      Distributed computing solves that problem (figure 7.1). It’s the act of writing and running programs not for a single computer, but for a cluster of them. This cluster of computers works together to execute a task or solve a problem. We can use distributed computing to great effect when we pair
         it with parallel programming.
      

      
      
      
      Figure 7.1. Distributed computing involves several computers working together to execute a single task.
      

      
      [image: ]

      
      
      If we think back to our discussions of parallel programming, the main advantage we talked about was that parallel programming
         allowed us to do lots of different bits of work all at once. We split the task at hand up into pieces and worked it several
         pieces at a time. For small problems, this had few, if any, benefits. As tasks got larger, however, we saw the value of parallelization
         rise. By using distributed computing, we can multiply this effect (figure 7.2).
      

      
      
      
      Figure 7.2. Distributed computing allows us to reduce our compute time by parallelizing our work across multiple machines. We can use
         distributed computing to solve problems in days, hours, or minutes that would have taken weeks.
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      When we add computers to our workflow, we’re adding all the processing power of those computers. For example, if each computer
         we add has four cores, every time we add a new machine to our cluster, we’ll add four additional cores. If we started with
         a four-core machine, running in parallel might cut our processing time down to one-fourth, but with two machines, we could
         be down to one-eighth. Adding two more machines might bring us down to one-sixteenth of the time it originally took to process
         our data in linear time.
      

      
      And although there is a physical limit to how many processors we can reasonably have on a single machine, there’s no limit
         to how many processors we can have in a distributed network. Dedicated supercomputers might have hundreds of thousands of processors across tens of thousands of machines, whereas scientific computing networks make hundreds of thousands of computers available to researchers engaged in serious number crunching. More commonly, companies,
         government entities, not-for-profits, and researchers are all turning to the cloud for on-demand cluster computing. We’ll
         talk more about that in chapter 12.
      

      
      Of course, distributed computing is not without its drawbacks. The curse of communication pops up again. If we distribute
         our work prematurely, we’ll end up losing performance spending too much time talking between computers and processors. A lot
         of performance improvements at the high-performance limits of distributed computing revolve around optimizing communication
         between machines.
      

      
      For most use cases, however, we can rest assured that by the time we’re considering a distributed workflow, our problem is
         so time-consuming that distributing work is sure to speed things up. One indicator is that distributed workflows tend to be
         measured in minutes or hours, rather than the seconds, milliseconds, or microseconds that we traditionally use to measure
         compute processes.
      

      
      
      
      7.2. Hadoop for batch processing
      

      
      In this section, we’ll talk about the fundamentals of Apache Hadoop. Hadoop is a prominent distributed computing framework
         and one that you can use to tackle even the largest datasets. We’ll first review the different parts of the Hadoop framework,
         then we’ll write a Hadoop MapReduce job to see the framework in action.
      

      
      The Hadoop framework focuses specifically on the processing of big datasets on distributed clusters. Hadoop’s basic premise
         is that we can combine the map and reduce techniques we’ve seen so far, along with the idea of moving our code (not our data),
         to solve problems with small and large datasets alike.
      

      
      We can find a lot of similarities between Hadoop and the way we’ve been thinking about computing so far in this book. I’ve
         been preaching that we should start small (and local) and then scale up as we need more resources. Hadoop promises the same
         thing. You can develop and test on a single local machine and then scale out to a thousand-machine cluster hosted in the cloud.
         Hadoop advocates for this in much the same way we do, through a map and reduce style of programming.
      

      
      
      7.2.1. Getting to know the five Hadoop modules
      

      
      The Hadoop framework includes five modules for big dataset processing and cluster computing (figure 7.3):
      

      
      

      
         
         	MapReduce— A way of dividing work into parallelizable chunks
         

         
         	YARN— A scheduler and resource manager
         

         
         	HDFS— The file system for Hadoop
         

         
         	Ozone— A Hadoop extension for object storage and semantic computing
         

         
         	Common— A set of utilities that are shared across the previous four modules
         

         
      

      
      
      

      
      
      Figure 7.3. The Hadoop framework is made up of five pieces of software, each of which tackles a different big dataset processing problem.
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      MapReduce is an implementation of the map and reduce steps you’ve already seen in this book that is designed to work in parallel
         on distributed clusters. YARN is a job scheduling service with cluster management features. HDFS—or Hadoop Distributed File
         System—is the data storage system of Hadoop. Ozone is a new (version 0.3.0 as I’m writing this) Hadoop project that provides
         for semantic object store capabilities. Common is a set of utilities common to all the Hadoop libraries.
      

      
      We’ll touch on the first three—MapReduce, YARN, and HDFS—now. These three libraries are the classic Hadoop stack. The Hadoop
         Distributed File System manages the data, YARN manages tasks, and MapReduce defines the data processing logic (figure 7.4).
      

      
      
      
      Figure 7.4. The classic Hadoop stack is MapReduce, running on top of YARN, running on top of HDFS.
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      Hadoop’s twist on map and reduce
      

      
      The main aspect of Hadoop with which we’ll concern ourselves in this book is the MapReduce library. Hadoop MapReduce is a
         massive data processing library that we can use to scale the map and reduce style of programming up to tens of terabytes or
         even petabytes by extending it across tens, hundreds, or thousands of worker machines. MapReduce divides programming tasks
         into two tasks: a map task and a reduce task—just like we saw at the end of chapter 5.
      

      
      
      
      
      YARN for job scheduling
      

      
      YARN is a job scheduler and resource manager that splits resource and job management into two components: scheduling and application
         management. The scheduler, or resource manager, oversees all of the work that is being done and acts as a final decision maker in terms of how resources should be allocated
         across the cluster. Application managers, or node managers, work at the node (single-machine) level to determine how resources should be allocated within that machine (figure 7.5). Application managers also monitor what’s going on within their node and report that information back to the scheduler.
      

      
      
      
      Figure 7.5. The YARN resource manager oversees the entire job, whereas a node manager oversees what happens within a single node.
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      We can tie together resource managers in extremely high demand use cases where thousands of nodes are not sufficient. This
         process is called federation. When we federate YARN resource managers together, we can treat several YARN resource managers as a single resource manager
         and run them in parallel across multiple subclusters as if they were a single massive cluster.
      

      
      
      
      The data storage backbone of Hadoop: HDFS
      

      
      The foundation of the Hadoop framework is its distributed file system abstraction, aptly named Hadoop Distributed File System.
         The Hadoop authors designed HDFS to work for cases where users want to
      

      
      

      
         
         	process big datasets (several terabytes and up; too big for local processing)

         
         	be flexible in their choice of hardware

         
         	be protected against hardware failure—a common cluster computing problem

         
      

      
      Additionally, HDFS operates based on another key observation: that moving code is faster than moving data. When we introduced
         parallelization in chapter 2, we talked about how Python’s base map moves both code and data. This is effective up to a point, but eventually the cost
         of moving data around—especially if the data files are large or numerous—becomes too much to justify parallelization. We run
         into the same problem we saw at the end of chapter 5: the act of parallelization costs more than the benefits of doing the work in parallel.
      

      
      By distributing the data across the cluster and moving the code to the data, we avoid this problem. Code—even in its lengthiest,
         most obtuse forms—will be small and cheaper to move than the data it needs to work on. In the typical case, our data is large
         and our code is small.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Distributed file systems
         
         HDFS is a reliable, performant foundation for high-performance distributed computing, but with that comes complexity. Because
            this book is not focused on data engineering, I’ve chosen to omit the details of HDFS. The book Hadoop in Action (Manning, 2010) goes into HDFS in more depth and includes cookbook-style recipes for common HDFS operations. Chuck Lam, the
            book’s author, introduces Hadoop’s Distributed File System in section 3.1 and does a deep dive into HDFS in chapter 8.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      
      
      7.3. Using Hadoop to find high-scoring words
      

      
      Now that we’ve covered the fundamentals of Hadoop, let’s dive into some code to really see how it works. Consider the following
         scenario. (You can find the data for the scenario in the book’s code repository online: https://github.com/jtwool/mastering-large-datasets.)
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      Two of your friends—one a nurse and the other a pop culture critic—have been arguing for days about a peculiar topic: the
         relative sophistication of the two seemingly unrelated figures Florence and the Machine (a contemporary English rock band) and Florence Nightingale (a legendary English nurse). To settle their dispute, you’ve been
         asked to count the frequencies of words longer than six letters occurring in songs by Florence and the Machine and the writings
         of Florence Nightingale.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      To do this we’ll need to do a few things:

      
      

      
         
         	Install Hadoop

         
         	Prepare a mapper—a Python script to do our map transformation
         

         
         	Prepare a reducer—a Python script to do our reduction

         
         	Call the mapper and reducer from the command line

         
      

      
      
      7.3.1. MapReduce jobs using Python and Hadoop Streaming
      

      
      Before we get into the details of implementation, though, let’s take a look at what Hadoop’s MapReduce does. Hadoop’s MapReduce
         is a piece of software, written in Java, that we can use to execute MapReduce on distributed systems. When we talk about running
         Hadoop MapReduce with Python, we are (generally speaking) talking about running Hadoop Streaming, a Hadoop utility for using
         Hadoop MapReduce with programming languages besides Java.
      

      
      To run that utility, we’ll call it from the command line along with options such as

      
      

      
         
         	the mapper

         
         	the reducer

         
         	input data files

         
         	output data location

         
      

      
      Hadoop provides an example code snippet demonstrating this command. An annotated version of this snippet appears in figure 7.6.
      

      
      
      
      Figure 7.6. A word count example in Hadoop, using Hadoop Streaming and Unix tools.
      

      
      [image: ]

      
      
      The code snippet in figure 7.6 calls on two Unix commands to serve as its mapper and reducer. /bin/cat refers to the Unix concatenate software, and /bin/wc refers to the Unix word count software. Used together like this, cat will print the text and wc will count the words. Hadoop will ensure that these actions are performed in parallel on the documents in the directory located at the input location and the results are written to the output directory.
      

      
      Once run, the result will be that we can go into whatever directory we pointed output to and retrieve the count of the words.
         Before we move on to a full-scope example, let’s implement the word count mappers and reducers in Python. To emulate the cat capability in Python, let’s print each word to a new line. To emulate the wc capability, we’ll increment a counter for each word we come across. We’ll need to wrap both of these capabilities in solo,
         executable scripts.
      

      
      The mapper might look like listing 7.1, and the reducer might look like listing 7.2.
      

      
      
      
      Listing 7.1. Word count mapper in Python
      

      #!/usr/bin/env python3
"""Print words to lines"""
import sys

for line in sys.stdin:
  for word in line.split():
    print(word)

      
      
      
      Listing 7.2. Word count reducer in Python
      

      #!/usr/bin/env python3
"""Count words"""
import sys
from functools import reduce

print(reduce(lambda x, _:x+1, os.stdin, 0))

      
      In these two examples, some strange new things are going on. First, we’re reading from stdin. This is because Hadoop handles the opening of files for us, along with chopping up extra-large files into smaller bits.
         Hadoop is designed to be used with massive files, so having the ability to split a big file across several processors is important.
         We also can use Hadoop to work with compressed data—it natively supports compression formats such as .gz, .bz2, and .snappy
         (as shown in table 7.1).
      

      
      Table 7.1. A comparison of compression formats available for use out of the box with Hadoop
      

      
         
            
            
            
            
         
         
            
               	
                  Format

               
               	
                  Description

               
               	
                  Use case

               
               	
                  Hadoop Codec

               
            

         
         
            
               	.bz2
               	Slow compression, but shrinks files more than older algorithms
               	Semi-long-term storage, file transfer between people
               	BZip2Codec
            

            
               	.gz
               	Fast, well-supported compression algorithm
               	Transfer of files between processes (such as Hadoop steps)
               	GzipCodec
            

            
               	.snappy
               	New, fast compression algorithm; less support than .gz but better compression
               	Transfer of files between processes (such as Hadoop steps)
               	SnappyCodec
            

         
      

      
      Second, both of our scripts print their output to the terminal. Again, this is because of how Hadoop is oriented. Hadoop will
         capture what’s printed to stdout and use that later on in the workflow. This creates an additional step on top of our standard workflow and can cause us to
         have to convert strings into Python objects.
      

      
      Lastly, both scripts start with the Python shebang. This line tells the computer to use these scripts as executables. Hadoop
         will try to call these scripts using the program at the designated shebang path, in this case, Python.
      

      
      If you haven’t already tried, replacing the mapper and reducer from before with our two scripts will let us run our MapReduce
         job. This is shown in the following listing.
      

      
      
      
      Listing 7.3. Running a Streaming MapReduce with Python
      

      $HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir2 \
    -file ./wc_mapper.py \
    -mapper ./wc_mapper.py \
    -file ./wc_reducer.py
    -reducer ./wc_reducer.py \

      
      The output of this command will be in myOutputDir2 inside a file called results. The result should be the same as the second
         number that the command we called in figure 7.6 returns.
      

      
      
      
      7.3.2. Scoring words using Hadoop Streaming
      

      
      Let’s turn back to our example of finding the counts of long words. For Hadoop, we’ll focus only on the words by Florence
         and the Machine. (We’ll save the texts of Florence Nightingale for Spark later in this chapter.) To get counts of specific
         words with Hadoop—instead of simply an overall count of words—we’ll have to modify our mapper and our reducer. Before we jump
         right into the code, let’s take a look at how this process will compare with our word counting example. I’ve diagrammed both
         processes, step by step, in figure 7.7.
      

      
      
      
      Figure 7.7. Counting words and getting the frequencies of a subset of words have similar forms but require different mappers and reducers.
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      With our word count mapper, we had to extract the words from the document and print them to the terminal. We’ll do something
         very similar for our long word frequency example; however, we’ll want to add a check to ensure we’re only printing out long
         words. Note that this behavior—doing our filtering and breaking our documents into sequences of words—is very similar to how
         the workflow might execute in Python. As we iterated through the sequence, both the transformation and the filter would lazily
         be called on the lines of a document.
      

      
      For our word count reducer, we had a counter that we incremented every time we saw a word. This time, we’ll need more complex
         behavior. Luckily, we already have this behavior on hand. We’ve implemented a frequency reduction several times and can reuse
         that reduction code here. Let’s modify our reducer from listing 7.2 so it uses the make_counts function we first wrote back in chapter 5. Our mapper will look like listing 7.4, and our reducer will look like listing 7.5.
      

      
      
      
      Listing 7.4. Hadoop mapper script to get and filter words
      

      #!/usr/bin/env python3
import sys

for line in sys.stdin:
  for word in line.split():
    if len(word)>6: print(word)

      
      
      
      Listing 7.5. Hadoop reducer script to accumulate counts
      

      #!/usr/bin/env python3
import sys
from functools import reduce

def make_counts(acc, nxt):                      1
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

for w in reduce(make_counts, sys.stdin, {}):    2
    print(w)

      
      

      
         
         	1 This is our make_counts function from chapter 5.

         
         	2 We apply it to the sys.stdin stream, which is where our data will come in.

         
      

      
      The output of our MapReduce job will be a single file with a sequence of words and their counts in it. The results should
         look like figure 7.8. We also should see some log text printed to the screen. We can quickly check to see that all the words are longer than six
         letters, just as we’d hoped. In chapter 8, we’ll explore Hadoop in more depth and tackle scenarios beyond word filtering and counting.
      

      
      
      
      Figure 7.8. The output of our MapReduce job is a sequence of words.
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      7.4. Spark for interactive workflows
      

      
      So far in this chapter, we’ve been talking about the Hadoop framework for working with big datasets. In this section, we’ll
         turn our attention to another popular framework for big dataset processing: Apache Spark. Spark is an analytics-oriented data
         processing framework designed to take advantage of higher-RAM compute clusters that are now available.
      

      
      Spark offers several other advantages, from the perspective of most Python programmers:

      
      

      
         
         	Spark has a direct Python interface—PySpark.

         
         	Spark can query SQL databases directly.

         
         	Spark has a DataFrame API—a rows-and-columns data structure that should feel familiar to Python programmers with experience in pandas.
         

         
      

      
      
      7.4.1. Big datasets in memory with Spark
      

      
      As we touched on briefly in the introduction to section 7.3, Spark processes data in memory on the distributed network instead of storing intermediate data to a filesystem. This can
         lead to up to 100 times improvements in processing speed versus Hadoop on some workflows, to say nothing about the difference between a Spark task and a linear Python task. The caveat to this is that
         Spark requires machines with greater memory capacity.
      

      
      
      Choosing Spark versus Hadoop
      

      
      Because Spark makes full use of a cluster’s RAM, we should favor Spark over Hadoop when we

      
      

      
         
         	are processing streaming data

         
         	need to get the task completed nearly instantaneously

         
         	are willing to pay for high-RAM compute clusters

         
      

      
      Spark’s use of in-memory processing means we don’t necessarily have to save the data anywhere. This makes Spark ideal for
         streaming data—one aspect of the conventional definition of big data. We should reserve Hadoop for batch processing.
      

      
      Because Spark can be so much faster than Hadoop, we should use Spark when we need near instant processing of data. Of course,
         this is only really feasible up to a certain point. Eventually the data will be too big to process immediately, unless we
         throw an unjustifiable amount of resources at the problem.
      

      
      That situation is directly tied to the last factor in our list: if money is of no concern, we can freely choose Spark. Because
         Spark runs faster when it has access to many high-RAM machines, if we can afford to assemble a cluster of high-RAM machines,
         then Spark is the obvious choice. Hadoop is designed to make the most out of low-cost computing clusters.
      

      
      As you can imagine, the answer to which distributed computing framework to use is not always clear cut; however, the map and
         reduce style we’ve developed throughout this book will serve you well working with big datasets in either one.
      

      
      
      
      
      7.4.2. PySpark for mixing Python and Spark
      

      
      Spark was designed for data analytics, and one way we can see that is in the Spark design team’s commitment to developing
         APIs for both Python and R. Like Hadoop, Spark is written to run on the Java Virtual Machine (JVM), which would normally make
         it hard for scientists, researchers, data scientists, or business analysts, who most often use languages like Python, R, and
         Matlab. We saw this problem in Hadoop. We were not able to interact directly with Hadoop through Python. Instead, we had to
         call our Python functions through Hadoop Streaming, and we had to use somewhat clumsy workarounds to work with Python data
         beyond strings. When we’re working with Spark, we can use its Python API, PySpark, to get around that issue.
      

      
      With PySpark, we can call Spark’s Scala methods through Python just like we would a normal Python library, by importing the
         modules and functions we need. For example, we’ll often be using the SparkConf and SparkContext functions to set up our Spark jobs. We’ll talk more about these functions in chapter 9 when we dive into Spark. For now, we can work with them in Python by importing them from PySpark, as shown in the following
         listing.
      

      
      
      

      
      
      Listing 7.6. Importing from Spark into Python
      

      from pyspark import SparkConf, SparkContext

config = SparkConf().setAppName("MyApp")
context = SparkContext(conf=config)

      
      We’ll see this in full force later in this chapter when we dive into PySpark in section 7.5.
      

      
      
      
      7.4.3. Enterprise data analytics using Spark SQL
      

      
      A significant benefit of Spark is its support for SQL databases through Spark SQL. Built on top of the widespread Java Database
         Connectivity—which you’ll often see abbreviated as JDBC—Spark SQL makes it easy to work with structured data. This is especially
         important if we’re working with enterprise data. Enterprise data refers to common business data—HR or employee data, financial or payroll data, and sales order or operational
         data—and the most common means of storing that data—relational databases, especially Oracle DB or Microsoft SQL Server.
      

      
      Because Spark is designed first and foremost for Scala, the Spark SQL Python API is not compliant with the PEP 249 specification
         for Python database connections. Nonetheless, its core functionality makes intuitive sense, and we can use it with any database
         that has a JDBC connection, including popular free and open source databases such as MySQL, PostgreSQL, and MariaDB. In its
         simplest form, querying databases with Spark is as easy as passing our SQL query into the .sql method of a SparkSession object.
      

      
      
      
      7.4.4. Columns of data with Spark DataFrame
      

      
      When we’ve queried data using Spark, our data will end up in what’s known as a DataFrame, a Spark class that we can think of as being equivalent to a SQL table or a pandas.DataFrame. Unlike either a SQL table or a DataFrame from pandas though, the DataFrame in Spark is optimized for distributed computing workflows.
      

      
      Like SQL and pandas, Spark DataFrames are organized around columns with names. This is helpful if we want to make conditional subsets of our data for machine
         learning or statistical summary. For example, if we wanted to get the average purchase size of customers with more than 20
         orders, we could use the DataFrame .filter and .agg methods, combined with Spark’s knowledge of our column names, to get that information. We can see this example in figure 7.9.
      

      
      
      
      Figure 7.9. Spark DataFrames have a .filter method that we can use to quickly take subsets of our big datasets.
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      DataFrame’s version of .filter has a use similar to that of the filter function we saw in chapters 4–6. In fact, a lot of the map and reduce-oriented data processing functions make their way into the pyspark.sql.functions library, including zip as arrays_zip. The DataFrame API is a more general API that provides a convenience layer on top of the core Spark data object: the RDD or Resilient Distributed Dataset. RDDs are the Hadoop-abstraction that powers Spark’s in-memory distributed processing, and the PySpark RDD API provides access to all the functions we’ve become familiar with, including map, reduce, filter, and zip. We’ll see an example of these functions in the next section.
      

      
      
      
      
      7.5. Document word scores in Spark
      

      
      Now that we’ve covered the fundamentals of Spark, let’s dive into some code. In the previous example in this chapter, we found
         all the words with more than six letters from the songs of the band Florence and the Machine. This served as evidence of their
         lyrical sophistication and also helped introduce us to Hadoop. In this section, we’ll complete the comparison between Florence
         and the Machine and Florence Nightingale by running the same process on a document by Florence Nightingale in Spark.
      

      
      As in section 7.3, we’ll break this process down into three areas:
      

      
      

      
         
         	A mapper

         
         	A reducer

         
         	Running the code in Spark

         
      

      
      Our mapper will be responsible for taking the files and turning them into sequences of words with more than six characters,
         and the reducer will be responsible for counting up the words we find. Running the code in Spark parallelizes the workflow
         for us. We can see this process play out in figure 7.10.
      

      
      
      
      Figure 7.10. Counting up the big words used by Florence Nightingale involves three steps in Spark.
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      7.5.1. Setting up Spark
      

      
      Before we can jump into our Spark job, let’s take a second to set up Spark. Unlike setting up Hadoop—which may have been a
         hairy process if you weren’t familiar with Java—installing Spark is pretty straightforward. Go to https://spark.apache.org/downloads.html and follow the download instructions on the page, and that’s it! You’ve got everything you need to use Spark.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Spark clusters
         
         Just like we didn’t do a deep dive into setting up a Hadoop cluster in this book, we also won’t do a deep dive into setting
            up a Spark cluster—though we will show you how to provision cloud resources for these technologies in chapter 12. If you’re interested in a full Spark book after the two and a half chapters we’ll spend on it here, Manning has several
            books dedicated to Spark, including Spark in Action (2016) and Spark GraphX in Action (2016).
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Now that we have Spark installed, we can run Spark jobs and interact with Spark using PySpark. The easiest way to take either
         of these actions is through the utilities that Spark provides. Just like Hadoop provided us the Hadoop Streaming utility,
         Spark provides two utilities: one that sets up an interactive Python shell called pyspark and one that allows us to run Spark jobs—similar to Hadoop streaming—called spark-submit.
      

      
      
      Exploring big data interactively
      

      
      One of the reasons why Spark is so popular is that it allows for us to interactively explore big data through a PySpark shell
         REPL. This more playful style of development, where we iterate through our problem line by line, is more familiar to a lot
         of data scientists than writing out extended chunks of code all at once. It also allows us to see what our intermediate results
         are or consult the Python documentation as we develop.
      

      
      We kick this process off by running the utility pyspark. That process brings up a screen—like figure 7.11—where we can enter Python commands. Right off the bat, we have access to SparkContext and SparkSession instances as sc and spark. (The pyspark utility imports them for us; when we write our own Spark scripts, we’ll need to import them ourselves.) The sc variable has methods for building the Resilient Distributed Dataset instances we mentioned in section 7.4.4. We can use the spark variable to bring data into DataFrames—the parallel optimized tabular data abstractions we also mentioned in section 7.4.4. If we run python’s help command on these variables in the interactive session, we’ll see a list of methods available for each one. We’ll go into
         some of them in this book, but a full list of methods for each variable is available in the online documentation.
      

      
      
      
      Figure 7.11. Spark provides an interactive terminal where we can run Python commands with all the power of a Spark cluster behind them.
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      Running jobs
      

      
      When we’re not working with Spark interactively, we’ll work with it by running Spark jobs. This is a similar process to how
         we ran MapReduce jobs in Hadoop. We write some code, and then we pass it as an argument to a utility. In the case of Spark,
         we’ll use the spark-submit utility and we’ll pass it a single Python script.
      

      
      In that Python script, we can create instances of any of the Spark objects we need. We’ll have access to them once we import
         the pyspark module. Let’s take a look at this method of working with Spark in action.
      

      
      
      
      
      7.5.2. MapReduce Spark jobs with spark-submit
      

      
      Turning our attention back to the question at hand—the lexical excellence of Florence Nightingale—we’ll break our work into
         three steps:
      

      
      

      
         
         	Turning a document into a sequence of words

         
         	Filtering those words down to those having more than six characters

         
         	Gathering counts of the rest

         
      

      
      When we worked through this process in Hadoop, we accomplished step 1, turning a document into a sequence of words, and step
         2, filtering out the small words, together in the mapper. With Spark, the three steps will all stand apart.
      

      
      To accomplish this process in Spark, the first thing we’ll want to do is bring our data into an RDD—Spark’s powerful parallel data structure. This is a good starting point for most work in Spark. To do that, we’ll need a
         SparkContext, so we’ll have to instantiate a SparkContext instance. Then we can use the SparkContext method .textFile to read in text files from our filesystem. This method creates an RDD with the lines of those documents as elements.
      

      
      We can turn this dataset into a sequence of words by calling the .flatMap method of the RDD. The .flatMap method is like map but results in a flat sequence, not a nested sequence. .flatMap also returns an RDD, so we can use the .filter method of the RDD to filter down to only the large words, and then the .countByValue method of that resulting RDD to gather the counts. We can see this whole process in just a few lines in the following listing.
      

      
      
      

      
      
      Listing 7.7. Counting words of six letters or more in Spark
      

      #! /usr/bin/env python3
import re
from pyspark import SparkContext

if __name__ == "__main__":                           1
  sc = SparkContext(appName="Nightingale")           2
  PAT = re.compile(r'[-./:\s\xa0]+')                 3
  fp = "/path/to/florence/nightingale/*"
  text_files = sc.textFile(fp)                       4
  xs = text_files.flatMap(lambda x:PAT.split(x))\    5
                 .filter(lambda x:len(x)>6)\         6
                 .countByValue()\                    7

  for k,v in xs.items():                             8
    print("{:<30}{}".format(k.encode("ascii","ignore"),v))

      
      

      
         
         	1 Because this is a script, most of the code will run only when called as such.

         
         	2 Initializes the SparkContext, with appName an optional but useful parameter

         
         	3 Uses a regular expression to make our splits better quality

         
         	4 .textFile will load all the files matched as an RDD.

         
         	5 Then, we can use the RDD’s .flatMap to turn each line into words.

         
         	6 Those words can then be filtered down to only the large words.

         
         	7 Then, lastly, we can count them up using a built-in method.

         
         	8 Prints the results for convenience

         
      

      
      When you’re done running the code, you should see a long list of large words output. If all’s right, the words should all
         be over six letters in length. There will also be a bunch of output related to the Spark job that was run to process this
         code. The final result will look something like the following listing.
      

      
      
      
      Listing 7.8. Code output from Spark, counting up large words
      

      hurting                       10
Englishman                    1
Conceit                       1
contain                       1
deficient                     1
especially                    9
weekend                       2
pretend                       1
weaknesses,                   1
servants                      1
suppose                       2
forever                       4
stagnant                      2

      
      Unlike Hadoop, where we’re free to print our results to get them to write to the output file, with Spark, we’ll typically
         want to write our results directly to a file. That way, we won’t have to dig them out of a mass of terminal messages. In the next three chapters, we’ll touch on some more best practices
         for using Hadoop and Spark by working through more in-depth examples.
      

      
      
      
      
      7.6. Exercises
      

      
      
      7.6.1. Hadoop streaming scripts
      

      
      What are the scripts called that we write for a Hadoop Streaming job? (Choose one.)

      
      

      
         
         	Mapper and Reducer

         
         	Applier and Accumulator

         
         	Functor and Folder

         
      

      
      
      
      7.6.2. Spark interface
      

      
      When we interact with Spark, we’ll do it through PySpark, which is a Python wrapper around the Spark code written in which
         programming language? (Choose one.)
      

      
      

      
         
         	Clojure

         
         	Scala

         
         	Java

         
         	Kotlin

         
         	Groovy

         
      

      
      
      
      7.6.3. RDDs
      

      
      Spark’s innovations center around a data structure called an RDD. What does RDD stand for? (Choose one.)
      

      
      

      
         
         	Resilient Distributed Dataset

         
         	Reliable Defined Data

         
         	Reduceable Durable Definition

         
      

      
      
      
      7.6.4. Passing data between steps
      

      
      With Hadoop Streaming, we need to manually ensure that the data can pass between the map and reduce steps. What do we need
         to call at the end of each step? (Choose one.)
      

      
      

      
         
         	return

         
         	yield

         
         	print

         
         	pass

         
      

      
      
      
      
      Summary
      

      
      

      
         
         	Hadoop is a Java framework that we can use to run code on data across distributed clusters.

         
         	When writing Python for Hadoop MapReduce jobs, we write one script for the mapper and one for the reducer.

         
         	Both the Python mapper script and the Python reducer script need to print their results to the console.
         

         
         	In Spark, we can write a single Python script that handles both the map and reduce portions of our problem.

         
         	We interact with Spark through Python using the pyspark API.
         

         
         	We can work with Spark in interactive mode or by running jobs—this gives us flexibility in our development workflow.

         
         	Spark has two high-performance data structures: RDDs, which are excellent for any type of data, and DataFrames, which are optimized for tabular data.
         

         
      

      
      
      
      
      
      
      


Chapter 8. Best practices for large data with Apache Streaming and mrjob
      

      
      This chapter covers

      
      

      
         
         	Using JSON to transfer complex data structures between Apache Streaming steps

         
         	Writing mrjob scripts to interact with Hadoop without Apache Streaming

         
         	Thinking about mappers and reducers as key-value consumers and producers

         
         	Analyzing web traffic logs and tennis match logs with Apache Hadoop

         
      

      
      In chapter 7, we learned about two distributed frameworks for processing large datasets: Hadoop and Spark. In this chapter, we’ll dive
         deep into Hadoop—the Java-based large dataset processing framework. As we touched on last chapter, Hadoop has a lot of benefits.
         We can use Hadoop to process
      

      
      

      
         
         	lots of data fast—distributed parallelization

         
         	data that’s important—low data loss

         
         	absolutely enormous amounts of data—petabyte scale

         
      

      
      Unfortunately, we also saw some drawbacks to working with Hadoop:
      

      
      

      
         
         	To use Hadoop with Python, we need to use the Hadoop Streaming utility.

         
         	We need to repeatedly read in strings from stdin.
         

         
         	The error messages for Java are not super helpful.

         
      

      
      In this chapter, we’ll look at how we can deal with those issues by working through some scenarios. We’ll analyze the skill
         of tennis players over time and find the most talented players in the sport.
      

      
      
      8.1. Unstructured data: Logs and documents
      

      
      The Hadoop creators designed Hadoop to work on unstructured data—a term that refers to data in the form of documents. Though they will often contain useful, interpretable metadata—for example,
         author or date—the important content is typically unrestricted in form. A classic example of unstructured data is a web page.
      

      
      The web page is written in HTML and has some general formatting requirements:

      
      

      
         
         	The page starts with a head tag.

         
         	Inside the head tag are CSS and JavaScript imports.

         
         	There should also be some metadata inside the head tag—maybe a description of the page or the page’s title.

         
         	Then there’s the body tag, which is the main content of the page.

         
      

      
      The web page has useful metadata—we could quickly write up some code to find the title of any web page and even its keywords
         and description, if they’re listed as metadata—however, none of these aspects of the page is why anyone goes to it. What users
         are interested in is entirely in the body section. And, of course, the body of the web page can contain anything its author
         pleases, such as text, images, videos, music, and so on.
      

      
      Compare this to other common forms of unstructured data, such as social media content, text or office documents, spreadsheets,
         and logs. If we think about a social media post, we know that these posts have required or imputed fields (such as time of
         post), but, more importantly, they also have freeform fields, such as the text of a tweet or a Facebook status. If we think
         about an office document, we know that our office software will record information like time last saved and the names of the
         users who have edited the document, but the main body of the document can be anything from a love letter to a business report.
         If we think about log data, we typically have more structure—machines do more logging than people—however, logs are often
         saved in file formats that are considered unstructured, such as plain text, and fall into this category for that reason.
      

      
      Unstructured data is notoriously unwieldly. It’s not amenable to the kind of tabular analysis that most data analysts cut
         their teeth on. This makes problems that involve unstructured data more frustrating for analysts, because their standard bag
         of tricks doesn’t typically work, and less satisfying for customers, because the analysis takes longer and may be less fruitful.
      

      
      At the same time, unstructured data is one of the most common forms of data around. Companies that have made an effort to
         assess how much data they have in structured versus unstructured formats have consistently found unstructured data makes up
         more than 80%, sometimes even as much as 95%, of their data. This makes sense when we consider that technologies such as personal
         web pages, social media, email, blogs, and other self-publishing platforms all produce unstructured data.
      

      
      Keeping data in an unstructured format does have some advantages, chiefly that it’s loosely coupled with the systems that
         rely on it. If the format of the data is not under your control (for example, it comes from a system owned by another group
         or another company), or you’re working with data in several different formats, keeping that data unstructured provides an
         advantage because you will never need to restructure a datastore to accommodate changes. These facts about unstructured data—especially
         its prevalence—make it important to have a tool like Hadoop, which is designed for unstructured data, in one’s belt.
      

      
      
      
      8.2. Tennis analytics with Hadoop
      

      
      To demonstrate the power of Hadoop—and how we can use it to turn log-style data into usable information—we’ll tackle an example
         from the world of tennis.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      A new professional tennis league is forming, and they have hired you to come up with skill estimates for professional tennis
         players so that they can direct their efforts for recruiting players to the new league. They have provided you with data for
         several years of matches and would like you to return to them with a list of players and their corresponding skills.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Solving this problem will involve three steps. We need to

      
      

      
         
         	read in the data for each match

         
         	update the rankings of the winner and loser of each match

         
         	sort the rankings when all of our work is done

         
      

      
      We’ll break each of these steps up into a Hadoop MapReduce job in the streaming style we learned in chapter 7. Thinking back to chapter 7, we know we’ll need a mapper script and a reducer script. Our mapper script will handle step 1, and our reducer script will
         handle steps 2 and 3 (figure 8.1).
      

      
      
      
      Figure 8.1. The tennis analytics problem requires three steps broken up between mapper and reducer scripts. In the mapper, we assemble
         the information we need, and in the reducer, we rank and sort the players.
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      Figure 8.1 shows what data will look like as it flows through this process. We’ll start with our input datafiles, we’ll read the matches
         from those files, then we’ll reduce the matches into ratings for each tennis player. Finally, we’ll sort the matches to return
         the players in order. As the data moves, you’ll notice it changes from a comma-separated string into key-pairs into a sequence
         of key-value pairs.
      

      
      
      8.2.1. A mapper for reading match data
      

      
      Because step 1 is neatly contained within our mapper script, let’s start our process there. We’ll start by inspecting how
         the matches are contained within a file, part of which is previewed in figure 8.2.
      

      
      
      

      
      
      Figure 8.2. The tennis match logs contain matches as comma-separated strings.
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      In the file, we can see that each match is a single line—just like we’ll need it for Hadoop—and that each line contains a
         number of attributes describing the match, such as the winner, the loser, the surface, and more. For our purposes, we can
         concern ourselves with these three elements: winner, loser, and surface.
      

      
      To access these elements of each match, we’ll need to split each line on the commas and then call the elements we want by
         number: the surface is in the 2nd position, the winner is in the 10th position, and the loser is in the 20th position. This
         isn’t especially clear to someone else reading our script, so we’ll pass the data on to our reducer function using key-value pairs. Key-value pairs provide much greater interpretability than comma-separated value data, at
         the cost of being bulkier to store. Key-value pairs are more costly to store because the keys must be stored in addition to
         the values, whereas a comma-separated value string needs no keys.
      

      
      
      JSON for passing data between mapper and reducer
      

      
      To pass the key-value pair between our mapper and reducer, we’ll use a data interchange format known as JSON. JSON—or JavaScript
         Object Notation—is a data format used for moving data in plain text between one place (typically a computer) and another (again,
         typically a computer). Modern web developers are fond of JSON because it
      

      
      

      
         
         	is easy for humans and machines to read

         
         	provides a number of useful basic data types (such as string, numeric, and array)

         
         	has an emphasis on key-value pairs that aids the loose coupling of systems

         
      

      
      As a Python developer, you can use Python’s built-in JSON module for converting Python objects into JSON data and back. We’ll use the json.dumps (dump string) function to turn a Python dict into a JSON string that we can print to the stdout with our mapper. Then we’ll use the json.loads (load string) function for reading it in with our reducer.
      

      
      Altogether, our mapper script looks like the following listing.

      
      
      
      Listing 8.1. Mapper for analyzing tennis scores
      

      #! /usr/bin/python3
import json
from sys import stdin


def clean_match(match):
  ms = match.split(',')
  match_data = {'winner': ms[10],
                'loser': ms[20],
                'surface': ms[2]}
  return match_data


if __name__ == "__main__":
  for line in stdin:
    print(json.dumps(clean_match(line)))

      
      We bring each line in and process it with a helper function called clean_match. This is the function that we would map across all our data. To process each match, we split it on the comma and select the
         10th, 20th, and 2nd elements of the line. These are the positions of the winner, loser, and surface respectively. We then
         populate a dict with those three elements, labeling each with an appropriate key. Finally, our clean_match function returns the dict.
      

      
      If we were working in Python alone, this would be enough; however, we have to move our data across the terminal as a string
         to use Hadoop streaming. For this reason, we pass our data into the json.dumps function, which converts our Python dict into a corresponding JSON format—in this case, an object.
      

      
      The other elements of the script are identical to the Hadoop Streaming scripts you’ve already written. We use a Python3 shebang
         to declare how the script should be executed, and we read data in from stdin. The shebang, #! /usr/bin/python3, tells your machine to process the script using Python.
      

      
      
      
      
      8.2.2. Reducer for calculating tennis player ratings
      

      
      With our mapper finished, we’re ready to tackle the reducer. The reducer is responsible for turning matches into assessments
         of players’ skill. To do that, we’ll rely on a simplified version of a formula that was originally developed to rate chess
         players: the Elo rating system.
      

      
      
      Rating players based on match performance
      

      
      The Elo rating system has a simple goal: take match results and use them to update the ratings of the players who participated
         in that match. To do this, the system makes statements about how often players of one rating beat players of another rating
         when they compete head-to-head. Typically, a 200-point rating difference between two players corresponds to the higher-rated
         player having a 75% chance to beat the lower-rated player.
      

      
      Mathematically, we’ll update players’ ratings using a simplified Elo formula that calculates the expected chance of winning
         for each player and then grants the winner the number of points staked by their opponent. Each player must stake a number
         of points proportional to their likelihood of winning the match, so the higher rated player is risking more but is also expected
         to win more often. We’ll also use a common heuristic for calculating the Elo rating, such as starting off never-before-seen
         players at 1,400 points. We can see the concept of Elo rating illustrated in figure 8.3.
      

      
      
      
      Figure 8.3. The Elo rating approach works by adjusting players’ rankings after each match they play, with their ratings going up in a
         win or down in a loss. Underdogs are set to gain more points in a win than they would lose in a loss.
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      Figure 8.3 shows how in a match between a player with a 1600 rating and a player with a 1550 rating, the 1550 player has more to gain
         and less to lose. That’s because the rating system expects the 1550 player to lose to the 1600 player more often than not.
         When the 1600 player wins, they’ll still gain points, but it will be a modest amount.
      

      
      Using the techniques we learned in chapter 5, we’ll structure the score accumulation in a reduce pattern. We’ll bring in new matches and use their results to adjust the
         ratings for each player, which are being stored in a dict that we’re holding onto throughout the reduce step. We can see this process in figure 8.4.
      

      
      
      
      Figure 8.4. To calculate player ratings, we can reduce over matches, awarding them points for wins and taking points away for losses.
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      In figure 8.4, we can see how the accumulation of player scores occurs.
      

      
      

      
         
         	We bring in the data for the next match.

         
         	We calculate the impact that match had on each player’s rating.

         
         	We give the match winner the points they won.

         
         	We deduct from the match loser the points they lost.

         
         	If either the winner or loser are new observations, we start them at 1,400 points.

         
         	We return the dict to be used for the next match.
         

         
      

      
      This process occurs for each match until we’ve reduced all the matches to a single dict: our N (many matches) to X (a single dict of ratings) transformation. Lastly, when we’re done, we can print our dict to the screen as a JSON object so we can easily use it for further analysis down the road. The code for this process appears
         in listing 8.2.
      

      
      
      

      
      
      Listing 8.2. Reducing over matches to calculate player ratings
      

      #! /usr/bin/python3
import json
from sys import stdin
from functools import reduce

def round5(x):
  return 5*int(x/5)

def elo_acc(acc,nxt):
  match_info = json.loads(nxt)
  w_elo = acc.get(match_info['winner'], 1400)
  l_elo = acc.get(match_info['loser'], 1400)
  Qw = 10**(w_elo/400)
  Ql = 10**(l_elo/400)
  Qt = Qw+Ql
  acc[match['winner']] = round5(w_elo + 100*(1-(Qw/Qt)))
  acc[match['loser']] = round5(l_elo - 100*(Ql/Qt))
  return acc

if __name__ == "__main__":
  xs = reduce(elo_acc, stdin, {})
  for player, rtg in xs.items():
    print(rtg, player)

      
      In listing 8.2, we’re reducing over the matches with a function we’ve called elo_acc. The first thing to notice about the elo_acc function is that we’re reading the line in as a JSON string with json.loads. Because we output our dicts representing the matches as JSON strings, we can reconstitute them using a JSON string reader. This gives us match_info, a dict that contains the data we want about the match. Furthermore, because we’ve already done the work of creating keys for winner and loser, we can quickly retrieve the values by their corresponding keys.
      

      
      From there, we can use this information to calculate the adjustments to the players’ ratings. In short, this process involves
         taking each player’s rating, dividing it by 400, and comparing those two values to come up with the amount of points that
         each player has at stake during the match. I round this number off to the nearest five-point interval out of personal preference.
         You can omit this step or round off to a larger number, like 10, 25, or even 100, if you’d like. Lastly, we’ll print the players
         and their ratings by unpacking the tuples that reduce created.
      

      
      Finally, we can set these two scripts as executables and run them from the command line. The command will look like the following
         listing.
      

      
      
      
      Listing 8.3. The Hadoop streaming command to run our rating calculator
      

      $HADOOP/bin/hadoop jar /home/<user>/bin/hadoop/hadoop-streaming-3.2.0.jar \
  -file ./elo-mapper.py -mapper ./elo-mapper.py \
  -file ./elo-reducer.py -reducer ./elo-reducer.py \
  -input '/path/to/wta/files/wta_matches_200*.csv' \
  -output ./tennis_ratings

      
      After it finishes running, which should only be a few seconds, you should be able to open the results file included in the
         tennis_ratings directory and see output like this:
      

      
      {
  "Julia Helbet": 1360,
  "Glenny Cepeda": 1400,
  "Hana Sromova": 1075,
  "Sophie Ferguson": 1130,
  "Anne Mall": 1360,
  "Nuria Llagostera Vives": 1120,
  "Maria Vento Kabchi": 1050,
  "Roxana Abdurakhmonova": 1380,
  "Zarina Diyas": 1405,
  "Stephanie Vogt": 1430,
  "Soumia Islami": 1390,
  "Pei Ling Tong": 1380,
  "Shikha Uberoi": 1160,
  "Amani Khalifa": 1410,
...
}

      
      As we had planned, our output is a map of players and their corresponding Elo ratings, reflecting how skillful those players
         are estimated to have been during the period we analyzed. Before we move on, there is a caveat to this analysis that we’ve
         seen a few times throughout this book (including chapters 2 and 6). You’ll note that if you run this analysis several times, you’ll receive different results each time. That’s because the
         order in which the matches are played affects the ratings each player (and their opponents) accumulates, altering the number
         of points they have at stake in each match. This was one of the problems we saw with parallel processing back when we first
         learned about it in chapter 2. For a real Elo rating, we would want to process the matches in order.
      

      
      
      
      
      
      8.3. mrjob for Pythonic Hadoop streaming
      

      
      Assurances about order aside, perhaps the most striking thing about working with Hadoop streaming is that it doesn’t really
         feel like writing Python. Sure, we write two Python scripts, but we keep needing to print our data to stdout instead of passing it around inside the code. We have to resort to tricks like json.loads and json.dumps to work with complex file formats in any way. What we really want is a Pythonic way of working with Hadoop. For this, we
         can turn to mrjob—a Python library for Hadoop Streaming that focuses on cloud compatibility for truly scalable analysis.
      

      
      Yelp originally created the mrjob library for its own Hadoop MapReduce needs, including several high-importance recommendation
         systems that power the eatery review site:
      

      
      

      
         
         	“People who viewed this also viewed” recommendations

         
         	Review highlights

         
         	Text autocomplete

         
         	Restaurant search

         
         	Advertisements

         
      

      
      The company developed the mrjob framework because the framework allowed its engineers to use Python—a quick to write, easy
         to debug language—to work with massive, distributed data through Hadoop. And, indeed, massive is the operative word. Yelp’s
         data systems were processing more than 100 GB of data each day when it developed the framework. The scalability is important—that’s
         why we want to use Hadoop and distributed computing in the first place—but here we’ll focus on the Python.
      

      
      
      8.3.1. The Pythonic structure of a mrjob job
      

      
      A chief benefit of mrjob is that we get to write more Python. Indeed, instead of writing two scripts and calling them from
         the command line (and getting weird Java-based errors back when we make a mistake), with mrjob we can write our entire Hadoop
         Streaming job in Python. The mrjob library removes the need to interact directly with Hadoop at all.
      

      
      Yelp created mrjob to analyze web logs, and we’ll do the same to get used to the mrjob syntax. For example, let’s consider
         the problem of finding the pages on a website that throw a 404 error the most. The 404 error represents a page that can’t
         be found, so the presence of these errors in our logs is a direct reflection of inconvenience for our users. In a standard
         map and reduce workflow, we’d break this task up into two steps (figure 8.5):
      

      
      

      
         
         	A map step where we turn each line of a log into the error we’re interested in
         

         
         	A reduce step where we count up the errors and find the offending pages
         

         
      

      
      
      
      Figure 8.5. To find 404 error offenders, we’d break the task up in a standard map and reduce style.
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      As shown in the figure, we’d start by ingesting our log files with a map. Then we would transform each of those files into a sequence of errors and offending pages. And finally, we’d reduce over this sequence and count up the error messages.
      

      
      To do this with mrjob, we’ll have to use a slightly different approach. mrjob keeps the mapper and reducer steps but wraps
         them up in a single worker class named mrjob. The methods of mrjob correspond directly to the steps we’re used to: there’s a .mapper method for the map step and a .reducer method for the reduce step. The required parameters for these two methods, though, are a little different from the map and reduce functions we’ve come to know. In mrjob, all the methods take a key and value parameter as input and return tuples of a key and a value as output (figure 8.6).
      

      
      
      
      Figure 8.6. The mrjob versions of map and reduce share the same type signature, taking in keys and values and outputting keys and values.
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      At first, thinking about map and reduce as consumers and producers of key-value pairs might be a little confusing, especially because we’ve been talking about both
         of these processes working on sequences of any form, not just on those that take the shape of key-value pairs. Under the hood,
         however, this is how Hadoop treats map and reduce.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         The key-value method of map and reduce
         
         In Hadoop, map and reduce are implemented as two methods: .mapper and .reducer. Each method takes a sequence of key-value pairs and produces key-value pairs in return. The .mapper method produces intermediate key-value pairs. In other words, it takes in data as keys and values and outputs them for the .reducer. Because the .reducer is expecting a key-value pair, this is perfect. In fact, a hidden step between the map and reduce steps in Hadoop sorts the keys and values Hadoop consumes by key. This makes the .reducer job even easier.
         

         
         Using keys allows Hadoop to make good use of our compute resources as it allocates work. Intermediate records output by map with like keys will tend to go to the same location for processing.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      For our .mapper step in a standard MapReduce job, the key to our .mapper will be None, and the value will be the lines we consume. Because of this, our thinking about map and .mapper doesn’t have to change dramatically. We can ignore the key-value expectation of .mapper by simply ignoring the first parameter.
      

      
      For the .reducer though, we will want to be aware of the key-value structure. Hadoop, through mrjob, does a lot of the organizing of keys
         and values for us. We can take advantage of that by considering the .mapper output not as a sequence but as a dict populated with keys and sequences. In our error analysis example, we’ll set these keys to the page URLs so we can quickly
         count the number of 404 errors associated with those pages. We can see this play out in listing 8.4.
      

      
      
      
      8.3.2. Counting errors with mrjob
      

      
      Listing 8.4 is a small example, but because this is the first time we’ve seen mrjob code in the book, we’ll want to look at it pretty
         closely. On the first line, we’re importing a class MRJob, from the mrjob library’s job module This class contains all the core MapReduce capability that we’ll need to interact with Hadoop. The primary thing we’ll
         do when working with the mrjob library is create new classes that inherit from the MRJob class.
      

      
      
      
      Listing 8.4. MRJob script for finding 404 error messages in a traffic log
      

      from mrjob.job import MRJob

class ErrorCounter(MRJob):

  def mapper(self, _, line):
    fields = line.split(',')
    if fields[7] == '404.0':
      yield fields[6], 1

  def reducer(self, key, vals):
    num_404s = sum(vals)
    if num_404s >5:
      yield key, num_404s

if __name__ == "__main__":
  ErrorCounter.run()

      
      Not surprisingly, the next thing we do is create a new class ErrorCounter that inherits from the MRJob class. We’re also going to define .mapper and .reducer methods for this class. As discussed in section 8.3.1, both of these methods expect keys and values, and you can see that they both use three parameters: self, a key, and a value.
      

      
      For our .mapper, we’ll ignore the first of these parameters (the key), as suggested in the previous section. To do that, we’ll use the underscore
         variable, which is our way of saying we won’t do anything with this variable. We’ll name the second parameter line because the value of our input is going to be each line of our log file. Coming from working directly with Hadoop Streaming, this should feel pretty familiar. We’re receiving the data just as if it came
         from stdin.
      

      
      Because the data we’re getting comes in as a comma-separated string, we’ll use Python’s .split method to split the input line into fields. We’ll check the HTTP response code field, which happens to be in 7th position,
         to see if it is a 404 error, and if it is, we’ll return the page name—which is in 6th position—and a 1. We can visualize that
         process as shown in figure 8.7.
      

      
      
      
      Figure 8.7. Our .mapper consumes lines, splits them into fields, checks the value of the error message field, and then returns the page name and
         a 1.
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         The return values of mrjob methods
         
         Earlier in this chapter, we discussed how when working with complex data structures, it is often helpful to pass our data
            around as JSON so that we can quickly and easily reconstitute it from strings. The mrjob library authors thought this was
            such a good idea that they require every .mapper and .reducer output to be JSON serializable. This means that you’ll be best served by using simple Python data structures when you can,
            such as floats, ints, strings, lists, and dicts. These data structures are serializable in base Python. That said, you can turn any Python data structure into JSON by implementing
            your own method.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      With our .mapper sending out data as keys (page names) and values (indicator counts of those pages), we’re ready to move on to our .reducer. For our .reducer, we’ll sum up the number of 404s our .mapper reported and return that value along with the original key. I’m restricting this to only pages that have more than five 404 errors because I’m personally only interested
         in high-frequency offenders, but you can omit this step if you’d like.
      

      
      This .reducer is the first place we really see how the key-value expectation changes how we think about our map and reduce steps. We can
         still think about reduce moving through a sequence, but this time we’re moving through a sequence of key-value pairs. And the value for each key is
         a sequence. In this specific situation, our key will be a page name, like index.html, and our value will be a list of indicators of 404 errors, such as [1, 1, 1, 1]. Figure 8.8 shows what this looks like.
      

      
      
      
      Figure 8.8. Our .mapper produces key-value pairs that our .reducer then iterates through, operating on the key and its associated values.
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      When we think about the line num_404s = sum(vals) from listing 8.4, this line works because Hadoop has already sorted our data into a format where the key is the page and the vals variable contains a sequence of all the indicators (1). Summing up all those 1s then gives us a count of the number of 404 errors. Then we can return this value along with the
         key to get a count of the errors associated with each page.
      

      
      Lastly, also in listing 8.4, we see the Pythonic main call at the end of our script. To run our mrjob MapReduce job, we’ll call this script from the command line, adding our input
         data as an additional parameter. We’ll need to have Hadoop still installed from chapter 7 to run the mrjob operation:
      

      
      python3 common_errors.py traffic-logs.txt

      
      After that, we should see pages and their corresponding error counts printed to the screen:
      

      
      Using configs in /etc/mrjob.conf
No configs specified for inline runner
Creating temp directory /tmp/common-errors.jt-w.20191108.012559.032175
Running step 1 of 1...
job output is in /tmp/common-errors.jt-w.20191108.012559.032175/output
Streaming final output from /tmp/common-errors.jt-
     w.20191108.012559.032175/output...
".hdr.sgml"    2
".txt"    191
"form448073_20120210093319-.xml"    1
Removing temp directory /tmp/common-errors.jt-w.20191108.012559.032175...

      
      From this output, we can see that most of the errors on our site are coming from links pointing to a file called “.txt”.

      
      
      
      
      8.4. Tennis match analysis with mrjob
      

      
      Having seen a small mrjob MapReduce workflow, let’s return to our tennis match data and dive into two more examples, each
         revolving around one of the greatest tennis players in history: Serena Williams.
      

      
      
      8.4.1. Counting Serena’s dominance by court type
      

      
      In this scenario, we’ll analyze Serena Williams’ historical dominance and learn to think in the key-value style that mrjob
         expects.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      One of the most interesting things about tennis is that it’s one of the few sports where the playing surface changes. Successful
         professionals learn to play on courts made of grass, clay, and concrete. Regardless of court, Serena Williams has been one
         of the most impressive tennis players in history. A sports writer has asked us to analyze the match logs and count her wins
         and losses on each court type.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If we were to think about this process in our old map and reduce way of thinking, we could imagine mapping each file into
         dicts that contained the information we’d be interested in and then reducing over that information to get the counts (figure 8.9). To use mrjob, though, we want to be thinking about keys and values. What data do we want to end up as keys in our final
         output, and what data should be in the values?
      

      
      
      
      Figure 8.9. A traditional map and reduce solution would map information into dicts to allow us to count Serena’s wins.
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      Well, we know we want to have the data organized by surface, so that makes sense as a key. As a value, we want Serena’s record:
         a count of her wins and a count of her losses. We can accumulate those counts in our .reducer by using our frequencies function—the same one we wrote back in chapter 5 when we introduced reduce—if we have a list of wins and losses. What we’ll want to output from our .mapper is the surface and either a W for a win or an L for a loss. Consider how this compares to our traditional map and reduce style approach in figure 8.9.
      

      
      To implement this arrangement, we’ll make a new class that inherits from MRJob called SerenaCounter with a .mapper method that returns either the surface and a W or the surface and an L. That class also will need to have a .reducer method that gets the frequencies of her results for each surface. To do that, we’ll bring back our frequencies code from chapter 5. We can see what this process looks like in the following listing.
      

      
      
      
      Listing 8.5. Counting Serena Williams’ wins and losses by surface with MRJob

      from mrjob.job import MRJob
from functools import reduce

def make_counts(acc, nxt):
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

def my_frequencies(xs):
    return reduce(make_counts, xs, {})

class SerenaCounter(MRJob):

  def mapper(self, _, line):
    fields = line.split(',')
    if fields[10] == 'Serena Williams':
        yield fields[2], 'W'
    elif fields[20] == 'Serena Williams':
        yield fields[2], 'L'

  def reducer(self, surface, results):
    counts = my_frequencies(results)
    yield surface, counts

if __name__ == "__main__":
  SerenaCounter.run()

      
      Our .mapper method ingests the lines from our match logs and checks the winner and loser fields for Serena’s name. If we find her in
         the winner field, we’ll output the court type and a W. If we find her in the loser field, we’ll output the court type and an L. If we don’t find her in either field, we won’t output anything.
      

      
      The .reducer method receives that information by key, which we take in through the surface parameter, and value, which we take in through the results parameter. Because we passed the court type out in first position in our .mapper, that value will be read as the key. The results will be accessible for each court type as a sequence, like ['W', 'L', 'W', 'W', . . . ]. We can use our frequencies function to get a dict of the counts of each unique element. We’ll output the surface and counts at the end of our .reducer to see the court type with which each grouping of wins and losses is associated.
      

      
      When we’re ready to run the script, we can run it from the command line:

      
      python3 serena_counter.py '/path/to/tennis/matches/wta_*.txt'

      
      Shortly after, we should see something like the following printed to the screen.

      
      "Carpet"  {"W": 15, "L": 3}
"Clay"    {"L": 34, "W": 145}
"Hard"    {"W": 418, "L": 67}
"Grass"   {"W": 84, "L": 10}

      
      MRJob combs through each record in all the match log files and sums up all of Serena’s wins and losses, providing us her record
         by court type. From this, we can see that she’s a dominant grass court player, winning more than eight matches for every loss.
         On clay comparatively, she’s the most human, winning just shy of 75% (67 wins in 90 matches) of her matches. On hard courts,
         where she plays most of her matches, she has racked up more than 240 wins, claiming victory more than 80% (243 wins in 290
         matches) of the time.
      

      
      
      
      8.4.2. Sibling rivalry for the ages
      

      
      Serena Williams is not alone in the Williams family when it comes to dominance in the sport of tennis.

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      Serena Williams’ story is made all the more interesting by her rivalry with another tennis great, her sister: Venus Williams,
         an Olympic gold medalist and five-time Wimbledon winner. Coming to terms with the fact that a story about Serena’s dominance
         across court types is not going to be very interesting—she’s amazing, we get it—the same sports writer has asked us to assess
         which sister has the advantage over the other on each type of court.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      We’ll attack this scenario just like the last one: working our way backwards from the results we want to the transformations
         we need to make. We know we’ll need our data organized by court type—that’s what the reporter wants to see—and we’ll also
         need counts of each sister’s victories on those courts. Sounds like our court types should be the keys, and the winners and
         wins should be our values.
      

      
      Because we know that both Williams sisters will play in all the matches they play against each other, it’s enough to count
         the winner—the loser of the match will be whoever doesn’t win. Our .mapper, then, will check to see if it’s a match between the sisters, and if it is, it’ll output the surface and the winner. Our
         .reducer will count up the wins for each sister by surface type. This process is illustrated in figure 8.10.
      

      
      
      
      Figure 8.10. The MRJob workflow uses keys and values to count up wins for the Williams sisters by surface.
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      Programmatically, we’ll have to create another class inheriting from the MRJob class. This one we’ll call WilliamsRivalry. The WilliamsRivalry class will need two methods: a .mapper and a .reducer. The .mapper will split the lines up into fields, check that both Venus and Serena Williams are playing, and output the winning sister
         and the surface they played on. The .reducer will need to count up each sister’s victories on the different types of courts. The code will look like the following listing.
      

      
      
      
      Listing 8.6. Evaluating the Williams sisters’ rivalry with MRJob

      from mrjob.job import MRJob
from functools import reduce

def make_counts(acc, nxt):
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

def my_frequencies(xs):
    return reduce(make_counts, xs, {})

class WilliamsRivalry(MRJob):

  def mapper(self, _, line):
    fields = line.split(',')
    players = [fields[10], fields[20]]
    if 'Serena Williams' in players and 'Venus Williams' in players:
      yield fields[2], fields[10]

  def reducer(self, surface, results):
    counts = my_frequencies(results)
    yield surface, counts

if __name__ == "__main__":
  WilliamsRivalry.run()

      
      A lot of the code in listing 8.6 is similar to the code in listing 8.5. In fact, the only substantive change is in the .mapper method. The new .mapper method breaks each line up into fields like our old .mapper, then creates a players variable—a string that holds the names of the winning and losing players. We use this to check that each of the Williams
         sisters is playing. If we find both sisters’ names in the players variable, we can then output the surface type, which is stored in the 2nd position, and the winner, which is stored in the
         10th position.
      

      
      Then, because our my_frequencies function counts up whatever is passed to it, we can achieve the desired results without changing our .reducer at all. Instead of counting up wins and losses by surface type, the counter will count up the winners by surface type. Ultimately,
         the .reducer will output the surface type and a dict containing each sister’s name and the number of times they bested the other on that surface.
      

      
      We can run this code from the command line, remembering to pass the path to the data as an argument, and we should see output
         like this:
      

      
      "Clay"    {"Serena Williams": 2}
"Grass"   {"Venus Williams": 2, "Serena Williams": 4}
"Hard"    {"Serena Williams": 10, "Venus Williams": 6}

      
      From the output, we can see that the siblings are competitive across both grass and hard courts. Venus won two of the grass-court
         matches, and Serena won four (66%). In hard-court matches, Serena is besting her sister in a similar percentage of the matches
         they play (64%). For Serena, winning 64% of the matches is a poor showing—remember that she won nearly 80% of her matches
         against the professional circuit at large on hard courts and nearly 90% of her matches on grass.
      

      
      
      
      
      8.5. Exercises
      

      
      
      8.5.1. Hadoop data formats
      

      
      Which data format does MRJob use to share data between the map step and the reduce step? (Choose one.)
      

      
      

      
         
         	Binary

         
         	Raw text

         
         	JSON

         
         	Pickle

         
      

      
      
      
      8.5.2. More Hadoop data formats
      

      
      True or False: Parallel processes like Hadoop MapReduce jobs are deterministic—their outputs are always produced in the same order.
      

      
      
      
      8.5.3. Hadoop’s native tongue
      

      
      Which of the following languages is Hadoop written in? (Choose one.)

      
      

      
         
         	Haskell

         
         	C++

         
         	JavaScript

         
         	Java

         
      

      
      
      
      8.5.4. Designing common patterns in MRJob
      

      
      When working with MRJob, we’ll achieve better performance if we attempt to code in an MRJob style—using keys and values along with mappers and reducers. Implement some of the common map and reduce style patterns we’ve seen so far.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      The code snippets here illustrate the functionality of the desired functions. You’ll want to implement the MRJob class for each snippet.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      

      
         
         	Filter— Take a sequence and return a subset of that sequence.
            
            
            
>>> filter(is_even, [1,2,3,4,5])  # [2,4]

            

         
         	Frequencies— Take a sequence and count the things in that sequence.
            
            
            
>>> frequencies([1,2,1,1,2])  # {1:3, 2:2}

            

         
         	GroupBy— Group a sequence by values resulting from a function.
            
            
            
>>> group_by(is_even, [1,2,3,4,5])  # {True: [2,4], False: [1,3,5]}

            

         
         	CountBy— Get counts of keys resulting from a function.
            
            
            
>>> count_by(is_even, [1,2,3,4,5])  # {True: 2, False: 3}

            

         
      

      
      
      
      
      Summary
      

      
      

      
         
         	JSON is a data format that we can use to pass complex data structures between the mapper and reducer steps of an Apache Hadoop Streaming MapReduce job.
         

         
         	We use the json.dumps() and json.loads() functions from Python’s json library to achieve this transfer.
         

         
         	We can use the mrjob library to write MapReduce jobs without having to interact directly with Hadoop.

         
         	The mrjob library forces us to think about our map and reduce steps as taking in and spitting out key-value pairs.
         

         
         	Hadoop uses these keys under the hood to allocate data to the proper location.

         
         	The mrjob library enforces JSON data exchange between the mapper and reducer phases, so we need to ensure that our output data is JSON serializable.
         

         
         	The mrjob library was designed for big data processing in the cloud—it has excellent support for Amazon Web Services’ Elastic
            MapReduce, which we will cover in chapter 12.
         

         
      

      
      
      
      
      
      
      


Chapter 9. PageRank with map and reduce in PySpark
      

      
      This chapter covers

      
      

      
         
         	Options for parallel map and reduce routines in PySpark

         
         	Convenience methods of PySpark’s RDD class for common operations
         

         
         	Implementing the historic PageRank algorithm in PySpark

         
      

      
      In chapter 7, we learned about Hadoop and Spark, two frameworks for distributed computing. In chapter 8, we dove into the weeds of Hadoop, taking a close look at how we might use it to parallelize our Python work for large datasets.
         In this chapter, we’ll become familiar with PySpark—the Scala-based, in-memory, large dataset processing framework.
      

      
      As mentioned in chapter 7, Spark has some advantages:
      

      
      

      
         
         	Spark can be very, very fast.

         
         	Spark programs use all the same map and reduce techniques we learned about in chapters 2 through 6.
         

         
         	We can code our Spark programs entirely in Python, taking advantage of the thorough PySpark API.

         
      

      
      In this chapter, we’ll take a look at how we can make the most of PySpark by focusing on its foundational class: the RDD—Resilient Distributed Dataset. We’ll explore the map and reduce-like methods of the RDD that we can use to perform familiar map and reduce workflows in parallel. We’ll learn about some of the RDD class’s convenience methods that make our lives easier. And we’ll learn all this by implementing the PageRank algorithm—the
         simple but elegant ranking algorithm that once formed the backbone of Google’s search.
      

      
      
      9.1. A closer look at PySpark
      

      
      In chapter 7, we introduced Spark and saw that we could use it to write Python code and have that code translated into fast parallel map
         and reduce programs. This process of translation—from Python into Scala—was reflected in the style of our Python code. In
         this chapter, we’ll take a look at the map and reduce style utilities available to us through PySpark’s RDD class.
      

      
      The RDD class has methods that we can group into three categories:
      

      
      

      
         
         	map-like methods— Methods we can use to replicate the function of map

         
         	reduce-like methods— Methods we can use to replicate the function of reduce

         
         	Convenience methods— Methods that solve common problems
         

         
      

      
      We’ve seen functions throughout this book that fall into each of these categories; for example, the map variations (imap, starmap) all fall into map-like methods, and functions like filter and frequencies fall into the convenience methods. PySpark has its own tools that offer similar convenience as well as PySpark RDD-based parallelization.
      

      
      
      9.1.1. Map-like methods in PySpark
      

      
      We’ll start our closer look at PySpark by examining map-like methods: .map, .flatMap, .mapValues, .flatMapValues, .mapPartitions, and .mapPartitionsWithIndex. You’re already familiar with the first two—we’ve seen them in previous chapters. The second two are unique to Spark and
         require us to dive a little more into how Spark works. In this section, we’ll take a look at how we can use these methods
         to replicate the map behaviors we’ve seen in previous chapters.
      

      
      
         
            
         
         
            
               	
            

         
      

      Refresher

      
      
      Resilient Distributed Dataset objects are the foundation of Spark’s power. They are an abstraction that allows programmers
         to use high-level methods (like .map and .reduce) to execute parallel operations in-memory across a distributed system. Because RDDs hold as much data in memory as possible, Spark can be much, much faster than Hadoop. In PySpark, most of the parallel operations
         we’ll want to take advantage of are implemented as methods to an RDD class. This class represents the Resilient Distributed Dataset we’re operating on.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      The RDD’s .map method, as we would expect, takes a function and applies it to each of the elements of our RDD. For example, if we open some text files with SparkContext’s .textFile method (which we introduced in chapter 7), we would map a function over the resulting strings. We can imagine a function make_words that splits a string into words and would turn our list of text strings into a list of word lists, with one word list for
         each string. We can see this process in figure 9.1.
      

      
      
      
      Figure 9.1. The RDD.map method maps across the RDD, in this case turning words in each string into a list of strings.
      

      
      [image: ]

      
      
      Like we saw in listing 7.7, though, sometimes we’ll want one big sequence instead of a sequences of sequences. For that, we can use the RDD .flatMap method. .flatMap is equivalent to map, but it returns a flattened sequence of the elements. Using the same example from figure 9.1, .flatMap would return a single long sequence of words, disregarding the information about which string they came from. Figure 9.2 shows an example of this.
      

      
      
      
      Figure 9.2. The RDD.flatMap method returns a flattened sequence and is useful when we’re interested in the elements of each partition all together.
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      The .mapValues and .flatMapValues methods are like .map and .flatMap, except they operate only on the values of key-value pairs. For example, we may have data about web pages on our site and
         the IP addresses that visited them, and we’re interested in the number of unique visitors for each page. Assuming we had this
         data stored as key-value pairs, we could then use .mapValues to retain the information in the key (the web page) but alter each value, transforming a list of IP addresses into a count.
         We can see this example in figure 9.3.
      

      
      
      
      Figure 9.3. You can use the RDD’s .mapValues method to retain the keys while altering the values.
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      Lastly, the .mapPartions and the .mapPartionsWithIndex methods of the RDD class are variations of map that are partition aware—they know which partition of our RDD the data being processed resides on. Partitions, as we mentioned in chapter 7, are the abstraction that RDDs use to implement parallelization. The data in an RDD is split up across different partitions, and each partition is handled in memory. It is common in (very) large data tasks
         to partition an RDD by a key. For example, if we have an enormously popular web page—going back to the example we just discussed in figure 9.3—we may partition the website by page using the RDD’s .partitionBy method. Using this partitioning strategy, we could perform operations on each page in memory in a single partition (in other
         words, we’d perform those operations quickly). .mapPartitions and .mapPartitionsWithIndex are the .map and .mapValues equivalents for partitions. An example of this is shown in figure 9.4.
      

      
      
      
      Figure 9.4. Partitioning a large dataset by logical keys optimizes our compute processes and makes future join operations easier.
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      9.1.2. Reduce-like methods in PySpark
      

      
      Of course, while we need map to do our data transformation, we also need reduce to summarize our data. The RDD class has three methods that I consider reduce-like:
      

      
      

      
         
         	.reduce

         
         	.fold

         
         	.aggregate

         
      

      
      Each of these methods has a byKey variation:
      

      
      

      
         
         	.reduceByKey

         
         	.foldByKey

         
         	.aggregateByKey

         
      

      
      The methods .reduce, .fold, and .aggregate are all similar to Python’s reduce function you’ve gotten to know, except that they each have differing levels of assumptions—with .reduce being the most presumptive, .aggregate being the most flexible, and .fold falling in between.
      

      
      The RDD .reduce method provides reduce functionality—taking a sequence and accumulating it into some other data structure—however, we can’t provide either an initializer
         value or a combination function to RDD’s .reduce method. This means that to use the RDD .reduce method, we’ll expect to have the same data type all the way through the operation—including our ultimate data structure.
         A good example of the type of operation this would be suited for is summation. In summation, all of our elements will be numeric
         data types, and our output value will be a numeric data type.
      

      
      Slightly more nuanced, the .fold method allows us to provide an initializer value in addition to an aggregation operation. This makes .fold suitable in situations where we may want to have a guaranteed value that doesn’t exist in our sequence. For example, if we
         wanted to find the minimum value of a sequence of numbers but we wanted to ensure that it would be at least as small as one,
         we could use .fold with the min function and 1 as an initializer.
      

      
      The .aggregate method provides all the functionality of a parallel reduce. We can provide an initializer value, an aggregation function, and a combination function. (We introduced combination functions
         in chapter 6 on parallel reduce. They provide the instructions for how to join work accumulated in parallel by the accumulation functions and may be different
         from the accumulation functions in complex workflows.) We can use this method for anything .reduce and .fold can do, and anything else we may want to use a parallel reduce for. Table 9.1 summarizes the differences between the methods.
      

      
      Table 9.1. Differences between the RDD’s .reduce, .fold, and .aggregate methods
      

      
         
            
            
            
            
         
         
            
               	
                  Method

               
               	
                  Aggregate

               
               	
                  Initialize

               
               	
                  Combine

               
            

         
         
            
               	RDD.reduce()
               	Yes
               	No
               	No
            

            
               	RDD.fold()
               	Yes
               	Yes
               	No
            

            
               	RDD.aggregate()
               	Yes
               	Yes
               	Yes
            

         
      

      
      As mentioned, each of the three methods we just looked at—.reduce, .fold, and .aggregate—also has a byKey variation: .reduceByKey, .foldByKey, and .aggregateByKey. Each of these methods works like the previous methods, but they operate on the values of a sequence of key-value pairs and
         only accumulate one value per key. For example, if we had a sequence of keys and values indicating pages and the number of
         seconds a user spent on a page during a single visit to it, we could get totals for each page using the .reduceByKey method. This is illustrated in figure 9.5 and shown in listing 9.1.
      

      
      
      
      Figure 9.5. You can use the .reduceByKey method (as well as .foldByKey and .aggregateByKey) to accumulate values specifically for each key in a sequence of key-value pairs.
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      Listing 9.1. Counting page visit time with .reduceByKey

      >>> page_visits = sc.parallelize([("index.html", 3), ("cart.html", 11),
                                 ("checkout.php", 2), ("index.html", 6),
                                 ("search.html", 2), ("cart.html", 3)])
>>>> page_vists.reduceByKey(sum)
("index.html", 9)
("cart.html", 14)
. . .

      
      
      
      
      9.1.3. Convenience methods in PySpark
      

      
      Lastly, PySpark provides a number of convenience methods for manipulating RDDs. Many of these mirror the convenience functions in the functools, itertools, and toolz libraries we’ve seen already in chapters 4 and 6. Others are Python mirrors of methods that exist in Scala—the language in which Spark is written. Methods you should be aware
         of include
      

      
      

      
         
         	.countByKey()

         
         	.countByValue()

         
         	.distinct()

         
         	.countApproxDistinct()

         
         	.filter()

         
         	.first()

         
         	.groupBy()

         
         	.groupByKey()

         
         	.saveAsTextFile()

         
         	.take()

         
      

      
      
      The .filter, .first, and .take methods of Spark’s RDD
      

      
      Let’s start with the ones that have direct mirrors in previous chapters: .filter, .first, and .take. The RDD class’s .filter method behaves like Python’s filter function: it uses a function to return a new sequence with only elements that pass the filter by making the function return
         True. The RDD class’s .first method returns the first value in the sequence. And the .take method, like take from toolz, allows us to retrieve the first however many elements of a sequence.
      

      
      
      
      Counting elements of an RDD with .countByKey and .countByValue
      

      
      Next, we have .countByKey and .countByValue. These methods behave like the frequencies function—both the one we built ourselves and the one implemented in toolz. We can use these methods to get a key-value sequence
         of things and their counts. .countByKey returns counts of the keys in the RDD, whereas .countByValue returns counts of the values. We can see an example of how the two differ in the following listing.
      

      
      
      
      Listing 9.2. PySpark RDD’s .countByKey and .countByValue methods
      

      >>> xs = sc.paralellize(["Spark", "is", "great"])
>>> xs.map(lambda x:(x, len(x))).countByKey()
[("Spark", 1), ("is", 1), ("great", 1)]

>>> xs.map(lambda x:(x, len(x)).countByValue()
[(5, 2), (2, 1)]

      
      Listing 9.2 shows that if we have an RDD of words and their lengths as tuples, we can use the .countByKey method to get a count of all the unique words and the .countByValue method to get a count of the unique lengths. In this case, the words are acting as the keys because they’re in first position, and the lengths are acting as the values because they’re in second position.
      

      
      
      
      Counting unique things with RDD’s .countApproxDistinct
      

      
      Another counting method that’s useful—especially when working with large datasets—is the .countApproxDistinct method. Often, we want to know how many unique elements are in our dataset. How many unique words were used in a document
         collection? How many unique IP addresses are in our logs? How many unique sessions visited our site? Spark provides the .distinct method for when we have a small enough dataset that it’s fine to calculate an exact number. The problem when we have large
         datasets is that these counts are time expensive; they require a full pass of often very long sequences. .countApproxDistinct allows that process to be sped up and parallelized, if a small window of error is allowable. It uses an approximation algorithm
         that is parallelizable, allowing us to benefit from the time savings of parallelization
      

      
      
      
      Collecting elements of an RDD with .groupBy and .groupByKey
      

      
      Another category of convenience methods we’ll want to know about are two methods—.groupBy and .groupByKey—we can use for restructuring our RDD. Each of these methods collects all the instances of items in our RDD and returns an RDD of key-value tuples. For .groupByKey, the items are organized using the keys of the existing key-value tuples. For .groupBy, the items are organized under new keys resulting from a function (that we get to provide) applied to each element of the
         RDD.
      

      
      For example, if we had a sequence of words and wanted to collect them based on their first letter, we would pass a function
         to .groupBy that returned the first character of a string.
      

      
      >>> xs = sc.parallelize(["apple", "banana", "cantaloupe"])
>>> xs.groupBy(getFirstLetter)
[("a",["apple"]), ("b", ["banana"]), ("c", ["cantaloupe"])]

      
      If we had a sequence where we already had key-value tuples, we could use .groupByKey, similarly, to obtain groupings of the elements that shared a key.
      

      
      >>> xs = sc.parallelize([("pet", "dog"), ("pet", "cat"),
                         ("farm", "horse"), "farm", "cow")])
>>> xs.groupByKey()
[("pet", ["dog", "cat"]), ("farm", ["horse", "cow"])]

      
      Somewhat counterintuitively, .groupBy is a special implementation of the .groupByKey method, so whenever you’re given a choice between the two, it’s better to use .groupByKey.
      

      
      
      
      Saving RDDs to text files
      

      
      Lastly, there’s the .saveAsTextFile method, which does what its name implies it does: it saves an RDD to a text file. Each element of the RDD will be written in string form to a text file, separated from the next element by a newline. This is excellent for a few reasons:
      

      
      

      
         
         	The data is in a human-readable, persistent format.

         
         	We can easily read this data back into Spark with the .textFile method of SparkContext.
         

         
         	The data is well structured for other parallel tools, such as Hadoop’s MapReduce.

         
         	We can specify a compression format for efficient data storage or transfer.

         
      

      
      First, having the data in a persistent, human-readable format puts us in a good position to have high-quality data for a long
         time. Because the data is human readable, it can be manually inspected—even by nonprogrammers—to ensure that it’s free from
         errors. Because the data is in plain text and not bytecode, we have some security that changes to our operating system or
         our runtime environment won’t render the data obsolete.
      

      
      Second, we can quickly read the data back in using the .textFile method of SparkContext. This is excellent if we have textual data where we want to be working with strings, or if we have simply structured data.
         If our data is complex, we may not want to store the data in this format; the process of reconstituting it could be painful.
         Most of the work we’ll do in Spark will use straightforward data structures.
      

      
      Third, this format is excellent for Hadoop’s MapReduce, which expects a file with lines to process. If you have MapReduce
         code that you like and you’re doing work in Spark as well, this can be a great way to share data between the two processes.
         This is a common use case, with lots of teams having legacy MapReduce jobs they like but starting to incorporate more and
         more Spark into their work.
      

      
      Fourth, and finally, we can specify a compression format for the text file so it’s saved in a space-efficient way. A wide
         range of codecs are available for this, including two common codecs: bz2 and gzip. Between bz2 and gzip, bz2 is the slower,
         more compressed format, and gzip is the faster, less compressed format. Specifying a compression format will make the data
         unreadable by a human until it is decompressed. However, we don’t need to decompress the data before using it again in Spark
         or Hadoop jobs.
      

      
      To specify a compression format, we have to call the format’s full Hadoop codec name. The full name for bz2 is org.apache.hadoop.io.compress.BZip2Codec, and the full name for gzip is org.apache.hadoop.io.compress.GzipCodec.
      

      
      >>> my_rdd.saveToText("./path/to/file.bz2",
                      "org.apache.hadoop.io.compress.BZip2Codec")

>>> my_rdd.saveToText("./path/to/file.gz",
                      "org.apache.hadoop.io.compress.GzipCodec")

      
      It’s convention to save a bz2 compressed file with a .bz2 ending and a gzip compressed file with a .gz ending.

      
      
      
      
      
      
      9.2. Tennis rankings with Elo and PageRank in PySpark
      

      
      Now that we have the basics of Spark under us, let’s use it to build one of the classic large dataset algorithms: PageRank.
         Consider the scenario from chapter 8.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      A new professional tennis league is forming, and they have hired you to come up with skill estimates for professional tennis
         players so that they can direct their efforts for recruiting players to the new league. They have provided you with data for
         several years of matches and would like you to return to them with a list of players and their corresponding skills.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      9.2.1. Revisiting Elo ratings with PySpark
      

      
      We looked at how we could solve this problem using Elo ratings—a ranking system that iteratively adjusts players’ scores after
         each win and loss—with Hadoop MapReduce. We can implement this solution in Spark as well, using Spark’s reduce capabilities. To do that, we’ll need to
      

      
      

      
         
         	write Spark code to bring in the data

         
         	copy the elo_acc accumulator function from listing 8.2

         
         	call the elo_acc function with the right Spark reduce-like method
         

         
      

      
      We can see what this will look like in the following listing.

      
      
      
      Listing 9.3. Elo rating reduction in Spark
      

      #! /usr/bin/env python3

import re
from pyspark import SparkContext

def round5(x):
  return 5*int(x/5)

def clean_match(match):
  ms = match.split(",")
  match_data = {"winner": ms[10],
                "loser": ms[20],
                "surface": ms[2]}
  return match_data

def elo_acc(acc,nxt):
    w_elo = acc.get(nxt["winner"],1600)
    l_elo = acc.get(nxt["loser"],1600)
    Qw = 10**(w_elo/400)
    Ql = 10**(l_elo/400)
    Qt = Qw+Ql
    acc[nxt["winner"]] = round5(w_elo + 25*(1-(Qw/Qt)))
    acc[nxt["loser"]] = round5(l_elo - 25*(Ql/Qt))
    return acc

def elo_comb(a,b):
    a.update(b)
    return a

if __name__ == "__main__":
  sc = SparkContext(appName="TennisElos ")
  text_files = sc.textFile("/path/to/my/data/wta_matches*")
  xs = text_files.map(clean_match) \
                 .aggregate({},elo_acc, elo_comb)

  for x in sorted(xs.items(), key=lambda x:x[1], reverse=True)[:20]:
      print("{:<30}{}".format(*x))

      
      The majority of the code in the listing comes from chapter 8 and needs little further explanation. We reviewed the clean_match and elo_acc functions in section 8.2.2. These are the two major differences between the code in listing 9.3—written for PySpark—and the code from listing 8.2:
      

      
      

      
         
         	This code does without any of the stdin/stdout and JSON we had to concern ourselves with using MapReduce.
         

         
         	We use Spark methods to read in the data, clean the data, and aggregate over the data.

         
      

      
      The thing that we’re probably most happy with about the PySpark version of our Elo rating code is that the code is entirely
         in Python—without any need to interact with the terminal through stdout or stdin and without any need to translate our data types into JSON. By using PySpark, we use Python data types everywhere, and we
         don’t even need to import the JSON module. This is a pretty big advantage in terms of convenience, especially if we’re dealing with more sophisticated data
         structures that may not convert neatly into JSON.
      

      
      It’s also important that we can use Spark methods to handle all our data processing:

      
      

      
         
         	The first method we call, .textFile, brings in the text data.
         

         
         	The .textFile method returns an RDD, which has a .map method we can use to clean the data with our clean_matches function, so we do that next.
         

         
         	Then, lastly, we use the .aggregate method with our elo_acc function and a new elo_comb function to score the players.
         

         
      

      
      We use the .aggregate method in this instance because it’s the simplest reduce-like method that meets our needs. We need an empty dict to start with, so we can’t use the .reduce method because that has no space for an initializer. And we also need a different combine function than the aggregate function, so we can’t use .fold—.fold has no room for a combine function. The only reduce-like method left is .aggregate, which gives us the opportunity to specify all three pieces of our parallel reduce.
      

      
      That covers the substantive changes to the code; however, you may have noticed one cosmetic change in listing 9.3. It’s subtle, but in the middle of our map and reduce workflow, we insert a backslash character and move to the next line.
         This is a PySpark convention and an aspect of the Scala programming language adapted for Python. In Scala, you can chain methods,
         with each method on a new line by default. If we do that in Python, Python will throw an error. That’s because Python is famously
         white-space aware. We can get around this error by adding a backslash after our method call, as shown in the following listing. The backslash character is Python’s manual line wrap character.
      

      
      
      
      Listing 9.4. Method chaining in Scala, and two ways in Python
      

      # Example Scala code
my_dataset.map(foo)
          .reduce(bar)

# Example Python code (no wrap)
my_dataset.map(foo).reduce(bar)

# Example Python code (with wrap)
my_dataset.map(foo)\
          .reduce(bar)

      
      If you’re working with other PySpark developers, they’re more likely than not going to be aware of this convention. For traditional
         Python developers, however, this convention might seem strange or even incorrect.
      

      
      Ultimately, though, we’ll run our script and receive Elo ratings for our tennis players that look something like figure 9.6. Here, we can see a sorted collection of players and their rankings.
      

      
      
      
      Figure 9.6. When we calculate the Elo ratings of tennis players using PySpark, our output will be a sequence of players and their ratings—the
         higher the rating, the better the player.
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      9.2.2. Introducing the PageRank algorithm
      

      
      Now we can rank players based on their Elo rating with both MapReduce and Spark, but what if we didn’t want to use Elo ratings?
         What if we wanted a system that didn’t punish players for losing matches but only rewarded players for beating opponents?
         What if we wanted to reward players extra for beating high-quality opponents, encouraging top-ranked players to play competitive matches against one another? We can design a system like that using a variation of
         the PageRank algorithm.
      

      
      PageRank is famous as the former backbone to Google’s ranking system. Websites that had a higher PageRank score would show
         up higher in the Google search results, and websites with low PageRank scores may not show up at all. Over time, this process
         has changed, but the algorithm’s simple and powerful assumptions have led to its longevity, and it’s still used outside of
         Google searches (including in a variety of capacities related to sports analytics).
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         PageRank and Google search
         
         The PageRank algorithm was the result of a research project by then Stanford PhD students Larry Page (who named the algorithm
            after himself) and Sergey Brin. The two would go on to use the algorithm as the backbone of Google’s search engine. Historians
            credit Google’s success to the ease of distributing the algorithm, which allowed Google to scale, and the way the algorithm
            naturally aligns with human assessments of importance.
         

         
         Over time, Google’s search engine has become more complex. The search algorithm now uses hundreds of features. Google still
            uses a version of PageRank to assess the reliability and authority of websites. The Google Knowledge Graph and Google’s preference
            for mobile-friendly and social-friendly content are the most evident forces in contemporary Google search.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      The basic premise of PageRank was to treat website rankings like an election, with somewhat unique rules. The general rules
         are as follows:
      

      
      

      
         
         	Every page has a number of points: its PageRank score.

         
         	Every page votes for the pages that it links to, distributing to each page a number of points equal to the linking page’s
            PageRank score divided by the number of pages it links to.
         

         
         	Each page then receives a new PageRank score, based on the sum of all the votes it received.

         
         	The process is repeated until the scores are “good enough.”

         
      

      
      Of course, tennis players don’t link to other tennis players. We can, however, use players’ losses as a vote for the players
         who are better than them. For example, if Venus Williams defeats her sister Serena at tennis, then Serena will vote for Venus
         with some of her points. A small-scale example of the PageRank algorithm for tennis rankings is shown in figure 9.7.
      

      
      
      
      Figure 9.7. We can apply the PageRank algorithm to tennis players, where each player contributes points to the players who are better
         than them.
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      In the figure, we see five tennis players, each with 100 points to distribute.

      
      

      
         
         	Player 1 lost to players 2, 3, and 5 (3 total).

         
         	Player 2 lost to players 1 and 4 (2 total).

         
         	Player 3 lost to players 1 and 2 (2 total).

         
         	Player 4 lost to players 2 and 3 (2 total).

         
         	Player 5 lost to everyone (4 total).

         
      

      
      Because three players have two losses, it’s hard to tell immediately who’s the best, but PageRank will help us figure it out.
         Player 1 distributes 33 (1/3) of their 100 points to players 2, 3, and 5. Players 2, 3, and 4 each vote with 50 points to
         the players to whom they lost. And player 5 votes with 25 points to each other player.
      

      
      Next, we would add up all the votes. Player 2 ends up with the most points at 158 (50+50+25+33), followed by player 1 with
         125 (50+50+25), followed by player 3 at 108 (50+33+25), player 4 at 75 (50+25), and player 5 at 33, from their lone victory
         over player 1. In a more robust example, we would then repeat this process a few times so that victories over higher rated
         players would be worth more. For example, players 1 and 4 should get lots of points for their victory over player 2—who is
         the best player—whereas beating player 5, who lost to everyone, should adjust the ratings much less. After three iterations,
         the players would be rated as follows:
      

      
      

      
         
         	Player 2—145 points

         
         	Player 1—125 points

         
         	Player 3—101 points

         
         	Player 4—81 points

         
         	Player 5—47 points

         
      

      
      One of the largest advantages of the PageRank algorithm, which we’ll see in the next section, is that it’s naturally parallelizable.
         We can do all the point giving and point summing in parallel with our most strict assumptions about parallelization. This is one of the reasons why it worked so well
         for Google—they were able to parallelize their problem and scale it to the massive dataset they were working with. In the
         next section, we’ll implement a parallel PageRank algorithm with PySpark.
      

      
      
      
      9.2.3. Ranking tennis players with PageRank
      

      
      Now that we have an idea of how PageRank works, how should we go about implementing it in PySpark? Well, we know our implementation
         will need to have five steps:
      

      
      

      
         
         	Read in the data.

         
         	Structure the data in the right way.

         
         	Do an initial point allocation.

         
         	Do several rounds of point allocation until we’re satisfied with the results.

         
         	Return some ratings.

         
      

      
      Figure 9.8 illustrates the first four steps.
      

      
      
      
      Figure 9.8. Using the PageRank algorithm for rating tennis players in PySpark requires both custom Python functions and parallel PySpark
         methods.
      

      
      [image: ]

      
      
      To read in the data, we’ll use the same method we’ve been using so far in this book: the .textFiles method from SparkContext. This method returns an RDD, which is the Spark class that has all the nice parallel map and reduce options we’ll want to use to build our programs.
      

      
      Next, we’ll move on to structuring the data. For that, we’ll use the RDD’s .map method to retrieve the winners and losers of each match, and we’ll use the RDD’s .groupByKey method to get a list of defeats for each player. To ensure that .groupByKey does what we want, we’ll return winners and losers as a tuple in the form of: (<loser>, <winner>). From there, we’ll use another .map statement to add some metadata that will be helpful when calculating the PageRank scores.
      

      
      With the data in the right format, we’ll reduce over our data several times. Each time, we’ll calculate the PageRank scores
         for each player, based on who defeated who, by looping through the losing players and giving a fraction of their score to
         each player who defeated them. Every new round, we’ll use the latest score of the player.
      

      
      Lastly, after a few rounds, we can sort our players, return their scores, and call it a day. All in all, the solution we’ll
         draw up for this problem will be a pretty large program. You can find the full script in the code repository for this book
         (https://github.com/jtwool/mastering-large-datasets). Here, I think it’s worth focusing our attention on three major areas:
      

      
      

      
         
         	The data preparation process with .groupByKey and .mapValues

         
         	The allocate points aggregator function and the combine_scores combiner
         

         
         	The iterative score calculations and the partial application of the allocate points function

         
      

      
      
      Preparing the tennis match data with .groupByKey and .mapValues
      

      
      The first section, data preparation, revolves around this bit of code:

      
      xs = match_data.map(get_winner_loser)\
                 .groupByKey()\
                 .mapValues(initialize_for_voting)

      
      In this section, we’ve already read the data into a variable called match_data, so we’re working with an RDD of strings. We know that what we want to have is an RDD of keys (player names) with dicts as their values. Each of those dicts must have the information we need to calculate PageRank scores later on. To that end, they’ll need the players the player
         lost to, the number of those players, and the player’s current page rank score.
      

      
      To get from a match string to this value will be a three-step process:

      
      

      
         
         	We’ll map the match data into tuples of losers and winners.
         

         
         	We’ll group the matches by the losing player.

         
         	We’ll map a transformation across the keys and values to prepare our data for PageRank.

         
      

      
      Altogether, this process will look like figure 9.9.
      

      
      
      
      Figure 9.9. We prepare tennis match data for PageRank in PySpark with .map, .groupByKey, and .mapValues.
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      As we can see in figure 9.9, our first map step involves taking a subset of the match data and arranging it into tuples. This will return an RDD of tuples, which we can use .groupByKey on to return an RDD of keys and values. The keys in these instances represent the losing players, whereas the values are a sequence of players to whom the losing player lost. Lastly,
         we can use the initialize_for_voting function to add metadata and convert the list into a dict for a clearer workflow down the road.
      

      
      
      
      Allocating points and combining the scores
      

      
      The next two parts of the process we’ll want to pay extra attention to are the aggregation and combination functions. These
         are the functions we call during the reduce step that constitute the heavy lifting of our program. These functions are how we implement PageRank, and we can see them
         in figure 9.10.
      

      
      
      
      Figure 9.10. We can parallelize the ranking step of PageRank into a two-step parallel reduce workflow.
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      Our aggregation function—allocate_points—is responsible for taking in a new player, their losses, and associated metadata, and assigning points to the players who
         defeated them. The points are then stored in a dict, with players’ names as keys and players’ PageRank scores as values. We can see this process in figure 9.11.
      

      
      
      

      
      
      Figure 9.11. The allocate_points function takes in players’ information and updates the accumulation variable to reflect the players’ updated scores.
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      Taking a look at the code for the allocate_points function, we can see precisely how this works. We split the player into a key and value because we had the player data stored
         as a two-tuple coming out of our .mapValues step from the previous subsection.
      

      
      def allocate_points(acc, nxt):
  k,v = nxt
  boost = v['rating'] / (v['n_losses'] + .01)
  for loss in v['losses']:
    if loss not in acc.keys():
      acc[loss] = {'losses':[], 'n_losses': 0}
    opp_rating = acc.get(loss,{}).get('rating',0)
    acc[loss]['rating'] = opp_rating + boost
  return acc

      
      Next, we calculate the boost that each player who defeated the current player will receive. Each player allocates their entire
         rating uniformly to all those who defeated them. This means that the amount of the boost a player receives by beating our
         current player is equal to that player’s rating divided by their number of losses. To prevent a divide by zero error, I add
         a small value to the number of losses a player has, in the event they’re undefeated.
      

      
      Then, we allocate those points to each player who has defeated our current player—updating the accumulation variable. We do
         this by setting the opposing player’s rating equal to their current rating plus the boost factor. After this, we return the
         accumulator and move on to the next player.
      

      
      This takes care of the accumulation step of our parallel reduce. As we know from chapter 6, though, parallel reduce has two parts: the parallel accumulation and the combination. In our combination step, we have to join together all the values
         we accumulated in parallel. Typically, this is the challenging part of parallel reduce because we’ll concoct complex data structures—no such problems here.
      

      
      Coming out of our reduce step, we’ll want to join dicts with keys as strings and values that are integers, such that the resulting dict has all the keys of both dicts and the values are the sums of the values. We can see this process in figure 9.12.
      

      
      
      
      Figure 9.12. Combining the players’ PageRank ratings together requires joining dicts into a single dict.
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      In Python, we’ll implement this process by looping through all the elements of one dict and attempting to add the values to the current value for that key in the other dict. As we do that, we’ll update the dict that we aren’t looping through. If we don’t find a key from the dict we are looping through in the other, we’ll update the other so that key is equal to the value from our looping dict. Finally, we’ll return the dict we didn’t loop through, since that’s the dict we’ve been updating. Here’s how that looks:
      

      
      def combine_scores(a, b):
  for k,v in b.items():
    if k in a:
      a[k]['rating'] = a[k]['rating'] + b[k]['rating']
    else:
      a[k] = v
  return a

      
      Together, these two steps represent a single round of PageRank. One of the beauties of the PageRank algorithm is that we can
         do the entire process in parallel. We can take advantage of this fact if we need to rank large amounts of information quickly.
         By increasing our compute capacity, we can decrease the time we spend ranking.
      

      
      
      
      Iteratively calculating scores
      

      
      The last step we’ll want to pay extra attention to is the way we iteratively calculate these scores. In the first round of
         a PageRank process, each of the pages—in our case, tennis players—are rated evenly. I decided to start everyone with 100 points, but any number of points will
         do. Having a uniform number of points, however, doesn’t reflect reality. Some web pages are more important than others, and
         some tennis players are better than others. A link from the New York Times web page will mean more traffic than a link from a high school newspaper’s web page, and a victory over Serena Williams is
         more notable than a victory over a career journeywoman.
      

      
      To resolve this problem, we run the PageRank process several times. Each time we do the same thing, but we’ll use the scores
         from the previous round to inform our ratings. This way, wins over Serena or links from the New York Times become more important in each subsequent round.
      

      
      To do this, we’ll insert our reduce step inside a for loop and bookend it with some code to set up the next round of the reduction:
      

      
      
        for i in range(7):
    if i > 0:
      xs = sc.parallelize(zs.items())
    acc = dict(xs.mapValues(empty_ratings).collect())
    zs = xs.aggregate(acc, allocate_points, combine_scores)

      
      Before we start our reduce step, we need to set up our accumulation variable: acc. This is the variable that holds all the players and their updated ratings. To get this variable, we’ll empty the ratings
         of all the keys from our dict of dicts.. This will give each player a fresh new rating of 0 at the beginning of each PageRank step. From there, we can reduce.
      

      
      Then, after each reduce step beyond the first, we’ll create a new sequence of players to reduce over. This sequence will have all the metadata from our initialization, plus the new ratings that we can use in the next
         PageRank iteration.
      

      
      Importantly, though, our reduce process—which we call using the RDD .aggregate method—returns a dict. We need an RDD so that we can take advantage of Spark’s parallelization. To get an RDD, we’ll need to explicitly convert the items of that dict into an RDD using the .parallelize method from our SparkContext: sc.
      

      
      Once our iteration is complete, we’ll have a dict with the players as keys and their scores as values. When you run this script, remember to run it with the spark-submit utility to take advantage of Spark’s parallelization. You can run it with your local Python runtime as well, but it won’t
         take advantage of the full power of Spark. We can see the script’s output in figure 9.13.
      

      
      
      
      Figure 9.13. The output of our PageRank process shows the top players and their PageRank scores.
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      Note that in addition to the PageRank scores, we also include the log of the players’ PageRank scores. Taking the log of each
         player’s scores groups players whose scores are similar. When Google released the PageRank toolbar, they revealed a log-scaled
         version of their PageRank scores instead of the PageRank scores themselves. The log-scaled scores may be better representations
         of PageRank scores, as the difference between 4100 and 3990 is quite small.
      

      
      
      
      
      
      9.3. Exercises
      

      
      
      9.3.1. sumByKey
      

      
      A common situation in which you’ll find yourself in Spark will be having an RDD of keys and values in two-tuples. A common operation on those keys and values will be summing all the values by key. This operation can be called sumByKey. Use the right reduce-like method of the RDD to sum the values in an RDD by key.
      

      
      >>> xs = sc.parallelize([("A", 1), ("A", 1), ("A", 2),
...                     ("B", 2), ("A", 1),
...                     ("C", 1),
...                     ("D", 7), ("D", -2)])
>>> sumByKey(xs)
[("A", 4), ("B", 3), ("C", 1), ("D", 5)]

      
      
      
      9.3.2. sumByKey with toolz
      

      
      The toolz library has a reduceBy function that takes a key function, an operation, and a sequence to achieve the same effect as the Spark reduceByKey. Implement sumByKey using the toolz reduceBy function for use in non-Spark workflows.
      

      
      
      
      9.3.3. Spark and toolz
      

      
      One of the great things about Spark is that it has many of the same convenience methods that we’ve already learned to love
         from the toolz library. In Scala, replicate the following transaction written using toolz. Bonus: Use Spark-style method chaining
         for added readability.
      

      
      >>> import toolz
>>> xs = [("orange", "O"), ("apple", "A"), ("tomato", "T"),
          ("kiwi", "K"), ("lemon", "L")]
>>> toolz.take(toolz.frequencies((filter(lambda x: "a" in x[0], xs)), 10)
[{"O":1}, {"A": 1}, {"T": 1}]

      
      
      
      9.3.4. Wikipedia PageRank
      

      
      PageRank works for ranking tennis players, but it was designed to rank web pages in a network. Modify the code we wrote in
         this chapter to perform a PageRank of the pages from the Wikipedia network we collected in chapter 2. A dataset for this exercise is provided for your convenience in the code repository for this book (https://github.com/jtwool/mastering-large-datasets).
      

      
      
      
      
      
      Summary
      

      
      

      
         
         	The RDD class has three different reduce-like methods: .reduce, for operations where the data is the same all the way through, .fold, for when we want to specify an initializer value, and .aggregate, for when we want an initializer and a custom combiner function.
         

         
         	The RDD class’s .saveAsTextFile method is an excellent way to persist an RDD on-disk for long-term storage or for sharing with others—we can even use it to save our data in a compressed format!
         

         
         	To take advantage of Spark’s parallelization, we need to ensure that our data is in the RDD class. We can turn data into an RDD with the SparkContext class’s .parallelize method.
         

         
         	Spark programs often use \ characters in their method chaining to increase their readability.

         
         	Using the byKey variations of methods in PySpark often results in significant speed-ups because like data is worked on by the same distributed
            compute worker.
         

         
      

      
      
      
      
      
      
      


Chapter 10. Faster decision-making with machine learning and PySpark
      

      
      This chapter covers

      
      

      
         
         	An introduction to machine learning

         
         	Training and applying decision tree classifiers in parallel with PySpark

         
         	Matching problems and appropriate machine learning algorithms

         
         	Training and applying random forest regressors with PySpark

         
      

      
      Chapter 9 showed how we can write Python and take advantage of Spark, one of the most popular distributed computing frameworks. We
         saw some of Spark’s raw data transformation options, and we used Spark in the map and reduce style we’ve been exploring throughout
         the book. However, one of the reasons why Spark is so popular is its built-in machine learning capabilities.
      

      
      Machine learning refers to the design, training, application, and study of judgmental algorithms that adjust themselves based
         on input data. A familiar example of machine learning is the spam filter. Spam filter designers feed spam into their spam
         filter algorithms, which either are or contain machine learning algorithms. Then the spam filter algorithm learns to make judgments about whether or not an email is spam (figure 10.1).
      

      
      
      
      Figure 10.1. Spam filters are machine learning algorithms that learn how to judge emails as spam or not by looking at lots of spam emails
         and nonspam emails.
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      In this chapter, we’ll look at how to use PySpark for machine learning. First, we’ll explore what machine learning is in greater
         depth. Then we’ll build two machine learners in PySpark:
      

      
      

      
         
         	One that uses PySpark’s decision tree classifier—a classifier that makes judgements by following learned yes/no rules

         
         	One that uses the random forest classifier—a classifier that has multiple decision trees vote on an outcome

         
      

      
      
      10.1. What is machine learning?
      

      
      Before we look at implementing machine learning algorithms in the later sections of this chapter, it makes sense to delve
         deeper into what machine learning is. I’ve offered a definition of machine learning:
      

      
      
         
            
         
         
            
               	
            

         
      

      Definition

      
      
      Machine learning refers to the design, training, application, and study of judgmental algorithms that adjust themselves based
         on input data.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      In this section, we’ll examine that definition in greater depth and take a look at some machine learning applications with
         which you may already be familiar.
      

      
      
      
      10.1.1. Machine learning as self-adjusting judgmental algorithms
      

      
      Let’s examine a few examples to better understand our definition, which has four core components (figure 10.2):
      

      
      

      
         
         	There must be an algorithm involved.

         
         	That algorithm must make judgments.

         
         	The algorithm must adjust itself.

         
         	That adjustment must take place based on data.

         
      

      
      
      
      Figure 10.2. Machine learning has four components: algorithms, judging, self-adjusting, and data.
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      The first of these components insists that all machine learning must involve at least one algorithm: a sequence of computations
         that we can use to solve a problem. This is good because it means that any type of machine learning we’ll want to do can be
         solved using computers.
      

      
      Second, I consider only algorithms that make judgments to be machine learning algorithms. That means that algorithms that
         describe data, such as summation, or algorithms that simply transform data, such as a doubling algorithm, are not machine
         learning. However, that doesn’t mean the judgments have to be important, true, or difficult. Silly, wrong, and simple judgments
         count too.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         More on machine learning from Manning Publications
         
         Machine learning is a complex and rapidly evolving topic. Though we don’t need to go into mathematical proofs to understand
            the big picture of machine learning, I suspect many readers of this book will be interested in the finer details. Manning
            has some excellent and accessible books and other resources geared toward the topic of machine learning. I’d recommend three
            in particular.
         

         
         First, for someone looking to get an overview of machine learning, is Grokking Machine Learning, by Luis G. Serrano (2020). This book teaches machine learning with an emphasis on conceptual understanding instead of mathematical
            proofs. It’s a great entry point into the material. Chapter 5 covers decision trees.
         

         
         Machine Learning in Action, by Peter Harrington (2012), has an entire chapter—chapter 3—dedicated to decision trees in Python. This chapter would be a good starting point for anyone interested in more detail on
            decision trees than I go into here. The rest of the book is solid as well.
         

         
         AWS Machine Learning in Motion, a Manning LiveVideo by Kesha Williams, covers implementing machine learning on AWS. That course expands on the overlap between
            concepts introduced in this chapter, as well as the next two chapters on cloud computing.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Third, machine learning algorithms must be self-adjusting. This is what makes them machine learning algorithms instead of just machine judging algorithms. The algorithms must define rules for them to get better at judging. Consider the Elo rating example from chapters 8 and 9 (figure 10.3): we defined some rules, then the algorithm applied those rules to judge who the best players were and make judgments about
         how likely they were to beat one another. We didn’t tell the algorithm anything about the players, it learned all that itself.
      

      
      
      
      Figure 10.3. We can consider calculating Elo ratings to be machine learning: the rating rules define a learning process, and the algorithm
         can use the output ratings to judge future match win likelihoods.
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      Fourth and finally, the algorithm must adjust itself based on data. Again, looking at our Elo rating example from chapters 8 and 9, the match data was necessary to obtain ratings for the players. We didn’t go in and encode player ratings based on how we
         felt about the players personally. This last component gives machine learning algorithms their mystique. Business, science, and
         government are all interested in the hidden insights that algorithms can find that humans would typically overlook. If these
         algorithms learn differently than humans, the theory goes, perhaps they’re capable of learning better than humans.
      

      
      This interest becomes especially great when we take machine learning into the realm of large datasets. One of the hallmarks
         of large datasets—those you can process but not store on your laptop, and larger—is that manually they’re almost impenetrable.
         People have a variety of cognitive biases and shortcuts that make them ill-suited at assessing large datasets. Computers,
         which excel at repeating simple behaviors again and again, doing exactly what they are told and nothing else, excel at assessing
         large datasets.
      

      
      
      
      10.1.2. Common applications of machine learning
      

      
      Because machine learning goes so neatly hand-in-hand with large datasets, many common machine learning applications are large
         dataset applications. Consider a few:
      

      
      

      
         
         	Media content recommendations— Judging what new songs, videos, or clips you might like based on what you’ve listened to or watched in the past
         

         
         	Online review summarization— Judging what words best encapsulate the meaning of a restaurant, video, or other product review
         

         
         	Website feature testing— Judging what features of web pages best improve user experience
         

         
         	Image recognition— Adding metadata to images or identifying objects in images
         

         
         	Medical diagnoses— Judging which diseases are most likely to be causing the symptoms of a patient
         

         
         	Voice recognition— Judging which words a speaker intended
         

         
      

      
      Most of these areas are only a decade and a half old. Media content recommendation, for example, is perhaps most famously
         recognized on platforms like Netflix and YouTube, which both have recommendations prominently featured in their applications.
         These organizations didn’t come into their own until the mid-2000s, when Google purchased YouTube and Netflix launched its
         video streaming service. Let’s look at these five applications of machine learning and identify the four components of machine
         learning involved in each application.
      

      
      
      Media content recommendations
      

      
      Media organizations use machine learning to recommend new content to their audience based on information that the organizations
         accumulate about the tastes and interests of viewers. The primary goal of these machine learning algorithms is to recommend
         new content that the media consumer would like to continue consuming (typically to sell more advertising).
      

      
      These algorithms learn to judge what a user will like from logs that indicate which users have consumed which media (figure 10.4). For example, in the case of YouTube, its algorithm would compare the videos you’ve watched there against the site’s records of which videos all of its users have
         watched. The algorithm would judge videos that users similar to you liked, but you haven’t yet seen, as good videos for you
         to watch.
      

      
      
      
      Figure 10.4. Media content recommendation algorithms are an example of machine learning, where an algorithm learns to judge which content
         a user would like based on what previous, similar users have liked.
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      Online review summarization
      

      
      Another area where machine learning overlaps with large datasets is when online retailers, like Amazon, summarize reviews
         of their products. The goal of these machine learning algorithms is to judge which reviews are related and how to best describe
         those review groupings. Shoppers can then use the groupings to look for specific product information.
      

      
      Amazon developers write programs to learn which words best describe which reviews (figure 10.5). These programs—machine learning algorithms—take in a large dataset of product reviews and adjust themselves until they
         can accurately group and summarize reviews. Then, once these programs have learned enough, developers can incorporate them
         into the product page for customers to interact with.
      

      
      
      
      Figure 10.5. Amazon uses machine learning to find short phrases that best encapsulate product reviews on its website. Those summaries help
         shoppers learn about the products from other shoppers.
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      Website feature testing
      

      
      In the pursuit of constantly improving user experience, many websites will show subsets of their visitors features that are
         under development. For example, a company may want to test whether making a purchase button yellow, red, or green results
         in the most purchases. Developers can write programs that learn users’ favorite features from what users do on the site.
      

      
      Like the media content recommender programs, these programs also learn from user log data. Instead of grouping users together,
         however, these programs learn to judge which features make users more likely to engage in behaviors that the website designers
         value, such as spending more time on the site, adding more items to their shopping cart, or purchasing more products from
         the website.
      

      
      
      
      Image recognition
      

      
      An area in machine learning where advances are being rapidly made is in image recognition. The goal of this subfield is to
         identify objects in images, or otherwise generate metadata about the image (such as where it was taken), based on visual cues
         alone. Facebook is famous for using image recognition on all the photos uploaded to its site. For example, when I upload my
         author photo to Facebook, it provides these tags: photo of one person, smiling, beard, close-up (figure 10.6).
      

      
      
      
      Figure 10.6. These photos demonstrate two examples of image recognition: metadata tagging of images (top) and object detection (bottom).
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      We can see another example of object detection in figure 10.6. This form of image recognition attempts to put boxes around items that the algorithm identifies. In this case, our algorithm
         recognized three boats in the picture. Amazon is using this technology—along with others—in an attempt to create point-of-sale-free stores where machine learning technology identifies
         what you’ve placed in your bag.
      

      
      
      
      Medical diagnoses
      

      
      Yet another place where machine learning is being used is in the arena of medical diagnoses. There, programmers, doctors,
         and scientists are collaborating to improve how we judge which illness someone has based on their symptoms, medical history,
         and test results. For example, machine learning allows radiologists to work on lower quality images than they previously could,
         because the machine learning algorithms can learn to judge unclear or blurry images better than humans can.
      

      
      These algorithms learn from large datasets of electronic health information to judge health outcomes, much like doctors themselves
         learn diagnostics during medical school. However, unlike medical students, who are taught by experienced doctors, these algorithms
         teach themselves. And sometimes they’ll learn patterns that are entirely different from what trained experts expect.
      

      
      
      
      Voice recognition
      

      
      The last machine learning example is voice recognition. In voice recognition, programmers are attempting to write code that
         can take in sound from a person’s voice and judge which words the speaker intended (figure 10.7). You may be familiar with this technology from voice-to-text capabilities on your smartphone or an Amazon Alexa, Google
         Home, or Facebook Portal device.
      

      
      
      
      Figure 10.7. Voice recognition machine learning attempts to judge which words a speaker meant by analyzing sound waves produced by their
         speech.
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      Programmers write these programs to learn which sounds suggest which words by processing large datasets of sound files with
         corresponding transcripts. The often lackluster performance of these programs compared to the relative ease with which people
         are able to understand one another’s voices highlights a difference in how algorithms learn versus how people learn. Even
         the best voice recognition algorithms have not taught themselves how to understand words as well as most elementary school
         children do.
      

      
      Now that we’ve gone over five (plus two) examples of machine learning and how to think about them as self-learning judgment
         algorithms, we’re ready to try our hand at some machine learning. In the next section, we’ll take a look at using PySpark’s
         decision tree classifier, a type of machine learning algorithm that learns to judge alternative outcomes by learning yes/no
         rules from the data.
      

      
      
      
      
      
      10.2. Machine learning basics with decision tree classifiers
      

      
      For our introduction to machine learning, we’ll be looking at decision tree classifiers. Decision tree classifiers are an
         excellent choice of machine learning algorithm when we want interpretable results, because the yes/no rules are intuitively
         simple. Even the mathematically uninclined can usually trace their way down a decision tree to see how the algorithm arrived
         at its judgment. Because of this, they’re a great way to solve the scenario we’ll be approaching in this chapter.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario

      
      
      A group of hikers is tired of having to bring snacks on the trail. They’ve collected a bunch of data about mushrooms—such
         as the mushrooms’ size, color, and cap shape—and they want you to use that data and come up with a way to judge whether or
         not a mushroom is safe to eat. Design a machine learning algorithm that can provide the hikers rules for choosing which mushrooms
         are edible and which are poisonous.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      The information on mushrooms in this section is for learning purposes only and is not to be used for identifying mushrooms. Eating wild mushrooms can have serious and possibly fatal consequences.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      With this setup, we know we’re in a good situation to use machine learning. We have a judgment problem—judging which mushrooms
         are poisonous and which are safe to eat—and we have historical data from which we can learn. That takes care of two of the
         criteria. The two remaining can be met by writing some code to learn to make judgments from the data. That part is up to us.
      

      
      
      10.2.1. Designing decision tree classifiers
      

      
      Before we write our decision tree classifier code, let’s take a look at how decision tree classifiers work. Table 10.1 shows what a subset of the mushroom data might look like.
      

      
      Table 10.1. A subset of mushroom data for a small decision tree classifier
      

      
         
            
            
            
            
         
         
            
               	
                  Is it edible?

               
               	
                  Cap color

               
               	
                  Odor

               
               	
                  Habitat

               
            

         
         
            
               	Poison
               	Brown
               	Almond
               	Meadow
            

            
               	Poison
               	Red
               	Spicy
               	Meadow
            

            
               	Poison
               	Purple
               	Musty
               	Woods
            

            
               	Edible
               	Brown
               	Musty
               	Meadow
            

            
               	Edible
               	Grey
               	Musty
               	Woods
            

         
      

      
      The decision tree classifier we’ll write works by learning a series of rules against which to judge new mushrooms. For example,
         for the data in table 10.1, our decision tree classifier may learn to ask three questions (figure 10.8):
      

      
      

      
         
         	Does that mushroom smell musty?

         
         	Was the mushroom found in the woods?

         
         	Is the mushroom purple?

         
      

      
      
      
      Figure 10.8. Decision tree algorithms learn to construct binary rules against which they can judge new data.
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      By answering these three questions, we can judge all of the five mushrooms in our dataset. We can represent these rules as
         a series of if-else statements or a tree of yes/no questions. In fact, the decision tree algorithm gets its name from the fact that these rules
         can be represented in a flowchart-like tree diagram.
      

      
      For the miniature example in this section, the process of learning these rules would be fast. There are only three variables
         to test and only a few options for each variable. As noted, our self-adjusting algorithm would need to learn to judge based
         on only two rules. With more data, there are more calculations to make, and the process takes longer.
      

      
      At each step in the rule-making process, the decision tree algorithm learns to create rules that optimally separate the group
         into maximally similar categories. In our case, the algorithm will learn to maximally separate edible and poisonous mushrooms
         at each step. This is why smell would be the first question our algorithm would learn to ask. If the mushroom is musty smelling,
         then it will be safe to eat 2 times out of 3. We can see that in table 10.1. Indeed, none of the mushrooms in our small dataset that don’t smell musty are edible.
      

      
      Compare this to if we had chosen to split on color. If we split on color first, we would have almost no new information. Each
         of the mushrooms is a different color! Sure, we could go through each of the colors one by one, but we prefer to ask the questions
         in an order such that the groups separate more quickly.
      

      
      We can refer to this process of sorting data into groups of similar classification items as maximizing homogeneity. As users
         of decision trees, we’ll often face the choice of which measurement to use for this process. The two common metrics you’ll
         hear of are called Gini impurity and information gain. I won’t go into detail on either of these terms—for the purposes of an introduction to PySpark’s machine learning capabilities,
         it’s enough to know they’re both measures of the differences in a grouping of data.
      

      
      Figure 10.9 shows how our algorithm may judge a new observation. We can see that first, it checks the smell. The smell is musty, so we
         move on to the second rule. The mushroom was found in the woods, so we move on to the final question. Indeed, this mushroom
         was purple, so we put it aside: our decision tree expects this mushroom to be poisonous.
      

      
      
      
      Figure 10.9. Decision tree algorithms work by learning to group the data into the most similar chunks. The algorithm will judge new data
         based on the grouping that data would end up in if it was applied against the tree.
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      Now that we’ve taken a look at how our decision tree algorithms work, let’s take a look at using them in PySpark.
      

      
      
      
      10.2.2. Implementing a decision tree in PySpark
      

      
      PySpark’s machine learning capabilities live in a package called ml. This package itself contains a few different modules categorizing some of the core machine learning capabilities, including
      

      
      

      
         
         	pyspark.ml.feature— For feature transformation and creation
         

         
         	pyspark.ml.classification— Algorithms for judging the category in which a data point belongs
         

         
         	pyspark.ml.tuning— Algorithms for improving our machine learners
         

         
         	pyspark.ml.evaluation— Algorithms for evaluating machine leaners
         

         
         	pyspark.ml.util— Methods of saving and loading machine learners
         

         
      

      
      All of these modules are similar in style to the PySpark methods we looked at in chapters 7 and 9. However, all of PySpark’s machine learning features expect us to have our data in a PySpark DataFrame object—not an RDD, as we’ve been using. The RDD is an abstract parallelizable data structure at the core of Spark, whereas the DataFrame is a layer on top of the RDD that provides a notion of rows and columns. If you remember, back in chapter 7 when we introduced PySpark, I mentioned that PySpark DataFrames are Spark’s preferred data type for interacting with SQL databases. This is because the Spark DataFrame provides a tabular interface to data stored in an RDD, just like SQL databases provide tabular storage and retrieval.
      

      
      Bringing the data into a DataFrame will be the first step in our machine learning process. The other steps include running our decision tree learner and evaluating
         the decision tree we’ve built.
      

      
      
      Brining data into a DataFrame
      

      
      The first step in our machine learning process is getting the data ready for our analysis. This step includes any preprocessing
         we might want to do—such as changing formats of the variables and data cleaning. In this case, we’re lucky: our data is coming
         in clean.
      

      
      For RDDs, Spark provided a simple method—.textFile—that we could use to read in text data and process it. Similarly, for DataFrames, we have several convenient options. If the data is already in an RDD, we can call DataFrame on the RDD and convert it. If the data is in a database, we can use SparkSession’s .sql method to return a DataFrame representation of the results of a SQL query.
      

      
      For our example, we have our data in a flat file (which you can find on this book’s repository online: https://www.manning.com/downloads/1961). To handle that format, PySpark has a method called .csv that returns a DataFrameReader. We can turn a CSV file into a PySpark DataFrame by calling SparkSession.read.csv and passing in the name of our file. The method has options for just about anything you would need to ensure your tabular flat-file data is coming in properly. One of my favorites is inferSchema, which is used in the following listing.
      

      
      
      
      Listing 10.1. Reading in text data
      

      from pyspark import sql

spark = sql.SparkSession.builder \
                        .master("local") \
                        .appName("Decision Trees") \
                        .getOrCreate()

df = spark.read.csv("mushrooms.data", header=True, inferSchema=True)

      
      The inferSchema option of the .csv method tells Spark to make a guess at the type of the variables in our data. If you remember, in the last two chapters, unless
         the data was coming in as JSON, we had to explicitly cast our data to the types we wanted it to be. For small datasets, this
         isn’t a challenge, but if we have hundreds of variables, this can be a tiresome process. In these cases, inferSchema can be a real time saver.
      

      
      
      
      Organizing the data for learning
      

      
      Now that we have data in a DataFrame, we’re one step closer to feeding it into a Spark machine learner. Before we can do that, however, we have to get the data
         into the specific type of DataFrame format that Spark insists on.
      

      
      Spark’s machine learning classifiers look for two columns in a DataFrame:
      

      
      

      
         
         	A label column that indicates the correct classification of the data
         

         
         	A features column that contains the features we’re going to use to predict the label
         

         
      

      
      Your DataFrame can contain as many columns as you would like, with whatever names you’d like, but these two columns are the ones that Spark
         will use for its machine learning. The label column is what Spark’s machine learning classifiers learn to judge—is the data the algorithm sees more like this label or
         that label? The features column is the data about each observation that the machine learning algorithm will learn to use to make that judgment.
      

      
      Furthermore, Spark expects specific data types for these columns. For our numerical data—data that would be represented as
         floats and integers in Python—Spark knows what to do. For categorical data, we’ll have some choices to make. The simplest
         way to handle such data is to use PySpark’s StringIndexer. The StringIndexer transforms categorical data stored as category names (using strings) and indexes the names as numerical variables. StringIndexer indexes categories in order of frequency—from most common to least common—not in order observed. The most common category
         will be 0, the second most common category 1, and so on (figure 10.10).
      

      
      
      
      Figure 10.10. Spark’s StringIndexer transforms categorical variables as strings into numerical categories. More common categories have lower indexes.
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      When we use StringIndexer, Spark returns a new DataFrame, with our old columns and our new indexed column (figure 10.11). Spark has to return a new DataFrame because most data structures in Spark are immutable—they can’t be changed once they’re created. That’s a property of the Scala programming language in which Spark is written. For our purposes, this
         is great because it means we can write a small reduce statement and update our DataFrame, as we can see in the following listing.
      

      
      
      
      Figure 10.11. Transformers in PySpark, such as StringIndexer, return a DataFrame that contains all the columns of the original, plus a new column, specified by the transformation.
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      Listing 10.2. Transforming strings to indexed categorical variables with StringIndexer

      from pyspark.ml.feature import StringIndexer

def string_to_index(label, df):                         1
     return StringIndexer(inputCol=label,               2
                outputCol="i-"+label).fit(df) \         3
                .transform(df)                          3

categories = ['cap-shape', 'cap-surface', 'cap-color']  4
df = reduce(string_to_index, categories, df)            5

      
      

      
         
         	1 Defines a helper function for our reduce statement—instead of acc—and next we’ll use label and df

         
         	2 Takes column labels—input and output—as parameters and appends to the DataFrame a transformed version of the input column
               with the new label

         
         	3 The .fit and .transform methods apply the changes and return a new DataFrame.

         
         	4 We’ll need a sequence of columns to transform—this is what we’ll reduce over.

         
         	5 Lastly, we’ll call reduce and transform our data frame.

         
      

      
      Listing 10.2 shows this process in action. We first write a helper function that will apply the StringIndexer to a given column. The helper function calls StringIndexer and passes it an input label, which is specified by the parameter in first position, and an output label, in this case, that
         variable preceded by an "i-". Our transformed columns will be added into the DataFrame, so they need to have unique names. All columns in a DataFrame must have unique names.
      

      
      Then, we select some categories we want to transform. In listing 10.2, I’ve chosen to use cap-shape, cap-surface, and cap-color. I’m hoping that mushroom caps can tell me something about whether
         a mushroom is poisonous or not. We can then call reduce, passing it our helper function, our categories, and our DataFrame.
      

      
      This process results in a DataFrame with three additional columns:
      

      
      

      
         
         	i-cap-shape— An indexed transformation of cap-shape
         

         
         	i-cap-surface— An indexed transformation of cap-surface
         

         
         	i-cap-color— An indexed transformation of cap-color
         

         
      

      
      Spark’s machine learning classifiers, though, only want one column named features. To use these three columns as features, we’ll have to gather them up in another column. Conveniently, PySpark has a class
         for this as well: VectorAssembler. VectorAssembler is a Transformer like StringIndexer—it takes some input column names and an output column name and has methods to return a new DataFrame that has all the columns of the original, plus the new column we want to add (figure 10.12).
      

      
      
      
      Figure 10.12. VectorAssembler is a Transformer that can take several columns and gather them up as a vector in a single column. This class is especially useful for preparing
         features for machine learning.
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      Unlike StringIndexer, which expects to work on one column at a time, VectorAssembler expects to round up a host of columns. For our transformation, we only need a single call to VectorAssembler, as shown in the following listing.
      

      
      
      

      
      
      Listing 10.3. Gathering features for machine learning with VectorAssembler

      from pyspark.ml.feature import VectorAssembler
df = VectorAssembler(inputCols=["i-cap-shape",      1
                                "i-cap-surface",
                                "i-cap-color"],
         outputCol="features").transform(df)        2

      
      

      
         
         	1 We initialize VectorAssembler with the names of the columns we want to assemble and the desired output column name.

         
         	2 Calling .transform on a DataFrame returns a new DataFrame with an additional column.

         
      

      
      In listing 10.3, we can see an example of how VectorAssembler works. We can see that we’re passing the three columns we want to use as features to the inputCols parameter as a list, and the outputCol parameter is set to "features". This tells VectorAssembler to gather those three columns up and make a new column called features. At the end of this step, our DataFrame will contain all the columns of the original DataFrame, plus four new columns—one for each categorical variable we indexed and one containing all of them together.
      

      
      At this point, the only thing we need before we can move on to machine learning is the labels. Our labels are contained in
         a column called edible?, which has two labels—edible or poisonous—both represented as strings. Again, we can use StringTransformer. Instead of looping through a sequence of column names though, we only need to worry about one column: edible?, as shown in the following code.
      

      
      df = StringIndexer(inputCol="edible?",
                   outputCol='label').fit(df) \
                                     .transform(df)

      
      In listing 10.4, you can see that we specify the edible? column as we initialize StringIndexer, along with the name label, which Spark’s machine learning classifier will be looking for. Just like when we transformed our feature columns, we call
         .fit and .transform and then assign this DataFrame back on top of our original variable.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Label names and data frames
         
         Because Spark’s DataFrames are immutable and we’ll usually want to transform our label column before using it with Spark’s machine learning, we can run into problems if the original column name is "label". When this happens, we’ll need to rename the column when we transform it. Spark will not let you overwrite columns in a DataFrame. We can, however, pick an alternate column name by specifying the labelCol parameter of our machine learning function, such as DecisionTreeClassifier(labelCol="my-column-name").
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      With these transformations complete, we have our DataFrame prepared just like Spark needs. We have a label column, which contains the labels the algorithm will learn to judge, and we have a features column, which has the features the algorithm will use to do the judging. Finally, we’re ready to learn.
      

      
      
      
      
      Running our decision tree learner
      

      
      Running the machine learning classifier in Spark will feel similar to transforming the data. We’ll use a class from Spark’s
         ml.classifier library called DecisionTreeClassifier, and we’ll call its .fit method on the DataFrame we have prepared. For the amount of math that’s going on behind the scenes, you would think that this process would be more
         difficult than two short lines:
      

      
      tree = DecisionTreeClassifier()
model = tree.fit(df)

      
      However, these two lines show all the code that’s necessary to run a decision tree classifier on our DataFrame. The first line initializes the classifier with the default parameters, and the second fits the classifier to the data. The
         classifier’s .fit method returns a model—this is the tree that has learned to judge our label based on our data. In our case, the model is
         a type of DecisionTreeClassificationModel object. Each classifier in PySpark has a .fit method that produces a corresponding model object. These models describe the model that’s been learned and have convenient
         functions for inspecting them.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         .fit and .transform in Spark
         
         You may have noticed a lot of .fit and .transform floating around in this chapter. That’s because the classes upon which much of the Spark machine learning capability is built
            share these methods. .fit is inherited from Spark’s Estimator class. This class is used for learning information about data, such as when we learn how to index a dataset or how to make
            judgments about data with a decision tree. The .fit method returns a Model. A Model inherits from a Transformer, which provides a .transform method. This method executes the transformation that we learn with the Estimator.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      For example, DecisionTreeClassificationModel has a method called .toDebugString that shows us all the rules that the model uses to make judgments. We can print that string to the screen to see the rules
         by using print(model.toDebugString).
      

      
      In the following code lines, we can see these rules written as if-else statements. You’ll notice that none of the feature names are included. This is because the features column we assembled with VectorAssembler doesn’t hold onto the names of the inputs. To use this decision tree manually, you would have to remember the order in which
         you placed the variables. If we’re writing a script and not working in the terminal interactively, we can usually find this
         in our script.
      

      
      If (feature 1 in {2.0,3.0})
 If (feature 2 in {0.0,2.0,4.0,6.0,7.0})
  If (feature 2 in {0.0,2.0,7.0})
   If (feature 0 in {0.0,1.0,2.0,4.0})
    Predict: 0.0
   Else (feature 0 not in {0.0,1.0,2.0,4.0})
    Predict: 1.0
  Else (feature 2 not in {0.0,2.0,7.0})
   If (feature 2 in {6.0})
    Predict: 1.0
   Else (feature 2 not in {6.0})
    Predict: 0.0
 Else (feature 2 not in {0.0,2.0,4.0,6.0,7.0})
  If (feature 2 in {3.0})
   Predict: 1.0
  Else (feature 2 not in {3.0})
   Predict: 0.0+

      
      For example, we can see in the following listing the order of our variables. The first column label we specified, in this
         case, i-cap-shape, will be variable 0; the second, i-cap-surface, will be variable 1; and so on.
      

      
      
      
      Listing 10.4. Gathering features for machine learning with VectorAssembler

      from pyspark.ml.feature import VectorAssembler
df = VectorAssembler(inputCols=["i-cap-shape",           1
                                "i-cap-surface",
                                "i-cap-color"],
                     outputCol="features").transform(df)

      
      

      
         
         	1 i-cap-shape will be feature 0, i-cap-surface will be feature 1, and i-cap-color will be feature 2

         
      

      
      
      
      Evaluating the judgments of a decision tree
      

      
      After the machine learning algorithm is trained, a good question to ask is: How good is the algorithm at actually making judgments?
         This is the question that PySpark’s ml.evaluation module is designed to answer. The evaluation module contains classes that compute different evaluation metrics for different machine learners:
      

      
      

      
         
         	BinaryClassificationEvaluator— For evaluating cases learners with two possible outcomes
         

         
         	RegressionEvaluator— For evaluating continuous value judgments
         

         
         	MulticlassClassificationEvaluator— For evaluating multiple label judgments
         

         
      

      
      Because in our case we only have two options—poisonous or edible—we want to use the BinaryClassificationEvaluator. Using this Evaluator should feel similar to using our machine learner or our Transformers. We’ll first initialize the Evaluator, then we’ll call its .evaluate method on a modeled version of our DataFrame:
      

      
      bce = BinaryClassificationEvaluator()
bce.evaluate(model.transform(df))
# 0.633318

      
      When we initialize the BinaryClassificationEvaluator, we have the opportunity to pick an evaluation metric. The area under the receiver operating characteristic (confusingly
         known by two acronyms: AUC and ROC) curve is the default choice and the one I recommend using for most problems (figure 10.13). This metric is one way of evaluating the trade-off between false-positive and false-negative assessments.
      

      
      
      

      
      
      Figure 10.13. The receiver operating characteristic (ROC) curve allows us to balance making cautious judgments about poisonous mushrooms,
         while judging a reasonable number of mushrooms as safe.
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      The curve represents the balance between making true positive and false positive judgments. In our case, it represents how
         good we are at judging poisonous mushrooms to be poisonous, without misidentifying edible mushrooms as poisonous. The model
         is a curve because the more we favor identifying mushrooms as poisonous—to prevent people from dying—the more we will misjudge
         edible mushrooms as poisonous. The curve helps us find an acceptable point.
      

      
      With both metrics—area under the receiver operating characteristic curve and area under the precision-recall curve—we’re hoping
         to have as large a number as possible. If we have an area under the receiver operating characteristic curve value of 1, that
         means we can correctly judge all poisonous mushrooms as poisonous, without judging a single edible mushroom to be inedible.
         Anything less than 1, and there’s some room for improvement. A 0.63 area under the receiver operating characteristic curve
         is not great, but it’s acceptable for an early pass. Next, we’ll take a look at some ways we can improve our model.
      

      
      
      
      
      
      10.3. Fast random forest classifications in PySpark
      

      
      In the previous section, we built a decision tree to judge whether a mushroom was poisonous or not. However, the area under
         the receiver operating characteristic curve suggests that we can do better. One way we can try to do better is to use a random
         forest classifier—a machine learning algorithm that’s closely related to the decision tree. In this section, we’ll look at random forests and implement one in PySpark to achieve better results.
      

      
      
      10.3.1. Understanding random forest classifiers
      

      
      Random forest classifiers work by growing lots of different decision trees and then taking a poll of them. During the learning
         phase, they grow a diverse selection of trees by randomly selecting features to use. During the judgment phase, each tree
         classifies the observation based on its rules and votes for the classification that results from those rules—the random forest
         judges the observation to belong to the category with the most votes (figure 10.14).
      

      
      
      
      Figure 10.14. A random forest classifier relies on growing different decision trees, each seeded with different randomly selected features.
         Those trees then vote to classify new observations.
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      As an example, consider a reduced version of the mushrooms dataset that only has seven features related to the mushroom’s
         caps and gills:
      

      
      

      
         
         	Cap shape

         
         	Cap surface

         
         	Cap color

         
         	Gill attachment

         
         	Gill spacing

         
         	Gill size

         
         	Gill color

         
      

      
      A simple random forest might grow five classifiers from these. The first might contain cap shape, gill spacing, gill size,
         and gill color; the second might contain cap surface, gill attachment, gill color, and gill size; and so on (table 10.2). Each tree has the features it can use randomly selected.
      

      
      Table 10.2. Five randomly seeded decision trees for an example random forest
      

      
         
            
            
            
            
            
         
         
            
               	
                  Tree 1

               
               	
                  Tree 2

               
               	
                  Tree 3

               
               	
                  Tree 4

               
               	
                  Tree 5

               
            

         
         
            
               	Cap shape
               	Gill spacing
               	Gill size
               	Gill color
               	Cap surface
            

            
               	Gill attachment
               	Gill color
               	Gill size
               	Cap surface
               	Cap color
            

            
               	Gill attachment
               	Gill color
               	Cap shape
               	Cap color
               	Gill attachment
            

            
               	Gill size
               	Cap color
               	Gill attachment
               	Gill spacing
               	Gill size
            

         
      

      
      When we have a new observation we want to label, we can pass it to the random forest, and the random forest will poll each
         tree in it. For example, trees 1, 2, and 4 might judge the observation to be edible, whereas trees 3 and 5 might say that
         it’s poisonous. Between the five of them, the vote is 3 to 2 in favor of edible. That would be the class that the random forest
         would ultimately judge the new observation to be.
      

      
      This process works because the randomization of features available to the decision trees makes random forests resilient to
         overfitting: a problem in machine learning where the algorithms disproportionately use one feature to make judgments. The
         improved resilience, high performance, and overall versatility of random forest models—which can be used for any type of judgment
         problem: binary classification, multiclass classification, and regression—makes random forest models a popular machine learning
         tool.
      

      
      
      
      10.3.2. Implementing a random forest classifier
      

      
      To build our random forest classifier, we’ll start off the same way we started with our decision tree: by bringing in the
         data and arranging it into a label column and a features column. Unlike our previous attempt with decision trees, this time we won’t make any assumptions about which features will
         be useful and which won’t be. This time, we’ll select all the features and let the random forest sort it out.
      

      
      To use all the features, we’ll use the same reduce strategy as before. This time, though, instead of passing in a list where
         we name every feature we want, we’ll create the list from the DataFrame’s columns attribute and pop the label off, as shown in listing 10.5 We’ll also need to construct a list that has the new labels. To do this, I like to use a list comprehension that prepends
         the feature indicator to the feature name.
      

      
      
      

      
      
      Listing 10.5. Reading and preparing data for random forest classification
      

          df = spark.read.csv("mushrooms.data", header=True, inferSchema=True)
    categories = df.columns                                              1
    categories.pop(categories.index('edible?'))                          2
    df = reduce(string_to_index, categories, df)                         3
    indexes = ["i-"+c for c in categories]                               4

    df = VectorAssembler(inputCols=indexes,
                         outputCol="features").transform(df)
    df = StringIndexer(inputCol='edible?',
                       outputCol='label').fit(df).transform(df)

      
      

      
         
         	1 Our categories will include all the columns in our DataFrame.

         
         	2 The only category we don’t want is the label, so we’ll pop that out.

         
         	3 Transforms all these strings into indexes

         
         	4 We can use a list comprehension to get a list of index names—we’ll need this to assemble the indexes.

         
      

      
      With the DataFrame in good shape, we’re ready to start building our random forest. We’ll build the random forest similarly to how we built the
         decision tree earlier in this chapter:
      

      
      

      
         
         	First, we’ll import the RandomForestClassifier class.
         

         
         	Then, we’ll instantiate the class using the default settings.

         
      

      
      But we’ll also do some things a little differently:

      
      

      
         
         	We’ll use a parameter grid to optimize hyperparameters.

         
         	We’ll use a cross validator to ensure our results are more robust.

         
      

      
      In the decision tree example, you may have noticed that we evaluated our decision tree on the same dataset that we learned
         it from. This is fine for getting used to writing PySpark machine learning code, but the results will not be reliable. To
         get a better assessment of how well our machine learners judge new observations, we should always cross-validate our models
         by testing them on data that we’ve held out from the learning process.
      

      
      Two types of cross-validation are worth knowing about:

      
      

      
         
         	K-fold cross-validation

         
         	Train-test-evaluate validation

         
      

      
      As shown in figure 10.15, in k-fold cross-validation we split the dataset up into K chunks, then we rotate through the chunks, considering one chunk
         the evaluation data and all the other chunks the test data. This process can be time-consuming if both K and your dataset
         are large, because you’ll end up training a machine learning model many times on a large dataset. Common values of K include
         5, 10, 100, and the total number of observations in your dataset.
      

      
      
      
      Figure 10.15. K-fold cross-validation splits the data into K groups and then learns a model from all the other groups to judge the selected
         group.
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      In train-test-evaluate validation, the dataset is split into three chunks: a large training chunk, a small testing chunk,
         and an even smaller evaluation chunk. The training chunk is used for training the model. The testing chunk is used during
         an iterative training cycle, as shown in figure 10.16. Whenever we have an idea about how to improve the algorithm, we make the improvement, relearn from the training chunk, and
         test on the testing chunk. Then, when we’re happy with the model we have, we can judge the evaluation data and use that to
         assess our model. The trick here is to keep the evaluation set removed from the process as much as possible. If you can stick
         to rarely judging the evaluation chunk, train-test-evaluation may work for you. Otherwise, you may be better off using k-fold
         cross-validation. With the train-test-evaluate approach, it’s common to use 70% of the dataset as training data, 20% as testing
         data, and 10% as evaluation data.
      

      
      
      
      Figure 10.16. Train-test-evaluate validation splits the data into three chunks, two of which are used for iterative learning and testing.
         The remaining one is used rarely to evaluate the model.
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      To implement cross-validation in PySpark, we’ll use the CrossValidator class, which we can use to do k-fold cross-validation. The CrossValidator needs to be initialized with
      

      
      

      
         
         	An estimator— The classifier we want to use
         

         
         	A parameter estimator— A ParamGridBuilder object
         

         
         	An evaluator— We’ll use the BinaryClassificationEvaluator we used in our decision tree example. I like to do 10-fold validation unless I have a compelling reason not to—we also pass
            this choice into the CrossValidator class as we initialize it.
         

         
      

      
      Listing 10.6 shows the training of the random forest classifier. You’ll notice that instead of using the classifier directly to fit the
         data, we pass the RandomForestClassifier to the CrossValidator object and use the CrossValidator’s .fit method. From there, though, the evaluation process is similar. We can find the area under the operating receiver characteristic
         curve using the BinaryClassificationEvaluator. Lastly, we can print the best model from our cross-validation attempts and see what rules we ended up with.
      

      
      
      
      Listing 10.6. A robust random forest model using PySpark
      

      from pyspark.ml.classification import RandomForestClassifier
forest = RandomForestClassifier()                             1
grid = ParamGridBuilder().\                                   2
           addGrid(forest.maxDepth, [0, 2]).\                 2
           build()                                            2
cv = CrossValidator(estimator=forest, estimatorParamMaps=grid,
                    evaluator=bce,numFolds=10,
                    parallelism=4)                            3
cv_model = cv.fit(df)
area_under_curve = bce.evaluate(cv_model.transform(df))       4
print("Random Forest AUC: {:0.4f}".format(area_under_curve))
#
print(cv_model.bestModel.toDebugString)                       5
#

      
      

      
         
         	1 Creates an instance of our desired classifier

         
         	2 Creates a parameter grid search over some parameters

         
         	3 Initializes the cross-validator to train several models

         
         	4 Fits the models

         
         	5 Prints the best model

         
      

      
      In these rules, we can see the different trees that make up the decision forest. In your own output, you’ll notice that some
         trees have the same rules—this must be a good way to make judgments about mushrooms!
      

      
      Tree 0 (weight 1.0):
   If (feature 7 in {0.0})
    Predict: 0.0
   Else (feature 7 not in {0.0})
    Predict: 1.0
 Tree 1 (weight 1.0):
   If (feature 4 in {0.0,4.0,5.0,8.0})
    Predict: 0.0
   Else (feature 4 not in {0.0,4.0,5.0,8.0})
    Predict: 1.0
 Tree 2 (weight 1.0):
   If (feature 11 in {0.0,2.0,3.0})
    Predict: 0.0
   Else (feature 11 not in {0.0,2.0,3.0})
    Predict: 1.0
 Tree 3 (weight 1.0):
   If (feature 20 in {1.0,2.0,3.0,4.0,5.0})
    Predict: 0.0
   Else (feature 20 not in {1.0,2.0,3.0,4.0,5.0})
    Predict: 1.0

      
      
      
      
      Summary
      

      
      

      
         
         	PySpark’s SQL module has a tabular DataFrame structure that provides table-like features, such as column names, on top of RDD-powered parallelization.
         

         
         	PySpark has a machine learning library that includes tools for every step of the machine learning pipeline, including data
            ingestion, data preparing, machine learning, cross-validation, and model evaluation.
         

         
         	Machine learners in PySpark are represented as classes that learn using the .fit method. They return a model object, which can judge data using the .transform method.
         

         
         	We can use PySpark’s feature creation classes—such as StringIndexer and VectorAssembler—to format DataFrames for machine learning.
         

         
         	The feature creation classes are Transformer-class objects, and their methods return new DataFrames, rather than transforming them in place.
         

         
      

      
      
      
      
      
      
      


Part 3. 

      
      
      Part 3 explains how to bring the tools and techniques we’ve covered throughout this book into the cloud. We’ll cover the fundamentals
         of cloud computing, object storage in the cloud, and how to set up your own computing clusters in the cloud. Through hands-on
         examples, we’ll run the distributed computing frameworks covered in Part 2—Hadoop and Spark—in the cloud. This part focuses on large data category 3: data that is too big for either storing or processing
         locally. Once you’ve mastered the content in this chapter, you’ll be able to tackle data of any size.
      

      
      
      
      
      


Chapter 11. Large datasets in the cloud with Amazon Web Services and S3
      

      
      This chapter covers

      
      

      
         
         	Understanding distributed object storage in the cloud

         
         	Using the AWS web interface to set up buckets and upload objects

         
         	Working with the boto3 library to upload data to an S3 bucket

         
      

      
      In chapters 7–10, we saw the power of the distributed frameworks in Hadoop and Spark. These frameworks can take advantage of clusters of computers
         to parallelize massive data processing tasks and complete them in short order. Most of us, however, don’t have access to physical
         compute clusters.
      

      
      In contrast, we can all get access to compute clusters from cloud service providers such as Amazon, Microsoft, and Google.
         These cloud providers have platforms that we can use for storing and processing data, along with a variety of services that
         automate common tasks we may want to do. In this chapter, we’ll take the first step of analyzing big data in the cloud by
         uploading data to Amazon’s Simple Storage Service (S3). First, we’ll review the basics of S3; then we’ll create a bucket and
         upload an object using the browser-based AWS console; and finally we’ll upload several objects to a bucket with the boto3
         software development kit.
      

      
      
      
      11.1. AWS Simple Storage Service—A solution for large datasets
      

      
      Amazon Web Service’s Simple Storage Service, better known as S3, is a data storage service used to hold some of the largest
         datasets, such as the datasets of General Electric, NASA, Netflix, the UK Data Service, Yelp, and—of course—Amazon itself.
         S3 is the go-to service for large datasets for the following five reasons:
      

      
      

      
         
         	S3 has effectively unlimited storage capacity. We never have to worry about our dataset becoming too large.
         

         
         	S3 is cloud-based. We can scale up and down quickly as necessary.
         

         
         	S3 offers object storage. We can focus on organizing our data with metadata and store many different types of data.
         

         
         	S3 is a managed service. Amazon Web Services takes care of a lot of the details for us, such as ensuring data availability and durability. They also
            take care of security patches and software updates.
         

         
         	S3 supports versioning and life cycle policies. We can use them to update or archive our data as it ages.
         

         
      

      
      
         
            
         
         
            
               	
            

         
      

      Cloud Options: AWS, Azure, and Google Cloud

      
      
      The three prominent cloud providers—Amazon (AWS), Microsoft (Azure), and Google (Google Cloud)—all offer a standard suite
         of core services. The core services include virtual machines for computing and object-based storage. In this chapter, I’ll
         go into detail on Amazon’s S3 service because AWS is the most popular of the cloud platforms. That said, the principles in
         this chapter apply to all the object storage systems of the three cloud providers. Indeed, we can use everything in this chapter
         and chapter 12 on Microsoft Azure and Google Cloud.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      In this section, I’ll go over the five advantages to using S3 and, in the process, explain what S3 is and how it works.

      
      
      11.1.1. Limitless storage with S3
      

      
      When a dataset becomes so big that we start to worry about where and how to store it, we know we’re dealing with a large dataset.
         For these situations, S3 is always an option because it allows for effectively limitless (but potentially costly) storage
         (figure 11.1). In fact, S3 is such a good option for large datasets, AWS even has a service designed to help organizations migrate local
         petabyte-scale datasets into S3.
      

      
      
      
      Figure 11.1. Because AWS data centers are so large in proportion to the size of our data, S3 offers effectively limitless storage.
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      What makes S3 effectively limitless? Large data centers with lots of disk space. There’s no secret when it comes to cloud-based
         storage. AWS stores the data on disk volumes much like you would if you were to store it locally. What makes it so appealing
         for us is that instead of us buying the disk space and managing it ourselves, AWS is willing to rent it to us. And when we
         need more, AWS is willing to rent us more.
      

      
      
      
      
      11.1.2. Cloud-based storage for scalability
      

      
      Because S3 is a cloud-based storage service, we get scalability benefits that we wouldn’t get if we were storing the data
         ourselves. In the cloud, we never need to buy more physical storage devices, we only need to pay for more of the storage service.
         And we can purchase more of that service anytime we want and give it up anytime we want (figure 11.2). AWS refers to this as elasticity, and others refer to it as scalability.
      

      
      
      
      Figure 11.2. Cloud-based storage is useful when we need to be flexible, because the storage space is available to us on-demand as we have
         more and more data to store.
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      Consider the following scenario: you’re running a small survey company, and you’ve bought some storage to hold the survey
         data for your first few customers. This has a few drawbacks:
      

      
      

      
         
         	You need to find a good way to estimate how much space the surveys will require.

         
         	You need to pay for the storage space all at once.

         
      

      
      Because S3 is in the cloud, we can avoid both these problems. With S3, we pay for the storage we use for our data when we
         store it, and we can be confident that there will always be storage available when we’re ready to purchase it.
      

      
      Now imagine that your first round of surveys went so well that a hospital has asked you to run a massive nationwide survey
         for them. You need to prepare to hold their data—and fast. You have a new challenge: you need to quickly find and set up a large data storage solution.
      

      
      If you were storing your data in S3, the large data storage solution could be the same as your smaller data storage solution:
         it could all go in S3. Because the service is limitless and available on demand, when there’s more data for us to store, we
         can pay more to store it.
      

      
      
      
      11.1.3. Objects for convenient heterogenous storage
      

      
      Another advantage of S3 is that it follows the object storage paradigm. Object storage—as opposed to traditional file storage—is
         a storage pattern that focuses on the what of the data instead of the where. With traditional file storage, a file is referred
         to by its name and which directory it’s in. With object storage, we recognize objects by a unique identifier (figure 11.3).
      

      
      
      
      Figure 11.3. Object storage associates data with a unique identifier, which we can call to perform file operations on the object.
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      Because unique identifiers themselves are not usually enough to help humans keep track of their data, object storage supports
         arbitrary metadata. This means that we can tag our objects flexibly based on our needs. Do we need to tag data by day? By
         user or customer? By product or marketing campaign? By the tides or the moon? We can apply any tags we want. Additionally—though
         we won’t cover them in this book—querying tools are available for S3 that allow SQL-like querying of these metadata tags for
         metadata analysis.
      

      
      Having unique identifiers as the approach to calling all our objects means that we can store heterogenous data in the same
         way. Say we’re running a social media platform, and our users are uploading pictures and videos to our website. We can store
         both of those file types in S3 and tag them with the same metadata even though they’re different types.
      

      
      
      
      11.1.4. Managed service for conveniently managing large datasets
      

      
      One problem that we’d run into if we were managing a large dataset ourselves is the day-to-day maintenance of the dataset.
         If we want our data to be highly available, we have to take steps to replicate the data in multiple storage environments while
         also setting up failovers, so that when our data is unavailable in one location, we can find it quickly in another. For large
         datasets, this is no trivial matter.
      

      
      Because S3 is a managed service, Amazon Web Services handles all of the low-level implementation of our data and ensures high
         durability and availability. That means that we can expect our data to be available when we need it without having to think
         about it too much. This will free us up to do other things, like actually working on the large dataset we now have stored
         in S3.
      

      
      
      
      11.1.5. Life cycle policies for managing large datasets over time
      

      
      One of the issues we’ll have with large datasets—which we’ve already alluded to in this section—is that large datasets are
         growing datasets. Over time, our dataset grows larger and larger. That said, not all of the data in that large dataset stays
         relevant.
      

      
      Image we’re a running subscription-based online video service. We want to store records of all the videos our users have watched
         so we can make recommendations to them about which other videos they may enjoy. That said, we may want to limit the recommendations
         we generate so that we’re only generating recommendations for currently subscribing users and only using data from the last
         year.
      

      
      One way to go about doing this would be to filter the data. We’ve used filter operations throughout the book—starting in chapter 4—and we’ve seen that they’re natural to implement with the Hadoop and Spark frameworks. Filtering still requires us to pay for the data to be available to us and
         pay to process it. Another option would be to archive data we know we don’t need, such as old log files that we wouldn’t regularly
         analyze.
      

      
      For this, S3 has a life cycle policy feature that we can use to make data that we’re unlikely to need less available and store
         it more cheaply. A standard approach (figure 11.4) is to
      

      
      

      
         
         	start the data we have in S3 Standard

         
         	then when we need it less, relegate it to S3 Infrequent Access

         
         	then when we’re ready to archive the data, move it to S3 Glacier

         
      

      
      
      
      Figure 11.4. We can use the life cycle policy to ensure that old data we’re less likely to want to analyze costs us less, while still maintaining
         the same storage strategy.
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      The different storage formats all have different cost structures. Table 11.1 summarizes the differences between the storage classes.
      

      
      Table 11.1. Three major S3 storage classes are available, depending on how often you need to access your data.
      

      
         
            
            
            
            
         
         
            
               	
                  S3 storage class

               
               	
                  Cost to store

               
               	
                  Cost to use

               
               	
                  Availability

               
            

         
         
            
               	S3 Standard
               	Low
               	Very low
               	Very high
            

            
               	S3 Infrequent Access
               	Very Low
               	Low
               	Very high
            

            
               	S3 Glacier
               	Lowest
               	[*]Medium
               
               	Low
            

         
      

      
         * 
            
Includes the cost of moving an object from S3 Glacier to another S3 format before use

         

      

      
      S3 Standard has the greatest storage cost but the lowest per-transaction cost, which is great when we have data we’ll be using
         a lot. S3 Infrequent Access has lower storage costs than S3 but greater transaction costs—storing data in this format is cost-effective when we’ll be accessing the data
         less, but we want it available for when we do need it. S3 Glacier has the lowest storage cost but must be elevated to another
         S3 type for us to use it. The time it takes to do this can be adjusted in the range of several minutes to several hours.
      

      
      In general, using S3 Standard is fine. I recommend using S3 Infrequent Access and S3 Glacier only if you have specific needs.
         For example, if you know you’ll only need to analyze the data once each month, you could consider storing it in S3 Infrequent
         Access. If you need the data only for quarterly or annual analysis and can plan ahead, you may want to use S3 Glacier for
         cost savings.
      

      
      
      
      
      11.2. Storing data in the cloud with S3
      

      
      S3 is a place we can store large datasets. In this section, we’ll go over two ways we can store that data by using

      
      

      
         
         	a browser-based graphical interface

         
         	the boto Amazon Web Services/Python Software Development Kit (SDK)

         
      

      
      The browser-based interface is a convenient and user-friendly way to upload data and manage metadata. We can use the Python
         SDK library, boto, to harness the full power of Python and embed S3 actions in our scripts and software.
      

      
      
      11.2.1. Storing data with S3 through the browser
      

      
      We’ll start with learning how to store data in S3 through the browser. The browser-based interface to S3 buckets offers some advantages over the programmatic SDK access we’ll look at later. In particular, the browser
      

      
      

      
         
         	provides visuals queues that aid in understanding the concepts of S3 storage

         
         	has wizards that enumerate the available options

         
      

      
      These advantages make the browser-based interface a good option for getting used to S3 storage.

      
      Loading data into S3 is a two-step process:

      
      

      
         
         	Set up a bucket—a place to store the data.

         
         	Upload an object—a piece of data to be stored.

         
      

      
      We’ll tackle these steps in order. First, we’ll set up a bucket and talk about the options available to us there; then we’ll
         upload an object and talk about object-level options.
      

      
      
      Setting up buckets in S3
      

      
      Buckets are areas in S3 where we can store data. When we upload data to S3, we upload that data to a specific bucket. When
         the object is uploaded, it becomes accessible to only those who have access to the bucket. This makes buckets a great way
         to separate our data and control access to it.
      

      
      
         
            
         
         
            
               	
            

         
      

      Working on AWS

      
      
      In this section through the rest of the book, the exercises involve using live Amazon Web Services resources. These services
         are a business for Amazon. To follow along, you’ll need to set up an AWS account with a credit card, debit card, or prepaid cash card. The
         resources needed for the examples in chapters 11 and 12 cost less than $5 as I’m writing this. To conserve cost, make sure you shut down all your compute resources when you no longer
         need them. Idle compute clusters can quickly raise the cost of using AWS.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      For example, imagine we’re an airline and we have an application that allows users to see where all our planes are flying
         at any given time. We might want to store full flight location logs in S3 so that we can access this data for future analysis.
         At the same time, we want to keep curious third parties—potentially our competitors—from downloading our data. Buckets and
         their privacy controls allow us to limit access to such data.
      

      
      To start setting up a bucket, we’ll need to navigate to the S3 page in AWS. We can find Amazon Web Services at https://aws.amazon.com. From there, you can click the Services drop-down menu in the upper left corner of the screen and select S3, which you can
         find under Storage. Additionally, we could search for S3 in the Services search (figure 11.5).
      

      
      
      
      Figure 11.5. To navigate to the S3 landing page, we can always use the Services navigation drop-down menu and either do a search or find
         S3 under Storage.
      

      
      [image: ]

      
      
      This will take us off of the main AWS landing page and onto the S3 landing page. This page will list the buckets we have once
         we have one or more buckets set up. For now, though, it offers us a search bar and a button that we can click to launch the
         S3 Create Bucket wizard (figure 11.6). Click that button.
      

      
      
      

      
      
      Figure 11.6. The S3 Create Bucket wizard and bucket search are available from the S3 landing page.
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      Once we enter the Create Bucket wizard, it will walk us through the options for setting up an S3 bucket. The first two options
         we’ll face are deciding on a bucket name and selecting a region for our bucket. The name of our S3 bucket has several restrictions.
         The three major restrictions for S3 bucket names are that they
      

      
      

      
         
         	must be unique among all S3 bucket names (see figure 11.7)
         

         
         	can’t use capital letters or underscores

         
         	must be between 3 and 63 characters

         
      

      
      
      
      Figure 11.7. The bucket wizard is helpful in selecting a bucket name, which must be unique across all S3 buckets, and a region.
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      A common way to name S3 buckets is to break bucket names into a series of labels. For example, wolohan.mastering.largedata
         could be a bucket for this book. That name consists of three labels—wolohan, mastering, and largedata—each of which is separated
         by a period. If I wanted to create a second bucket for a similar purpose, I could create wolohan.mastering.largedata2. If
         I wanted to create a bucket for a book on small data, I could call it wolohan.mastering.smalldata. Another common approach
         is to use hyphens instead of periods.
      

      
      Additionally, on the first Create Bucket page, we need to select a region for our bucket. The region refers to the group of
         data centers where AWS will store the bucket’s data. In AWS parlance, a region is a group of availability zones, which are
         themselves data centers or groupings of data centers (figure 11.8). The availability zone level offers the lowest redundancy and fault tolerance (which is still quite good), with a region-level
         service offering more fault tolerance (which is great), and a multiregion setup offering the most fault tolerance (excellent).
      

      
      
      
      Figure 11.8. Regions and availability zones in AWS refer to the data centers that are used to run compute operations or store data. Moving
         from small scale (availability zone) up to large scale (multiple regions) improves fault tolerance.
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      Managed services in AWS typically run at the region level. Services that we manage ourselves—such as basic compute and traditional
         block storage—are run at the availability zone level. We can replicate managed services and self-managed services across regions
         if we need the extra redundancy or need to make our application available to customers in a different part of the world. For
         our purposes, any region will do. Pick the one closest to you and click Next.
      

      
      The next two screens in the S3 Create Bucket wizard allow us to select optional features and permissions for our buckets.
         In the Configure Options screen, the two options that I want to draw our attention to are the Versioning and Tags features
         (figure 11.9).
      

      
      
      
      Figure 11.9. Configure Options offers options for generating S3 buckets in the AWS browser wizard.
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      S3 versioning is a very useful feature because it allows us to keep track of objects through time. For example, we can use
         S3 to store snapshots of a database all in a single object. That being said, with S3, we do pay to store every version of the object uploaded. If we upload four versions
         of an object at 10 MB, we’re paying for 40 MB or storage. If we store 100 versions of an object at 100 GB each, we’re paying
         for 10 TB of storage. Versioning is an important feature, but don’t get caught off-guard if you’re versioning large objects.
      

      
      The Tags option for S3 buckets allows us to use arbitrary metadata to keep track of projects. For example, it may make sense
         for you to enter a tag for your S3 bucket with a key of “project” and a value of “chapter-11.” You can add as many of these
         tags as you need for your project. For example, if you have a bucket for movies, you may want to add a key of “content” and
         a value of “movies.” Once you’re done adding tags, click through to the next screen.
      

      
      From the Set Permissions screen, we can set restrictions on the public access of our bucket. Public access refers to access
         that comes in directly from the public internet. For data analysis, assuming we want to do our analysis on AWS as I demonstrate
         next chapter, we won’t need this (figure 11.10). For other use cases, public access can be helpful. Amazon recommends limiting public access to S3 buckets as much as possible.
         Go ahead and block all public access for this bucket, click through the next two pages, and create the bucket.
      

      
      
      
      Figure 11.10. Public access to S3 buckets is not generally necessary for analytics workflows.
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      At this point, we’ve created an S3 bucket. You should see a bucket show up on the main S3 landing page. Click on the bucket’s
         link, and you’ll be brought to a landing page specific to that bucket. As long as that bucket is empty, it will show you a
         landing page giving you three options (figure 11.11):
      

      
      

      
         
         	Upload an object

         
         	Set object properties

         
         	Set object permissions

         
      

      
      
      
      Figure 11.11. The main thing we’ll do with S3 buckets is upload objects to them.
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      Of these three, we’ll want to upload an object. If we click the blue Upload button in the top left corner, we’ll be brought
         to another wizard like the one we just went through. This wizard is for adding data to an S3 bucket.
      

      
      The bucket Upload wizard (figure 11.12) allows us to upload a single file or multiple files. Go ahead and click Add Files and choose a file from your file system.
         The chapter 11 repository (you can find it at this link: https://www.manning.com/downloads/1961) for this book includes several files for the programmatic example later in this chapter that you can use for this part.
      

      
      
      
      Figure 11.12. The bucket Upload wizard allows us to upload files to an S3 bucket.
      

      
      [image: ]

      
      
      Click through the next screen, selecting to use the bucket-level permissions, and you’ll be brought to a Set Properties screen
         (figure 11.13). On this screen, we can select the storage class of the object we’re uploading.
      

      
      
      
      Figure 11.13. The storage classes in S3 are all tailored to a different use case. The standard S3 storage class is appropriate for most
         use cases.
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      We covered three of these storage classes in section 11.1.5:
      

      
      

      
         
         	Standard storage is appropriate for most use cases.

         
         	Infrequent Access storage is for data we want to have available but won’t need often.

         
         	Glacier storage is for data we want to keep but will need infrequently and about which we’ll have plenty of notice before
            we need it.
         

         
      

      
      On this screen, we can see those three classes, plus several more. You’ll notice that AWS provides its own descriptions of
         when the different storage classes are useful. At the top of the page in the wizard, the link to the current S3 pricing will
         let us compare the costs of the different storage options. I recommend using S3 Standard for this upload and other uploads
         where the case for another class is not obvious.
      

      
      Additionally, via this screen, we have the option of adding metadata tags to our object (figure 11.14). These tags are key-value pairs that can be anything we want. They can be helpful for storing our data. For me, I’m uploading
         the data file named 2014-01.json—which I know is a JSON file with data from January 2014 in it. For that reason, I’ll give
         it three tags:
      

      
      

      
         
         	A header declaring the content type of the object

         
         	A custom tag indicating the month of the object

         
         	A custom tag indicating the year of the object

         
      

      
      
      
      Figure 11.14. Adding metadata to S3 objects helps us find those objects later when we need to use them.
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      I can use these tags in the future to find the object among all of the objects that I upload to this bucket.

      
      Once you’ve added the metadata you want, click through this screen, review your choices, and upload the object to your bucket.
         Now, when you’re on the landing page of your S3 bucket, you should see a listing of all the objects in that bucket. There
         should only be one object: the one you just uploaded. Click on that object, and you’ll be brought to an object page (figure 11.15).
      

      
      
      

      
      
      Figure 11.15. The S3 object page shows metadata about the object and lists actions—such as downloading the object or opening the object—that
         we can take.
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      The object page shows you properties of the object you just uploaded, including
      

      
      

      
         
         	the owner of the object

         
         	the date the object was last modified

         
         	the storage class of the object

         
         	the size of the object

         
      

      
      Additionally, options at the top of the page indicate actions we can take. Try to open the object using the open option, and
         you’ll be brought to an error page. Why is this happening?
      

      
      We’re getting the error page because we’re attempting to access the object from our browser over the public internet, and
         we blocked public internet access to all the objects in our bucket. This is the same response that anyone else would see if
         they were trying to access our object. If we want to preview the JSON file, a convenient way to do that is on the Select From
         tab.
      

      
      The Select From tab gives us options for querying our data (figure 11.16). If we select the JSON file format and JSON lines type, AWS will give us a preview of the document. We can also click through
         and use SQL-like expressions to query our document. For large files, this may be an effective way of preprocessing our data,
         although we also can use the map and filter techniques we have learned through this book.
      

      
      
      
      Figure 11.16. We can use S3 Select to preview JSON, CSV, or Apache Parquet files that we’ve uploaded to S3. S3 Select provides SQL-like
         access to data in all three formats.
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         Parquet: A concise tabular data store
         
         In figure 11.16, you’ll notice three file format options: CSV, JSON, and Parquet. The first two we’ve already used in this book. CSV is a
            simple, tabular data store, and JSON is a human-readable document store. Both are common in data interchange and are often
            used in the storage of distributed large datasets. Parquet is a Hadoop-native tabular data format.
         

         
         Parquet uses clever metadata to improve the performance of map and reduce operations. Running a job on Parquet can take as
            little as 1/100th the time a comparable job on a CSV or JSON file would take. Additionally, Parquet supports efficient compression.
            As a result, it can be stored at a fraction of the cost of CSV or JSON.
         

         
         These benefits make Parquet an excellent option for data that primarily needs to be read by a machine, such as for batch analytics
            operations. JSON and CSV remain good options for smaller data or data that’s likely to need some human inspection. For more
            on Parquet, see chapter 7 of Spark in Action, Second Edition, by Jean-Georges Perrin: http://mng.bz/eD7P.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Uploading objects manually is useful because it can be a good introduction or a reminder of all the options that are available
         to us. It does, however, require a lot of clicking. In the next section, we’ll look at how we can upload an object programmatically.
      

      
      
      
      
      
      11.2.2. Programmatic access to S3 with Python and boto
      

      
      Although the browser-based interface to S3 is nice, at times we want to upload objects to S3 without as much human involvement.
         For these situations, we can use one of the AWS SDKs. For Python, that would be the boto library.
      

      
      Boto is a library that provides Pythonic access to many of the AWS APIs, including the S3 API. We can use boto to write Python
         code—including all of the map and reduce perks we’ve used so far in this book—to upload objects to S3. The current version
         of boto is boto3, and we can install it using pip:
      

      
      pip install boto3

      
      We’ll be able to use boto to interact with AWS on our behalf. To do so, we need to give it authorization. This authorization
         comes in the form of an access key and an access key secret. To create these keys, we’ll have to go back to AWS in our browser.
         Specifically, we’ll want to go to our Identity Access and Management (IAM) console.
      

      
      
      A secure cloud with IAM
      

      
      Through the Amazon Web Services IAM interface, we can create accounts with different access permissions. For example, we may
         want to give our developers access to our compute resources but restrict the finance team to only the billing. This is a powerful
         tool—similar to user accounts on an operating system.
      

      
      By default in AWS, we operate as root. As you may know from working on a Unix system, root access gives us a lot of power,
         but it also can allow a malicious or ignorant actor to cause a lot of damage. For that reason, we want to limit the amount
         of time we spend at root. To do so, we’ll create separate IAM accounts to work from.
      

      
      Navigate to the Users tab of the IAM console by doing one of the following:

      
      

      
         
         	Clicking your name in the top right corner, then Security Credentials, then Users in the sidebar

         
         	Going to https://console.aws.amazon.com/iam/home?#/users

         
      

      
      From here, you’ll see a blank list of users. It’s blank because we haven’t created any IAM users yet. Up top, there will be
         a big blue Add User button. Click that button, and you’ll be brought to yet another AWS wizard (figure 11.17). This wizard will walk us through setting up an IAM user.
      

      
      
      
      Figure 11.17. The AWS Create User wizard will help us create a user that will have programmatic-only access to our AWS resources.
      

      
      [image: ]

      
      
      In the first screen, give the user a User Name and check the box for Programmatic Access. This will provide that user credentials
         to use the Python SDK for AWS: boto. Don’t click the checkbox for AWS Management Console Access. Leaving it unchecked will
         prevent that user from accessing AWS over the web.
      

      
      Click through to the second page, and you’ll be asked to set the user permissions (figure 11.18). This is where we decide what the user can and can’t do. We’ll want our user to be able to access and modify AWS resources
         necessary for working on large datasets. AWS refers to this type of user as a data scientist. To give the user we’re creating
         the permissions of a data scientist, do the following:
      

      
      

      
         
         	Click Attach Existing so we can see the AWS suggested permissions policies.

         
         	Type DataScientist in the search bar and select the result that appears.

         
      

      
      
      
      Figure 11.18. Adding a data scientist policy to our new IAM user will allow the user to access the resources necessary for working with
         large datasets in the cloud, but nothing else.
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      Note that AWS has a variety of other permissions sets for other roles—such as system administrators, billing only, read only,
         and database administration only—that we can use to ensure folks only have access to what they need. See table 11.2 for more information.
      

      
      Table 11.2. Useful AWS Security Policies and common situations in which you would assign them
      

      
         
            
            
         
         
            
               	
                  AWS Security Policy

               
               	
                  Use case

               
            

         
         
            
               	AdministratorAccess
               	Individuals who need to be able to manage other users; start up and shut down all services
            

            
               	DataScientist
               	Users who are performing general data analytics tasks, requiring a mix of S3, EC2, and Elastic MapReduce services
            

            
               	AmazonElasticMapReduceRole
               	Users who need to use the Elastic MapReduce cluster-computing abilities of AWS
            

            
               	AmazonS3FullAccess
               	Programs/scripts that need to both read and write data to AWS S3
            

            
               	AmazonS3ReadOnlyAccess
               	Programs/scripts that only need to read data from AWS S3
            

            
               	PowerUserAccess
               	Users who need to access all features of all services but don’t need to manage other users
            

         
      

      
      Once you’re ready—click through the next two screens until you see a success message indicating the user has been created.
         On this page, you’ll see an option to download a .csv file. This file contains the user credentials for the user you just
         created, including the access key and the secret key we’ll need to programmatically access S3 through boto. Download this
         file and get it ready—we’re about to write some code.
      

      
      
      
      AWS scripting with the Python SDK boto3
      

      
      In the repository for this chapter, there’s data on car accidents. We’ll analyze this data in the cloud in the next chapter—but
         first, we need to load it up into S3 buckets. To do this, we’ll use the familiar map pattern that we first introduced in chapter 2. For this map operation, we’ll need two things:
      

      
      

      
         
         	A sequence of file paths indicating all the files we want to upload

         
         	A helper function that does the work of uploading those files

         
      

      
      Let’s start with the helper function to get working with boto3. Our map helper functions typically have taken one parameter,
         but for this map helper function, let’s design it to take two parameters. The first will be the path to the file we’re trying
         to upload, and the second will be the bucket to which we want to upload. This will let us reuse the function for other buckets
         if we’d like.
      

      
      We’ll start by focusing on the first parameter of the function: the file path. Let’s take this file path and use the os.path.split function to extract the filename from the path. We’ll assign the file this name—the same name that it has on our local system—when
         we upload it to S3.
      

      
      From here, we’re ready to create an AWS client instance. The client instance is a class that has methods representing actions
         we can take on AWS, such as uploading files to a bucket. This is available in boto as .client, and we’ll initialize it with three parameters:
      

      
      

      
         
         	The name of the service we want to use—in this case "s3"

         
         	The access key id for the DataScientist account we created

         
         	The secret access key for the DataScientist account we created

         
      

      
      Importantly, we don’t want to pass these keys in as plain text. Doing so could potentially expose our account credentials
         if we upload our code to a code repository. Instead, we want to read them from environment variables. You can assign the access
         key and access secret to environment variables with the export command on a Unix machine or from the environment variables wizard on a PC.
      

      
      export AWS_ACCESS_KEY=YOUR-ACCESS-KEY-HERE
export AWS_SECRET_KEY=YOUR-ACCESS-SECRET-HERE

      
      
      

      
         
            
         
         
            
               	
            

         
      

      
         
         Credentials, AWS, and boto3
         
         You have several ways to establish your identity when using boto3. The method I’ve chosen here balances ease and security.
            Two other popular options are to specify your access key and secret key in a credentials or configuration file, located at
            either ~/.aws/credentials or ~/.aws/config. Amazon provides information on how to set up those files in their AWS Command Line Interface documentation: http://mng.bz/O9oo.
         

         
         An advantage of the credentials file is that you can specify multiple profiles—for example, for development and environments—and
            easily alternate between them when setting up a boto3 session. That’s beyond the scope of this chapter, but I encourage you
            to take a look at the boto3 configuration documentation for more information: http://mng.bz/G4ER.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Providing those three parameters returns a client that can take S3 actions on our behalf. This client has a method .upload_file that we can use to upload our files. We’ll also pass three parameters to the .upload_file method:
      

      
      

      
         
         	The file path of the file we want to upload

         
         	The name of the bucket to which we want to upload

         
         	The name of the file as we want it to show up on S3

         
      

      
      This method performs the upload to AWS and may return an HTTP response. Let’s take this response and return it, along with
         the file name, as the value of our function upon completion. We can see this helper function in full in the following listing.
      

      
      
      
      Listing 11.1. A helper function to upload files to S3
      

      import boto3 as aws #A
import os

def upload_file(file_path, bucket):
    _, file_name = os.path.split(file_path)
    s3 = aws.client("s3",
        aws_access_key_id = os.environ["AWS_ACCESS_KEY"],
        aws_secret_access_key = os.environ["AWS_SECRET"]
    )
    response = s3.upload_file(file_path, bucket, file_name)
    return file_name, response

      
      To use this function, we need to map it across a sequence of files. Use the iglob function, which we covered in chapter 4, to assign a sequence of the files we’re interested in to a variable for that purpose. Once we have that sequence, we need
         to apply our upload_file function to each of the files, as shown in the following listing.
      

      
      
      

      
      
      Listing 11.2. Uploading files from the filesystem to S3
      

      from glob import iglob

if __name__ == "__main__":
    files = iglob("/path/to/data/files/*")
    [upload_file(f, bucket="your-bucket-name") for f in files]

      
      Running this code will take some time, but it shouldn’t provide you with any clues of its completion in the terminal. Instead,
         navigate in the browser to the S3 bucket you created. Once there, you should see a bucket full of data files ready to analyze
         (figure 11.19).
      

      
      
      
      Figure 11.19. Your browser shows the traffic data files that have been uploaded to an AWS Simple Storage Service bucket.
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      In the next chapter, we’ll use those files and this bucket to learn how to analyze large datasets in the cloud.

      
      
      
      
      
      11.3. Exercises
      

      
      
      11.3.1. S3 Storage classes
      

      
      Which S3 storage class is best for each of the following three situations?

      
      

      
         
         	Data we know we’ll only need rarely and with plenty of warning

         
         	Data we know we’ll only need a few times each month

         
         	Data we’ll need access to regularly

         
      

      
      
      
      11.3.2. S3 storage region
      

      
      AWS resources exist inside either availability zones or regions. Does highly durable S3 storage exist in an availability zone
         or across a region?
      

      
      
      
      
      11.3.3. Object storage
      

      
      Which three elements are the integral components of object storage?

      
      

      
         
         	Object, object name, object location

         
         	Object, object path, object color

         
         	Object, object size, metadata

         
         	Object, object ID, metadata

         
      

      
      
      
      
      Summary
      

      
      

      
         
         	Amazon Web Services Simple Storage Solution—known as S3—is a great option for large datasets we’ll want to operate on in the
            cloud because it’s effectively limitless in size.
         

         
         	S3 is also a managed service—AWS acts as a custodian for our data, and we can focus on getting value from it.

         
         	In S3, objects, which can be any data file we upload, are stored in buckets. We can assign metadata tags to both buckets and
            objects for organization.
         

         
         	We can store S3 objects in the Standard storage class, if we’ll access them frequently; an Infrequent Access storage class,
            if we’ll access them infrequently; and Glacier storage class for archiving.
         

         
         	We can create buckets and upload objects through the browser using AWS’s graphical interface. The interface shows us lots
            of options for every action we take.
         

         
         	We also can upload objects through the Python software development kit for AWS: boto3.

         
      

      
      
      
      
      
      
      


Chapter 12. MapReduce in the cloud with Amazon’s Elastic MapReduce
      

      
      This chapter covers

      
      

      
         
         	Launching and configuring cloud compute clusters with Elastic MapReduce

         
         	Running Hadoop jobs in the cloud with mrjob

         
         	Distributed cloud machine learning with Spark

         
      

      
      Throughout this book, we’ve been talking about the ability to scale code up. We started by looking at how to parallelize code
         locally; then we moved on to distributed computing frameworks; and finally, in chapter 11, we introduced cloud computing technologies. In this chapter, we’ll look at techniques we can use to work with data of any
         scale. We’ll see how to take the Hadoop and Spark frameworks we covered in the middle of the book (chapters 7 and 8 for Hadoop; chapters 7, 9, and 10 for Spark) and bring them into the cloud with Amazon Elastic MapReduce. We’ll start by looking at how to bring Hadoop into
         the cloud with mrjob—a framework for Hadoop and Python that we introduced in chapter 8. Then, we’ll look at bringing Spark and its machine learning capabilities into the cloud.
      

      
      
      
      12.1. Running Hadoop on EMR with mrjob
      

      
      In chapter 8, we reviewed two methods of working with Hadoop:
      

      
      

      
         
         	Hadoop Streaming— Which uses Python scripts for its mappers and reducers
         

         
         	mrjob— Which we can use to do Hadoop jobs using only Python code
         

         
      

      
      When we used both of these approaches, we focused on implementing the map and reduce style in Hadoop. With the techniques
         in chapter 8, you could take advantage of a Hadoop cluster if you already had one available, but most people don’t. In this section, we’ll
         review running Hadoop jobs on Amazon Web Services’ Elastic MapReduce (EMR), a service we can use to create compute clusters
         whenever we need them.
      

      
      
      12.1.1. Convenient cloud clusters with EMR
      

      
      Hadoop clusters used to be reserved for only those who needed them often or could afford to have a large amount of computing
         resources laying around idle much of the time. This meant that 10 years ago, for the most part, only corporations and academic
         institutions had cluster computing. Now, with the cloud increasing in popularity, everyone can have access. One convenient
         way to get access to a compute cluster is Amazon’s Elastic MapReduce service.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Other cloud compute services
         
         Amazon is not the only provider of cloud-based clustering computing services. Their two major competitors, Microsoft Azure
            and Google Cloud, both offer services you’ll find similar to Amazon Web Services. Microsoft’s Azure HDInsight service and
            Google’s Cloud Dataproc service both support Hadoop and Spark. That means you can use the knowledge from chapters 7–10 with both of those services. mrjob, which we covered in chapter 8 and go into more depth on in this section, also supports Google Cloud Dataproc. mrjob doesn’t support Azure HDInsight.
         

         
         In this chapter, we’ll use AWS because we’ll want to work with the resources we used in the previous chapter.

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Amazon Web Services’ EMR is a managed data cluster service. We specify general properties of the cluster, and AWS runs software
         that creates the cluster for us. When we’re done using the cluster, Amazon absorbs the compute resources back into its network.
         You can think of this like the S3 cloud storage. Because Amazon has so much compute power, we can ask for some whenever we
         want, and they’ll rent it to us. Then, when we don’t need it anymore, Amazon is happy to take it back.
      

      
      With this setup, if we need to run a large data processing task once a month or even once a year, we don’t need to pay to
         maintain the cluster all month or all year. We can ask AWS to provide us the compute resources when we need to do the processing,
         then we can return the compute resources to Amazon when we’re done. If we need to do this work more often, or at irregular intervals, we can maintain a small cluster that can grow based on usage.
      

      
      For example, say we run text analytics on all the comments posted about our products on Facebook, Twitter, and Instagram every
         six hours. We may maintain a small cluster all the time to reduce startup time and then have the cluster expand based on how
         much new data there is to analyze. If there are only a few thousand comments about our products, we might get by without expanding
         our small cluster. If something surprising happens—say an A-list celebrity is caught using a product of ours—and we have hundreds
         of thousands of comments to parse through, our cluster can automatically expand to accommodate the increased volume.
      

      
      Importantly, too, the pricing model for Amazon’s EMR service is a per-compute-unit per-second charge. If we run 100 machines
         and our job finishes in 2 minutes, we’ll pay the same amount as if we processed it on one machine and it took us 200 minutes.
         That means there are no cost savings to doing things slowly. Amazon encourages us to parallelize our problems away. All three
         cloud providers—Microsoft, Google, and Amazon—price their managed compute services in this way, though prices vary by provider.
      

      
      
      
      12.1.2. Starting EMR clusters with mrjob
      

      
      The easiest way to start an EMR cluster is by using a Python library we’re already familiar with: mrjob. Although we can—and
         did, in chapter 8—use mrjob locally, mrjob was designed to automate the procurement of EMR clusters. By writing a Hadoop job with EMR and specifying
         the right settings, we can quickly set up a Hadoop cluster in the cloud.
      

      
      Because we’ll do machine learning with Spark later in this chapter (section 12.2), let’s do a bit of data analysis that will help us understand the files we uploaded to S3 in chapter 11. Back in chapter 11, we uploaded data about car accidents, including features such as the time of day and the number of vehicles involved. For
         our first Hadoop job on EMR, let’s write a MapReduce job that counts up the number of times crashes occurred with different
         numbers of vehicles (figure 12.1).
      

      
      
      
      Figure 12.1. We can use EMR to scale our MapReduce jobs up to any size. In this case, we’ll use EMR to analyze the number of car crashes
         with different numbers of vehicles involved.
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      To do this, we’ll create a custom class that inherits from the main mrjob class. Then we’ll write two methods for that class:

      
      

      
         
         	A .mapper that takes in the line and returns the number of vehicles involved
         

         
         	A .reducer that groups the vehicles and sums the counts
         

         
      

      
      Because our data is stored in the JSON lines format, when we process each line with our .mapper, we’ll read it into a Python object using json.loads, as shown in listing 12.1. From there, we can use dictionary notation to retrieve the number of vehicles involved in the crash. Yielding this value
         and a 1 in a tuple will put us in good shape to count the values up in our .reducer.
      

      
      
      

      
      
      Listing 12.1. Counting crashes by number of vehicles with mrjob
      

      from mrjob.job import MRJob
import json

class CrashCounts(MRJob):

    def mapper(self, _, line):
        crash_report = json.loads(line)
        vehicles = crash_report['Number of Vehicles Involved']
        yield vehicles, 1

    def reducer(self, key, values):
        yield key, sum(values)


if __name__ == '__main__':
    CrashCounts.run()

      
      In our .reducer, we use the standard counting reduction. The key stays the key, but the value becomes the sum of all the values. If we ran
         this locally, the result would be a sequence of keys and values printed to the terminal. The first value indicates the number
         of vehicles involved, and the second value indicates how many crashes involved that number of vehicles. If you have the data
         files locally, you can run the mrjob script and validate this for yourself.
      

      
      To run this in the cloud on EMR, we need to pass three additional parameters to our mrjob script on the command line, as shown
         in listing 12.2:
      

      
      

      
         
         	The first parameter we need to specify is called the runner. This tells mrjob how to process our command. By default, it processes
            locally. To process on EMR, we will need to specify -r emr.
         

         
         	Next, we’ll need to provide a path to our input files. So far, we’ve been using blob syntax and pointing to where those files
            reside locally. Here, though, we have our data in S3. That path will need to be our bucket.
         

         
         	Lastly, let’s specify a folder to which we’ll write our output. We can place it in the same bucket or in a separate bucket.

         
      

      
      
      
      Listing 12.2. Running Hadoop on EMR with mrjob
      

       python mrjob_crash_counts.py \
       -r emr \
       s3://your-bucket-name-here/ \
       --output-dir=s3://your-other-bucket-name/crash-counts

      
      In addition to these variables, which define where the script will go, we need to provide our credentials. mrjob uses them
         to create a compute cluster on our behalf. To keep these credentials secret, mrjob insists that you have these variables exported
         to your local environment. This prevents you from exposing your credentials in plaintext in your source code. If you didn’t
         provide your credentials in chapter 11 when using boto3 to upload data to S3, the following listing shows how to do that for Mac and Linux. For Windows, search
         for “environment variables” and follow the wizard.
      

      
      
      
      Listing 12.3. Setting AWS credentials for mrjob
      

      export AWS_ACCESS_KEY_ID=<your AWS access key>
export AWS_SECRET_ACCESS_KEY =<your secret AWS access key>

      
      Once you have your environment variables set, you’ll be able to run mrjob on EMR with the command from listing 12.2. By default, this command will spin up a small test cluster for you. For learning the tool, this small cluster is plenty.
         For bigger jobs, you’ll want to use more resources. A common way to use more resources is to use an mrjob config file. This
         file allows us to use YAML notation to specify the type of cluster we’d like.
      

      
      For example, if we wanted to

      
      

      
         
         	run our Hadoop job with 20 instances

         
         	have all those instances be m1.large

         
         	have those resources be in the us-west-1 region (Northern California)

         
         	tag those resources with a “project” tag that had a value of “Mastering Large Datasets”

         
      

      
      we could specify all of that in the config file. We can see an example of a config file for just that in the following listing.

      
      
      

      
      
      Listing 12.4. An example configuration file for mrjob
      

      runners:
  emr:
    num_core_instances: 20
    image_version: 5.24.0
    instance_type: m1.large
    region: us-west-1
    tags:
      project: Mastering Large Datasets

      
      Specifying settings in a configuration file makes it possible for us to use and reuse multiple settings. For example, it may
         be enough to use 20 instances to run a nightly extract-transform-load process. For the monthly executive report, though, we
         may need to use 100 instances. We can use two configuration files to allow us to save our parameters.
      

      
      We can pass those parameters to mrjob on the command line when we invoke it with Python using the conf-path parameter. The following listing shows an example of this action.
      

      
      
      
      Listing 12.5. Adding a config file to an mrjob call
      

      python mrjob_crash_counts.py \
       -r emr \
       s3://your-bucket-name-here/ \
       --output-dir=s3://your-other-bucket-name/crash-counts
       --conf-path=</path/to/your/config/file.conf>

      
      Once you’ve successfully run your Hadoop job on EMR with mrjob, we can open up the AWS console to see what happened.

      
      
      
      12.1.3. The AWS EMR browser interface
      

      
      In section 12.1.2, we looked at how we can use AWS EMR with the mrjob tool. In this section, we’ll look at how we can use the browser interface
         to run Spark jobs. Just as AWS provides a browser-based interface to S3, the object storage system that we looked at in chapter 11, AWS also provides a browser-based interface to EMR. You can access that interface by going to https://console.aws.amazon.com/elasticmapreduce/home.
      

      
      If you ran the job from section 12.1.2 and that job completed successfully, you should see a task with the status “Terminated—All steps completed” (figure 12.2). If you see another message, the job may still be running, or there may have been an error.
      

      
      
      
      Figure 12.2. The Amazon browser-based console provides a convenient overview of the status of our clusters, including their names, IDs,
         status, time started, and total uptime.
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      Viewing cluster status from the AWS cluster console
      

      
      Whatever you see after you run the job, click on the name of the cluster, and you’ll arrive at the cluster-specific console
         page. On this page, you’ll see the name and status of the instance along with other information about your cluster (figure 12.3).
      

      
      
      
      Figure 12.3. The cluster console shows information specific to that AWS cluster, such as the ID of the cluster and the number of machines
         in it. You can also use this console to modify the settings of running clusters.
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      Click the Steps tab, and you’ll find a list of all the steps submitted to your cluster. In EMR, steps are tasks that we send
         to the cluster through the EMR API—either using the console, through an SDK like boto3, or through the command-line AWS tools.
         In our case, there should be only a single step (figure 12.4). AWS created this step when we ran mrjob with the EMR runner.
      

      
      
      
      Figure 12.4. The step-specific detail screen of the EMR console shows information about tasks we’ve asked our cluster to work on.
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      It’s possible to submit multiple steps to the same cluster. If we do that, the steps will run one after another. Each step
         will wait until all steps in front of it have finished before it begins. If we want to run multiple steps simultaneously,
         we can request multiple clusters at the same time from EMR.
      

      
      This tab is useful because it provides convenient access to the logs for each step. If your EMR steps fail—which they inevitably
         will if you use the service enough—this page can be helpful in your debugging process. Additionally, when jobs fail, mrjob
         will parse through the logs created by the Hadoop job and attempt to provide you with a user-friendly diagnosis of what went
         wrong. Hadoop’s logs are Java logs, and Java error messages can require some getting used to. If you’re more familiar with
         Python than with Java, the mrjob diagnosis can be quite a benefit.
      

      
      
      
      
      Running lots of small EMR jobs
      

      
      On this tab, you will also note the amount of time that was spent working each particular step. For example, in figure 12.4 you can see that my crash counts script only spent 1 minute running. Compare that to figure 12.3, where the cluster as a whole ran for 13 minutes. The remaining time was spent in setup and teardown. In the setup phase,
         the machines are procured and connected, and the necessary software is installed on them (such as Python, Java, and Hadoop).
         In the teardown phase, AWS returns the resources and produces logs.
      

      
      If you’ll be running lots of small tasks, that’s a use case where you may want to submit multiple steps to a single cluster.
         mrjob makes it easy for us to set up clusters with the create-cluster command. We can pass this command to our configuration file so the cluster behaves just like it would if we created it with
         a single job. Additionally, the cluster will keep running after our job has finished. When we do run a persistent cluster
         like this, we’ll usually want to specify a maximum number of hours it can be idle before it shuts down entirely:
      

      
      mrjob create-cluster --max-hours-idle 1 --conf-path=path/to/conf/file.conf

      
      This prevents us from paying for resources we don’t need.

      
      To submit jobs to an existing cluster, we’ll need to specify the cluster ID to which we want to submit our code. On the command
         line, the parameter is --cluster-id, and it should be followed by the ID of the cluster on which we want to run.
      

      
      Another parameter to note is emr_action_on_failure (in the config file) or --emr-action-on-failure (on the command line). These parameters specify what should happen to the cluster if our jobs fail. When we run a single
         step, this defaults to TERMINATE_CLUSTER. Having terminate on fail as the default means that if our job has any errors, our cluster will shut down. The two other options for emr_action _on_failure are CANCEL_AND_WAIT and CONTINUE.
      

      
      CANCEL_AND_WAIT tells the cluster to cancel the other steps that have been queued up and to hold off on doing anything. This is useful if
         your steps are related. For example, if you have three steps in an extract-transform-load workflow—one for each extract, transform,
         and load—you don’t want your load step running if your transform step hasn’t completed properly.
      

      
      CONTINUE tells the cluster to go ahead and work the other steps. This is useful when the steps aren’t related; for example, if you’re
         running batch analytics. The results of one analytics step won’t necessarily impact the next step, so it’s fine to continue
         with our analytics jobs if we have errors in one of them. We use CONTINUE in the following listing.
      

      
      
      
      Listing 12.6. Specifying cluster ID and failure behavior in an mrjob config file
      

      runners:
  emr:
    num_core_instances: 6
    image_version: 5.24.0
    instance_type: m1.large
    region: us-west-1
    cluster_id: j-000000000            1
    emr_action_on_failure: CONTINUE    1
    tags:
      project: Mastering Large Datasets

      
      

      
         
         	1 Specifying a cluster ID and an action on failure from the command line allows us to save time repeatedly setting up clusters
               to run fast jobs.

         
      

      
      
      
      Viewing our output in S3
      

      
      Let’s take a look at the output of our Hadoop job. When we called our mrjob script, we specified an output directory. This
         was a folder in an S3 bucket. Our output was written as objects to that bucket. If you navigate to that bucket in the browser,
         you should see a list of objects (figure 12.5).
      

      
      
      
      Figure 12.5. In your browser, the bucket lists the objects created as a result of our Hadoop process.
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      Each of these objects was created as a result of our crash counts Hadoop process and contains a part of the results. Each
         line of these files will have the same pattern as the output from our mrjob class’s .reducer. The first element on each line will be the number of vehicles involved in the crash, and the second element will be the number of times we saw a crash involving that
         number of vehicles.
      

      
      If we don’t want to have our results stored to an S3 bucket, omitting the --output-dir parameter will instead print those values to our screen. Outputting the values to our screen can be useful in situations
         where we know we won’t need to use those results in future workflows through EMR. One example might be when we’re testing
         our job. We can run it with a few small instances and print the results locally for testing, then use many instances and save
         the results when we’ve validated that the job works.
      

      
      In this section, we’ve reviewed how to submit a Hadoop job to a cloud-compute cluster using mrjob and Amazon Web Services’
         EMR. Hadoop on EMR is excellent for large data processing workloads, such as batch analytics or extract-transform-load. In
         the next section, we’ll review using Spark on EMR.
      

      
      
      
      
      
      12.2. Machine learning in the cloud with Spark on EMR
      

      
      When I introduced Hadoop and Spark in chapter 7, I introduced both of them as frameworks for distributed computing. Hadoop is great for low-memory workloads and massive
         data. Spark is great for jobs that are harder to break down into map and reduce steps, and situations where we can afford
         higher memory machines. In this section, we’ll focus on how we can use Spark to train a machine learning model on large data
         in the cloud on EMR.
      

      
      
      12.2.1. Writing our machine learning model
      

      
      Before we can run our machine learner in the cloud, let’s start by building a model locally on some testing data. This will
         mirror a process we might perform if we were running machine learning algorithms on a truly large dataset:
      

      
      

      
         
         	Get a sample of the full dataset.

         
         	Train and evaluate a few models on that dataset.

         
         	Select some models to evaluate on the full dataset.

         
         	Train several models on the full dataset in the cloud.

         
      

      
      This process has the virtue of making it possible for you to test lots of models quickly and cheaply on your local machine.
         And later, because we’re using scalable frameworks and a scalable computing style, we can bring the models we like into the
         cloud and test them on the full dataset (figure 12.6).
      

      
      
      
      Figure 12.6. A common machine learning process for large datasets is to sample many models locally and then evaluate the best models in
         the cloud.
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      For this scenario, we’ll continue to work with the car crash data we uploaded in chapter 11 and explored in the first section of this chapter.
      

      
      
         
            
         
         
            
               	
            

         
      

      Scenario: Car Crash Analysis

      
      
      Root-cause analysis of car crashes is a key way governments and safety organizations make driving safer. We’ve been asked
         by one such organization to develop a machine learning model that can predict which conditions lead to crashes that involve
         several vehicles (three or more) and which conditions lead to crashes that involve only one vehicle.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If you worked through chapter 10, where we learned about machine learning in Spark, you may want to try this part yourself as a challenge. We’ll use a naïve
         Bayes classifier as the machine learning model for this scenario. The naïve Bayes algorithm is a simple, probabilistic classifier
         that is often used for baseline assessments of the difficulty of machine learning problems, especially in text analytics.
         Problems where naïve Bayes algorithms perform poorly can be considered difficult, whereas problems where naïve Bayes algorithms
         perform well are easy.
      

      
      The first thing we need to do to run a naïve Bayes algorithm is the same as the first thing we did for decision trees in chapter 10: we need to read in data. Our data is in the JSON lines format, so the best way to read in our data is to use the .textFile method of a SparkContext and then chain .map methods together to transform the data into a version ready for transformation into a Spark DataFrame. Spark DataFrames are the required data format for Spark’s built-in machine learning libraries.
      

      
      To transform the data from JSON lines into a sequence of Python objects, we first need to split the data into lines. We can
         do this with a .flatMap and a .split on all newline characters. We use .flatMap here instead of normal .map because our original sequence is a sequence of files. If we used a standard .map, we’d have a sequence of sequences resulting from each file being transformed into a sequence of lines. What we want is a
         single sequence of lines. The .flatMap method flattens our sequence of sequences into a single sequence. From here, we can map the loads function from the JSON module across all the lines. This method, which we’ve used a few times already, converts a JSON-formatted string into a Python
         object.
      

      
      Additionally, we’ll want to improve the way the times are recorded. In the data, the times are recorded as raw times. That’s
         not useful because our machine learning model likely won’t have enough data to learn that 11:45 a.m. and 1:03 p.m. are closely
         related, but 3:45 p.m. and 5:03 p.m. likely have very different driving conditions (because of the beginning of evening commute
         traffic). Listing 12.7 includes a small function that makes some sense of the times.
      

      
      Once we have the data in a sequence of Python objects, we also want to make two more cleanup transformations. First, we’ll
         want to group the crashes into three categories:
      

      
      

      
         
         	Single-vehicle crashes

         
         	Two-vehicle crashes

         
         	Three-or-more-vehicle crashes

         
      

      
      The number of crashes will be the target variable for our analysis. To do this grouping, we’ll need to write a helper function
         that transforms the 'Number of Vehicles Involved' field, as shown in the following listing.
      

      
      
      
      Listing 12.7. Reading and cleaning crash data from JSON lines
      

      def group_crashes(x):
    if int(x['Number of Vehicles Involved']) > 3:
        x['Number of Vehicles Involved'] = "3"
    return x

def improve_times(x):
    time = x['Time']
    if time < "5:00":
        x['Time'] = "Early morning"
    elif time < "7:00":
        x['Time'] = "Morning"
    elif time < "9:00":
        x['Time'] = "Morning commute"
    elif time < "12:00":
        x['Time'] = "Late morning"
    elif time < "16:00":
        x['Time'] = "Afternoon"
    elif time < "18:30":
        x['Time'] = "Evening commute"
    elif time < "22:00":
        x['Time'] = "Evening"
    else:
        x['Time'] = "Late night"
    return x

  sc = SparkContext(appName="Crash model")
  spark = SparkSession.builder \
                      .master("local") \
                      .getOrCreate()

  texts = sc.textFile("/path/to/your/files/")
  xs = texts.flatMap(lambda x:x.split("\n")) \
            .map(json.loads) \
            .map(group_crashes) \
            .map(improve_times)

      
      From this point, we’re ready to convert our RDD into a DataFrame and prepare our DataFrame for Spark’s machine learners. To transform the RDD into a DataFrame, we use the .createDataFrame method of our SparkSession (figure 12.7). SparkSession objects are central to Spark’s SQL, DataFrame, and machine learning capabilities and serve as a mirror to SparkContext objects for RDDs.
      

      
      
      
      Figure 12.7. We can use both the SparkContext and the SparkSession to take advantage of RDDs and DataFrames. We’ll need to explicitly convert our RDD to a DataFrame when we want to use the DataFrame methods for machine learning.
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      Once we have our data in a DataFrame, we need to use the StringIndexer to transform our variables into the indexed format that Spark expects (listing 12.8). We won’t go into the details of the indexer code here, because our focus for this section is on Spark and EMR. If you’d
         like a refresher, we originally discussed these concepts in chapter 10, specifically section 10.2.2 with listings 10.2, 10.3, and 10.4.
      

      
      
      

      
      
      Listing 12.8. Preparing the crashes RDD for machine learning
      

        df = spark.createDataFrame(xs)

  feature_labels = df.columns
  feature_labels.pop(feature_labels.index('Number of Vehicles Involved'))
  df = reduce(string_to_index, feature_labels, df)
  indexes = ["i-"+f for f in feature_labels]

  df = VectorAssembler(inputCols=indexes,
                       outputCol="features").transform(df)

  df = StringIndexer(inputCol='Number of Vehicles Involved',
                     outputCol='label').fit(df).transform(df)

      
      With our DataFrame ready for machine learning, the last step is to set up the actual machine learning algorithm. As noted earlier, for this
         example we want to use a naïve Bayes algorithm. Like in our final example from chapter 10, we’ll use cross-validation to assess model performance. As you might guess from the algorithm’s name (naïve), the naïve Bayes model has relatively few parameters compared to more sophisticated models, so we’ll only optimize a single
         parameter of the model: smoothing. The smoothing parameter refers to how much additive smoothing is used in the model. The
         additive smoothing process prevents zeros from dominating the model, instead treating zeros as very small numbers. Typical values are 1/1000, 1/100, 1/10, and 1. You can see the machine learning code in the following listing. You’ll
         notice a lot of similarities between this code and the code we wrote for our random forest classifier in section 10.3.2.
      

      
      
      
      Listing 12.9. A naïve Bayes classifier for vehicles in crashes
      

      mce = MulticlassClassificationEvaluator()
nb = NaiveBayes()

grid = ParamGridBuilder().addGrid(nb.smoothing, [.0001, .001, .01, 1]) \
                         .build()
cv = CrossValidator(estimator=nb, estimatorParamMaps=grid,
                    evaluator=mce,numFolds=5,
                    parallelism=4)
cv_model = cv.fit(df)
transformed = cv_model.transform(df)
f1 = mce.evaluate(transformed)
print("NB F1: {:0.4f}".format(f1))
cv_model.bestModel.save("/path/to/your/model")

      
      One thing you may notice about this code that’s different from the code in chapter 10 is that we refer to our evaluation metric as F1 instead of AUC. F1, like AUC, is a metric that assesses trade-offs between
         false positives and false negatives. It’s most prominently used in information retrieval and document classification. For
         our purposes, it’s enough to know that F1 scores can range between 0 and 1, with higher numbers being better.
      

      
      You can run this code locally, pointing the .textFiles method and the .bestModel.save method to locations on your local machine. For the inputs to .textFiles, I recommend using a subset of the full crashes dataset. This will speed up the test process—the entire dataset will take
         several minutes to process on a single machine. For the output, you’re specifying a location where Spark will try to create
         a directory and store a description of the model. This should be a directory that doesn’t exist yet.
      

      
      
         
            
         
         
            
               	
            

         
      

      Reminder: Spark-submit

      
      
      Remember to run your Spark code with the spark-submit utility instead of Python. The spark-submit utility queues up a Spark job, which will run in parallel locally and simulate what would happen if you ran the program on
         an active cluster.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      12.2.2. Setting up an EMR cluster for Spark
      

      
      To run this machine learning job in the cloud, we’ll need a cluster on which to run our Spark job. Earlier in this section,
         we saw two ways to set up an EMR cluster programmatically using mrjob:
      

      
      

      
         
         	We can set up single-step clusters by submitting a Hadoop job with the -r emr flag set.
         

         
         	We can set up persistent clusters by running the mrjob create-cluster utility.
         

         
      

      
      In this subsection, I’ll show you how to set up a Spark cluster with mrjob and introduce you to the EMR cluster wizard.

      
      
      Setting up a Spark cluster with mrjob
      

      
      Back in section 12.1, we set up EMR clusters using mrjob so that we could run our Hadoop jobs in the cloud. As part of this, we wrote an mrjob
         config file (listing 12.4). The mrjob config file was a declaration of what we wanted our cluster to look like, as shown in listing 12.10. We can use that same approach to set up a Spark cluster. All we’ll need to do is specify a few extra options.
      

      
      
      
      Listing 12.10. Refresher: mrjob config for EMR
      

      runners:
  emr:
    num_core_instances: 20
    image_version: 5.24.0
    instance_type: m1.large
    region: us-west-1
    tags:
      project: Mastering Large Datasets

      
      Note that this configuration defines a cluster of 21 machines—20 workers and 1 master. Those machines are of type m1.large
         and are using AMI version 5.24.0. Additionally, we’ll be setting the cluster up in the us-west-1 region and tagging it with “project: Mastering Large Datasets.”
      

      
      For our Spark cluster, the first thing we’ll need to do is change the instances we’re using to one that has more memory. Hadoop,
         as I’ve mentioned before, was designed to take advantage of low computing power environments. Spark has greater resource requirements.
         For Spark, the smallest instance type we can us is m1.xlarge. When running Spark jobs in production, we can achieve better
         performance by using the AWS C-series instances, which are compute optimized.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         EC2 instance types and clusters
         
         We’ll want to know about three types of EC2 instances for cluster computing: M-series, C-series, and R-series. M-series instances
            are the default for cluster computing. These instances are solid, general-purpose instances. I recommend using them for Hadoop
            jobs, and for testing Spark jobs. AWS provides C-series instances for compute-heavy workloads, which includes Spark analytics.
            Batch Spark jobs are best run in production on C-series instances. Lastly, the R-series of instances is a high-memory series.
            We’ll want to use this series of instances if we’re dealing with streaming analytics.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Next, we’ll need to tell mrjob that we want to use Spark. For this, mrjob provides an option called bootstrap_spark. This takes a boolean variable, so we’ll set that to true.
      

      
      Lastly, we’ll want to be able to access our instance over the command line through SSH. SSH is a utility we can use to log
         in to and run commands on remote servers. To set up the cluster so we can log in through SSH, we’ll need to specify an AWS
         .pem key pair.
      

      
      If you haven’t set up an AWS EC2 key pair, you can create one using the AWS command line tool, which you installed along with
         boto3. The command for that is aws ec2 create-key-pair. You’ll also want to set the mandatory --key-name option so that you can refer to your key.
      

      
      aws ec2 create-key-pair --key-name my-emr-key > /path/to/my/key.pem

      
      AWS EC2 keys are region specific, and this command will create the key in your default region. If you’re not sure what your
         default region is, you can go to https://console.aws.amazon.com. The region will display as a parameter in the URL; for example, http://mng.bz/ZeA5.
      

      
      With that, we’ll have a configuration file ready to set up a Spark cluster. Our Spark mrjob configuration file looks like
         the following listing.
      

      
      
      
      Listing 12.11. mrjob configuration file for a Spark EMR cluster
      

      runners:
  emr:
    num_core_instances: 4
    image_version: 5.24.0
    max_hours_idle: 1
    instance_type: m1.xlarge
    region: us-west-1
    bootstrap_spark: true       1
    ec2_key_pair: my-emr-key    2
    tags:
      software: Spark
      project: Mastering Large Datasets

      
      

      
         
         	1 Tells EMR to install Spark on the cluster

         
         	2 Provides EMR the name of the key we’ll use for SSHing into the cluster

         
      

      
      You can run this cluster with the create-cluster command. When you do, you should receive a JSON string as a response. You’ll also be able to go to the AWS EMR Console and
         see your cluster setting up. Once you’re satisfied that the cluster is running, feel free to shut it down. To do that, merely
         select the checkbox next the cluster and click the Terminate button at the top of the screen.
      

      
      
      
      The AWS EMR cluster wizard
      

      
      In addition to setting up EMR clusters using mrjob, we can also do so using the AWS console. Like we saw in chapter 11 with S3, the AWS console is a good way to see all of the options that we have when we use AWS. To get started, navigate to
         the EMR console main page: https://console.aws.amazon.com/elasticmapreduce/.
      

      
      On this page, you should see a list of clusters, including the ones you may have created while running the Hadoop jobs and
         the one you created from the previous subsection on Spark and mrjob. At the top of this page, you should see a button inviting
         you to create a cluster. That button launches the AWS EMR cluster wizard.
      

      
      When you click it, you’ll immediately be brought to a quick setup page. On this page, there are four sets of options:

      
      

      
         
         	General options that describe our cluster

         
         	Software options that tell AWS what we’ll be doing on the cluster

         
         	Hardware options that tell AWS which instances to reserve for us

         
         	Security options that tell AWS how we’ll be accessing the cluster

         
      

      
      In the general options (General Configuration) section (figure 12.8), you’ll want to give your cluster a name you’ll recognize. There are two other options there defining the Logging behavior
         and Launch Mode—these are both fine by default. Next, in the software options (Software Configuration) (also figure 12.8), you’ll want to use the latest EMR release and select the software configuration that contains Spark. This tells AWS to
         install Spark when it’s setting up our cluster.
      

      
      
      
      Figure 12.8. The General Configuration section of the AWS EMR wizard lets you specify the Cluster Name and other configuration options.
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      Scroll down and you’ll see hardware and security configuration options (figure 12.9). For the hardware options (Hardware Configuration), set Instance Type to m1.xlarge and the Number of Instances to 3. If
         you change the number of instances, you’ll notice that the number of core nodes—the nodes that will run work on your cluster—is
         always one less than the total number of instances you’ve selected. This is because one instance always needs to serve as
         the master instance. Lastly, select your EC2 Key Pair from the drop-down menu. If you don’t see your key pair listed here,
         try changing availability zones using the drop-down menu in the top right corner of the screen.
      

      
      
      
      Figure 12.9. The hardware and security configuration options in the EMR setup wizard offer a simple GUI for launching a right-sized cluster.
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      If you proceeded from here to launch your cluster, you’d launch a cluster that is more or less the same as the cluster you
         launched using mrjob. Instead, though, go to the top of the page and select Go to Advanced Options. This will take you to a four-step wizard that shows you all of the
         options for an EMR cluster.
      

      
      First, you’ll see a long list of software that is available to you, including

      
      

      
         
         	Hadoop

         
         	Spark

         
         	JupyterHub

         
         	Hive

         
         	Pig

         
         	TensorFlow

         
      

      
      We’ve covered the first two pieces of software—Hadoop and Spark—in this book: Hadoop in chapters 7 and 8, and Spark in chapters 7, 9, and 10. Additionally, we’ve looked at both Hadoop and Spark in this chapter. Depending on your background, you may be familiar with
         the remaining four tools.
      

      
      JupyterHub is a cluster-ready version of the popular Jupyter Notebook software. Installing that software means you can run
         interactive Spark and Hadoop jobs from a notebook environment. This is a great tool for data analysts and data scientists.
      

      
      Hive and Pig are similar tools that provide SQL or SQL-like interfaces to large datasets. Analysts can use Hive to compile
         SQL code to Hadoop MapReduce jobs. Likewise, we can use Pig to compile Pig-latin commands to run Hadoop MapReduce jobs. Both pieces of software are aimed at making large datasets accessible to traditional
         business analysts.
      

      
      The last of the four, TensorFlow, is a popular deep learning library. The library is used for many state-of-the-art implementations
         of deep learning. The ability to run TensorFlow on AWS can reduce training time dramatically, because it enables us to run
         jobs on GPU (Graphic Processing Unit—processors designed for fast arithmetic) clusters or TPUs (Tensor Processing Units—processors
         designed for deep learning) that would be cost-prohibitive if not in the cloud.
      

      
      If you click through to the next page in the wizard, you’ll see detailed options for defining the hardware available to your
         cluster (figure 12.10). In particular on this page, pay attention to the instance groups at the bottom. You’ll notice that here you not only have the ability to define which
         type of instance you want, you also can see and set resource and pricing information for those instances. For example, we
         can see that the m3.xlarge instance that AWS suggests for us has 8 virtual cores and 15 GB of memory.
      

      
      
      
      Figure 12.10. The advanced hardware configuration options allow us to bid for spot instances and set up auto-scaling for our cluster.
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      Additionally, we can select either On-Demand or Spot pricing for our instances. Spot pricing is a short-term market rate price
         that we can use to save money on our compute jobs. When we enable spot pricing, Amazon gives us access to unused instances
         at a low rate. This low rate comes with some risk, though. If the spot price ever exceeds what we bid—such as when demand
         for AWS resources is high—Amazon may shut down our instances and lease them to another buyer. That said, if we’re running
         batch analytics jobs over night, this is often an excellent way to save money.
      

      
      Lastly, in the Create Cluster—Advanced Options view, we can see the Auto Scaling option. When we turn Auto Scaling on, AWS
         will watch our resource usage and scale our cluster up or down as necessary. For example, if we’re running a big Spark job,
         the cluster may scale up to the maximum number of instances we’ve set. When that job finishes, the cluster will eventually
         scale down to the minimum until we’re ready to run another job.
      

      
      Clicking through to the next two pages, you’ll be able to

      
      

      
         
         	define logging settings

         
         	add free-form key-value tags to your cluster

         
         	add an EC2 key pair for SSH access

         
      

      
      Once you’ve had a chance to look at all the options available to you on these pages, you can create a cluster using either
         the Quick or Advanced settings. If you preferred using mrjob, you also can relaunch your cluster with the mrjob create-cluster command from the previous subsection. You’ll need a running cluster, with Spark, with an attached EC2 key pair for the next
         subsection when we will SSH into our cluster.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      You can run the examples in this chapter for less than $5 at the time of this writing.

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      
      12.2.3. Running PySpark jobs from our cluster
      

      
      Once we have our cluster up and running, we’re almost ready to run our machine learning job. There are only five steps left:

      
      

      
         
         	Modifying our script for the cloud

         
         	Adding our script to S3

         
         	SSHing into the master node

         
         	Installing the required software

         
         	Configuring our Spark cluster to run Python3

         
         	Running our Spark job

         
      

      
      These steps will take us from having a local-only machine learning script to having run our machine learning job on the cloud.
         But first, we need to make two small modifications to our machine learning script.
      

      
      In the naïve Bayes script from earlier in this section, we used local file paths as inputs and outputs. That was important
         because we wanted to test the script locally. When we’re running the script in the cloud, we won’t have access to our local
         resources—only resources that are in the cloud. We’ll need to change those paths to point to cloud locations. Specifically,
         we’ll point both of them to S3 locations.
      

      
      To reference an S3 bucket, prepend S3:// to the name of your bucket. For example, if you had a bucket named my-favorite-S3-bucket,
         the path to that bucket would be S3://my-favorite-S3-bucket/. For S3 folders, you can add any word after the bucket name.
         Point the input path to target the bucket that contains your car crash data files and point the output path to target a folder
         in another bucket, as shown in the following listing. Once you’ve done that, save this as a new file.
      

      
      
      
      Listing 12.12. Cloud-ready paths for input and output
      

      texts = sc.textFile("S3://your-crash-data-bucket/")
. . .
cv_model.bestModel.save("S3://your-output-bucket/nb-model")

      
      With these paths defined, we have a cloud-ready script. Unfortunately, we can’t access this script from the cloud if it’s
         on our local machine. We also need to move the script into the cloud. Again, we’ll use S3. If you’re up for a challenge, you
         can try on your own to create a new bucket and upload the script there using either the AWS console or boto3. Otherwise, you
         can follow the instructions from section 11.2.1 to create a new bucket and upload your new script.
      

      
      Once the script is uploaded, we’re ready to log in to our cluster. If you’re on a Mac or Linux machine, you’ll be able to
         use the built-in SSH utility. On Windows, you’ll need to download a terminal emulator that supports SSH: PuTTY is the conventional
         choice for this. You can download it here: http://mng.bz/RP4D.
      

      
      Once you know you’ll be able to use SSH, head to the EMR console in your browser and find your running EMR cluster. At the
         top of the page you’ll see a path to the cluster (figure 12.11). This is the path you’ll SSH into.
      

      
      
      
      Figure 12.11. You can find the address of the master node of your cluster at the top of the console page for your cluster.
      

      
      [image: ]

      
      
      To enter the cluster, open up your terminal or PuTTY and enter the address of the cluster. (AWS provides documentation for
         connecting using PuTTY at http://mng.bz/2Jn9.) Additionally, you’ll need to identify yourself by pointing SSH to your key:
      

      
      ssh -i /path/to/your/key.pem ec2-00-000-000-00.compute-1.amazonaws.com

      
      If this goes through successfully, you should see EMR in ASCII art on your terminal screen (figure 12.12). This is how you’ll know you’re logged into the master node. From this screen, the entire cluster is in your control. You
         can install software and run scripts just like you would if you were at the command line of your local machine. For our machine
         learning script, we’ll need NumPy—a Python library for numerical processing. Let’s make sure it’s installed, and we’ll install
         the toolz package for good measure.
      

      
      
      
      Figure 12.12. Some nice EMR ASCII art will greet you when you log in to an EMR cluster.
      

      
      [image: ]

      
      
      The way we install Python libraries doesn’t change whether we’re on our local machine or on a remote server; we use pip. Because we want to use Python3, however, we’ll need to install pip3, which doesn’t come installed by default. You can install pip3 with the command sudo yum install -y pip3. You can then use pip3 to install NumPy and toolz with the command sudo pip3 install -y numpy toolz. Additionally, you can install any other software you may wish to use. Installing software on the master node will replicate
         this install across all of the other nodes.
      

      
      At this point, if you want to test NumPy, toolz, or any other library, you can

      
      

      
         
         	call Python with the python3 command
         

         
         	import the library you want to test

         
         	run any Python code you’d like from the console

         
      

      
      Now our Python3 environment is set up to run our machine learning script. Unfortunately, Spark is still configured to run
         with legacy Python. Let’s configure our Spark environment so it runs Python3. To do this, we’ll need to modify a shell file
         on the server. On the server, we can only use terminal-based text editors. The easiest of these editors to use is nano.
      

      
      To open a file in nano, we type nano and then the file’s name. To open the file where the Spark environment variables are stored, we’ll type
      

      
      nano $SPARK_HOME/conf/spark-env.sh

      
      When you open this up, you’ll see a shell script. At the bottom of the script, modify the line that says PYSPARK_PYTHON so it reads PYSPARK_PYTHON=python3. When you’re done, you can save and exit the file by pressing the following keys (these will be the same on Mac, PC, and
         Linux):
      

      
      

      
         
         	Control-O— Begins to save the file
         

         
         	Enter— Writes the file to the disk
         

         
         	Control-X— Begins to exit nano
         

         
         	Y— Tells nano that yes, you want to exit
         

         
      

      
      Finally, to put these changes into action, activate the Spark environment you just modified:

      
      source $SPARK_HOME/conf/spark-env.sh

      
      Now we’re ready to run our Spark machine learning script! You can run your PySpark script just like you did on your local
         machine. Remember that your script lives in an S3 bucket, and you’ll need to point PySpark to the file there.
      

      
      spark-submit S3://bucket-holding-my-script/my-script.py

      
      When you run your script, you’ll see the standard output from Spark. It will tell you what it’s doing and give you progress
         on the task. Depending on how many instances you allocated to this cluster, this job may take a little or some time. When
         it’s finished, you’ll be able to go into the S3 bucket you targeted for your output and see a folder named nb-model. This
         folder contains the compressed description of the naïve Bayes model you trained.
      

      
      
      
      
      12.3. Exercises
      

      
      
      12.3.1. R-series cluster
      

      
      Write an mrjob config file that you could use to start a cluster of five R-series instances.

      
      
      
      12.3.2. Back-to-back Hadoop jobs
      

      
      Configure an EMR cluster to be persistent and then execute two Hadoop MapReduce jobs on that cluster. For example, select
         only a few fields from JSON-line data with the first job, then transform that data into CSV format with another job.
      

      
      
      
      
      12.3.3. Instance types
      

      
      We use three major instance types in cluster compute workflows: M, C, and R. Which of these types is good for each of the
         following?
      

      
      

      
         
         	Streaming workflows

         
         	Hadoop workflows

         
         	Test workflows

         
         	Spark workflows

         
      

      
      
      
      
      Summary
      

      
      

      
         
         	Elastic MapReduce, known by the acronym EMR, is an AWS managed service we can use to quickly and conveniently obtain cluster
            computing capability.
         

         
         	We can run Hadoop jobs on EMR with the mrjob library, which allows us to write distributed MapReduce and procure cluster computing
            in Python.
         

         
         	We can use mrjob’s configuration files to describe what we want our clusters to look like, including which instances we’d
            like to use, where we’d like those instances to be located, and any tags we may want to add.
         

         
         	When running Hadoop on EMR, we can operate directly on data in S3, which facilitates petabyte-scale analytics and extract-transform-load
            operations.
         

         
         	When we need to run advanced analytics and machine learning on large datasets, AWS EMR also supports Spark.

         
         	Running Spark jobs on EMR requires more powerful instances than Hadoop jobs, which can increase cost. But for some workflows,
            Spark jobs will be faster than Hadoop jobs.
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               as input. Then, after we clean them with our hacker_translate function, they become plain English text.


         Figure 3.4. Part of our hacker translate pipeline will involve replacing 7s with t’s. We’ll accomplish that by mapping a function
               that performs that replacement on all of our inputs.


         Figure 3.5. The second step in our hacker translate pipeline will involve replacing 3s with e’s. We’ll accomplish that by
               mapping a function that performs that replacement on all of our inputs.


         Figure 3.6. Subbing on Chinese characters is going to be the last step in our hacker_translate function chain, and we can
               tackle it with a map statement.


         Figure 3.7. We can solve the hacker translation problem by constructing a chain of functions that each solve one part of the
               problem.


         Figure 3.8. The map diagram for our gender_prediction_pipeline demonstrates the beginning and end of the problem: we’ll take
               a list of Tweet IDs and convert them into predictions about a user.


         Figure 3.9. We can chain four functions together into a pipeline that will accomplish each of the subparts of our problem.


         Figure 3.10. We can chain small functions together to turn lists of users’ Tweet IDs into scores, then into averages, and,
               finally, into predictions about their demographics.
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         Figure 5.9. We can use the map and reduce pattern to transform words into scores and then calculate a sum of those scores.
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               mpg, and odo. We’ll use map plus a helper function to transform those numerical variables into categorical variables for easier
               comparison.
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               the combination step. This makes the operation more complex than our parallel summation.
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               into its combination step and return dicts as a result.
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         Figure 7.2. Distributed computing allows us to reduce our compute time by parallelizing our work across multiple machines.
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         Figure 7.3. The Hadoop framework is made up of five pieces of software, each of which tackles a different big dataset processing
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         Figure 7.4. The classic Hadoop stack is MapReduce, running on top of YARN, running on top of HDFS.


         Figure 7.5. The YARN resource manager oversees the entire job, whereas a node manager oversees what happens within a single
               node.


         Figure 7.6. A word count example in Hadoop, using Hadoop Streaming and Unix tools.


         Figure 7.7. Counting words and getting the frequencies of a subset of words have similar forms but require different mappers
               and reducers.


         Figure 7.8. The output of our MapReduce job is a sequence of words.


         Figure 7.9. Spark DataFrames have a .filter method that we can use to quickly take subsets of our big datasets.


         Figure 7.10. Counting up the big words used by Florence Nightingale involves three steps in Spark.


         Figure 7.11. Spark provides an interactive terminal where we can run Python commands with all the power of a Spark cluster
               behind them.
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         Figure 8.1. The tennis analytics problem requires three steps broken up between mapper and reducer scripts. In the mapper,
               we assemble the information we need, and in the reducer, we rank and sort the players.


         Figure 8.2. The tennis match logs contain matches as comma-separated strings.


         Figure 8.3. The Elo rating approach works by adjusting players’ rankings after each match they play, with their ratings going
               up in a win or down in a loss. Underdogs are set to gain more points in a win than they would lose in a loss.


         Figure 8.4. To calculate player ratings, we can reduce over matches, awarding them points for wins and taking points away
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         Figure 8.5. To find 404 error offenders, we’d break the task up in a standard map and reduce style.


         Figure 8.6. The mrjob versions of map and reduce share the same type signature, taking in keys and values and outputting keys
               and values.


         Figure 8.7. Our .mapper consumes lines, splits them into fields, checks the value of the error message field, and then returns
               the page name and a 1.


         Figure 8.8. Our .mapper produces key-value pairs that our .reducer then iterates through, operating on the key and its associated
               values.


         Figure 8.9. A traditional map and reduce solution would map information into dicts to allow us to count Serena’s wins.


         Figure 8.10. The MRJob workflow uses keys and values to count up wins for the Williams sisters by surface.
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         Figure 9.1. The RDD.map method maps across the RDD, in this case turning words in each string into a list of strings.


         Figure 9.2. The RDD.flatMap method returns a flattened sequence and is useful when we’re interested in the elements of each
               partition all together.


         Figure 9.3. You can use the RDD’s .mapValues method to retain the keys while altering the values.


         Figure 9.4. Partitioning a large dataset by logical keys optimizes our compute processes and makes future join operations
               easier.


         Figure 9.5. You can use the .reduceByKey method (as well as .foldByKey and .aggregateByKey) to accumulate values specifically
               for each key in a sequence of key-value pairs.


         Figure 9.6. When we calculate the Elo ratings of tennis players using PySpark, our output will be a sequence of players and
               their ratings—the higher the rating, the better the player.


         Figure 9.7. We can apply the PageRank algorithm to tennis players, where each player contributes points to the players who
               are better than them.


         Figure 9.8. Using the PageRank algorithm for rating tennis players in PySpark requires both custom Python functions and parallel
               PySpark methods.


         Figure 9.9. We prepare tennis match data for PageRank in PySpark with .map, .groupByKey, and .mapValues.


         Figure 9.10. We can parallelize the ranking step of PageRank into a two-step parallel reduce workflow.


         Figure 9.11. The allocate_points function takes in players’ information and updates the accumulation variable to reflect the
               players’ updated scores.


         Figure 9.12. Combining the players’ PageRank ratings together requires joining dicts into a single dict.


         Figure 9.13. The output of our PageRank process shows the top players and their PageRank scores.
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         Figure 10.1. Spam filters are machine learning algorithms that learn how to judge emails as spam or not by looking at lots
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         Figure 10.2. Machine learning has four components: algorithms, judging, self-adjusting, and data.


         Figure 10.3. We can consider calculating Elo ratings to be machine learning: the rating rules define a learning process, and
               the algorithm can use the output ratings to judge future match win likelihoods.


         Figure 10.4. Media content recommendation algorithms are an example of machine learning, where an algorithm learns to judge
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         Figure 10.5. Amazon uses machine learning to find short phrases that best encapsulate product reviews on its website. Those
               summaries help shoppers learn about the products from other shoppers.


         Figure 10.6. These photos demonstrate two examples of image recognition: metadata tagging of images (top) and object detection
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         Figure 10.7. Voice recognition machine learning attempts to judge which words a speaker meant by analyzing sound waves produced
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         Figure 10.8. Decision tree algorithms learn to construct binary rules against which they can judge new data.


         Figure 10.9. Decision tree algorithms work by learning to group the data into the most similar chunks. The algorithm will
               judge new data based on the grouping that data would end up in if it was applied against the tree.


         Figure 10.10. Spark’s StringIndexer transforms categorical variables as strings into numerical categories. More common categories
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         Figure 10.11. Transformers in PySpark, such as StringIndexer, return a DataFrame that contains all the columns of the original,
               plus a new column, specified by the transformation.


         Figure 10.12. VectorAssembler is a Transformer that can take several columns and gather them up as a vector in a single column.
               This class is especially useful for preparing features for machine learning.


         Figure 10.13. The receiver operating characteristic (ROC) curve allows us to balance making cautious judgments about poisonous
               mushrooms, while judging a reasonable number of mushrooms as safe.


         Figure 10.14. A random forest classifier relies on growing different decision trees, each seeded with different randomly selected
               features. Those trees then vote to classify new observations.


         Figure 10.15. K-fold cross-validation splits the data into K groups and then learns a model from all the other groups to judge
               the selected group.


         Figure 10.16. Train-test-evaluate validation splits the data into three chunks, two of which are used for iterative learning
               and testing. The remaining one is used rarely to evaluate the model.
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         Figure 11.5. To navigate to the S3 landing page, we can always use the Services navigation drop-down menu and either do a
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         Figure 11.6. The S3 Create Bucket wizard and bucket search are available from the S3 landing page.
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         Figure 11.9. Configure Options offers options for generating S3 buckets in the AWS browser wizard.
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         Figure 11.12. The bucket Upload wizard allows us to upload files to an S3 bucket.
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         Figure 11.19. Your browser shows the traffic data files that have been uploaded to an AWS Simple Storage Service bucket.
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               models in the cloud.
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assigning ratings can = capable of judging

be listed as step-by- which player is more
step instructions. m E= likely to win amatch.

Data

Self-adjusting h o The Elo rating
The system adjusts & system uses match

ﬂﬂl

itself after each match. data to learn to make
judgments.
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Algorithms

The machine learner
can be described
with computational
instructions.

Self-adjusting

The machine learner
must modify itself to
get better at judging.

Machine learning requires
four components

N
RS

2

Judging

The machine learner
must result ina
system for making
judgments about
new observations.

Data

The machine learner
must use data—for
self-adjusting and
judging.
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‘The messages the machine
learner judges to be spam
are sent to a spam folder.

Spam filters take in messages, letting
only the good messages pass through
and sending the rest to a spam folder.

=

The filter mechanism is a
machine learning algorithm
that uses information about
the message to judge it as

oo cariedt aall Hopefully,all the messages

You want to read end up ir
your inbox!
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After running our spark -page-rank . py script with the
spark-submict utility, we'll get back a list of players in
rank order based on their PageRank scores.

————————— >>> spark-submit spark-page-rank.py -—

_

The log of players’ PageRank scores

| |
- Players’ names Players' PageRank scores |
; — \
: Justine Henin 12.0 4150 }
: Serena Williams 12.0 4010 \
; Venus Williams 12.0 3985 ‘
: Kim Clijsters 11.9 3875 !
\ Amelie Mauresmo 11.9 3760 !
} Lindsay Davenport 11.8 3685 }
: Elena Dementieva 11.7 3360 \
} Svetlana Kuznetsova 11.3 2585 }
‘ Maria Sharapova 11.3 2540 ‘
‘l Patty Schnyder 11.2 2395 |
\ \
: \
\ \
\ \
4
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Some image recognition systems, like
one used by Facebook, are tasked with
detecting “traits” of images and applying
metadata corresponding to those traits.

{"metadata”

("person", "smiling",
“beard", "close up"

]

Others are tasked with identifying
objects in photos, such as this system,
which identifies boats.
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Read reviews that mention

cup of coffee touch screen water reservoir easy to use

stopped working hot water hot chocolate coffee grounds

green mountain error message ‘waste your money. save your money
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Media content recommender
as machine learning

Algorithms [ ] Judging
The instructions can The systems jud;

systems judge
be written out as u = ‘what users will enjoy.
code. m m

Data
Self-adjusting h The systems' log data
The systems adjust () about what users have
themselves as the & enjoyed in the past is
user base changes and v used to inform
new content is added. judgments.
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4000-W-8L-AUS-01A-2000, Austxalian Open,Hard,...ADS,199,6-4 §-2.3,R146

Our firststep i to map the data
Mapper from raw input format into an
intermediate format.

{'surface': 'Hard',
‘winner': 'Justine Henin',
"loser' : 'Kerry Amne Guse'}

Then, we'll educe this intermediate

Reducer format nto sorted match ratings.

{*gustine Henin': 1545,
‘Kerry Amne Guse': 1495
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version 2.4.0

Using Python version 2.7.13 (default, Nov 24 2017 17:33:09)
SparkSession available as 'spark’.

>>> s

<SparkContext master=local[*] appName=PySparkShell>

>>> spark

q;ysiark.sql.session.SparkSessinn object at @x7ff4b9d95956>
>>>
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The players stake different percentages of their points
based on how likely they are to win. The favorite has to stake
more points than the underdog.

Player 1 (1600)
Expected to win: 57%
Points staked: 18

Player 1 1614 (+14)
Player 2 1536 (-14)

If the favorite wins, their
score will go up based on
the number of points the
underdog staked. The
underdog will lose that

many points.

Player 1 (1550)
Expected to win: 43%
Points staked: 14

Player 1 1582 (-18)
Player 2 1568 (+18)

If the underdog wins, their
rating goes up by the
number of points the
favorite staked. The favorite
loses those points.
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7RO WOMSIVS Coiis Match dath
contains a description of each match,
with values separated by commas.

2001-H-SL-AUS-01A-2001 ... Martina Hingis ... Katalin Marosi ... 6-1 6-1,3,R128
2001-H-SL-AUS-01A-2001 ... Els Callens ... Rachel Mcquillan ... 6-3 6-1,3,R128
2001-W-SL-AUS-01A-2001 ... Anne Kremer ... Iroda Tulyaganova ... 6-4 2-6 6-4,3,R128
2001-W-SL-AUS-01A-2001 ... Virginie Razzano ... Tatiana Panova ... 7-6(6)

Some values included are tournament ID,
tournament name, surface, size of the draw,

evel of the tournament, date, and match number;
and the ID, seed, name, handedness, height,

pre s i e ety

6-3,3,R128
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In our standard map and

<web logs>

reduce workflow, we

into a sequence of 404
errors.

|

<404 errors>

We would then reduce
reduce those errors into counts
of the offent 4

{

'page_1.html': 20,
'file 8.pdf': 12,
'image3.png': 201
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(

"player ar: 1550,
player br: 1525,
‘player cv: 1465,

]

The matches get fed
into the reduce process.

<match 1>, <match 2>, <macch 3», ... <watch n»
Reducer | :

Player X 412

Blaser i

2

“The process continues until all the
matches have been processed.
The reducer updates the

player ratings based on the

winner and loser of the match.
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71.34.59.319,2012-02-12,23:59:59,500.
0,3570.0, 0001193125-08-215926, .txt,20
0.0,34721.0,0.0,1.0,1.0,0.0,0.0

1. Our . mapper first splits 71.34.59.3ig
the line from the log into 2012-02-12
discrete fields. 23:59:59

500.0
3570.0

0001193125-08-215926

/ 53?0 . 2.Thenwecheckthe
3. f the response code is an :

response code in
error, we'll return the page 34741.0 Tth position.
that the user attempted to 0.0

access (6th position).
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Both the map and reduce
parts of our mrjob code
will expect key and

value arguments.

ﬁ

.mapper (self, key, value) -> key, value

.reducer (self, key, value) -> key, value

\

They will also both output
keys and values.
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DataFrames in Spark have built-in
methods for common operations.

DF.filter (orders>20) .agg (avg)

The . £ ilter method works The . agg method takes a function
just like the £ilter function and uses that function to aggregate
we’ve used in this book. results based on other variables.
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crashes
Our Hadoop program writes a

Nothing sequence of words to a text file.
recession

messages,

freedom Because we didn’t do any word

cleaning, some of the words will be
capitalized and others will have
floating punctuation.

phrases
Reflections
reflection
through
réponds
escaping,

Everybody
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Running the Spark job

' Mapping documents to words i Reducing words to counts

"mother :
[run, fast, for, ( it

your, mother ...

We'll write the map and reduce parts of the workl
Python and then pass a script off to Spark for paral
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/I MANNING PUBLICATIONS





08fig10_alt.jpg
<matches>

Our MRIb workflow will
map the matches into

keys, with a sequence of map
Serenas and Venuses as
Values. 1
{'hardcourt': {'Serena', 'Venus',6 'Serena')

The £requencies functior
will count those values

Fediies into dicts of keys and
counts, representing the
wins for each sister.

{

‘*hardcourt': {'Serena':9,'Venus':5}





09fig02_alt.jpg
Ve start with an RDD of strings and
can transform that RDD with
either . map or .flatMap.

text_files = sc.parallelize([<str>, <str>, <str>])

text_files.map (make_words) text_files. flatmap (make_words)

[[<str>, <str>,
[<str>, <str>,

[<str>,<str>, <str>,

[<str>, <str>,...]] <str>, <str>, <str>]
The . map method applies the The .flatMap method applies the
provided function across each of the provided function across each of the
items in our RDD, in this case, items in our RDD and then chains
returning a list for each item. the returned items together,

resulting In a single list of elements.
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Our RDD has four Ourtat aatastarts as 3

partitions, each of which big string.
contains some text data. /
“loren ipsum (EED
dolor sit amet"
trs <tes
The _map (nake_uozds)
‘method will transform the
datain the partitions.
my_rdd.map (make_words) T — .
aotor, .1 feekei

[estrs, ...] [estr>,

i
!

The text data s transformed
s i aaesicn al aithogs.
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Our RDD s wo partsions,

each of which has a mix of
key-value pairsini.
((*£ruicr, *appler) (("£ruicr, "kiwi®)
(*ruicr, "orange"), (vruite, "strawberry"),
(vvegetabler, "lettuce), | | ("vegetabler, rcarrotr),
(*vegetable®, "potaton)] | | (rvegetablen, "leeke)]
The 0 indicates
ET R
<RDD> .partitionBy (0) value in the T
partiion on those.
posiion {the key). keys, the data s organized
more logically and we can
process data faster.
t t
(*€xuitr, vapplen) (nvegetabler, "carrot”),
(*£ruitr, vorange’), (vvegetable, "leek"),
(rfruitr, vkiwit) (nvegetabler, lettucer),
(“€ruicr, "strawberry’) | [ ("vegetable', "potator)
) )
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Our RDD starts containing a sequence of keys and
values, where the values are themselves sequences.

i
("index.html",
("shop. htn1

("173.10.244.1%,  *104.10

("173.10. .
("cart.html", ("105.10.199.1",
("logo.png”, ("134.10.542.1",
("sign-up.html",

("173.10.244.1",

<RDD>.mapValues (len)

|

("index.hem1", 15013),
("shop.html", 5001),
("cart .html", 3841),
("logo.png", 21013),
("sign-up.html", 2811)

"104.10.301.9",
"111.11.378.1%,

"104.10.301.9",

"111.11.378.1

.301.9%, ...)),
».
B
RIN

N

We can use the RDD . mapValues
method and the built-in 1en functior
to get counts of the sequences for
each key, without altering any data
for those keys.
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IRE Y And the

names ’ vat
players’ ratings
\ Kim Clijsters 1840 /

Justine Henin 1815
Serena Williams 1795
Amelie Mauresmo 1740
Venus Williams 1720
Maria Fernanda Alves 1715
Lindsay Davenport 1710
Lisa Mcshea 1690
Monique Adamczak 1685
Jennifer Capriati 1685
Elena Dementieva 1675
Martina Hingis 1665
Caroline Wozniacki 1665

Maria Sharapova 1655
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‘Amazon V¥eb Services operates massive
data centers that provide data and

Our compute
and data

compute for many different organizations.

CCREE R0 E D
; (0OCDAORAE DD
B
QDR Ca e Crac
QDAL CR P Crac
EEE=EEEE
T

T
T
DR R0R RR AR GAR RRRRR RN

WEEEEEEEm

Available compute and data
for new or existing AWS

Other people’s compute and data

cusbomers.
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Our RDD starts containing a sequence of keys and values. The
keys represent web pages, and the values are amounts of
time—in seconds—that users spent on those pages.

t
(vindex.html", 30), (index.html", 12),
("shop.html", 16), ("cart.html", 31),
(vindex.html", 19), ("sign-up.html", 51)
1

<RDD> . reduceByKey (sum)

("index.html", 150121), Ifwe .reduceByKey using sum, we'll
("shop.html", 80112), get back the sums for each key—in
(vcart.nemlv, 40012),  this case, the total number of times

("sign-up.hemlv, 25001) that users spent on each page.





01fig07_alt.jpg
map and reduce can
be combined to execute
“transform and
consolidate” workflows.

The map function can
be used to turn
= ‘web pages into lists of
words as strings.
[estr>)  [estr>] [estr>] [estrs]
reduce

‘We can then use the
reduce function to find
"antidisestablishmentarianism" the longest string from

ol oo s o vt
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First, we'll read the data into an RDD. TR T -

Sy

match_data = sc.textFile (*/path/to/wta_matches**)

match_data.map (get_winner_loser)\

“groupByKey )\
We'll niialize the scores ‘mapvalues (initialize_for_voting)
oraurfrstround of  —

points allocation.

match_data.aggregate (acc, allocate_points, combine_scores)

And finally, we'll allocate points
using PageRank until we're
S PR






09fig07_alt.jpg
Players’ scores, represented by the height of the
bars, are dependent on how many players they
defeated, the scores of those players, and how
many losses those players had.

Player 5 lost to each of

Player 2 has many inbound players 1 through 4,
arrows (victories), resulting in a represented by the
high score and a first place outbound arrows, and
ranking. defeated player 1,
represented by the
I . inbound arrow.

Player 1  Player 2  Player 3  Player 4 Player 5
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<matches>

In our standard map and
reduce workflow, we

would map all the matches map
Into a sequence of Serena’s
matches + match surfaces. l

<wins/losses + surface>
We would then reduce
reduce those into Serena’s record
across the different surfaces
{

*hardcourt': {'W':204,'L':30},
‘grass': {'W':30,'L':5},
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ach ] reprasants a Sagse

( error we found.

Our map wil result in keys
pointing to a collection of
the values output.

'page_1.html' :
'file 8.pdf
+image3.png

reduce

i
'page_1.html': 304,
‘£ile_8.pdf’ 5,
'image3.png' : S,

,1,1,1,1,1,1
1,1,1,1,1],
[1,2,4,1,1.,1,1;3,1]

1

Our reduce step will sum all
the 1s in those collections,
resulting in a count of all

the errors for each page.
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Standard storage

When objects are new,
the most obvious
place to store them is
standard storage.

Infrequent Access

A

If we have a life cycle

policy, the object will
automatically be moved

to Infrequent Access storage
as age and use change.

Glacier storage

As the object becomes
needed even less, we can
move it to Glacier
storage for archiving.
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Object ID Object Metadata

[N

key:value, key:value,

a201fnag8l9rm key:value, key:value

Object format associates an object with an
ID, used for lookup, and metadata, which
is used for organization and querying.
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S STRIC R Gy e e et svauia. Al SCOU T ..
resources we need. needs increase—paying only future, we can always scale
for the services we use. down or scale up even higher

+
Early Late
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ISNNLY DU B | S,

data centers but are connected by

private high-speed cable and in a
r geographic area known as

aregion.
4 e
S5 West Coast AZ 1 S5 East Coast AZ 1
-y -

S5 West Coast AZ2
— ‘We can achieve even
By default, services we manage exist in greater reliability by
one availability zone and managed

replicating our services
services exist across a

n. across regions if we
need to—this protects

us from geography-
related failures.
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Create bucket

O @ et cpiors @ sepemis

[
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S3 buckets

Q  search for buckets

Edit public access settings

Empty

Delete
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Note You can grant accoss o specic uses e you it hebuckat
Block pubic access (bucket setings)
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‘When we run muitiprocessing in Fython, we pickle
our code o we can exchange it across the
processors that will be used in our parallel workflow.

<[>
I>\% g‘/ /
a Thi f
The master divides the \ / piglilsz:f-;:kle
problem up into pieces and can be worked on as
pickles each piece for a workev many processors as
we have access to.

NN
AV oA

The problem then gets unpickled,
worked, and then repickled for
transfer back to the master.
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Pickling allows us to move code
objects across machines, or to store
code objects for use on the same
machine at a later point in time.

Code objects

<[>

<[>
Machine 1 \ / Machine 2

*O ‘We can unpickle pickled
The result of the pickling “ objects at any time and

process is a binary pickle then call those objects
file, typically with the file directly.
extension .pkl.

Pickled file
my_data.pkl
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0 Hadoop provides a layer of
abstraction on top of
00 distributed filesystems that
allows us to run highly
1 parallel MapReduce jobs.

R
|§ [ﬁ b t |! L‘ﬂ'ﬁﬂfiﬂ?&?fﬁ'ﬁ.f,’}?i’.ﬁ

cloud, or a mix.

Having a distributed filesystem for data storage allows us to store
data freely, loosely, and cheaply.
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Stringlndexer
can take a column
of string values

and convert it

into numerical
category indexes.

Purple
Brown
Brown

Red
Brown
Red

Purple

Brown
Red
Red
Red

Brown

Brown

Brown
Red

StringIndexer ()

- coorREONROROON

The resulting numbers
indicate the category.
More common categories
get lower numbers.
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"VEER (SN BN GE——

we can split a problem
Our computer determines how to split involving a large amount.
up the problem and then distributes the of work across many
work across many “worker” machines. ‘machines to speed

up run time.
‘ ‘ ‘ ¥ ‘ ‘ ‘ Worker machines can
ey emn emn emn ssn  emn e beloclorfaraway,
== EEE E Sy
increasingly common
[ ] u u [ ] | | | ] W for them to reside in
L | | | | | thecloud.

" When each worker is done, the

* pieces of work are combined into
| e oy pieig
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groupByKey s

Our matches are transformed

to winner,loser tuples, with
cheloser i key pos

mapValues

[CRachel Mequillan, (“los:
<pyspask. sesuleitersble. Resultitersble sbject st Ox7E2dcsbe ddad
iossest: 13, ‘raving': 1000, ) |

(iGa1a tecn oazeiar, (1o mapValues adds
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1001 that we'llneed during

PageRank.

isssest: 22, ‘rating
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the data as much as possible
as quickly as possible.

have 3 poisonous mushrooms
and 2 edible mushrooms.

smell musty? s

Decision trees try to separate | o0 4 riishroom X Before asking any questions, we
3 2

No Yes

e
X Was the hi

s the mushroom ¢

2 0 found in the woods? \

12

Asking the first question splits
the mushrooms into two groups:
‘one with only poisonous [

‘mushrooms and one with 2/3
edible mushrooms.

No Yes

Is the mushroom
purple?

,_°
X

By the end of our tree,
all our mushrooms are
perfectly sorted.

3
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A simple application of map Is to take a sequence of numbers
and transform each number into a larger number.
-1 o > & 2

map depends on the

function provided to it.
map In this case, it will
2dd_seven (n) apply add_seven to

each input.

6 7 8 9
The output of the map function is another series of equal
B VO S T W —
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A decision tree can break
down a judgment into a
series of yes/no decisions
about an observation.

)

Does the mushroom
smell musty?

No Yes

Was the mushroom
found in the woods?

No Yes

X

Is the mushroom
purple?

By answering the questions,
we can find that musty
mushrooms that aren’t from
the woods, or musty
‘mushrooms that are from
the woods but are not purple,
bl

No

e
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EMR allows us to rent small amounts EMR also allows us to scale up

of servers at a reasonable cost for dramatically for super high volume
prototyping or ad hoc analysis. workloads.

Rapid prototyping High-volume workload
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A sound wave is generated
by a speaker and captured

by a listening device, such
as a microphone.
sel] I'Ill

After processing the sound
wave, machine learning
algorithms can judge which
words were most likely said.

Mastering ... Large Datasets
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‘The inputs to our function are URLs, and we use map
to transform them into HTML.

S TOEISE

The url_2_html

map function works
url_2_html (url) hard to retrieve
the HTML from
the internet.

h m L om Lo
- I Bo&

The result is that we have a series of HTML

strings, each corresponding to a URL.
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‘The random forest model uses
many different decision trees

Random Forest Model to make a judgment.

Each of those decision trees
makes its own judgment.

The random forest picks the
judgment that results from
the consensus of the decision

(") treemodels.
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¥V0 CAR N0 Hap £5 CIEAT PROSE NUMDITS SRINON W Variom
styles into one consistent style.

(123) 456-7850" 1234567890 "123.456.7890" 41 123 456 7890"
The function
nap pretty_format does
pretty. format (aje———————— all thework; nap
= simply applies it to all
1 the inputs.
1 1 1

"(123) 456-7890% *(123) 456-7890% *(123) 456-7890" *(123) 456-7890"

The output of our map function s a series of neatly formatted
i
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A geos mosal Wil puige the
mushrooms correctly more thar

judges them incorrectly. __ ==~
(auC > .5)

2
22
25
L] AUC (area under the
g2 curve) is the propor
g8 of the space on the
28 graph below the line.
< o Higher AUC means
8¢ A poor model will judge better judgments.
58 mushrooms correctly only as often
S5£| 1 as it judges them incorrectly.

H (auc'=5)

Chance the model says the
SRR e tcicrs whien it it
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A more accurate way of thinking about map Is to think about it as
something that transforms inputs into instructions for generating the
outputs; those instructions aren’t necessarily executed immediately.

-1 0 1 2

<> <> <> <>

Because the outputs are instructions and not values, we can’t tell what
the results of our map are. If we try to use the results, Python will execute
the instructions.
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The vector assembler takes columns
we specify and creates a new The original dataset is returned,
column, containing a vector with the ‘with our new column that we can

data from the selected columns.
TH
LLLEH Q

VectorAssembler ()

Our dataset
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A simple application of map Is to take a sequence of numbers
and transform each number into  larger number.
-1 o : 4 2

map depends on the
function provided to it

add_seven (n) apply add_seven to

each input.

6 7 8 3
The output of the map function s another series of equal
37 in this case, a series of four numbers.
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Transformers take a dataset
in and change a column in it.

Transformer ()

The output of the Trans formex
is the same dataset, but with
another column containing the
PP Oy
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‘With linear processing, we have to wait until the
previous web page is retrieved before we can move
on to the next, increasing the total amount of time
that our program takes.

Standard linear processing

© o o o
St S-St 9—-b

Time

Parallel processing
Y
St o
6’ _— ﬁ e With parallel processing, we can

retrieve multiple pages at the
same time and combine them at

H the end. This will reduce th I
@ B @ o ont T il e the s
98 0
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JIrain-test-evaluate validation splits the
dataset into three chunks: a training chunk,
atesting chunk, and an evaluation chunk.

Training Testing

|
|

|

|

|

| -—

|

|

|

The training and testing chunks are used
to iterate and develop the machine learner.

Evaluation

The evaluation
chunk should be
used rarely, for
evaluating the
performance of
the model.
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Training

Evaluation

Training

Evaluation

For k-fold cross-validation, the
dataset is split up into K chunks.

PR T R T

‘Then the machine learner is trained
on all but one of the chunks, while I

the remaining chunk is used to

evaluate the performance.
Evaluation

Training i""i’i I
I ) Evaluation
Evaluation

The chunks provide a small sample
from which we can begin to
estimate the effectiveness of our
machine leamer’s judgments.
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Yve map our replace_7t function across our unmodiited
hacker messages.

"7hisFisiR hackariE7ax7#  "$hantimor3@inackariET I

"mor3#73x7MhITI B
map
replace_7t ()
0 M |
“thisFisR hickariteaxell® “HanBirorsBhackir ot moraMeaxtBnIrI "

The output of our map operatior
is a little more readable, but we
S it S Eaapacoge






12fig04_alt.jpg
O 7 R S A
T ——

e i e
5 e e e =

e RONGE iy Cooees | DISGIBNIUICY Vet oo reses —

. B v i -






12fig03_alt.jpg
Clusier. <Your clusier name=  Teminaled Supe coplted

Sy dpplestontiry Montorng  Mrovas | Contgustons Bvts | Sops Bt ctons

P ———
e oot . cous,_. o oo 089 Vi 50
summary Contiuraton s [en—
000 Romoseiaot 5160 e —
ot o 20186815 1820074 [RS—— S0
e 2015061 16337 opicans: Mot s 1 s
Eupseaton: 3 LogUR: s pamsiop B o Tt 7 chiae
Pri - e
e om0
Secury nd aceess.
oy e

S tanc profe 1 £€2 Ot
[y ——
Vi o ur: AL Crarge
sonety gt TS0
Vo € siisienserose)

ey goup s s totes 00
e





03fig06_alt.jpg
e map our sub_chinese function across our in-progress
hacker messages.

"thisFisik hackeriftexct" »iffanifnoreflnackeriftexcs moreffrextBhere

map
sub-chinese ()

“this is hacker text® "3 am more hacker text" "more text here"

Thsoninnt by siil-raniibl snesstins:
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Ve map our replace_3e function across our somewnat ciean
hacker messages.

"thisFisi hack3rittaxeti® *HanfimorfindckiriEeixesir  "mor3fhtixe@niraBe

nap
replace_3e ()

"thisFis)

hackeriftexc#r "ifhinfnoreffinackerittexttr moreffrextBhere$"

Now we can make out some of the words
but some are still garbled. We'll need to
complete the rest of the pipeline to fully
i iy
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When we run muitiprocessing in FPython, we pickle
our code 50 we can exchange it across the
processors that will be used in our parallel workflow.

B <I>\%

R O\

The master divides the
problem up into pieces and
pickles each piece for a worker.

pickle-work-pickle
can be worked on as
many processors as
we have access to.

\
/>

The problem then gets unpickled,
‘worked, and then repickled for
transfer back to the master
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General Configuration

Cluster name vy ciusier
v Logging ©
3 0der 83 aws ogs 714217336 136.us-east.Tiastcrmapred B
Launchmode @ Clustor @  Step exccuton ©

Software configuration
Release [emr-524.1 e

Applications | Core Hadoop: Hadoop 2.8 wilh Gangla 372,
Hive 2.3.4, Huo 4.40, Mahou! 0.13.0, Pig 017,
ndTez09.1

HBase: HBase 14,9 wih Gangia 3.7.2, Hadoop
285 Hivo 234, Hue 440, Phoonix 4141, and
ZooKeeper 3413

Prosto: Presto 0219 wih Hadoop 2.5 HDFS and.
Hive 234 Metastore

(@ Sk Spark 242 00 Hacoop 2.5 YARN with
Gangia 37,2 and Zeppoin 05,1

\Use AWS Glue Data Catalog for table metadata  ©
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Pickied instructions are put in a queue to be
worked by the next available processor.

Tasks to be wnrked/ 8 ’Q
Tasks remaining

Processors
retrieve the first When we run multiprocessing

item in the 3 in Python, we pickle our code so we
queue, workit, can exchange it across the processors
and then grab that will be used in our parallel

the next item workflow.

until there are

no more.

In-process tasks

Completed usks/

As the work is finished, it gets sent back to
Ry
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When we set up our machine [ £rom pyspark import SparkContext
learning job, we can import both | £zom pyspark. sql import SparkSession

the SparkContextand | sc = SparkContext (appName="Crash model")
SparkSession utliies to use | spark = SparkSession.builder \

both the RDD and DataFrame .master ("local”) \
methods. .getorCreate ()

We can use the RDD methods | texts = sc.textFile("/path/to/your/files/")
to read in JSON fles and do some | xs = texts. £latMap (Lambda x:x.split("\n")) \
preprocessing with the map .map (3son.loads) \

and reduce methods provided s Ereamay

by RDDs. -map (improve_times)

When we're ready, we can J'

explicitly comvert our RDDto 4 df = spark.createDataFrame (xs)

a DataFrame.
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‘Those modets are tested against the
full dataset, and then an ultimate

Cloud dataset best model emerges.

Cloud

Local

The best learners get brought
Local subset of into the dloud.

cloud dataset o

L]

Many machine learners are
o R N G O
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A network graph Is a series of nodes
connected by edges.

The nodes represent objects we
want to juxtapose, such as
Wikipedia pages.

The edges represent
connections between those
objects, such as hyperlinks.
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A simple application of map Is to take a sequence of numbers
and transform each number into a larger number.
-1 0 4 2

map depends on the
function provided to it

add_seven (n) apply add_seven to

each input.

6 7 8 -
The output of the map function is another series of equal
size—in this case, a series of four numbers.
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Ve start with a seed document on

Wikipedia and get all the Next we turn these documents into
documents linking to’t. edges sowa can bulld a graph,

nO0
A—DDD— -

‘We then do that same process for The edges allow us to build a
each of the documents retrieved. graph that shows relationships

between all the Wikipedia pages.
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Ve map our hacker_translate function across our gariied
hacker messages.

ThisFiskhackarE3x#"  "iMandinor3dihackariEax#r  mor3fh73x7BWhIrIB

map
hacker_translate ()

"this is hacker text" "i am more hacker text" “more text here"

Wi it b clun. madls randalile i siaacs.
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10] [100)
£(x) = x+7 =

Our function pipeline is
composed of the four
As the inputs move through helper functions.

our function pipeline, each
of the individual functions is

- i(x) = x*5
appli (Yss
e The value that results from
h(x) = x-2

putting an input through the
function pipeline is the same
as if we applied each of the
functions in sequence.

490
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% We Rave some documents
by two different authors, we

can ind those authors'
ncloncutird proflas. Hamilton uses “the” more often
than Madison.
N {
“thet: .23,
Document by var: .07
A Hailton =i )
Small differences in the
tes function words are
| —profile_function_words () earnanit
A indicators of authorship
Document by Sesens .19,
3 Madison = e
}

Madison uses “a” more often
S M
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range Is a bulit-in ierable
‘generator for creating
sequences of numbers.

We can get the next >>> numbers = range (10)
element in an iterable >>> next (numbers)

with either the next — 0

function or by calling >>> numbers._ next__()

the iterable’s _next () —
- >>> list (numbers

method: (2,3,4,5,6,7,8,9])
When an element is generated,

it's forgotten by Python, so

alling 1 5t retrieves only
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I held a jewel in my fingers ‘We start with a poem—in
And went to sleep. the original format the
The day was warm, and winds were prosy; author wrote it.

I said: "'T will keep."

I woke and chid my honest fingers, --
The gem was gone;
And now an amethyst remembrance

Is all T own. Our clean_poem ()

method implements a
regular expression split.

1

/—- PoemCleaner. clean_poem ()

The PoemCleaner class
compiles a regular expression
to match the patterns we want

to split on. ['i', 'held', ‘'a‘', 'jewel', 'in', 'my',
‘fingers', 'and', 'went', 'to', 'sleep',
‘the', ‘'day', 'was', 'warm', ‘'and’',
‘winds', 'were', 'prosy', 'i', 'said',

tM\'tr, 'will', 'keep"', 'i', 'woke',
After passing it througha 'and’, 'chid', 'my', 'honest', 'fingers',
regular expression split, 'the', 'gem', 'was', 'gone', 'and',
we can break the poem 'now', 'an', 'amethyst', 'remembrance',
Tty dad, VEILS, V. teamtl
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‘The first thing we'll need

read.poems () to do is read the poems.

| —

Next, we can clean the
poems—breaking them
into words and filtering clean_poems ()
them down to desired words.
—
word_counts ()
| —

Lastly, we’ll take the ratio

of those counts to produce | word_ratio()
a single ratio for the author.

Then, we can get the word
counts of the target words.

Finally, we’ll get a float back,
.32 representing the ratio
between the two words.
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Ve map ouwr gendex_prediction_pipeline function across
our lists of Tweet IDs.

(123456,214181,124115) [191281,100313,1713987) (1977131, 161141231, 2001310)

map
gender_prediction_pipeline ()

i\ \

gender: *male®, "score" : .66) (*gender*:+female®, "score®:-.33) (*gender

mal

corer 1]

The output is a series of di cts with a gender prediction and
i caveneniing t asde st
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File format © JSON type
O esv @ ssoniines

@ sson (© 350N document

server-side encryption ©
AES-256

Preview

Generatng ispreview ncurs a usage charge.

‘Show file preview

“Day*: 317,
“Tratic Control Device’

“Moner,
"Dry",

"Road Surface Conditions®
“Yeart: 20147,

"Day of Week®: Friday,
“Nurber of Vehicles Involved": "3,
“Cloudy",

“Heather Conditions

“Collision Type Descriptort: "OTHER®,
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7hisFisi hack3riE73x758
i $hamBhmor 3dfihackariE7 3x78)

nor3fh73x7Mh3ra %

replace_3e ()

Each of these functions will
be added to the pipeline and
play ts role in cleaning the text.

replace_6g()

replace_7t ()

‘We have four small helper
functions to replace the
numbers with the proper
corresponding ltters.
The data coming out of
our pipeline will be clean
and clear messages.

replace_da()

We also have one function
to remove the Chinese.

charactes in our pipeline. this is hacker text

i am more hacker text

sub_chinese() ' . .
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2014-01.jsON  Latestversion ~

Open | | Download | | Download as

Owner
jwolohan

Last modified
Jun 2, 2019 1:37:14 PM GMT-0400

Etag
58bd92cd958b8edBh3Iobe3e828fasihd-2

Storage class
Standard

Server-side encryption
AES-256

size

12M8

Key
2014-01.json

Copy path
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LIRIGDSy L1RADL IRE11L
(191181,100311,1713987)

(1977131,161141231,2001310)

score_user ()

score_tweet ()

First, we'll map our tweet-
level pipeline across all
the input Tweet IDs.

Co

Then, we'll find the

average of the resulting
scores for each user:

Lastly, we'll transform the score
into a prediction about each user.

{"gender: "male", "score": .66}
{"gender": "female", "score" :-.33)
{"gender": "male", "score"

ShLEEL e Dl
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Metadata
Metadata is a set of name-value pairs. You cannot modify object metadata atfter itis uploaded.

Header Value
Content-Type JSON X
EErE 00 B33
Tag

Add tags to search, organize and manage access

Key Value

Month January i

Year 2014

X
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i
111313

117461 3.The tweet_to_text fun
will turn tweets into their text.

. Tweet IDs enter
the pipeline as
our nital input.

tweet_to_text ()

get_tweet_from id()

5. Finally, our score_text function
will turn our tokens into scores
for each of the tweets.

score_text ()

2. We use the get_tweet_from_id
function to retricve the tweets.

tokenize_text ()

6. Because our workdlow
s a pipeline, we can
easily map this process
across all our inputs.

4.Then our tokenize_text
function will chunk the text
into tokens for analysis.
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Ihe inputs to our filter are
a sequence or iterable.

1,2, 3, 4,5,
6, 7, 8, 9, 10]

|

The filter function reduces
a sequence to only the
elements that make the
function return True.

|

[2,4,6,8,10]

The outputs from our filter are an iterable.
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Our mapper function will take
crash reports and transform
them into information ready

for our analysis, grouping the
Q-

crashes into three categories.

<crash reports Q- *Q 15,312

<crash report> *ﬂ 2
*ﬁ* reducer () * *
e Y Q Q 18191
<crash report>

<crash report> *ﬂxw *Q*Q*Q 11,054

The reducer will count up the
sl it ot ol the cabemotios.
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0,1,2,3,4,5,6,7,8,9]

We input two sequences 1(0,3), (1,B),
into our zip function. / ‘ )
[A,B,C,D,E,F,G,H,I,J]/ The zip function moves over the sequences

and combines them into a sequence of
tuples containing elements from each sequence.
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