
        
            [image: Learning Spring Boot 2.0 - Second Edition]
        
    
        

            
            
                
Learning Spring Boot 2.0



            

            
        
    
        

                            
                    Second Edition

                
            
            
                
 

 

 

 

 

 

 

 

 

Simplify the development of lightning fast applications based on microservices and reactive programming

 

 

 

 

 

 

 

 

 

 

Greg L. Turnquist

 

 

 

 

 

 

 

 

 

 

 

 



BIRMINGHAM - MUMBAI



            

            
        
    
        

            
            
                


            

            
        
    
        

                            
                    Learning Spring Boot 2.0

                
            
            
                


            

            
        
    
        

                            
                    Second Edition

                
            
            
                
 

 

Copyright © 2017 Packt Publishing

 

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 

First published: November 2014

Second edition: November 2017

 

Production reference: 1311017

 

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

 

ISBN 978-1-78646-378-4

www.packtpub.com





            

            
        
    
        

                            
                    Credits

                
            
            
                







	
Author



Greg L. Turnquist


	
Copy Editor



Sonia Mathur





	
Reviewer

Zoltan Altfatter


	
Project Coordinator

Prajakta Naik





	
Commissioning Editor

Aaron Lazar


	
Proofreader

Safis Editing





	
Acquisition Editor

Chaitanya Nair


	
Indexer

Francy Puthiry





	
Content Development Editor

Siddhi Chavan


	
Graphics

Abhinash Sahu





	
Technical Editor

Abhishek Sharma


	
Production Coordinator

Nilesh Mohite













            

            
        
    
        

                            
                    About the Author

                
            
            
                
Greg L. Turnquist has been a software professional since 1997. In 2002, he joined the senior software team that worked on Harris' $3.5 billion FAA telco program, architecting mission-critical enterprise apps while managing a software team. He provided after-hours support to a nation-wide system and is no stranger to midnight failures and software triages. In 2010, he joined the SpringSource division of VMware, which was spun off into Pivotal in 2013.

As a test-bitten script junky, Java geek, and JavaScript Padawan, he is a member of the Spring Data team and the lead for Spring Session MongoDB. He has made key contributions to Spring Boot, Spring HATEOAS, and Spring Data REST while also serving as editor-at-large for Spring's Getting Started Guides.

Greg wrote technical best sellers Python Testing Cookbook and Learning Spring Boot, First Edition, for Packt. When he isn't slinging code, Greg enters the world of magic and cross swords, having written the speculative fiction action and adventure novel, Darklight.

He completed his master's degree in computer engineering at Auburn University and lives in the United States with his family.



            

            
        
    
        

                            
                    About the Reviewer

                
            
            
                
Zoltan Altfatter (@altfatterz) is a software engineer, passionate about the JVM and Spring ecosystem. He has several years of industry experience working at small startups and big consultancy firms.

You can find more about him on his blog: http://zoltanaltfatter.com.



            

            
        
    
        

                            
                    www.PacktPub.com

                
            
            
                
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.



www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.



            

            
        
    
        

                            
                    Why subscribe?

                
            
            
                

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser





            

            
        
    
        

                            
                    Customer Feedback

                
            
            
                
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1786463784.

 

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!





            

            
        
    
        
            
                Table of Contents

            

            
                
                    	
    Preface
    	
    What this book covers
    


	
    What you need for this book
    


	
    Who this book is for
    


	
    Conventions
    


	
    Reader feedback
    


	
    Customer support
    	
    Downloading the example code
    


	
    Downloading the color images of this book
    


	
    Errata
    


	
    Piracy
    


	
    Questions
    










	
    Quick Start with Java
    	
    Getting started
    


	
    Spring Boot starters
    


	
    Running a Spring Boot application
    


	
    Delving into Spring Boot's property support
    


	
    Bundling up the application as a runnable JAR file
    


	
    Deploying to Cloud Foundry
    


	
    Adding production-ready support
    	
    Pinging our app for general health
    


	
    Metrics
    






	
    Summary
    






	
    Reactive Web with Spring Boot
    	
    Creating a reactive web application with Spring Initializr
    


	
    Learning the tenets of reactive programming
    


	
    Introducing Reactor types
    


	
    Switching from Embedded Netty to Apache Tomcat
    


	
    Comparing reactive Spring WebFlux against classic Spring MVC
    	
    Why is Spring doing this?
    






	
    Showing some Mono/Flux-based endpoints
    


	
    Creating a reactive ImageService
    


	
    Creating a reactive file controller
    


	
    Why use reactive programming?
    


	
    Interacting with a Thymeleaf template
    


	
    Illustrating how going from async to sync can be easy, but the opposite is not
    


	
    Summary
    






	
    Reactive Data Access with Spring Boot
    	
    Getting underway with a reactive data store
    


	
    Solving a problem
    	
    Wiring up Spring Data repositories with Spring Boot
    






	
    Creating a reactive repository
    


	
    Pulling data through a Mono/Flux and chain of operations
    


	
    Creating custom finders
    


	
    Querying by example
    


	
    Querying with MongoOperations
    


	
    Logging reactive operations
    


	
    Summary
    






	
    Testing with Spring Boot
    	
    Test dependencies
    


	
    Unit testing
    


	
    Slice-based testing
    	
    Testing with embedded MongoDB
    


	
    Testing with a real MongoDB database
    






	
    Testing WebFlux controllers
    


	
    Fully embedded Spring Boot app tests
    


	
    Testing your custom Spring Boot autoconfiguration
    


	
    Summary
    






	
    Developer Tools for Spring Boot Apps
    	
    Using Spring Boot's DevTools for hot code reloading
    


	
    Using Spring Boot's autoconfiguration report
    


	
    Making local changes and seeing them on the target system
    


	
    Writing a custom health check
    


	
    Adding build data to /application/info
    


	
    Creating custom metrics
    


	
    Working with additional Actuator endpoints
    


	
    Summary
    






	
    AMQP Messaging with Spring Boot
    	
    Getting started with RabbitMQ
    	
    Installing RabbitMQ broker
    


	
    Launching the RabbitMQ broker
    






	
    Adding messaging as a new component to an existing application
    


	
    Creating a message producer/message consumer
    	
    Displaying comments
    


	
    Producing comments
    


	
    AMQP fundamentals
    






	
    Adding customized metrics to track message flow
    


	
    Peeking at Spring Cloud Stream (with RabbitMQ)
    	
    Introduction to Spring Cloud
    


	
    Logging with Spring Cloud Stream
    






	
    Summary
    






	
    Microservices with Spring Boot
    	
    A quick primer on microservices
    


	
    Dynamically registering and finding services with Eureka
    


	
    Introducing @SpringCloudApplication
    


	
    Calling one microservice from another with client-side load balancing
    


	
    Implementing microservice circuit breakers
    


	
    Monitoring circuits
    


	
    Offloading microservice settings to a configuration server
    


	
    Summary
    






	
    WebSockets with Spring Boot
    	
    Publishing saved comments to a chat service
    


	
    Creating a chat service to handle WebSocket traffic
    	
    Brokering WebSocket messages
    


	
    Broadcasting saved comments
    


	
    Configuring WebSocket handlers
    






	
    Consuming WebSocket messages from the web page
    


	
    Moving to a fully asynchronous web client
    


	
    Handling AJAX calls on the server
    


	
    Introducing user chatting
    


	
    Sending user-specific messages
    	
    Registering users without authentication
    


	
    Linking a user to a session
    


	
    Sending user-to-user messages
    






	
    Checking out the final product
    


	
    JSR 356 versus Spring WebFlux messaging
    


	
    Summary
    






	
    Securing Your App with Spring Boot
    	
    Securing a Spring Boot application
    


	
    Using Spring Session
    	
    Creating a Gateway API
    






	
    Securing the chat microservice
    	
    Authentication versus authorization
    






	
    Sharing session details with other microservices
    


	
    Securing the images microservice
    


	
    Wiring in image ownership
    	
    Authorizing methods
    






	
    Tailoring the UI with authorization checks
    


	
    Securing WebSockets
    


	
    Tracing calls
    


	
    Securing the Config Server
    


	
    Securing the Eureka Server
    


	
    Summary
    






	
    Taking Your App to Production with Spring Boot
    	
    Profile-based sets of beans
    


	
    Creating configuration property beans
    


	
    Overriding property settings in production
    	
    @ConfigurationProperties versus @Value
    






	
    Pushing app to Cloud Foundry and adjusting the settings
    


	
    Summary
    








                
            

            
        
    
        

                            
                    Preface

                
            
            
                
@springboot allows me to focus on developing my app, not reinventing the wheel

@bananmuffins #VelocityConf @pivotal

– Faiz Parker @_CloudNinja

When Learning Spring Boot, First Edition, by Packt, made its debut, it was the first Spring Boot book to hit the international market. The user community ate it up, which is evidence of the popularity of Spring Boot. And today, Spring Boot is driven by the same, core principal stated in that book's preface, "How can we make Spring more accessible to new developers?"

By focusing on developers, community, and customers, Spring Boot has alleviated untold hours of time normally spent plumbing infrastructure. Andrew Clay Shafer, Pivotal's Senior Directory of Technology, has presented a most famous conference slide, "'Great job configuring servers this year'­­––­No CEO Ever." We don't get bonus points for wasting time configuring web containers, database connectors, template view resolvers, and other mind-numbing infrastructure. However, we've done it for so long, we all assume it's a part and parcel of our trade.

Spring Boot has upset that apple cart and shown that we can, in fact, focus on building features our customers want on day one. As James Watters, Senior Vice President at Pivotal, has stated in countless presentations, when you focus on things above the value line, you build real confidence with your customers. This is demonstrated by the latest Zero Turnaround whitepaper showing that 46%, or almost one of every two Java developers, is using some part of the Spring portfolio. Spring Boot is solving problems for legions of customers, and this book can help you close the gap in your understanding.



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Quick Start with Java, explains how to rapidly craft a web application running on an embedded web container, access some data, and then deploy it into the cloud using minimal amounts of code and build settings.

Chapter 2, Reactive Web with Spring Boot, shows how to start building a social media service to upload pictures using Spring WebFlux, Project Reactor, and the Thymeleaf template engine.

Chapter 3, Reactive Data Access with Spring Boot, explains how we can pick up Spring Data MongoDB as a reactive-power data store and hook it to our social media platform. You'll find out how Spring Boot autoconfigures our app to persist data.

Chapter 4, Testing with Spring Boot, explains how we can write unit tests with JUnit, slice tests where small parts of our app uses real components, and full-blown embedded container testing. Also, you will see how to write an autoconfiguration policy for a browser-driving test toolkit and test that as well.

Chapter 5, Developer Tools for Spring Boot Apps, puts several tools in our hands to enhance developer experience, such as DevTools, LiveReload, and connecting our IDE to the cloud.

Chapter 6, AMQP Messaging with Spring Boot, explains how to use RabbitMQ as our message broker and reactively build up a reliable, streaming message service between components.

Chapter 7, Microservices with Spring Boot, introduces Spring Cloud and the ability to break up our social media platform into smaller, more manageable apps, dynamically talking to each other.

Chapter 8, WebSockets with Spring Boot, shows how to enhance the user experience by sending updates to all interested parties from various microservices. You will also see how to route all WebSocket messages through a RabbitMQ broker.

Chapter 9, Securing Your App with Spring Boot, lets us secure the social media platform for production with both URL-based and method-based tactics, so only registered users can get online, and only authorized admins and owners can actually delete uploaded pictures.

Chapter 10, Taking Your App to Production with Spring Boot, shows us how to bundle up our application and deploy to production without breaking the bank by using profile-based configurations to distinguish between local and cloud-based situations and creating custom properties to tailor application settings without rewriting code for every environment.



            

            
        
    
        

                            
                    What you need for this book

                
            
            
                

	Spring Boot 2.0 requires Java Developer Kit (JDK) 8 or higher

	A modern IDE (IntelliJ IDEA or Spring Tool Suite) is recommended

	RabbitMQ 3.6 or higher must be installed (check out https://www.rabbitmq.com/download.html, or, when using Mac Homebrew, brew install RabbitMQ)

	MongoDB 3.0 or higher must be installed (check out https://www.mongodb.com/download-center, or, when using Mac Homebrew, brew install MongoDB)





            

            
        
    
        

                            
                    Who this book is for

                
            
            
                
This book is designed for both novices and experienced Spring developers. It will teach you how to override Spring Boot's opinions and frees you from the need to define complicated configurations.



            

            
        
    
        

                            
                    Conventions

                
            
            
                
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The @Data annotation from Lombok generates getters, setters, a toString() method, an equals() method, a hashCode() method, and a constructor for all required (that is, final) fields."

A block of code is set as follows:

    public interface MyRepository { 
      List<Image> findAll(); 
    }

Any command-line input or output is written as follows:

$ java -jar build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar  

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "When the first user clicks on Submit, the message automatically appears on the second user's window."

Warnings or important notes appear like this.

Tips and tricks appear like this.



            

            
        
    
        

                            
                    Reader feedback

                
            
            
                
Feedback from our readers is always welcome. Let us know what you think about this book--what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.



            

            
        
    
        

                            
                    Customer support

                
            
            
                
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.



            

            
        
    
        

                            
                    Downloading the example code

                
            
            
                
You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:


	Log in or register to our website using your email address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.



Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for macOS

	7-Zip / PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learning-Spring-Boot-2.0-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



            

            
        
    
        

                            
                    Downloading the color images of this book

                
            
            
                
We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/LearningSpringBoot2.0_ColorImages.pdf.



            

            
        
    
        

                            
                    Errata

                
            
            
                
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.



            

            
        
    
        

                            
                    Piracy

                
            
            
                
Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.



            

            
        
    
        

                            
                    Questions

                
            
            
                
If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.



            

            
        
    
        

                            
                    Quick Start with Java

                
            
            
                
Working with Spring Boot is like pair-programming with the Spring developers.

– Josh Long @starbuxman

Perhaps you've heard about Spring Boot? It's cultivated the most popular explosion in software development in years. Clocking millions of downloads per month, the community has exploded since its debut in 2013.

I hope you're ready for some fun, because we are going to take things to the next level as we use Spring Boot to build a social media platform. We'll explore its many valuable features, all the way from the tools designed to speed up development efforts to production-ready support as well as cloud-native features.

Despite some rapid fire demos you might have caught on YouTube, Spring Boot isn't just for quick demos. Built atop the de facto standard toolkit for Java, the Spring Framework, Spring Boot will help us build this social media platform with lightning speed and stability.

Also, this book will explore a new paradigm introduced in Spring Framework 5, reactive programming. In this day and age, as we build bigger systems, iterate faster, and host fleets of distributed microservices, it has become critical that we switch from a classic blocking programming style. As Josh Long would point out, this is nothing new. The network stacks of today's OSs are inherently asynchronous, but the JVM is not. Only in recent years have people realized the need to chop up tasks in a asynchronous, non-blocking fashion. However, the programming paradigm to handle potentially unlimited streams of data coming at fluctuating times requires a new programming model, which we will explore carefully alongside the power of Spring Boot itself.

In this chapter, we'll get a quick kick off with Spring Boot using the Java programming language. Maybe that makes you chuckle? People have been dissing Java for years as being slow, bulky, and not a good language for agile shops. In this chapter, we'll see how that is not the case.

In this chapter, we will cover the following topics:


	Creating a bare project using the Spring Initializr found at http://start.spring.io

	Exploring Spring Boot's management of third-party libraries

	Seeing how to run our app straight inside our Integrated Development Environment (IDE) with no standalone containers

	Using Spring Boot's property support to make external adjustments

	Packaging our app into a self-contained, runnable JAR file

	Deploying our app into the cloud

	Adding out-of-the-box production-grade support tools



At any time, if you're interested in a more visual medium, feel free to check out my Learning Spring Boot [Video] at https://www.packtpub.com/application-development/learning-spring-boot-video.



            

            
        
    
        

                            
                    Getting started

                
            
            
                
What is step one when we get underway with a project? We visit Stack Overflow and look for an example project to help us build our project!

Seriously, the amount of time spent adapting another project's build file, picking dependencies, and filling in other details adds up to a lot of wasted time.

No more.

At the Spring Initializr (https://start.spring.io), we can enter minimal details about our app, pick our favorite build system and the version of Spring Boot we wish to use, and then choose our dependencies off a menu. Click the Generate Project button, and we have a free-standing, ready-to-run application.

In this chapter, we'll take a quick test drive, and build a small web app. We can start by picking Gradle from the drop-down menu. Then select 2.0.0.M5 as the version of Spring Boot we wish to use.

Next, we need to pick our application's coordinates, as follows:


	Group - com.greglturnquist.learningspringboot

	Artifact - learning-spring-boot



Now comes the fun part. We pick the ingredients for our application, like picking off a delicious menu. If we start typing, say, Web, into the Dependencies box, we'll see several options appear. To see all the available options, click on the Switch to the full version link toward the bottom.

There are lots of overrides, such as switching from JAR to WAR, or using an older version of Java. You can also pick Kotlin or Groovy as the primary language for your application. For starters, in this day and age, there is no reason to use anything older than Java 8. JAR files are the way to go. WAR files are only needed when applying Spring Boot to an old container.

To build our social media platform, we need these few ingredients:


	Reactive Web (embedded Netty + Spring WebFlux)

	Reactive MongoDB (Spring Data MongoDB)

	Thymeleaf template engine

	Lombok (to simplify writing POJOs)



The following screenshot shows us picking these options:



With these items selected, click on Generate Project.

There are lots of other tools that leverage this site. For example, IntelliJ IDEA lets you create a new project inside the IDE, giving you the same options shown here. It invokes the website's REST API, and imports your new project. You can also interact with the site via curl or any other REST-based tool.

Now, let's unpack that ZIP file, and see what we've got. You will find the following:


	A build.gradle build file

	A Gradle wrapper, so there's no need to install Gradle

	A LearningSpringBootApplication.java application class

	An application.properties file

	A LearningSpringBootApplicationTests.java test class



We built an empty Spring Boot project. Now what? Before we sink our teeth into writing code, let's take a peek at the build file. It's quite terse, but carries some key bits.

Let's take a look, starting from the top:

    buildscript { 
      ext { 
        springBootVersion = '2.0.0.M5' 
      } 
      repositories { 
        mavenCentral() 
        maven { url "https://repo.spring.io/snapshot" } 
        maven { url "https://repo.spring.io/milestone" } 
      } 
      dependencies { 
        classpath(
            "org.springframework.boot:spring-boot-gradle-
             plugin:${springBootVersion}") 
      } 
    } 

This preceding build file contains the basis for our project:


	springBootVersion shows us we are using Spring Boot 2.0.0.M5

	The Maven repositories it will pull from are listed next (Maven central plus Spring's snapshot and milestone repositories)

	Finally, we see the spring-boot-gradle-plugin, a critical tool for any Spring Boot project



The first piece, the version of Spring Boot, is important. That's because Spring Boot comes with a curated list of 140 third-party library versions, extending well beyond the Spring portfolio and into some of the most commonly used libraries in the Java ecosystem. By simply changing the version of Spring Boot, we can upgrade all these libraries to newer versions known to work together. (See https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-dependencies/pom.xml for a complete list.)

There is an extra project, the Spring IO Platform (http://platform.spring.io/platform/), which includes an additional 134 curated versions, bringing the total to 274.

The repositories aren't as critical, but it's important to add milestones and snapshots if fetching a library that hasn't been released to Maven central, or is hosted on some vendor's local repository. Thankfully, Spring Initializr does this for us based on the version of Spring Boot selected on the site.

Finally, we have spring-boot-gradle-plugin (and there is a corresponding spring-boot-maven-plugin for Maven users). This plugin is responsible for linking Spring Boot's curated list of versions with the libraries we select in the build file. That way, we don't have to specify the version number.

Additionally, this plugin hooks into the build phase and bundles our application into a runnable über JAR, also known as a shaded or fat JAR.

Java doesn't provide a standardized way of loading nested JAR files into the classpath. Spring Boot provides the means to bundle up third-party JARs inside an enclosing JAR file, and properly load them at runtime. Read more at http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#executable-jar.

With an über JAR in hand, we only need put it on a thumb drive. We can carry it to another machine, to a hundred virtual machines in the cloud, our data center, or anywhere else. It runs anywhere we can find a JVM.

Peeking a little further down in build.gradle, we can see the plugins that are enabled by default:

    apply plugin: 'java' 
    apply plugin: 'eclipse' 
    apply plugin: 'org.springframework.boot' 
    apply plugin: 'io.spring.dependency-management' 


	The java plugin indicates the various tasks expected for a Java project

	The eclipse plugin helps generate project metadata for Eclipse users

	The org.springframework.boot plugin is where the actual spring-boot-gradle-plugin is activated

	The io.spring.dependency-management plugin supports Maven Bill of Materials (BOM) manifests, allowing usage of libraries that manage the sets of library versions in our Gradle build. (Because Maven supports this natively, there is no Maven equivalent plugin.)



An up-to-date copy of IntelliJ IDEA can read a plain old Gradle-build file just fine without extra plugins.

This brings us to the final ingredient used to build our application--Dependencies.



            

            
        
    
        

                            
                    Spring Boot starters

                
            
            
                
No application is complete without specifying dependencies. A valuable feature of Spring Boot is its virtual packages. These are published packages that don't contain any code, but simply list other dependencies instead.

The following code shows all the dependencies we selected on the Spring Initializr site:

    dependencies { 
      compile('org.springframework.boot:spring-boot-starter-data-
       mongodb-reactive') 
      compile('org.springframework.boot:spring-boot-starter-thymeleaf') 
      compile('org.springframework.boot:spring-boot-starter-webflux') 
 
      compile('org.projectlombok:lombok') 
      compile('de.flapdoodle.embed:de.flapdoodle.embed.mongo') 
      testCompile('org.springframework.boot:spring-boot-starter-test') 
    } 

You might have noticed that most of these packages are Spring Boot starters:


	spring-boot-starter-data-mongodb-reactive pulls in Spring Data MongoDB with the reactive bits enabled

	spring-boot-starter-thymeleaf pulls in the Thymeleaf template engine

	spring-boot-starter-webflux pulls in Spring WebFlux, Jackson JSON support, and embedded Netty



These starter packages allow us to quickly grab the bits we need to get up and running. Spring Boot starters have become so popular that many other third-party library developers are crafting their own.

In addition to starters, we have the following three extra libraries:


	Project Lombok (https://projectlombok.org) makes it dead simple to define POJOs without getting bogged down in getters, setters, and other details.

	Flapdoodle is an embedded MongoDB database that allows us to write tests, tinker with a solution, and get things moving before getting involved with an external database.



At the time of writing, Flapdoodle isn't listed on the website. We must add it manually, as shown previously.


	spring-boot-starter-test pulls in Spring Boot Test, JSONPath, JUnit, AssertJ, Mockito, Hamcrest, JSONassert, and Spring Test, all within test scope.



The value of this last starter, spring-boot-starter-test, cannot be overstated. With a single line, the most powerful test utilities are at our fingertips, allowing us to write unit tests, slice tests, and full-blown our-app-inside-embedded-Netty tests. It's why this starter is included in all projects without checking a box on the Spring Initializr site.

Now, to get things off the ground, we need to shift focus to the tiny bit of code written for us by the Spring Initializr.



            

            
        
    
        

                            
                    Running a Spring Boot application

                
            
            
                
The fabulous https://start.spring.io website created a tiny class, LearningSpringBootApplication, as shown here:

    package com.greglturnquist.learningspringboot; 
 
    import org.springframework.boot.SpringApplication; 
    import 
     org.springframework.boot.autoconfigure.SpringBootApplication; 
 
    @SpringBootApplication 
    public class LearningSpringBootApplication { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootApplication.class, args); 
      } 
    } 

This preceding tiny class is actually a fully operational web application!


	The @SpringBootApplication annotation tells Spring Boot, when launched, to scan recursively for Spring components inside this package and register them. It also tells Spring Boot to enable autoconfiguration, a process where beans are automatically created based on classpath settings, property settings, and other factors. We'll see more of this throughout the book. Finally, it indicates that this class itself can be a source for Spring bean definitions.

	It holds public static void main(), a simple method to run the application. There is no need to drop this code into an application server or servlet container. We can just run it straight up, inside our IDE. The amount of time saved by this feature, over the long haul, adds up fast.

	SpringApplication.run() points Spring Boot at the leap-off point--​in this case, this very class. But it's possible to run other classes.



This little class is runnable. Right now! In fact, let's give it a shot:

      .   ____          _            __ _ _
    /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
    ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
    \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
    =========|_|==============|___/=/_/_/_/
    :: Spring Boot ::  (v2.0.0.M5)
    
    2017-08-02 15:34:22.374: Starting LearningSpringBootApplication
     on ret...
    2017-08-02 15:34:22.377: Running with Spring Boot
     v2.0.0.BUILD-SNAPSHO...
    2017-08-02 15:34:22.378: No active profile set, falling back
     to defaul...
    2017-08-02 15:34:22.433: Refreshing 
     org.springframework.boot.web.react...
    2017-08-02 15:34:23.717: HV000184: ParameterMessageInterpolator
     has be...
    2017-08-02 15:34:23.815: HV000184: ParameterMessageInterpolator
     has be...
    2017-08-02 15:34:23.953: Cannot find template location: 
     classpath:/tem...
    2017-08-02 15:34:24.094: Mapped URL path [/webjars/**] onto
     handler of...
    2017-08-02 15:34:24.094: Mapped URL path [/**] onto handler of
     type [c...
    2017-08-02 15:34:24.125: Looking for @ControllerAdvice: 
     org.springfram...
    2017-08-02 15:34:24.501: note: noprealloc may hurt performance
     in many...
    2017-08-02 15:34:24.858: 2017-08-02T15:34:24.858-0500 I
     NETWORK  [init...
    2017-08-02 15:34:24.858: start 
     de.flapdoodle.embed.mongo.config.Mongod...
    2017-08-02 15:34:24.908: Cluster created with settings
     {hosts=[localho...
    2017-08-02 15:34:24.908: Adding discovered server
     localhost:65485 to c...
    2017-08-02 15:34:25.007: 2017-08-02T15:34:25.006-0500 I
     NETWORK  [init...
    2017-08-02 15:34:25.038: Opened connection 
     [connectionId{localValue:1,...
    2017-08-02 15:34:25.040: Monitor thread successfully
     connected to serv...
    2017-08-02 15:34:25.041: Discovered cluster type of STANDALONE
    2017-08-02 15:34:25.145: Cluster created with settings
     {hosts=[localho...
    2017-08-02 15:34:25.145: Adding discovered server
     localhost:65485 to c...
    2017-08-02 15:34:25.153: Opened connection 
     [connectionId{localValue:2,...
    2017-08-02 15:34:25.153: Monitor thread successfully connected
     to serv...
    2017-08-02 15:34:25.153: Discovered cluster type of STANDALONE
    2017-08-02 15:34:25.486: Registering beans for JMX exposure
     on startup
    2017-08-02 15:34:25.556: Started HttpServer on 
     /0:0:0:0:0:0:0:0:8080
    2017-08-02 15:34:25.558: Netty started on port(s): 8080
    2017-08-02 15:34:25.607: Started in 3.617 seconds (JVM 
     running for 4.0...  

Scrolling through the preceding output, we can see these several things:


	The banner at the top gives us a read-out of the version of Spring Boot. (By the way, you can create your own ASCII art banner by creating either banner.txt or banner.png and putting it in the src/main/resources/ folder.)

	Embedded Netty is initialized on port 8080, indicating that it's ready for web requests.

	It's slightly cut off, but there are signs that Flapdoodle, our embedded MongoDB data store, has come up.

	And the wonderful Started LearningSpringBootApplication in 3.617 seconds message can be seen too.



Spring Boot uses embedded Netty, so there's no need to install a container on our target machine. Non-web apps don't even require that. The JAR itself is the new container that allows us to stop thinking in terms of old-fashioned servlet containers. Instead, we think in terms of apps. All these factors add up to maximum flexibility in application deployment.

How does Spring Boot use embedded Netty among other things? As mentioned earlier, it has autoconfiguration, which means that it defines Spring beans based on different conditions. When Spring Boot sees Netty on the classpath, it creates an embedded Netty instance along with several beans to support it.

When it spots Spring WebFlux on the classpath, it creates view resolution engines, handler mappers, and a whole host of other beans needed to help us write a web application. This lets us focus writing routes, not doddling around configuring infrastructure.

With Flapdoodle on the classpath as well as the Reactive MongoDB drivers, it spins up an in-memory, embedded MongoDB data store and connects to it with its state-of-the-art drivers.

Spring Data MongoDB will cause Spring Boot to craft a MongoOperations bean along with everything else needed to start speaking Mongo Query Language and make it available if we ask for it, letting us focus on defining repositories.

At this stage, we have a running web application, albeit an empty one. There are no custom routes, and no means to handle data. But we can add some real fast.

Let's start by drafting a simple REST controller as follows:

    package com.greglturnquist.learningspringboot; 
 
    import org.springframework.web.bind.annotation.GetMapping; 
    import org.springframework.web.bind.annotation.RequestParam; 
    import org.springframework.web.bind.annotation.RestController; 
 
    @RestController 
    public class HomeController { 
 
      @GetMapping 
      public String greeting(@RequestParam(required = false, 
      defaultValue = "") String name) { 
        return name.equals("") ? "Hey!" : "Hey, " + name + "!"; 
      } 
 
    } 

Let's examine this tiny REST controller in detail:


	The @RestController annotation indicates that we don't want to render views, but write the results straight into the response body instead.

	@GetMapping is Spring's shorthand annotation for @RequestMapping(method = RequestMethod.GET). In this case, it defaults the route to /.

	Our greeting() method has one argument--@RequestParam(required=false, defaultValue="") String name. It indicates that this value can be requested via an HTTP query (?name=Greg)--the query isn't required, and in case it's missing, it will supply an empty string.

	Finally, we return one of two messages depending on whether or not the name is an empty string, using Java's ternary operator.



If we relaunch LearningSpringBootApplication in our IDE, we'll see this new entry in the console:

    2017-08-02 15:40:00.741: Mapped "{[],methods=[GET]}" onto
     public java....  

We can then ping our new route in the browser at http://localhost:8080 and http://localhost:8080?name=Greg. Try it out!

(By the way, it sure would be handy if the system could detect this change and relaunch automatically, right? Check out Chapter 5, Developer Tools for Spring Boot Apps to find out how.)

That's nice, but since we picked Spring Data MongoDB, how hard would it be to load some sample data and retrieve it from another route? (Spoiler alert--Not hard at all.)

We can start out by defining a simple Chapter entity to capture book details, as follows:

    package com.greglturnquist.learningspringboot; 
 
    import lombok.Data; 
 
    import org.springframework.data.annotation.Id; 
    import org.springframework.data.mongodb.core.mapping.Document; 
 
    @Data 
    @Document 
    public class Chapter { 
 
      @Id 
      private String id; 
      private String name; 
 
      public Chapter(String name) { 
        this.name = name; 
      } 
 
    } 

This preceding little POJO lets us look at the details about the chapter of a book as follows:


	The @Data annotation from Lombok generates getters, setters, a toString() method, an equals() method, a hashCode() method, and a constructor for all required (that is, final) fields

	The @Document annotation flags this class as suitable for storing in a MongoDB data store

	The id field is marked with Spring Data's @Id annotation, indicating this is the primary key of our Mongo document

	Spring Data MongoDB will, by default, create a collection named chapters with two fields, id and name

	Our field of interest is name, so let's create a constructor call to help insert some test data



To interact with this entity and its corresponding collection in MongoDB, we could dig in and start using the autoconfigured MongoOperations supplied by Spring Boot. But why do that when we can declare a repository-based solution?

To do this, we'll create an interface defining the operations we need. Check out this simple interface:

    package com.greglturnquist.learningspringboot; 
 
    import org.springframework.data.repository
     .reactive.ReactiveCrudRepository; 
 
    public interface ChapterRepository 
     extends ReactiveCrudRepository<Chapter, String> { 
 
    } 

This last declarative interface creates a Spring Data repository as follows:


	ReactiveCrudRepository extends Repository, a Spring Data Commons marker interface that signals Spring Data to create a concrete implementation based on the reactive paradigm while also capturing domain information. It also comes with some predefined CRUD operations (save, delete, deleteById, deleteAll, findById, findAll, and more).

	It specifies the entity type (Chapter) and the type of the primary key (String).

	We could also add custom finders, but we'll save that for Chapter 3, Reactive Data Access with Spring Boot.



Spring Data MongoDB will automatically wire up a concrete implementation of this interface.

Spring Data doesn't engage in code generation. Code generation has a sordid history of being out of date at some of the worst times. Instead, Spring Data uses proxies and other mechanisms to support these operations. Never forget--​the code you don't write has no bugs.

With Chapter and ChapterRepository defined, we can now preload the database, as shown in the following code:

    package com.greglturnquist.learningspringboot; 
 
    import reactor.core.publisher.Flux; 
 
    import org.springframework.boot.CommandLineRunner; 
    import org.springframework.context.annotation.Bean; 
    import org.springframework.context.annotation.Configuration; 
 
    @Configuration 
    public class LoadDatabase { 
 
      @Bean 
      CommandLineRunner init(ChapterRepository repository) { 
        return args -> { 
          Flux.just( 
            new Chapter("Quick Start with Java"), 
            new Chapter("Reactive Web with Spring Boot"), 
            new Chapter("...and more!")) 
            .flatMap(repository::save) 
            .subscribe(System.out::println); 
        }; 
      } 
 
    } 

This preceding class will be automatically scanned by Spring Boot and run in the following way:


	@Configuration marks this class as a source of beans.

	@Bean indicates that the return value of init() is a Spring Bean--​in this case, a CommandLineRunner (utility class from Spring Boot).

	Spring Boot runs all CommandLineRunner beans after the entire application is up and running. This bean definition requests a copy of ChapterRepository.

	Using Java 8's ability to coerce the args → {} lambda function into CommandLineRunner, we are able to gather a set of Chapter data, save all of them and then print them out, preloading our data.



We aren't going to delve into the intricacies of Flux, flatMap, and subscribe yet. We'll save that for Chapter 2, Reactive Web with Spring Boot and Chapter 3, Reactive Data Access with Spring Boot.

With all this in place, the only thing left is to write a REST controller to serve up the data!

    package com.greglturnquist.learningspringboot; 
 
    import reactor.core.publisher.Flux; 
 
    import org.springframework.web.bind.annotation.GetMapping; 
    import org.springframework.web.bind.annotation.RestController; 
 
    @RestController 
    public class ChapterController { 
 
      private final ChapterRepository repository; 
 
      public ChapterController(ChapterRepository repository) { 
        this.repository = repository; 
      } 
 
      @GetMapping("/chapters") 
      public Flux<Chapter> listing() { 
        return repository.findAll(); 
      } 
    } 

This preceding controller is able to serve up our data as follows:


	@RestController indicates that this is another REST controller.

	Constructor injection is used to automatically load it with a copy of ChapterRepository. With Spring, if there is only one constructor call, there is no need to include an @Autowired annotation.

	@GetMapping tells Spring that this is the place to route /chapters calls. In this case, it returns the results of the findAll() call found in ReactiveCrudRepository. Again, if you're curious what Flux<Chapter> is, we'll tackle that at the top of the next chapter. For now, think of it being like a Stream<Chapter>.



If we relaunch our application and visit http://localhost:8080/chapters, we can see our preloaded data served up as a nicely formatted JSON document, as seen in this screenshot:



This may not be very elaborate, but this small collection of classes has helped us quickly define a slice of functionality. And, if you'll notice, we spent zero effort configuring JSON converters, route handlers, embedded settings, or any other infrastructure.

Spring Boot is designed to let us focus on functional needs, not low-level plumbing.



            

            
        
    
        

                            
                    Delving into Spring Boot's property support

                
            
            
                
We just got things off the ground with an operational application, but that isn't the only killer feature of Spring Boot.

Spring Boot comes with a fistful of prebuilt properties. In fact, just about every autoconfigured component has some property setting (http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#common-application-properties) allowing you to override just the parts you like.

Many of these autoconfigured beans will back off if Boot spots us creating our own. For example, when Spring Boot spots reactive MongoDB drivers on the classpath, it automatically creates a reactive MongoClient. However, if we define our own MongoClient bean, then Spring Boot will back off and accept ours.

This can lead to other components switching off. But sometimes, we don't need to swap out an entire bean. Instead, we may wish to merely tweak a single property of one of these autoconfigured beans.

Let's try to make some adjustments to src/main/resources/application.properties as follows:

    # Override the port Tomcat listens on 
    server.port=9000 
 
    # Customize log levels 
    logging.level.com.greglturnquist=DEBUG 

This preceding changes will cause Spring Boot to launch Netty on port 9000, as shown here:

2017-08-02 15:40:02.489: Netty started on port(s): 9000  

It will also bump up the log level for package com.greglturnquist to DEBUG.

Many modern IDEs include code completion to find various properties.

While it's handy to externalize configuration settings into property files, it wouldn't be a big advantage if they were only embeddable inside our app's JAR file.

That's why, Spring Boot comes with property override support. The following list shows all the locations from which we can override properties, the first being the highest priority:


	The @TestPropertySource annotation on test classes

	Command-line arguments

	The properties found inside SPRING_APPLICATION_JSON (inline JSON embedded in an env variable or system property)

	The ServletConfig init parameters

	The ServletContext init parameters

	The JNDI attributes from java:comp/env

	The Java System properties (System.getProperties())

	The OS environment variables

	A RandomValuePropertySource that only has properties in random.*

	Profile-specific properties outside the packaged JAR file (application-{profile}.properties and YAML variants)

	Profile-specific properties inside the packaged JAR file (application-{profile}.properties and YAML variants)

	Application properties outside the package JAR file (application.properties and YAML variants)

	Application properties inside the packaged JAR file (application.properties and YAML variants)

	The @PropertySource annotation on any @Configuration classes

	Default properties (specified using SpringApplication.setDefaultProperties)



For an example of the same overrides in YAML format as our application.properties file, we could put the following in application.yml in src/main/resources:

    server:
      port: 9000
    
    logging:
      level:
        com:
          greglturnquist: DEBUG  

This would do the exact same thing that we already saw with application.properties. The only difference is the formatting.

What are the benefits of YAML over properties? If we need to override lots of settings, it avoids duplication of various keys.

Spring properties can also reference other properties, as shown in this fragment:

    app.name=MyApp
    app.description=${app.name} is a Spring Boot application  

In this preceding example, the second property, app.description, references the first property, app.name.

This isn't the end of options with property overrides. It's just the beginning. Throughout this book, we'll expand on the options provided by Spring Boot's property support.

For now, let's focus on getting our app to production!



            

            
        
    
        

                            
                    Bundling up the application as a runnable JAR file

                
            
            
                
We've hacked out a suitable application. Now it's time to take it to production. As Spring Developer Advocate Josh Long likes to say, production is the happiest place on earth.

The good ol' spring-boot-gradle-plugin has built-in hooks to handle that for us. By invoking Gradle's build task, it will insert itself into the build process, and create a JAR file.

$ ./gradlew clean build
:clean
:compileJava
:processResources
:classes
:findMainClass
:jar
:bootRepackage
:assemble
:compileTestJava
:processTestResources UP-TO-DATE
:testClasses
:test
... test output ...
:check
:build
    
BUILD SUCCESSFUL
    
Total time: 10.946 secs  

If we peek at the output, we'll find the original JAR file (non-FAT) along with the rebundled one containing our application code as well as the third-party dependencies, as shown here:

$ ls build/libs
learning-spring-boot-0.0.1-SNAPSHOT.jar
learning-spring-boot-0.0.1-SNAPSHOT.jar.original  

If you wish to check out the newly minted JAR's contents, type jar tvf build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar. We won't show it here because of space constraints.

The über JAR is nicely loaded up with our custom code, all of our third-party dependencies, and a little Spring Boot code to allow us to run it. Why not try that out right here?

Let's type the following command:

$ java -jar build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar  

We can expect the same output as before, which is as seen in this image:

      .   ____          _            __ _ _
    /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
    ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
    \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
    =========|_|==============|___/=/_/_/_/
    :: Spring Boot ::  (v2.0.0.M5)
    
    2017-09-19 20:41:20.036: Starting LearningSpringBootApplication 
     on ret...
    ...
    ... the rest has been cut for space ...  

By invoking the JAR using Java's -jar option, we can launch the application with nothing more than the JVM on our machine.

With our JAR file in hand, we can take our application anywhere. If we need to override any settings, we can do it without cracking it open and making alterations.

Suppose we alter our command slightly, like this:

$ SERVER_PORT=8000 java
 -jar build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar  

We can now expect the results to be a little different, as seen in this image:

      .   ____          _            __ _ _
    /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
    ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
    \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
    =========|_|==============|___/=/_/_/_/
    :: Spring Boot ::  (v2.0.0.M5)
    
    ...
    2017-08-03 15:40:02.489: Netty started on port(s): 8000
    ...  

From the command line, we override server.port using an alternative notation (SERVER_PORT) and run it on port 8000.

This lends us the ability to deploy it into the cloud.



            

            
        
    
        

                            
                    Deploying to Cloud Foundry

                
            
            
                
Cloud-native applications are becoming the norm, as companies accelerate their rate of releasing to production (https://pivotal.io/cloud-native).

Cloud Native describes the patterns of high performing organizations delivering software faster, consistently and reliably at scale. Continuous delivery, DevOps, and microservices label the why, how and what of the cloud natives. In the the most advanced expression of these concepts they are intertwined to the point of being inseparable. Leveraging automation to improve human performance in a high trust culture, moving faster and safer with confidence and operational excellence.

Many cloud platforms thrive under releasing self-contained applications. The open source Cloud Foundry platform, with its support for many technologies and runnable JAR files, is one of the most popular ones.

To get started, we need either a copy of Cloud Foundry installed in our data center, or an account at Pivotal Web Services (PWS), a Cloud Foundry hosting provider (https://run.pivotal.io/). Assuming we have a PWS account (pronounced p-dubs), let's install the tools and deploy our app.

On macOS X, we can type this:

$ brew tap cloudfoundry/tap
$ brew install cf-cli
=> Installing cf-cli from cloudfoundry/tap
==> Downloading
     https://cli.run.pivotal.io/stable?release=macosx64-bin...
==> Downloading from
     https://s3-us-west-1.amazonaws.com/cf-cli-release...
     ##################################################
     ####################...
==> Caveats
     Bash completion has been installed to:
     /usr/local/etc/bash_completion.d
==> Summary
     /usr/local/Cellar/cf-cli/6.32.0: 6 files, 16.7MB,
     built in 10 seco...
  

For Linux, we can fetch a tarball like this:

$ wget -O cf-linux.tgz "https://cli.run.pivotal.io/stable?
  release=linux64-binary&source=github"
$ tar xvfz cf-linux.tgz
$ chmod 755 ./cf

This preceding code will download and enable a Linux-based cf tool.

Before using the cf tool, you must register for an account at PWS.

For more installation details, visit https://docs.run.pivotal.io/cf-cli/install-go-cli.html.

Using the cf tool, let's deploy our application. To kick things off, we need to log into PWS, as follows:

$ cf login
API endpoint: https://api.run.pivotal.io
    
Email> gturnquist@pivotal.io
    
Password>
Authenticating...
OK
    
Select an org (or press enter to skip):
    
... your organizations will be listed here ...
    
Org> 2
Targeted org FrameworksAndRuntimes
    
Select a space (or press enter to skip):
    
... your spaces will be listed here ...
    
Space> 1
Targeted space development
    
API endpoint:   https://api.run.pivotal.io (API version: 2.62.0)
User:           gturnquist@pivotal.io
Org:            FrameworksAndRuntimes
Space:          development  

We are logged in and targeting a logical space inside an organization.

Your Org and Space will certainly be different.

Time to deploy! We can do so with the cf push command. At a minimum, we specify the name of our application and the artifact with the -p option (and use a different name than learning-spring-boot, since it's been taken by this book!):

$ cf push learning-spring-boot -p build/libs/learning-spring-boot-
  0.0.1-SNAPSHOT.jar
Creating app learning-spring-boot in org FrameworksAndRuntimes
/ space development as gturnquist@pivotal.io...
OK
    
Creating route learning-spring-boot.cfapps.io...
OK
    
Binding learning-spring-boot.cfapps.io to learning-spring-boot...
OK
    
Uploading learning-spring-boot...
...
...
Staging complete
Uploading droplet, build artifacts cache...
Uploading build artifacts cache...
Uploading droplet...
Uploaded build artifacts cache (108B)
Uploaded droplet (76.7M)
Uploading complete
Destroying container
Successfully destroyed container
    
0 of 1 instances running, 1 starting
0 of 1 instances running, 1 starting
0 of 1 instances running, 1 starting
1 of 1 instances running
    
App started
    
OK
...
...
requested state: started
instances: 1/1
usage: 1G x 1 instances
urls: learning-spring-boot.cfapps.io
last uploaded: Tue Sep 20 02:01:13 UTC 2017
stack: cflinuxfs2
buildpack: java-buildpack=v3.9-offline-
https://github.com/cloudfoundry/java-buildpack.git#b050954 java-main 
open-jdk-like-jre=1.8.0_101 open-jdk-like-memory-
calculator=2.0.2_RELEASE spring-auto-reconfiguration=1.10.0_RELEASE
    
    state     since                    cpu      memory        disk     
#0  running  2017-09-19 09:01:59 PM   243.7%   503.5M of 1G   158.1M of 1G

    details

We have pushed our JAR file to PWS, let the Java buildpack (automatically selected) register it with a URL, and start it up. Now, we can visit its registered URL at http://learning-spring-boot.cfapps.io:

$ curl http://learning-spring-boot.cfapps.io?name=Greg
  Hey, Greg!  

We've taken our application to production.

The next step is to handle what are sometimes referred to as Day 2 situations. This is where we must now monitor and maintain our application, and Spring Boot is ready to provide us just what we need.



            

            
        
    
        

                            
                    Adding production-ready support

                
            
            
                
We've created a Spring web app with minimal code and released it to production. This is the perfect time to introduce production-grade support features.

There are some questions that often arise in production, and these are as follows:


	What do we do when the system administrator wants to configure his or her monitoring software to ping our app to see if it's up?

	What happens when our manager wants to know the metrics of people hitting our app?

	What are we going to do when the ops center supervisor calls us at 2:00 a.m. and we have to figure out what went wrong?



The last feature we are going to introduce in this chapter is Spring Boot's Actuator module. This module provides some super slick Ops-oriented features that are incredibly valuable in a production environment.

We start by adding this dependency to our build.gradle as follows:

    compile('org.springframework.boot:spring-boot-starter-actuator') 

When you run this version of our app, the same business functionality is available that we saw earlier, but there are additional HTTP endpoints; these are listed in the following table:




	
Actuator Endpoint


	
Description





	
/application/autoconfig


	
This reports what Spring Boot did and didn't autoconfigure, and why





	
/appplication/beans


	
This reports all the beans configured in the application context (including ours as well as the ones autoconfigured by Boot)





	
/application/configprops


	
This exposes all configuration properties





	
/application/dump


	
This creates thread dump report





	
/application/env


	
This reports on the current system environment





	
/application/health


	
This is a simple endpoint to check the life of the app





	
/application/info


	
This serves up custom content from the app





	
/application/metrics


	
This shows counters and gauges on web usage





	
/application/mappings


	
This gives us details about all Spring WebFlux routes





	
/application/trace


	
This shows the details about past requests







Endpoints, by default, are disabled. We have to opt in. This is accomplished by setting endpoints.{endpoint}.enabled=true inside src/main/resources/application.properties, like this:

endpoints.health.enabled=true


This line added to application.properties mentions the endpoint, health, and enables it. If we restart the application, we can ping for its health, as shown in the next section.



            

            
        
    
        

                            
                    Pinging our app for general health

                
            
            
                
Each of these endpoints can be visited using our browser or using other tools like curl:

$ curl localhost:9000/application/health
{
  "status": "UP",
  "details": {
    "mongo": {
      "status": "UP",
      "details": {
        "version": "3.2.2"
      }
    },
    "diskSpace": {
      "status": "UP",
      "details": {
        "total": 498937626624,
        "free": 66036432896,
        "threshold": 10485760
      }
    }
  }
}

This preceding health status gives us the following:


	An overall UP status

	The status of MongoDB

	The status of the diskspace



When other components are added, they may, optionally, add their own health checks.

This immediately solves our first need listed previously. We can inform the system administrator that he or she can write a management script to interrogate our app's health.

Be warned that each of these endpoints serve up a compact JSON document. Generally speaking, command-line curl probably isn't the best option. While it's convenient on *nix and Mac systems, the content is dense and hard to read. It's more practical to have the following:


	a JSON plugin installed in our browser (such as JSON Viewer at https://github.com/tulios/json-viewer)

	a script that uses a JSON parsing library if we're writing a management script (such as Groovy's JsonSlurper at http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html or JsonPath at https://code.google.com/p/json-path)





            

            
        
    
        

                            
                    Metrics

                
            
            
                
To really get operational, we need metrics. Most production systems have metrics in one form or another. Thankfully, we don't have to start from scratch. There is a metric endpoint in Spring Boot Actuator. If we add this following setting to application.properties:

    endpoints.metrics.enabled=true

With this property setting, if we restart the application, we can get a quick read out on thing.

Assuming we have JSON Viewer installed, it's easy to surf to http://localhost:9000/application/metrics and get a listing on all sorts of metrics. We even have counters for every good/bad web hit, broken down on a per-page basis, as shown here:



    {
      "names": [
        "jvm.buffer.memory.used",
        "jvm.memory.used",
        "jvm.buffer.count",
        "logback.events",
        "process.uptime",
        "jvm.memory.committed",
        "jvm.buffer.total.capacity",
        "jvm.memory.max",
        "process.starttime",
        "http.server.requests"
      ]
    }

We can visit any one of these metrics by appending it's name to the metrics URL. For example, to view the http.server.requests, visit http://localhost:9000/application/metrics/http.server.requests:

    {
      "name": "http.server.requests",
      "measurements": [
        {
          "statistic": "TotalTime",
          "value": 3.53531643E8
        },
        {
          "statistic": "Count",
          "value": 57.0
        }
      ],
      "availableTags": [
        {
          "tag": "exception",
          "values": [
            "none",
            "none",
            "none",
            "none"
          ]
        },
        {
          "tag": "method",
          "values": [
            "GET",
            "GET",
            "GET",
            "GET"
          ]
        },
        {
          "tag": "uri",
          "values": [
            "/application/metrics/{requiredMetricName}",
            "/application/metrics/{requiredMetricName}",
            "/application/metrics",
            "/favicon.ico"
          ]
        },
        {
          "tag": "status",
          "values": [
            "200",
            "404",
            "200",
            "200"
          ]
        }
      ]
    }

This provides a basic framework of metrics to satisfy our manager's needs. It's important to understand that metrics gathered by Spring Boot Actuator aren't persistent across application restarts. To gather long-term data, we have to write them elsewhere (http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#production-ready-metrics).

If you have used Spring Boot 1.x, then this may look very different. That's because a newer, more sophisticated version of metrics has arrived--Micrometer. It's currently in development, and may change quite a bit, so stay tuned at http://micrometer.io/, and be sure to follow @micrometerio on Twitter, as the ability to craft highly detailed and advanced metrics comes to Spring Boot.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we rapidly crafted a Spring Web application using the Spring stack on top of Netty with little configuration from our end. We plugged in Spring Boot's Actuator module, configuring it with metrics, health, and management features so that we can monitor it in production by merely adding two lines of extra code.

In the next chapter, we'll get underway building our social media platform using these scalable APIs built on top of Reactive Streams.









            

            
        
    
        

                            
                    Reactive Web with Spring Boot

                
            
            
                
The more and more I use #SpringBoot the more I like it.

– Derek Stainer @dstainer

In the previous chapter, we saw how quickly an application can be created with just a few lines of code. In this chapter, we are going to embark upon a journey. We will build a social media application where users can upload pictures and write comments.

In this chapter, we will build the web layer for our social media application doing the following:


	Creating a reactive web application with Spring Initializr

	Learning the tenets of reactive programming

	Introducing Reactor types

	Switching from Apache Tomcat to Embedded Netty

	Comparing reactive Spring WebFlux against classic Spring MVC

	Showing some Mono/Flux-based endpoints

	Creating a reactive ImageService

	Creating a reactive file controller

	Showing how to interact with a Thymeleaf template

	Illustrating how going from async to sync can be easy, but the opposite is not





            

            
        
    
        

                            
                    Creating a reactive web application with Spring Initializr

                
            
            
                
In the last chapter, we took a quick tour through the Spring Initializr site at http://start.spring.io. Let's go back there and pick some basic ingredients to start building our social media site by picking the options needed as shown in the following screenshot:



As shown in the preceding screenshot, we've picked the following options:


	Build system: Gradle

	Spring Boot Version: 2.0

	Group: com.greglturnquist.learningspringboot

	Artifact: learning-spring-boot



For dependencies, we are going to use these:


	Reactive Web: This pulls in Reactive Spring, something we'll explore here and through the rest of this book

	Lombok: This is a tiny library that keeps Java interesting by handling getters, setters, toString, equals, hashCode, and more

	Thymeleaf: This is not Boot's only supported template library, but a powerful one that includes reactive support as well as strict HTML compliance.



From here, we merely need to click on the Generate Project button and a zipped up project will be downloaded. Import it into our IDE, and we're ready to get rolling.

(We will add more dependencies to our project in later chapters.)

We won't list the entire Gradle build file generated by the site, but the dependencies are listed as follows:

    dependencies { 
      compile('org.springframework.boot:spring-boot-starter-webflux') 
      compile("org.springframework.boot:spring-boot-starter-thymeleaf") 
      compile('org.synchronoss.cloud:nio-multipart-parser:1.1.0') 
      compile('org.projectlombok:lombok') 
      testCompile('org.springframework.boot:spring-boot-starter-test') 
    } 

The following dependencies are included in the build file:


	spring-boot-starter-webflux: This is the foundation for a Reactive Spring web applications

	spring-boot-starter-thymeleaf: This brings in Thymeleaf's template engine

	nio-multipart-parser: This is a third-party library from Synchronoss, which supports reactive multipart file uploads

	lombok: This is a convenient library to create mutable and immutable value objects among other things

	spring-boot-starter-test: This is a collection of test libraries including JUnit, Spring Boot Test, Mockito, AssertJ, JSONassert, and Hamcrest



What version of Spring Boot are we using? That can be spotted toward the top of build.gradle inside the buildscript fragment, as seen here:

    ext { 
      springBootVersion = '2.0.0.M5' 
    } 

The version is specified at the top to feed both spring-boot-gradle-plugin as well as in the dependencies.

The Gradle build additionally uses the Spring team's Dependency Management Gradle plugin (available here: https://github.com/spring-gradle-plugins/dependency-management-plugin), which includes several Maven-like dependency management features. It includes the ability to consume any Maven Bills of Materials (BOMs) while also handling direct and transitive dependencies.

With our build file in place, we can now dive into reactive programming.



            

            
        
    
        

                            
                    Learning the tenets of reactive programming

                
            
            
                
To launch things, we are going to take advantage of one of Spring Boot's hottest new features--Spring Framework 5's reactive support. The entire Spring portfolio is embracing the paradigm of reactive applications, and we'll focus on what this means and how we can cash in without breaking the bank.

Before we can do that, the question arises--what is a reactive application?

In simplest terms, reactive applications engage in the concept of non-blocking, asynchronous operations. Asynchronous means that the answer comes later, whether by polling or by an event pushed backed to us. Non-blocking means not waiting for a response, implying we may have to poll for the results. Either way, while the result is being formed, we don't hold up the thread, allowing it to service other calls.

The side effect of these two characteristics is that applications are able to accomplish more with existing resources.

There are several flavors of reactive applications going back to the 1970s, but the current one gaining resonance is Reactive Streams due its introduction of backpressure.

Backpressure is another way of saying volume control. The consumer controls how much data is sent by using a pull-based mechanism instead of a traditional push-based solution. For example, imagine requesting a collection of images from the system. You could receive one or a hundred thousand. To prevent the risk of running out of memory in the latter case, people often code page-based solutions. This ripples across the code base, causing a change in the API. And it introduces another layer of handling.

To expand on this example, the following solution would depict that risky collection:

    public interface MyRepository { 
      List<Image> findAll(); 
    } 

This preceding repository could indeed return one Image or a hundred thousand. There's no way to tell. The most common solution, as mentioned, would be to switch to something like this instead:

    public interface MyRepository { 
      Page<Image> findAll(Pageable p); 
    } 

The first solution is simple. We know how to iterate over it. The second solution is also iterable (Spring Data Commons's Page type implements Java's Iterable interface), but requires passing in a parameter to our API, specifying how big a page is and which page we want. While not hard, it introduces a fundamental change in our API.

Reactive Streams is much simpler--return a container that lets the client choose how many items to take. Whether there is one or thousands, the client can use the exact same mechanism and take however many it's ready for. To do this, we would use the following method signature:

    public interface MyRepository { 
      Flux<Image> findAll(); 
    } 

A Flux, which we'll explore in greater detail in the next section, is very similar to a Java 8 Stream. We can take as many as we want and it lazily waits until we subscribe to it to yield anything. There is no need to put together a PageRequest, making it seamless to chain together controllers, services, and even remote calls.



            

            
        
    
        

                            
                    Introducing Reactor types

                
            
            
                
We've mentioned Reactive Streams with little detail. There is a spec for Reactive Streams (http://www.reactive-streams.org/), but it's important to understand that it is quite primitive. In fact, it's so primitive that it's not very effective for building applications. That may sound counterintuitive, but it wasn't written so much for end users as it was for framework developers. To build reactive applications, we'll use Project Reactor (http://projectreactor.io/), the core library that Spring Framework 5 uses for its reactive programming model.

To introduce Reactor's core types, we'll begin with the one we just saw in the previous section, Flux, and some code like this:

    Flux.just("alpha", "bravo", "charlie"); 

This simple creation of a Reactor Flux can be detailed as follows:


	Flux is Reactor's base type, a container holding 0..N items, none of which will be reached until the client calls the reactive stream's subscribe() method. In this case, the container holds a set of strings.

	just() is a static helper method to construct a fixed collection. Other static helpers are also available, like fromArray(), fromIterable(), and fromStream(). This makes it easy to bridge existing Java collections.



There are additional methods to convert a Flux to a Java Stream and an Iterable. But since these types are generally blocking, it's best to avoid them if possible.

Exactly what does a Flux embody? How is it different from a Java List or Stream? A Flux keenly represents multiple values coming, in the future, asynchronously. When those values are coming is not specified nor can it be assumed they are all arriving on the same thread.

In the past, Java has made it possible to represent either a single value or a collection of values that are coming right now in synchronous, blocking APIs. We've also had single value types for asynchronous values (Future and CompletableFuture). But Java has yet to create a value type for multiple, asynchronous values. That is what Project Reactor and Reactive Streams is all about--processing multiple, asynchronous, non-blocking values in a cohesive fashion.

To consume a Flux, we have to either subscribe or let the framework do it for us. Here's an example of subscribing for the results:

    Flux.just("alpha", "bravo", "charlie") 
     .subscribe(System.out::println); 

This last code creates a Flux with three items, subscribes for the results, and prints each value out to the screen as follows:

alpha
bravo
charlie  

This may not appear impressive, especially when compared to the existing Java collection builders like Arrays.asList("alpha", "bravo", "charlie"). Looks the same, right?

A difference can be seen when we start leveraging Java 8 lambdas and function types. That's when we can chain together a series of function calls, all of which are delayed until that exact element is extracted. Look at the following fragment:

    Flux.just( 
      (Supplier<String>) () -> "alpha", 
      (Supplier<String>) () -> "bravo", 
      (Supplier<String>) () -> "charlie") 
       .subscribe(supplier -> System.out.println(supplier.get())); 

This Flux contains the equivalent in values of our earlier Flux.just() except that each one is wrapped inside a Java 8 Supplier. This means that, actually, retrieving each value is delayed until subscription and only when each individual value is fetched through Reactor's onNext() method. This is also known as lazy.

Sure this example is contrived, but we'll see more of this paradigm as we explore reactive programming throughout this book.

Another facet of Project Reactor is over 160 operations rooted in functional programming including some of the most well known ones such as map, flatMap, filter, and then.

To wrap up this section, let's pick an example a little more complex in nature. What if we took the sample data that we have been poking at and count up how many of each letter we have. Check it out:

    Flux.just("alpha", "bravo", "charlie") 
      .map(String::toUpperCase) 
      .flatMap(s -> Flux.fromArray(s.split(""))) 
      .groupBy(String::toString) 
      .sort((o1, o2) -> o1.key().compareTo(o2.key())) 
      .flatMap(group -> Mono.just(group.key()).and(group.count())) 
      .map(keyAndCount -> 
        keyAndCount.getT1() + " => " + keyAndCount.getT2()) 
        .subscribe(System.out::println); 

We can take apart this preceding flow as follows:


	This flow starts with the same values as shown earlier in this chapter, alpha, bravo, and charlie bundled into a Reactor Flux.

	Each entry is converted to uppercase using String::toUpperCase ensuring we'll count lowers and uppers together.

	The entries are then flatMapped into individual letters. To visualize flatMapping, look at this example--["alpha", "bravo"] is mapped by s.split("") into a collection of collections, [["a", "l", "p", "h", "a"], ["b", "r", "a", "v", "o"]], and then flattened into a single collection, ["a", "l", "p", "h", "a", "b", "r", "a", "v", "o"].

	Then we group by the string value, which will combine all the "a" entries into one subgroup, and so on and so forth.

	Next, we sort by the key value, because the group type doesn't implement Comparable.



The underlying type of groupBy() is a GroupedFlux, a Flux with a key value that doesn't implement Comparable.


	We flatMap the group's key and count value into a pair of Mono objects. (More on Mono further in this chapter.)

	We unpack the tuple, and convert it into a string showing key and count.

	We subscribe to the entire flow, printing out the results.



The output can be seen as follows:

A => 4
B => 1
C => 1
E => 1
H => 2
I => 1
L => 2
O => 1

P => 1
R => 2
V => 1

Now that's a lot to take in all at once. Reactor flows, much like Java 8 streams, can pack a lot of functionality. But that is their key benefit. By spending little time on language ceremony, we, instead, focus on strong functional definitions. If needed, it can be handy to read each step in that flow again, using the bullet points to help decode it.

After chatting about Flux and all of its operations, something else has leaked into our code--Mono. What is that? It's a Reactor container for 0..1 items, a subset of Flux. It implements the same Reactive Streams interface, Publisher, which means that we only get its results when we invoke subscribe(). It has a few API differences from Flux like flatMap() versus flatMapMany(), but apart from that, it is not hard to grok.

It turns out, a lot of use cases involve handling single values, making it worthwhile capturing this type. In the flow we just walked through, it turns out that the count() of a group is stored in a Mono<Long>, indicating that we can't know the value until the subscribe is applied at the end. So we have to bundle it up along with the key and map over it to effectively unpack it.

Given that we just walked through a chain of Reactor operations, it's handy to review some of the most commonly used ones. Look at this quick guide:




	
Operation


	
Description





	
map()


	
Converts one Flux into another Flux of identical size using a function applied to each element





	
flatMap()


	
Converts one Flux into another Flux of a different size by first mapping, and then removing any nesting





	
filter()


	
Converts one Flux into a smaller Flux with elements removed based on a filtering function





	
groupBy()


	
Converts the Flux into a bundled set of subgroups based on the grouping function





	
sort()


	
Converts one Flux into a sorted Flux based on the sorting function







Several of these operations listed in the previous table also exist for Mono. There are others, but these are the big ones.

What's the big picture in all this? Essentially, every step of this flow could be an asynchronous, non-blocking, remote call to another service. With Reactor, we don't have to worry about thread management unless we really want to get into it. It's handled for us. And soon, we'll start doing just that.

There's a myth that is possibly as old as Java itself: To make things run faster, we must use threads. And the corollary would be: The more threads, the faster. But this is not born out of empirical research. In fact, using threads can lead to concurrent faults and using too many threads can introduce context switching overhead. JavaScript developers, in an environment where there is but one thread, have developed many reactive solutions that are very efficient at handling things. That is because using queues and event loops combined with asynchronous, non-blocking APIs that don't hold up the thread, actually results in accomplishing a lot with few resources.

If this introductory taste of Project Reactor, Flux, and Mono is still confusing, please read the following blog articles for more detailed information on reactive programming:


	http://bit.ly/reactive-part-1

	http://bit.ly/reactive-part-2

	http://bit.ly/reactive-part-3

	http://bit.ly/reactive-types





            

            
        
    
        

                            
                    Switching from Embedded Netty to Apache Tomcat

                
            
            
                
By default, Spring Boot is geared up to use embedded Netty (http://netty.io). Why? Because it's one of the most popular solutions for reactive applications. And when it comes to reactive applications, it's critical that the entire stack be reactive.

However, it's possible to switch to another embedded container. We can experiment with using Apache Tomcat and its asynchronous Servlet 3.1 API. All we have to do is to make some tweaks to the dependency settings in build.gradle, as follows:

    compile('org.springframework.boot:spring-boot-starter-webflux') { 
      exclude group: 'org.springframework.boot', 
      module: 'spring-boot-starter-reactor-netty' 
    } 
    compile('org.springframework.boot:spring-boot-starter-tomcat') 

What's happening in the preceding code? This can be explained as follows:


	spring-boot-starter-webflux excludes spring-boot-starter-reactor-netty, taking it off the classpath

	spring-boot-starter-tomcat is added to the classpath

	Spring Boot's TomcatAutoConfiguration kicks in, and configures the container to work using TomcatReactiveWebServerFactory



It's important to point out that there are these other containers available:


	Jetty

	Undertow



For the rest of this title, we'll stick with Spring Boot's default, Netty.

It's interesting to refer to these as containers given that they are contained inside our application. It used to be standard practice to install Apache Tomcat (or whatever container we picked) and install the application into it. But Spring Boot has made embedded containers a core feature, inverting this concept of apps inside containers and putting the container inside the app instead. For an entertaining presentation on how this change has swept the Java community, check out Eberhard Wolff's Java Application Servers Are Dead (http://www.slideshare.net/ewolff/java-application-servers-are-dead) presentation.



            

            
        
    
        

                            
                    Comparing reactive Spring WebFlux against classic Spring MVC

                
            
            
                
Ever heard of Spring MVC? It's one of the most popular web frameworks used by the Java community. Since Spring Framework 3, it has utilized an annotation-driven programming style, sometimes known as @MVC.

But we aren't going to use that in this book. Instead, we are going to use something new, Spring WebFlux. WebFlux is an alternative module in the Spring Framework focused on reactive handling of web requests. A huge benefit is that it uses the same annotations as @MVC, along with many of the same paradigms while also supporting Reactor types (Mono and Flux) on the inputs and outputs. This is NOT available in Spring MVC. The big thing to understand is that it's just a module name--spring-webflux versus spring-webmvc.



            

            
        
    
        

                            
                    Why is Spring doing this?

                
            
            
                
Spring MVC is built on top of Java EE's Servlet spec. This specification is inherently blocking and synchronous. Asynchronous support has been added in later versions, but servlets can still hold up threads in the pool while waiting for responses, defying our need for non-blocking. To build a reactive stack, things need to be reactive from top to bottom, and this requires new contracts and expectations.

Certain things, like HTTP status codes, a ResponseBody, and the @GetMapping/@PostMapping/@DeleteMapping/@PutMapping annotations are used by both modules. But other things under the hood must be rewritten from scratch. The important point is that this doesn't impact the end developer.

By switching to Reactive Spring, we can immediately start coding with Flux and Mono, and don't have to stop and learn a totally new web stack. Instead, we can use the popular annotation-based programming model while we invest our effort in learning how to make things reactive. It's also important to know that Spring MVC isn't going away or slated for end of life. Both Spring WebFlux and Spring MVC will stay as actively supported options inside the Spring portfolio.



            

            
        
    
        

                            
                    Showing some Mono/Flux-based endpoints

                
            
            
                
Let's start with a simple HTTP GET. Similar to Spring MVC endpoints, Spring WebFlux supports Flux operations as shown here:

    @GetMapping(API_BASE_PATH + "/images") 
    Flux<Image> images() { 
      return Flux.just( 
        new Image("1", "learning-spring-boot-cover.jpg"), 
        new Image("2", "learning-spring-boot-2nd-edition-cover.jpg"), 
        new Image("3", "bazinga.png") 
      ); 
    } 

This preceding controller can be described as follows:


	Using the same Flux.just() helper, we return a rather contrived list

	The Spring controller returns a Flux<Image> Reactor type, leaving Spring in charge of properly subscribing to this flow when the time is right



Before we can move forward, we need to define this Image data type like this:

    @Data 
    @NoArgsConstructor 
    public class Image { 
 
      private String id; 
      private String name; 
 
      public Image(String id, String name) { 
        this.id = id; 
        this.name = name; 
      } 
    } 

The preceding POJO class can be described as follows:


	@Data is a Lombok annotation that generates getters, toString, hashCode, equals as well as setters for all non-final fields

	@NoArgsConstructor is a Lombok annotation to generate a no-argument constructor

	It has id and name fields for storing data

	We have crafted a custom constructor to load up fields of data



With this simple data type, we can now focus on reactively interacting with them.

Nothing is simple without creating new data. To do that, we can write an HTTP POST operation as follows:

    @PostMapping(API_BASE_PATH + "/images") 
    Mono<Void> create(@RequestBody Flux<Image> images) { 
      return images 
       .map(image -> { 
         log.info("We will save " + image + 
          " to a Reactive database soon!"); 
          return image; 
       }) 
       .then(); 
    } 

The last code can be described as follows:


	@PostMapping indicates this method will respond to HTTP POST calls. The route is listed in the annotation.

	@RequestBody instructs Spring to fetch data from the HTTP request body.

	The container for our incoming data is another Flux of Image objects.

	To consume the data, we map over it. In this case, we simply log it and pass the original Image onto the next step of our flow.

	To wrap this logging operation with a promise, we invoke Flux.then(), which gives us Mono<Void>. Spring WebFlux will make good on this promise, subscribing to the results when the client makes a request.



If we run this code and submit some JSON, we can check out the results.

First, let's use HTTPie (https://httpie.org):

http --json -v POST localhost:8080/api/images id=10 name=foo  

The verbose results are easy to read and are as follows:

POST /api/images HTTP/1.1
Accept: application/json, */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Length: 27
Content-Type: application/json
Host: localhost:8080
User-Agent: HTTPie/0.9.8
    
{
  "id": "10",
  "name": "foo"
}
    
HTTP/1.1 200
Content-Length: 0
Date: Sat, 28 Jan 2017 20:14:35 GMT  

In this case, HTTPie nicely sent a single item and our Spring WebFlux controller parsed it perfectly, like this:

... c.g.learningspringboot.ApiController ... We will save
 Image(id=10, name=foo) to a Reactive database soon!

Single entry Flux has been nicely handled.

If we want to send a JSON array, we can either embed the JSON array in a file or just send it directly with curl, as follows:

curl -v -H 'Content-Type:application/json' -X POST -d '[{"id":10,
 "name": "foo"}, {"id":11, "name":"bar"}]' localhost:8080/api/images

Ta-dah!

c.g.learningspringboot.ApiController ... We will save Image(id=10,
 name=foo) to a Reactive database soon!
c.g.learningspringboot.ApiController ... We will save Image(id=11,
 name=bar) to a Reactive database soon!  

Whether we send a single JSON item or an array of JSON items, Spring WebFlux maps both onto Reactor's Flux with no issue. In classic Spring MVC, we'd have to choose either Image or List<Image> and encode things properly or write two handlers.

Want to dial up the log levels? With Spring Boot, adjusting logging levels is a snap. Rename the application.properties file supplied by start.spring.io as application.yml, and edit it to look like this:

    logging: 
      level: 
        io: 
          netty: DEBUG 
        reactor: DEBUG 

The preceding code will punch up Netty and Project Reactor to spit out DEBUG level messages.

If we fetch the list of images again (http localhost:8080/api/images), we can see stuff like this in the server logs:

    2017-01-28 15:46:23.470 DEBUG 28432 --- [ctor-http-nio-4] r.i.n.http.server.HttpServerOperations   : New http connection, requesting read
    2017-01-28 15:46:23.471 DEBUG 28432 --- [ctor-http-nio-4] r.ipc.netty.http.server.HttpServer       : [id: 0x9ddcd1ba, L:/0:0:0:0:0:0:0:1:8080 - R:/0:0:0:0:0:0:0:1:65529] RECEIVED: 145B
            +-------------------------------------------------+
            |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
    +--------+-------------------------------------------------+----------------+
    |00000000| 47 45 54 20 2f 61 70 69 2f 69 6d 61 67 65 73 20 |GET /api/images |
    |00000010| 48 54 54 50 2f 31 2e 31 0d 0a 48 6f 73 74 3a 20 |HTTP/1.1..Host: |
    |00000020| 6c 6f 63 61 6c 68 6f 73 74 3a 38 30 38 30 0d 0a |localhost:8080..|
    |00000030| 55 73 65 72 2d 41 67 65 6e 74 3a 20 48 54 54 50 |User-Agent: HTTP|
    |00000040| 69 65 2f 30 2e 39 2e 38 0d 0a 41 63 63 65 70 74 |ie/0.9.8..Accept|
    |00000050| 2d 45 6e 63 6f 64 69 6e 67 3a 20 67 7a 69 70 2c |-Encoding: gzip,|
    |00000060| 20 64 65 66 6c 61 74 65 0d 0a 41 63 63 65 70 74 | deflate..Accept|
    |00000070| 3a 20 2a 2f 2a 0d 0a 43 6f 6e 6e 65 63 74 69 6f |: */*..Connectio|
    |00000080| 6e 3a 20 6b 65 65 70 2d 61 6c 69 76 65 0d 0a 0d |n: keep-alive...|
    |00000090| 0a                                              |.               |
    +--------+-------------------------------------------------+----------------+
    2017-01-28 15:46:23.471 DEBUG 28432 --- [ctor-http-nio-4] r.ipc.netty.channel.ChannelOperations    : [HttpServer] handler is being applied: org.springframework.http.server.reactive.ReactorHttpHandlerAdapter@3a950f21  

This shows the incoming web request to GET /api/images, headers and all. The output can also be read, but given the volume of data from Netty, its verbose output is not shown. Nevertheless, these log levels provide a handy means to debug traffic on the wire.

DON'T DO THIS if the request or the results are HUGE! I once switched this on when I was uploading a 300 MB JAR file. The logging broke the application.



            

            
        
    
        

                            
                    Creating a reactive ImageService

                
            
            
                
The first rule of thumb when building web apps is to keep Spring controllers as light as possible. We can think of them as converters between HTTP traffic and our system.

To do that, we need to create a separate ImageService, as shown here, and let it do all the work:

    @Service 
    public class ImageService { 
 
      private static String UPLOAD_ROOT = "upload-dir"; 
 
      private final ResourceLoader resourceLoader; 
 
      public ImageService(ResourceLoader resourceLoader) { 
        this.resourceLoader = resourceLoader; 
      } 
      ... 
    } 

This last Spring service can be described as follows:


	@Service: This indicates this is a Spring bean used as a service. Spring Boot will automatically scan this class and create an instance.

	UPLOAD_ROOT: This is the base folder where images will be stored.

	ResourceLoader: This is a Spring utility class used to manage files. It is created automatically by Spring Boot and injected to our service via constructor injection. This ensures our service starts off with a consistent state.



Now we can start creating various utility methods needed to service our application.

Let's kick things off by loading up some mock image files loaded with test data. To do that, we can add the following method to the bottom of our newly minted ImageService class:

    /** 
    * Pre-load some test images 
    * 
    * @return Spring Boot {@link CommandLineRunner} automatically 
    *         run after app context is loaded. 
    */ 
    @Bean 
    CommandLineRunner setUp() throws IOException { 
      return (args) -> { 
        FileSystemUtils.deleteRecursively(new File(UPLOAD_ROOT)); 
 
        Files.createDirectory(Paths.get(UPLOAD_ROOT)); 
 
        FileCopyUtils.copy("Test file", 
         new FileWriter(UPLOAD_ROOT + 
          "/learning-spring-boot-cover.jpg")); 
 
        FileCopyUtils.copy("Test file2", 
         new FileWriter(UPLOAD_ROOT + 
          "/learning-spring-boot-2nd-edition-cover.jpg")); 
 
        FileCopyUtils.copy("Test file3", 
         new FileWriter(UPLOAD_ROOT + "/bazinga.png")); 
      }; 
    } 

The preceding little nugget of initializing code is described as follows:


	@Bean indicates that this method will return back an object to be registered as a Spring bean at the time that ImageService is created.

	The bean returned is a CommandLineRunner. Spring Boot runs ALL CommandLineRunners after the application context is fully realized (but not in any particular order).

	This method uses a Java 8 lambda, which gets automatically converted into a CommandLineRunner via Java 8 SAM (Single Abstract Method) rules.

	The method deletes the UPLOAD_ROOT directory, creates a new one, then creates three new files with a little bit of text.



With test data in place, we can start interacting with it by fetching all the existing files in UPLOAD_ROOT reactively by adding the following method to our ImageService:

    public Flux<Image> findAllImages() { 
      try { 
        return Flux.fromIterable( 
          Files.newDirectoryStream(Paths.get(UPLOAD_ROOT))) 
           .map(path -> 
            new Image(path.hashCode(), 
                      path.getFileName().toString())); 
      } catch (IOException e) { 
          return Flux.empty(); 
      } 
    } 

Let's explore the preceding code:


	This method returns Flux<Image>, a container of images that only gets created when the consumer subscribes.

	The Java NIO APIs are used to create a Path from UPLOAD_ROOT, which is used to open a lazy DirectoryStream courtesy of Files.newDirectoryStream(). DirectoryStream is a lazy iterable, which means that nothing is fetched until next() is called, making it a perfect fit for our Reactor Flux.

	Flux.fromIterable is used to wrap this lazy iterable, allowing us to only pull each item as demanded by a reactive streams client.

	The Flux maps over the paths, converting each one to an Image.

	In the event of an exception, an empty Flux is returned.



It's important to repeat that the stream of directory paths is lazy as well as the Flux itself. This means that nothing happens until the client subscribes, that is, starts pulling for images. At that point, the flow we just wrote will react, and start performing our data transformation. And it will only process each entry as each entry is pulled.

The next piece we need in our ImageService is the ability to fetch a single image so it can be displayed, and we can use this to do so:

    public Mono<Resource> findOneImage(String filename) { 
      return Mono.fromSupplier(() -> 
        resourceLoader.getResource( 
          "file:" + UPLOAD_ROOT + "/" + filename)); 
    } 

This last code can easily be described as follows:


	Since this method only handles one image, it returns a Mono<Resource>. Remember, Mono is a container of one. Resource is Spring's abstract type for files.

	resourceLoader.getResource() fetches the file based on filename and UPLOAD_ROOT.

	To delay fetching the file until the client subscribes, we wrap it with Mono.fromSupplier(), and put getResource() inside a lambda.



Until now, we've seen Mono.just() used to illustrate Reactor's way of initializing single items. However, if we wrote Mono.just(resourceLoader.getResource(...​)), the resource fetching would happen immediately when the method is called. By putting it inside a Java 8 Supplier, that won't happen until the lambda is invoked. And because it's wrapped by a Mono, invocation won't happen until the client subscribes.

There is another Mono operation that is very similar to fromSupplier()--defer(). The difference is that Mono.defer() is invoked individually by every downstream subscriber. It's best used not for fetching resources like our situation but for something like polling status instead.

Having written code to fetch all images and a single image, it's time we introduce the ability to create new ones. The following code shows a reactive way to handle this:

    public Mono<Void> createImage(Flux<FilePart> files) { 
      return files.flatMap(file -> file.transferTo( 
        Paths.get(UPLOAD_ROOT, file.filename()).toFile())).then(); 
    } 

The last code can be described as follows:


	This method returns a Mono<Void> indicating that it has no resulting value, but we still need a handle in order to subscribe for this operation to take place

	The incoming Flux of FilePart objects are flatMapped over, so we can process each one

	Each file is tested to ensure it's not empty

	At the heart of our chunk of code, Spring Framework 5's FilePart transfers the content into a new file stored in UPLOAD_ROOT

	then() lets us wait for the entire Flux to finish, yielding a Mono<Void>



Our last image-based operation to add to ImageService is to implement the means to delete images, as shown here:

    public Mono<Void> deleteImage(String filename) { 
      return Mono.fromRunnable(() -> { 
        try { 
          Files.deleteIfExists(Paths.get(UPLOAD_ROOT, filename)); 
        } catch (IOException e) { 
            throw new RuntimeException(e); 
        } 
      }); 
    } 

The preceding code can be described as follows:


	Because this method doesn't care about return values, its return type is Mono<Void>.

	To hold off until subscribe, we need to wrap our code with Mono.fromRunnable(), and use a lambda expression to coerce a Runnable. This lets us put our code off to the side until we're ready to run it.

	Inside all of that, we can use Java NIO's handy Files.deleteIfExists().



If wrapping every return type in either a Flux or a Mono is starting to bend your brain, you are not alone. This style of programming may take a little getting used to but it's not that big of a leap. Once you get comfortable with it, I guarantee you'll spot blocking code all over the place. Then you can set out to make it reactive without descending into callback hell.



            

            
        
    
        

                            
                    Creating a reactive file controller

                
            
            
                
With our reactive image service in place, we can start to work on the reactive file controller.

For starters, let's create a HomeController as shown here:

    @Controller 
    public class HomeController { 
 
      private static final String BASE_PATH = "/images"; 
      private static final String FILENAME = "{filename:.+}"; 
 
      private final ImageService imageService; 
 
      public HomeController(ImageService imageService) { 
        this.imageService = imageService; 
      } 

The preceding code can be described as follows:


	@Controller: This indicates that it is a web controller, and will be registered by Spring Boot to handle web requests.

	BASE_PATH: This is a static string used to define the base of many routes.

	FILENAME: This is a pattern for filenames where the "." is included. Otherwise, Spring WebFlux will use the suffix as part of content negotiation (for example, .json would try to fetch a JSON response, while .xml would try to fetch an XML response).

	ImageService: This is injected via constructor injection so that we can tap our reactive image handling code we just wrote.



With this in place, we can code the handler for displaying a single image on the web page like this:

    @GetMapping(value = BASE_PATH + "/" + FILENAME + "/raw", 
     produces = MediaType.IMAGE_JPEG_VALUE) 
    @ResponseBody 
    public Mono<ResponseEntity<?>> oneRawImage( 
      @PathVariable String filename) { 
        return imageService.findOneImage(filename) 
         .map(resource -> { 
           try { 
             return ResponseEntity.ok() 
              .contentLength(resource.contentLength()) 
              .body(new InputStreamResource( 
                resource.getInputStream())); 
           } catch (IOException e) { 
               return ResponseEntity.badRequest() 
                .body("Couldn't find " + filename + 
                 " => " + e.getMessage()); 
           } 
        }); 
    } 

The last code can be explained as follows:


	@GetMapping defines a route mapping for GET BASE_PATH + "/" + FILENAME + "/raw". It also sets the Content-Type header to properly render it as an image.

	@ResponseBody indicates that this method's response will be written directly into the HTTP response body.

	@PathVariable flags that the input filename will be extracted from the route's {filename} attribute.

	Mono<ResponseEntity<?>> shows that we are returning a single response, reactively. ResponseEntity<?> describes a generic HTTP response.

	The code taps our image service's findOneImage() using filename.



It's possible to have incoming arguments wrapped in Reactor types such as Mono<String>. Since this argument comes from the route and not the request body, there is nothing gained in this situation.


	Since findOneImage returns a Mono<Resource>, we map over it, transforming this Spring Resource into a ResponseEntity including a Content-Length response header as well as the data embedded in the body.

	In the event of an exception, it will return an HTTP Bad Response.



This one controller handler method demonstrates many features provided by Reactive Spring. We see route handling, delegating to a separate service, converting the response into a suitable format for clients, and error handling.

This code also shows it being done reactively. Generating the HTTP OK / HTTP BAD REQUEST response doesn't happen until map() is executed. This is chained to the image service fetching the file from disk. And none of that happens until the client subscribes. In this case, subscribing is handled by the framework when a request comes in.

I thought you said to keep controllers light! That is true. Maybe this looks not so light? To take the ResponseEntity wrapping and move it into the ImageService would be wrong, because that service doesn't know anything about the web layer. This controller's focus is to make the data presentable to web clients, which is exactly what we've coded.

The next controller method we can add to HomeController is the handler for uploading new files, as shown here:

    @PostMapping(value = BASE_PATH) 
    public Mono<String> createFile(@RequestPart(name = "file") 
     Flux<FilePart> files) { 
       return imageService.createImage(files) 
        .then(Mono.just("redirect:/")); 
    } 

The preceding method is described as follows:


	A collection of incoming FilePart objects is represented as a Flux

	The flux of files is handed directly to the image service to be processed

	.then() indicates that once the method is complete, it will then return a redirect:/ directive (wrapped in a Mono), issuing an HTML redirect to /



It's important to remember that we aren't issuing .then() against the flux of files. Instead, the image service hands us back a Mono<Void> that signals when it has completed processing all the files. It is that Mono which we are chaining an additional call to return back the redirect.

The next thing we need to add to our HomeController is the ability to handle requests for deleting images. This is done as follows:

    @DeleteMapping(BASE_PATH + "/" + FILENAME) 
    public Mono<String> deleteFile(@PathVariable String filename) { 
      return imageService.deleteImage(filename) 
       .then(Mono.just("redirect:/")); 
    } 

The previous code can be described like this:


	Using Spring's @DeleteMapping annotation, this method is ready for HTTP DELETE operations

	It's keyed to the same BASE_PATH + "/" + FILENAME pattern

	It taps the image service's deleteImage() method

	It uses then() to wait until the delete is done before returning back a mono-wrapped redirect:/ directive



The last bit to add to our HomeController is the call to serve up a list of images in a template. For that, we need this general GET handler for the root:

    @GetMapping("/") 
    public Mono<String> index(Model model) { 
      model.addAttribute("images", imageService.findAllImages()); 
      return Mono.just("index"); 
    } 

The preceding handler can be described as follows:


	@GetMapping is used to explicitly map the "/" route.

	It accepts a Model object, giving us a place to load data reactively.

	addAttribute() lets us assign the image service's findAllImages() Flux to the template model's images attribute.

	The method returns "index" wrapped in a Mono, ensuring the whole thing is chained together, top to bottom, to kick off when Spring WebFlux subscribes to render the template.



It's important to understand that we don't assign a list of images to the template model's images attribute. We assign a lazy Flux of images, which means that the model won't be populated with real data until Reactive Spring subscribes for the data. Only then will the code actually start fetching image data.

Perhaps, at this stage, you're wondering amidst all the lambdas, Fluxes, Monos, and subscriptions, exactly what is happening from a threading perspective. Project Reactor is concurrency agnostic. It doesn't enforce a certain concurrency model, but leaves you in command instead. Reactor has several schedulers that support a multitude of options. This includes running in the current thread, running in a single worker thread, running on a per-call dedicated thread, an elastic pool of threads, a fixed pool of worker threads tuned for parallel work, and a time-aware scheduler capable of scheduling tasks in the future. Additionally, Reactor allows creating a scheduler out of any ExecutorService. We aren't going to delve into that in this work, but it's definitely something to investigate when you build a real application and want to govern how things scale.



            

            
        
    
        

                            
                    Why use reactive programming?

                
            
            
                
At this stage, you've gotten a good taste of how to whip up a file-handling controller, and hitch it to a service that reads and writes files to disk. But the question that often arises is why do I need to do this reactively?

With imperative programming, the process of taking inputs, building intermediate collections and other steps often leaves us with lots of intermediate states--some of it potentially blocking in bad places.

Using the functional style as we've explored so far moves away from the risk of inefficiently building up this state, and switches to building a stream of data instead. And Reactor's operations let us have one stream feed another in lots of different ways. We can merge streams, filter streams, and transform streams.

When we engage in reactive programming, the level of abstraction moves up a level. We find ourselves focusing on creating tiny functions to perform various operations, and chaining them together. We think more along integration of the items in our streams rather than the lower-level implementation details.

By building up these flows of chained operations, tying inputs to outputs, Reactor is able to do the heavy lifting of invoking code when needed, and requesting/releasing resources as effectively as possible.

Additionally, by having an inherently asynchronous, non-blocking nature, our framework of choice (Reactor) is able to manage talking to the scheduler for us. We can focus on what happens during the flow while the framework handles when it happens.

For yet another metaphor to describe reactive operations chained together, imagine a train with lots of cars. Each car is a different operation to be applied to our data, and we can easily see the order in which things must happen. We can carefully lay out each car with its defined purpose, but nothing moves until the locomotive moves. And then, the whole chain of cars moves as expected. Adding/removing/inserting cars is the nature of building a reactive data flow.

To summarize, reactive programming helps us in the following:


	Avoid inefficient, intermediate state

	Focus on building streams of data

	Gives us ability to merge, filter, and transform streams of data

	Focus on what happens at each step while Reactor decides when





            

            
        
    
        

                            
                    Interacting with a Thymeleaf template

                
            
            
                
Having put Thymeleaf on the classpath, an entire reactive view resolver has already been configured for us. The last step in putting together the web layer for our social media platform is to create the Thymeleaf template itself. We can do that by putting the following content into index.html underneath /src/main/resources/templates:

    <!DOCTYPE html> 
    <html xmlns:th="http://www.thymeleaf.org"> 
    <head> 
      <meta charset="UTF-8" /> 
      <title>Learning Spring Boot: Spring-a-Gram</title> 
      <link rel="stylesheet" href="/main.css" /> 
    </head> 
    <body> 
 
    <h1>Learning Spring Boot - 2nd Edition</h1> 
 
    <div> 
      <table> 
        <thead> 
        <tr> 
            <th>Id</th><th>Name</th><th>Image</th><th></th> 
        </tr> 
        </thead> 
        <tbody> 
        <tr th:each="image : ${images}"> 
            <td th:text="${image.id}" /> 
            <td th:text="${image.name}" /> 
            <td> 
                <a th:href="@{'/images/' + ${image.name} + '/raw'}"> 
                    <img th:src="@{'/images/'+${image.name}+'/raw'}" 
                        class="thumbnail" /> 
                </a> 
            </td> 
            <td> 
                <form th:method="delete" 
                      th:action="@{'/images/' + ${image.name}}"> 
                    <input type="submit" value="Delete" /> 
                </form> 
            </td> 
        </tr> 
        </tbody> 
      </table> 
 
      <form method="post" enctype="multipart/form-data" 
                                        action="/images"> 
        <p><input type="file" name="file" /></p> 
        <p><input type="submit" value="Upload" /></p> 
      </form> 
    </div> 
 
    </body> 
    </html> 

Key parts of the preceding template are described here:


	All of the Thymeleaf directives are tagged with a th prefix, making the entire template HTML compliant

	<tr th:each="image : ${images}" /> is Thymeleaf's for-each directive, where we read images from the template model and iterate over it, forming one table row element per image

	<a th:href="@{'/images/' + ${image.name} + '/raw'}"> shows how to create a link by splicing together strings with the image.name attribute

	The whole thing builds a table with a row for each image, showing ID, name, image, and a delete button

	At the bottom is a single upload form for creating new images



A critical thing to remember is that the name of the template must be index.html, matching our controller's return of Mono.just("index") combined with the default configuration settings of Spring Boot for Thymeleaf.

Spring Boot autoconfigures view resolvers based on the templating solution we pick. Spring Boot supports many including Thymeleaf, Mustache, Groovy Templates, and even Apache FreeMarker. By default, they all come with a conventional location to put templates, in this case, src/main/resources/templates/<template name>.html.

Since we want a bare amount of CSS, we can drop the following into src/main/resources/static/main.css:

    table { 
      border-collapse: collapse; 
    } 
 
    td, th { 
      border: 1px solid #999; 
      padding: 0.5rem; 
      text-align: left; 
    } 
 
    .thumbnail { 
      max-width: 75px; 
      max-height: 75px; 
    } 

Let's tear the preceding small bit of CSS apart:


	The borders of the table are collapsed

	A little spacing is defined for the table entries

	A special class is created to render images with a small thumbnail size



Of course, this is primitive CSS, but our focus is to learn about Spring Boot not CSS3. The important thing to observe here is that Spring Boot will automatically serve up all content underneath src/main/resources/static as web resources. We can put CSS, JavaScript, favicons, and images for our site. Anything that needs to be statically served can be put here, and will be available from the root of the web application's context path.

Throughout this book, we'll add to this web page, enhancing the user experience. But for now, we should have enough to get off the ground.

The only thing remaining is to code a public static void main(); however, we don't have to! The Spring Initializr site has already created one for us, which is as follows:

    @SpringBootApplication 
    public class LearningSpringBootApplication { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootApplication.class, args); 
      } 
 
      @Bean 
      HiddenHttpMethodFilter hiddenHttpMethodFilter() { 
        return new HiddenHttpMethodFilter(); 
      } 
 
    } 

This last code is almost identical to the application class we created in Chapter 1, Quick Start with Java. But there is one difference--we must add a HiddenHttpMethodFilter Spring bean to make the HTTP DELETE methods work properly.

DELETE is not a valid action for an HTML5 FORM, so Thymeleaf creates a hidden input field containing our desired verb while the enclosing form uses an HTML5 POST. This gets transformed by Spring during the web call, resulting in the @DeleteMapping method being properly invoked with no effort on our end.



            

            
        
    
        

                            
                    Illustrating how going from async to sync can be easy, but the opposite is not

                
            
            
                
Invariably, the question comes along--Do I need a synchronous or asynchronous API?

It's important to understand that reactive programming is not very effective unless the entire stack is reactive. Otherwise, we're simply blocking at some point, which causes the backpressure to not achieve much. That's a long-winded way of saying there is little value in making the web layer reactive if the underlying services are not.

However, it is very likely that we may produce a chunk of code that must be tapped by a non-reactive layer, hence, we have to wrap our asynchronous, non-blocking code with the means to block.

Let's explore async-to-sync by creating a BlockingImageService. This service will, basically, leverage the already written ImageService, but not include any of Reactor's Flux or Mono types in its method signatures.

We can start with a class definition as follows:

    public class BlockingImageService { 
 
      private final ImageService imageService; 
 
      public BlockingImageService(ImageService imageService) { 
        this.imageService = imageService; 
      } 

This preceding class definition can be described as follows:


	The class has no annotation, hence, it won't be automatically scanned and activated by Spring Boot. However, it can appear in a configuration class somewhere via a @Bean-annotated method.

	It will contain a constructor injected ImageService.



With this in place, we can look at wrapping the findAllImages() method with blocking semantics, like this:

    public List<Image> findAllImages() { 
      return imageService.findAllImages() 
       .collectList() 
       .block(Duration.ofSeconds(10)); 
    } 

Let's dig into the details of the last code:


	ImageService.findAllImages() has no arguments, and returns a Flux<Image>. The simplest mechanism is collectList(), which transforms it into a Mono<List<Image>>. This means that instead of signaling the arrival of each image, there is one single (Mono) for a list of ALL images.

	To ask for the result, we use block(). Reactor's block() can either wait forever for the next signal, or we can supply it with a timeout limit. In this case, we have selected ten seconds as the longest that we'll wait.



Reactor's block() API is what we do when we want to transform a Mono<T> into just T. It's a simple one-to-one concept. Inside the method, it invokes the reactive streams' subscribe() API, meaning it will cause any chain of operations to take effect.

Flux has no block() because it represents multiple values. Flux does come with blockFirst() and blockLast() if we wanted the first or the last item. But to get the whole collection entails a bigger semantic scope. Hence, the need to collectList() into a Mono followed by blocking for it.

It's usually a good idea to set a timeout limit for any async call to avoid deadlock situations or waiting for a response that may never come.

Fetching a single image is a bit simpler and can be done using the following code:

    public Resource findOneImage(String filename) { 
      return imageService.findOneImage(filename) 
       .block(Duration.ofSeconds(30)); 
    } 

ImageService.findOneImage() has one argument, the filename, but it isn't wrapped with any Reactor types. The return type is Mono<Resource>, so a simple block() is all we need to transform it into a Resource. In this case, we've picked thirty seconds as the maximum time to wait for an answer.

When it comes to uploading new images, that is a little more complicated.

    public void createImage(List<FilePart> files) { 
      imageService.createImage(Flux.fromIterable(files)) 
       .block(Duration.ofMinutes(1)); 
    } 

The last code can be described as follows:


	The image service's input is Flux<FilePart> and the return type is Mono<Void>. This makes things doubly interesting, having to massage both the input and the output.

	The preceding code assumes we are uploading multiple files. To transform it into a Flux, we use Flux.fromIterable(files). If the input had been a single FilePart, we could have used Flux.just(file).

	The return type is void, meaning we don't have to return anything. Simply invoking image service's create() method may seem hunky dory. But remember--nothing happens with Reactor types until we subscribe, so it's critical that we invoke block() even if we aren't going to return it.



We'll leave it as an exercise for the reader to implement a blocking version of deleteImage().



            

            
        
    
        

                            
                    Summary

                
            
            
                
We're off to a good start by building the web layer of our social media platform. We used the Spring Initializr to create a bare bones Reactive Spring application with Gradle support. Then we explored the basics of reactive programming by creating a reactive image handling service and wrapping it with a reactive web layer. And we drafted a Thymeleaf template to show thumbnails, allow deleting of images and uploading of new images.

In the next chapter, we will see how to build a data layer and make it reactive as well.





            

            
        
    
        

                            
                    Reactive Data Access with Spring Boot

                
            
            
                
Very impressed with @springboot so far, 10 mins to get a REST service up and running, now to add MongoDB. No black magic under the covers!

– Graham Rivers-Brown @grahamrb

In the previous chapter, we started putting together the frontend bits of our social media platform using Spring WebFlux. The missing critical ingredient was a data store. Few applications exist that don't touch a database. In fact, data storage is arguably one of the most critical components we encounter with app development. In this chapter, we'll learn how to persist information in a reactive data store (MongoDB), and learn how to interact with it.

In this chapter, we will be doing the following:


	Getting underway with a reactive data store

	Wiring up Spring Data repositories with Spring Boot

	Creating a reactive repository

	Pulling data through a Mono/Flux and chain of operations

	Creating custom finders

	Querying by example

	Querying with MongoOperations

	Logging reactive operations





            

            
        
    
        

                            
                    Getting underway with a reactive data store

                
            
            
                
Since this book is aimed at the cutting edge of Spring Boot 2.0 and its Reactive Streams support, we have to pick something a little more up to date than JPA. The JPA spec doesn't cover reactive programming. Hence, its APIs are not reactive. However, MongoDB has reactive drivers, and will be perfect.

To get going, we need to install the latest version of MongoDB 3.4 (for reactive support).

If you're using macOS X, installing MongoDB is as simple as this:

$ brew install mongodb
==> Installing mongodb
==> Downloading https://homebrew.bintray.com/bottles/mongodb-
3.4.6.el_capitan.bottle.tar.gz
########################################################## 100.0%
==> Pouring mongodb-3.4.6.el_capitan.bottle.tar.gz
==> Summary
/usr/local/Cellar/mongodb/3.4.6: 18 files, 267.5MB
  

With MongoDB installed, we can launch it as a service, like this:

$ brew services start mongodb
==> Successfully started `mongodb` (label: homebrew.mxcl.mongodb)

For other operating systems, check out the download links at https://www.mongodb.com/download-center. For more details about installing MongoDB, visit https://docs.mongodb.com/manual/installation/.

Assuming that we have MongoDB installed and running, we can now delve into writing a little code.

To write any MongoDB code, we need to add Spring Data MongoDB to our classpath. We can do so by updating our build file with the following:

    compile('org.springframework.boot:spring-boot-starter-
     data-mongodb-reactive') 

The preceding, new compile-time dependency pulls in the following:


	Spring Data MongoDB

	MongoDB's core components + Reactive Stream drivers



It's important to point out that both spring-boot-starter-webflux and spring-boot-starter-data-mongodb-reactive transitively bring in Project Reactor. Spring Boot's dependency-management plugin is responsible for ensuring they both pull in the same version.

With all these things on the classpath, Spring Boot will get busy configuring things for us. But first, what is the problem we are trying to solve?



            

            
        
    
        

                            
                    Solving a problem

                
            
            
                
In this day and age, why are we still writing queries like this:

    SELECT * 
    FROM PERSON 
    WHERE FIRST_NAME = %1

That type of query must be thirty years old! The ANSI spec for SQL was released in 1986, and its effects can be seen in countless languages.

So, is it any better to write something more like this:

    SELECT e 
    FROM Employee e 
    WHERE e.firstName = :name 

The last bit of code is JPA (Java Persistence API), based upon the open source Hibernate project (which has become JPA's reference implementation). Is this Java's improvement over writing pure SQL?

Maybe this fragment below is an enhancement?

    create 
      .select() 
      .from(EMPLOYEE) 
      .where(EMPLOYEE.FIRST_NAME.equal(name)) 
      .fetch() 

That last code snippet is jOOQ, and can help with code completion, but it seems that we are, basically, doing the same thing we've been doing for decades.

Especially, considering that we could do the same thing by merely creating this:

    interface EmployeeRepository 
     extends ReactiveCrudRepository<Employee, Long> { 
 
       Flux<Employee> findByFirstName(Mono<String> name); 
    } 

This preceding declarative interface does the exact same thing, but without writing a single query in any language.

By extending Spring Data's ReactiveCrudRepository, we are granted an out-of-the-box set of CRUD operations (save, findById, findAll, delete, deleteById, count, exists, and more). We also have the ability to add custom finders purely by method signature (findByFirstName in this example).

When Spring Data sees an interface extending its Repository marker interface (which ReactiveCrudRepository does), it creates a concrete implementation. It scans every method, and parses their method signatures. Seeing findBy, it knows to look at the rest of the method name, and start extracting property names based on the domain type (Employee). Because it can see that Employee has firstName, it has enough information to fashion a query. This also tips it off about expected criteria in the arguments (name). Finally, Spring Data looks at the return type to decide what result set to assemble--in this case, a Reactor Flux that we started to explore in the previous chapter. The entire query (not the query results), once assembled, is cached, so, there is no overhead in using the query multiple times.

In a nutshell, by following a very simple convention, there is no need to handwrite a query at all. And while this book is focused on MongoDB and its corresponding Mongo Query Language, this concept applies to SQL, JPA, Cassandra Query Language, or any other supported data store.

Spring Data does not engage in code generation of any code. Code generation has had a flaky history. Instead, it uses various tactics to pick a base class that handles the minimum set of operations while wrapping it with a proxy that implements the declared interface, bringing onboard the dynamic query handler.

This mechanism of managing data is revolutionary, making Spring Data one of the most popular Spring portfolio projects, second only to the Spring Framework itself and Spring Security (and of course Spring Boot).

Wait a second, didn't we just mention using MongoDB earlier?

Yup. That's why Spring Data's query-neutral approach is even better. Changing data stores doesn't require throwing away absolutely everything and starting over. The interface declared previously extends Spring Data Commons, not Spring Data MongoDB. The only data store details are in the domain object itself.

Instead of Employee being some JPA-based entity definition, we can work on a MongoDB document-based one instead, like this:

    @Data 
    @Document(collection="employees") 
    public class Employee { 
      @Id String id; 
      String firstName; 
      String lastName; 
    } 

This preceding MongoDB POJO can be described as follows:


	The @Data Lombok annotation takes care of getters, setters, toString, equals, and hashCode functions.

	@Document is an optional annotation that lets us spell out the MongoDB collection that this domain object will be stored under ("employees").

	@Id is a Spring Data Commons annotation that flags which field is the key. (NOTE: When using Spring Data JPA, the required annotation is javax.persistence.Id, whereas, all other Spring-Data-supported stores utilize org.springframework.data.annotation.Id).



What is Spring Data Commons? It's the parent project for all Spring Data implementations. It defines several concepts implemented by every solution. For example, the concept of parsing finder signatures to put together a query request is defined here. But the bits where this is transformed into a native query is supplied by the data store solution itself. Spring Data Commons also provides various interfaces, allowing us to reduce coupling in our code to the data store, such as ReactiveCrudRepository, and others that we'll soon see.

Nothing else is needed to start writing Employee objects into the employees collection of our MongoDB database.



            

            
        
    
        

                            
                    Wiring up Spring Data repositories with Spring Boot

                
            
            
                
Normally, wiring up a repository requires not only defining a domain object and a repository, but also activating Spring Data. Each data store comes with an annotation to activate it for repository support. In our case, that would be @EnableReactiveMongoRepositories, since we are using MongoDB's reactive drivers.

However, with Spring Boot, we don't have to lift a finger!

Why?

Because the following code, lifted from Spring Boot itself, shows how MongoDB reactive repository support is enabled:

    @Configuration 
    @ConditionalOnClass({ MongoClient.class,
     ReactiveMongoRepository.class }) 
    @ConditionalOnMissingBean({
      ReactiveMongoRepositoryFactoryBean.class, 
       ReactiveMongoRepositoryConfigurationExtension.class }) 
    @ConditionalOnProperty(prefix = "spring.data.mongodb.reactive-
      repositories", name = "enabled",
      havingValue = "true", matchIfMissing = true) 
    @Import(MongoReactiveRepositoriesAutoConfigureRegistrar.class) 
    @AutoConfigureAfter(MongoReactiveDataAutoConfiguration.class) 
    public class MongoReactiveRepositoriesAutoConfiguration { 
 
    } 

The preceding autoconfiguration policy can be described as follows:


	@Configuration: This indicates that this class is a source of bean definitions.

	@ConditionalOnClass: This lists ALL the classes that must be on the classpath for this to kick in--in this case, MongoDB's reactive MongoClient (Reactive Streams version) and ReactiveMongoRepository, which means that it only applies if Reactive MongoDB and Spring Data MongoDB 2.0 are on the classpath.

	@ConditionalOnMissingBean: This indicates that it only applies if there isn't already a ReactiveMongoRepositoryFactoryBean and a ReactiveMongoRepositoryConfigurationExtension bean.

	@ConditionalOnProperty: This means that it requires that the spring.data.mongodb.reactive-repositories property must be set to true for this to apply (which is the default setting if no such property is provided).

	@Import: This delegates all bean creation for reactive repositories to MongoReactiveRepositoriesAutoConfigureRegistrar.

	@AutoConfigureAfter: This ensures that this autoconfiguration policy is only applied after MongoReactiveDataAutoConfiguration has been applied. That way, we can count on certain infrastructure being configured.



When we added spring-boot-starter-data-mongodb-reactive to the classpath, this policy kicked in, and created critical beans for interacting reactively with a MongoDB database.

It's left as an exercise for the reader to pull up MongoReactiveRepositoriesAutoConfigureRegistrar, and see how it works. What's important to note is that nestled at the bottom of that class is the following:

    @EnableReactiveMongoRepositories 
    private static class EnableReactiveMongoRepositoriesConfiguration { 
    } 

This aforementioned little class means that we don't have to enable reactive MongoDB repositories. Spring Boot will do it for us automatically when Reactive MongoDB and Spring Data MongoDB 2.0+ are on the classpath.



            

            
        
    
        

                            
                    Creating a reactive repository

                
            
            
                
So far, we have been dabbling with Spring Data using our sample domain of employees. We need to shift our focus back to the social media platform that we started building in the previous chapter.

Before we can work on a reactive repository, we need to revisit the Image domain object we defined in the last chapter. Let's adjust it so that it works nicely with MongoDB:

    @Data 
    @Document 
    public class Image { 
 
      @Id final private String id; 
      final private String name; 
    } 

This preceding definition is almost identical to what we saw in the previous chapter, with the following differences:


	We use @Document to identify this is a MongoDB domain object, but we accept Spring Data MongoDB's decision about what to name the collection (it's the short name of the class, lowercase, that is, image)

	@Data creates a constructor for all final fields by default, hence, we've marked both id and name as final

	We have also marked both fields private for proper encapsulation



With that in place, we are ready to declare our social media platform's reactive repository as follows:

    public interface ImageRepository 
     extends ReactiveCrudRepository<Image, String> { 
 
      Mono<Image> findByName(String name); 
    } 

This code for the reactive repository can be described as follows:


	Our interface extends ReactiveCrudRepository, which, as stated before, comes with a prepackaged set of reactive operations including save, findById, exists, findAll, count, delete, and deleteAll, all supporting Reactor types

	It includes a custom finder named findByName that matches on Image.name based on parsing the name of the method (not the input argument)



Each of the operations inherited from ReactiveCrudRepository accepts direct arguments or a Reactor-friendly variant. This means, we can invoke either save(Image) or saveAll(Publisher<Image>). Since Mono and Flux both implement Publisher, saveAll() can be used to store either.

ReactiveCrudRepository has ALL of its methods returning either a Mono or a Flux based on the situation. Some, like delete, simply return Mono<Void>, meaning, there is no data to return, but we need the operation's handle in order to issue the Reactive Streams' subscribe call. findById returns a Mono<Image>, because there can be only one. And findAll returns a Flux<Image>.

Before we can get our feet wet in using this reactive repository, we need to preload our MongoDB data store. For such operations, it's recommended to actually use the blocking API. That's because when launching an application, there is a certain risk of a thread lock issue when both the web container as well as our hand-written loader are starting up. Since Spring Boot also creates a MongoOperations object, we can simply grab hold of that, as follows:

    @Component 
    public class InitDatabase { 
      @Bean 
      CommandLineRunner init(MongoOperations operations) { 
        return args -> { 
          operations.dropCollection(Image.class); 
 
          operations.insert(new Image("1", 
           "learning-spring-boot-cover.jpg")); 
          operations.insert(new Image("2", 
           "learning-spring-boot-2nd-edition-cover.jpg")); 
          operations.insert(new Image("3", 
           "bazinga.png")); 
 
          operations.findAll(Image.class).forEach(image -> { 
            System.out.println(image.toString()); 
          }); 
        }; 
      } 
    } 

The preceding code is detailed as follows:


	@Component ensures that this class will be picked up automatically by Spring Boot, and scanned for bean definitions.

	@Bean marks the init method as a bean definition requiring a MongoOperations. In turn, it returns a Spring Boot CommandLineRunner, of which all are run after the application context is fully formed (though in no particular order).

	When invoked, the command-line runner will use MongoOperations, and request that all entries be deleted (dropCollection). Then it will insert three new Image records. Finally, it will fetch with (findAll) and iterate over them, printing each out.



With sample data loaded, let's hook things into our reactive ImageService in the next section.



            

            
        
    
        

                            
                    Pulling data through a Mono/Flux and chain of operations

                
            
            
                
We have wired up a repository to interface with MongoDB through Spring Data. Now we can start hooking it into our ImageService.

The first thing we need to do is inject our repository into the service, like this:

    @Service 
    public class ImageService { 
      ... 
      private final ResourceLoader resourceLoader; 
 
      private final ImageRepository imageRepository; 
 
      public ImageService(ResourceLoader resourceLoader, 
       ImageRepository imageRepository) { 
         this.resourceLoader = resourceLoader; 
         this.imageRepository = imageRepository; 
      } 
      ... 
    } 

In the previous chapter, we loaded Spring's ResourceLoader. In this chapter, we are adding ImageRepository to our constructor.

Previously, we looked up the names of the existing uploaded files, and constructed a Flux of Image objects. That required coming up with a contrived id value.

Now that we have a real data store, we can simply fetch them all, and return them to the client, like this:

    public Flux<Image> findAllImages() { 
      return imageRepository.findAll(); 
    } 

In this last bit of code, we leverage imageRepository to do all the work with its findAll() method. Remember--findAll was defined inside ReactiveCrudRepository. We didn't have to write it ourselves. And since it already gives us a Flux<Image>, there is no need to do anything else.

It's good to remember that the Flux of images being returned is lazy. That means that only the number of images requested by the client is pulled from the database into memory and through the rest of the system at any given time. In essence, the client can ask for one or as many as possible, and the database, thanks to reactive drivers, will comply.

Let's move on to something a little more complex--storing a Flux of images as follows:

    public Mono<Void> createImage(Flux<FilePart> files) { 
      return files 
       .flatMap(file -> { 
         Mono<Image> saveDatabaseImage = imageRepository.save( 
           new Image( 
             UUID.randomUUID().toString(), 
              file.filename())); 
 
             Mono<Void> copyFile = Mono.just( 
               Paths.get(UPLOAD_ROOT, file.filename()) 
                .toFile()) 
                .log("createImage-picktarget") 
                .map(destFile -> { 
                  try { 
                    destFile.createNewFile(); 
                    return destFile; 
                  } catch (IOException e) { 
                      throw new RuntimeException(e); 
                  } 
                }) 
                .log("createImage-newfile") 
                .flatMap(file::transferTo) 
                .log("createImage-copy"); 
 
            return Mono.when(saveDatabaseImage, copyFile); 
       }) 
       .then(); 
    } 

The preceding code can be described as follows:


	With a Flux of multipart files, flatMap each one into two independent actions: saving the image and copying the file to the server.

	Using imageRepository, put together a Mono that stores the image in MongoDB, using UUID to create a unique key and the filename.

	Using FilePart, WebFlux's reactive multipart API, build another Mono that copies the file to the server.

	To ensure both of these operations are completed, join them together using Mono.when(). This means that each file won't be completed until the record is written to MongoDB and the file is copied to the server.

	The entire flow is terminated with then() so we can signal when all the files have been processed.



Ever worked with promises? They are quite popular in the JavaScript world. Project Reactor's Mono.when() is akin to the A+ Promise spec's promise.all() API, that waits until all sub-promises are completed before moving forward. Project Reactor can be thought of as promises on steroids with many more operations available. In this case, by stringing several operations together using then(), you can avoid callback hell while ensuring the flow of how things unfold.

On a fundamental level, we need creating an image to involve two things--copying the file's contents to the server, and writing a record of it in MongoDB. That is on par with what we've declared in the code by using Mono.when() to combine two separate actions.

imageRepository.save() is already a reactive operation, so we can capture it straight up as a Mono. Because MultipartFile is, inherently, tied to the blocking servlet paradigm, WebFlux has a new interface, FilePart, meant to handle file uploads reactively. Its transferTo() API returns a Mono<Void> letting us signal when to carry out the transfer.

Is this a transaction? Certainly not an ACID-style one (Atomic, Consistent, Isolated, Durable) traditionally found with relational data stores. Those types of transactions have a long history of not scaling well. When more clients try to alter the same rows of data, traditional transactions block with increasing frequency. And blocking in, and of itself, is not congruent with reactive programming.

However, semantically, perhaps we are engaged in a transaction. After all, we are saying that both of these actions must complete from a Reactive Streams perspective before the given FilePart is considered to be processed in the middle of the Flux. Given the long history of assumptions made regarding transactions, it might be best to leave that term behind, and refer to this as a reactive promise.

While it's possible to inline both the saveDatabaseImage operation and the copyFile operation inside the Mono.when(), they were pulled out as separate variables for readability. The more flows you write, the more you may be tempted to streamline things in a single, chained statement. If you're feeling lucky, go for it!

When it comes to order of processing, which goes first? Saving the document in MongoDB, or storing the file on the server? It's actually not specified in the API. All that is declared is that both of these operations must be completed to move on, and Reactor guarantees that if any asynchronous threading is being used, the framework will handle any and all coordination.

This is why Mono.when() is the perfect construct when two or more tasks need to be completed, and the order doesn't matter. The first time the code is run, perhaps, MongoDB is able to store the record first. It's quite possible that the next time this code is exercised, MongoDB may be slightly delayed due to external factors such as responding to another operation, hence allowing the file to be copied first. And the time after that, other factors may cause the order to swap. But the key point of this construct is to ensure that we use resources with maximum efficiency while still having a consistent result--both are completed before moving on.

Notice how we used flatMap to turn each file into a promise to both copy the file and save a MongoDB record? flatMap is kind of like map and then, but on steroids. map has a signature of map(T → V) : V, while flatMap has flatMap(T → Publisher<V>) : V, meaning, it can unwrap the Mono and produce the contained value. If you're writing a reactive flow that isn't clicking, check if one of your map or then calls needs to be replaced with a flatMap.

If we wanted a certain order to happen, the best construct would be Mono.then(). We can chain multiple then calls together, ensuring that a certain uniform state is achieved at each step before moving forward.

Let's wrap up this section by making adjustments to deleteImage as follows:

    public Mono<Void> deleteImage(String filename) { 
      Mono<Void> deleteDatabaseImage = imageRepository 
       .findByName(filename) 
       .flatMap(imageRepository::delete); 
 
      Mono<Void> deleteFile = Mono.fromRunnable(() -> { 
        try { 
          Files.deleteIfExists( 
            Paths.get(UPLOAD_ROOT, filename)); 
        } catch (IOException e) { 
            throw new RuntimeException(e); 
        } 
      }); 
 
      return Mono.when(deleteDatabaseImage, deleteFile) 
       .then(); 
    } 

The previous code can be explained as follows:


	First we create a Mono to delete the MongoDB image record. It uses imageRepository to first findByName, and then it uses a Java 8 method handle to invoke imageRepository.delete.

	Next, we create a Mono using Mono.fromRunnable to delete the file using Files.deleteIfExists. This delays deletion until Mono is invoked.

	To have both of these operations completed together, we join them with Mono.when().

	Since we're not interested in the results, we append a then(), which will be completed when the combined Mono is done.



We repeat the same coding pattern as createImage() where we collect operations into multiple Mono definitions, and wrap them with a Mono.when(). This is the promise pattern, and when coding reactively, we'll use it often.

Traditionally, Runnable objects are started in some multithreaded fashion, and are meant to run in the background. In this situation, Reactor is in full control of how it gets started through the use of its scheduler. Reactor is also able to ensure that the reactive streams complete signal is issued when the Runnable object is done with its work.

At the end of the day, that is the whole point of these various operations from Project Reactor. We declare the desired state, and offload all the work scheduling and thread management to the framework. We use a toolkit that is designed from the ground up to support asynchronous, non-blocking operations for maximum resource usage. This gives us a consistent, cohesive way to define expected results while getting maximum efficiency.



            

            
        
    
        

                            
                    Creating custom finders

                
            
            
                
With Spring Data repositories, we are able to create queries to suit any situation. Earlier in this chapter, we saw findByName, which merely queries based on the domain object's name attribute.

The following table shows a more comprehensive collection of finders we can write with Spring Data MongoDB. To illustrate the breadth of these keywords, it presumes a domain model bigger than the Image class we defined earlier:




	
Finder Method


	
Description





	
findByLastName(...​)


	
Query based on lastName





	
findByFirstNameAndLastName(...​)


	
Query based on firstName and lastName





	
findByFirstNameAndManagerLastName(...​)


	
Query based on firstName and by a related manager's lastName





	
findTop10ByFirstName(...​) or findFirst10ByFirstName(...​)


	
Query based on firstName, but only return the first ten entries





	
findByFirstNameIgnoreCase(...​)


	
Query by firstName, but ignore the case of the text





	
findByFirstNameAndLastNameAllIgnoreCase(...​)


	
Query by firstName and lastName, but ignore the case of the text in ALL fields





	
findByFirstNameOrderByLastNameAsc(...​)


	
Query by firstName, but order the results based on lastName in ascending order (or use Desc for descending order)





	
findByBirthdateAfter(Date date)


	
Query based on birthdate being after the date





	
findByAgeGreaterThan(int age)


	
Query based on age attribute being greater than age parameter.





	
findByAgeGreaterThanEqual(int age)


	
Query based on age attribute being greater than or equal to age parameter.





	
findByBirthdateBefore(Date date)


	
Query based on birthdate being before the date





	
findByAgeLessThan(int age)


	
Query based on age attribute being less than age parameter.





	
findByAgeLessThanEqual(int age)


	
Query based on age attribute being less than or equal to age parameter.





	
findByAgeBetween(int from, int to)


	
Query based on age being between from and to





	
findByAgeIn(Collection ages)


	
Query based on age being found in the supplied collection





	
findByAgeNotIn(Collection ages)


	
Query based on age NOT being found in the supplied collection





	
findByFirstNameNotNull() or findByFirstNameIsNotNull()


	
Query based on firstName not being null





	
findByFirstNameNull() or findByFirstNameIsNull()


	
Query based on firstName being null





	
findByFirstNameLike(String f) or findByFirstNameStartingWith(String f) or findByFirstNameEndingWith(String f)


	
Query based on input being a regular expression





	
findByFirstNameNotLike(String f) or findByFirstNameIsNotLike(String f)


	
Query based on input being a regex, with a MongoDB $not applied





	
findByFirstnameContaining(String f)


	
For a string input, query just like Like; for a collection, query testing membership in the collection





	
findByFirstnameNotContaining(String f)


	
For a string input, query like like NotLike; for a collection, query testing lack of membership in the collection





	
findByFirstnameRegex(String pattern)


	
Query using pattern as a regular expression





	
findByLocationNear(Point p)


	
Query by geospatial relation using MongoDB's $near





	
findByLocationNear(Point p, Distance max)


	
Query by geospatial relation using MongoDB's $near and $maxDistance





	
findByLocationNear(Point p, Distance min, Distance max)


	
Query by geospatial relation using MongoDB's $near, $minDistance, and $maxDistance





	
findByLocationWithin(Circle c)


	
Query by geospatial relation using MongoDB's $geoWithin, $circle, and distance





	
findByLocationWithin(Box b)


	
Query by geospatial relation using MongoDB's $geoWithin, $box, and square coordinates





	
findByActiveIsTrue()


	
Query by active being true





	
findByActiveIsFalse()


	
Query by active being false





	
findByLocationExists(boolean e)


	
Query by location having the same Boolean value as the input







All of these aforementioned keywords can also be used to construct deleteBy methods.

Many of these operators also work with other supported data stores including JPA, Apache Cassandra, Apache Geode, and GemFire to name a few. However, be sure to check the specific reference guide.

While the previous table shows all the keywords supported for MongoDB repository queries, the following list shows the various supported return types:


	Image (or Java primitive types)

	Iterable<Image>

	Iterator<Image>

	Collection<Image>

	List<Image>

	Optional<Image> (Java 8 or Guava)

	Option<Image> (Scala or Vavr)

	Stream<Image>

	Future<Image>


	CompletableFuture<Image>

	ListenableFuture<Image>

	@Async Future<Image>

	@Async CompletableFuture<Image>

	@Async ListenableFuture<Image>

	Slice<Image>

	Page<Image>

	GeoResult<Image>

	GeoResults<Image>

	GeoPage<Image>

	Mono<Image>

	Flux<Image>



Spring Data blocking APIs support void return types as well. In Reactor-based programming, the equivalent is Mono<Void>, because the caller needs the ability to invoke subscribe().

In a nutshell, just about every container type is covered by Spring Data, which means that we can pick the right solution to suit our needs. Since this book's focus is reactive programming, we'll stick with Mono and Flux, considering they encapsulate asynchronous + non-blocking + lazy, without impacting the client, and regardless of quantity.



            

            
        
    
        

                            
                    Querying by example

                
            
            
                
So far, we've built up several reactive queries using property navigation. And we've updated ImageService to reactively transform our queried results into operations needed to support our social media platform.

But something that may not be apparent in the design of our data API is the fact that our method signatures are tied to the properties directly. This means that if a domain field changes, we would have to update the queries, or they will break.

There are other issues we might run into, such as offering the ability to put a filter on our web page, and letting the user fetch a subset of images based on their needs.

What if we had a system that listed information about employees. If we imagined writing a finder that lets a user enter firstName, lastName, and age range, it would probably look like this:

    interface PersonRepository 
     extends ReactiveCrudRepository<Person, Long> { 
 
       List<Person> findByFirstNameAndLastNameAndAgeBetween( 
         String firstName, String lastName, int from, int to); 
    } 

Yikes! That's ugly. (Even worse, imagine making all the strings case insensitive!)

All of these things lead us toward an alternative Spring Data solution--Query by Example.

Query by Example, simply stated, has us assemble a domain object with the criteria provided, and submit them to a query. Let's look at an example. Assume we were storing Employee records like this:

    @Data 
    @Document 
    public class Employee { 
 
      @Id private String id; 
      private String firstName; 
      private String lastName; 
      private String role; 
    } 

This preceding example is a very simple domain object, and can be explained as follows:


	Lombok's @Data annotation provides getters, setters, equals, hashCode, and toString methods

	Spring Data MongoDB's @Document annotation indicates this POJO is a target for storage in MongoDB

	Spring Data Commons' @Id annotation indicates that the id field is the identifier

	The rest of the fields are simple strings



Next, we need to define a repository as we did earlier, but we must also mix in another interface that gives us a standard complement of Query by Example operations. We can do that with the following definition:

    public interface EmployeeRepository extends 
     ReactiveCrudRepository<Employee, String>, 
     ReactiveQueryByExampleExecutor<Employee> { 
 
    } 

This last repository definition can be explained as follows:


	It's an interface declaration, meaning, we don't write any implementation code

	ReactiveCrudRepository provides the standard CRUD operations with reactive options (Mono and Flux return types, and more)

	ReactiveQueryByExampleExecutor is a mix-in interface that introduces the Query by Example operations which we'll poke at shortly



Once again, with just a domain object and a Spring Data repository defined, we have all the tools to go forth and query MongoDB!

First things first, we should again use blocking MongoOperations to preload some data like this:

    mongoOperations.dropCollection(Employee.class); 
 
    Employee e1 = new Employee(); 
    e1.setId(UUID.randomUUID().toString()); 
    e1.setFirstName("Bilbo"); 
    e1.setLastName("Baggins"); 
    e1.setRole("burglar"); 
 
    mongoOperations.insert(e1); 
 
    Employee e2 = new Employee(); 
    e2.setId(UUID.randomUUID().toString()); 
    e2.setFirstName("Frodo"); 
    e2.setLastName("Baggins"); 
    e2.setRole("ring bearer"); 
 
    mongoOperations.insert(e2); 

The preceding setup can be described as follows:


	Start by using dropCollection to clean things out

	Next, create a new Employee, and insert it into MongoDB

	Create a second Employee and insert it as well



Only use MongoOperations to preload test data. Do NOT use it for production code, or your efforts at building reactive apps will be for nothing.

With our data preloaded, let's take a closer look at that ReactiveQueryByExampleExecutor interface used to define our repository (provided by Spring Data Commons). Digging in, we can find a couple of key query signatures like this:

    <S extends T> Mono<S> findOne(Example<S> example); 
    <S extends T> Flux<S> findAll(Example<S> example); 

Neither of these aforementioned methods have any properties whatsoever in their names compared to finders like findByLastName. The big difference is the usage of Example as an argument. Example is a container provided by Spring Data Commons to define the parameters of a query.

What does such an Example object look like? Let's construct one right now!

    Employee e = new Employee(); 
    e.setFirstName("Bilbo"); 
    Example<Employee> example = Example.of(e); 

This construction of an Example is described as follows:


	We create an Employee probe named e

	We set the probe's firstName to Bilbo

	Then we leverage the Example.of static helper to turn the probe into an Example



In this example, the probe is hard coded, but in production, the value would be pulled from the request whether it was part of a REST route, the body of a web request, or somewhere else.

Before we actually use the Example to conduct a query, it pays to understand what an Example object is. Simply put, an Example consists of a probe and a matcher. The probe is the POJO object containing all the values we wish to use as criteria. The matcher is an ExampleMatcher that governs how the probe is used. We'll see different types of matching in the following various usages.

Proceeding with our Example in hand, we can now solicit a response from the repository as follows:

    Mono<Employee> singleEmployee = repository.findOne(example); 

We no longer have to put firstName in the query's method signature. Instead, it has become a parameter fed to the query through the Example input.

Examples, by default, only query against non-null fields. That's a fancy way of saying that only the fields populated in the probe are considered. Also, the values supplied must match the stored records exactly. This is the default matcher used in the Example objects.

Since an exact match isn't always what's needed, let's see how we can adjust things, and come up with a different match criteria, as shown in this code:

    Employee e = new Employee(); 
    e.setLastName("baggins"); // Lowercase lastName 
 
    ExampleMatcher matcher = ExampleMatcher.matching() 
     .withIgnoreCase() 
     .withMatcher("lastName", startsWith()) 
     .withIncludeNullValues(); 
 
    Example<Employee> example = Example.of(e, matcher); 

This preceding example can be described as follows:


	We create another Employee probe

	We deliberately set the lastName value as lowercase

	Then we create a custom ExampleMatcher using matching()

	withIgnoreCase says to ignore the case of the values being checked

	withMatcher lets us indicate that a given document's lastName starts with the probe's value

	withIncludeNullValues will also match any entries that have nulled-out values

	Finally, we create an Example using our probe, but with this custom matcher



With this highly customized example, we can query for ALL employees matching these criteria:

    Flux<Employee> multipleEmployees = repository.findAll(example); 

This last code simply uses the findAll query, that returns a Flux using the same example criteria.

Remember how we briefly mentioned that Query by Example can lend itself to a form on a web page where various fields are filled out? Based on the fields, the user can decide what to fetch. Notice how we used withIgnoreCase? By default, that flag flips to true, but it's possible to feed it a Boolean. It means we can put a checkbox on the web page allowing the user to decide whether or not to ignore case in their search.

Simple or complex, Query by Example provides flexible options to query for results. And using Reactor types, we can get just about anything we need with the two queries provided: findOne or findAll.



            

            
        
    
        

                            
                    Querying with MongoOperations

                
            
            
                
So far, we have delved into the repository solution using both query by property and Query by Example. There is another angle we can use, MongoTemplate.

MongoTemplate mimics the Spring Framework's JdbcTemplate, the first data access mechanism implemented by Spring. JdbcTemplate allows us to focus on writing queries while delegating connection management and error handling to the framework.

MongoTemplate brings the same power to bear on crafting MongoDB operations. It's very powerful, but there is a critical tradeoff. All code written using MongoTemplate is MongoDB-specific. Porting solutions to another data store is very difficult. Hence, it's not recommended as the first solution, but as a tool to keep in our back pocket for critical operations that require highly tuned MongoDB statements.

To perform reactive MongoTemplate operations, there is a corresponding ReactiveMongoTemplate that supports Reactor types. The recommended way to interact with ReactiveMongoTemplate is through its interface, ReactiveMongoOperations.

The tool that actually conducts MongoDB repository operations under the hood is, in fact, a MongoTemplate (or a ReactiveMongoTemplate depending on the nature of the repository).

Additionally, Spring Boot will automatically scan the classpath, and if it spots Spring Data MongoDB 2.0 on the classpath along with MongoDB itself, it will create a ReactiveMongoTemplate. We can simply request a copy autowired into our class, whether by constructor injection or field injection, as follows:

    @Autowired 
    ReactiveMongoOperations operations; 

@Autowired in the last code snippet indicates this field will be injected when the class is loaded, and we'll get a copy of the bean that implements ReactiveMongoOperations.

For test cases, field injection is fine. But for actual running components, the Spring team recommends constructor injection, as will be shown throughout this book. For more details about the benefits of constructor injection, read Spring Data lead Oliver Gierke's blog post at http://olivergierke.de/2013/11/why-field-injection-is-evil/.

Using ReactiveMongoOperations along with Query byExample, we can see the previous query rewritten as follows:

    Employee e = new Employee(); 
    e.setFirstName("Bilbo"); 
    Example<Employee> example = Example.of(e); 
 
    Mono<Employee> singleEmployee = operations.findOne( 
      new Query(byExample(example)), Employee.class); 

We can tear apart this latest wrinkle in MongoDB querying as follows:


	The declaration of the probe and its example is the same as shown earlier

	To create a query for one entry, we use findOne from ReactiveMongoOperations

	For the first parameter, we create a new Query, and use the byExample static helper to feed it the example

	For the second parameter, we tell it to return an Employee



Because this is ReactiveMongoOperations, the value is returned wrapped inside a Mono.

A similar tune-up can be made to fetch multiple entries with custom criteria, as follows:

    Employee e = new Employee(); 
    e.setLastName("baggins"); // Lowercase lastName 
 
    ExampleMatcher matcher = ExampleMatcher.matching() 
     .withIgnoreCase() 
     .withMatcher("lastName", startsWith()) 
     .withIncludeNullValues(); 
 
    Example<Employee> example = Example.of(e, matcher); 
 
    Flux<Employee> multipleEmployees = operations.find( 
      new Query(byExample(example)), Employee.class); 

Now let's check out the details of this preceding query:


	The example is the same as the previous findAll query

	This time we use find, which accepts the same parameters as findOne, but returns a Flux



ReactiveMongoOperations and its Query input opens up a world of powerful operations, like this:

    reactiveMongoOperations 
     .findOne( 
       query( 
         where("firstName").is("Frodo")), Employee.class)

Beyond that, there is support for updating documents, finding-then-updating, and upserting, all supporting the rich, native MongoDB operators through a fluent API.

Delving into more MongoDB operations is beyond the scope of this book, but it's within your grasp should the need arise.



            

            
        
    
        

                            
                    Logging reactive operations

                
            
            
                
So far, we have crafted a domain object for MongoDB, defined a reactive repository, and updated our ImageService to use it. If we fire things up, though, how can we see what's happening? Apart from viewing the web page, what can we expect to see in the console logs?

So far, this appears to be the most we get:



We see some log messages about connecting to an instance of MongoDB, but that's it! Not much there to debug things, ehh? Never fear, Spring Boot to the rescue.

Spring Boot comes with extensive logging support. Off the cuff, we can create a logback.xml file, and add it to our configuration in src/main/resources. Spring Boot will read it, and override its default logging policy. That's nice if we want to totally overhaul the log settings.

But often times, we just want to adjust some logging levels for specific packages. Spring Boot grants us a more fine-grained way to alter what gets logged.

Simply add this to src/main/resources/application.properties:

    logging.level.com.greglturnquist=DEBUG 
    logging.level.org.springframework.data=TRACE 
    logging.level.reactor.core=TRACE 
    logging.level.reactor.util=TRACE 

These adjustments can be described as follows:


	logging.level tells Spring Boot to adjust log levels with the name of the package tacked on followed by a level

	The application code, com.greglturnquist, is set to DEBUG

	Spring Data, org.springframework.data, is set to TRACE

	Project Reactor, reactor.core and reactor.util, are set to TRACE



With these adjustments, if we launch our application, this is part of the output we get:



This preceding output shows some MongoDB activity including cluster configuration, connections, and domain analysis. Toward the end, the effects of InitDatabase preloading our data can be seen to some degree, and can be explained as follows:


	Dropped collection [image]: This indicates all the entries being deleted by our dropCollection

	Inserting Document containing fields...​: This indicates entries being saved using our insert



This is definitely an improvement, but something that's missing is the role that Reactor plays in handling all of this. While we've dialed up the log levels for Reactor, nothing has been output.

If we look at ImageService, the question arises, where can we add more logging? In traditional imperative programming, we would, typically, write log.debug("blah blah") at several spots along the way. But in this reactive flow, there are no "stops" to put them.

Project Reactor comes with a declarative log statement we can add along the way. Here is how we can decorate findAllImages:

    public Flux<Image> findAllImages() { 
      return imageRepository.findAll() 
       .log("findAll"); 
    } 

This preceding service operation has but one reactive step, so we can only slip in a single log statement. ImageService.findOneImage has the same story, so no need to show that.

However, createImage has several steps, which are seen in this code:

    public Mono<Void> createImage(Flux<FilePart> files) { 
      return files 
       .log("createImage-files") 
       .flatMap(file -> { 
         Mono<Image> saveDatabaseImage = imageRepository.save( 
           new Image( 
             UUID.randomUUID().toString(), 
             file.filename())) 
             .log("createImage-save"); 
 
         Mono<Void> copyFile = Mono.just( 
           Paths.get(UPLOAD_ROOT, file.filename()) 
           .toFile()) 
           .log("createImage-picktarget") 
           .map(destFile -> { 
             try { 
               destFile.createNewFile(); 
               return destFile; 
             } catch (IOException e) { 
                 throw new RuntimeException(e); 
             } 
           }) 
           .log("createImage-newfile") 
           .flatMap(file::transferTo) 
           .log("createImage-copy"); 
 
           return Mono.when(saveDatabaseImage, copyFile) 
           .log("createImage-when"); 
       }) 
       .log("createImage-flatMap") 
       .then() 
       .log("createImage-done"); 
    } 

This last code is identical to what we had before except that each Reactor operation is tagged with a log statement. And each one has a unique tag appended, so, we can tell exactly what is happening and where.

If we exercise this code from a unit test that uploads two mock multipart files (a test we'll look closer at in the next chapter, Chapter 4, Testing with Spring Boot), we can spot each tag in the console output as follows:



This preceding output shows each of the steps, and how they play together in the reactive streams' dance of subscribe, request, next, and complete. Most notably, the outer operations (files, flatMap, and done) are shown at the top when subscriptions are made. Each file causes a filter operation to occur followed by a save and a copy. And at the bottom, the same outer operations (again files, flatMap, and done) issue a reactive streams complete.

To mark up deleteImage with logs, let's make these changes:

    public Mono<Void> deleteImage(String filename) { 
      Mono<Void> deleteDatabaseImage = imageRepository 
       .findByName(filename) 
       .log("deleteImage-find") 
       .flatMap(imageRepository::delete) 
       .log("deleteImage-record"); 
 
      Mono<Object> deleteFile = Mono.fromRunnable(() -> { 
        try { 
          Files.deleteIfExists( 
            Paths.get(UPLOAD_ROOT, filename)); 
        } catch (IOException e) { 
            throw new RuntimeException(e); 
        } 
      }) 
      .log("deleteImage-file"); 
 
      return Mono.when(deleteDatabaseImage, deleteFile) 
       .log("deleteImage-when") 
       .then() 
       .log("deleteImage-done"); 
    } 

This is the same deleteImage code we wrote earlier, only, we've sprinkled in log statements everywhere to indicate exactly what is happening.

With everything set up, we should be able to test things out. For starters, we can launch the code by either running the LearningSpringBootApplication class's public static void main() method, or we can run it from the command line using Gradle like this:

$ ./gradlew clean bootRun

If we launch the application and navigate to http://localhost:8080, we can see our preloaded images, as seen in this screenshot:



We can click on a single image, and see some comparable log messages like this:

findOneImage : | onSubscribe([Fuseable] Operators.MonoSubscriber)
findOneImage : | request(unbounded)
findOneImage : | onNext(URL [file:upload-dir/learning-spring-boot-
 cover.jpg])
findOneImage : | onComplete()  

This very simple flow illustrates the Reactive Streams pattern. We subscribe for an image. A request is sent--in this case, unbounded (even though we know in advance there is only one result). onNext is the answer, and it's a file-based URL (a Spring Resource) being returned. Then the complete is issued.

This logging is confined to ImageService, which means we don't see it transformed into an HTTP response. If you wish to explore this further, feel free to add extra log statements to HomeController.oneRawImage.

If we click on the Delete button, it deletes the image and refreshes the page, as follows:



After completing the deletion, if we look at the console logs and focus on what happened, we will see something like this:



At the very top, we can see a MongoDB query issued to find the desired image with the findOne using query output. A Mono.when is set up, and then, a Remove using query is issued to delete the record. The actual deletion of the file is logged with little details except the complete signal. The whole thing is wrapped up when we see deleteImage-done issue a complete.

We haven't begun to mark up the HomeController with log messages, but we don't need to at this stage. If you wish to explore that area, feel free to do so. Using these log statements, you can get a real feel for how Reactor arranges tasks, and even spot cases where the order of operations fluctuates at different times. The key thing is we have a real tool for debugging reactive flows.

With this, we have successfully coded a reactive ImageService that both copies files to the server and writes records in MongoDB; and we did it letting Spring Boot autoconfigure all the beans needed to make Spring Data MongoDB work seamlessly with Spring WebFlux and MongoDB.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we wrote several data access operations using a repository-based solution. We explored alternative querying options. Then we showed how to wire that into our controller, and store live data. We wrapped things up by exploring logging options in a functional, reactive nature.

In the next chapter, we will discover all the various ways Spring Boot makes testing super easy, combined with the utilities provided by Project Reactor to test async, non-blocking flows.



            

            
        
    
        

                            
                    Testing with Spring Boot

                
            
            
                
Most innovative contribution to the java ecosystem: spring Boot #jaxlondon

– @JAXenter

If we go back more than 10 years, we would find testing a process mostly conducted by legions of test engineers. But with the rise of JUnit, the adoption of continuous integration (CI) servers, a plethora of test assertion libraries, and integrated test coverage services, we can see widespread adoption of automated testing.

In this chapter, we will see how critical Spring Boot views automated testing by providing multiple levels of support. We shall do the following:


	Write some basic unit tests

	Introduce slice testing

	Embark upon WebFlux testing

	Leverage complete embedded container testing

	Draft some autoconfiguration tests





            

            
        
    
        

                            
                    Test dependencies

                
            
            
                
So far, we have used the Spring Initializr (http://start.spring.io) to create our social media platform. We picked several dependencies and added others along the way. But we haven't investigated test libraries.

It turns out, Spring Boot takes testing so seriously that it's not an option on the website. All projects created automatically have this test-scoped dependency:

    testCompile('org.springframework.boot:spring-boot-starter-test') 

So what's included with that single line?


	JUnit: De-facto standard for testing Java apps

	JSON Path: XPath for JSON

	AssertJ: Fluent assertion library

	Mockito: Java mocking library

	Hamcrest: Library of matcher objects

	JSONassert: Assertion library for JSON

	Spring Test and Spring Boot Test: Test libraries provided by the Spring Framework and Spring Boot



In addition to these various testing libraries being automatically supplied, many optional dependencies are also included. This means that they can be added to our project's list of dependencies without specifying the version. The optional dependencies are listed as follows:


	HTMLUnit: Testing toolkit for HTML outputs

	Selenium: Browser automation for UI testing

	Flapdoodle: Embedded MongoDB database for testing

	H2: Embedded SQL database for testing

	Spring REST Docs: Generates REST documentation using automated tests



Before we dig any deeper, it's important to understand that entire books have been written about testing applications. We'll attempt to get a good cross-section of testing and look at how Spring Boot makes certain types of tests even easier, but don't consider this chapter to be the end-all of what's possible.



            

            
        
    
        

                            
                    Unit testing

                
            
            
                
The smallest scoped tests we can write are referred to as unit tests. In fact, people have been writing tiny tests for years. A common paradigm is to try and test just one class in a given unit test.

To get going, let's test the smallest unit of code we have: our Lombok-enabled Image domain object.

As a reminder, here is what that code looks like:

    @Data 
    @Document 
    public class Image { 
        @Id final private String id; 
        final private String name; 
    } 

This tiny little POJO is flagged with Spring Data MongoDB annotations as well as Lombok's @Data annotation providing getters and setters.

A unit test shouldn't be too hard. We can start by creating ImageTests.java in /src/test/java, and in the same package as the original class (com.greglturnquist.learningspringboot), as follows:

    public class ImageTests { 
      @Test 
      public void imagesManagedByLombokShouldWork() { 
        Image image = new Image("id", "file-name.jpg"); 
        assertThat(image.getId()).isEqualTo("id"); 
        assertThat(image.getName()).isEqualTo("file-name.jpg"); 
      } 
    } 

This preceding unit test can easily be explained, as follows:


	@Test indicates that imagesManagedByLombokShouldWork is a JUnit test case, ensuring it is automatically picked up and run either from our IDE when we choose or from Gradle when we build the system

	The test creates a new Image object

	Then it uses AssertJ's assertThat() method to prove the values are as expected



Let's run it!



As shown in the preceding screenshot, we merely right-click on the class ImageTests, select Run 'ImageTests', and watch for the output (shown next):



Hooray! There is always a little happiness when our automated tests go green.

I know that in print, the color green turns to grey. But we can also see the OK text in the bubble next to the test case, indicating that it passed.

So far, so good. With our first test written, we have gotten off the ground with a test-based approach to things. But testing can get more complicated, quickly.



            

            
        
    
        

                            
                    Slice-based testing

                
            
            
                
Across the industry, many express an interest in testing. Yet, when push comes to shove and we run into tricky situations, it's quite easy to throw up our hands and shout, This is too hard!

Spring Boot aims to help!

JUnit, all by itself, gives us the power to declare tests and assert pass/fail scenarios. But in reality, not everything works straight out of the box. For example, parts of our code will easily come to rely upon Boot autoconfiguring various beans as well as having that powerful property support.

A keen example is the need to do some MongoDB operations. It would be quite handy if we could ask Spring Boot to autoconfigure just enough beans to support MongoDB for our tests but nothing else.

Well, today's our lucky day.

Spring Boot 1.5 introduced slice testing. This is where a subset of Spring Boot's autoconfiguration power can be switched on, while also having full access to its property support. The following list of test annotations each enable a different slice of code:


	@DataMongoTest

	@DataJpaTest

	@JdbcTest

	@JsonTest

	@RestClientTest

	@WebFluxTest

	@WebMvcTest



Each of these annotations enables a different slice of beans to be configured. For example, @DataJpaTest will:


	Enable transactions by applying Spring's @Transactional annotation to the test class

	Enable caching on the test class, defaulting to a NoOp cache instance

	Autoconfigure an embedded test database in place of a real one

	Create a TestEntityManager bean and add it to the application context

	Disable the general Spring Boot autoconfiguration, confining things to the autoconfiguration policies found in spring-boot-test-autoconfigure



All of these annotations require additionally annotating our test class with @RunWith(SpringRunner.class).

An important point to understand is that tests work best when confined to a relatively narrow scope. Hence, using more than one of these @...​Test annotations is not recommended. Instead, break things up into multiple test classes.



            

            
        
    
        

                            
                    Testing with embedded MongoDB

                
            
            
                
The first annotation listed above for slice testing is @DataMongoTest. In this section, we want to write some test methods that involve our MongoDB-specific code.

When it comes to testing MongoDB code, we have the following two options provided by Spring Boot:


	Testing against an embedded MongoDB instance

	Testing against a live MongoDB instance



Spring Boot, by default, will check if Flapdoodle, the embedded MongoDB database, is on the classpath. If so, it will attempt to run the test using it. If Flapdoodle is NOT on our classpath, it will attempt to connect to a real MongoDB instance.

So let's get started by adding flapdoodle to our project's list of dependencies as follows:

    testCompile("de.flapdoodle.embed:de.flapdoodle.embed.mongo") 

Since we are going to test our Reactor-based APIs, we also want to leverage Reactor Test, a library of utilities provided by Project Reactor. Let's add the following test dependency:

    testCompile("io.projectreactor:reactor-test") 

With this last dependency added to our project, we can now start writing EmbeddedImageRepositoryTests.java inside src/test/java, in the com.greglturnquist.learningspringboot package, like this:

    @RunWith(SpringRunner.class) 
    @DataMongoTest 
    public class EmbeddedImageRepositoryTests { 
 
      @Autowired 
      ImageRepository repository; 
 
      @Autowired 
      MongoOperations operations; 

The preceding code for the first part of this test class can be described as follows:


	@RunWith(SpringRunner.java) is needed to ensure that Spring Boot test annotations run properly within JUnit

	@DataMongoTest will disable the general Spring Boot autoconfiguration, and instead, use Spring Boot's test-based autoconfigurations to create a MongoTemplate, a MongoDB connection, MongoDB property settings, a ReactiveMongoTemplate and an embedded MongoDB instance; it will also enable the MongoDB repositories

	With the Spring Data MongoDB repositories enabled, Spring Boot will automatically instantiate an ImageRepository, and inject it into our autowired repository field



In general, it's recommended to use constructor injection for production code. But for test code where constructors are limited due to JUnit, autowiring as we've just done is fine.

With access to a clean MongoDB instance (embedded), we can now perform a little setup work as follows:

    /** 
    * To avoid {@code block()} calls, use blocking 
    * {@link MongoOperations} during setup. 
    */ 
    @Before 
    public void setUp() { 
      operations.dropCollection(Image.class); 
      operations.insert(new Image("1", 
        "learning-spring-boot-cover.jpg")); 
      operations.insert(new Image("2", 
        "learning-spring-boot-2nd-edition-cover.jpg")); 
      operations.insert(new Image("3", 
        "bazinga.png")); 
      operations.findAll(Image.class).forEach(image -> { 
        System.out.println(image.toString()); 
      }); 
    } 

This preceding setup method can be described as follows:


	The @Before flags this method to be run before every single @Test method in this class

	The operations is used to dropCollection and then insert three new entries in the database, turn around and fetch them all, and print them to the console



With things preloaded properly, we can start writing our first test case, as shown next:

    @Test 
    public void findAllShouldWork() { 
      Flux<Image> images = repository.findAll(); 
      StepVerifier.create(images) 
       .recordWith(ArrayList::new) 
       .expectNextCount(3) 
       .consumeRecordedWith(results -> { 
         assertThat(results).hasSize(3); 
         assertThat(results) 
         .extracting(Image::getName) 
         .contains( 
           "learning-spring-boot-cover.jpg", 
           "learning-spring-boot-2nd-edition-cover.jpg", 
           "bazinga.png"); 
         }) 
       .expectComplete() 
       .verify(); 
    } 

This preceding test case can be described as follows:


	@Test indicates this is a test method and the method name describes our overall goal.

	We use Reactor Test's StepVerifier to subscribe to the Flux from the repository and then assert against it.

	Because we want to assert against the whole collection, we need to pipe it through Reactor Test's recordWith method, which fetches the entire Flux and converts it into an ArrayList via a method handle.

	We verify that there were indeed three entries.

	We write a lambda to peek inside the recorded ArrayList. In it, we can use AssertJ to verify the size of ArrayList as well as extract each image's name with Image::getName and verify them.

	Finally, we can verify that Flux emitted a Reactive Streams complete signal, meaning that it finished correctly.



StepVerifier speaks Reactive Streams and will execute all the various signals to talk to the enclosed Publisher. In this case, we interrogated a Flux but this can also be used on a Mono.

To wrap things up, we are going to test our custom finder, findByName, as shown here:

    @Test 
    public void findByNameShouldWork() { 
      Mono<Image> image = repository.findByName("bazinga.png"); 
      StepVerifier.create(image) 
       .expectNextMatches(results -> { 
         assertThat(results.getName()).isEqualTo("bazinga.png"); 
         assertThat(results.getId()).isEqualTo("3"); 
         return true; 
      }); 
    } 

This last test case can be described as follows:


	repository.findByName() is used to fetch one record

	We again use StepVerifier to create a subscriber for our Mono and then expect the next signal to come through, indicating that it was fetched

	Inside the lambda, we perform a couple of AssertJ assertions to verify the state of this Image



Due to the functional nature of StepVerifier, we need to return a Boolean representing pass/fail.

By the way, exactly how many CRUD methods do we need to test? We covered findAll and findByName. In principle, we could sidestep findAll since that can be considered a part of Spring Data MongoDB. But it makes a good example in this book for testing a Reactor Flux result.

In general, we shouldn't bite off testing framework code. But verifying our custom finder makes perfect sense. And there's always room for end-to-end testing, which we'll explore further in this chapter.



            

            
        
    
        

                            
                    Testing with a real MongoDB database

                
            
            
                
Testing against an embedded MongoDB instance is quite handy. But there are times when we need to work with a real instance, and for multiple reasons: security settings, a batch of live data, a customized configuration. Whatever the reason, there is no need for that to derail our testing efforts.

We can write another test class, LiveImageRepositoryTests, and make it look like this:

    @RunWith(SpringRunner.class) 
    @DataMongoTest(excludeAutoConfiguration = 
      EmbeddedMongoAutoConfiguration.class) 
      public class LiveImageRepositoryTests { 
        @Autowired 
        ImageRepository repository;  
        @Autowired 
        MongoOperations operations; 

The details for this preceding live test are as follows:


	@RunWith(SpringRunner.class) is our familiar annotation to integrate Spring with JUnit.

	@DataMongoTest (and the other @...​Test annotations) lets us exclude explicit autoconfiguration classes. To switch off Flapdoodle, all we need to do is exclude EmbeddedMongoAutoConfiguration



The rest of the code in this class is the same as EmbeddedImageRepositoryTests, so there's no need to show it here. (In fact, it would be quite nice if the exact same tests ran on both embedded as well as a live MongoDB instance.)

Let's run our latest batch of both embedded and live MongoDB tests:



All green (along with the OK icon)!

Keeping identical test code in two different classes violates the DRY (Don't Repeat Yourself) principle. If we altered one test class, we should presumably alter the matching test case in the other class. But a new teammate may not be aware of this. It's left as an exercise for the reader to extract an abstract set of test methods to be used by both LiveImageRepositoryTests and EmbeddedImageRepositoryTests.



            

            
        
    
        

                            
                    Testing WebFlux controllers

                
            
            
                
So far, we've looked at unit testing as well as slice testing for MongoDB. These are good for covering services and backend logic. The last part we need to ensure is whether the web controllers are working properly.

Spring Boot comes with automated support to help us pick the exact type of test that we want to run. Let's start with an example:

    @RunWith(SpringRunner.class) 
    @WebFluxTest(controllers = HomeController.class) 
    @Import({ThymeleafAutoConfiguration.class}) 
    public class HomeControllerTests { 
      @Autowired 
      WebTestClient webClient; 
      @MockBean 
      ImageService imageService; 
      ... 
    } 

This preceding beginning of a controller test case can be described as follows:


	@RunWith(SpringRunner.class) ensures all of our Spring Framework and Spring Boot test annotations integrate properly with JUnit.

	@WebFluxTest(controllers = HomeController.class) is another slice of testing which focuses on Spring WebFlux. The default configuration enables all @Controller beans and @RestController beans as well as a mock web environment, but with the rest of the autoconfiguration disabled. However, by using the controllers argument, we have confined this test case to ONLY enable HomeController.

	@Import(...​) specifies what additional bits we want configured outside of any Spring WebFlux controllers. In this case, the Thymeleaf autoconfiguration is needed.

	A WebTestClient bean is autowired into our test case, giving us the means to make mock web calls.

	@MockBean signals that the ImageService collaborator bean needed by our HomeController will be replaced by a mock, which we'll configure shortly.



Even though @WebFluxTest is another slice similar to @DataMongoTest, we broke it out of the previous section, Slice Testing, because WebFlux testing comes with an extensive range of configuration options, which we will explore later in more detail.

Let's look at a test case where we get the base URL /:

    @Test 
    public void baseRouteShouldListAllImages() { 
      // given 
      Image alphaImage = new Image("1", "alpha.png"); 
      Image bravoImage = new Image("2", "bravo.png"); 
      given(imageService.findAllImages()) 
        .willReturn(Flux.just(alphaImage, bravoImage)); 
 
      // when 
      EntityExchangeResult<String> result = webClient 
        .get().uri("/") 
        .exchange() 
        .expectStatus().isOk() 
        .expectBody(String.class).returnResult(); 
 
      // then 
      verify(imageService).findAllImages(); 
      verifyNoMoreInteractions(imageService); 
      assertThat(result.getResponseBody()) 
        .contains( 
          "<title>Learning Spring Boot: Spring-a-Gram</title>") 
        .contains("<a href=\"/images/alpha.png/raw\">") 
        .contains("<a href=\"/images/bravo.png/raw\">"); 
    } 

We can cover the details of this last test case as follows:


	@Test marks this method as a JUnit test case.

	The method name, baseRouteShouldListAllImages, gives us a quick summary of what this method should verify.

	The first three lines mock up the ImageService bean to return a Flux of two images when findAllImages gets called.

	webClient is then used to perform a GET / using its fluent API.

	We verify the HTTP status to be a 200 OK, and extract the body of the result into a string.

	We use Mockito's verify to prove that our ImageService bean's findAllImages was indeed called.

	We use Mockito's verifyNoMoreInteractions to prove that no other calls are made to our mock ImageService.

	Finally, we use AssertJ to inspect some key parts of the HTML page that was rendered.



This test method gives us a pretty good shake out of GET /. We are able to verify that the web page was rendered with the right content. We can also verify that our ImageService bean was called as expected. And both were done without involving a real MongoDB engine and without a fully running web container.

Spring's WebFlux machinery is verified since it still includes the bits that take an incoming request for / and routes it to HomeController.index(), yielding a Thymeleaf-generated HTML page. This way, we know our controller has been wired properly. And oftentimes, this is enough to prove the web call works.

A key scenario to explore is actually fetching a file, mockingly. It's what our app does when requesting a single image. Check out the following test case:

    @Test 
    public void fetchingImageShouldWork() { 
     given(imageService.findOneImage(any())) 
      .willReturn(Mono.just( 
         new ByteArrayResource("data".getBytes()))); 
 
      webClient 
        .get().uri("/images/alpha.png/raw") 
        .exchange() 
        .expectStatus().isOk() 
        .expectBody(String.class).isEqualTo("data"); 
      verify(imageService).findOneImage("alpha.png"); 
      verifyNoMoreInteractions(imageService); 
    } 

This preceding test case can be described as follows:


	@Test flags this method as a JUnit test case.

	The method name, fetchingImageShouldWork, hints that this tests successful file fetching.

	The ImageService.findOneImage method returns a Mono<Resource>, so we need to assemble a mock resource. That can be achieved using Spring's ByteArrayResource, which takes a byte[]. Since all Java strings can be turned into byte arrays, it's a piece of cake to plug it in.

	webClient calls GET /images/alpha.png/raw.

	After the exchange() method, we verify the HTTP status is OK.

	We can even check the data content in the body of the HTTP response given that the bytes can be curried back into a Java string.

	Lastly, we use Mockito's verify to make sure our mock was called once and in no other way.



Since we're coding against a very simple interface, Resource, we don't have to go through any complicated ceremony of staging a fake test file and having it served up. While that's possible, Mockito makes it easy to stand up stubs and mocks. Additionally, Spring's assortment of Resource implementations lets us pick the right one. This reinforces the benefit of coding services against interfaces and not implementations when possible.

The other side of the coin when testing file retrieval is to verify that we properly handle file errors. What if we attempted to fetch an image but for some reason the file on the server was corrupted? Check it out in the following test code:

    @Test  
    public void fetchingNullImageShouldFail() throws IOException { 
      Resource resource = mock(Resource.class); 
      given(resource.getInputStream()) 
        .willThrow(new IOException("Bad file")); 
      given(imageService.findOneImage(any())) 
        .willReturn(Mono.just(resource)); 
 
      webClient 
        .get().uri("/images/alpha.png/raw") 
        .exchange() 
        .expectStatus().isBadRequest() 
        .expectBody(String.class) 
        .isEqualTo("Couldn't find alpha.png => Bad file"); 
 
      verify(imageService).findOneImage("alpha.png"); 
      verifyNoMoreInteractions(imageService); 
    } 

This preceding test of a failure can be described as follows:


	@Test flags this method as a JUnit test case.

	The method name, fetchingNullImageShouldFail, hints that this test is aimed at a failure scenario.

	We need to mock out the file on the server, which is represented as a Spring Resource. That way, we can force it to throw an IOException when getInputStream is invoked.

	That mock is returned when ImageService.findOneImage is called. Notice how we use Mockito's any() to simplify inputs?

	webClient is again used to make the call.

	After the exchange() method is made, we verify that the HTTP status is a 400 Bad Request.

	We also check the response body and ensure it matches the expected body from our controller's exception handler.

	Finally, we use Mockito to verify that our mock ImageService.findOneImage() was called once (and only once!) and that no other calls were made to this mock bean.



This test case shows a critical skill we all need to polish: verifying that the path of failure is handled properly. When a manager asks what if the file isn't there?, we can show them a test case indicating that we have covered it. Say we write a try...catch clause in the our code, like this one in HomeController.oneRawImage():

    return imageService.findOneImage(filename) 
    .map(resource -> { 
      try { 
        return ResponseEntity.ok() 
        .contentLength(resource.contentLength()) 
        .body(new InputStreamResource( 
          resource.getInputStream())); 
      } catch (IOException e) { 
        return ResponseEntity.badRequest() 
        .body("Couldn't find " + filename + 
          " => " + e.getMessage()); 
      } 
    }); 

We should immediately start thinking of two test cases: one test case for the try part when we can find the file and return an OK, and another test case for the catch part when IOException gets thrown and we return a Bad Request.

While it's not hard to think up all the successful scenarios, capturing the failure scenarios and testing them is important. And Mockito makes it quite easy to mock failing behavior. In fact, it's a common pattern to have one mock return another, as we did in this test case.

Mockito makes it easy to mock things left and right. Just keep sight of what you're really trying to test. One can get so caught up in mocking so that all that gets tested are the mocks. We must be sure to verify the actual behavior of the code, or the test will be meaningless.

Another webish behavior that happens all the time is processing a call and then redirecting the client to another web location. This is exactly the behavior when we issue an HTTP DELETE to our site. The URL is expected to carry the resource that must be deleted. Once completed, we need to instruct the browser to go back to the home page.

Check out the following test case:

    @Test 
    public void deleteImageShouldWork() { 
      Image alphaImage = new Image("1", "alpha.png"); 
      given(imageService.deleteImage(any())).willReturn(Mono.empty()); 
 
      webClient 
        .delete().uri("/images/alpha.png") 
        .exchange() 
        .expectStatus().isSeeOther() 
        .expectHeader().valueEquals(HttpHeaders.LOCATION, "/"); 
 
      verify(imageService).deleteImage("alpha.png"); 
      verifyNoMoreInteractions(imageService); 
    } 

We can describe this preceding redirecting web call as follows:


	The @Test flags this method as a JUnit test case.

	We prep our ImageService mock bean to handle a deleteImage by returning Mono.empty(). This is the way to construct a Mono<Void> object, which represents the promise that our service hands us when deletion of the file and its corresponding MongoDB record are both completed.

	webClient performs a DELETE /images/alpha.png.

	After the exchange() is complete, we verify the HTTP status is 303 See Other, the outcome of a Spring WebFlux redirect:/ directive.

	As part of the HTTP redirect, there should also be a Location header containing the new URL, /.

	Finally, we confirm that our ImageService mock bean's deleteImage method was called and nothing else.



This proves that we have properly invoked our service and then followed it up with a redirect back to the home page. It's actually possible to grab that Location header and issue another webClient call, but there is no point in this test case. We have already verified that behavior.

However, imagine that the redirect included some contextual thing like redirect:/?msg=Deleted showing a desire to bounce back to the home page but with extra data to be shown. That would be a great time to issue a second call and prove that this special message was rendered properly.

Now we can run the entire test case and see green bubbles all the way down:



We have used Mockito quite a bit but we aren't going to delve into all its features. For that, I recommend reading Mockito Cookbook written by Spring teammate Marcin Grzejszczak (@MGrzejszczak).



            

            
        
    
        

                            
                    Fully embedded Spring Boot app tests

                
            
            
                
We did some nice testing of the web controller and verified that it behaves properly. But that was just another slice. At some point, it's good to test the whole thing, end-to-end. And with today's modern suite of test tools, it's totally doable.

Spring Boot doesn't always support every tool. For example, Selenium WebDriver, a popular browser automation toolkit, is not yet supported outside of servlets.

No problem! What we really need is for Spring Boot to launch our application, preferably on an unoccupied port, and get out of the way while we do some testing. So let's do just that.

We can start by crafting a new test case like this:

    @RunWith(SpringRunner.class) 
    @SpringBootTest( 
      webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT) 
      public class EndToEndTests { 

This preceding test class can be described as follows:


	@RunWith(SpringRunner.class) ensures the Spring Boot annotations integrate with JUnit.

	@SpringBootTest is the test annotation where we can activate all of Spring Boot in a controlled fashion. With webEnvironment switched from the default setting of a mocked web environment to SpringBootTest.WebEnvironment.RANDOM_PORT, a real embedded version of the app will launch on a random available port.



This configuration will spin up a copy of our application on an open port, with a full-blown autoconfiguration, and all of our CommandLineRunners will run. That means our InitDatabase class that pre-loads MongoDB will kick in.

By the way, Flapdoodle will also run an embedded MongoDB instance because we are in the test scope.

First of all, we need a handful of test objects declared as fields of our test class. These are obtained as follows:

    static ChromeDriverService service; 
    static ChromeDriver driver; 
    @LocalServerPort 
    int port; 

These attributes of EndToEndTests can be described as follows:


	ChromeDriverService: This gives us a handle on the bridge between Selenium and the Chrome handling library

	ChromeDriver: This is an implementation of the WebDriver interface, giving us all the operations to drive a test browser

	@LocalServerPort: This is a Spring Boot annotation that instructs Boot to autowire the port number of the web container into port



To use ChromeDriver, not only do we need the browser Chrome downloaded and installed in its default location, we also need a separate executable: chromedriver. Assuming you have visited https://sites.google.com/a/chromium.org/chromedriver/downloads, downloaded the bundle (macOS in my case), unzipped it, and put the executable in a folder named ext, you can proceed.

With chromedriver installed in ext, we can configure it to start and stop as follows:

    @BeforeClass 
    public static void setUp() throws IOException { 
      System.setProperty("webdriver.chrome.driver", 
        "ext/chromedriver"); 
      service = createDefaultService(); 
      driver = new ChromeDriver(service); 
      Path testResults = Paths.get("build", "test-results"); 
      if (!Files.exists(testResults)) { 
        Files.createDirectory(testResults); 
      } 
    } 
 
    @AfterClass  
    public static void tearDown() { 
      service.stop();  
    } 

This setup/teardown behavior can be described as follows:


	@BeforeClass directs JUnit to run this method before any test method inside this class runs and to only run this method once

	Inside the setUp method, it sets the webdriver.chrome.driver property to the relative path of chromedriver

	Next, it creates a default service

	Then it creates a new ChromeDriver to be used by all the test methods

	Finally, it creates a test directory to capture screenshots (as we'll soon see)

	@AfterClass directs JUnit to run the tearDown method after ALL tests have run in this class

	It commands ChromeDriverService to shut down. Otherwise, the server process will stay up and running



Is this starting to sound a bit convoluted? We'll explore options to simplify this later on in this chapter.

For now, let's focus on writing this test case:

    @Test 
    public void homePageShouldWork() throws IOException { 
      driver.get("http://localhost:" + port); 
 
      takeScreenshot("homePageShouldWork-1"); 
 
      assertThat(driver.getTitle()) 
        .isEqualTo("Learning Spring Boot: Spring-a-Gram"); 
 
      String pageContent = driver.getPageSource(); 
 
      assertThat(pageContent) 
        .contains("<a href=\"/images/bazinga.png/raw\">"); 
      WebElement element = driver.findElement(
          By.cssSelector("a[href*=\"bazinga.png\"]"));
      Actions actions = new Actions(driver);
      actions.moveToElement(element).click().perform();
 
      takeScreenshot("homePageShouldWork-2");
      driver.navigate().back(); 
    } 

This preceding test case can be detailed as follows:


	@Test indicates this is a JUnit test case

	driver navigates to the home page using the injected port

	It takes a screenshot so we can inspect things after the fact

	We verify the title of the page is as expected

	Next, we grab the entire page's HTML content and verify one of the links

	Then we hunt down that link using a W3C CSS selector (there are other options as well), move to it, and click on it

	We grab another snapshot and then click on the back button



This is a pretty basic test. It doesn't do a lot apart from verifying the home page and checking out one link. However, it demonstrates that we can automatically test the entire system. Remember, ​we have the whole system up, including a live MongoDB database (if you count an embedded one as being real). This verifies not only our own code, but our assumptions regarding what gets autoconfigured, autowired, and initialized.

As a culmination of testing nirvana, we can even grab screen snapshots to prove we were here. Or at least that our test case was here. That code is shown here:

    private void takeScreenshot(String name) throws IOException { 
     FileCopyUtils.copy( 
      driver.getScreenshotAs(OutputType.FILE), 
      new File("build/test-results/TEST-" + name + ".png")); 
    } 

Snapping a screenshot can be explained as follows:


	driver.getScreenshotAs(OutputType.FILE) taps the TakesScreenshot subinterface to grab a snapshot of the screen and put it into a temp file

	Spring's FileCopyUtils utility method is used to copy that temp file into the project's build/test-results folder using the input argument to give it a custom name



Taking screenshots is a key reason to use either ChromeDriver, FirefoxDriver, or SafariDriver. All of these real-world browser integrations support this feature. And thanks to that, we have the following snapshot results:



That first shot shows the whole web page. The following screenshot shows a single image after being clicked:



The screenshot of this image may look a little awkward, but remember; these images aren't real JPGs. Instead, they are strings stuffed into the filesystem.

If we run our entire suite of test cases, we can see the whole thing takes just shy of 2.5 seconds:



Impressive, huh?

How good a test suite is that? Using the IDE, we can run the same test suite but with coverage analysis turned on:



After running the same test suite but with the IDE's coverage tools enabled, we can get a read out in the source code listing, as seen in this screenshot:



That's quite handy. We can even drill into each class and see what's missing. As deft as this is, we aren't going to delve any more into test coverage. That's something best left to a more test-oriented book.

Don't let test coverage consume you. As mentioned in my other book, Python Testing Cookbook, in Chapter 9 under the Coverage isn't everything section, the test coverage should be used to identify new, reasonable scenarios that should be checked out, not gaming the system to squeeze out another percentage point or two. And coverage reports should never be used to compare one system or test regimen against another, let alone be used as a gate for release. We should all seek to increase test coverage over time as the means to increase confidence and reduce risk, not as a gate to make releases.

We just mentioned all the ceremony invested into getting Chrome to operate. Why did we do that? Because the one WebDriver implementation that requires no such effort to bring online doesn't support taking screenshots. There is also no way of knowing if the person checking out your code has the same browser installed.

If we coded everything around Chrome because we don't like Firefox but another teammate doesn't have Chrome, we've got a problem.

On one hand, if screenshots aren't important, then HtmlUnitDriver is the way to go. It comes out of the box, works as good as any other WebDriver, and doesn't require any third-party executables or drivers. But that is the penalty of going by the least common denominator.

Wouldn't it be preferable to have whatever WebDriver we can get based on whatever we have installed on our system and automatically load that into our test case? After all, Spring Boot is about reducing Java complexity when building apps.

If you sense a slow walk toward a Spring Boot-oriented solution to this craziness, you're right. In the next section, we'll explore how to autoconfigure a WebDriver based on what's available and then we'll unit test that autoconfiguration policy.



            

            
        
    
        

                            
                    Testing your custom Spring Boot autoconfiguration

                
            
            
                
If picking between several WebDriver implementations sounds hokey and unnecessarily complicated, then let's do what Spring Boot does best: autoconfigure it!

Okay, if we're going to autoconfigure something, we sure as heck want to test what we're doing. That way, we can make sure it performs as expected. To do so requires a little bit of test setup. Check it out:

    public class WebDriverAutoConfigurationTests { 
      private AnnotationConfigApplicationContext context; 
      @After 
      public void close() { 
        if (this.context != null) { 
          this.context.close(); 
        } 
      } 
 
      private void load(Class<?>[] configs, String... environment) { 
        AnnotationConfigApplicationContext applicationContext = 
          new AnnotationConfigApplicationContext(); 
        applicationContext 
          .register(WebDriverAutoConfiguration.class); 
        if (configs.length > 0) { 
          applicationContext.register(configs); 
        } 
        EnvironmentTestUtils 
          .addEnvironment(applicationContext, environment); 
        applicationContext.refresh(); 
        this.context = applicationContext; 
      }

      ...more coming later...
    } 

This preceding test case is set up as follows:


	It starts off very different from what we've seen up until now. Instead of using various Spring Boot test annotations, this one starts with nothing. That way, we can add only the bits of Boot that we want in a very fine-grained fashion.

	We'll use Spring's AnnotationConfigApplicationContext as the DI container of choice to programmatically register beans.

	The @After annotation flags the close() method to run after every test case and close the application context, ensuring the next test case has a clean start.

	load() will be invoked by each test method as part of its setup, accepting a list of Spring configuration classes as well as optional property settings, as it creates a new application context.

	load() then registers a WebDriverAutoConfiguration class (which we haven't written yet).

	After that, it registers any additional test configuration classes we wish.

	It then uses Spring Boot's EnvironmentTestUtils to add any configuration property settings we need to the application context. This is a convenient way to programmatically set properties without mucking around with files or system settings.

	It then uses the application context's refresh() function to create all the beans.

	Lastly, it assigns the application context to the test class's context field.



In this bit of code, we programmatically build up a Spring application context from scratch. In this test class, we register our brand new WebDriverAutoConfiguration class to be at the heart of all of our tests. Then we are free to run all kinds of test cases, ensuring it acts properly. We can even register different configuration classes to override any of the autoconfiguration beans.

Now let's noodle out our first test case. What's a good place to start? What if we were to disable all the browser-based WebDriver instances (like Firefox and Chrome), and instead, expect the thing to fall back to the universal HtmlUnitDriver? Let's try it:

    @Test 
    public void fallbackToNonGuiModeWhenAllBrowsersDisabled() { 
      load(new Class[]{}, 
        "com.greglturnquist.webdriver.firefox.enabled:false", 
        "com.greglturnquist.webdriver.safari.enabled:false", 
        "com.greglturnquist.webdriver.chrome.enabled:false"); 
   
      WebDriver driver = context.getBean(WebDriver.class); 
      assertThat(ClassUtils.isAssignable(TakesScreenshot.class, 
        driver.getClass())).isFalse(); 
      assertThat(ClassUtils.isAssignable(HtmlUnitDriver.class, 
        driver.getClass())).isTrue(); 
    } 

This test case can be explained as follows:


	@Test marks fallbackToNonGuiModeWhenAllBrowsersDisabled as a JUnit test method.

	To start things, it uses the load() method. Since we don't have any custom overrides, we supply it with an empty array of configuration classes. We also include a slew of properties, the first one being com.greglturnquist.webdriver.firefox.enabled:false. From a design perspective, it's nice to optionally exclude certain types, so having a well-qualified property (using a domain we own) and setting them all to false sounds like a good start.

	Now we can ask the application context to give us a WebDriver bean.

	If it bypassed all those browser-specific ones and landed on HtmlUnitDriver, then it shouldn't support the TakesScreenshot interface. We can verify that with the AssertJ assertThat() check, using Spring's ClassUtils.isAssignable check.

	To make it crystal clear that we're getting an HtmlUnitDriver, we can also write another check verifying that.



Since we aren't actually testing the guts of Selenium WebDriver, there is no need to examine the object anymore. We have what we want, an autoconfigured WebDriver that should operate well.

Having captured our first expected set of conditions, it's time to roll up our sleeves and get to work. We'll start by creating WebDriverAutoConfiguration.java as follows:

    @Configuration 
    @ConditionalOnClass(WebDriver.class) 
    @EnableConfigurationProperties( 
      WebDriverConfigurationProperties.class) 
    @Import({ChromeDriverFactory.class, 
      FirefoxDriverFactory.class, SafariDriverFactory.class}) 
    public class WebDriverAutoConfiguration { 
      ... 
    } 

This preceding Spring Boot autoconfiguration class can be described as follows:


	@Configuration: This indicates that this class is a source of beans' definitions. After all, that's what autoconfiguration classes do--create beans.

	@ConditionalOnClass(WebDriver.class): This indicates that this configuration class will only be evaluated by Spring Boot if it detects WebDriver on the classpath, a telltale sign of Selenium WebDriver being part of the project.

	@EnableConfigurationProperties(WebDriverConfigurationProperties.class): This activates a set of properties to support what we put into our test case. We'll soon see how to easily define a set of properties that get the rich support Spring Boot provides of overriding through multiple means.

	@Import(...​): This is used to pull in extra bean definition classes.



This class is now geared up for us to actually define some beans pursuant to creating a WebDriver instance. To get an instance, we can imagine going down a list and trying one such as Firefox. If it fails, move on to the next. If they all fail, resort to using HtmlUnitDriver.

The following class shows this perfectly:

    @Primary 
    @Bean(destroyMethod = "quit") 
    @ConditionalOnMissingBean(WebDriver.class)  
    public WebDriver webDriver( 
      FirefoxDriverFactory firefoxDriverFactory, 
      SafariDriverFactory safariDriverFactory, 
      ChromeDriverFactory chromeDriverFactory) { 
        WebDriver driver = firefoxDriverFactory.getObject(); 
 
        if (driver == null) { 
          driver = safariDriverFactory.getObject(); 
        } 
 
        if (driver == null) { 
          driver = chromeDriverFactory.getObject(); 
        } 
 
        if (driver == null) { 
          driver = new HtmlUnitDriver(); 
        } 
 
        return driver; 
      }

This WebDriver creating code can be described as follows:


	@Primary: This indicates that this method should be given priority when someone is trying to autowire a WebDriver bean over any other method (as we'll soon see).

	@Bean(destroyMethod = "quit"): This flags the method as a Spring bean definition, but with the extra feature of invoking WebDriver.quit() when the application context shuts down.

	@ConditionalOnMissingBean(WebDriver.class): This is a classic Spring Boot technique. It says to skip this method if there is already a defined WebDriver bean. HINT: There should be a test case to verify that Boot backs off properly!

	webDriver(): This expects three input arguments to be supplied by the application context--a FirefoxDriver factory, a SafariDriver factory, and a ChromeDriver factory. What is this for? It allows us to swap out FirefoxDriver with a mock for various test purposes. Since this doesn't affect the end user, this form of indirection is suitable.

	The code starts by invoking firefoxDriver using the FirefoxDriver factory. If null, it will try the next one. It will continue doing so until it reaches the bottom, with HtmlUnitDriver as the last choice. If it got a hit, these if clauses will be skipped and the WebDriver instance returned.



This laundry list of browsers to try out makes it easy to add new ones down the road should we wish to do so. But before we investigate, say firefoxDriver(), let's first look at FirefoxDriverFactory, the input parameter to that method:

    class FirefoxDriverFactory implements ObjectFactory<FirefoxDriver>
    { 
      private WebDriverConfigurationProperties properties; 
 
      FirefoxDriverFactory(WebDriverConfigurationProperties properties)
      { 
        this.properties = properties; 
      } 
 
      @Override 
      public FirefoxDriver getObject() throws BeansException { 
        if (properties.getFirefox().isEnabled()) { 
          try { 
             return new FirefoxDriver(); 
          } catch (WebDriverException e) { 
              e.printStackTrace(); 
             // swallow the exception 
          } 
        } 
        return null; 
      } 
    } 

This preceding driver factory can be described as follows:


	This class implements Spring's ObjectFactory for the type of FirefoxDriver. It provides the means to create the named type.

	With constructor injection, we load a copy of WebDriverConfigurationProperties.

	It implements the single method, getObject(), yielding a new FirefoxDriver.

	If the firefox property is enabled, it attempts to create a FirefoxDriver. If not, it skips the whole thing and returns null.



This factory uses the old trick of try to create the object to see if it exists. If successful, it returns it. If not, it swallows the exception and returns a null. This same tactic is used to implement a SafariDriver bean and a ChromeDriver bean. Since the code is almost identical, it's not shown here.

Why do we need this factory again? Because later in this chapter when we wish to prove it will create such an item, we don't want the test case to require installing Firefox to work properly. Thus, we'll supply a mocked solution. Since this doesn't impact the end user receiving the autoconfigured WebDriver, it's perfectly fine to use such machinery.

Notice how we used properties.getFirefox().isEnabled() to decide whether or not we would try? That was provided by our com.greglturnquist.webdriver.firefox.enabled property setting. To create a set of properties that Spring Boot will let consumers override as needed, we need to create a WebDriverConfigurationProperties class like this:

    @Data 
    @ConfigurationProperties("com.greglturnquist.webdriver") 
    public class WebDriverConfigurationProperties { 
 
      private Firefox firefox = new Firefox(); 
      private Safari safari = new Safari(); 
      private Chrome chrome = new Chrome(); 
 
      @Data 
      static class Firefox { 
        private boolean enabled = true; 
      } 
 
      @Data 
      static class Safari { 
        private boolean enabled = true; 
      } 
 
      @Data 
      static class Chrome { 
        private boolean enabled = true; 
      } 
    } 

This last property-based class can be described as follows:


	@Data is the Lombok annotation that saves us from creating getters and setters.

	@ConfigurationProperties("com.greglturnquist.webdriver") marks this class as a source for property values with com.greglturnquist.webdriver as the prefix.

	Every field (firefox, safari, and chrome) is turned into a separately named property.

	Because we want to nest subproperties, we have Firefox, Safari, and Chrome, each with an enabled Boolean property defaulted to True.

	Each of these subproperty classes again uses Lombok's @Data annotation to simplify their definition.



It's important to point out that the name of the property class, WebDriverConfigurationProperties, and the names of the subclasses such as Firefox are not important. The prefix is set by @ConfigurationProperties, and the individual properties use the field's name to define themselves.

With this class, it's easy to inject this strongly typed POJO into any Spring-managed bean and access the settings.

At this stage, our first test case, fallbackToNonGuiModeWhenAllBrowsersDisabled, should be operational. We can test it out.

Assuming we verified it, we can now code another test, verifying that FirefoxDriver is created under the right circumstances. Let's start by defining our test case. We can start by deliberately disabling the other choices:

    @Test 
    public void testWithMockedFirefox() { 
      load(new Class[]{MockFirefoxConfiguration.class}, 
        "com.greglturnquist.webdriver.safari.enabled:false", 
        "com.greglturnquist.webdriver.chrome.enabled:false"); 
      WebDriver driver = context.getBean(WebDriver.class); 
      assertThat(ClassUtils.isAssignable(TakesScreenshot.class, 
        driver.getClass())).isTrue(); 
      assertThat(ClassUtils.isAssignable(FirefoxDriver.class, 
        driver.getClass())).isTrue(); 
    } 

This preceding test case is easily described as follows:


	@Test marks testWithMockedFirefox as a JUnit test method

	load is used to add MockFirefoxConfiguration, a configuration class we'll soon write to help us mock out the creation of a real FirefoxDriver

	We also disable Chrome and Safari using the property settings

	Fetching a WebDriver from the application context, we verify that it implements the TakesScreenshot interface and is actually a FirefoxDriver class



As one can imagine, this is tricky. We can't assume the developer has the Firefox browser installed. Hence, we can never create a real FirefoxDriver. To make this possible, we need to introduce a little indirection. When Spring encounters multiple bean definition methods, the last one wins. So, by adding another config class, MockFirefoxConfiguration, we can sneak in and change how our default factory works.

The following class shows how to do this:

    @Configuration 
    protected static class MockFirefoxConfiguration { 
      @Bean 
      FirefoxDriverFactory firefoxDriverFactory() { 
        FirefoxDriverFactory factory = 
            mock(FirefoxDriverFactory.class); 
        given(factory.getObject()) 
            .willReturn(mock(FirefoxDriver.class)); 
        return factory; 
      } 
    } 

The previous class can be described as follows:


	@Configuration marks this class as a source of bean definitions.

	@Bean shows that we are creating a FirefoxDriverFactory bean, the same type pulled into the top of our WebDriverAutoConfiguration class via the @Import annotation. This means that this bean definition will overrule the one we saw earlier.

	We use Mockito to create a mock FirefoxDriverFactory.

	We instruct this mock factory to create a mock FirefoxDriver when it's factory method is invoked.

	We return the factory, so it can be used to run the actual test case.



With this code, we are able to verify things work pretty well. There is a slight bit of hand waving. The alternative would be to figure out the means to ensure every browser was installed. Including the executables in our test code for every platform and running them all, may yield a little more confidence. But at what price? It could possibly violate the browser's license. Ensuring that every platform is covered, just for a test case, is a bit extreme. So, all in all, this test case hedges such a risk adequately by avoiding all that extra ceremony.

It's left as an exercise for the reader to explore creating Safari and Chrome factories along with their corresponding test cases.

If we run all the test cases in WebDriverAutoConfigurationTests, what can we hope to find?



Using Spring Boot and Spring Framework test modules along with JUnit and Flapdoodle, we have managed to craft an autoconfiguration policy for Selenium WebDriver with a complete suite of test methods. This makes it possible for us to release our own third-party autoconfiguration module that autoconfigures Selenium WebDriver.

So what have we covered? Unit tests, MongoDB-oriented slice tests, WebFlux-oriented slice tests, full container end-to-end tests, and even autoconfiguration tests.

This is a nice collection of tests that should deliver confidence to any team. And Spring Boot made it quite easy to execute.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we crafted unit tests using JUnit and AssertJ. Then we performed slice-based tests against MongoDB using Spring Boot's @DataMongoTest annotation, with and without embedded MongoDB. We tested WebFlux controllers, ensuring they operated correctly. We also wrote end-to-end tests with Spring Boot spinning up an entire embedded web container so that Selenium WebDriver could drive it from the browser. Finally, we put together an autoconfiguration policy for Selenium WebDriver using test-first practices to verify that it worked.

In the next chapter, we will explore the developer tools provided by Spring Boot to ease the tasks we all must deal with.





            

            
        
    
        

                            
                    Developer Tools for Spring Boot Apps

                
            
            
                
I owe @springboot a lot. #productivity #engineering #sota #minimalist #microservices #performance #quality #bestpractises

– Amir Sedighi @amirsedighi

In the previous chapter, you learned how to use Spring Boot's various testing features. We saw how to craft simple unit tests, slice tests, mock WebFlux tests, and even fully spun-up embedded Netty integration tests.

When we get into the swing of things, anything that can bend the curve of time spent building an app is appreciated. We will explore the various tools Spring Boot brings to the table to help us hack away at our applications.

In this chapter, we will do the following:


	Using Spring Boot's DevTools for hot code reloading and decaching

	Glean what Spring Boot did with its autoconfiguration report

	Make local changes and see them on the target system

	Write a custom health check

	Add build data to the /application/info endpoint

	Create custom metrics





            

            
        
    
        

                            
                    Using Spring Boot's DevTools for hot code reloading

                
            
            
                
Developers are always looking for ways to speed things up. Long ago, one of the biggest speedups was incremental compilers and having them run every time we saved a file. Now that it's permeated modern tools, no one thinks twice about such a feature.

Something critically needed when it comes to building Spring Boot apps is the ability to detect a change in our code and relaunch the embedded container.

Thankfully, we just need one addition to our code we built in the previous chapter:

    compile("org.springframework.boot:spring-boot-devtools") 

If you happen to be using Maven, you would want to include the optional flag.

So, this tiny module performs the following activities:


	Disables cache settings for autoconfigured components

	When it detects a change in code, it restarts the application, holding onto third-party classes and simply throwing away and reloading custom classes

	Activates an embedded LiveReload (http://livereload.com/) server that can trigger the browser to refresh the page automatically



For a listing of all the disabled components, look at the following code snippet:

    properties.put("spring.thymeleaf.cache", "false"); 
    properties.put("spring.freemarker.cache", "false"); 
    properties.put("spring.groovy.template.cache", "false"); 
    properties.put("spring.mustache.cache", "false"); 
    properties.put("server.session.persistent", "true"); 
    properties.put("spring.h2.console.enabled", "true"); 
    properties.put("spring.resources.cache-period", "0"); 
    properties.put("spring.resources.chain.cache", "false"); 
    properties.put("spring.template.provider.cache", "false"); 
    properties.put("spring.mvc.log-resolved-exception", "true"); 
    properties.put("server.servlet.jsp.init-parameters.development",
     "true"); 
    properties.put("spring.reactor.stacktrace-mode.enabled", "true"); 

Many IDEs also come with additional reloading support when apps are run in the debug mode, a highly recommended option to use in conjunction with Spring Boot DevTools.

What is the net benefit, you ask?

When we make a change to our code and either issue a Save or a Make Project, DevTools will throw away the class loader holding our custom code and launch a new application context. This makes for a relatively speedy restart.

Save or Make Project? Spring Boot DevTools listens for file updates. For certain IDEs, such as Eclipse, ⌘-S is used to perform a Save operation. IntelliJ IDEA autosaves, so an alternative signal is Make Project, ⌘-F9, which refreshes the environment.

With the LiveReload server running and a LiveReload plugin (http://livereload.com/extensions/) installed in our browser, we can enable LiveReloading upon visiting the site. Anytime we update the code, the plugin will essentially click the browser's refresh button for us.

Restarting versus reloading: DevTools provides the ability to restart the application quickly, but it is limited in various ways. For example, updating the classpath by adding new dependencies is not picked up. Adding new classes isn't supported. For more sophisticated tools that handle these complex use cases, you may wish to investigate something such as Spring Loaded (https://github.com/spring-projects/spring-loaded) or JRebel (http://zeroturnaround.com/software/jrebel/).

With all these caches cleared out, we can see changes propagate much faster. Let's test it out by launching LearningSpringBootApplication in the debug mode. If we visit the site, things look as expected:



The site starts off with our pre-loaded test data. To have the browser listen for updates, we need to click the LiveReload icon:



At first, the dot in the center is hollow. When enabled, the dot turns solid, as shown in the preceding screenshot.

Let's make some edits to our template:



With this extra sub-header, we just need to hit Save or Make Project in our IDE. Switching to the browser will show the results instantly:



Let's make some tweaks to HomeController as shown here:

    @GetMapping("/") 
    public Mono<String> index(Model model) { 
      model.addAttribute("images", 
        imageService.findAllImages()); 
      model.addAttribute("extra", 
        "DevTools can also detect code changes too"); 
      return Mono.just("index"); 
    } 

This is the same as the previous chapter, except that we have added a new attribute, extra, to the model. We can display it with an adjustment to our template:

    <h4 th:text="${extra}"></h4> 

This displays the new extra model attribute as an H4 header, all without clicking a thing in our browser:



There is one key side effect when using Spring Boot DevTools for restarts-- any in-memory data or state will be lost.

That can be good or bad. It certainly encourages you to create a pre-loader, perhaps with a @Profile("dev") annotation such that it only runs when spring.profiles.active=dev is switched on.

This can become an issue if our use case takes a lot of steps to set up, and restarting the app makes us repeat these steps again and again. This is amplified by in-memory database solutions such as H2. In our situation, the start-up code that cleans out the uploaded files will cause a similar refresh of data.

Another reason to consider NOT switching on LiveReload in the browser (yet let the app restart) is if we are working on a JavaScript-heavy frontend and don't want every change to force a reload. For example, we might have a page with a lot of fields filled out. A triggered restart may clean out our form and force us to re-enter the data.

Nevertheless, this is a good problem to have. Having the option to refresh the browser and stay in sync with code changes is a powerful tool.



            

            
        
    
        

                            
                    Using Spring Boot's autoconfiguration report

                
            
            
                
As we've seen in this book so far, Spring Boot autoconfigures beans to help us avoid configuring infrastructure and instead focus on coding business requirements. However, sometimes, we may want to know what Spring Boot did (or didn't) do for us.

That's why it has an autoconfiguration report. Essentially, every time a bean is selected based on some conditional check, Spring Boot logs the decision (yea or nay) and offers it to us in many different ways.

The simplest approach is to add --debug to the run configuration. In the following screenshot, we can see how to set it in IntelliJ:



If we launch our app with --debug as a program argument, an autoconfiguration report is printed out to the console:



That's nice, and during certain failure scenarios, the report will print out automatically to help with postmortem analysis. However, scraping the console for a report isn't very effective.

If we use Spring Boot Actuator, we can consume this report in a nicer JSON structure. If you'll recall, we included Actuator in our list of dependencies back in Chapter 1, Quick Start with Java:

    compile('org.springframework.boot:spring-boot-starter-actuator')  

If you're building a new application and didn't pick it on http://start.spring.io, this dependency is quite valuable.

In addition to adding Spring Boot's Actuator module, we have to opt in or rather enable its features. In Spring Boot 2.0, Actuator supports many technologies including Spring MVC, Spring WebFlux, and JMX. We have to signal what platforms we wish to enable instead of expecting Spring Boot to guess. To do so, we need to add the following line of code to our application.properties file:

    endpoints.default.web.enabled=true  

This will make Actuator's endpoints active from an HTTP perspective; (to enable Actuator for JMX, we would want to set endpoints.default.jmx.enabled to true).

When we launch our application, several Spring WebFlux endpoints are added, providing additional information. To get a quick glance at all the available endpoints, we can visit http://localhost:8080/application, as shown in the following screenshot:



his screenshot doesn't capture them all, but there is a long list of endpoints serving up detailed information about our application. (By the way, earlier in the book, we enabled just one actuator endpoint, /application/health. This flag lets us switch on all the default endpoints.)

From there, we can easily find the autoconfiguration report at http://localhost:8080/application/autoconfig, click on it, and thanks to JSON Viewer (https://github.com/tulios/json-viewer), see this nicely formatted report:



Okay, so we've seen a couple ways to generate this report. But what does it say?

If we zoom into one fragment, we can figure something out:

    "ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration": [ 
    { 
      "condition": "OnClassCondition", 
      "message": "@ConditionalOnClass found required class 
      'reactor.ipc.netty.http.server.HttpServer'; 
      @ConditionalOnMissingClass did not find unwanted class" 
    }, 
    { 
      "condition": "OnBeanCondition", 
      "message": "@ConditionalOnMissingBean (types: 
        org.springframework.boot.web.reactive
        .server.ReactiveWebServerFactory; SearchStrategy: all) did
         not find any beans" 
    } 
    ] 

This fragment of JSON in the autoconfiguration report can be described as follows:


	ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration is a Spring Boot autoconfiguration policy that was evaluated, specifically on the subject of Netty.

	@ConditionalOnClass matched on spotting Reactor's HttpServer class, glue code used by Reactor to embed the Netty container. This shows that Netty was on the classpath.

	@ConditionalOnMissingBean is the second condition, and was negative, indicating there is no overriding, user-defined ReactiveWebServerFactory defined. Therefore, Spring Boot is activating its default policy for Reactor Netty.



To divine exactly what this autoconfiguration policy was, we can open the code and inspect it ourselves. Using our IDE, we merely need to look for the parent class, ReactiveWebServerConfiguration:

    abstract class ReactiveWebServerConfiguration { 
 
      @ConditionalOnMissingBean(ReactiveWebServerFactory.class) 
      @ConditionalOnClass({ HttpServer.class }) 
      static class ReactorNettyAutoConfiguration { 
 
        @Bean 
        public NettyReactiveWebServerFactory 
         NettyReactiveWebServerFactory() { 
           return new NettyReactiveWebServerFactory(); 
        } 
 
      } 
      ... 
    } 

This fragment from Spring Boot's Reactive web server configuration code can be explained as follows:


	ReactiveWebServerConfiguration is an abstract class that is merely used as a container for other policies

	@ConditionalOnMissingBean(ReactiveWebServerFactory.class) tells Spring Boot to back off and not use this if the user has declared such a bean elsewhere

	@ConditionalOnClass({HttpServer.class}) tells Spring Boot to only consider this if Reactor Netty is on the classpath

	static class ReactorNettyAutoConfiguration names this rule used to autoconfigure Reactor Netty

	@Bean flags the code as a Spring bean

	return new NettyReactiveWebServerFactory() actually creates the Spring bean for Reactor Netty



All this comes together to allow Reactor Netty to be configured automatically when put on the classpath. And we spotted it in the autoconfiguration report.

There are other bean definitions in ReactiveWebServerConfiguration, including support for Jetty, Apache Tomcat, and Undertow, but aren't shown due to space constraints.

What is this good for?

If we are attempting to use some feature of Spring Boot and it's not going as desired, one thing to debug is whether or not the expected beans are being created. Another usage is if we are working on our own autoconfiguration module for a given project and need to see if the right beans are being created.

You see, the autoconfiguration report isn't confined to what is released by the Spring team. It looks at everything.

Speaking of making a change, notice how we have Netty running under the hood. We can tell both from the console output as well as the autoconfiguration report we just looked at.

What if we wanted to change containers? It's quite easy with Spring Boot. We simply have to tweak the build file.

By default, Spring Boot uses Netty for Reactive apps, but it's not hard to switch:

    compile('org.springframework.boot:spring-boot-starter-webflux') { 
      exclude module: 'spring-boot-starter-reactor-netty' 
    } 
    compile('org.springframework.boot:spring-boot-starter-undertow') 

The changes to build.gradle are as follows:


	Excludes spring-boot-starter-reactor-netty from the reactive web dependency

	Introduces spring-boot-starter-undertow as an alternative container



If we relaunch our application and look at the autoconfiguration report again and look for the ReactorNettyAutoConfiguration entry, we will find this:

    "ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration": { 
      "notMatched": [ 
      { 
        "condition": "OnClassCondition", 
        "message": "@ConditionalOnClass did not find required class 
        'reactor.ipc.netty.http.server.HttpServer'" 
      } 
      ], 
      "matched": [ 
 
      ] 
    } 

The new fragment of JSON from the autoconfiguration report shows that the same policy we just looked at has now switched to notMatched. In the details, it failed because @ConditionalOnClass didn't spot HttpServer on the classpath.

In light of switching from Reactor Netty to Undertow, searching for Undertow in the autoconfiguration report will lead us to this:

    "ReactiveWebServerConfiguration.UndertowAutoConfiguration": [ 
    { 
      "condition": "OnClassCondition", 
      "message": "@ConditionalOnClass found required class 
      'io.undertow.Undertow'; @ConditionalOnMissingClass did not
       find unwanted class" 
    }, 
    { 
      "condition": "OnBeanCondition", 
      "message": "@ConditionalOnMissingBean (types: 
       org.springframework.boot.web.reactive.server
       .ReactiveWebServerFactory; SearchStrategy: all) did not 
       find any beans" 
    } 
    ] 

This fragment of JSON reveals that UndertowAutoConfiguration is now in effect as follows:


	@ConditionalOnClass has found Undertow on the classpath

	@ConditionalOnMissingBean has not found a user-defined ReactiveWebServerFactory bean; hence, Spring Boot did not back off with its autoconfiguration of Undertow.



On further digging into UndertowReactiveWebServerFactory, we will find all the details needed to run Undertow for a Reactor-based application.



            

            
        
    
        

                            
                    Making local changes and seeing them on the target system

                
            
            
                
So far, we've seen how to speed up developer time by using automatic restarts, and we have gathered information on what Spring Boot is up to, courtesy of its autoconfiguration report.

The next step for developers is often using the debugger of their IDE. We won't go into profuse detail about that because it's highly specific to which IDE you use. However, something of extended value offered by Spring Boot is the opportunity to remotely connect to an application and make changes.

Imagine we have built up our application and pushed it to the cloud. We test a key feature in this environment because it's the only way to tie it to a particular resource or in a certain configuration. Well, the process for making changes is much more expensive. We would have to bundle things up, redeploy, restart, and re-navigate. All for a few lines of code!

Spring Boot's DevTools provide the means to connect our IDE to our remotely running application and push code changes over the wire, allowing us to automatically make mods and test them immediately.

To get geared up, we must execute the following steps:


	Add spring.devtools.remote.secret=learning-spring-boot to application.properties.

	Build the application using ./gradlew build.

	Push the application to the cloud (Pivotal Web Services in this case with cf push learning-spring-boot -p build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar).




	Instead of running the app locally in our IDE, run Spring Boot's RemoteSpringApplication class instead.

	Add https://learning-spring-boot.cfapps.io (or whatever the app's remote URL is) as a program argument.

	Launch the RemoteSpringApplication configured runner.



The following screenshot shows how to configure it in IntelliJ IDEA:



After it launches, the console in our IDE shows a remote banner:



Now, we are free to make changes in our IDE, Save/Make Project, and watch them propagate to our cloud-based app running at https://learning-spring-boot.cfapps.io.

First of all, let's tweak our template at src/main/resources/templates/index.html. We can add a sub-header below the main header similar to what we did earlier in this chapter:

    <h1>Learning Spring Boot - 2nd Edition</h1> 
 
    <h2>It's really handy to make local edits and watch them go out
     to the cloud automatically</h2> 
 
    <h4 th:text="${extra}"></h4> 

Hitting Save or Make Project, the code change will be uploaded to the cloud and trigger a restart (this is a great opportunity to use the LiveReload server and automatically refresh the page):



With this flow, we can make all sorts of changes. When ready, we can commit them locally, build a newer JAR file, push to the cloud, and continue forward.

It's always recommended to use https:// when connecting to a remote application. It prevents other users from snooping the network for secrets.

Enabling Spring Boot DevTools on a remote application is a risk. The only thing protecting the application from code updates is the simple secret the two share. You should never enable this on a production deployment.



            

            
        
    
        

                            
                    Writing a custom health check

                
            
            
                
Another critical feature needed when we take our application to production is monitoring it. In the olden days, people would set up a CRON job to ping a server and see if it was up. More intricate systems would track disk usage, memory usage, and ideally page someone when the database was at 95%, so it could be saved before falling over.

Spring Boot provides a new era in health check monitoring. To kick things off, launch the application and visit /application/health:

    {
        status: "UP",
        diskSpace: {
            status: "UP",
            total: 498937626624,
            free: 96519303168,
            threshold: 10485760
        },
        mongo: {
            status: "UP",
            version: "3.4.6"
        }
    }  

Out of the box, this provides us with an endpoint we can ping and additionally, gives us some information regarding disk space. It also includes an automatically included MongoDB health check.

But what if we needed to write our own health check? Perhaps, there is a system we are dependent upon. Knowing if this upstream service is unavailable could prove valuable.

To write our own health check, we merely need to write a Spring component that implements Spring Boot's HealthIndicator interface:

    @Component 
    public class LearningSpringBootHealthIndicator 
     implements HealthIndicator { 
 
       @Override 
       public Health health() { 
         try { 
           URL url = 
             new URL("http://greglturnquist.com/books/learning-spring-
              boot"); 
             HttpURLConnection conn = 
               (HttpURLConnection) url.openConnection(); 
             int statusCode = conn.getResponseCode(); 
             if (statusCode >= 200 && statusCode < 300) { 
               return Health.up().build(); 
             } else { 
                 return Health.down() 
                  .withDetail("HTTP Status Code", statusCode) 
                  .build(); 
             } 
         } catch (IOException e) { 
             return Health.down(e).build(); 
         } 
       } 
    } 

Let's dissect this custom health indicator:


	@Component marks this class so that Spring Boot picks it up and registers it automatically.

	By implementing the HealthIndicator interface, Spring Boot will include it along with the pre-built health checks when we hit /application/health.

	The name LearningSpringBootHealthIndicator is used to create the indicator. HealthIndicator will be trimmed off, and the remaining text will be formatted with lazy camel style.

	There is but one method in this interface (meaning you could implement it using a Java 8 lambda), health(). It uses some plain old Java APIs to open a connection to a remote URL and fetch a status code. If the status code is good, it will build a Health status code of UP. Otherwise, it will build a Health status code of DOWN while also giving us the failed HTTP status code.

	Finally, if any other exceptions occur, we will also get a Health status code of DOWN but with the information from the exception instead of a commonly coded error path.



Let's relaunch the application and see what our /application/health endpoint reports:

    {
      "status": "UP",
      "details": {
        "mongo": {
          "status": "UP",
          "details": {
            "version": "3.4.6"
          }
        },
        "diskSpace": {
          "status": "UP",
          "details": {
            "total": 498937626624,
            "free": 43632435200,
            "threshold": 10485760
          }
        },
        "learningSpringBoot": {
          "status": "UP"
        }
      }
    }  

We can see our new health indicator, learningSpringBoot, listed with its status of UP.

To simulate a failure, let's alter the URL by switching the domain in the code to greglturnquist.io and see what happens:

    URL url = new URL("http://greglturnquist.io/books/learning-spring-
     boot"); 

When we restart and ping /application/health, this is the outcome:

    {
      "status": "DOWN",
      "details": {
        "mongo": {
          "status": "UP",
          "details": {
            "version": "3.4.6"
          }
        },
        "diskSpace": {
          "status": "UP",
          "details": {
            "total": 498937626624,
            "free": 43629961216,
            "threshold": 10485760
          }
        },
        "learningSpringBoot": {
          "status": "DOWN",
          "details": {
            "error": "java.net.UnknownHostException: greglturnquist.io"
          }
        }
      }
    }  

A few things have happened:


	Our learningSpringBoot indicator now reports DOWN. It's not due to some HTTP status code, but instead ConnectionException caused by not being able to form a connection.

	While diskSpace and mongo are UP, the DOWN status of this indicator percolates to the top-level status, switching it to DOWN.



If we change the URL to simply http://greglturnquist.com/foo and restart, we can see a different status:



In this situation, we still have a DOWN status, but the HTTP status code 404 is reported. Both of these indicators can be quite informative for the DevOps team watching our application.



            

            
        
    
        

                            
                    Adding build data to /application/info

                
            
            
                
One of the biggest issues in getting to the heart of problems is knowing what version is running! Have you ever gotten a 3:00 a.m. call from a customer reporting that the system is broken? In a half-awake state, it's easy to start trying to solve the problem only to discover two hours later, the customer is running an older version and that their issue was patched last week.

The solution is embedding precise versions in every release so that the customer can relay this over the phone. Then, we can quickly figure out if this issue is new, fixed, or a regression. Interested?

Just add this to the build.gradle file, right below the buildscripts section:

    id "com.gorylenko.gradle-git-properties" version "1.4.17" 

This will add a new task, generateGitProperties, to our system. Anytime we engage Gradle to build the app, whether it's to package up a runnable JAR or simply to bootRun it, a new build/resources/main/git.properties file will be generated and served up via Spring Boot Actuator's /application/info endpoint:

    {
        git: {
            commit: {
                time: 1474434957000,
                id: "3ac9c1c"
            },
            branch: "master"
        }
    }  

This report gives us the timestamp, git commit hash, and branch. That tiny nugget of knowledge has the potential to save us hours of effort over the long haul.

Using Maven? There is a similar plugin:

    <build> 
        <plugins> 
            <plugin> 
                <groupId>pl.project13.maven</groupId> 
                <artifactId>git-commit-id-plugin</artifactId> 
            </plugin> 
        </plugins> 
    </build> 

It works the same.

One extra tidbit--Spring Boot has two different modes of git information. The format shown is the SIMPLE mode. To get more details, add this to application.properties:

    management.info.git.mode=full 

This will produce a much more detailed report:

    {
        git: {
            commit: {
                message: {
                    full: "Move images back to 1/image",
                    short: "Move images back to 1/image"
                },
                time: 1474434957000,
                id: "3ac9c1c7875d7378d6fbd607d0af5ef206e21ede",
                id.abbrev: "3ac9c1c",
                user: {
                    email: "gturnquist@pivotal.io",
                    name: "Greg Turnquist"
                }
            },
            branch: "master"
        }
    }  

It's up to each team to decide which version is the most useful and which version doesn't leak out unnecessary details.

Additionally, we can grab more details about the build by adding this to our build.gradle file:

    springBoot { 
      buildInfo() 
    } 

This little addition, when we run Gradle's build task, will add a build-info.properties file to our JAR file, showing content like this:

    #Properties
    #Tue Sep 12 23:53:05 CDT 2017
    build.time=2017-09-12T23\:53\:05-0500
    build.artifact=5/part2
    build.group=learning-spring-boot
    build.name=5/part2
    build.version=unspecified  

Both of these reports (a simple git report + build info details) would give us this nice bit of information useful to start debugging an issue by visiting localhost:8080/application/info.



            

            
        
    
        

                            
                    Creating custom metrics

                
            
            
                
Every program manager loves metrics. In fact, a popular company (Netflix) is so well known in this arena that people describe it as a metrics-gathering company that happens to stream video.

When it comes to Spring Boot, metrics are a prime piece of Spring Boot Actuator functionality. If we visit /application/metrics, we can see a list of metrics:

    {
      "names": [
        "jvm.buffer.memory.used",
        "jvm.memory.used",
        "jvm.buffer.count",
        "logback.events",
        "process.uptime",
        "jvm.memory.committed",
        "http.server.requests",
        "jvm.buffer.total.capacity",
        "jvm.memory.max",
        "process.starttime"
      ]
    }

This lists all sorts of stuff--memory, garbage collection, heap versus nonheap, threads, and more. That's nice, but what's usually needed is the ability to create our own metrics.

Spring Boot provides an interface to register our own metrics and have them appear on the same page. Supplied immediately is the ability to grab a MeterRegistry.

To make use of this three meter registry, we need to inject it into  ImageService we built in Chapter 3, Reactive Data Access with Spring Boot:

    @Service 
    public class ImageService { 
 
      ... 
 
      private final MeterRegistry meterRegistry; 
 
      public ImageService(ResourceLoader resourceLoader, 
        ImageRepository imageRepository, 
        MeterRegistry meterRegistry) { 
 
          this.resourceLoader = resourceLoader; 
          this.imageRepository = imageRepository; 
          this.meterRegistry = meterRegistry; 
        } 
        ... 

This code shows the following:


	Three metric services, CounterService, GaugeService, and InMemoryMetricRepository declared as final attributes

	These three fields are populated by constructor injection, ensuring they are supplied when the service is created



With that in place, further down inside createImage, we can define custom metrics:

    public Mono<Void> createImage(Flux<FilePart> files) { 
      return files 
       .log("createImage-files") 
       .flatMap(file -> { 
         Mono<Image> saveDatabaseImage = imageRepository.save( 
           new Image( 
             UUID.randomUUID().toString(), 
             file.filename())) 
             .log("createImage-save"); 
 
             Mono<Void> copyFile = Mono.just(Paths.get(UPLOAD_ROOT,
             file.filename()).toFile()) 
             .log("createImage-picktarget") 
             .map(destFile -> { 
               try { 
                 destFile.createNewFile(); 
                 return destFile; 
               } catch (IOException e) { 
                   throw new RuntimeException(e); 
               } 
             }) 
             .log("createImage-newfile") 
             .flatMap(file::transferTo) 
             .log("createImage-copy"); 
 
             Mono<Void> countFile = Mono.fromRunnable(() -> { 
               meterRegistry
                  .summary("files.uploaded.bytes")
                  .record(Paths.get(UPLOAD_ROOT,
                   file.filename()).toFile().length())
             }); 
 
             return Mono.when(saveDatabaseImage, copyFile, countFile) 
              .log("createImage-when"); 
       }) 
       .log("createImage-flatMap") 
       .then() 
       .log("createImage-done"); 
    } 

The first part of the code where a new image is created is the same, but following that is meterRegistry.summary("files.uploaded.bytes").record(… ), which creates a new distribution summary named files.uploaded.bytes. A distribution summary includes both a name, optional tags, and a value. What is registered is both a value and an occurrence. Each time a meter is added, it counts it, and the running total is tabulated.

With these adjustments, we can refresh the application, wait for it to reload, and then upload a few images, as shown here:



After uploading these images, if we revisit /application/metrics, we can see our new metric at the bottom of the list:

    {
      "names": [
        "jvm.buffer.memory.used",
        "jvm.memory.used",
        "jvm.buffer.count",
        "logback.events",
        "process.uptime",
        "jvm.memory.committed",
        "http.server.requests",
        "jvm.buffer.total.capacity",
        "jvm.memory.max",
        "process.starttime",
        "files.uploaded.bytes"
      ]
    }

If we navigate to http://localhost:8080/application/metrics/files.uploaded.bytes, we can view it:

    {
      "name": "files.uploaded.bytes",
      "measurements": [
        {
          "statistic": "Count",
          "value": 3.0
        },
        {
          "statistic": "Total",
          "value": 208020.0
        }
      ],
      "availableTags": [

      ]
    }

This JSON shows that three measurements have been registered with files.uploaded.bytes, totaling 208020 bytes. What's not immediately shown is also the time when these metrics were posted. It's possible to calculate upload trends using the new Micrometer module (http://micrometer.io).

Micrometer is a new project at Pivotal. It's a facade for metrics gathering. Think SLF4J, but for metrics instead. It is designed to integrate with lots of metric-gathering systems, including Atlas, Prometheus, Datadog, Influx, Graphite, and more. In this case, it's using a memory-based solution. Since it's currently under development and could warrant its own book, we will not delve too deep.

This is but a sampling of the possible metrics that can be defined. Feel free to dig in and experiment with the data.



            

            
        
    
        

                            
                    Working with additional Actuator endpoints

                
            
            
                
Spring Boot Actuator provides lots of extra data. The following table is a quick summary:




	
Actuator Endpoint


	
Description





	
auditevents


	
Exposes audit events for the current application





	
autoconfig


	
Reports what Spring Boot did and didn't autoconfigure and why





	
beans


	
Reports all the beans configured in the application context (including ours as well as the ones autoconfigured by Boot)





	
configprops


	
Exposes all configuration properties





	
env


	
Reports on the current system environment





	
health


	
A simple endpoint to check the life of the app





	
heapdump


	
Returns a GZip-compressed hprof heap dump file (hprof is a tool by every JDK)





	
info


	
Serves up custom content from the app





	
logfile


	
Returns the contents of the logfile (assuming logging.file or logging.path has been set)





	
loggers


	
Lists all configured loggers and their levels. Also supports updating log levels through POST operations.





	
metrics


	
Shows counters and gauges on web usage





	
mappings


	
Gives us details about all Spring WebFlux routes





	
status


	
threaddump





	
Creates thread dump report


	
trace







Every one of these is prefixed (by default) with /application/. For example, health is found at /application/health. To override this prefix, just add management.context-path to application.properties and swap out your preferred prefix (such as /manager). Also, management.context-path is relative to server.context-path.

It's possible to adjust the port that Actuator endpoints are served on. Setting the management.port property to 8081 will change the port for all these endpoints to 8081. We can even adjust the network address used by setting management.address=127.0.0.1. This setting would make these information-rich endpoints only visible to the local box and curtail visibility to outside connections.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we hooked up Spring Boot's DevTools module. This made it possible to use an embedded LiveReload server as well as decache the templates. We used Spring Boot's autoconfiguration report to glean information about the embedded container. Then, we swapped out Netty with Undertow and verified it through the same report. We dabbled with writing a custom health check and a custom metric. Then, we buttoned things up by embedding our build information into the application to spot the version in operations should we get a late night phone call from our Ops center.

In the next chapter, we'll learn how to communicate between processes using fault-tolerant Advanced Message Queuing Protocol (AMQP) messaging.





            

            
        
    
        

                            
                    AMQP Messaging with Spring Boot

                
            
            
                
I should add that we are @springboot / @SpringCloudOSS from top to bottom.

– DaShaun Carter @dashaun

In the previous chapter, we added some tools to our social media application to speed up developer time as well as to provide basic operational support features.

But nothing stands still. In various social media platforms, there is some form of messaging between the users. Why not create one for ours?

In this chapter, we will learn the following topics:


	Getting started with RabbitMQ, an AMQP broker

	Creating a message-based module for our social media app

	Adding customized metrics to track message flow

	Creating dynamically routed messages

	Taking a peek at Spring Cloud Stream and its RabbitMQ bindings





            

            
        
    
        

                            
                    Getting started with RabbitMQ

                
            
            
                
RabbitMQ is an open source AMQP broker. Advanced Message Queuing Protocol (AMQP) is an open protocol that includes the format of messages sent over the wire. This has risen in popularity compared to other messaging solutions like JMS. Why?

JMS is an API, whereas AMQP is a protocol. JMS defines how to talk to the broker but not the format of its messages. And it's confined to Java apps. AMQP doesn't speak about how to talk to a broker but about how messages are put on the wire and how they are pulled down.

To illustrate this point, imagine two different applications. If they were both Java, they could communicate via JMS. But if one of them were Ruby, JMS would be off the table.

To further demonstrate the differences between JMS and AMQP, a JMS-speaking broker can actually use AMQP under the hood to transport the messages.

In fact, I have contributed to the RabbitMQ JMS Client developed by Pivotal Software found at https://github.com/rabbitmq/rabbitmq-jms-client.

For this chapter, we will explore using RabbitMQ in the spirit of maximum options.



            

            
        
    
        

                            
                    Installing RabbitMQ broker

                
            
            
                
To do this, we need to install the RabbitMQ broker.

On a macOS, if we are using Homebrew (http://brew.sh/), it's as simple as this:

$ brew install rabbitmq
==> Installing dependencies for rabbitmq: openssl, libpng, libtiff,
    wx...
==> Pouring openssl-1.0.2j.el_capitan.bottle.tar.gz
    /usr/local/Cellar/openssl/1.0.2j: 1,695 files, 12M
==> Pouring libpng-1.6.25.el_capitan.bottle.tar.gz
    /usr/local/Cellar/libpng/1.6.25: 25 files, 1.2M
==> Pouring libtiff-4.0.6_2.el_capitan.bottle.tar.gz
    /usr/local/Cellar/libtiff/4.0.6_2: 261 files, 3.4M
==> Pouring wxmac-3.0.2_3.el_capitan.bottle.tar.gz
    /usr/local/Cellar/wxmac/3.0.2_3: 809 files, 23.6M
==> Pouring erlang-19.1.el_capitan.bottle.tar.gz
    /usr/local/Cellar/erlang/19.1: 7,297 files, 279.8M
==> Installing rabbitmq
    /usr/local/Cellar/rabbitmq/3.6.4: 187 files, 5.8M, built in 6 
    seco...
  

On Debian Linux, you can use the following command:

$ sudo apt-get install rabbitmq-server  

On any of the Red Hat Linux systems, the following command can be run:

$ yum install erlang
$ yum install rabbitmq-server-<version>.rpm  

On various cloud solutions, including Cloud Foundry, RabbitMQ can be found as a service (including Pivotal's RabbitMQ for PCF at https://network.pivotal.io/products/p-rabbitmq), something we'll explore in Chapter 10, Taking Your App to Production with Spring Boot.

For more details on downloading and installing, visit https://www.rabbitmq.com/download.html.



            

            
        
    
        

                            
                    Launching the RabbitMQ broker

                
            
            
                
With the RabbitMQ broker installed, we just need to launch it. There are these two approaches to doing that:


	Starting it in our current shell

	Having it start when the machine boots



To start in our current shell, we can execute the following command:

$ rabbitmq-server
    
RabbitMQ 3.6.4. Copyright (C) 2007-2016 Pivotal Software...
##  ##      Licensed under the MPL.  See http://www.rabbitmq.com/
##  ##
##########  Logs: /usr/local/var/log/rabbitmq/rabbit@localhost.log
######  ##        /usr/local/var/log/rabbitmq/rabbit@localhost-sasl....
##########
Starting broker...
completed with 10 plugins.  

On a macOS with Homebrew, use the following to launch as a daemon process and relaunch when we reboot:

$ brew services start rabbitmq
==> Tapping homebrew/services
Cloning into '/usr/local/Homebrew/Library/Taps/homebrew/homebrew-services'...
remote: Counting objects: 10, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 10 (delta 0), reused 6 (delta 0), pack-reused 0
Unpacking objects: 100% (10/10), done.
Checking connectivity... done.
Tapped 0 formulae (36 files, 46K)
==> Successfully started `rabbitmq` (label: homebrew.mxcl.rabbitmq)  

If you are using Homebrew, there is a feature to manage various services. Type homebrew services to see the commands available. For example, brew services list will list all services and their state:

$ brew services list
  Name     Status  User       Plist
  activemq stopped
  mongodb  started gturnquist 
  /Users/gturnquist/Library/LaunchAgents/hom...
  mysql    stopped
  neo4j    stopped
  rabbitmq started gturnquist   
  /Users/gturnquist/Library/LaunchAgents/hom...
  redis    stopped
  tor      stopped  

Now we can see that RabbitMQ has joined MongoDB (which we installed in Chapter 3, Reactive Data Access with Spring Boot).

This, essentially, leverages macOS X's launchctl system with a Homebrew-supplied daemon control file.

For Windows, check out https://www.rabbitmq.com/install-windows.html. It has links to download the broker. Upon installation, it will configure it with various defaults and also start it up.

To control the broker, check out the rabbitmqctl.bat script found in the sbin folder (as administrator). Use the following commands:


	rabbitmqctl start

	rabbitmqctl stop

	rabbitmqctl status



Want to poke around with the RabbitMQ broker in a more visual way? Run rabbitmq-plugins enable rabbitmq_managment, and visit http://localhost:15672. The default username/password for RabbitMQ is guest/guest. I suggest looking at Exchanges and Queues first.

With the RabbitMQ broker up and running, we can now shift focus to our application efforts.



            

            
        
    
        

                            
                    Adding messaging as a new component to an existing application

                
            
            
                
What have we built so far for our social media platform? We have the ability to upload and delete pictures. However, a key piece of any social media platform is to allow users to interact with each other. This is commonly done by either commenting on the social media content or chatting directly with each other.

Let's start by adding the ability to comment on images. But before we get going, let's stop and discuss the architecture.

For years, people have used the layer approach to split up applications. Fundamentally, we don't want a big application with all the classes in one package because it's too hard to keep up with everything.

So far, we have everything located in com.greglturnquist.learningspringboot. Historically, the pattern has been to split things up in a domain layer, a services layer, and a controllers layer, as shown in the following screenshot:



In this structure, we would put every service into the services subpackage and create further sub-subpackages if need be. We'd put all the domain objects in domain and all the controllers would go into controllers.

The idea was that controllers call services and services return domain objects. It prevented entanglements such as services invoking controllers, which made sense at the time.

But with the rise of microservices (something we'll dig into in Chapter 7, Microservices with Spring Boot), these layer-based approaches become an issue when the application gets really big. When refactoring is in order, services found in the same package that are functionally unrelated can get tricky due to needless coupling we may have created.

A more slim and trim approach is to break things up using vertical slices instead of horizontal layers:



With the structure shown in the preceding screenshot, we have split things up into images and comments, a more function-based nature.

We would put everything related to handling images in the former and everything related to comments in the latter. If the need arises, either of these packages can be further split up into subpackages, as follows:




Worried that this will cause an explosion of the domain/services/controllers trio all over our code? Don't panic! We only do this as needed, and given that each domain subpackage will be relatively small in scope as compared to the old layer approach, the functionality should be highly cohesive, that is, have much in common with each other.

Since we are about to create a separate piece of functionality (comments), it would make sense to go ahead and break up our application into images and comments. So let's do that!

First, let's create the images and comments subpackages. With that in place, the most obvious change is to move Image, ImageRepository, and ImageService into the image subpackage. Easy enough.

That leaves us with the following:


	LearningSpringBootApplication

	HomeController

	LearningSpringBootHealthIndicator



LearningSpringBootApplication embodies the entire app, so it should stay at the top level. This isn't just a semantic statement. That class contains our SpringBootApplication annotation, which enables the application's autoconfigured behaviors like component scanning. Component scanning should start at the top level and search all subpackages.

HomeController represents an interesting concept. Even though it calls into ImageService, since it serves the application's top-level view, let's leave it at the top level as well.

As for LearningSpringBootHealthIndicator, a similar case could be made to keep it at the root. Since we are shooting to keep things light at the top, why don't we create a separate module to encompass all Ops-based features that aren't specific to any one module, ops.

Given all these decisions, our new structure now looks like this:



Is spending this amount of time debating package structure worth it? In any agile environment, it's okay to try something if it doesn't cost two weeks of effort. Stopping to spend ten minutes thinking about a maintainable structure is an acceptable investment, especially if we're willing to change it later should the need arise.



            

            
        
    
        

                            
                    Creating a message producer/message consumer

                
            
            
                
Having restructured our application to make room for comments, let's get to it!

First of all, we need to add a new dependency to our build file, which is done with the following code:

    compile('org.springframework.boot:spring-boot-starter-amqp')

That will give us access to Spring AMQP, which includes RabbitMQ support.

Adding messaging technology to our application may make us clamor to, well, write some code that talks to RabbitMQ. But that isn't really a good flow. Instead, we should start from one of two perspectives--writing a unit test or writing some UI.

Either approach is aimed at figuring out the use case we are trying to solve. Before solving the problem at hand, we need to noodle out what our exact problem is. In this case, let's start from the UI perspective.

To do that, we can take advantage of Spring Boot DevTools from the last chapter and launch our application in the Debug mode with the LiveReload feature enabled. That way, as we make changes, we can see them right away:



With this preceding screenshot, we can see our application up and running with the LiveReload server enabled (and some sample data preloaded).



            

            
        
    
        

                            
                    Displaying comments

                
            
            
                
Now we can make edits to our Thymeleaf template and create input fields for people to write comments:

    <td> 
        <ul> 
            <li th:each="comment : ${image.comments}" 
                th:text="${comment.comment}"></li> 
        </ul> 
    </td> 
    <td> 
        <form th:method="post" th:action="@{'/comments'}"> 
            <input name="comment" value="" type="text" /> 
            <input name="imageId" th:value="${image.id}"
             type="hidden" /> 
            <input type="submit" /> 
        </form> 
    </td> 

The section of our preceding template where each row is rendered can be explained as follows:


	There is a new column containing an HTML unordered list to display each comment

	The unordered list consists of an HTML line item for each comment via Thymeleaf's th:each construct

	There is also a new column containing an HTML form to post a new comment

	The form contains an HTML text input for the comment itself

	The form also contains a hidden HTML element specifying the ID of the image that the comment will be associated with



To support this, we need to update HomeController as follows:

    private final ImageService imageService; 
    private final CommentReaderRepository repository; 
 
    public HomeController(ImageService imageService, 
     CommentReaderRepository repository) { 
       this.imageService = imageService; 
       this.repository = repository; 
    } 

We have updated the class definition as follows:


	A new repository field is created for CommentReaderRepository (which we'll define further ahead in the chapter)

	This field is initialized by constructor injection



We need to look up the comments. To do that, we need a Spring Data repository that can read comments. And reading comments is ALL this repository needs to do at this stage of our social media app.

Let's take this new repository and use it inside the Spring WebFlux handler for GET /, like this:

    @GetMapping("/") 
    public Mono<String> index(Model model) { 
      model.addAttribute("images", 
       imageService 
       .findAllImages() 
       .flatMap(image -> 
         Mono.just(image) 
           .zipWith(repository.findByImageId( 
             image.getId()).collectList())) 
       .map(imageAndComments -> new HashMap<String, Object>(){{ 
            put("id", imageAndComments.getT1().getId()); 
            put("name", imageAndComments.getT1().getName()); 
            put("comments", 
              imageAndComments.getT2()); 
        }})
      ); 
      model.addAttribute("extra", 
       "DevTools can also detect code changes too"); 
       return Mono.just("index"); 
    } 

This last code contains a slight adjustment to the model's images attribute:


	The code takes the Flux returned from our ImageService.findAll() method and flatMaps each entry from an Image into a call to find related comments.

	repository.findByImageId(image.getId()).collectList() actually fetches all Comment objects related to a given Image, but turns it into Mono<List<Comment>>. This waits for all of the entries to arrive and bundles them into a single object.

	The collection of comments and it's related image are bundled together via Mono.zipWith(Mono), creating a tuple-2 or a pair. (This is the way to gather multiple bits of data and pass them on to the next step of any Reactor flow. Reactor has additional tuple types all the way up to Tuple8.)

	After flatMapping Flux<Image> into Flux<Tuple2<Image,List<Comment>>>, we then map each entry into a classic Java Map to service our Thymeleaf template.

	Reactor's Tuple2 has a strongly typed getT1() and getT2(), with T1 being the Image and T2 being the list of comments, which is suitable for our needs since it's just a temporary construct used to assemble details for the web template.

	The image's id and name attributes are copied into the target map from T1.

	The comments attribute of our map is populated with the complete List<Comment> extracted from T2.



Since Thymeleaf templates operate on key-value semantics, there is no need to define a new domain object to capture this construct. A Java Map will work just fine.

As we continue working with Reactor types, these sorts of flows are, hopefully, becoming familiar. Having an IDE that offers code completion is a key asset when putting flows like this. And the more we work with these types of transformations the easier they become.

If you'll notice, ImageService is fully reactive given that we use MongoDB's reactive drivers. The operation to retrieve comments is also reactive. Chaining reactive calls together, using Reactor's operators and hitching them to Thymeleaf's reactive solution, ensures that everything is being fetched as efficiently as possible and only when necessary. Writing reactive apps hinges on having a fully reactive stack.

To round out our feature of reading comments, we need to define CommentReaderRepository as follows:

    public interface CommentReaderRepository 
     extends Repository<Comment, String> { 
 
       Flux<Comment> findByImageId(String imageId); 
    } 

The preceding code can be described as follows:


	It's a declarative interface, similar to how we created ImageRepository earlier in this book.

	It extends Spring Data Commons' Repository interface, which contains no operations. We are left to define them all. This lets us create a read-only repository.

	It has a findByImageId(String imageId) method that returns a Flux of Comment objects.



This repository gives us a read-only readout on comments. This is handy because it lets us fetch comments and does not accidentally let people write through it. Instead, we intend to implement something different further in this chapter.

Our CommentReaderRepository needs one thing: a Comment domain object:

    package com.greglturnquist.learningspringboot.images; 
 
    import lombok.Data; 
 
    import org.springframework.data.annotation.Id; 
 
    @Data 
    public class Comment { 
 
      @Id private String id; 
      private String imageId; 
      private String comment; 
 
    } 

This preceding domain object contains the following:


	The @Data annotation tells Lombok to generate getters, setters, toString(), equals(), and hashCode() methods

	The id field is marked with Spring Data Commons' @Id annotation so we know it's the key for mapping objects

	The imageId field is meant to hold an Image.id field, linking comments to images

	The comment field is the place to store an actual comment



For both CommentReaderRepository and Comment, the entire class is shown including the package. That's to show that it's located in the images subpackage we defined earlier in this chapter. This domain object provides the comment information pertinent to images. And this information is read-only, which means that this is not where updates regarding comments are made.



            

            
        
    
        

                            
                    Producing comments

                
            
            
                
Having written the code to display comments, it's now time to craft the bits to create them.

We've already seen the changes to our template adding an HTML form to write a comment. Let's code the corresponding controller in the comments subpackage, as follows:

    @Controller 
    public class CommentController { 
 
      private final RabbitTemplate rabbitTemplate; 
 
      public CommentController(RabbitTemplate rabbitTemplate) { 
        this.rabbitTemplate = rabbitTemplate; 
      } 
 
      @PostMapping("/comments") 
      public Mono<String> addComment(Mono<Comment> newComment) { 
        return newComment.flatMap(comment -> 
         Mono.fromRunnable(() -> rabbitTemplate 
           .convertAndSend( 
             "learning-spring-boot", 
             "comments.new", 
             comment))) 
           .log("commentService-publish") 
           .then(Mono.just("redirect:/")); 
      } 
 
    } 

The code can be explained as follows:


	It's the first class we have put in the new comments subpackage.

	The @Controller annotation marks this as another Spring controller.

	It contains a RabbitTemplate initialized by constructor injection. This RabbitTemplate is created automatically by Spring Boot when it spots spring-amqp on the classpath.

	The @PostMapping("/comments") annotation registers this method to respond to the form submissions that we added earlier in the template with th:action="@{'/comments'}".

	Spring will automatically convert the body of the POST into a Comment domain object. Additionally, since we are using WebFlux, deserializing the request body is wrapped in a Mono, hence that process will only occur once the framework subscribes to the flow.

	The incoming Mono<Comment> is unpacked using flatMap and then turned into a rabbitTemplate.convertAndSend() operation, which itself is wrapped in Mono.fromRunnable.

	The comment is published to RabbitMQ's learning-spring-boot exchange with a routing key of comments.new.

	We wait for this to complete with then(), and when done, return a Spring WebFlux redirect to send the webpage back to the home page.



Time out. That bullet point about the RabbitMQ exchange and routing key may have sounded a bit complex.

The comment is published to RabbitMQ's learning-spring-boot exchange with a routing key of comments.new.

We need to take this apart to understand the basics of AMQP a little better.



            

            
        
    
        

                            
                    AMQP fundamentals

                
            
            
                
If you've already used JMS, then you're aware that it has queues and topics. AMQP has queues as well but the semantics are different.

Each message sent by a JMS-based producer is consumed by just one of the clients of that queue. AMQP-based producers don't publish directly to queues but to exchanges instead. When queues are declared, they must be bound to an exchange. Multiple queues can be bound to the same exchange, emulating the concept of topics.

JMS has message selectors which allow consumers to be selective about the messages they receive from either queues or topics. AMQP has routing keys that behave differently based on the type of the exchange, as listed next.

A direct exchange routes messages based on a fixed routing key, often the name of the queue. For example, the last code that we just looked at mentioned learning-spring-boot as the name of exchange and comments.new as the routing key. Any consumer that binds their own queue to that exchange with a routing key of comments.new will receive a copy of each message posted earlier.

A topic exchange allows routing keys to have wildcards like comments.*. This situation best suits clients where the actual routing key isn't known until a user provides the criteria. For example, imagine a stock-trading application where the user must provide a list of ticker symbols he or she is interested in monitoring.

A fanout exchange blindly broadcasts every message to every queue that is bound to it, regardless of the routing key.

Regarding the semantics of AMQP, let's explore that further by looking at the CommentService (also in comments subpackage) in chunks:

    @Service 
    public class CommentService { 
 
      private CommentWriterRepository repository; 
 
      public CommentService(CommentWriterRepository repository) { 
        this.repository = repository; 
      }
      ... more to come below...
    } 

This preceding code can be described as follows:


	The @Service annotation marks it as a Spring service to be registered with the application context on startup

	CommentWriterRepository is a Spring Data repository used to write new comments and is initialized by the constructor injection



Which brings us to the meat of this service, which is as follows:

    @RabbitListener(bindings = @QueueBinding( 
      value = @Queue, 
      exchange = @Exchange(value = "learning-spring-boot"), 
      key = "comments.new" 
    )) 
    public void save(Comment newComment) { 
      repository 
       .save(newComment) 
       .log("commentService-save") 
       .subscribe(); 
    } 

This last little function packs a punch, so let's take it apart:


	The @RabbitListener annotation is the easiest way to register methods to consume messages.

	The @QueueBinding annotation is the easiest way to declare the queue and the exchange it's bound to on-the-fly. In this case, it creates an anonymous queue for this method and binds to the learning-spring-boot exchange.

	The routing key for this method is comments.new, meaning any message posted to the learning-spring-boot exchange with that exact routing key will cause this method to be invoked.

	It's possible for the @RabbitListener methods to receive a Spring AMQP Message, a Spring Messaging Message, various message headers, as well as a plain old Java object (which is what we have here).

	The method itself invokes our CommentWriterRepository to actually save the comment in the data store.



To use RabbitMQ, we would normally need @EnableRabbit, but thanks to Spring Boot, it's automatically activated when spring-boot-starter-amqp is on the classpath. Once again, Boot knows what we want and just does it.

An important thing to understand is that @RabbitListener makes it possible to dynamically create all the exchanges and queues needed to operate. However, it only works if an instance of AmqpAdmin is in the application context. Without it, ALL exchanges and queues must be declared as separate Spring beans. But Spring Boot's RabbitMQ autoconfiguration policy provides one, so no sweat!

There is one slight issue with this method that will cause it to not operate--object serialization. If we had declared the method signature to provide us with a Spring AMQP Message object, we would pull down a byte array. However, out of the box, Spring AMQP has limited functionality in serializing custom domain objects. With no effort, it can handle simple strings and serializables.

But for custom domain objects, there is a more preferred solution--a Spring AMQP message converter, as shown next:

    @Bean 
    Jackson2JsonMessageConverter jackson2JsonMessageConverter() { 
      return new Jackson2JsonMessageConverter(); 
    } 

This preceding bean, listed right below the save(Comment newComment) method, can be described as follows:


	@Bean registers this as a bean definition.

	It creates Jackson2JsonMessageConverter, an implementation of Spring AMQP's MessageConverter, used to serialize and deserialize Spring AMQP Message objects. In this case, is uses Jackson to convert POJOs to/from JSON strings.



Spring Boot's RabbitMQ autoconfiguration policy will look for any implementation of Spring AMQP's MessageConverter instances and register them with both the RabbitTemplate we used earlier as well as the SimpleMessageListenerContainer that it creates when it spots @RabbitListener in our code.

To start our application with a clean slate, we have this code at the bottom of CommentService:

    @Bean 
    CommandLineRunner setUp(MongoOperations operations) { 
      return args -> { 
        operations.dropCollection(Comment.class); 
      }; 
    } 

The last code can be described as follows:


	The @Bean annotation will register this chunk of code automatically

	By implementing Spring Boot's CommandLineRunner interface, the Java 8 lambda expression will run itself when all beans have been created

	It receives a copy of MongoOperations, the blocking MongoDB object we can use to drop the entire collection based on Comment



This code is handy for development, but should be either removed in production or wrapped in a @Profile("dev") annotation such that it ONLY runs when spring.profiles.active=dev is present.

To persist comments in our data store, we have the following Spring Data repository:

    public interface CommentWriterRepository 
     extends Repository<Comment, String> { 
 
       Mono<Comment> save(Comment newComment); 
 
       // Needed to support save() 
       Mono<Comment> findById(String id); 
    } 

This preceding repository isn't too difficult to dissect, and that can be done as follows:


	It's an interface, which means that we don't have to write any code. We just declare the semantics and Spring Data does the rest.

	By extending Spring Data Commons' Repository interface, it will be picked up as a repository. Being an empty interface, it comes with no predefined operations.

	It contains a save() operation to store a new comment (and return it after it gets saved). If the ID value is null, Spring Data MongoDB will automatically generate a unique string value for us.

	Spring Data requires a findOne() operation in order to perform saves because that's what it uses to fetch what we just saved in order to return it.

	All of these method signatures use Reactor Mono types.



This repository is focused on writing data into MongoDB and nothing more. Even though it has a findOne(), it's not built for reading data. That has been kept over in the images subpackage.

To finish things up in our comments subpackage, let's look at the core domain object:

    package com.greglturnquist.learningspringboot.comments; 
 
    import lombok.Data; 
 
    import org.springframework.data.annotation.Id; 
    import org.springframework.data.mongodb.core.mapping.Document; 
 
    @Data 
    @Document 
    public class Comment { 
 
      @Id private String id; 
      private String imageId; 
      private String comment; 
    } 

This previous domain object contains the following:


	The @Data annotation tells Lombok to generate getters, setters, toString(), equals(), and hashCode() methods

	The id field is marked with Spring Data Common's @Id annotation so we know it's the key for mapping objects

	The imageId field is meant to hold an Image.id field linking comments to images

	The comment field is the place to store an actual comment



Wait a second! Isn't this the exact same code found in com.greglturnquist.learningspringboot.images.Comment? It is right now. But it's important to recognize that different slices may need different attributes in the future. By keeping a slice-specific domain object, we can change one without the risk of changing the other. In fact, it's possible that we can (spoiler alert!), later in this book, move this entire comments system into a separate microservice. By keeping things in nicely divided slices, the risk of tight coupling can be reduced.

Another factor is that RabbitMQ is not reactive. Invoking rabbitTemplate.convertAndSend() is blocking. That may sound awkward given AMQP is a pub/sub technology. But the whole process of publishing the message to the RabbitMQ broker holds up our thread, and is, by definition, blocking.

So our code wraps that inside a Java Runnable and converts it into a Mono via Reactor's Mono.fromRunnable. That makes it possible to invoke this blocking task only when we're ready at the right time. It's important to know that a Mono-wrapped-Runnable doesn't act like a traditional Java Runnable and doesn't get launched in a separate thread. Instead, the Runnable interface provides a convenient wrapper where Reactor controls precisely when the run() method is invoked inside its scheduler.

If we refresh our code in the IDE and let it restart, we can now start creating comments. Check out the following screenshot:



The preceding screenshot shows a couple of comments added to the first image and a third being written. Cool, ehh?

But perhaps, you're wondering why we spent all that effort splitting up reading and writing comments? After all, Spring Data appears to make it easy enough to define a single repository that could handle both. That may even imply we didn't need RabbitMQ and could let HomeController and CommentController use the repository directly instead.

The reason to use messaging is to provide a reliable way to offload work to another system. A real system that grows to thousands, if not millions, of users will see a huge flow of traffic. Think about it. Are there any other social media platforms where people write comments constantly but only view a handful at a time?

This facet of our application is designed with scalability in mind. If we had one million users, they may be writing tens of millions of messages a day. Hitching our controller directly to MongoDB may cause it to keel over. But if we push all the writes to a separate service, we can tune suitably.

The number of reads is much smaller.



            

            
        
    
        

                            
                    Adding customized metrics to track message flow

                
            
            
                
Having added the ability to comment on other people's posted images, it would be nice to start gathering metrics.

To do so, we can introduce metrics similar to those shown in Chapter 5, Developer Tools for Spring Boot Apps, as follows:

    @Controller 
    public class CommentController { 
 
      private final RabbitTemplate rabbitTemplate; 
 
      private final MeterRegistry meterRegistry; 
 
      public CommentController(RabbitTemplate rabbitTemplate, 
       MeterRegistry meterRegistry) { 
         this.rabbitTemplate = rabbitTemplate; 
         this.meterRegistry = meterRegistry; 
      } 
 
      @PostMapping("/comments") 
      public Mono<String> addComment(Mono<Comment> newComment) { 
        return newComment.flatMap(comment -> 
         Mono.fromRunnable(() -> 
          rabbitTemplate 
           .convertAndSend( 
             "learning-spring-boot", 
             "comments.new", 
           comment)) 
            .then(Mono.just(comment))) 
            .log("commentService-publish") 
            .flatMap(comment -> { 
              meterRegistry
                .counter("comments.produced", "imageId", comment.getImageId())
                .increment(); 
              return Mono.just("redirect:/"); 
            }); 
      } 
    } 

This last code has these few changes compared to what we wrote earlier in this chapter:


	A MeterRegistry is injected through the constructor and captured as a field.

	It's used to increment a comments.produced metric with every comment.

	Each metric is also "tagged" with the related imageId.

	We have to tune the Mono wrapping our rabbitTemplate.convertAndSend(), and ensure that the comment is passed via then(). Then it must be unpacked via flatMap in the part of the flow that writes metrics.



Should the code talking to the meterRegistry also be wrapped in Mono.fromRunnable()? Perhaps. The code blocks when writing, but in this incarnation, the metrics are stored in memory, so the cost is low. Nevertheless, the cost could rise, meaning it should be properly managed. If the service became external, the odds would increase quickly in favor of wrapping with a separate Mono.

In a similar vein, if we inject MeterRegistry into CommentService, we can then use it there as well:

    @RabbitListener(bindings = @QueueBinding( 
      value = @Queue, 
      exchange = @Exchange(value = "learning-spring-boot"), 
      key = "comments.new" 
    )) 
    public void save(Comment newComment) { 
      repository 
       .save(newComment) 
       .log("commentService-save") 
       .subscribe(comment -> { 
         meterRegistry
          .counter("comments.consumed", "imageId", comment.getImageId())
          .increment(); 
       }); 
    } 

This lines up with what we added to CommentController. The preceding code can be explained as follows:


	Using the injected MeterRegistry, we increment a comments.consumed metric with every comment.

	It's also tagged with the comment's related imageId.

	The metrics are handled after the save is completed inside the subscribe method. This method grants us the ability to execute some code once the flow is complete.



Spring AMQP doesn't yet support Reactive Streams. That is why rabbitTemplate.convertAndSend() must be wrapped in Mono.fromRunnable. Blocking calls such as this subscribe() method should be red flags, but in this situation, it's a necessary evil until Spring AMQP is able to add support. There is no other way to signal for this Reactor flow to execute without it.

The thought of relaunching our app and manually entering a slew of comments doesn't sound very exciting. So why not write a simulator to do it for us!

@Profile("simulator")
@Component
public class CommentSimulator {

  private final CommentController controller;
  private final ImageRepository repository;

  private final AtomicInteger counter;

  public CommentSimulator(CommentController controller,
              ImageRepository repository) {
    this.controller = controller;
    this.repository = repository;
    this.counter = new AtomicInteger(1);
  }

  @EventListener
  public void onApplicationReadyEvent(ApplicationReadyEvent event) {
    Flux
      .interval(Duration.ofMillis(1000))
      .flatMap(tick -> repository.findAll())
      .map(image -> {
        Comment comment = new Comment();
        comment.setImageId(image.getId());
        comment.setComment(
          "Comment #" + counter.getAndIncrement());
        return Mono.just(comment);
      })
      .flatMap(newComment ->
        Mono.defer(() ->
          controller.addComment(newComment)))
      .subscribe();
  }
}

Let's take this simulator apart:


	The @Profile annotation indicates that this only operates if spring.profiles.active=simulator is present when the app starts

	The @Component annotation will allow this class to get picked up by Spring Boot automatically and activated

	The class itself is located in the root package, com.greglturnquist.learningspring, given that it pulls bits from both subpackages

	The @EventListener annotation signals Spring to pipe application events issued to the app context. In this case, the method is interested in ApplicationReadyEvents, fired when the application is up and operational

	Flux.interval(Duration.ofMillis(1000)) causes a stream of lazy ticks to get fired every 1000 ms, lazily

	By flatMapping over this Flux, each tick is transformed into all images using the ImageRepository

	Each image is used to generate a new, related comment

	Using the injected CommentController, it simulates the newly minted comment being sent in from the web



If we reconfigure our runner with spring.profiles.active=simulator, we can see it run. IntelliJ IDEA provides the means to set Spring profiles easily:



You can see the entry highlighted at the bottom of the previous screenshot.

If we kick things off after hearing our machine's fan move into high gear, we can check the metrics at http://localhost:8080/application/metrics/comments.consumed and http://localhost:8080/application/metrics/comments.produced, and expect to see tallies.




In this last screenshot, we can clearly see counter.comments.produced and counter.comments.consumed, and they happen to be the same, which means that none were lost.

We can also see the unique image IDs with an equal number of messages spread between them (as expected with our simulator).



            

            
        
    
        

                            
                    Peeking at Spring Cloud Stream (with RabbitMQ)

                
            
            
                
Linking lots of small services together via messaging is a very common pattern. It increases in popularity with the rise of microservices. Coding the same pattern over and over using RabbitTemplate or some other transport template (KafkaTemplate and others) is another level of complexity we shouldn't be saddled with.

Spring Cloud Stream (http://cloud.spring.io/spring-cloud-stream/) to the rescue!

Spring Cloud Stream takes the concept of inputs, outputs, and transformers from Spring Integration and makes it super easy to chain them together.

To alter our social media platform to do this, we can remove spring-boot-starter-amqp from our build file and add this instead:

    compile(
      'org.springframework.cloud:spring-cloud-starter-stream-rabbit') 
    compile(
      'org.springframework.cloud:spring-cloud-stream-reactive') 

This preceding dependency brings in the following:


	spring-cloud-stream-binder-rabbit-core

	spring-cloud-stream-codec

	spring-cloud-stream

	spring-cloud-stream-reactive

	spring-boot-starter-amqp

	spring-integration-amqp



Spring Cloud Stream has many starters. In essence, we must pick the underlying transport technology, but we don't have to interact with the transport technology directly.



            

            
        
    
        

                            
                    Introduction to Spring Cloud

                
            
            
                
Spring Cloud? What is that?

Spring Cloud is an extension of Spring Boot provided through various libraries and aimed at addressing different cloud-native patterns. In this case, Spring Cloud Stream aims to simplify the chaining together of services via messaging.

To use any Spring Cloud library, we need to add the following chunk to the bottom of our build.gradle file:

    dependencyManagement { 
      imports { 
        mavenBom "org.springframework.cloud:spring-cloud- 
         dependencies:${springCloudVersion}" 
      } 
    } 

This preceding fragment of code is part of Spring's Dependency Management gradle plugin, pulling in Spring Cloud BOM (Bill of Materials). In this case, it has a variable, springCloudVersion, which we need to select.

Spring Cloud has release trains, which means that each library has a version but all the versions are coordinated. By picking one train, we get a fleet of tools to pick from (and we will throughout the rest of this book!).

The Spring Cloud release train tied to Spring Boot 2.0 is Finchley, so let's put that right next to our version of Boot at the top:

    buildscript { 
      ext { 
        springBootVersion = '2.0.0.M5' 
        springCloudVersion = 'Finchley.M3' 
      } 
      ... 
    }

If you're curious about the various release trains of Spring Cloud, check out its project page at http://projects.spring.io/spring-cloud/.

With Spring Cloud's BOM and Spring Cloud Stream added to our build, let's return to configuring messaging using Spring Cloud Stream's core interfaces, as follows:

    @Controller 
    @EnableBinding(Source.class) 
    public class CommentController { 
 
      private final CounterService counterService; 
      private FluxSink<Message<Comment>> commentSink; 
      private Flux<Message<Comment>> flux; 
 
      public CommentController(CounterService counterService) { 
        this.counterService = counterService; 
        this.flux = Flux.<Message<Comment>>create( 
          emitter -> this.commentSink = emitter, 
          FluxSink.OverflowStrategy.IGNORE) 
          .publish() 
          .autoConnect(); 
      } 
 
      @PostMapping("/comments") 
      public Mono<String> addComment(Mono<Comment> newComment) { 
        if (commentSink != null) { 
          return newComment 
           .map(comment -> commentSink.next(MessageBuilder 
           .withPayload(comment) 
           .build())) 
           .then(Mono.just("redirect:/")); 
        } else { 
            return Mono.just("redirect:/"); 
        } 
      } 
 
      @StreamEmitter 
      public void emit(@Output(Source.OUTPUT) FluxSender output) { 
        output.send(this.flux); 
      } 
 
    } 

This last code is very similar to the CommentController that we created earlier in this chapter, but with the following differences:


	@EnableBinding(Source.class) flags this app as a source for new events. Spring Cloud Stream uses this annotation to signal the creation of channels, which, in RabbitMQ, translates to exchanges and queues.

	The constructor proceeds to set up a FluxSink, the mechanism to emit new messages into a downstream Flux. This sink is configured to ignore downstream backpressure events. It starts publishing right away, autoconnecting to its upstream source upon subscription.

	The objects being emitted are Message<Comment>, which is Spring's abstraction for a POJO wrapped as a transportable message. This includes the ability to add headers and other information.

	Inside addComments, if the sink has been established, it maps newComment into a Message<Comment> using Spring Messaging APIs. Finally, it transmits the message into the sink.

	When the message is successfully emitted to Flux, a redirect is issued.

	To transmit Flux of Message<Comment> objects, a separate method, emit, is wired up with an @StreamEmitter annotation. This method is fed a FluxSender, which provides us with a Reactor-friendly means to transmit messages into a channel. It lets us hook up the Flux tied to our FluxSink.

	The @Output(Source.OUTPUT) annotation marks up which channel it gets piped to (visiting Source.OUTPUT reveals the channel name as output).



That's a lot of stuff packed into this controller. To better understand it, there are some fundamental concepts to realize.

First of all, it's not common practice to create a Flux and then add to it. The paradigm is to wrap it around something else. To drive this point home, Flux itself is an abstract class. You can't instantiate it. Instead, you must use its various static helper methods to craft one. So, when we want to take a behavior that is tied to users clicking on a site and link it to a Flux that was created when the application started, we need something like FluxSink to bridge these two things together.

Spring Cloud Stream focuses on chaining together streams of messages with source/sink semantics. When it comes to Reactor, this means adapting a Flux of messages onto a channel, a concept curated for several years by Spring Integration. Given that the concrete nature of the channel is abstracted away, it doesn't matter what transport technology we use. Thanks to the power of Spring Boot, this is defined by dependencies on the classpath. Nevertheless, we'll continue using RabbitMQ because it's darn simple and powerful at the same time.

By the way, we'll see this concept of connecting a sink to Flux again when we visit Chapter 8, WebSockets with Spring Boot. It's a common Reactor pattern when connecting one-off objects to established flows.

To declare a Spring Cloud Stream consumer, we merely need to update our CommentService as follows:

    @Service 
    @EnableBinding(CustomProcessor.class) 
    public class CommentService { 

At the top of CommentService, we need to add @EnableBinding(CustomProcessor.class). If this was the only Spring Cloud Stream component, we could have used @EnableBinding(Processor.class), however, we can't share the same channel, output, with the CommentController. So we need to code a custom set of channels, CustomProcessor as shown below:

public interface CustomProcessor {

   String INPUT = "input";
   String OUTPUT = "emptyOutput";

   @Input(CustomProcessor.INPUT)
   SubscribableChannel input();

   @Output(CustomProcessor.OUTPUT)
   MessageChannel output();

}

This custom processor is quite similar to Spring Cloud Stream's Processor:


	It's a declarative interface.

	It has two channel names, INPUT and OUTPUT. The INPUT channel uses the same as Processor. To avoid colliding with the OUTPUT channel of Source, we create a different channel name, emptyOutput. (Why call it emptyOutput? We'll see in a moment!)

	The is a SubscribableChannel for inputs and a MessageChannel for outputs.



This flags our application as both a Sink as well as a Source for events. Remember how we had to subscribe earlier when consuming with RabbitTemplate?

Thankfully, Spring Cloud Stream is Reactor-friendly. When dealing with Reactive Streams, our code shouldn't be the termination point for processing. So, receiving an incoming Flux of Comment objects must result in an outgoing Flux that the framework can invoke as we'll soon see.

Further down in CommentService, we need to update our save method as follows:

    @StreamListener 
    @Output(CustomProcessor.OUTPUT) 
    public Flux<Void> save(@Input(CustomProcessor.INPUT) 
     Flux<Comment> newComments) { 
       return repository 
        .saveAll(newComments) 
        .flatMap(comment -> { 
          meterRegistry
            .counter("comments.consumed", "imageId", comment.getImageId())
            .increment(); 
          return Mono.empty(); 
        }); 
    } 

Let's tear apart this preceding updated version of save:


	The @RabbitListener annotation has been replaced with @StreamListener, indicating that it's transport-agnostic.

	The argument newComments is tied to the input channel via the @Input() annotation.

	Since we've marked it as Flux, we can immediately consume it with our MongoDB repository.

	Since we have to hand a stream back to the framework, we have marked up the whole method with @Output.

	From there, we can flatMap it to generate metrics and then transform it into a Flux of Mono<Void> s with Mono.empty(). This ensures that no more processing is done by the framework.



This method has the same concept as all Spring @*Listener annotations--​invoke the method with optional domain objects. But this time, it receives them from whatever underlying technology we have configured Spring Cloud Stream to use. The benefit is that this is slim and easy to manage and our code is no longer bound to RabbitMQ directly.

That being said, we need to express to Spring Cloud Stream that our source and sink need to communicate through the same RabbitMQ exchange. To do so, we need to provide settings in application.yml:

    spring: 
      cloud: 
        stream: 
          bindings: 
            input: 
              destination: learning-spring-boot-comments 
              group: learning-spring-boot 
            output: 
              destination: learning-spring-boot-comments 
              group: learning-spring-boot 

This last application configuration contains the following details:


	spring.cloud.stream.bindings is configured for both the input and the output channel's destination to be learning-spring-boot. When using RabbitMQ bindings, this is the name of the exchange and Spring Cloud Stream uses topic exchanges by default.

	We take advantage of Spring Cloud Streams' support for consumer groups by also setting the group property. This ensures that even if there are multiple stream listeners to a given channel, only one listener will consume any one message. This type of guarantee is required in cloud-native environments when we can expect to run multiple instances.



As stated early in this book, you can use either application.properties or application.yml. If you find yourself configuring many settings with the same prefix, use YAML to make it easier to read and avoid repetition.

By the way, remember having to define a Jackson2JsonMessageConverter bean earlier in this chapter to handle serialization? No longer needed. Spring Cloud Stream uses Esoteric Software's Kryo library for serialization/deserialization (https://github.com/EsotericSoftware/kryo). That means, we can chuck that bean definition. Talk about thinning out the code!

If we run the simulator again (spring.profiles.active=simulator) and check http://localhost:8080/application/metrics, we can see our custom metrics tabulating everything.

With this, we have managed to change the comments solution and yet retain the same set of metrics.

However, by switching to Spring Cloud Stream, we have gathered a whole new fleet of metrics, as seen in this screenshot:



This is a subset (too many to fill a book) covering the input and output channels.

Remember how we wrote a custom health check in the last chapter? It would be handy to have one for RabbitMQ and its bindings. Guess what? It's already done. Check it out:



In this last screenshot, we can see the following:


	The RabbitMQ broker is up and operational

	Our RabbitMQ binders are operational as well



With this in place, we have a nicely working comment system.



            

            
        
    
        

                            
                    Logging with Spring Cloud Stream

                
            
            
                
To wrap things up, it would be nice to actually see how Spring Cloud Stream is handling things. To do so, we can dial up the log levels in application.yml like this:

    logging: 
       level: 
        org: 
          springframework: 
            cloud: DEBUG 
            integration: DEBUG 

This last code dials up the log levels for both Spring Cloud Stream and its underlying technology, Spring Integration. It's left as an exercise for the reader to change RabbitTemplate log levels by setting org.springframework.amqp=DEBUG and see what happens.

With these levels dialed up, if we run our application, we can see a little of this:



This previous screenshot shows a clear separation between Spring Cloud Stream involved in binding compared to Spring Integration dealing with channel settings as well as setting up AMQP exchanges and queues.

It's also nice to observe that the logging prefix o.s.c.s is short for org.springframework.cloud.stream or Spring Cloud Stream.

If we add a new comment on the web page, we can see the outcome, as seen here:



This screenshot nicely shows Comment being transmitted to the output channel and then received on the input channel later.

Also notice that the logging prefix o.s.i indicates Spring Integration, with s.i.m being Spring Integration's Message API.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we created a message-based solution for users to comment on images. We first used Spring AMQP and RabbitTemplate to dispatch writes to a separate slice. Then we replaced that with Spring Cloud Stream with RabbitMQ bindings. That let us solve the comments situation with messaging, but without our code being bound to a specific transport technology.

In the next chapter, we'll break up our quickly growing, monolithic application into smaller microservices and use Spring Cloud to simplify integration between these distributed components.



            

            
        
    
        

                            
                    Microservices with Spring Boot

                
            
            
                
@SpringBoot and @SpringCloudOSS are making it way too easy to build advanced distributed systems. Shame on you! #ComplimentarySarcasm

– InSource Software @InSourceOmaha

In the previous chapter, we learned how to communicate between different systems using AMQP messaging with RabbitMQ as our broker.

In this day and age, teams around the world are discovering that constantly tacking on more and more functionality is no longer effective after a certain point. Domains become blurred, coupling between various systems makes things resistant to change, and different teams are forced to hold more and more meetings to avoid breaking various parts of the system, sometimes, for the tiniest of changes.

Emerging from all this malaise are microservices. The term microservice is meant to connote a piece of software that doesn't attempt to solve too many problems, but a targeted situation instead. Its scope is microscopic when compared with the existing behemoth monoliths that litter the horizon.

And that's where Spring Cloud steps in. By continuing the paradigm of autoconfiguration, Spring Cloud extends Spring Boot into the realm of cloud-native microservices, making the development of distributed microservices quite practical.

In this chapter, we will cover the following topics:


	A quick primer on microservices

	Dynamically registering and finding services with Eureka

	Introducing @SpringCloudApplication

	Calling one microservice from another with client-side load balancing

	Implementing microservice circuit breakers

	Monitoring circuits

	Offloading microservice settings to a configuration server





            

            
        
    
        

                            
                    A quick primer on microservices

                
            
            
                
As we said, a microservice focuses on solving a problem and solving it right, much like the UNIX philosophy of make each program do one thing well [Doug McIlroy].

That said, too many people describe microservices as being less than a certain number of lines of code, or less than a certain number of megabytes in total size. Nothing could be further from the truth. In fact, microservices are more closely tied to bounded contexts as defined by Eric Evans in Domain Driven Design, a worthwhile read despite having been written in 2003.

In essence, a microservice should focus on solving a particular problem, and only use enough domain knowledge to tackle that specific problem. If other parts of the system wish to interact with the same domain, their own context might be different.

In case you missed it, we introduced Spring Cloud (http://projects.spring.io/spring-cloud/) in the previous chapter using Spring Cloud Stream. Spring Cloud is a collection of Spring projects that are aimed at solving cloud-native problems. These are problems observed time and again when systems grow in size and scope, and are often relegated to cloud platforms. Solving cloud-native problems with microservices has seen a high rate of success, hence making many of their tools a perfect fit for this chapter.

Suffice it to say, entire books have been written on the subject of microservices, so, to further explore this realm, feel free to look about. For the rest of this chapter, we'll see how Spring Boot and Spring Cloud make it super simple to engage in microservice development without paying a huge cost.

There are hundreds of books written on the subject of microservices. For more details, check out the free book, Migrating to Cloud Native Application Architectures by cloud native polymath Matt Stine (http://mattstine.com). It covers many concepts that underpin microservices.



            

            
        
    
        

                            
                    Dynamically registering and finding services with Eureka

                
            
            
                
At a fundamental level, taking one big application (like we've built so far) and splitting it up into two or more microservices requires that the two systems communicate with each other. And to communicate, these systems need to find each other. This is known as service discovery.

The Netflix engineering team built a tool for this called Eureka, and open sourced it. Eureka provides the means for microservices to power up, advertise their existence, and shutdown as well. It supports multiple copies of the same service registering themselves, and allows multiple instances of Eureka to register with each other to develop a highly available service registry.

Standing up a Eureka Server is quite simple. We simply have to create a new application at http://start.spring.io:



Yes, that's correct. We create an entirely separate Spring Boot application using the Spring Initializr, apart from our functional application. And in the preceding screenshot, the arrows point out that we are calling it learning-spring-boot-eureka-server while also adding a single dependency, Eureka Server. This application will be dedicated to providing our microservices with a service registry.

If we peek at our Eureka Server's build file, we'll find a slim list of dependencies toward the bottom:

    dependencies { 
      compile('org.springframework.cloud:spring-cloud-starter-eureka-
       server') 
    } 
 
    dependencyManagement { 
      imports { 
        mavenBom "org.springframework.cloud:spring-cloud-
         dependencies:${springCloudVersion}" 
      } 
    } 

This short list has but one dependency--spring-cloud-starter-eureka-server. Following it is the same Spring Cloud Bill of Materials (BOM) used to provide the proper versions of the Spring Cloud components.

Toward the top of the build file, we can see the exact versions of both Spring Boot and Spring Cloud:

    buildscript { 
      ext { 
        springBootVersion = '2.0.0.M5' 
        springCloudVersion = 'Finchley.M3' 
      } 
      ... 
    } 

Spring Cloud's Finchley release train, also mentioned in the previous chapter, is the version compatible with Spring Boot 2.0.

With that in place, the only code we must write is shown here:

    @SpringBootApplication 
    @EnableEurekaServer 
    public class LearningSpringBootEurekaServerApplication { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootEurekaServerApplication.class); 
      } 
    } 

This preceding simple application can be described as follows:


	@SpringBootApplication marks this app as a Spring Boot application, which means that it will autoconfigure beans based on the classpath, and load properties as well.

	@EnableEurekaServer tells Spring Cloud Eureka that we want to run a Eureka Server. It proceeds to configure all the necessary beans to host a service registry.

	The code inside public static void main is the same as the previous chapters, simply loading the surrounding class.



Before we can launch our Eureka service registry, there are some key settings that must be plugged in. To do so, we need to create a src/main/resources/application.yml file as follows:

    server: 
      port: 8761 
 
    eureka: 
      instance: 
        hostname: localhost 
      client: 
        registerWithEureka: false 
        fetchRegistry: false 
        serviceUrl: 
          defaultZone: 
           http://${eureka.instance.hostname}:${server.port}/eureka/ 

The previous configuration file can be explained in detail as follows:


	server.port lets us run it on Eureka's standard port of 8761.

	For a standalone Eureka Server, we have to configure it with a eureka.instance.hostname and a eureka.client.serviceUrl.defaultZone setting. This resolves to http://localhost:8761/eureka, the URI for this standalone version of Eureka. For a multi-node Eureka Server configuration, we would alter this configuration.



Eureka servers are also clients, which means that with multiple instances running, they will send heartbeats to each other, and also registry data. With a standalone instance, we would get bombarded with log messages about failing to reach peers unless we disable the Eureka server from being a client via eureka.client.registerWithEureka=false and eureka.client.fetchRegistry=false (as we just did).

To run things in a more resilient mode, we could run two instances, each with a different Spring profile (peer1 and peer2) with the following configuration:

    --- 
    spring: 
      profiles: peer1 
    eureka: 
      instance: 
        hostname: peer1 
      client: 
        serviceUrl: 
          defaultZone: http://peer2/eureka/ 
 
    --- 
    spring: 
      profiles: peer2 
    eureka: 
      instance: 
        hostname: peer2 
      client: 
        serviceUrl: 
          defaultZone: http://peer1/eureka/ 

spring.profiles, in a YAML file with the triple-dash separators, lets us put multiple profiles in the same application.yml configuration file. To launch an application with a given profile, we merely need to run it with spring.profiles.active=peer1 or SPRING_PROFILES_ACTIVE=peer1. As stated, this configuration file has two profiles, peer1 and peer2.

Assuming we launched two separate copies of our Eureka Server, each on a different port running each profile, they would seek each other out, register as clients to each other, send heartbeats, and synchronize their registry data. It's left as an exercise for the reader to spin up a pair of Eureka Servers.

Going back to the original configuration file we wrote, we can now run LearningSpringBootEurekaServerApplication. With this service running in the background, we can now embark on converting our previous monolith into a set of microservices.



            

            
        
    
        

                            
                    Introducing @SpringCloudApplication

                
            
            
                
If you haven't caught on by now, we plan to split up the system we've built so far so that one microservice focuses on images, and the other on comments. That way, in the future, we can scale each service with the appropriate number of instances based on traffic.

To make this break, let's basically grab all the code from the comments subpackage, and move it into an entirely different project. We'll call one project images and the other one comments.

Before we can copy all that code, we need a project for each. To do so, simply create two new folders, learning-spring-boot-comments and learning-spring-boot-images. We could go back to Spring Initializr to create them from scratch, but that's unnecessary. It's much easier to simply copy the existing build file of our monolith into both of our new microservices, and customize the name of the artifact. Since the build.gradle file is almost identical to the monolith, there's no need to inspect it here.

The new comments microservice file layout should look something like this:



And the new images microservice file layout should appear something like this:





With that completed, we now need to tweak the launcher for our comments microservice like this:

    @SpringCloudApplication 
    public class LearningSpringBootCommentsApplication { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
            LearningSpringBootCommentsApplication.class); 
      } 
    } 

This last bit of code is, virtually, identical to what we have seen in previous chapters except for the following:


	@SpringCloudApplication replaces the previous @SpringBootApplication. This new annotation extends @SpringBootApplication, giving us the same autoconfiguration, component scanning, and property support (among other things) that we have come to love. Additionally, it adds @EnableDiscoveryClient to register with Eureka and @EnableCircuitBreaker so we can create fallback commands if a remote service is down (something we'll see explored later in this chapter).

	The name of the class has been changed to better describe its job.



There are both @EnableEurekaClient and @EnableDiscoveryClient annotations available. DiscoveryClient is the abstract interface that Spring Cloud Netflix puts above EurekaClient in the event that future service registry tools are built. At this point in time, there is little difference in our code, except the convenient usage of a single annotation,@SpringCloudApplication, to turn our component into a microservice.

Having split up images and comments, we should make a similar adjustment to the top-level class for images:

    @SpringCloudApplication 
    public class LearningSpringBootImagesApplication { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootImagesApplication.class, args); 
      } 
    } 

In the preceding code, we have applied the same type to the images microservice as we did to the comments microservice (@SpringBootApplication → @SpringCloudApplication).

For each of our microservices to talk to Eureka, we need to add the following code to src/main/resources/application.yml (in both images and comments):

    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://localhost:8761/eureka/

This single-property configuration file can be described as follows:


	eureka.client.serviceUrl.defaultZone instructs our DiscoveryClient-powered application to look for Eureka at http://localhost:8761/eureka.



There are many more options for configuring Eureka and its clients. See http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html for more details.

We can now move forward with splitting up our system.



            

            
        
    
        

                            
                    Calling one microservice from another with client-side load balancing

                
            
            
                
Remember how we configured our Eureka Server earlier to run on a separate port? Every microservice has to run on a distinct port. If we assume the images service is our frontend (it has the Thymeleaf template, and is closest to consumers for serving up image data), then we can let it continue to run on Netty's default port of 8080.

That leaves one decision: what port to run the comments service on? Let's add this to the comments service's application.yml:

    server: 
      port: 9000 

This setting instructs Spring Boot to run comments on port 9000. With that in place, let's go back to images, and make some adjustments.

For starters (Spring Boot starters), we need to add some extra things to the images build.gradle file:

    compile('org.springframework.cloud:spring-cloud-starter-eureka') 
    compile('org.springframework.cloud:spring-cloud-starter-hystrix') 

These changes include the following:


	spring-cloud-starter-eureka is the dependency needed to register our microservice as a Eureka client. It brings in several transitive dependencies, the most important one for this section being Ribbon.

	spring-cloud-starter-hystrix is the dependency for the circuit-breaker pattern, which we will dig into later in this chapter.



The Spring Framework has had, for a long time, the powerful RestTemplate utility. To make a remote call, we just do something like this:

    List<Comment> comments = restTemplate.exchange( 
      "http://localhost:9000/comments/{imageId}", 
      HttpMethod.GET, 
      null, 
      new ParameterizedTypeReference<List<Comment>>() {}, 
      image.getId()).getBody(); 

There's a lot going on here, so let's take it apart:


	restTemplate.exchange() is the generic method for making remote calls. There are shortcuts such as getForObject() and getForEntity(), but when dealing with generics (such as List<Comment>), we need to switch to exchange().

	The first argument is the URL to the comments service that we just picked. It has the port number we selected along with the route (/comments/{imageId}, a template) where we can serve up a list of comments based on the image's ID.

	The second argument is the HTTP verb we wish to use--GET.

	The third argument is for headers and any body. Since this is a GET, there are none.

	The fourth argument is the return type of the data. Due to limitations of Java's generics and type erasure, we have created a dedicated anonymous class to capture the type details for List<Comment>, which Spring can use to interact with Jackson to properly deserialize.

	The final argument is the parameter (image.getId()) that will be used to expand our URI template's {imageId} field.

	Since exchange() returns a Spring ResponseEntity<T>, we need to invoke the body() method to extract the response body.



There is a big limitation in this code when dealing with microservices--the URL of our target service can change.

Getting locked into a fixed location is never good. What if the comments service changes ports? What if we need to scale up multiple copies in the future?

Frankly, that's unacceptable.

The solution? We should tie in with Netflix's Ribbon service, a software load balancer that also integrates with Eureka. To do so, we only need some small additions to our images service.

First, we should create a RestTemplate object. To do so, let's add a Config class as follows:

    @Configuration 
    public class Config { 
 
      @Bean 
      @LoadBalanced 
      RestTemplate restTemplate() { 
        return new RestTemplate(); 
      } 
    } 

We can describe the preceding code as follows:


	@Configuration marks this as a configuration class containing bean definitions. Since it's located underneath LearningSpringBootImagesApplication, it will be automatically picked up by component scanning.

	@Bean marks the restTemplate() method as a bean definition.

	The restTemplate() method returns a plain old Spring RestTemplate instance.

	@LoadBalanced instructs Netflix Ribbon to wrap this RestTemplate bean with load balancing advice.



We can next inject our RestTemplate bean into the HomeController like this:

    private final RestTemplate restTemplate; 
 
    public HomeController(ImageService imageService, 
     RestTemplate restTemplate) { 
       this.imageService = imageService; 
       this.restTemplate = restTemplate; 
    } 

This uses constructor injection to set the controller's final copy of restTemplate.

With a load-balanced, Eureka-aware restTemplate, we can now update our index() method to populate the comments model attribute like this:

    restTemplate.exchange( 
      "http://COMMENTS/comments/{imageId}", 
      HttpMethod.GET, 
      null, 
      new ParameterizedTypeReference<List<Comment>>() {}, 
      image.getId()).getBody()); 

This code is almost identical to what we typed out earlier except for one difference--​the URL has been revamped into http://COMMENTS/comments/{imageId}. COMMENTS is the logical name that our comments microservice registered itself with in Eureka.

The logical name for a microservice used by Eureka and Ribbon is set using spring.application.name inside its src/main/resources/application.yml file:


	comments: spring.application.name: comments

	images: spring.application.name: images



The logical name is case insensitive, so you can use either http://COMMENTS/comments/{imageId} or http://comments/comments/{imageId}. Uppercase helps make it clear that this is a logical hostname, not a physical one.

With this in place, it doesn't matter where we deploy our system nor how many instances are running. Eureka will dynamically update things, and also support multiple copies registered under the same name. Ribbon will handle routing between all instances.

That's nice except that we still need to move the CommentReadRepository we built in the previous chapter to the comments microservice!

In the previous chapter, we differentiated between reading comments with a CommentReadRepository and writing comments with a CommentWriteRepository. Since we are concentrating all MongoDB operations in one microservice, it makes sense to merge both of these into one CommentRepository like this:

    public interface CommentRepository 
     extends Repository<Comment, String> { 
 
       Flux<Comment> findByImageId(String imageId); 
 
       Flux<Comment> saveAll(Flux<Comment> newComment); 
 
       // Required to support save() 
       Mono<Comment> findById(String id); 
 
       Mono<Void> deleteAll(); 
    } 

Our newly built repository can be described as follows:


	We've renamed it as CommentRepository

	It still extends Repository<Comment, String>, indicating it only has the methods we need

	The findByImageId(), save(), findOne(), and deleteAll() methods are all simply copied into this one interface



It's generally recommended to avoid sharing databases between microservices, or at least avoid sharing the same tables. The temptation to couple in the database is strong, and can even lead to integrating through the database. Hence, the reason to move ALL MongoDB comment operations to one place nicely isolates things.

Using this repository, we need to build a REST controller to serve up lists of comments from /comments/{imageId}:

    @RestController 
    public class CommentController { 
 
      private final CommentRepository repository; 
 
      public CommentController(CommentRepository repository) { 
        this.repository = repository; 
      } 
 
      @GetMapping("/comments/{imageId}") 
      public Flux<Comment> comments(@PathVariable String imageId) { 
        return repository.findByImageId(imageId); 
      } 
    } 

This previous tiny controller can be easily described as follows:


	@RestController indicates this is a Spring WebFlux controller where all results are written directly into the HTTP response body

	CommentRepository is injected into a field using constructor injection

	@GetMapping() configures this method to respond to GET /comments/{imageId} requests.

	@PathVariable String imageId gives us access to the {imageId} piece of the route

	The method returns a Flux of comments by invoking our repository's findByImage() using the imageId



Having coded things all the way from populating the UI with comments in our images service, going through Ribbon and Eureka, to our comments service, we are fetching comments from the system responsible for managing them.

RestTemplate doesn't speak Reactive Streams. It's a bit too old for that. But there is a new remote calling library in Spring Framework 5 called WebClient. Why aren't we using it? Because it doesn't (yet) support Eureka logical hostname resolution. Hence, the part of our application making RestTemplate calls is blocking. In the future, when that becomes available, I highly recommend migrating to it, based on its fluent API and support for Reactor types.

In addition to linking two microservices together with remote calls, we have decoupled comment management from image management, allowing us to scale things for efficiency and without the two systems being bound together too tightly.

With all these changes in place, let's test things out. First of all, we must ensure our Eureka Server is running:

          .   ____          _            __ _ _
    /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
    ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
    \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
    =========|_|==============|___/=/_/_/_/
    :: Spring Boot ::             (v2.0.0.M5)
    
    2017-08-12 09:48:47.966: Setting initial instance status as: 
     STARTING
    2017-08-12 09:48:47.993: Initializing Eureka in region us-east-1
    2017-08-12 09:48:47.993: Client configured to neither register nor
     que...
    2017-08-12 09:48:47.998: Discovery Client initialized at timestamp 
     150...
    2017-08-12 09:48:48.042: Initializing ...
    2017-08-12 09:48:48.044: The replica size seems to be empty.
     Check the...
    2017-08-12 09:48:48.051: Finished initializing remote region 
     registrie...
    2017-08-12 09:48:48.051: Initialized
    2017-08-12 09:48:48.261: Registering application unknown with 
     eureka w...
    2017-08-12 09:48:48.294: Setting the eureka configuration..
    2017-08-12 09:48:48.294: Eureka data center value eureka.datacenter
     is...
    2017-08-12 09:48:48.294: Eureka environment value 
     eureka.environment i...
    2017-08-12 09:48:48.302: isAws returned false
    2017-08-12 09:48:48.303: Initialized server context
    2017-08-12 09:48:48.303: Got 1 instances from neighboring DS node
    2017-08-12 09:48:48.303: Renew threshold is: 1
    2017-08-12 09:48:48.303: Changing status to UP
    2017-08-12 09:48:48.307: Started Eureka Server
    2017-08-12 09:48:48.343: Tomcat started on port(s): 8761 (http)
    2017-08-12 09:48:48.343: Updating port to 8761
    2017-08-12 09:48:48.347: Started 
    LearningSpringBootEurekaServerApplica...
  

In this preceding subset of console output, bits of Eureka can be seen as it starts up on port 8761 and switches to a state of UP. It may seem quirky to see messages about Amazon Web Services (AWS), but that's not surprising given Eureka's creators (Netflix) run all their systems there. However, isAws returned false clearly shows the system knows it is NOT running on AWS.

If you look closely, you can spot that the Eureka Server is running on Apache Tomcat. So far, we've run everything on Netty, right? Since Eureka is a separate process not involved in direct operations, it's okay for it not to be a Reactive Streams-based application.

Next, we can fire up the images service:

      .   ____          _            __ _ _
    /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
    ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
    \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
    =========|_|==============|___/=/_/_/_/
    :: Spring Boot ::  (v2.0.0.M5)
    
    ...
    
    2017-10-20 22:29:34.319: Registering application images with eureka
     wi...
    2017-10-20 22:29:34.320: Saw local status change event
     StatusChangeEve...
    2017-10-20 22:29:34.321: DiscoveryClient_IMAGES/retina:images:
     registe...
    2017-10-20 22:29:34.515: DiscoveryClient_IMAGES/retina:images - 
     regist...
    2017-10-20 22:29:34.522: Netty started on port(s): 8080 (http)
    2017-10-20 22:29:34.523: Updating port to 8080
    2017-10-20 22:29:34.906: Opened connection 
    [connectionId{localValue:2,...
    2017-10-20 22:29:34.977: Started 
    LearningSpringBootImagesApplication i...  

This preceding subsection of console output shows it registering itself with the Eureka service through DiscoveryClient under the name IMAGES.

At the same time, the following tidbit is logged on the Eureka Server:

Registered instance IMAGES/retina:images with status UP 
(replication=false)  

We can easily see that the images service has registered itself with the name IMAGES, and it's running on retina (my machine name).

Finally, let's launch the comments microservice:

      .   ____          _            __ _ _
    /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
    ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
    \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
    =========|_|==============|___/=/_/_/_/
    :: Spring Boot ::  (v2.0.0.M5)
    
    ...
    
    2016-10-20 22:37:31.477: Registering application comments with
     eureka ...
    2016-10-20 22:37:31.478: Saw local status change event
     StatusChangeEve...
    2016-10-20 22:37:31.480: 
     DiscoveryClient_COMMENTS/retina:comments:9000...
    2016-10-20 22:37:31.523: 
     DiscoveryClient_COMMENTS/retina:comments:9000...
    2016-10-20 22:37:32.154: Netty started on port(s): 9000 (http)
    2016-10-20 22:37:32.155: Updating port to 9000
    2016-10-20 22:37:32.188: Opened connection 
     [connectionId{localValue:2,...
    2016-10-20 22:37:32.209: Started 
    LearningSpringBootCommentsApplication...

In this last output, our comment handling microservice has registered itself with Eureka under the logical name COMMENTS.

And again, in the Eureka Server logs, we can see a corresponding event:

Registered instance COMMENTS/retina:comments:9000 with status UP 
(replication=false)  

The COMMENTS service can be found at retina:9000 (author alert--that's my laptop's hostname, yours will be different), which matches the port we configured that service to run on.

To see all this from a visual perspective, let's navigate to http://localhost:8761, and see Eureka's webpage:



This preceding web page is not provided by Netflix Eureka, but is crafted by the Spring Cloud Netflix project (hence Spring Eureka at the top) instead. It has some basic details about the environment including uptime, refresh policies, and others.

Further down on the page is some more interesting information:



DS (Discovery Service) Replica details are listed on the web page. Specifically, we can see the logical applications on the left (COMMENTS and IMAGES), their status on the right (both UP), and hyperlinks to every instance (retina:comments:9000 and retina:images).

If we actually click on the retina:comments:9000 hyperlink, it takes us to the Spring Boot info endpoint:



In this case, there is no custom info provided. But it also proves that the service is up and operational.

We may have verified everything is up, but let's prove that our new and improved microservice solution is in operation by visiting http://localhost:8080.

If we load up a couple of new images and submit some comments, things can now look like this:






What's happening under the hood? If we look at the images microservice's console, we can see a little action:

    2016-10-20 22:53:07.260  Flipping property: 
     COMMENTS.ribbon.ActiveConn...
    2016-10-20 22:53:07.286  Shutdown hook installed for: 
     NFLoadBalancer-P...
    2016-10-20 22:53:07.305  Client:COMMENTS instantiated a 
     LoadBalancer:D...
    2016-10-20 22:53:07.308  Using serverListUpdater 
     PollingServerListUpda...
    2016-10-20 22:53:07.325  Flipping property: 
     COMMENTS.ribbon.ActiveConn...
    2016-10-20 22:53:07.326  DynamicServerListLoadBalancer for client
     COMM...
        DynamicServerListLoadBalancer: {
            NFLoadBalancer:name=COMMENTS,
            current list of Servers=[retina:9000],
        }ServerList:org.springframework.cloud.netflix
        .ribbon.eureka.DomainExt...
    2016-10-20 22:53:08.313  Flipping property: 
     COMMENTS.ribbon.ActiveConn...
    2016-10-20 22:54:33.870  Resolving eureka endpoints via 
     configuration  

There's a lot of detail in the preceding output, but we can see Netflix Ribbon at work handling software load balancing. We can also see DynamicServerListLoadBalancer with a current list of servers containing [retina:9000].

So, what would happen if we launched a second copy of the comments service using SERVER_PORT=9001 to ensure it didn't clash with the current one?

In the console output, we can spot the new instance registering itself with Eureka:

DiscoveryClient_COMMENTS/retina:comments:9001 - registration
 status: 204  

If we go back and visit the Spring Eureka web page again at http://localhost:8761, we can see this updated listing of replicas:



If we start posting comments on the site, they will rotate, going between each comments microservice.

Normally, when using RabbitMQ, each instance of comments will register its own queue, and hence, receive its own copy of newly posted comments. This would result in double posting in this scenario. However, Spring Cloud Stream has a solution--consumer groups. By having spring.cloud.stream.bindings.input.group=comments in comments microservice's application.yml, we declare that only one such queue should receive each individual message. This ensures that only one of the microservices actually processes a given event. See http://docs.spring.io/spring-cloud-stream/docs/Elmhurst.M1/reference/htmlsingle/index.html#consumer-groups for more details.

With microservice-to-microservice remote calls tackled (and supported for scaling up), it's time to pursue another problem often seen in microservice-based solutions.



            

            
        
    
        

                            
                    Implementing microservice circuit breakers

                
            
            
                
The ability to invoke a remote microservice comes with an implicit risk--there is always a chance that the remote service is down.

Remember using @SpringCloudApplication? As a reminder, that annotation contains:

    @SpringBootApplication 
    @EnableDiscoveryClient 
    @EnableCircuitBreaker 
    public @interface SpringCloudApplication { 
    } 

The last annotation, @EnableCircuitBreaker, enables Netflix Hystrix, the circuit breaker solution (http://martinfowler.com/bliki/CircuitBreaker.html).

In short, a circuit breaker is something that, when it detects a certain threshold of failure, will open the circuit and prevent any future remote calls for a certain amount of time. The purpose is to prevent cascade failures while giving the remote service an opportunity to heal itself and come back online. Slamming a service in the middle of startup might be detrimental.

For example, if the images microservice's HomeController makes a call to comments, and the system is down, it's possible for the calling thread to get hung up waiting for the request to timeout properly. In the meantime, incoming requests are served by a slightly reduced threadpool. If the problem is bad enough, it can hamper calls coming into the frontend controller, effectively spreading the remote service outage to users.

A side effect when operating multiple instances of such a service is that it can also speed up the failover to an alternate instance of the service.

In exchange for opening the circuit on a service (and failing a call), we can provide a fallback command. For example, if Netflix's recommendation engine happens to be down when a user finishes a show, it will fallback to showing a list of newly released shows. This is definitely better than a blank screen, or, worse, a cryptic stack trace on the website or someone's TV.

In the previous section, we had this fragment of code inside HomeController.index():

    restTemplate.exchange( 
      "http://COMMENTS/comments/{imageId}", 
      HttpMethod.GET, 
      null, 
      new ParameterizedTypeReference<List<Comment>>() {}, 
      image.getId()).getBody()); 

We want to wrap this remote call to the comments system with a circuit breaker/fallback command.

First, we need to move the code into a separate method as follows:

    @HystrixCommand(fallbackMethod = "defaultComments") 
    public List<Comment> getComments(Image image) { 
      return restTemplate.exchange( 
        "http://COMMENTS/comments/{imageId}", 
        HttpMethod.GET, 
        null, 
        new ParameterizedTypeReference<List<Comment>>() {}, 
        image.getId()).getBody(); 
 
    } 

This tiny Hystrix command can be described as follows:


	This shows the exact same restTemplate call we wrote using Ribbon and Eureka earlier in this chapter

	@HystrixCommand(fallback="defaultComments") wraps the method with an aspect that hooks into a Hystrix proxy

	In the event the remote call fails, Hystrix will call defaultComments



What would make a good fallback command? Since we're talking about user comments, there is nothing better than an empty list, so a separate method with the same signature would be perfect:

    public List<Comment> defaultComments(Image image) { 
      return Collections.emptyList(); 
    } 

In this scenario, we return an empty list. But what makes a suitable fallback situation will invariably depend on the business context.

Hystrix commands operate using Spring AOP (Aspect Oriented Programming). The standard approach is through Java proxies (as opposed to AspectJ weaving, which requires extra setup). A well-known issue with proxies is that in-class invocations don't trigger the enclosing advice. Hence, the Hystrix command method must be put inside another Spring bean, and injected into our controller.

There is some classic advice to offer when talking about Hystrix's AOP advice--be careful about using thread locals. However, the recommendation against thread locals is even stronger when we are talking about Reactor-powered applications, the basis for this entire book. That's because Project Reactor uses work stealing, a well-documented concept that involves different threads pulling work down when idle. Reactor's scheduler is thread agnostic, which means that we don't know where the work is actually being carried out. So don't use thread locals when writing Reactor applications. This impacts other areas too such as Spring Security, which uses thread locals to maintain contextual security status with SecurityContextHolder. We'll visit this subject in Chapter 9, Securing Your App with Spring Boot.

The following shows our method pulled into a separate class:

    @Component 
    public class CommentHelper { 
  
      private final RestTemplate restTemplate; 
 
      CommentHelper(RestTemplate restTemplate) { 
        this.restTemplate = restTemplate; 
      } 
 
      // @HystrixCommand code shown earlier 
 
      // fallback method 
    } 

We've already seen the @HystrixCommand code as well as the fallback. The other parts we wrote include:


	The CommentHelper class is flagged with an @Component annotation, so, it's picked up and registered as a separate Spring bean

	This component is injected with the restTemplate we defined earlier via constructor injection



To update our HomeController to use this instead, we need to adjust its injection point:

    private final CommentHelper commentHelper; 
 
    public HomeController(ImageService imageService, 
     CommentHelper commentHelper) { 
       this.imageService = imageService; 
       this.commentHelper = commentHelper; 
    } 

The code in HomeController is almost the same, except that instead of injecting a RestTemplate, it injects commentHelper.

Finally, the call to populate comments in the index() method can be updated to use the new commentHelper:

    put("comments", commentHelper.getComments(image)); 

At this point, instead of calling restTemplate to make a remote call, we are invoking commentHelper, which is wrapped with Hystrix advice to handle failures, and, potentially, open a circuit.

Notice earlier that I said, "In the event the remote call fails, Hystrix will call defaultComments.", but didn't mention anything about opening the circuit? Perhaps that's confusing, since this whole section has been about the circuit breaker pattern. Hystrix tabulates every failure, and only opens the circuit when a certain threshold has been breached. One missed remote call isn't enough to switch to an offline state.



            

            
        
    
        

                            
                    Monitoring circuits

                
            
            
                
Okay, we've coded up a command with a circuit breaker, and given it a fallback command in the event the remote service is down. But how can we monitor it? Simply put--how can we detect if the circuit is open or closed?

Introducing the Hystrix Dashboard. With just a smidgeon of code, we can have another Spring Boot application provide us with a graphical view of things. And from there, we can test out what happens if we put the system under load, and then break the system.

To build the app, we first need to visit http://start.spring.io, and select Hystrix Dashboard and Turbine. If we also select Gradle and Spring Boot 2.0.0, and enter in our similar artifact details, we can produce another app. (Notice how handy it is to simply let everything be a Spring Boot app?)

The build file is the same except for these dependency settings:

    buildscript { 
      ext { 
        springBootVersion = '2.0.0.M5' 
        springCloudVersion = 'Finchley.M3' 
      } 
      ... 
    } 
    ... 
    dependencies { 
      compile('org.springframework.cloud:spring-cloud-starter-
       hystrix-dashboard') 
    } 
 
    dependencyManagement { 
      imports { 
        mavenBom "org.springframework.cloud:spring-cloud-
         dependencies:${springCloudVersion}" 
      } 
    } 

We can explain this preceding build file as follows:


	We pick up spring-cloud-starter-hystrix-dashboard to build a UI for monitoring circuits

	Again, we select Spring Cloud's Finchley BOM release with the dependencyManagement settings



To display the Hystrix dashboard, this is all we need:

    @SpringBootApplication 
    @EnableHystrixDashboard 
    public class LearningSpringBootHystrixDashboard { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootHystrixDashboard.class); 
      } 
    } 

This previous tiny application can be described as such:


	@SpringBootApplication declares this to be a Spring Boot application. We don't need @SpringCloudApplication, because we don't intend to hook into Eureka, nor institute any circuit breakers.

	@EnableHystrixDashboard will start up a UI that we'll explore further in this section.

	The class public static void main is used to launch this class.



To configure this service, we need the following settings:

    server: 
      port: 7979 

Hystrix Dashboard is usually run on port 7979.

With this in place, let's launch the application and take a peek. To see the dashboard, we must navigate to http://localhost:7979/hystrix:



Here we have a pretty simple interface, as seen in the preceding screenshot. It tells us we have options regarding what we want to view. The simplest variant is to have the dashboard look at one microservice's collection of circuits. This preceding screenshot shows the URL for the images service, the one we wrote a @HystrixCommand for.

Since each microservice that has @EnableCircuitBreaker (pulled in via @SpringCloudApplication) has a /hystrix.stream endpoint outputting circuit metrics, we can enter that service's URL.

After clicking Monitor Stream, we can see this nice visual display of our single circuit:



There's a lot on the preceding screen, so let's break it down:


	Across the top is the ability to sort various circuits based on different criteria. We only have one circuit, so it's not that important.

	getComments is shown underneath Circuit. The color coding of the numbers runs across the top, from Success to Failure, with everything currently showing 0.

	There is an overall failure percentage (also at 0%).

	There is a rate of activity for the host and for the cluster (also at 0/second).

	It may be hard to spot, but there's a flat horizontal line just left of Cluster. This will actually update based on traffic, showing spikes.

	Finally, it tracks the cost of making remote calls, and includes some statistics such as Mean, Median, 90 percentile, 95 percentile, and 99.5 percentile.

	The Thread Pools section can show how taxed the system is from a threading perspective. This can help us tune @HystrixCommand if we need to adjust thread-pool settings.



With circuit monitoring set up, why don't we institute a failure, and watch the whole thing go down and then recover?

To do that, we need to update our simulator that we created earlier in this book:

    @Profile("simulator") 
    @Component 
    public class CommentSimulator { 
 
      private final HomeController homeController; 
      private final CommentController commentController; 
      private final ImageRepository repository; 
 
      private final AtomicInteger counter; 
 
      public CommentSimulator(HomeController homeController, 
       CommentController commentController, 
       ImageRepository repository) { 
         this.homeController = homeController; 
         this.commentController = commentController; 
         this.repository = repository; 
         this.counter = new AtomicInteger(1); 
      } 
 
      @EventListener 
      public void simulateComments(ApplicationReadyEvent event) { 
        Flux 
         .interval(Duration.ofMillis(1000)) 
         .flatMap(tick -> repository.findAll()) 
         .map(image -> { 
           Comment comment = new Comment(); 
           comment.setImageId(image.getId()); 
           comment.setComment( 
             "Comment #" + counter.getAndIncrement()); 
              return Mono.just(comment); 
           }) 
           .flatMap(newComment -> 
            Mono.defer(() -> 
             commentController.addComment(newComment))) 
             .subscribe(); 
      } 
 
      @EventListener 
      public void simulateUsersClicking(ApplicationReadyEvent event) { 
        Flux 
          .interval(Duration.ofMillis(500)) 
          .flatMap(tick -> 
           Mono.defer(() -> 
            homeController.index(new BindingAwareModelMap()))) 
            .subscribe(); 
      } 
    } 

The following are some key points to note about this preceding code:


	The @Profile annotation indicates that this component is only active when spring.profiles.active=simulator is set in the environment variables.

	By constructor injection, it gets copies of both, CommentController and HomeController.

	simulateActivity() is triggered when Spring Boot generates an ApplicationReadyEvent.

	The Flux generates a tick every 1000 ms. This tick is transformed into a request for all images, and then a new comment is created against each one, simulating user activity.

	simulateUsersClicking() is also triggered by the same ApplicationReadyEvent. It has a different Flux that simulates a user loading the home page every 500 ms.



In both of these simulation flows, the downstream activity needs to be wrapped in a Mono.defer in order to provide a target Mono for the downstream provider to subscribe to.

Finally, both of these Reactor flows must be subscribed to, or they will never run.

If we relaunch the images service, and watch the Hystrix Dashboard, we get a nice, rosy picture:



The bubble on the left of the preceding screenshot is green, and the green 60 at the top indicates that the volume of traffic for its window of monitoring shows 60 successful hits. Looking at the rate (6.0/s), we can deduce this is a 10-second window.

I realize that in print, the bubble along with all the numbers are gray, but you can tell success/failure by noting that the circuit is Closed, meaning, traffic is flowing through it.

Let's switch over to our IDE, and kill the comments microservice:



This preceding screenshot shows IntelliJ IDEA. Your IDE's kill switch may appear different.

If we jump back to the dashboard, things look very different:



The 10 second window shows 6 successful calls, 30 failed calls, and 24 short circuited calls. The horizontal status line takes a precipitous drop, and the green bubble has now turned red. Additionally, the circuit is now Open.

Again, you may not be able to discern the bubble is red in print, but the circuit is now Open, indicating the failures are being replaced with short-circuited calls.

If we follow this outage a little longer, things migrate all the way to 100% failure:



Now there are only two failures with 58 short-circuited calls. In essence, with the circuit Open, there is no point in trying to make remote calls and wasting resources. Instead, we use the fallback method without question. We can also see the graph has flatlined at the bottom.

We can simulate our ops team rushing in and fixing things by restarting the comments service:



With a little bit of time, this service will come back up and re-register with Eureka, making it available. After that, the circuit breaker must wait a minimum amount of time before a remote call will even be attempted.

Hystrix's default setting is 50% failure or higher to open the circuit. Another subtle property is that a minimum number of requests must be made to possibly open the circuit. The default is 20, meaning that 19 failures in a row would not open it. When the circuit is opened, Hystrix keeps the circuit open a minimum amount of time before looking at the rolling window (default: 5000 ms). Hystrix maintains a rolling window, by default, 10 seconds split up into 10 buckets. As a new bucket of metrics is gathered, the oldest is dropped. This collection of buckets is what is examined when deciding whether or not to open the circuit.

As you can see, there is a lot of sophistication to Hystrix's metrics. We'll just use the defaults here. But if you're interested in adjusting Hystrix's various settings, visit https://github.com/Netflix/Hystrix/wiki/configuration where all its parameters are documented.

When we make a remote call, the circuit is immediately closed:



Successful calls climbs to 57, and the number of short-circuited and failed calls clears out in a few seconds time. The graph turns around and climbs back up, showing a nice recovery.

The circuit breaker we have in place watches REST calls from images to comments. The means the mechanism by which new comments are sent over the wire via RabbitMQ is, inherently, fault tolerant. While comments was down, the new comments pile up in RabbitMQ's exchange until the queue restored itself, and the system caught up.

This nice little scenario shows how we can keep a visual eye on microservice-to-microservice operations.



            

            
        
    
        

                            
                    Offloading microservice settings to a configuration server

                
            
            
                
One thing that quickly adds up when building a microservice-based solution are all the properties that must be managed. It's one thing to manage a single application's application.yml file, and make tweaks and adjustments. But working with all these services, and having to jump to the correct file underneath each application's src/main/resources folder quickly becomes daunting. On top of that, when trying to make changes or adjustments, it is easy to overlook the settings of one microservice.

A key piece of the twelve-factor app (https://12factor.net/) is externalizing configuration. We already took a big step using Spring Boot's powerful property support. But Spring Cloud brings another key technology to the table that takes property support to the next level--Spring Cloud Config Server.

The Config Server let's us put all the properties into a centralized location, and feed them via an application to our existing microservices.

To see how, let's dive into creating one. First, go to http://start.spring.io and select Config Server (along with our other favorite settings).

When we do that, we get a familiar Gradle build file containing the following dependencies:

    buildscript { 
      ext { 
        springBootVersion = '2.0.0.M5' 
        springCloudVersion = 'Finchley.M3' 
      } 
      ... 
    } 
    ... 
    dependencies { 
      compile('org.springframework.cloud:spring-cloud-config-server') 
    } 
 
    dependencyManagement { 
      imports { 
        mavenBom "org.springframework.cloud:spring-cloud-  
         dependencies:${springCloudVersion}" 
      } 
    } 

We can explain this preceding build file as follows:


	spring-cloud-starter-config-server is only needed to run a config server, not a config server client

	The dependencyManagement shows us the release train of Spring Cloud we are using



In a way very analogous to the Hystrix Dashboard, we will create a Config Server:

    @SpringBootApplication 
    @EnableConfigServer 
    public class LearningSpringBootConfigServer { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootConfigServer.class, args); 
      } 
    } 

This preceding app isn't hard to unravel:


	@SpringBootApplication marks this as a Spring Boot application. Since this is the cornerstone of the rest of our microservices (including Eureka), it doesn't use Eureka.

	@EnableConfigServer launches an embedded Spring Cloud Config Server, full of options. We'll use the defaults as much as possible.

	It has a public static void main to launch itself.



With that, we just need a couple of property settings in application.yml:

    server: 
      port: 8888 
   
    spring: 
      cloud: 
        config: 
          server: 
            git: 
              uri: https://github.com/gregturn/learning-spring-boot-
               config-repo 


	Let's set its port to 8888, since that is the default port for Spring Cloud Config clients

	By setting spring.cloud.config.server.git.uri to https://github.com/gregturn/learning-spring-boot-config-repo, we tell the Config Server where to get its property settings for all the other services



That's it! That's all we need to build a Config Server. We can launch it right now, but there is one thing missing--all the other properties of the application!

To configure properties for our Eureka Server, we need to add a eureka.yml that looks like this:

    server: 
      port: 8761 
 
    eureka: 
      instance: 
        hostname: localhost 
      client: 
        registerWithEureka: false 
        fetchRegistry: false 
        serviceUrl: 
          defaultZone: 
           http://${eureka.instance.hostname}:${server.port}/eureka/ 

If you'll notice, this is the exact same setting we put into the Eureka Server's application.yml earlier in this chapter. We are simply moving it into our config repo.

To make our Eureka Server talk to a Config Server, we need to add this to its build file:

    compile('org.springframework.cloud:spring-cloud-starter-config') 

What does this single dependency do?


	spring-cloud-starter-config empowers the Eureka Server to talk to the Config Server for property settings



It's important to note that spring-cloud-starter-config is for clients to the Config Server. The dependency that was added to the Config Server itself was spring-cloud-starter-config-server, which is only needed to create a Config Server.

There is a certain order by which Spring Boot launches things. Suffice it to say, property sources must be read early in the Spring lifecycle in order to work properly. For this reason, Spring Cloud Config clients must have a bootstrap.yml file. The one for the Eureka Server must look like this:

    spring: 
      application: 
        name: eureka 

Not a whole lot needs to be in here, but at a minimum, spring.application.name needs to be set so that the Config Server knows which property file to fetch from its config repo. By default, Spring Cloud Config clients will seek {spring.application.name}.yml, so in this case, eureka.yml.

Assuming we have committed eureka.yml to our GitHub-based config repo and launched the config server, we can actually see what is served up:



Let's tear apart the details of this preceding screenshot:


	http://localhost:8888/eureka/default looks up spring.application.name=eureka, and finds the default state of things

	The name eureka is at the top along with information like its label and SHA version

	The config server entry lists the available Spring property sources (eureka.yml) along with each property found in that property source



It's possible to retrieve different versions of configuration settings. All we have to do is set spring.cloud.config.label=foo in bootstrap.yml to fetch an alternative label. When we use Git as the repository, a label can refer to either a branch or a tag.

In essence, the Spring Cloud Config Server is Yet Another Way™ to craft a property source that the Spring Framework can intrinsically consume.

Next, let's move all the properties for images from its application.yml file into the config repo's images.yml like this:

    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://localhost:8761/eureka/ 
 
    spring: 
      cloud: 
        stream: 
          bindings: 
            output: 
              destination: learning-spring-boot-comments 
              group: comments-service 
              content-type: application/json 

With all these settings moved to the Config Server's images.yml file, we can replace the application.yml with the following src/main/resources/bootstrap.yml file:

    spring: 
      application: 
        name: images 

Earlier in this chapter, spring.application.name=images, along with all the other settings, were combined in application.yml. To work with Spring Cloud Config Server, we split out spring.application.name, and put it inside bootstrap.yml.

We can do the same for comments by moving all of its property settings into comments.yml. You can see it at https://github.com/gregturn/learning-spring-boot-config-repo/blob/master/comments.yml, if you wish, along with hystrix-dashboard.yml.

Instead, we'll give comments the following src/main/resources/bootstrap.yml file:

    spring: 
      application: 
        name: comments 

And do the same for our Hystrix Dashboard app:

    spring: 
      application: 
        name: hystrix-dashboard 

You know what's truly amazing about all this? We don't have to touch the services. At all.

Is running lots of microservices inside your IDE driving you nuts? Constantly starting and stopping can get old, real fast. IntelliJ IDEA has the Multirun (https://plugins.jetbrains.com/plugin/7248) plugin that lets you group together several launch configurations into a single command. If you use Eclipse, the CDT (C/C++ Development Tooling) module provides a component called Launch Groups that lets you do the same. The following screenshot shows the IntelliJ IDEA Multirun plugin configured for our microservices.



Notice the little 10 second delay in the bottom-right corner of the preceding screenshot? The Config Server needs to be up and operational before any other services start, or they'll fall on default settings.

Using the Multirun plugin, if we launch everything, we should have a nice little system up:



Each service, when it launches, should show something like this:



Without touching a line of code, and simply moving most of what we've already written into another location (or into bootstrap.yml), we have extracted the entire configuration of our social media site to a remote location, making configuration a snap to maintain.

So, is our little snap-a-picture social media platform ready for IPO? Heh, maybe not yet. But we've made a major enhancement that will make us more stable and ready for growth by breaking things up into microservices without breaking the bank.

There are lots of options in the Spring Cloud Config Server. You can register it with Eureka, direct clients to fail fast if it's not up, have clients retry if its down at startup, and more. Security options include the ability to secure the Config Server so that not just anyone can access it (something we'll visit in Chapter 9, Securing Your App with Spring Boot). For more details, see http://cloud.spring.io/spring-cloud-config.



Spring Cloud Config Server currently supports GitHub, GitLab, and Bitbucket out of the box. This means that you can quickly put your configuration on a publicly hosted GitHub repository, but you can also install GitLab inside your data center, and point there, instead, to reduce the risk of public repository outages.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we took a quick tour of building a microservice-based solution using several Spring Cloud projects combined with their Netflix OSS counterparts. This lets us make each component smaller, easier to maintain, and more scalable in the long run.

With little effort, we made it possible to run multiple copies of services, and not have other microservices be impacted by such changes. Services could call other services, we were able to introduce some resiliency, and we could offload the configuration of this system to an externalized, centralized repository.

In the next chapter, we will shift our focus back to user experience, and introduce Spring's WebSocket support to help make the UX more dynamic.



            

            
        
    
        

                            
                    WebSockets with Spring Boot

                
            
            
                
Hell yeah @springboot rocks! (after winning JAX Innovation Award 2016)

– Andrew Rubalcaba @Han_Cholo

In the previous chapter, we learned how to split our application into microservices driven by bounded contexts. Yet, we still linked things together in an efficient manner using Spring Cloud.

When it comes to building a social media platform, the standard has been set very high. We all expect dynamic updates to whatever content we view. If someone comments on a topic that we are also viewing, we expect to be alerted to the update immediately. Such fluid changes are made possible through the power of WebSockets.

In this chapter, we will cover the following topics:


	Publishing saved comments to a chat service

	Broadcasting saved comments to web subscribers

	Configuring a WebSocket broker

	Consuming messages from the web asynchronously

	Introducing user chatting with channel-wide and user-specific messages



We will use Spring's reactive WebSocket API found in WebFlux while also using a little JavaScript in our template.



            

            
        
    
        

                            
                    Publishing saved comments to a chat service

                
            
            
                
In the previous chapter, we connected our images service to the comments service via Spring Cloud Stream. This let us transmit new comments over the wire to a service dedicated to storing them in a MongoDB data store.

The following screenshot shows us entering a new comment:



To carry on this use case to its natural conclusion, it's expected that after storing a message, we'd want to share it with everyone, right? To do so, let's pick up with the comment microservice's CommentService.

In the previous chapter, the comments service transformed an incoming stream of Flux<Comment> into a Flux<Void>, a stream of voids. This had the effect of, essentially, dropping the stream at this point. In this chapter, we want to take that incoming stream of comments and forward them.

This is accomplished by altering the Comment.save() operation as follows:

    @StreamListener 
    @Output(Processor.OUTPUT) 
    public Flux<Comment> save(@Input(Processor.INPUT) Flux<Comment> 
     newComment) { 
       return repository 
        .saveAll(newComment) 
        .map(comment -> { 
          log.info("Saving new comment " + comment); 
          meterRegistry
            .counter("comments.consumed", "imageId", comment.getImageId())
            .increment(); 
          return comment; 
        }); 
    } 

This previous code is almost identical to what we had before except for the following changes:


	The last step of the map operation now returns comment instead of Mono.empty()

	The method now has a return type of Flux<Comment>



With this tweak, the return results from save() are transmitted over the Source.OUTPUT channel.

Processor.INPUT and Processor.OUTPUT are just channel names. They don't say where anything goes. That's why we need to configure bindings.

Our comments.yml properties file stored on the Config Server needs to be upgraded as follows:

    server: 
      port: 9000 
 
    spring: 
      cloud: 
        stream: 
          bindings: 
            input: 
              destination: learning-spring-boot-comments 
              group: comments-service 
              content-type: application/json 
            output: 
              destination: learning-spring-boot-chat 
              group: comments-chat 
              content-type: application/json 

The preceding code is mostly the same as the previous chapter, but with the following:


	spring.cloud.stream.bindings.input and its properties are the same as before

	spring.cloud.stream.bindings.output.destination points to a different exchange to avoid colliding with the one feeding messages into this service

	spring.cloud.stream.bindings.output.group provides a logical grouping to ensure proper handling if we ever scale up to more than one instance of comments service

	spring.cloud.stream.bindings.output.content-type is marked application/json, indicating we don't expect the consumer to use the same domain class, but will probably deserialize into their own POJO instead



With these changes, we can expect an output as follows:

2017-07-05 00:00:36.769  INFO 92207 --- [ments-service-1] 
c.g.l.comments.CommentService : Saving new comment Comment(id=null,
imageId=581d6669596aec65dc9e6c05, comment=Nice cover!)

With all these changes, our comments microservice is geared up to transmit saved comments to someone else able to broadcast to users. It may be tempting to send them back to the images service. But let's continue with the concept of keeping a narrow scope, and send this traffic to a different, chat-focused microservice instead. We can even call it the chat service!



            

            
        
    
        

                            
                    Creating a chat service to handle WebSocket traffic

                
            
            
                
If we visit http://start.spring.io, select Gradle, Spring Boot 2.0, Eureka Discovery, Config Client, Stream Rabbit, Lombok, and Reactive Web, we'll have a nice little service ready to chat:

    compile('org.springframework.boot:spring-boot-starter-webflux') 
    compile('org.projectlombok:lombok') 
    compile('org.springframework.cloud:spring-cloud-starter-stream-
     rabbit') 
    compile('org.springframework.cloud:spring-cloud-stream-reactive') 
    compile('org.springframework.cloud:spring-cloud-starter-eureka') 
    compile('org.springframework.cloud:spring-cloud-starter-config') 

These aforementioned dependencies in our new chat service can be described as follows:


	spring-boot-starter-webflux: This comes with a Reactive Streams capable WebSocket API

	lombok: This is the library that gets us out of the business of coding getters, setters, and other boilerplate Java code

	spring-cloud-starter-stream-rabbit: This is the Spring Cloud Stream library that uses RabbitMQ as the underlying technology

	spring-cloud-stream-reactive: This layers on Reactive Streams support

	spring-cloud-starter-eureka: This makes the microservice capable of registering itself with our Eureka Server and of consuming other Eureka-based services

	spring-cloud-starter-config: This lets the microservice get its configuration details from the Config Server



There is little value in looking at the rest of the build file, since it's the same as our other microservices.

With these dependencies, the only thing needed to make this Yet Another Microservice™ is to fashion our Spring Boot public static void main like this:

    @SpringCloudApplication 
    @EnableEurekaClient 
    public class LearningSpringBootChatApplication { 
 
      public static void main(String[] args) { 
        SpringApplication.run( 
          LearningSpringBootChatApplication.class, args); 
      } 
    } 

The last code can be described quite simply:


	@SpringCloudAppplication is a @SpringBootApplication combined with a Eureka Discovery, and with circuit breaker enabled



We're close. Early in this book, we would put the needed settings in application.yml (or application.properties), but since we have adopted Spring Cloud Config Server, we, instead, need to create the following bootstrap.yml file:

    spring: 
      application: 
        name: chat 

This bootstrap.yml file now identifies our application as the chat microservice to Eureka, and will cause it to ask the Config Server for chat.yml on startup.

To support that, we need to add the following to our Config Server's Git repository:

    server: 
      port: 8200 
 
    spring: 
      cloud: 
        stream: 
          bindings: 
            input: 
              destination: learning-spring-boot-chat 
              group: comments-chat 
              content-type: application/json 
            newComments: 
              destination: learning-spring-boot-chat 
              group: comments-chat 
              content-type: application/json 
            clientToBroker: 
              destination: learning-spring-boot-chat-user-messages 
              group: app-chatMessages 
            brokerToClient: 
              destination: learning-spring-boot-chat-user-messages 
              group: topic-chatMessages 

Wow! That's a lot of settings. Let's take them apart:


	server.port shows this service will listen on port 8200. (Why not?)

	spring.cloud.stream.bindings.input contains the exact same settings we saw earlier in the comments spring.cloud.stream.bindings.output settings. This ensures that the two are talking to each other.

	We also have spring.cloud.stream.bindings.newComments, .clientToBroker, and .brokerToClient. This part is a little complex, so let's discuss what happens.



Before we dig into moving WebSocket messages around, don't forget to commit this change, and push to origin!



            

            
        
    
        

                            
                    Brokering WebSocket messages

                
            
            
                
Something that's important to understand is the flow of messages. So far, we have seen messages sent from the website into the comments service, stored into a MongoDB database, and then forwarded to our chat service.

At this point, we are trying to onramp these messages to WebSockets. But what does that mean? A WebSocket is a very lightweight, two-way channel between a web page and the server. WebSockets, on their own, don't dictate much about what travels over this thin pipe, but one thing is for certain--​each web page, when connected to a server, has a separate session.

Spring WebFlux provides an API that lets us hook into this WebSocket-oriented session, whether to transmit or receive. But no WebSocket session is immediately linked to another WebSocket session. If we were using Spring Framework 4's WebSocket API, we would be leveraging its most sophisticated Messaging API. This API was born in Spring Integration, and is the same concept found in Spring Cloud Streams. Spring MVC comes with a built-in broker to help bridge messages between different sessions. In essence, a message that originates in one WebSocket session must be transmitted to the broker where it can then be forwarded to any other WebSocket session that might be interested.

With Spring WebFlux, we have no such Messaging API, no such broker, and no higher level constructs such as user-based messaging. But it's no big deal! We can fashion it ourselves--using the Spring Cloud Stream tools we are already familiar with.

Through the rest of this chapter, we will chain together these streams of messages, and it will be most elegant.



            

            
        
    
        

                            
                    Broadcasting saved comments

                
            
            
                
To consume messages sent via Spring Cloud Stream, the chat application needs its own CommentService:

    @Service 
    @EnableBinding(Sink.class) 
    public class CommentService implements WebSocketHandler { 
 
      private final static Logger log = 
        LoggerFactory.getLogger(CommentService.class); 
        ... 
    } 

The preceding code can be described as follows:


	@Service marks this as a Spring bean, picked up automatically when the chat microservice starts

	@EnableBinding(Sink.class) shows this to be a receiver for Spring Cloud Stream messages

	Our service implements WebSocketHandler, a WebFlux interface that comes with a handle(WebSocketSession) method (which we'll use shortly)

	An Slf4j Logger is used to print out traffic passing through



This service needs to consume the messages sent from Spring Cloud Stream. However, the destination for these messages is not another Spring Cloud Stream destination. Instead, we want to pipe them into a WebSocket session.

To do that, we need to pull messages down from a RabbitMQ-based Flux, and forward them to a Flux connected to a WebSocket session. This is where we need another one of those FluxSink objects:

    private ObjectMapper mapper; 
    private Flux<Comment> flux; 
    private FluxSink<Comment> webSocketCommentSink; 
 
    CommentService(ObjectMapper mapper) { 
      this.mapper = mapper; 
      this.flux = Flux.<Comment>create( 
        emitter -> this.webSocketCommentSink = emitter, 
        FluxSink.OverflowStrategy.IGNORE) 
         .publish() 
         .autoConnect(); 
    } 

This last bit of code can easily be described as follows:


	We need a Jackson ObjectMapper, and will get it from Spring's container through constructor injection.

	To create a FluxSink that lets us put comments one by one onto a Flux, we use Flux.create(), and let it initialize our sink, webSocketCommentSink.

	When it comes to backpressure policy, it's wired to ignore backpressure signals for simplicity's sake. There may be other scenarios where we would select differently.

	publish() and autoConnect() kick our Flux into action so that it's ready to start transmitting once hooked into the WebSocket session.



The idea we are shooting for is to put events directly onto webSocketCommentSink, and then hitch the corresponding flux into the WebSocket API. Think of it like webSocketCommentSink as the object we can append comments to, and flux being the consumer pulling them off on the other end (after the consumer subscribes).

With our webSocketCommentSink configured, we can now hook it into our Spring Cloud Stream Sink, as follows:

    @StreamListener(Sink.INPUT) 
    public void broadcast(Comment comment) { 
      if (webSocketCommentSink != null) { 
        log.info("Publishing " + comment.toString() + 
         " to websocket..."); 
        webSocketCommentSink.next(comment); 
      } 
    } 

The preceding code can be described as follows:


	The broadcast() method is marked as a @StreamListener for Sink.INPUT. Messages get deserialized as Comment objects thanks to the application/json setting.

	The code checks if our webSocketCommentSink is null, indicating whether or not it's been created.

	A log message is printed.

	The Comment is dropped into our webSocketSink, which means that it will become available to our corresponding flux automatically.



With this service in place, we can expect to see the following in the chat service's logs when a new comment arrives:

2017-08-05 : Publishing Comment(id=581d6774596aec682ffd07be, 
imageId=581d6669596aec65dc9e6c05, comment=Nice cover!) to websocket...  

The last step is to push this Flux of comments out over a WebSocket session. Remember the WebSocketHandler interface at the top of our class? Let's implement it:

    @Override 
    public Mono<Void> handle(WebSocketSession session) { 
      return session.send(this.flux 
        .map(comment -> { 
          try { 
            return mapper.writeValueAsString(comment); 
          } catch (JsonProcessingException e) { 
              throw new RuntimeException(e); 
          } 
        }) 
        .log("encode-as-json") 
        .map(session::textMessage) 
        .log("wrap-as-websocket-message")) 
      .log("publish-to-websocket"); 
    } 

This WebSocketHandler can be described as follows:


	We are handed a WebSocketSession which has a very simple API

	The Comment-based Flux is piped into the WebSocket via its send() method

	This Flux itself is transformed from a series of Comment objects into a series of JSON objects courtesy of Jackson, and then, finally, into a series of WebSocketMessage objects



It's important to point out that in Spring Framework 4, much of this was handled by the inner working of Spring's WebSocket API as well as its Messaging API. There was no need to serialize and deserialize Java POJOs into JSON representations. That was provided out of the box by Spring's converter services.

In Spring Framework 5, in the WebFlux module, the WebSocket API is very simple. Think of it as streams of messages coming and going. So, the duty of transforming a chain of Comment objects into one of JSON-encoded text messages is paramount. As we've just seen, with the functional paradigm of Reactor, this is no bother.

Getting bogged down in POJO overload? Seeing Comment domain objects in every microservice? Don't panic! While we could write some common module that was used by every microservice to hold this domain object, that may not be the best idea. By letting each microservice manage their own domain objects, we reduce coupling. For example, only the comments service actually marks the id field with Spring Data Commons's @Id annotation, since it's the only one talking to MongoDB. What may appear identical in code actually carries slightly semantic differences that can arise down the road.



            

            
        
    
        

                            
                    Configuring WebSocket handlers

                
            
            
                
We've coded our CommentService to implement Spring's WebSocketHandler interface, meaning, it's ready to transmit traffic over a WebSocket. The next step is to hook this service into the machinery.

We can start by creating a Spring configuration class:

    @Configuration 
    public class WebSocketConfig { 
      ... 
    } 

This Spring configuration class is devoted to configuring WebSocket support, and is marked up with the @Configuration annotation, indicating it's a source of Spring bean definitions.

With that in place, we now come to the core piece of registering WebSocket functionality:

    @Bean 
    HandlerMapping webSocketMapping(CommentService commentService) { 
      Map<String, WebSocketHandler> urlMap = new HashMap<>(); 
      urlMap.put("/topic/comments.new", commentService); 
 
      Map<String, CorsConfiguration> corsConfigurationMap = 
        new HashMap<>(); 
      CorsConfiguration corsConfiguration = new CorsConfiguration(); 
      corsConfiguration.addAllowedOrigin("http://localhost:8080"); 
      corsConfigurationMap.put( 
        "/topic/comments.new", corsConfiguration); 
 
      SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping(); 
      mapping.setOrder(10); 
      mapping.setUrlMap(urlMap); 
      mapping.setCorsConfigurations(corsConfigurationMap); 
 
      return mapping; 
    } 

This preceding little chunk of code can be taken apart as follows:


	@Bean indicates this entire method is used to construct a Spring bean.

	It's a HandlerMapping bean, Spring's interface for linking routes with handler methods.

	The name of the method, webSocketMapping, indicates this method is about wiring routes for WebSocket message handling.

	It asks for a copy of the CommentService bean we defined earlier. Since Spring Boot activates component scanning, an instance of that service will be created automatically, thanks to the @Service annotation we put on it earlier.

	We create a Java Map, designed for mapping string-based routes onto WebSocketHandler objects, and dub it a urlMap.

	We load the map with /topic/comments.new, and link it with our CommentService, a class that implements the WebSocketHandler interface.

	There's the sticky issue of microservices, whereby, our chat service runs on a different port from the frontend image service. Any modern web browser will deny a web page calling a different port from the original port it was served. To satisfy security restrictions (for now), we must implement a custom Cross-origin Resource Sharing or CORS policy. In this case, we add an Allowed Origin of http://localhost:8080, the address where the frontend image service resides.

	With both the urlMap and the corsConfiguration policy, we construct SimpleUrlHandlerMapping. It also needs an order level of 10 to get viewed ahead of certain other route handlers provided automatically by Spring Boot.



Essentially, this bean is responsible for mapping WebSocket routes to handlers, whether that is to target client-to-server, or server-to-client messaging. The message route we've designed so far is a WebSocket message that originates on the server when a new comment is created, and is pushed out to all clients so they can be alerted to the new comment.

In Spring Framework 4, there is an annotation-based mechanism that lets us configure these routes directly on the handlers themselves. But for Spring Framework 5 (WebFlux), we must configure things by hand. CORS is also critical to handle given the way we split things up across multiple microservices.

Another critical component in the same configuration class is listed next:

    @Bean 
    WebSocketHandlerAdapter handlerAdapter() { 
      return new WebSocketHandlerAdapter(); 
    } 

This preceding, somewhat boring looking, Spring bean is critical to the infrastructure of WebSocket messaging. It connects Spring's DispatcherHandler to a WebSocketHandler, allowing URIs to be mapped onto handler methods.

Don't confuse DispatcherHandler, a Reactive Spring component responsible for handling Reactor-based web requests with the venerable DispatcherServlet, a servlet-based component that performs an analogous function. This WebSocket handling is purely Reactive Streams-oriented.



            

            
        
    
        

                            
                    Consuming WebSocket messages from the web page

                
            
            
                
With everything configured on the server, it's time to wire things up in the client. Because JavaScript has a WebSocket API, and we aren't using subprotocols such as Simple (or Streaming) Text Oriented Message Protocol (STOMP), we don't need any extra libraries.

So we can augment our Thymeleaf template, index.html. It's important to point out that our template is in the images microservice, not the chat microservice we just created. Add the following chunk of code toward the bottom of the HTML:

    <script th:inline="javascript"> 
        /*<![CDATA[*/ 
        (function() { 
            ... custom JavaScript code here... 
        })(); 
        /*]]>*/ 
    </script> 

This preceding chunk of code can be explained as follows:


	The HTML <script> tag combined with th:inline="javascript" allows Thymeleaf to process it.

	To avoid HTML parsing in various browsers as well as our IDE, the entire code is wrapped with CDATA tags.

	To ensure our JavaScript code doesn't litter the global namespace, we have enclosed it in an immediately-invoked function expression (IIFE) (function() { /* code */ })();. The code inside this block cannot be reached from anywhere outside, and this is a Good Thing™. There is no chance we'll run into anyone else's variables without deliberate action.



To repeat this point--we write any JavaScript used to send and receive messages over the WebSocket in the images microservice. That's because it's where our Thymeleaf template is served from. To actually send and receive WebSocket messages, it will connect to the chat microservice.

To subscribe to WebSocket messages, we need to subscribe as follows:

    var socket = new WebSocket(
      'ws://localhost:8200/topic/comments.new'); 
    socket.onopen = function(event) { 
      console.log('Connected to chat service!'); 
      console.log(event); 
    } 
    socket.onmessage = function(event) { 
      console.log('Received ' + event.data + '!'); 
      var parsedMessage = JSON.parse(event.data); 
      var ul = document.getElementById( 
        'comments-' + parsedMessage.imageId); 
      var li = document.createElement('li'); 
      li.appendChild( 
        document.createTextNode(parsedMessage.comment)); 
      ul.appendChild(li); 
    } 

The last code can be described as follows:


	We start by creating a WebSocket connection at ws://localhost:8200/topic/comments.new.

	With a JavaScript WebSocket object assigned to our socket variable, we then assign event handlers to onopen and onmessage.

	The onopen handler is processed when a connection is first opened on the server. In this case, it merely logs that we have connected.

	The onmessage handler is processed everytime a message is issued from the server. In this case, we log the event's data, parse it (assuming it's JSON), construct an HTML LI, and append it to the page's already existing UL based on the comment's imageId.



This code uses native JavaScript, but if you're using React.js, jQuery, or some other JavaScript toolkit, feel free to use its APIs to generate new DOM elements.



            

            
        
    
        

                            
                    Moving to a fully asynchronous web client

                
            
            
                
Now we are geared up to receive asynchronous messages from the server as comments are created, and display them dynamically on the site. However, there is something else that warrants attention.

Remember how, in the previous chapter, we had an HTML form for the user to fill out comments? The previous chapter's controller responded to such POSTs like this:

    @PostMapping("/comments") 
    public Mono<String> addComment(Mono<Comment> newComment) { 
 
      /* stream comments to COMMENTS service */ 
 
      return Mono.just("redirect:/"); 
    } 

redirect:/ is a Spring Web signal to re-render the page at / via an HTTP redirect. Since we are shifting into dynamically updating the page based on asynchronous WebSocket messages, this is no longer the best way.

What are the issues? A few can be listed as follows:


	If the comment hasn't been saved (yet), the redirect would re-render the page with no change at all.

	The redirect may cause an update in the midst of handling the new comment's WebSocket message. Based on the race conditions, the comment may not yet be saved, causing it to not appear, and the refresh may miss the asynchronous message, causing the entire comment to not be displayed unless the page is manually refreshed.

	Setting up a WebSocket handler with every new comment isn't efficient.



Either way, this isn't a good use of resources, and could introduce timing issues. Instead, it's best if we convert this into an AJAX call.

To do so, we need to alter the HTML like this:

    <td> 
      <input th:id="'comment-' + ${image.id}" type="text" value="" /> 
      <button th:id="${image.id}" class="comment">Submit</button> 
    </td> 

Instead of a form with a text input and a Submit input, we remove the HTML form and replace it with a button:


	The <input> contains an id attribute unique to its corresponding image

	The <button> has a similar id attribute



The <button> also has class="comment", which we'll use to find, and decorate it with an event handler to process clicks as follows:

    // Register a handler for each button to make an AJAX call 
    document.querySelectorAll('button.comment') 
     .forEach(function(button) { 
       button.addEventListener('click', function() { 
         var comment = document.getElementById( 
           'comment-' + button.id); 
 
         var xhr = new XMLHttpRequest(); 
         xhr.open('POST', /*[[@{'/comments'}]]*/'', true); 
 
         var formData = new FormData(); 
         formData.append('comment', comment.value); 
         formData.append('imageId', button.id); 
 
         xhr.send(formData); 
 
         comment.value = ''; 
       }); 
    }); 

This last block of JavaScript, contained inside our tidy little (function(){})(), has the following:


	document.querySelectorAll('button.comment') uses a native JavaScript query selector to find all the HTML buttons that have the class comment.

	Iterating over each button, an event listener is added, responding to the click events.

	When a click is received, it fetches the corresponding comment input.

	Then it fashions an XMLHttpRequest object, opening a POST operation set for asynchronous communications.

	With Thymeleaf's JavaScript support, it will plug in the URL for @{'/comments'} upon rendering.

	Then it constructs a FormData, and loads the same fields as the previous chapter as if we had filled out an HTML form on the page.

	It transmits the form data over the wire. Since we don't depend on the results, they are ignored.

	Finally, it clears out the comment input's entry box.



In this example, we're using JavaScript's native APIs. But if you're using Rest.js, jQuery, Restangular, lodash, or any other toolkit, feel free to assemble your AJAX call using that instead. The point is to asynchronously transmit the data instead of navigating to another page.



            

            
        
    
        

                            
                    Handling AJAX calls on the server

                
            
            
                
To support the fact that we are now making an AJAX call, and not expecting a redirect, we need to make alterations on the server side.

For one thing, we need to change the image microservice's CommentController from being view-based to being a REST controller. Earlier in this book, it looked like this:

    @Controller 
    @EnableBinding(Source.class) 
    public class CommentController { 
      ... 
    } 

@Controller marked it as a Spring WebFlux controller that was expected to return the HTTP redirect.

To tweak things for AJAX calls, update it to look like this:

    @RestController 
    @EnableBinding(Source.class) 
    public class CommentController { 
      ... 
    } 

By replacing @Controller with @RestController, we have marked this class as a Spring WebFlux controller with results written directly into the HTTP response body.

With that in place, we can now rewrite addComment as shown here:

    @PostMapping("/comments") 
    public Mono<ResponseEntity<?>> addComment(Mono<Comment> newComment)
    { 
      if (commentSink != null) { 
        return newComment 
         .map(comment -> { 
           commentSink.next(MessageBuilder 
            .withPayload(comment) 
            .setHeader(MessageHeaders.CONTENT_TYPE, 
             MediaType.APPLICATION_JSON_VALUE) 
             .build()); 
           return comment; 
         }) 
         .flatMap(comment -> { 
           meterRegistry
             .counter("comments.produced", "imageId", comment.getImageId())
             .increment(); 
           return Mono.just(ResponseEntity.noContent().build()); 
         }); 
      } else { 
          return Mono.just(ResponseEntity.noContent().build()); 
      } 
    } 

What did we change? The following:


	The return type has switched from Mono<String> to Mono<ResponseEntity<?>>. ResponseEntity<?> is a Spring Web container that holds HTTP response headers, body, and status code.

	The logic for forwarding messages to the comments service over a FluxSink to Spring Cloud Stream is the same as the previous chapter.

	The last line of both the if and the else clauses uses the static builder methods of ResponseEntity to generate an HTTP 204 (No Content) response. It indicates success, but no response body is included. Considering the client isn't interested in any content, that's good enough!



Let's check our handiwork. If we start up everything (remember to launch the Config Server before the others), and open two separate browser tabs, we can see the effects.

In the following screenshot, one user enters a new comment (Nice cover!):



Another user with their own browser is looking at the same images. When the first user clicks on Submit, the message automatically appears on the second user's window, as follows:



No page reloads, and no need to refresh the data and pull it from the comments service.

We can also see the message activity in the second user's browser console:





            

            
        
    
        

                            
                    Introducing user chatting

                
            
            
                
What social media platform doesn't provide a means for users to communicate with each other? In this section, we'll enhance our application to allow chatting between users. This is another way to use asynchronous WebSocket messaging between clients and servers.

To start, let's add a new HTML element at the bottom of our template like this:

    <div id="chatBox"> 
        Greetings! 
        <br/> 
        <textarea id="chatDisplay" rows="10" cols="80" 
              disabled="true"></textarea> 
        <br/> 
        <input id="chatInput" type="text" style="width: 500px" 
              value="" /> 
        <br/> 
        <button id="chatButton">Send</button> 
        <br/> 
    </div> 

This preceding HTML code is placed right underneath the Upload widget for sending new pictures. It contains:


	A simple greeting.

	An HTML textarea for displaying messages, 80 columns wide and 10 rows tall. It is disabled to make it a read-only message output.

	A text input for entering new messages.

	A button to submit new messages.



It's true that any and all styling should be done through CSS, but we are trying to keep things simple, and not turn this into a UX-based book.

To post new messages from the text input box, we need to add another bit of code inside our piece of JavaScript:

    var outboundChatMessages = new 
     WebSocket('ws://localhost:8200/app/chatMessage.new'); 
    // Post new chat messages 
    outboundChatMessages.onopen = function(event) { 
      document.getElementById('chatButton') 
       .addEventListener('click', function () { 
         var chatInput = document.getElementById('chatInput'); 
         console.log('Publishing "' + chatInput.value + '"'); 
         outboundChatMessages.send(chatInput.value); 
         chatInput.value = ''; 
         chatInput.focus(); 
       }); 
    } 

This last bit of code does the following:


	It creates another WebSocket connection, this time to ws://localhost:8200/app/chatMessage.new (which we'll code further down).

	Registers a handler function to be invoked when the onopen event of the WebSocket is triggered.

	Finds the chatButton, and registers an event handler for the click events.

	When clicked, fetches the chatInput text input.

	Using the WebSocket variable, it sends the value of the chatInput text input. NOTE: This is pure text. No JSON encoding needed.

	Clears out chatInput, and switches focus back to it.



This will transport raw strings to the server. How these messages are received will be defined shortly, but while we're here, why not go ahead and code up the other side, that is, when these messages are transmitted from server to client?

Are you getting nervous about seeing http://localhost:8200? It's appeared in a couple places so far (and will again as we write more code). It's a bit arbitrary, and also doesn't lend itself to scaling in production, right? We could stuff this value into the Config Server Git repo, and then write some JavaScript to scarf it out, but that sounds a little complicated. And it still wouldn't solve the scaling issue. The truth is that there is a much simpler solution in Chapter 9, Securing Your App with Spring Boot. So we'll stick with hard-coded URLs for now.

To display chat messages as they arrive, add the following:

    var inboundChatMessages = 
      new WebSocket('ws://localhost:8200/topic/chatMessage.new'); 
    // Listen for new chat messages 
    inboundChatMessages.onmessage = function (event) { 
      console.log('Received ' + event.data); 
      var chatDisplay = document.getElementById('chatDisplay'); 
      chatDisplay.value = chatDisplay.value + event.data + '\n'; 
    };

The preceding code does the following:


	Creates a third WebSocket connection to ws://localhost:8200/topic/chatMessage.new

	On the WebSocket's onmessage handler, registers a function handler to be invoked with every new message

	When an event arrives, grabs hold of the chatDisplay

	Appends the message's data to the chatDisplay, and adds a newline character



Confused by the paths /app/chatMessage.new and /topic/chatMessage.new? The first is for sending messages from the client to our server-side application, while the latter is for sending messages from server to client. There is no requirement that they be prefixed by /app or /topic. It's just a convention to help denote where the messages are traveling.

We just defined a route to send user messages to the server as well as a route to receive messages from the server. The next step is to register these routes in our server-side code. We do so by updating our WebSocketConfig class's webSocketMapping like this:

    @Bean 
    HandlerMapping webSocketMapping(CommentService commentService, 
      InboundChatService inboundChatService, 
      OutboundChatService outboundChatService) { 
        Map<String, WebSocketHandler> urlMap = new HashMap<>(); 
        urlMap.put("/topic/comments.new", commentService); 
        urlMap.put("/app/chatMessage.new", inboundChatService); 
        urlMap.put("/topic/chatMessage.new", outboundChatService); 
 
        Map<String, CorsConfiguration> corsConfigurationMap = 
         new HashMap<>(); 
        CorsConfiguration corsConfiguration = new CorsConfiguration(); 
        corsConfiguration.addAllowedOrigin("http://localhost:8080"); 
        corsConfigurationMap.put( 
          "/topic/comments.new", corsConfiguration); 
        corsConfigurationMap.put( 
          "/app/chatMessage.new", corsConfiguration); 
        corsConfigurationMap.put( 
          "/topic/chatMessage.new", corsConfiguration); 
 
        SimpleUrlHandlerMapping mapping = new 
         SimpleUrlHandlerMapping(); 
        mapping.setOrder(10); 
        mapping.setUrlMap(urlMap); 
        mapping.setCorsConfigurations(corsConfigurationMap); 
 
        return mapping; 
    } 

This last code contains many changes, so let's take them apart one by one:


	Previously, this method only injected CommentService. Now we also inject InboundChatService as well as OutboundChatService. These are two services we must define based on the need to broker WebSocket messages between sessions. (Don't panic! We'll get to that real soon).

	We have two new routes added to the urlMap--/app/chatMessage.new and /topic/chatMessage.new--which we just saw used in the web layer.

	These same routes must also be added to our CORS policy.



Are you a little nervous about the CORS policy? Worried about managing hard-coded ports in your code when we just showed how that's not necessary in the previous chapter? Concerned about what this means when it comes time to secure everything? Don't worry, we'll show how this can be handled in Chapter 9, Securing Your App with Spring Boot.

With this adjustment to our chat microservice's WebSocketConfig, we must now configure how incoming WebSocket messages are handled. It's important to realize that if we receive the Flux of messages, and turn around and broadcast them on the same WebSocketSession, the only person receiving the messages will be the person that sent them-​-an echo server if you will.

This is why we need a broker if we want to broadcast such messages. Incoming messages must be received, relayed to a broker, and then picked up on the other side by all clients.

Now, where can we find a broker? We already have one! We've been using Spring Cloud Stream to transport messages over RabbitMQ on our behalf. We can do the same for these messages as well.

It's important to remember that Spring Cloud Stream operates on the channel paradigm. Everything is sent and received over channels. Up until now, we've gotten by using Source, Sink, and Processor, three interfaces that work with output and input. To handle new comment-based messages, client-to-server user messages, and server-to-client user messages, those two channels aren't enough.

So, we need to define a new set of streams. We can do that by creating our own interface, ChatServiceStreams in the chat microservice, as shown here:

    public interface ChatServiceStreams { 
 
      String NEW_COMMENTS = "newComments"; 
      String CLIENT_TO_BROKER = "clientToBroker"; 
      String BROKER_TO_CLIENT = "brokerToClient"; 
 
      @Input(NEW_COMMENTS) 
      SubscribableChannel newComments(); 
 
      @Output(CLIENT_TO_BROKER) 
      MessageChannel clientToBroker(); 
 
      @Input(BROKER_TO_CLIENT) 
      SubscribableChannel brokerToClient(); 
    } 

This preceding declarative cornerstone of our chat service can be described as follows:


	Three channel names are defined at the top--NEW_COMMENTS, CLIENT_TO_BROKER, and BROKER_TO_CLIENT. They each map onto a channel name of newComments, clientToBroker, and brokerToClient.

	newComments() is defined as an input linked to the NEW_COMMENTS channel via the @Input annotation, and has a return type of SubscribableChannel, meaning, it can be used to consume messages.

	clientToBroker() is defined as an output linked to the CLIENT_TO_BROKER channel via the @Output annotation, and has a return type of MessageChannel, which means that it can be used to transmit messages.

	brokerToClient() is defined as an input linked to the BROKER_TO_CLIENT channel via the @Input annotation, and also has a return type of SubscribableChannel, which means it, too, can be used to consume messages.



We need this interface in place so we can then dive into creating that InboundChatService we promised to build earlier:

    @Service 
    @EnableBinding(ChatServiceStreams.class) 
    public class InboundChatService implements WebSocketHandler { 
 
      private final ChatServiceStreams chatServiceStreams; 
 
      public InboundChatService(ChatServiceStreams chatServiceStreams)
      { 
        this.chatServiceStreams = chatServiceStreams; 
      } 
 
      @Override 
      public Mono<Void> handle(WebSocketSession session) { 
        return session 
         .receive() 
         .log("inbound-incoming-chat-message") 
         .map(WebSocketMessage::getPayloadAsText) 
         .log("inbound-convert-to-text") 
         .map(s -> session.getId() + ": " + s) 
         .log("inbound-mark-with-session-id") 
         .flatMap(this::broadcast) 
         .log("inbound-broadcast-to-broker") 
         .then(); 
      } 
 
      public Mono<?> broadcast(String message) { 
        return Mono.fromRunnable(() -> { 
          chatServiceStreams.clientToBroker().send( 
            MessageBuilder 
             .withPayload(message) 
             .build()); 
        }); 
      } 
    } 

This preceding service code, registered to handle messages coming in on /app/chatMessage.new can be described as follows:


	@Service marks it as a Spring service that should launch automatically thanks to Spring Boot's component scanning.

	@EnableBinding(ChatServiceStreams.class) signals Spring Cloud Stream to connect this component to its broker-handling machinery.

	It implements the WebSocketHandler interface--when a client connects, the handle(WebSocketSession) method will be invoked.

	Instead of using the @StreamListener annotation as in the previous code, this class injects a ChatServiceStreams bean (same as the binding annotation) via constructor injection.

	To handle a new WebSocketSession, we grab it and invoke its receive() method. This hands us a Flux of potentially endless WebSocketMessage objects. These would be the incoming messages sent in by the client that just connected. NOTE: Every client that connects will invoke this method independently.

	We map the Flux<WebSocketMessage> object's stream of payload data into a Flux<String> via getPayloadAsText().

	From there, we transform each raw message into a formatted message with the WebSocket's session ID prefixing each message.

	Satisfied with our formatting of the message, we flatMap it onto our broadcast() message in order to broadcast it to RabbitMQ.

	To hand control to the framework, we put a then() on the tail of this Reactor flow so Spring can subscribe to this Flux.

	The broadcast method, invoked as every message is pulled down, marshals and transmits the message by first building a Spring Cloud Streams Message<String> object. It is pushed out over the ChatServiceStreams.clientToBroker() object's MessageChannel via the send() API. To reactorize it, we wrap it with Mono.fromRunnable.



Whew! That's a lot of code! Such is the effect of functional reactive programming (FRP). Not a lot of effort is spent on imperative constructs and intermediate results. Instead, each step is chained to the next step, forming a transforming flow, pulling data from one input (the WebSocketSession in this case), and steering it into a channel for the broker (ChatServiceStreams.clientToBroker()).

Remember earlier when we created a chat.yml file in our Config Server's Git repo? Here's the key fragment:

    spring: 
      cloud: 
        stream: 
          bindings: 
            clientToBroker: 
              destination: learning-spring-boot-chat-user-messages 
              group: app-chatMessages 

It contains an entry for spring.cloud.stream.bindings.clientToBroker, where clientToBroker matches the channel name we set in ChatServiceStreams. It indicates that messages transmitted over the clientToBroker channel will be put on RabbitMQ's learning-spring-boot-chat-user-messages exchange, and grouped with other messages marked app-chatMessages.

This sets things up to broadcast any user-based chat message to everyone. We just need to have every user listen for them!

To do so, we need to create that other service we promised to build earlier, OutboundChatService:

    @Service 
    @EnableBinding(ChatServiceStreams.class) 
    public class OutboundChatService implements WebSocketHandler { 
 
      private final static Logger log = 
        LoggerFactory.getLogger(CommentService.class); 
 
      private Flux<String> flux; 
      private FluxSink<String> chatMessageSink; 
 
      public OutboundChatService() { 
        this.flux = Flux.<String>create( 
          emitter -> this.chatMessageSink = emitter, 
           FluxSink.OverflowStrategy.IGNORE) 
           .publish() 
           .autoConnect(); 
      } 
 
      @StreamListener(ChatServiceStreams.BROKER_TO_CLIENT) 
      public void listen(String message) { 
        if (chatMessageSink != null) { 
          log.info("Publishing " + message + 
            " to websocket..."); 
            chatMessageSink.next(message); 
        } 
      } 
 
      @Override 
      public Mono<Void> handle(WebSocketSession session) { 
        return session 
         .send(this.flux 
         .map(session::textMessage) 
         .log("outbound-wrap-as-websocket-message")) 
         .log("outbound-publish-to-websocket"); 
 
      } 
    }

The code can be described as follows:


	Again, the @Service annotation marks this as an automatically wired Spring service.

	It has the same EnableBinding(ChatServicesStreams.class) as the inbound service, indicating that this, too, will participate with Spring Cloud Streams.

	The constructor call wires up another one of those FluxSink objects, this time for a Flux or strings.

	@StreamListener(ChatServiceStreams.BROKER_TO_CLIENT) indicates that this service will be listening for incoming messages on the brokerToClient channel. When it receives one, it will forward it to chatMessageSink.

	This class also implements WebSocketHandler, and each client attaches via the handle(WebSocketSession) method. It is there that we connect the flux of incoming messages to the WebSocketSession via its send() method.

	Because WebSocketSession.send() requires Flux<WebSocketMessage>, we map the Flux<String> into it using session::textMessage. Nothing to serialize.

	There is a custom log flag when the Flux finished, and another for when the entire Flux is handled.



That's it!

With InboundChatService routing individual messages from client to server to broker, we are able to take individual messages and broadcast them to ALL users. Then, with OutboundChatService pulling down copies of the message for each WebSocket session, each user is able to receive a copy.

Don't forget, we also added a binding to chat.yml on the Config Server to OutboundChatService as well:

    spring: 
      cloud: 
        stream: 
          bindings: 
            brokerToClient: 
              destination: learning-spring-boot-chat-user-messages 
              group: topic-chatMessages 

And remember that little bit of JavaScript we wrote to subscribe to ws://localhost:8200/topic/chatMessage.new? It will receive the broadcast messages.

Flux and FluxSink--if you haven't caught on, linking async operations with pre-established Flux objects is easily handled by this pattern. We've seen it several times now. If both sides of an async service use a Flux, it's not necessary. But if something bars hooking them directly, this mechanism easily bridges the gap.

The names InboundChatService and OutboundChatService are somewhat arbitrary. The important point to note is that one is responsible for transporting WebSocket messages from the client to the broker through the server. Those are incoming. After crossing the broker, we describe them at this stage as being outgoing. The naming convention is meant to help remember what does what. Neither Spring Boot nor Spring Cloud Stream care about what these classes are named.

With this enhancement, we can fire things up and see what it looks like.

In the following screenshot of our new chat box there is a conversation involving two users:



The prefix values (2f05fa8e and 298b3bcf) are pure WebSocket session IDs. Kind of tricky to connect with a human user, ehh? Nevertheless, this interchange is what is seen by all parties. (Since both sides see the same exchange, no need to show both browser tabs.)

However, if we peek inside the browser's JavaScript console, we get a new insight. The following is a screenshot from the user with 2f05fa8e as their session ID:



We can immediately see the first message (Do you like the new cover?) being published, and received right back. Following that, the other user sends a separate message (You bet! Wish I could get a t-shirt).

If we inspect the other user's JavaScript console, we can see the other side of the conversation:



The first message was from the first user (Do you like the new cover?) followed by the second user's response (You bet!...​), and so forth.

Simple. Elegant. Asynchronous. That's what WebSockets are for. And here we have a simple usage.



            

            
        
    
        

                            
                    Sending user-specific messages

                
            
            
                
So far, we have crafted a relatively rich application using different types of broadcast messages.

For example, when a new comment is written, it's sent to every client. Only the clients actually displaying the relevant image will update anything. But the message was sent nonetheless. Also, when a user enters a new chat message, it's sent to everybody. For these use cases, this solution is fine. WebSockets make the process quite efficient.

But there are definitely scenarios when we want to send a message to just one subscriber. A perfect example we'll pursue in this section is adding the ability to "@" a user with a chat message. We only want such a message sent to that specific user. What would be even better? If we could do this without ripping up everything we've done so far.

We can start with the ChatController inside the chat microservice. We should be able to look at the incoming message, and sniff out anything starting with @. If we find it, then we should be able to extract the username, and send the message to that user and that user alone. If a message does NOT start with @, simply broadcast the message to everyone as before.



            

            
        
    
        

                            
                    Registering users without authentication

                
            
            
                
In this chapter, we haven't yet picked up security. That will be covered in Chapter 9, Securing Your App with Spring Boot. For now, we need something to take its place.

As a workaround, we can introduce the concept of the user entering his or her own username and sending it with the HTTP-based request used to create the WebSocket.

To offer the user a place to enter their username, we can put this at the top of the Thymeleaf template:

    <input id="username" type="text" /> 
    <button id="connect">Connect</button> 
    <button id="disconnect" style="display: none">Disconnect</button> 

There is a both a Connect and a Disconnect button to analogously log in/log out of the WebSocket session.

Now we can wire it so that clicking the Connect button, actually creates the WebSocket connection:

    document.getElementById('connect') 
     .addEventListener('click', function () { 
       document.getElementById('connect').style.display = 'none'; 
       document.getElementById('disconnect').style.display = 'inline'; 
 
       var usernameInput = document.getElementById('username'); 
 
       document.getElementById('chatBox').style.display = 'inline'; 

This is what happens when Connect is clicked:


	The connect button is hidden while the disconnect button is shown

	We get hold of the username input

	The chatBox is switched from hidden to displayed



From here, the rest of the flow of creating a WebSocket is followed, including the extra user parameter supplied by the userInput input as we subscribe for /topic/chatMessage.new:

    inboundChatMessages = 
      new WebSocket( 
        'ws://localhost:8200/topic/chatMessage.new?user=' 
        + usernameInput.value); 
    inboundChatMessages.onmessage = function (event) { 
      console.log('Received ' + event.data); 
      var chatDisplay = document.getElementById('chatDisplay'); 
      chatDisplay.value = chatDisplay.value + event.data + '\n'; 
    }; 

This preceding subscription code for incoming chat messages works as follows:


	We again create a JavaScript WebSocket, but it has an extra query argument, user, populated with the usernameInput value

	The route we subscribe to is /topic/chatMessage.new, the same one that OutboundChatService publishes to

	The onmessage handler is assigned a function that updates the chatDisplay textarea with the new event's data



To wrap things up, we add the following event listener in case Disconnect is clicked:

    document.getElementById('disconnect') 
     .addEventListener('click', function () { 
       document.getElementById('connect').style.display = 'inline'; 
       document.getElementById('disconnect').style.display = 'none'; 
       document.getElementById('chatBox').style.display = 'none'; 
 
       if (newComments != null) { 
         newComments.close(); 
       } 
       if (outboundChatMessages != null) { 
         outboundChatMessages.close(); 
       } 
       if (inboundChatMessages != null) { 
         inboundChatMessages.close(); 
       } 
    }); 

This last code nicely does the following things:


	It hides the Disconnect button and the chat box while showing the Connect button

	It closes all the WebSockets





            

            
        
    
        

                            
                    Linking a user to a session

                
            
            
                
We are still missing a critical ingredient--linking the username entered to the user's WebSocket session.

Since every one of our WebSocketHandler services we built may need access to this user data, we should build a shim called UserParsingHandshakeHandler to slip in like this:

    abstract class UserParsingHandshakeHandler 
      implements WebSocketHandler { 
 
        private final Map<String, String> userMap; 
 
        UserParsingHandshakeHandler() { 
          this.userMap = new HashMap<>(); 
        } 
 
        @Override 
        public final Mono<Void> handle(WebSocketSession session) { 
 
          this.userMap.put(session.getId(), 
           Stream.of(session.getHandshakeInfo().getUri() 
            .getQuery().split("&")) 
            .map(s -> s.split("=")) 
            .filter(strings -> strings[0].equals("user")) 
            .findFirst() 
            .map(strings -> strings[1]) 
            .orElse("")); 
 
          return handleInternal(session); 
        } 
 
        abstract protected Mono<Void> handleInternal( 
          WebSocketSession session); 
 
        String getUser(String id) { 
          return userMap.get(id); 
        } 
    } 

The previous code can be described as follows:


	This abstract class implements WebSocketHandler; it will be invoked when a new WebSocketSession is created

	It contains a mapping between session ID and username, called userMap, initialized in the constructor

	The implementation of handle(WebSocketSession) takes the userMap and puts a new entry keyed off the session's ID

	The value stored under that session ID is extracted from the session's handshake, granting access to the original URI

	With some Java 8 stream magic, we can extract the query string from this URI, and find the user argument

	findFirst() produces an Optional, so we can either map over the answer or fall back to an empty string (no user)

	Having loaded the userMap, we then invoke the concrete subclass through a custom abstract method, handleInternal(WebSocketMessage)

	To facilitate looking up the current username, getUser(String) is provided to look up user based on session ID



This chunk of code will handle user details, allowing each concrete WebSocketHandler to do its thing while also having access to the current session's username.

To use this new handshake handler, we need to update the InboundChatService like this:

    @Service 
    @EnableBinding(ChatServiceStreams.class) 
    public class InboundChatService extends UserParsingHandshakeHandler 
    { 
 
      private final ChatServiceStreams chatServiceStreams; 
 
      public InboundChatService(ChatServiceStreams chatServiceStreams){ 
        this.chatServiceStreams = chatServiceStreams; 
      } 
 
      @Override 
      protected Mono<Void> handleInternal(WebSocketSession session) { 
        return session 
         .receive() 
         .log(getUser(session.getId()) 
             + "-inbound-incoming-chat-message") 
         .map(WebSocketMessage::getPayloadAsText) 
         .log(getUser(session.getId()) 
             + "-inbound-convert-to-text") 
         .flatMap(message -> 
             broadcast(message, getUser(session.getId()))) 
         .log(getUser(session.getId()) 
             + "-inbound-broadcast-to-broker") 
         .then(); 
      } 
 
      public Mono<?> broadcast(String message, String user) { 
        return Mono.fromRunnable(() -> { 
          chatServiceStreams.clientToBroker().send( 
            MessageBuilder 
             .withPayload(message) 
             .setHeader(ChatServiceStreams.USER_HEADER, user) 
             .build()); 
        }); 
      } 
 
    }

It's almost the same as what we coded earlier in this chapter, with a few key differences:


	It now extends UserParsingHandshakeHandler instead of WebSocketHandler.

	Instead of implementing handle(WebSocketSession), we must now write handleInternal(WebSocketSession). This is a classic pattern of using a parent abstract class to intercept and then delegate.

	broadcast() takes two arguments--message and user. The user field is populated using getUser(session.getId()).

	broadcast() builds a Message like it did earlier in this chapter, but also adds a custom header containing the user of the creator of the message.



Part of the power of the Message API are headers. You can use standard headers as well as make up your own to suit your needs. In this case, we mark up every message with the originator. Other useful details could include the timestamp of creation and origin address. Really, anything.



            

            
        
    
        

                            
                    Sending user-to-user messages

                
            
            
                
The last step in implementing user-to-user messages is to apply a filter to OutboundChatService. Since we coded up UserParsingHandshakeHandler, we have to adjust the service to handle this:

    @Service 
    @EnableBinding(ChatServiceStreams.class) 
    public class OutboundChatService 
     extends UserParsingHandshakeHandler { 
       ... 
    } 

For starters, we need to change this class to extend UserParsingHandshakeHandler instead of WebSocketHandler.

There's no need to alter the constructor call where our FluxSink is configured. However, the handler itself must be adjusted as follows:

    @Override 
    protected Mono<Void> handleInternal(WebSocketSession session) { 
      return session 
       .send(this.flux 
          .filter(s -> validate(s, getUser(session.getId()))) 
          .map(this::transform) 
          .map(session::textMessage) 
          .log(getUser(session.getId()) + 
              "-outbound-wrap-as-websocket-message")) 
      .log(getUser(session.getId()) + 
          "-outbound-publish-to-websocket"); 
    } 

The details can be explained as follows:


	Just like InboundChatService, we must now implement handleInternal(WebSocketSession).

	It has the same session.send(Flux) call, but that Flux has a couple of extra steps added, including a filter and an extra map.

	The filter call validates each message, deciding whether or not this user should get it. (We'll write that validate() method in a moment).

	Assuming the message is valid for this user, it uses a local transform method to tweak it.

	The rest of the machinery used to convert this string message into a WebSocketMessage<String> and pipe it over the WebSocket is the same as before.



When dealing with streams of messages, layering in a filter is no biggie. See how in the following code:

    private boolean validate(Message<String> message, String user) { 
      if (message.getPayload().startsWith("@")) { 
        String targetUser = message.getPayload() 
            .substring(1, message.getPayload().indexOf(" ")); 
 
        String sender = message.getHeaders() 
            .get(ChatServiceStreams.USER_HEADER, String.class); 
 
        return user.equals(sender) || user.equals(targetUser); 
      } else { 
        return true; 
      } 
    }

This last code can be described as follows:


	validate accepts a Message<String> and the name of the current user (not the user that sent the message).

	It first checks the payload, and if it starts with @, it looks deeper. If the message does NOT start with @, it just lets it on through.

	If the message starts with @, it proceeds to extract the target user by parsing the text between @ and the first space. It also extracts the original sender of the message using the User header.

	If the current user is either the sender or the receiver, the message is allowed through. Otherwise, it is dropped.



A filtering function like this makes it easy to layer various options. We used it to target user-specific messages. But imagine putting things like security checks, regional messages, time-based messages, and more!

To wrap this up, we need to also code a little transformation to make the user-to-user experience top notch:

    private String transform(Message<String> message) { 
      String user = message.getHeaders() 
        .get(ChatServiceStreams.USER_HEADER, String.class); 
      if (message.getPayload().startsWith("@")) { 
        return "(" + user + "): " + message.getPayload(); 
      } else { 
          return "(" + user + ")(all): " + message.getPayload(); 
      } 
    } 

This preceding nice little transformation can be described as follows:


	transform accepts a Message<String>, and converts it into a plain old string message

	It extracts the User header to find who wrote the message

	If the message starts with @, then it assumes the message is targeted, and prefixes it with the author wrapped in parentheses

	If the message does NOT start with @, then it prefixes it with the author wrapped in parentheses plus (all), to make it clear that this is a broadcast message



With this change in place, we have coded a sophisticated user-to-user chat service, running on top of RabbitMQ, using Reactive Streams.



            

            
        
    
        

                            
                    Checking out the final product

                
            
            
                
By hooking up a username with a WebSocket ID, let's see how all this runs. Restart everything, and visit the site.

First, we login as shown in this screenshot:



As seen in the last screenshot, the user logs in as greg. After that, the chat box will display itself at the bottom of the page. If we assume that oliver and phil have also logged in, we can see an exchange of messages as follows:

Greg asks how everyone likes the cover:



This preceding message is seen by everyone. Again, no reason to display all three users' views, since it is identical at this stage.

Oliver gives his $0.02:



So far, the conversation is wide open, as depicted by the (all) tag on each message. By the way, isn't this user-based interaction easier to follow the conversation than the earlier version where we used session IDs?

Phil writes a direct question to Greg:



After Phil clicks on Send, the following appears in Greg's browser:



Notice how this message does NOT have (all)? We know this message is direct, which is further verified by looking at Oliver's browser:



No sign of a followup question about t-shirt availability.

And if we look at Greg's JavaScript console, we can see all of this:



This preceding interchange shows the following:


	One message is sent from Greg's session to the server

	Two broadcast messages are received via the broker from Greg and Oliver

	One direct message is received from Phil



In conclusion, it's nice to see that by chaining together streams of messages across the system with Spring Cloud Stream, we were able to pipe exactly the messages we wanted to whom we wanted to receive them. We were able to leverage a sturdy transport broker, RabbitMQ, without getting caught up in messy details.

We took advantage of things like headers to mark up our messages, and filtered things as needed to implement business requirements. And we didn't spend all our time configuring brokers, servlet containers, or anything else. Instead, we logically defined channels and what was posted/consumed from those channels.



            

            
        
    
        

                            
                    JSR 356 versus Spring WebFlux messaging

                
            
            
                
Perhaps, you're wondering why this chapter doesn't delve into Java's standard WebSocket API? In truth, the standard API is a good piece of technology, but due to several limitations, it doesn't suit our needs.

A big limitation of JSR 356 is that it's based on the Servlet 3.1 spec. If we were running Apache Tomcat, we'd have access to that. But being a Reactive Streams application, we are using Netty, putting it off limits.

Even if we did switch to Apache Tomcat, there is no support for Reactor types. This is partly due to its blocking API, despite being hitched to an asynchronous programming model.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we made our social media platform asynchronous, front to back, through the usage of WebSocket messages. We published new comments to all users. We introduced a way for our users to chat amongst themselves, whether that was by broadcasting to everyone, or by sending individual messages directly to each other.

In the next chapter, we will apply one of the most critical components needed for production, security.



            

            
        
    
        

                            
                    Securing Your App with Spring Boot

                
            
            
                
It's not real until it's secured.

– Greg L. Turnquist @gregturn

In the previous chapter, you learned how to turn our application into a fully asynchronous, message-based app using WebSockets.

Security is hard. Even among the experts. Rob Winch, the lead for Spring Security, has stated in multiple forums, "Do not implement security on your own." A classic example is when someone wrote a utility to crack password-protected Microsoft Word documents. It had an intentional delay so that it didn't operate in subsecond time. Get it? The author of the tool didn't want to show how easy it was to break a Word document.

Suffice it to say, there are lots of attack vectors. Especially on the web. The fact that our applications partially run in a remote location (the browser) on someone else's machine leaves little in guarantees. In fact, whole books have been written on Spring Security. We can't cover everything, but we will cover Just Enough™ to secure our microservice-based social media platform.

In this chapter, we will cover the following topics:


	Using Spring Session to share state between services

	Creating a Gateway API

	Securing the chat microservice

	Securing the images microservice

	Authorizing methods

	Securing WebSockets

	Securing the Config Server

	Securing the Eureka Server





            

            
        
    
        

                            
                    Securing a Spring Boot application

                
            
            
                
In this chapter, we will secure our microservice-based social media platform. This will introduce some interesting use cases, ones that Spring Security can easily handle. However, it's important to know that almost every situation is slightly different. Spring Security can handle them, but it requires understanding how it operates so that you can adapt what you learn in this chapter to our unique situation.

To kick things off, we just need one dependency added to our project:

      compile('org.springframework.boot:spring-boot-starter-security-
       reactive')

In addition to adding Spring Security, we will need to define a policy, and also include authorization rules. As we move through this chapter, you'll learn what all this means.

By the way, remember the microservice-based solution we've developed in the previous chapters? What is the side effect of splitting our app into multiple services? We have to secure each and every one. This means, we have to add these dependencies to each module. Yikes! Can you imagine logging in to the user interface (UI), clicking on a link, and logging in again?

Yech!



            

            
        
    
        

                            
                    Using Spring Session

                
            
            
                
Before we can dig into those nice security policies and authorization rules we just talked about, we need a solution to secure multiple microservices.

What is the exact problem? When we log in to the first piece of our social media platform, we want that status to be carried through to the other components with ease.

The solution is Spring Session (http://projects.spring.io/spring-session/), which supports multiple third-party data stores to offload session state including Redis, MongoDB, GemFire, Hazelcast, and others. Instead of the session data being stored in memory, it is externalized to a separate data store.

This provides multiple benefits such as the following:


	Provides scalability when running multiple instances of various services

	Avoids the need for session affinity (sticky sessions) by not requiring load balancers to route clients to the same instance

	Leverages a data store's built-in expiration options (if desired)

	Multi-user profiles



There is one other, hidden benefit that we will take immediate advantage of in this chapter--sharing session state between different microservices. Log in to the user-facing microservice, create a session with that security state, and share the session with all microservices. Bam! Automatic access.

Since we are already using MongoDB, let's use that to also store our session.

The first thing we need to do in getting Spring Session off the ground is to update each microservice with the following dependencies:

    compile('org.springframework.boot:spring-boot-starter-security-
     reactive') 
    compile('org.springframework.session:spring-session-data-mongodb') 

These preceding dependencies can be described as follows:


	spring-boot-starter-security-reactive brings in all the configuration support we need to define a security policy, including some critical annotations, as well as Spring WebFlux-based security components to implement our policy, including various filters

	spring-session-data-mongodb will bring in Spring Session MongoDB and Spring Data MongoDB, making it possible to write session data to our MongoDB service reactively



It's important to understand that sessions and security are orthogonal concepts that nicely leverage each other. We can use one or the other for different purposes. However, when used in concert, the effect is most elegant.

To configure Spring Session to use MongoDB, we need the following added to each microservice:

    @EnableMongoWebSession 
    public class SessionConfig { 
 
    } 

This new SessionConfig class does the following:


	@EnableMongoWebSession activates Spring Session MongoDB, signaling to use MongoDB as the place to read and write any session data



This is all it takes to enable using MongoDB for session data. However, there are some lingering issues we have to sort out due to the structure of our microservice-based application that bars us from moving forward.

We used this code in the previous chapter:

    Map<String, CorsConfiguration> corsConfigurationMap = 
      new HashMap<>(); 
    CorsConfiguration corsConfiguration = new CorsConfiguration(); 
    corsConfiguration.addAllowedOrigin("http://localhost:8080"); 
    corsConfigurationMap.put( 
      "/topic/comments.new", corsConfiguration); 
    corsConfigurationMap.put( 
      "/app/chatMessage.new", corsConfiguration); 
    corsConfigurationMap.put( 
      "/topic/chatMessage.new", corsConfiguration); 

To make our WebSocket chat microservice integrate with the images-based web page, we needed addAllowedOrigin("http://localhost:8080"). That way, a web request from a service on port 8080 was permitted to cross over to a service on port 8200.

When it comes to security and sessions, stitching together two different services on two different ports in the browser isn't the best way to approach things. Not only is it technically daunting, it is really a code smell--a hint that our application is leaking too much of its structure to the outside world.

The solution is to create a Gateway API.



            

            
        
    
        

                            
                    Creating a Gateway API

                
            
            
                
What is a Gateway API? It's a one-stop facade where we can make all our various web requests. The facade then dispatches the requests to the proper backend service based on the configuration settings.

In our case, we don't want the browser talking to two different ports. Instead, we'd rather serve up a single, unified service with different URL paths.

In Chapter 7, Microservices with Spring Boot, we used Spring Cloud for several microservice tasks, including service discovery, circuit breaker, and load balancing. Another microservice-based tool we will make use of is Spring Cloud Gateway, a tool for building just such a proxy service.

Let's start by adding this to our chat microservice:

    compile('org.springframework.cloud:spring-cloud-starter-gateway') 

With Spring Cloud Gateway on the classpath, we don't have to do a single thing to activate it in our chat microservice. Out of the box, Spring Cloud Gateway makes the chat microservice our front door for all client calls. What does that mean?

Spring Cloud Gateway forwards various web calls based on patterns to its respective backend service. This allows us to split up the backend into various services with some simple settings, yet offer a seamless API to any client.

Spring Cloud Gateway also allows us to pull together legacy services into one unified service. Older clients can continue talking to the old system, while newer clients adopt the new gateway. This is known as API strangling (http://www.kennybastani.com/2016/08/strangling-legacy-microservices-spring-cloud.html).

To configure which URL patterns are forwarded where, we need to add this to our chat.yml stored in the Config Server:

spring: 
  cloud: 
    gateway: 
      routes: 
      # ======================================================== 
      - id: imagesService 
        uri: lb://IMAGES 
        predicates: 
        - Path=/imagesService/** 
        filters: 
        - RewritePath=/imagesService/(?<segment>.*), /$\{segment} 
        - RewritePath=/imagesService, / 
        - SaveSession 
      - id: images 
        uri: lb://IMAGES 
        predicates: 
        - Path=/images/** 
        filters: 
        - SaveSession 
      - id: mainCss 
        uri: lb://IMAGES 
        predicates: 
        - Path=/main.css 
        filters: 
        - SaveSession 
      - id: commentsService 
        uri: lb://IMAGES 
        predicates: 
        - Path=/comments/** 
        filters: 
        - SaveSession 

Looking at the preceding code, we can discern the following:


	Each entry has an id, a uri, an optional collection of predicates, and an optional list of filters.

	Looking at the first entry, we can see that requests to /imagesService are routed to the load-balanced (lb: prefix), Eureka-registered IMAGES service. There are filters to strip the imagesService prefix.

	All requests to /images will also be sent to the images microservice. However, compared to /imagesServices, the full path of the request will be sent. For example, a request to /images/abc123 will be forwarded to the images service as /images/abc123, and not as /abc123. We'll soon see why this is important.

	Asking for /main.css will get routed to images as well.

	All requests to /comments will get sent to images, full path intact. (Remember that images uses Ribbon to remotely invoke comments, and we don't want to change that right now).

	All of these rules include the SaveSession filter, a custom Spring Cloud Gateway filter we'll write shortly to ensure our session data is saved before making any remote call.



Don't forget to restart the Config Server after committing changes!

What's going on?

First and foremost, we create a Gateway API, because we want to keep image management and chatting as separate, nicely defined services. At one point in time, there was only HTTP support. WebSocket support is newly added to Spring Cloud Gateway, so we don't use it yet, but keep all of our WebSocket handling code in the gateway instead. In essence, the chat microservice moves to the front, and the images microservice moves to the back.

Additionally, with WebSocket handling kept in the gateway, we can eliminate the latency of forwarding WebSocket messages to another service. It's left as an exercise for you to move WebSocket messaging into another service, configure Spring Cloud Gateway to forward them and measure the effects.

This suggests that we should have chat serve up the main Thymeleaf template, but have it fetch image-specific bits of HTML from the images service.

To go along with this adjustment to our social media platform, let's create a Thymeleaf template at src/main/resources/templates/index.html in chat like this:

    <!DOCTYPE html> 
    <html xmlns:th="http://www.thymeleaf.org"> 
        <head> 
            <meta charset="UTF-8" /> 
            <title>Learning Spring Boot: Spring-a-Gram</title> 
            <link rel="stylesheet" href="/main.css" /> 
        </head> 
        <body> 
            <div> 
                <span th:text="${authentication.name}" /> 
                <span th:text="${authentication.authorities}" /> 
            </div> 
            <hr /> 
 
            <h1>Learning Spring Boot - 2nd Edition</h1> 
 
            <div id="images"></div> 
 
            <div id="chatBox"> 
                Greetings! 
                <br/> 
                <textarea id="chatDisplay" 
                      rows="10" cols="80" 
                      disabled="true" ></textarea> 
                <br/> 
                <input id="chatInput" type="text" 
                      style="width: 500px" value="" /> 
                <br/> 
                <button id="chatButton">Send</button> 
                <br/> 
            </div> 
 
        </body> 
    </html> 

This preceding template can be described as follows:


	It's the same header as we saw in the previous chapter, including the main.css stylesheet.

	The <h1> header has been pulled in from the image service.

	For images, we have a tiny <div> identified as images. We need to write a little code to populate that from our images microservice.

	Finally, we have the same chat box shown in the earlier chapter.

	By the way, we remove the connect/disconnect buttons, since we will soon leverage Spring Security's user information for WebSocket messaging!



To populate the images <div>, we need to write a tiny piece of JavaScript and stick it at the bottom of the page:

<script th:inline="javascript"> 
    /*<![CDATA[*/ 
    (function() { 
        var xhr = new XMLHttpRequest(); 
        xhr.open('GET', /*[[@{'/imagesService'}]]*/'', true); 
        xhr.onload = function(e) { 
            if (xhr.readyState === 4) { 
                if (xhr.status === 200) { 
                    document.getElementById('images').innerHTML = 
                        xhr.responseText; 
 
                    // Register a handler for each button 
                    document.querySelectorAll('button.comment') 
                        .forEach(function(button) { 
                            button.addEventListener('click', 
                                function() { 
                                    e.preventDefault(); 
                                    var comment = 
                                        document.getElementById( 
                                        'comment-' + button.id); 
 
                                    var xhr = new XMLHttpRequest(); 
                                    xhr.open('POST', 
                                        /*[[@{'/comments'}]]*/'', 
                                        true); 
 
                                    var formData = new FormData(); 
                                    formData.append('comment', 
                                                comment.value); 
                                    formData.append('imageId', 
                                                    button.id); 
 
                                    xhr.send(formData); 
 
                                    comment.value = ''; 
                                }); 
                        }); 
 
                    document.querySelectorAll('button.delete') 
                        .forEach(function(button) { 
                            button.addEventListener('click', 
                                function() { 
                                e.preventDefault(); 
                                var xhr = new XMLHttpRequest(); 
                                xhr.open('DELETE', button.id, true); 
                                xhr.withCredentials = true; 
                                xhr.send(null); 
                            }); 
                        }); 
 
                    document.getElementById('upload') 
                        .addEventListener('click', function() { 
                            e.preventDefault(); 
                            var xhr = new XMLHttpRequest(); 
                            xhr.open('POST', 
                                    /*[[@{'/images'}]]*/'', 
                                true); 
 
                            var files = document 
                                .getElementById('file').files; 
 
                            var formData  = new FormData(); 
                            formData.append('file', files[0], 
                                files[0].name); 
 
                            xhr.send(formData); 
                        }) 
                } 
            } 
        } 
        xhr.send(null); 
    })(); 
    /*]]>*/ 
</script> 

This code can be explained as follows:


	The whole thing is an immediately invoked function expression (IIFE), meaning no risk of global variable collisions.

	It creates an XMLHttpRequest named xhr to do the legwork, opening an asynchronous GET request to /imagesService.

	A callback is defined with the onload function. When it completes with a successful response status, the images <div> will have its innerHTML replaced by the response, ensuring that the DOM content is updated using document.getElementById('images').innerHTML = xhr.responseText.

	After that, it will register handlers for each of the image's comment buttons (something we've already seen). The delete buttons and one upload button will also be wired up.

	With the callback defined, the request is sent.



Don't get confused by the fact that there are four xhr objects. One is used to fetch the image-based HTML content, the other three are used to handle new comments, delete images, and upload new images, when the corresponding button is clicked. They are in separate scopes and have no chance of bumping into each other.

Since we only need the image-specific bits of HTML from the images microservice, we should tweak that template to serve up a subset of what it did in the previous chapter, like this:

    <!DOCTYPE html> 
    <div xmlns:th="http://www.thymeleaf.org"> 
 
        <table> 
 
        <!-- ...the rest of the image stuff we've already seen... --> 

This last fragment of HTML can be explained as follows:


	This is no longer a complete page of HTML, hence, no <html>, <head>, and <body> tags. Instead, it's just a <div>.

	Despite being just a <div>, we need the Thymeleaf namespace th to give the IDE the right information to help us with code completion.

	From there, it goes into the table structure used to display images. The rest is commented out, since it hasn't changed.



With these changes to chat and images, along with the Spring Cloud Gateway settings, we have been able to merge what appeared as two different services into one. Now that these requests will be forwarded by Spring Cloud Gateway, there is no longer any need for CORS settings. Yeah!

This means we can slim down our WebSocket configuration as follows:

    @Bean 
    HandlerMapping webSocketMapping(CommentService commentService, 
     InboundChatService inboundChatService, 
     OutboundChatService outboundChatService) { 
       Map<String, WebSocketHandler> urlMap = new HashMap<>(); 
       urlMap.put("/topic/comments.new", commentService); 
       urlMap.put("/app/chatMessage.new", inboundChatService); 
       urlMap.put("/topic/chatMessage.new", outboundChatService); 
 
       SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping(); 
       mapping.setOrder(10); 
       mapping.setUrlMap(urlMap); 
 
       return mapping; 
    } 

The preceding code is the same as shown earlier in this chapter, but with the CORS settings, which we briefly saw earlier, removed.

As a reminder, we are focusing on writing Java code. However, in this day and age, writing JavaScript is unavoidable when we talk about dynamic updates over WebSockets. For a full-blown social media platform with a frontend team, something like webpack (https://webpack.github.io/) and babel.js (https://babeljs.io/) would be more suitable than embedding all this JavaScript at the bottom of the page. Nevertheless, this book isn't about writing JavaScript-based apps. Let's leave it as an exercise to pull out all this JavaScript from the Thymeleaf template and move it into a suitable module-loading solution.



            

            
        
    
        

                            
                    Securing the chat microservice

                
            
            
                
Okay, this chapter is titled Securing Your App with Spring Boot, yet we have spent a fair amount of time... NOT securing our app! That is about to change. Thanks to this little bit of restructuring, we can move forward with locking things down as desired.

Let's take a crack at writing some security policies, starting with the chat microservice:

    @EnableWebFluxSecurity 
    public class SecurityConfiguration { 
 
      @Bean 
      SecurityWebFilterChain springWebFilterChain(HttpSecurity http) { 
        return http 
            .authorizeExchange() 
                .pathMatchers("/**").authenticated() 
                .and() 
            .build(); 
      } 
    } 

The preceding security policy can be defined as follows:


	@EnableWebFluxSecurity activates the Spring WebFlux security filters needed to secure our application

	@Bean marks the one method as a bean definition

	HttpSecurity.http() lets us define a simple set of authentication and authorization rules

	In this case, every Spring WebFlux exchange (denoted by /**) must be authenticated



The .pathMatchers("/**").authenticated() rule is the first rule based upon URLs. It's also possible to put additional requirements at the method level, which we'll explore later in this chapter.

This is a nice beginning to define a security policy, but we need some way to track user data to authenticate against. To do so, we need a User domain object and a way to store such data. To minimize our effort at storing user information in a database, let's leverage Spring Data again.

First, we'll create a User domain object like this:

    @Data 
    @AllArgsConstructor 
    @NoArgsConstructor 
    public class User { 
 
      @Id private String id; 
      private String username; 
      private String password; 
      private String[] roles; 
    } 

This preceding User class can easily be described as follows:


	@Data uses the Lombok annotation to mark this for getters, setters, equals, toString, and hashCode functions

	@AllArgsConstructor creates a constructor call for all of the attributes

	@NoArgsConstructor creates an empty constructor call

	@Id marks this id field as the key in MongoDB

	username, password, and roles are critical fields required to properly integrate with Spring Security, as shown further in the chapter



The names of these fields don't matter when it comes to integrating with Spring Security, as we'll soon see.

To interact with MongoDB, we need to create a Spring Data repository as follows:

    public interface UserRepository 
     extends Repository<User, String> { 
 
       Mono<User> findByUsername(String username); 
    } 

This is similar to the other repositories we have built so far in the following ways:


	It extends Spring Data Commons' Repository, indicating that the domain type is User and the ID type is String

	It has one finder needed for security lookups, findByUsername, which is returned as a reactive Mono<User>, signaling Spring Data MongoDB to use reactive MongoDB operations



With this handy repository defined, let's preload some user data into our system by creating an InitUsers class, as shown here:

    @Configuration 
    public class InitUsers { 
 
      @Bean 
      CommandLineRunner initializeUsers(MongoOperations operations) { 
        return args -> { 
          operations.dropCollection(User.class); 
 
          operations.insert( 
            new User( 
              null, 
              "greg", "turnquist", 
              new String[]{"ROLE_USER", "ROLE_ADMIN"})); 
          operations.insert( 
            new User( 
              null, 
              "phil", "webb", 
              new String[]{"ROLE_USER"})); 
 
          operations.findAll(User.class).forEach(user -> { 
            System.out.println("Loaded " + user); 
          }); 
        }; 
      } 
    } 

This preceding user-loading class can be described as follows:


	@Configuration indicates this class contains bean definitions

	@Bean marks the initializeUsers method as a Spring bean

	initializeUsers requires a copy of the blocking MongoOperations bean defined by Spring Boot's MongoDB autoconfiguration code

	The return type is CommandLineRunner, which we'll supply with a lambda function

	Inside our lambda function, we drop the User based collection, insert two new users, and then print out the collection



Now, let's see how to put that to good use! To hook into Reactive Spring Security, we must implement its UserDetailsRepository interface. This interface is designed to look up a user record through any means necessary and bridge it to Spring Security as a Mono<UserDetails> return type. The solution can be found here:

    @Component 
    public class SpringDataUserDetailsRepository implements   
     UserDetailsRepository { 
 
       private final UserRepository repository; 
 
       public SpringDataUserDetailsRepository(UserRepository
        repository) 
       { 
         this.repository = repository; 
       } 
 
       @Override 
       public Mono<UserDetails> findByUsername(String username) { 
         return repository.findByUsername(username) 
          .map(user -> new User( 
            user.getUsername(), 
            user.getPassword(), 
            AuthorityUtils.createAuthorityList(user.getRoles()) 
          )); 
       } 
    } 

The previous code can be described as follows:


	It injects a UserRepository we just defined through constructor injection

	It implements the interface's one method, findByUsername, by invoking our repository's findByUsername method and then mapping it onto a Spring Security User object (which implements the UserDetails interface)

	AuthorityUtils.createAuthorityList is a convenient utility to translate a String[] of roles into a List<GrantedAuthority>

	If no such user exists in MongoDB, it will return a Mono.empty(), which is the Reactor equivalent of null



We map our MongoDB User domain object onto Spring Security's org.springframework.security.core.userdetails.User object to satisfy the UserDetails requirement. However, that doesn't mean we can't implement a custom version of this interface. Imagine we were building a medical tracking system and needed each patient record to contain a detailed profile. A custom implementation would allow us to fill in the critical fields while also adding all the other data needed to track a person.

By hooking MongoDB-stored users into Spring Security, we can now attempt to access the system.

When we try to access localhost:8080, we can expect a login prompt, as shown in this screenshot:



This popup (run from an incognito window to ensure there are no cookies or lingering session data) lets us nicely log in to the gateway.



            

            
        
    
        

                            
                    Authentication versus authorization

                
            
            
                
Spring Security operates on two fundamental concepts--authentication and authorization.

These two concepts can be described as follows:


	Authentication: This defines who you are

	Authorization: This defines what you are allowed to do



The first step in any security system is to confirm the user's identify. This often involves a username and a password, but these credentialed bits can be stored in many different systems, including relational databases, directory servers, certificates, and other things. However, these are implementation details that surround verifying someone's identity. Until we know who you are, we can't make any determination.

HTTP Basic, HTTP FORM, and other forms of authentication are supported by Spring Security. Right now, we are using HTTP Basic on the frontend as well as the cross-service calls, given that it's the only version currently supported with Reactive Spring Security.

The second step in any security system is to decide what the user is authorized to do. Both a teller and a vice president at a bank can be authenticated, but they will certainly have differing permissions on what they are each allowed to do. The teller may be granted permission to open his assigned cash drawer, while the vice president may be authorized to open her customer's account.

With the SecurityConfig code given earlier, our chat microservice has instituted authentication, which is linked to the session. However, it also chose a very simple authorization strategy: anyone that is authenticated can do anything. Since the chat microservice does little more than communicate via a WebSocket, that is fine. In the next section, we'll see a different policy, where certain operations are restricted to a subset of users.



            

            
        
    
        

                            
                    Sharing session details with other microservices

                
            
            
                
Something that's critical to our microservice-based social media platform is sharing the session details when putting things together. When we load the main page, it may have to pull together bits of data from multiple places. This means that after logging in to the system, the session ID that is generated has to be passed along seamlessly.

Spring Cloud Gateway can forward various requests, but Spring Session has a lazy approach to things. This means, we need to step up and save the session immediately; otherwise, the first few remote calls might fail.

To do so, we need to create a custom Spring Cloud Gateway filter as follows:

    @Configuration 
    public class GatewayConfig { 
 
      private static final Logger log = 
        LoggerFactory.getLogger(GatewayConfig.class); 
 
      /** 
      * Force the current WebSession to get saved 
      */ 
      static class SaveSessionGatewayFilterFactory 
       implements GatewayFilterFactory { 
         @Override 
         public GatewayFilter apply(Tuple args) { 
           return (exchange, chain) -> exchange.getSession() 
            .map(webSession -> { 
              log.debug("Session id: " + webSession.getId()); 
              webSession.getAttributes().entrySet() 
               .forEach(entry -> 
                log.debug(entry.getKey() + " => " + 
                 entry.getValue())); 
                return webSession; 
            }) 
            .map(WebSession::save) 
            .then(chain.filter(exchange)); 
         } 
      } 
 
      @Bean 
      SaveSessionGatewayFilterFactory saveSessionGatewayFilterFactory() { 
        return new SaveSessionGatewayFilterFactory(); 
      } 
    } 

This preceding filter can be described as follows:


	The @Configuration annotation indicates that this class contains beans to be picked up by Boot's component scanning

	There is an Slf4j Logger to print out debug statements

	static class SaveSessionGatewayFilterFactory implements the Spring Cloud Gateway's GatewayFilterFactory interface, allowing us to write a custom filter, which is, essentially, a function call where the inputs are transformed into a GatewayFilter

	To implement this functional interface, we write a lambda, accepting a WebFlux WebServerExchange and GatewayFilterChain, which gives us access to the request as well as the chain of filters to hand it off to

	We grab the exchange's WebSession and map over it in order to print out all its details

	Next, we map over the same WebSession and invoke its save function through a method reference

	We wrap things up with a then() call to invoke the filter chain on the exchange

	With @Bean, we define a bean in the application context that implements SaveSessionGatewayFilterFactory



Spring Cloud Gateway's default policy is to use the classname of the filter with GatewayFilterFactory removed as the name of the filter itself. Hence, SaveSessionGatewayFilterFactory becomes simply SaveSession for purposes of inserting into our configuration file, as we saw earlier.

    spring: 
      cloud: 
        gateway: 
          routes: 
          - id: imagesService 
            uri: lb://IMAGES 
            predicates: 
            - Path=/imagesService/** 
            filters: 
            - RewritePath=/imagesService/(?<segment>.*), /${segment} 
            - RewritePath=/imagesService, / 
            - SaveSession 
            ...​ 

With the preceding little filter in place, we can guarantee that all the forwarded calls made by Spring Cloud Gateway will first ensure that the current WebSession has been saved.

The default Spring WebFlux behavior for a web call with a WebSession is to issue a Set-Cookie directive (with the SESSION entry configured with the ID) back to the client in its response. Subsequent calls into WebFlux will automatically parse this cookie entry and load WebSession details. Spring Cloud Gateway itself forwards cookies unless explicitly configured not to. Hence, the session entry gets propagated. All that we do is ensure the security details automatically linked to the session are properly stored before a forwarded call is made.



            

            
        
    
        

                            
                    Securing the images microservice

                
            
            
                
Having secured the frontend and also embedded a session ID in every gateway call to the backend, we can shift our focus to securing those backend services.

Let's start with the images service. First of all, we need to configure session management by creating SessionConfig as follows:

    @EnableMongoWebSession 
    public class SessionConfig { 
 
    } 

This preceding code can be described as follows:


	@EnableMongoWebSession activates the Reactor-based Spring Session MongoDB



Next, we can lock things down by creating a SecurityConfiguration class like this:

    @EnableWebFluxSecurity 
    @EnableReactiveMethodSecurity 
    public class SecurityConfiguration { 
 
      @Bean 
      SecurityWebFilterChain springWebFilterChain() { 
        return HttpSecurity.http() 
            .securityContextRepository( 
                new WebSessionSecurityContextRepository()) 
            .authorizeExchange() 
                .anyExchange().authenticated() 
                .and() 
            .build(); 
      } 
    } 

The preceding class definition can be described as follows:


	@EnableWebFluxSecurity activates a collection of filters and components needed to secure Spring WebFlux endpoints.

	@EnableReactiveMethodSecurity adds additional support for putting annotations on methods and classes where we can plug in sophisticated security expressions (as we'll soon see).

	Next, we create a SecurityWebFilterChain. This is, actually, a collection of filters defined in a very specific order using Spring Security's fluent API. This API nicely lets us define what we need while leaving Spring Security to put it together in the right order.

	In this case, we want HTTP support, but with a WebSession-based SecurityContextRepository. This activates a filter that will load the exchange with a Principal object from our session store.

	As a minimum for authorization, all exchanges must be authenticated.



Some of this is the same as earlier, and some of it is different.

What's different? The images service has method security, meaning, it can annotate individual methods with additional authorization rules, which we'll see shortly. We are no longer confined to securing things based on URLs and HTTP verbs. There are also no account definitions. That's because the images service is not creating new sessions, but riding on the one created in the gateway by the chat microservice instead; (do we really want to create a separate User domain object in every microservice?).

Both services respond to Authorization headers as well as SESSION headers, which means that once logged in, the two can easily share information. Both, essentially, route all URLs into the same authorization rule, .anyExchange().authenticated(). (That's the same net effect as that of .pathMatchers("/**").authenticated()).



            

            
        
    
        

                            
                    Wiring in image ownership

                
            
            
                
Spring WebFlux's ServerWebExchange comes prepared for security by providing a getPrincipal() API that returns Mono<Principal>. While the default version, straight out of Spring Framework, supplies Mono.empty(), Spring Security automatically hooks in a filter to supply a real value via WebSessionSecurityContextRepository.

With Spring Security and Spring Session hooked into all our web calls, we can leverage this information every time a new image is uploaded.

First of all, we can adjust our Image domain object as follows:

    @Data 
    @AllArgsConstructor 
    public class Image { 
 
      @Id private String id; 
      private String name; 
      private String owner; 
    } 

This last code is the same POJO that we've used throughout this book with one change:


	It now has a String owner property. This lets us associate an image with whoever uploaded it (which we'll see shortly).



Spring Security makes it possible to inject any Spring WebFlux controller with an authentication object as follows:

    @PostMapping(value = BASE_PATH) 
    public Mono<String> createFile( 
      @RequestPart("file") Flux<FilePart> files, 
       @AuthenticationPrincipal Principal principal) { 
         return imageService.createImage(files, principal) 
          .then(Mono.just("redirect:/")); 
    } 

This change to our image service's UploadController.createFile, as shown in the preceding code, can be described as follows:


	Using Spring Security's @AuthenticationPrincipal annotation, the second parameter allows us to find out the security context of the caller.

	The actual type can be flexible, whether we want a Java Principal, a Spring Security subinterface Authentication, or a concrete instance (UsernamePasswordAuthenticationToken by default). This parameter can also be wrapped as a Mono<T> of this type.

	For simplicity, we grab it unwrapped and pass it along to ImageService as a new argument.



So, let's go update ImageService.createImage(), where Image objects are actually created:

    public Mono<Void> createImage(Flux<FilePart> files, 
     Principal auth) { 
       return files 
        .log("createImage-files") 
        .flatMap(file -> { 
          Mono<Image> saveDatabaseImage = imageRepository.save( 
            new Image( 
              UUID.randomUUID().toString(), 
               file.filename(), 
               auth.getName())) 
               .log("createImage-save"); 
 
          ...the rest that hasn't changed... 
        }
     } 

The parts that have changed in the preceding code can be described as follows:


	This method now accepts a second argument, Principal. This is a Java standard token.

	The code where we actually create a new Image is populated in the same as done earlier for the first two fields, with a random ID and the name of the file.

	The owner field is now populated with auth.getName(), supplied to us by Spring Security's context-enabling advice.



The last link in the chain of ownership is to display it on the page. To do this, we can update the model fed to that HTML fragment in HomeController, as follows:

    model.addAttribute("images", 
     imageService 
      .findAllImages() 
      .map(image -> new HashMap<String, Object>() {{ 
        put("id", image.getId()); 
        put("name", image.getName()); 
        put("owner", image.getOwner()); 
        put("comments", 
         commentHelper.getComments(image, 
            webSession.getId())); 
      }}) 
    ); 

This preceding fragment from public String index() has been updated to include the new owner attribute.

With that added to the template's model, we can display it by adding the following bit of HTML to our Thymeleaf template, like this:

    <td th:text="${image.owner}" /> 

This attribute can now be seen when we log in and check things out, as seen in this screenshot:



In the preceding screenshot, we see one image loaded by greg and one image loaded by phil.



            

            
        
    
        

                            
                    Authorizing methods

                
            
            
                
For a security framework to be of value, it needs flexibility. Security rules are never confined to simple use cases. We have all dealt with customers needing very complex settings for certain operations. Spring Security makes this possible through its special dialect of SpEL or Spring Expression Language.

To get a taste of it, let's augment the images microservice's ImageService.delete() method with an authorization rule:

    @PreAuthorize("hasRole('ADMIN') or " + 
     "@imageRepository.findByName(#filename).owner " + 
      "== authentication.name") 
    public Mono<Void> deleteImage(String filename) { 
 
      ... rest of the method unchanged ... 
    } 

This preceding code for deleting images is only different in the new annotation in the following manner:


	The method is flagged with a @PreAuthorize annotation, indicating that the SpEL expression must evaluate to true in order for the method to get called

	hasRole('ADMIN') indicates that a user with ROLE_ADMIN is allowed access

	or @imageRepository.findByName(#filename).owner == authentication.name") indicates that access is also granted if the user's name matches the image's owner property



Why do we need this authorization rule again? Because without it, any authenticated user can delete any image. Probably not a good idea.

This authorization rule is just one example of the types of rules we can write. The following table lists the prebuilt rules provided by Spring Security:




	
SpEL function


	
Description





	
hasAuthority('ROLE_USER')


	
Access is granted if user has ROLE_USER





	
hasAnyAuthority('ROLE_USER', 'ROLE_ADMIN')


	
Access is granted if user has any of the listed authorities





	
hasRole('USER')


	
Shorthand for hasAuthority('ROLE_USER')





	
hasAnyRole('USER', 'ADMIN')


	
Shorthand for hasAnyAuthority('ROLE_USER', 'ROLE_ADMIN')





	
principal


	
Direct access to the Principal object representing the user





	
authentication


	
Direct access to the Authentication object obtained from the security context





	
permitAll


	
Evaluates to true





	
denyAll


	
Evaluates to false





	
isAnonymous()


	
Returns true if user is an anonymous user





	
isRememberMe()


	
Returns true if user is a remember-me user





	
isAuthenticated()


	
Returns true if user is not anonymous





	
isFullyAuthenticated()


	
Returns true if user is neither anonymous nor a remember-me user







 

It's possible to combine these SpEL functions with and and or.

As we saw demonstrated earlier, we can also write security checks like this:

    @PreAuthorize("#contact.name == authentication.name") 
    public void doSomething(Contact contact); 

This preceding security check will grab the method's contact argument and compare its name field against the current authentication object's name field, looking for a match.

By the way, these types of parameter-specific rules are great when we want to restrict operations to the owner of the record, a common use case. In essence, if you are logged in and operating on your data, then you can do something.

In addition to all these functions and comparators, we can also invoke beans (another thing shown earlier). Look at the following code, for example:

    @PreAuthorize("@imageRepository.findByName(#filename).owner ==
     authentication.name") 

This last security check will invoke the bean named imageRepository  and use its findByName function to look up an image's owner and then compare it against the current authentication object.

@PreAuthorize rules can be applied to any Spring bean, but it's recommended you apply them to your service layer methods. In essence, any code that invokes the service layer, whether it was from a web call or somewhere else, should be secured. Wrapping higher up at the web handler can leave your service layer susceptible to unauthorized access. To guard against improper web calls, it's recommended that you use route-based rules (as shown earlier in the chat microservice's SecurityConfiguration policy).



            

            
        
    
        

                            
                    Tailoring the UI with authorization checks

                
            
            
                
With the REST endpoints locked down, it's nice to know things are secure. However, it doesn't make sense to display options in the UI that will get cut off. Instead, it's better to simply not show them. For that, we can leverage a custom Thymeleaf security rule.

Normally, we would make use of Thymeleaf's Spring Security extension. Unfortunately, the Thymeleaf team has yet to write such support for Spring Framework 5's WebFlux module. No problem! We can craft our own and register it inside the Thymeleaf engine.

For starters, we want to define an authorization scoped operation that could be embedded inside a Thymeleaf th:if="${}" expression, conditionally displaying HTML elements. We can start by adding SecurityExpressionObjectFactory to the images microservice, since that fragment of HTML is where we wish to apply it:

    public class SecurityExpressionObjectFactory 
     implements IExpressionObjectFactory { 
 
       private final 
        SecurityExpressionHandler<MethodInvocation> handler; 
 
       public SecurityExpressionObjectFactory( 
         SecurityExpressionHandler<MethodInvocation> handler) { 
           this.handler = handler; 
         } 
 
         @Override 
         public Set<String> getAllExpressionObjectNames() { 
           return Collections.unmodifiableSet( 
             new HashSet<>(Arrays.asList( 
               "authorization" 
           ))); 
         } 
 
         @Override 
         public boolean isCacheable(String expressionObjectName) { 
           return true; 
         } 
 
         @Override 
         public Object buildObject(IExpressionContext context, 
          String expressionObjectName) { 
            if (expressionObjectName.equals("authorization")) { 
              if (context instanceof ISpringWebFluxContext) { 
                return new Authorization( 
                  (ISpringWebFluxContext) context, handler); 
              } 
            } 
            return null; 
         } 
    } 

The preceding Thymeleaf expression object factory can be described as follows:


	This class implements Thymeleaf's IExpressionObjectFactory, the key toward writing custom expressions.

	To do its thing, this factory requires a copy of Spring Security's SecurityExpressionHandler, aimed at method invocations. It's injected into this factory through constructor injection.

	To advertize the expression objects provided in this class, we implement getAllExpressionObjectNames, which returns an unmodifiable Set containing authorization, the token of our custom expression.

	We implement the interface's isCacheable and point blank say that all expressions may be cached by the Thymeleaf engine.

	buildObject is where we create objects based on the token name. When we see authorization, we narrow the template's context down to a WebFlux-based context and then create an Authorization object with the context, Spring Security's expression handler, and a copy of the current ServerWebExchange, giving us all the details we need.

	Anything else, and we return null, indicating this factory doesn't apply.



Our expression object, Authorization, is defined as follows:

    public class Authorization { 
 
      private static final Logger log = 
        LoggerFactory.getLogger(Authorization.class); 
 
      private ISpringWebFluxContext context; 
      private SecurityExpressionHandler<MethodInvocation> handler; 
 
      public Authorization(ISpringWebFluxContext context, 
        SecurityExpressionHandler<MethodInvocation> handler) { 
        this.context = context; 
        this.handler = handler; 
      } 
      ... 
    } 

The code can be described as follows:


	It has an Slf4j log so that we can print access checks to the console, giving developers the ability to debug their authorization expressions

	Through constructor injection, we load a copy of the Thymeleaf ISpringWebFluxContext and the Spring Security SecurityExpressionHandler



With this setup, we can now code the actual function we wish to use, authorization.expr(), as follows:

    public boolean expr(String accessExpression) { 
      Authentication authentication = 
        (Authentication) this.context.getExchange() 
         .getPrincipal().block(); 
 
      log.debug("Checking if user \"{}\" meets expr \"{}\".", 
       new Object[] { 
         (authentication == null ? 
          null : authentication.getName()), 
           accessExpression}); 
 
      /* 
      * In case this expression is specified as a standard 
      * variable expression (${...}), clean it. 
      */ 
      String expr = 
        ((accessExpression != null 
            && 
            accessExpression.startsWith("${") 
            && 
            accessExpression.endsWith("}")) ? 
 
            accessExpression.substring(2, 
                accessExpression.length()-1) : 
            accessExpression); 
 
      try { 
        if (ExpressionUtils.evaluateAsBoolean( 
          handler.getExpressionParser().parseExpression(expr), 
          handler.createEvaluationContext(authentication, 
           new SimpleMethodInvocation()))) { 
 
             log.debug("Checked \"{}\" for user \"{}\". " + 
                    "Access GRANTED", 
                new Object[] { 
                    accessExpression, 
                    (authentication == null ? 
                        null : authentication.getName())}); 
 
             return true; 
           } else { 
              log.debug("Checked \"{}\" for user \"{}\". " + 
               "Access DENIED", 
                new Object[] { 
                  accessExpression, 
                   (authentication == null ? 
                    null : authentication.getName())}); 
 
              return false; 
           } 
      } catch (ParseException e) { 
          throw new TemplateProcessingException( 
            "An error happened parsing \"" + expr + "\"", e); 
      } 
    } 

This last Thymeleaf custom function can be described as follows:


	Our custom expr() function is named in the first line, is publicly visible, and returns a Boolean, making it suitable for th:if={} expressions.

	The first thing we need is to grab the Authentication object from the context's ServerWebExchange. Because we are inside an inherently blocking API, we must use block() and cast it to a Spring Security Authentication.

	To help developers, we log the current user's authentication details along with the authorization expression.

	In the event the whole expression is wrapped with ${}, we need to strip that off.

	We tap into Spring Security's SpEL support by invoking ExpressionUtils.evaluateAsBoolean().

	That method requires that we parse the expression via handler.getExpressionParser().parseExpression(expr).

	We must also supply the SpEL evaluator with a context, including the current authentication as well as SimpleMethodInvocation, since we are focused on method-level security expressions.

	If the results are true, it means access has been granted. We log it and return true.

	If the results are false, it means access has been denied. We log that and return false.

	In the event of a badly written SpEL expression, we catch it with an exception handler and throw a Thymeleaf TemplateProcessingException.



The preceding code defines the expr() function, while the enclosing SecurityExpressionObjectFactory scopes the function inside authorization, setting us up to embed #authorization.expr(/* my Spring Security SpEL expression*/) inside Thymeleaf templates.

The next step in extending Thymeleaf is to define a Dialect with our expression object factory, as follows:

    public class SecurityDialect extends AbstractDialect 
     implements IExpressionObjectDialect { 
 
       private final 
        SecurityExpressionHandler<MethodInvocation> handler; 
 
       public SecurityDialect( 
         SecurityExpressionHandler<MethodInvocation> handler) { 
           super("Security Dialect"); 
           this.handler = handler; 
       } 
 
       @Override 
       public IExpressionObjectFactory getExpressionObjectFactory()
       { 
          return new SecurityExpressionObjectFactory(handler); 
       } 
    } 

This previous code can be described as follows:


	SecurityDialect extends AbstractDialect and implements IExpressionObjectDialect

	We need a copy of Spring Security's SecurityExpressionHandler in order to parse Spring Security SpEL expression, and it's provided by constructor injection

	To support IExpressionObjectDialect, we supply a copy of our custom SecurityExpressionObjectFactory factory inside the getExpressionObjectFactory() method



With our tiny extension dialect defined, we must register it with Thymeleaf's template engine. To do so, the easiest thing is to write a custom Spring post processor, like this:

    @Component 
    public class SecurityDialectPostProcessor 
     implements BeanPostProcessor, ApplicationContextAware { 
 
       private ApplicationContext applicationContext; 
 
       @Override 
       public void setApplicationContext( 
         ApplicationContext applicationContext) 
         throws BeansException { 
           this.applicationContext = applicationContext; 
       } 
 
       @Override 
       public Object postProcessBeforeInitialization( 
         Object bean, String beanName) throws BeansException { 
           if (bean instanceof SpringTemplateEngine) { 
             SpringTemplateEngine engine = 
               (SpringTemplateEngine) bean; 
             SecurityExpressionHandler<MethodInvocation> handler = 
               applicationContext.getBean( 
                 SecurityExpressionHandler.class); 
             SecurityDialect dialect = 
               new SecurityDialect(handler); 
             engine.addDialect(dialect); 
           } 
           return bean; 
       } 
 
       @Override 
       public Object postProcessAfterInitialization( 
         Object bean, String beanName) throws BeansException { 
           return bean; 
       } 
    } 

The preceding code can be defined as follows:


	@Component signals Spring Boot to register this class.

	By implementing the BeanPostProcessor interface, Spring will run every bean in the application context through it, giving our SecurityDialectPostProcessor the opportunity to find Thymeleaf's engine and register our custom dialect.

	Since our custom dialect needs a handle on the SecurityExpressionHandler bean, we also implement the ApplicationContextAware interface, giving it a handle on the application context.

	It all comes together in postProcessBeforeInitialization, which is invoked against every bean in the application context. When we spot one that implements Thymeleaf's SpringTemplateEngine, we grab that bean, fetch SecurityExpressionHandler from the app context, create a new SecurityDialect, and add that dialect to the engine. Every bean, modified or not, is returned back to the app context.

	Because we don't need any processing before initialization, postProcessAfterInitialization just passes through every bean.



With all this in place, we are ready to make some security-specific tweaks to our templates.

In the main page (chat microservice's index.html template), it would be handy to put some user-specific information. To display the username and their roles, we can update the HomeController like this:

    @GetMapping("/") 
    public String index(@AuthenticationPrincipal Authentication auth,
     Model model) { 
       model.addAttribute("authentication", auth); 
       return "index"; 
    } 

This preceding adjustment to the home controller can be described as follows:


	@AuthenticationPrincipal Authentication auth grants us a copy of the current user's Authentication object

	Model model gives us a model object to add data to the template

	By simply sticking the Authentication object into the model, we can use it to display security details on the web page



Now, we can display the username and their roles, as follows:

    <div> 
      <span th:text="${authentication.name}" /> 
      <span th:text="${authentication.authorities}" /> 
    </div> 
    <hr /> 

This little DIV element that we just defined includes the following:


	Displays the authentication's name property, which is the username

	Displays the authentication's authorities properties, which are the user's roles

	Draws a horizontal line, setting this bit of user specifics apart from the rest of the page



Since we are using HTTP Basic security, there is no value in putting a logout button on the screen. You have to shut down the browser (or close the incognito tab) to clear out security credentials and start afresh.

We can now expect to see the following when we log in as greg:



We mentioned limiting things that the user can't do. The big one in our social media platform is restricted access to deleting images. To enforce this in the UI, we need to parallel the authorization rule we wrote earlier in the images microservice's index.html, as shown here:

    <td> 
      <button th:if="${#authorization.expr('hasRole(''ROLE_ADMIN'')') 
       or #authorization.expr('''__${image.owner}__'' == 
       authentication.name')}" 
            th:id="'/images/' + ${image.name}"   
             class="delete">Delete</button> 
    </td> 

This last code looks a bit more complex than the @PreAuthorize rule wrapping ImageService.deleteImage(), so let's take it apart:


	We use Thymeleaf's th:if="... " expression along with ${} to construct a complex expression consisting of two #authorization.expr() functions chained by or.

	#authorization.expr('hasRole(''ROLE_ADMIN'')') grants access if the user has ROLE_ADMIN.

	#authorization.expr('''__${image.owner}__'' == authentication.name') grants access if the image.owner attribute matches the current authentication.name.

	By the way, the double underscore before and after ${image.owner} is Thymeleaf's preprocessor. It indicates that this is done before any other part of the expression is evaluated. In essence, we need the image's owner attribute parsed first, stuffed into the authorization expression, and finally run through our custom tie-in to Spring Security's SpEL parser.



The expressions inside #authorization.expr() are supposed to be wrapped in single quotes. Literal values themselves have to be wrapped in single quotes. To escape a single quote in this context requires a double single quote. Confused yet? Thymeleaf's rules for concatenation, preprocessing, and nesting expressions can, at times, be daunting. To help debug an expression, pull up the Authorization class coded earlier inside your IDE and set breakpoints inside the proper security expression. This will pause code execution, allowing you to see the final expression before it gets passed, hopefully making it easier to craft a suitable authorization rule.

With our nice tweaks to the UI, let's see what things look like if we have two different images uploaded, one from an admin and one from a regular user.

If greg is logged in, we can see the following screenshot:



In the preceding screenshot, both images have a Delete button, since greg has ROLE_ADMIN.

If phil is logged in, we can see the following screenshot:



In the earlier screenshot, only the second image has the Delete button, since phil owns it.

With these nice details in place, we can easily check out the headers relayed to the backend using the browser's debug tools, as seen in this screenshot:



This collection of request and response headers shown in the last image lets us see the following things:


	The session ID, 8ab12c94-dd78-438e-a483-b75e8f37629f, is captured in SESSION in the cookie and sent over the wire.

	There is an Authorization header that is transmitted once we have been authenticated.

	More security-based headers are used to further protect us from other attack vectors. See http://docs.spring.io/spring-security/site/docs/current/reference/html/headers.html for more details.



When we started building this social media platform early in this book, we had several operations tied into our Thymeleaf template. This type of tight interaction between controllers and views is of classic design. However, the more things shift to piecing together bits of HTML and leveraging JavaScript, the more it becomes useful to have REST-based services. Writing AJAX calls decouples the HTML from the server-side controls, which can be further leveraged if we use tools such as React.js (https://facebook.github.io/react/). This gets us out of the business of assembling DOM elements and lets us focus on the state of the frontend instead.



            

            
        
    
        

                            
                    Securing WebSockets

                
            
            
                
So far, we have secured the chat service and the images service.

Or have we?

Well, we configured chat as the Gateway API for our microservices using Spring Cloud Gateway. To do that, we made it the sole source of HTTP session creation. Given that the session details were also included in forwarded web requests, our Gateway API is nicely buttoned up.

However,  the chat microservice's critical function is brokering WebSocket messages. And we haven't lifted a finger to secure that component. Time to roll up our sleeves and get to work.

Since our WebSocket handlers are stream oriented, we merely need to slip in a parent class that authorizes things when the WebSocket session is configured, as follows:

    abstract class AuthorizedWebSocketHandler 
     implements WebSocketHandler { 
 
       @Override 
       public final Mono<Void> handle(WebSocketSession session) { 
         return session.getHandshakeInfo().getPrincipal() 
          .filter(this::isAuthorized) 
          .then(doHandle(session)); 
       } 
 
       private boolean isAuthorized(Principal principal) { 
         Authentication authentication = (Authentication) principal; 
         return authentication.isAuthenticated() && 
          authentication.getAuthorities().contains("ROLE_USER"); 
       } 
 
       abstract protected Mono<Void> doHandle( 
         WebSocketSession session); 
    } 

The preceding code can be described as follows:


	This abstract class implements the WebSocketHandler interface with a Reactor-based handle() function

	The handle method looks up handshakeInfo, finding the Principal that will be populated by Spring Security, and filters against a custom isAuthorized function

	If the session is indeed authorized, an abstract doHandle is invoked, handing over WebSocketSession to the actual handlers

	The isAuthorized function takes the session's Principal, casts it to a Spring Security Authentication, and verifies that the user is both authenticated and also contains ROLE_USER



With this in place, we can update our InboundChatService like this:

    @Service 
    @EnableBinding(ChatServiceStreams.class) 
    public class InboundChatService extends AuthorizedWebSocketHandler
    { 
 
      private final ChatServiceStreams chatServiceStreams; 
 
      public InboundChatService(ChatServiceStreams chatServiceStreams){ 
        this.chatServiceStreams = chatServiceStreams; 
      } 
 
      @Override 
      protected Mono<Void> doHandle(WebSocketSession session) { 
 
      ... 
    } 

The changes in the previous code can be described as follows:


	InboundChatService now extends AuthorizedWebSocketHandler, forcing it to accept those upstream checks

	We have replaced handle(WebSocketSession) with doHandle(WebSocketSession)

	The rest of the code is the same, so there's no reason to show it



If we apply the same changes to OutboundChatService and CommentService, we can ensure that all of our WebSocket services are locked down.

Admittedly, our policy is quite simple. However, we can easily scale based on requirements. For example, if the Admins wanted their own channel, it wouldn't be hard to add /topic/admin/** and require ROLE_ADMIN.

It's also important to recognize that this level of security is aimed at the whole channel. Adding per-message security checks could also be layered in by going to each concrete service, and, essentially, embedding .filter(), based on the details of the message.

And that's all it takes! Our WebSocket channels are now secured such that only proper incoming messages are allowed through, and only HTML served from our site will have the means to connect and send such messages.



            

            
        
    
        

                            
                    Tracing calls

                
            
            
                
Earlier, we saw a screenshot from Chrome's debug tools, showing request and response headers. There is another tool we can use as well--Spring Boot Actuator's trace endpoint.

By visiting http://localhost:8080/application/trace, we can see all the web calls, going back in time. For example, look at this request to negotiate the WebSocket:

    { 
      "timestamp": 1480805242289, 
      "info": { 
        "method": "GET", 
        "path": "/learning-spring-boot/160/ge00bkmu/websocket", 
        "headers": { 
          "request": { 
            "host": "localhost:8080", 
            "connection": "Upgrade", 
            "pragma": "no-cache", 
            "cache-control": "no-cache", 
            "authorization": "Basic Z3JlZzp0dXJucXVpc3Q=", 
            "upgrade": "websocket", 
            "origin": "http://localhost:8080", 
            "sec-websocket-version": "13", 
            "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 
              10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) 
              Chrome/54.0.2840.98 Safari/537.36", 
            "accept-encoding": "gzip, deflate, sdch, br", 
            "accept-language": "en-US,en;q=0.8", 
            "cookie": "SESSION=3f0668ec-d528-43d8-a6e8-87a369571745", 
            "sec-websocket-key": "L8fkEK8VtxXfxx4jBzOC9Q==", 
            "sec-websocket-extensions": "permessage-deflate;  
             client_max_window_bits" 
          }, 
          "response": { 
            "X-Application-Context": "chat:8080", 
            "Upgrade": "websocket", 
            "Connection": "upgrade", 
            "Sec-WebSocket-Accept": "m8xyQSUtHR/qMEUp1xog4wwUS0E=", 
             "Sec-WebSocket-Extensions": "permessage-
              deflate;client_max_window_bits=15", 
             "status": "101" 
          } 
        } 
      } 
    } 

The following are some key bits that can be pointed out in the preceding code:


	The authorization header has a Basic token value, us having logged in

	The cookie is loaded with our SESSION ID

	The upgrade protocol to go from HTTP to WebSocket is evident in the response headers and the 101 status code



Let's look at one more, the request to view our bazinga.png image:

    { 
      "timestamp": 1480805242286, 
      "info": { 
        "method": "GET", 
        "path": "/images/bazinga.png/raw", 
        "headers": { 
          "request": { 
            "host": "localhost:8080", 
            "connection": "keep-alive", 
            "authorization": "Basic Z3JlZzp0dXJucXVpc3Q=", 
            "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 
             10_11_5) AppleWebKit/537.36 (KHTML, like Gecko)
             Chrome/54.0.2840.98 Safari/537.36", 
            "accept": "image/webp,image/*,*/*;q=0.8", 
            "referer": "http://localhost:8080/", 
            "accept-encoding": "gzip, deflate, sdch, br", 
            "accept-language": "en-US,en;q=0.8", 
            "cookie": "SESSION=3f0668ec-d528-43d8-a6e8-87a369571745" 
          }, 
          "response": { 
            "X-Application-Context": "chat:8080", 
            "Date": "Sat, 03 Dec 2016 22:47:21 GMT", 
            "Content-Type": "image/jpeg", 
            "Transfer-Encoding": "chunked", 
            "status": "200" 
          } 
        } 
      } 
    } 

Some interesting fields in the last code include the following:


	The cookie header contains our SESSION ID.

	The authorization header includes the same token.

	The referer header shows the origin of the request as http://localhost:8080/.

	The accept-encoding header indicates the formats that the browser will accept, including zipped images and deflated ones.

	The content-type response header has JPEG, a value we hard-coded into our controller. Since all images get handled by the same part of the browser, it doesn't matter if it's not PNG.



Spring Boot Actuator's trace endpoint will track the last one hundred requests. It's a handy way to peek at past web calls in case you don't have the browser's development tools open at the time.

You can inject TraceRepository into your code and use add(Map) on any structure you want, with it getting serialized into JSON.



            

            
        
    
        

                            
                    Securing the Config Server

                
            
            
                
So, we've locked down chat, images, and comments. But what about the Config Server itself? Seeing how critical it is with each microservice's configuration details, we need to insulate ourselves from a malevolent Config Server being stood up in its place.

The simplest thing to do is to add Spring Security to our Config Server. So, let's do it!

    compile('org.springframework.boot:spring-boot-starter-security') 

By default, Spring Security will set username to user and password to something random. Since we can't be updating the other services every time we restart, let's override that with a fixed password, as follows:

  @Bean
  UserDetailsService userDetailsService() {
    return new InMemoryUserDetailsManager(
      User
        .withUsername("user")
        .password("password")
        .roles("USER").build());
  } 

In Spring Boot 1.x, there was a security.password property to override. In the spirit of simplification, this property has been removed in Spring Boot 2.x. The new approach is to inject a UserDetailsService bean, as shown in the previous code fragment (which can be added to LearningSpringBootConfigServer). This code shows a single user, user/password, defined.

That's all it takes to secure our Config Server!

To signal the other services, we need to adjust their bootstrap.yml files. Let's start with the Eureka Server, like this:

    spring: 
      application: 
        name: eureka 
      cloud: 
        config: 
          label: session 
          password: password 

This change shown in the last code adds spring.cloud.config.password set to the same password we just chose.

Let's continue with chat:

    spring: 
      application: 
        name: chat 
      cloud: 
        config: 
          label: session 
          password: password 

In the preceding code, we have spring.cloud.config.password and spring.cloud.config.label properly set.

We can make the same changes to images, as follows:

    spring: 
      application: 
        name: images 
      cloud: 
        config: 
          label: session 
          password: password 

This will secure things with the exact same settings.

And finally, let's make the following changes to comments:

    spring: 
      application: 
        name: comments 
      cloud: 
        config: 
          label: session 
          password: password 

This will lock things down, preventing others from getting access to our settings. If someone attempted to stand up a bogus Config Server, they would have to somehow secure it with the same password on the same network address. (Not likely!).



            

            
        
    
        

                            
                    Securing the Eureka Server

                
            
            
                
The last bastion to secure is our Eureka Server. To do so, we need to adopt similar steps to what we did with the Config Server.

First, add Spring Security to the Eureka Server, as follows:

    compile('org.springframework.boot:spring-boot-starter-security') 

This preceding dependency will enable Spring Security automatically. However, just like Config Server, it will generate a random password every time it launches. To pin the password, we need to add the same UserDetailsService bean as follows:

  @Bean
  UserDetailsService userDetailsService() {
    return new InMemoryUserDetailsManager(
      User
        .withUsername("user")
        .password("password")
        .roles("USER").build());
  }

The recommended way to plug in the username/password settings for a Eureka client is by using the URL notation. For the chat service, we need to update the Config Server with this:

    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://user:password@localhost:8761/eureka 

This preceding adjustment will have the chat microservice signing into the Eureka Server with a username, password, hostname, port, and path--all standard options with URLs.

These options can be applied to the Config Server's images.yml file, like this:

    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://user:password@localhost:8761/eureka/ 

This can also be applied to the Config Server's comments.yml file, as follows:

    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://user:password@localhost:8761/eureka/

Are you unsure that this is working? Enable security in the Eureka Server as described, but do not make these changes to the Eureka clients. When they are launched, they'll report inability to connect to Eureka. Make the changes to the Config Server, restart it, then make the changes to the clients. They will then connect. Ta dah!

We now have every component secured. We also have session state shared between the services, making it easy to expand and add new services or to refine the existing roles. Pretty much anything we can think of.

So... does it smell like too many hard-coded values? Getting nervous about this system being able to roll with the punches of the network changing underneath it? Your concern is justified. We'll soon see in Chapter 10, Taking Your App to Production with Spring Boot, how we can take our social media platform to the cloud, scale its components, and with minimal adjustments, overcome what may appear as brittle settings.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we applied Spring Security to each of our microservices. We then configured our chat service as a Gateway API using Spring Cloud Gateway. Finally, we brought on board Spring Session MongoDB and had it share session details with the other backend microservices.

After ensuring that SESSION IDs were propagated by Spring Cloud Gateway to all the backend services, we wrote authorization rules, both for REST endpoints as well as for WebSocket messages.

To wrap things up, we also secured our Config Server and our Eureka Server so that only our system can talk to them.

In the next chapter, we will take our social media platform to production. We'll deploy our microservices-based application to the cloud, and see how to scale and adjust various things. We'll also discover how Spring Boot makes adjusting things a breeze.











            

            
        
    
        

                            
                    Taking Your App to Production with Spring Boot

                
            
            
                
Here is my source code

Run it on the cloud for me

I do not care how

– Cloud Foundry haiku (Onsi Fakhouri @onsijoe)

In the previous chapter, we learned how to secure our microservice-based social media platform.

In this chapter, we will cover the following topics:


	Configuring profile-specific beans

	Creating configuration property beans

	Overriding property settings in production

	Deploying our social media platform to the cloud



So, today is the day. We worked for weeks to build this system. And now we want to take it to production. What could happen? What could go wrong?

Answer: A lot. And...​a lot.

Spring Boot comes with powerful features to make it easy to tune and adjust things in production, allowing us to minimize the code. Some of the concepts presented here are rooted in The Twelve-Factor App (https://12factor.net/) and the ability to externalize configuration settings. We've already seen parts of that through the Config Server. However, now we'll dig in and apply more as we go to production.



            

            
        
    
        

                            
                    Profile-based sets of beans

                
            
            
                
Many cloud-based platforms use proxies wrapped around applications. This enables the platform to support many features, including caching, content delivery networks (CDN), load balancing, and SSL termination. After all, why put such common infrastructure requirements on developers?

However, the side effect can break security protocols designed to protect us in the web. For example, our application may be running on a private IP address, while original requests come in on a public-facing URL. When our application sees a forwarded web request, how are we to distinguish it between a proper request versus some nefarious cross site scripting attack leveraging our service?

The first place this can affect our application is the chat service's WebSocket handling. It requires explicit configuration to handle such a hop. However, we only want such an adjustment in our code to apply when we are in production, not when running things in development on our workstation.

The solution is profile-based beans. Spring lets us configure beans to only be created if certain profiles are enabled.

In the previous chapter, we had our entire WebSocket configuration in a top-level class. We need to change that configuration class and turn it into a container class with different options based on whether or not we are in production.

The first step is to move the existing bean definitions into a new, static inner class as shown here:

    @Configuration 
    public class WebSocketConfig { 
      ... 
      @Profile("!cloud") 
      @Configuration 
      static class LocalWebSocketConfig { 
        ... 
      } 
    } 

So far, we haven't changed a lot. What we have, can be described as follows:


	The outer class, WebSocketConfig, looks the same

	This new inner class, LocalWebSocketConfig, is annotated @Profile("!cloud"), meaning it only runs if there is no cloud profile

	The new class is called LocalWebSocketConfig to clarify that it only operates when we run things locally



What is a cloud profile? Spring allows settings various profiles through the spring.profiles.active application property. We can create all the profiles we want, even overlapping ones. However, any application deployed to Cloud Foundry automatically has an extra profile, that is, cloud, applied.

Since we plan to have both a local as well as a cloud-based configuration, it's important to distinguish what is the same and what is different. Something that will be the same are the WebSocket route mappings.

To support this, we need a single configureUrlMappings() method to configure this SimpleUrlHandlerMapping:

    private static SimpleUrlHandlerMapping configureUrlMappings( 
      CommentService commentService, 
      InboundChatService inboundChatService, 
      OutboundChatService outboundChatService) { 
        Map<String, WebSocketHandler> urlMap = new HashMap<>(); 
        urlMap.put("/topic/comments.new", commentService); 
        urlMap.put("/app/chatMessage.new", inboundChatService); 
        urlMap.put("/topic/chatMessage.new", outboundChatService); 
 
        SimpleUrlHandlerMapping mapping = new 
         SimpleUrlHandlerMapping(); 
        mapping.setOrder(10); 
        mapping.setUrlMap(urlMap); 
 
        return mapping; 
    } 

This is the same code we saw in the last chapter, just moved around a little:


	The three endpoints are tied to their respective services in Map of routes-to-WebSocketHandlers

	A SimpleUrlHandlerMapping is defined with this map of handlers

	The order is set to 10

	The method is static since it will be placed outside our new LocalWebSocketConfig (but inside WebSocketConfig)



To tap this, we simply need to write a bean definition inside LocalWebSocketConfig like this:

    @Bean HandlerMapping webSocketMapping(CommentService
     commentService, InboundChatService inboundChatService, 
     OutboundChatService outboundChatService) { 
       return configureUrlMappings(commentService,  
             InboundChatService, outboundChatService); 
    } 

This method does nothing more than invoke our WebSocket configuring method.

With the local configuration set up, we can now turn our attention towards configuring the WebSocket broker to work in the cloud. To do so, we need another inner static class inside WebSocketConfig, as follows:

    @Profile("cloud") 
    @Configuration 
    @EnableConfigurationProperties(ChatConfigProperties.class) 
    static class CloudBasedWebSocketConfig { 

It can be explained as follows:


	It's marked as @Profile("cloud"), meaning this only applies if the cloud profile is in force, the opposite of LocalWebSocketConfig

	It contains @EnableConfigurationProperties(ChatConfigProperties.class), used to provide an extra set of properties

	It's named CloudBasedWebSocketConfig to point out its role



If you're wondering what @EnableConfigurationProperties means, it leads us into the next section.



            

            
        
    
        

                            
                    Creating configuration property beans

                
            
            
                
@EnableConfigurationProperties, applied anywhere in our application, will cause a bean of the named type, ChatConfigProperties, to get added to the application context. A configuration property bean is meant to hold various settings that can be configured with optional defaults and can be overridden through various means.

Remember properties like server.port where we adjusted the default port our Netty web container listened for web requests? All the properties we've seen through this book are all configuration property beans. This annotation simply gives us the means to define our own property settings specific to our application.

In this case, ChatConfigProperties is aimed at configuring the WebSocket broker.

It's not critical that the annotation be applied to this specific class. It's just convenient since it's the place where we intend to use it.

Despite enabling such property settings, we still have to inject the bean into our CloudBasedWebSocketConfig configuration class, as shown here:

    private final ChatConfigProperties chatConfigProperties; 
 
    CloudBasedWebSocketConfig(ChatConfigProperties 
     chatConfigProperties) { 
       this.chatConfigProperties = chatConfigProperties; 
    } 

Using constructor injection, we now have access to whatever property settings are provided by this configuration property bean.

Configuration property beans are simply Spring beans with the added ability to override. It means they can be injected just like any other Spring bean.

Digging into the WebSocket broker configuration, what we need is the remote host we are willing to accept WebSocket connection requests from. Essentially, the public-facing URL of our chat microservice. To do that, we'll define a property called origin and use it as shown here:

    @Bean HandlerMapping webSocketMapping(CommentService
     commentService, InboundChatService inboundChatService, 
     OutboundChatService outboundChatService) { 
       SimpleUrlHandlerMapping mapping = 
         configureUrlMappings(commentService,  
         InboundChatService, outboundChatService); 
 
       Map<String, CorsConfiguration> corsConfigurationMap = 
         new HashMap<>(); 
       CorsConfiguration corsConfiguration = new CorsConfiguration(); 
       corsConfiguration 
        .addAllowedOrigin(chatConfigProperties.getOrigin()); 
 
       mapping.getUrlMap().keySet().forEach(route -> 
        corsConfigurationMap.put(route, corsConfiguration) 
       ); 
 
       mapping.setCorsConfigurations(corsConfigurationMap); 
 
       return mapping; 
    } 

This code has the same endpoints as LocalWebSocketConfig, thanks to the configureUrlMappings method. It additionally creates a CORS map, like we did in Chapter 8, WebSockets with Spring Boot. Only, this time, it uses the injected getOrigin() to plug in the public-facing URL of the chat service (hold tight--​we'll see how shortly).

What's missing is the definition of this configuration property bean. It's shown here:

    @Data 
    @ConfigurationProperties(prefix = "lsb") 
    public class ChatConfigProperties { 
 
      @Value("https://${vcap.application.uris[0]}") 
      private String origin; 
 
    } 

The code can be explained as follows:


	Once again, we use Project Lombok's @Data annotation to avoid writing getters and setters. This is ideal for configuration property beans.

	@ConfigurationProperty(prefix="lsb") flags this bean as a candidate for Spring Boot's property reading rules, starting with the lsb prefix.

	There is a single property named origin that is initialized using Spring's @Value() annotation.

	On Cloud Foundry, vcap.application.uris is a property applied to every application that lists publicly visible URLs. Assuming that the first is the one we wish to use, we are applying it to our origin property.

	By combining the prefix (lsb) and the name of the property (origin), the full path of this property is lsb.origin, and it can be overridden at any time.





            

            
        
    
        

                            
                    Overriding property settings in production

                
            
            
                
Everytime we take our application to a new environment, there are always settings that have to be adjusted. We don't want to edit code. Instead, it's easier if we could just override various properties. And we can!

This was touched on briefly in Chapter 1, Quick Start with Java, under the guise of overriding Spring Boot's property settings. However, the fact that we can write our own custom configuration property beans makes this a powerful feature for application customization.

To recap the rules listed in Chapter 1, Quick Start with Java, property settings can be overridden in the following order, highest to lowest:


	@TestPropertySource annotations on test classes.

	Command-line arguments.

	Properties found inside SPRING_APPLICATION_JSON (inline JSON embedded in an env variable or system property).

	ServletConfig init parameters.

	ServletContext init parameters.

	JNDI attributes from java:comp/env.

	Java System properties (System.getProperties()).

	OS environment variables.

	RandomValuePropertySource that only has properties in random.*.

	Profile-specific properties outside the packaged JAR file (application-{profile}.properties and YAML variants).

	Profile-specific properties inside the packaged JAR file (application-{profile}.properties and YAML variants).

	Application properties outside the package JAR file (application.properties and YAML variants).




	Application properties inside the packaged JAR file (application.properties and YAML variants).

	@PropertySource annotations on any @Configuration classes.

	Default properties (specified using SpringApplication.setDefaultProperties).



By default, we can run with vcap.application.uris[0]. However, if we take it to another cloud solution, we can simply plug in an override to lsb.origin and leverage whatever environment variables the new cloud provides. This lets us escape having to alter the code again and instead focus on getting things running.

One of the most common tactics is to create an application-{profile}.yml file that will be automatically applied when <profile> is in effect. Since Cloud Foundry apps get the cloud profile, it would be natural to create an application-cloud.yml file.

However, since we adopted the Spring Cloud Config Server and specified that the chat service is governed by chat.yml, we instead merely need to add a chat-cloud.yml file. Then we know the following cloud-specific settings will be applied when deployed to Cloud Foundry:

    server: 
      port: 8080 
 
    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://user:password@learning-spring-boot-
           eureka-server.cfapps.io/eureka/ 
      instance: 
        hostname: ${vcap.application.uris[0]} 
        nonSecurePort: 80 

These settings can be explained as follows:


	The server.port is the same as before

	The eureka.client.serviceUrl.defaultZone is changed to the public-facing URL for our Eureka service, so the chat service can find it

	Since the public-facing URL for our chat service is terminated by a proxy, we have to override eureka.instance.hostname with ${vcap.application.uris[0]} to avoid registering an unreachable IP address with Eureka

	We must also register that we are visible (non-secure) on port 80



The following settings are identical for comments-cloud.yml:

    server: 
      port: 8080 
 
    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://user:password@learning-spring-boot-
           eureka-server.cfapps.io/eureka/ 
      instance: 
        hostname: ${vcap.application.uris[0]} 
        nonSecurePort: 80 

And the same for images-cloud.yml:

    server: 
      port: 8080 
 
    eureka: 
      client: 
        serviceUrl: 
          defaultZone: http://user:password@learning-spring-boot-
           eureka-server.cfapps.io/eureka/ 
      instance: 
        hostname: ${vcap.application.uris[0]} 
        nonSecurePort: 80 

Finally, we need to set the same instance details for the Eureka service itself via eureka-cloud.yml, as shown here:

    server: 
      port: 8080 
 
    eureka: 
      instance: 
        hostname: ${vcap.application.uris[0]} 
        nonSecurePort: 80 

If you'll notice, there is no eureka.client.serviceUrl.defaultZone given that this IS the Eureka service!

These additional settings added to https://github.com/gregturn/learning-spring-boot-config-repo/tree/production will ensure that our apps function smoothly in the cloud.

If we want to see our newly minted property settings, we can visit http://learning-spring-boot.cfapps.io/configprops and look for ChatConfigProperties.



The configuration properties can be described as follows:


	The name is captured as the prefix + the canonical path of the class

	The prefix, lsb, is displayed

	The properties lists the named properties we can tap (nesting displayed if that were the case)



From this, we can easily glean that lsb.origin is the property to override should we have some reason to adjust this.



            

            
        
    
        

                            
                    @ConfigurationProperties versus @Value

                
            
            
                
In our code, we have used both strongly-type @ConfigurationProperties based classes as well as @Value labeled attributes. It's important to understand the differences before using them in your application.

@Value is old, preceding Spring Boot by years. It is a powerful annotation, able to inject values as well as accept default values. However, it misses several features many of us have come to rely upon when writing Boot apps, as shown in the following table:




	
Feature


	
@ConfigurationProperties


	
@Value





	
Relaxed binding


	
Yes


	
No





	
Meta-data support


	
Yes


	
No





	
SpEL evaluation


	
No


	
Yes







 

This matrix documents three critical features:


	Relaxed binding: The ability to match server.port, SERVER_PORT, and sErVeR.pOrT to the same attribute is quite valuable.

	Meta-data support: The ability to include code completion for property settings is also of incredible value, along with hover-over tips. Anything that speeds up developer effort cannot be understated in value.

	SpEL evaluation: The ability to write SpEL expressions to populate properties.



There is a strong suggestion to start with @ConfigurationProperties. When you bundle together a set of properties inside a POJO, it really is a shortcut for a fist full of @Value attributes. And the property binding is supercharged.

However, when you need SpEL expression support, as we do to get a hold of the application's URI (${vcap.application.uris[0]}), then it's okay to break from @ConfigurationProperties and switch to @Value.

However, if you'll notice, we continue to leverage it inside @ConfigurationProperties. The real hint of doing it wrong is if we try to construct a collection of properties using @Value. Configuration properties is a nice way to build a hierarchy of properties with little effort.



            

            
        
    
        

                            
                    Pushing app to Cloud Foundry and adjusting the settings

                
            
            
                
Keep calm and cf push.

- Denizens of the Internet

If there's one thing critical to any smooth-running Ops center, it's the need for automation. If we do things by hand, we introduce the risk of drift among our various components in production.

The following section shows some BASH scripts for deploying our microservices-based social media platform, a first step on the path towards automated deployment.

Assuming we've built everything with Gradle, let's kick things off by deploying our Spring Boot uber JARs to Cloud Foundry:

#!/usr/bin/env bash 
 
cf push learning-spring-boot-config-server -p config-server/build/libs/learning-spring-boot-config-server-0.0.1-SNAPSHOT.jar & 
cf push learning-spring-boot-eureka-server -p eureka-server/build/libs/learning-spring-boot-eureka-server-0.0.1-SNAPSHOT.jar & 
cf push learning-spring-boot -p chat/build/libs/learning-spring-boot-chat-0.0.1-SNAPSHOT.jar & 
cf push learning-spring-boot-comments -p comments/build/libs/learning-spring-boot-comments-0.0.1-SNAPSHOT.jar & 
cf push learning-spring-boot-images -p images/build/libs/learning-spring-boot-images-0.0.1-SNAPSHOT.jar & 
cf push learning-spring-boot-hystrix-dashboard -p hystrix-dashboard/build/libs/learning-spring-boot-hystrix-dashboard-0.0.1-SNAPSHOT.jar & 

It can be described as follows:


	Each module is deployed using the CF CLI (https://github.com/cloudfoundry/cli), deploying with both a name and the JAR file

	Each command is backgrounded to speed up release



A real microservice-based solution presumes different teams responsible for different modules. Hence, each team may have a different deployment script as well as different release schedules.

Let's get things underway and deploy! The console output shows us running our deployment script:

gturnquist$ ./deploy.sh 
 
Creating app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Creating app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Creating app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Creating app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Creating app learning-spring-boot-hystrix-dashboard in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Creating app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
... 
Using route learning-spring-boot-config-server.cfapps.io 
Binding learning-spring-boot-config-server.cfapps.io to learning-spring-boot-config-server... 
Using route learning-spring-boot-comments.cfapps.io 
Binding learning-spring-boot-comments.cfapps.io to learning-spring-boot-comments... 
Using route learning-spring-boot-eureka-server.cfapps.io 
Binding learning-spring-boot-eureka-server.cfapps.io to learning-spring-boot-eureka-server... 
Using route learning-spring-boot-images.cfapps.io 
Binding learning-spring-boot-images.cfapps.io to learning-spring-boot-images... 
Using route learning-spring-boot.cfapps.io 
Binding learning-spring-boot.cfapps.io to learning-spring-boot... 
Using route learning-spring-boot-hystrix-dashboard.cfapps.io 
Binding learning-spring-boot-hystrix-dashboard.cfapps.io to learning-spring-boot-hystrix-dashboard... 
... 
Uploading learning-spring-boot-config-server... 
Uploading learning-spring-boot-hystrix-dashboard... 
Uploading learning-spring-boot-comments... 
Uploading learning-spring-boot-eureka-server... 
Uploading learning-spring-boot-images... 
Uploading learning-spring-boot... 
... 
Starting app learning-spring-boot-hystrix-dashboard in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
... 
App started 
 
(the rest ommitted for brevity) 

All components of our social media platform are now deployed to the cloud.

Be warned! This isn't enough. There are custom settings that must be applied after the bits are uploaded.

Let's start with the section that configures our Eureka server, as shown here:

#!/usr/bin/env bash 
 
cf set-env learning-spring-boot-eureka-server spring.cloud.config.uri https://learning-spring-boot-config-server.cfapps.io 
cf set-env learning-spring-boot-eureka-server spring.cloud.config.label production 

Eureka needs to be configured with a Config Server URI and which label to fetch from GitHub, as done using cf set-env.

Next, we can look at the settings for the chat microservice:

cf set-env learning-spring-boot spring.cloud.config.uri https://learning-spring-boot-config-server.cfapps.io 
cf set-env learning-spring-boot spring.cloud.config.label production 
 
cf bind-service learning-spring-boot learning-spring-boot-mongodb 
cf set-env learning-spring-boot spring.data.mongodb.uri \${vcap.services.learning-spring-boot-mongodb.credentials.uri} 
 
cf bind-service learning-spring-boot learning-spring-boot-rabbitmq 

The chat service needs a Config Server URI (with the GitHub label), a MongoDB service binding and URI setting, and a RabbitMQ service binding.

Next, we can look at the settings for the comments microservice, as shown here:

cf set-env learning-spring-boot-comments spring.cloud.config.uri https://learning-spring-boot-config-server.cfapps.io 
cf set-env learning-spring-boot-comments spring.cloud.config.label production 
 
cf bind-service learning-spring-boot-comments learning-spring-boot-mongodb 
cf set-env learning-spring-boot-comments spring.data.mongodb.uri \${vcap.services.learning-spring-boot-mongodb.credentials.uri} 
 
cf bind-service learning-spring-boot-comments learning-spring-boot-rabbitmq 

The comments service needs a Config Server URI (with the GitHub label), a MongoDB service binding and URI setting, and a RabbitMQ service binding.

Next, we can look at the settings for the images microservice, as shown here:

cf set-env learning-spring-boot-images spring.cloud.config.uri https://learning-spring-boot-config-server.cfapps.io 
cf set-env learning-spring-boot-images spring.cloud.config.label production 
 
cf bind-service learning-spring-boot-images learning-spring-boot-mongodb 
cf set-env learning-spring-boot-images spring.data.mongodb.uri \${vcap.services.learning-spring-boot-mongodb.credentials.uri} 
 
cf bind-service learning-spring-boot-images learning-spring-boot-rabbitmq 

The images service needs a Config Server URI (with the GitHub label), a MongoDB service binding and URI setting, and a RabbitMQ service binding.

While all three services are binding to the same MongoDB service, they could actually use separate MongoDB services. The code was carefully written to avoid integrating inside the database. Each service has separate collections. However, for the sake of brevity, just one service is used in this code.

With this in place, let's run the following configuration script:

gturnquist$ ./config.sh 
 
Setting env variable 'spring.cloud.config.uri' to 'https://learning-spring-boot-config-server.cfapps.io' for app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Setting env variable 'spring.cloud.config.label' to 'production' for app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Setting env variable 'spring.cloud.config.uri' to 'https://learning-spring-boot-config-server.cfapps.io' for app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Setting env variable 'spring.cloud.config.label' to 'production' for app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Binding service learning-spring-boot-mongodb to app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Setting env variable 'spring.data.mongodb.uri' to '${vcap.services.learning-spring-boot-mongodb.credentials.uri}' for app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Binding service learning-spring-boot-rabbitmq to app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
 
(the rest omitted for brevity) 

Having applied these settings, we need to restart everything. To do so, we need the following script:

#!/usr/bin/env bash 
 
cf restart learning-spring-boot-config-server 
 
sleep 10 
 
cf restart learning-spring-boot-eureka-server & 
cf restart learning-spring-boot & 
cf restart learning-spring-boot-comments & 
cf restart learning-spring-boot-images & 

Why the delay after restarting the Config Server? It's important that it's given a chance to be up and operational before the other applications. So, let's run it as follows:

$ ./restart.sh 
 
Stopping app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
 
    state     since                    cpu      memory         disk         details 
#0   running   2017-01-11 10:11:07 PM   207.4%   426.7M of 1G   146M of 1G 
 
Stopping app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Stopping app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Stopping app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Stopping app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io... 
 
Starting app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io... 
Starting app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io... 
 
App started 
 
(the rest ommitted for brevity) 

We can easily check their status like this:

$ cf apps 
 
Getting apps in org cosmos-refarch / space development as gturnquist@pivotal.io... 
OK 
 
name                                     requested state   instances   memory   disk   urls 
learning-spring-boot                     started           1/1         1G       1G     learning-spring-boot.cfapps.io 
learning-spring-boot-comments            started           1/1         1G       1G     learning-spring-boot-comments.cfapps.io 
learning-spring-boot-config-server       started           1/1         1G       1G     learning-spring-boot-config-server.cfapps.io 
learning-spring-boot-eureka-server       started           1/1         1G       1G     learning-spring-boot-eureka-server.cfapps.io 
learning-spring-boot-hystrix-dashboard   started           1/1         1G       1G     learning-spring-boot-hystrix-dashboard.cfapps.io 
learning-spring-boot-images              started           1/1         1G       1G     learning-spring-boot-images.cfapps.io 

Let's take a peek. We can do so by visiting http://learning-spring-boot.cfapps.io (in an incognito tab to ensure a fresh session):



We will see the all too familiar login page.

If we log in as greg/turnquist, delete the default images and load up our favorites from earlier, we can expect to see this:



Our favorite chat channel is at the bottom of the page, as shown in the following screenshot:



For extra maintenance, the following script can be used to delete all the apps (but not the related AMQP and MongoDB services):

#!/usr/bin/env bash 
 
cf delete -f learning-spring-boot-config-server & 
cf delete -f learning-spring-boot-eureka-server & 
cf delete -f learning-spring-boot & 
cf delete -f learning-spring-boot-comments & 
cf delete -f learning-spring-boot-images & 
cf delete -f learning-spring-boot-hystrix-dashboard & 

Using the CF CLI, all the services are deleted in a background job.

Doesn't Cloud Foundry support manifest YAML files? While it's true, manifest files have limitations that I prefer to avoid. Hence, I'd rather directly script the CF CLI operations directly, or use something ever more powerful.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we created profile-specific configuration settings to handle the WebSocket broker in either a local or cloud-based environment. We plugged in a custom configuration property bean and used it to grab necessary details from our cloud provider so our chat channel would work properly. We then built some BASH scripts to deploy things to the cloud, configure necessary properties, and restart/cleanup if needed.

This is just the beginning. We touched upon a lot of things in this book, including web apps, data access, testing, tools, messaging, microservices, security, and production. And we did it all reactively, ensuring we use resources more efficiently and effectively.

Think our social media platform is worth a billion dollars? Maybe, maybe not. However, by using the length and breadth of Spring Boot 2.0, Spring Framework 5, and its reactor-based paradigm end to end, we've learned a lot in how to build a scalable system.

Hopefully, I've whetted your appetite to go out and discover what else Spring Boot has to offer as you work on your next big project.

Please visit https://github.com/learning-spring-boot/learning-spring-boot-2nd-edition-code and "star" it. That way, you'll be alerted as Spring Boot 2.0 reaches GA release and this code base is upgraded to match. Also sign up for updates at http://greglturnquist.com/books/learning-spring-boot so you can be alerted to the latest news including code mods, contests, and more!







            

            
        
    assets/37d64323-c0b8-4f41-92ea-9d126fa32abb.png
Greetings!

(greg)(all): Do you like the cover?

B





assets/94a3fc96-d52a-419d-b782-49a388a6f84d.png
Run | Allin 4 partl_test

» <defau|t package> 25 428ms

"""" @ EndToEndTests 1s 657ms
| @ homePageShouldWork 1s 657ms
G @ EmbeddedimageRepositoryTests 433ms

@ findAllShouldWork 400ms
@ findByNameShouldWork 33ms
@ HomeControllerTests 251ms
@ fetchingNulllmageShouldFail 84ms
@ deletelmageShouldWork 79ms
@ fetchinglmageShouldWork 45ms
@ baseRouteShouldListAllimages 43ms
@ LivelmageRepositoryTests 51ms
@ findAllShouldWork 40ms
@ findByNameShouldWork 11ms
@ ImageServiceTests 35ms
@ createlmageShouldWork 13ms
@ deletelmageShouldWork 8ms
@ findOneShouldReturnNotYetFetchedUrl 8ms
@ findAllShouldJustReturnTheFlux 6ms
@ ImageTests 1ms

@ imagesManagedByLombokShouldWork  1ms





assets/4910e050-2fcb-409a-93fd-bfc4ce573b41.png
getComments
57| 0 9
| o 0.0 %
0
Host: 6.0/s
Cluster: 6.0/s

Circuit Closed

Hosts 1 90th  24ms
Median ~ 15ms 99th  338ms
Mean 2ims 99.5th 338ms






assets/28898652-d0a4-495e-afb4-93c6296ebebd.png





assets/e1d545b2-ab85-495b-8c5d-565bcc23f71a.png
v Busrc
v Bamain
v lujava
v Ex com.greghturnguist learningspringboot
v Excomments
£x controllers
Ex domain
Exservices.
v Enimages
£x controllers
Ex domain
Exservices.
@ MyCoolApplication






assets/a2abb6f0-4d2b-47dc-9e82-84d64ec51e1e.png
&

L @) https://learning-spring-boot.c X

C { @& Secure https://learning-spring-boot.cfapps.io/configprops

[l VMware Intranet # VMware [Jenkins] I [@ JSON Pretty Print
= (>=]

978
979
980
981
982
983
984

s

{} JSON Editor Online...

v "1sb-com.greglturnquist.learningspringboot.chat.ChatConfigProperties": {
"prefix": "lsb",
"properties": {

1,

}

"origin": "https://learning-spring-boot.cfapps.io"






assets/8ae3be34-091e-43e9-9086-ebe96a8b6ffc.png
X | Headers Preview Response Cookies Timing

¥ General
Request URL: http://localhost:8080/images/bazinga.png/raw
Request Method: GET
Status Code: ® 200
Remote Address: [::1]:8080

¥ Response Headers view source
Content-Type: image/jpeg
Date: Thu, 24 Nov 2016 06:18:44 GMT
Transfer-Encoding: chunked
X-Application-Context: chat:8080

¥ Request Headers view source
Accept: image/webp, image/*,*/*;q=0.8
Accept-Encoding: gzip, deflate, sdch, br
Accept-Language: en-US,en;q=0.8
Authorization: Basic Z3J1Zzp@dXJucXVpc3Q=
Cache-Control: no-cache
Connection: keep-alive
Cookie: SESSION=8ab12c94-dd78-438e-a483-b75e8137629f
Host: localhost:8080
Pragma: no-cache
Referer: http://localhost:8080/
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_11_5) Ap





assets/bf98070a-8ef8-41d1-aafb-3006e5377028.png
L J @) Login Page X =

< C O @& Secure https://learning-spring-boot.cfapps.io w s
[1 VMware Intranet & VMware [Jenkins] E ® [1 JSON Pretty Print » [ Other Bookmarks

Authentication Required

User Name: greg

Password: eeescscces

Cancel LogIn






assets/136a9bd4-b4de-4235-b314-d0e63ec3b738.png
Publishing "Do you like the new cover?"

Received (greg)(all): Do you like the new cover?

Received (oliver)(all): I sure do.

Received (phil): @greg Are you going to offer it in a t-shirt?
>





assets/4deb7795-c31b-4e08-8e8f-f7b5a3834f62.png
Run l_'n Learning Spring Boot - Remote
Gl 1+ /Library/Java/JavaVirtualMachines/jdk1.8.0_51.jdk/Contents/Home/bin/java ...

m 3y /NN

- _ _ ATAAWAY
— CON | ' ' '2N 2 IR N [ RN W W W
[ =3 N/ DD el /=20 " N/ N/ =2)))))
s B PR [y O ) O NP R N U O\ NV N N VA A 4
& || |/ /_/_/_/
# & : Spring Boot Remote (v2.0.0.BUILD-SNAPSHOT)
= I 2016-10-02 12:56:57.030 INFO 80824 —- [ main] o.s.b.devtools.RemoteSpringApplicati
........ 2016-10-02 12:56:57.035 INFO 80824 ——— [ main] o.s.b.devtools.RemoteSpringApplicati
& 2016-10-02 12:56:57.308 INFO 80824 —— [ main] s.c.a.AnnotationConfigApplicationCon
2016-10-02 12:56:57.824 INFO 80824 —— [ main] o.s.b.d.a.OptionallLiveReloadServer
[ main] o.s.b.devtools.RemoteSpringApplicati

Ve
X 2016-10-02 12:56:57.868 INFO 80824 ———
2





assets/35988144-eb61-4f81-874a-b89e6b16ae83.png
00 localhost: 0 =

& C 0 @ localhost:8080 w s
[@ VMware Intranet » [ Other Bookmarks

Authentication Required

http://localhost:8080 requires a username and password.

User Name: greg

Password: = eeeecccces)

Cancel LogIn






assets/86d69198-3de5-41ff-806d-afea47fa10b7.png
2016-09-30 14:57:52.106 DEBUG 50763 ——— [ restartedMain] o.s.b.a.e.jmx.Endpo

2016-09-30 14:57:52.128 DEBUG 50763 ——— [ . restartedMain] utoConfigurationRep
.EE_
=
%
%
Positive matches
x|
?

AuditAutoConfiguration#auditListener matched
- @ConditionalOnMissingBean (types: org.springframework.boot.actuate.au

AuditAutoConfiguration.AuditEventRepositoryConfiguration matched
- @ConditionalOnMissingBean (types: org.springframework.boot.actuate.au





assets/8889ff74-8b3d-4ce9-819f-2a8962fd7ba9.png
Run | WebDriverAutoConfigurationTests

P @ =12 =
» .WebDrlverAutoConflguratlonTests (com.greglturnqui 5s 274ms
"""" (@ testWithMockedFirefox 2s 544ms
| (@ testWithMockedChrome 1s 454ms
= (@ fallbackToNonGuiModeWhenAllBrowsersDisabled 15 18ms
(@ testWithMockedSafari 258ms





assets/4bbe6479-57b3-41db-90e3-e3af670fe0a5.png
Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do
(phil): @greg Are you going to offer it in a t-shirt?

-





assets/eda68352-abcb-417e-8c92-8be42266ab6d.png
Name Owner
bazinga.png Delete | greg
B05771_MockupCover_Normal.png Delete | phil






assets/b576daf8-cc95-4f19-87c7-29308000bb71.png
org.
org.

org

org.

org.
org.

mongodDb.
mongodb.
.mongodb.
mongodb.
mongodb.

mongodb.

dariver.
driver.
driver.
driver.
driver.
driver.
.m.c.i.MongoPersistentEntityIndexCreator

.m.c.i.MongoPersistentEntityIndexCreator

cluster
connection
cluster
cluster
connection
cluster

0.s.j.e.a.AnnotationMBeanExporter
r.ipc.netty.tcp.BlockingNettyContext
0.S.b.web.embedded.netty.NettyWebServer
mongodb.driver.connection

org.
0.

0.
0.
0o

S

S
S
S

.data.mongodb. core.MongoTemplate
.data.mongodb. core.MongoTemplate
.data.mongodb. core.MongoTemplate
.data.mongodb. core.MongoTemplate

: Cluster created wlth settings ihosts=[localhost:2/01/], moae=5INGLE, requiredClust
: Opened connection [connectionId{localValue:1, serverValue:205}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription
: Cluster created with settings {hosts=[localhost:27017], mode=SINGLE, requiredClust
: Opened connection [connectionId{localValue:2, serverValue:206}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription

Analyzing class class com.greglturnquist.learningspringboot.Image for index inform
Analyzing class class com.greglturnquist.learningspringboot.Image for index inform

: Registering beans for JMX exposure on startup

: Started HttpServer on /0:0:0:0:0:0:0:0:8080

: Netty started on port(s): 8080

: Opened connection [connectionId{localValue:3, serverValue:207}] to localhost:27017
: Dropped collection [image]

: Inserting Document containing fields: [_id, name, _class] in collection: image

: Inserting Document containing fields: [_id, name, _class] in collection: image

: Inserting Document containing fields: [_id, name, _class] in collection: image





assets/25f619c5-b9bb-4bf5-b27e-5960067e8f1e.png
Owner

Delete

greg

ng

Delete






assets/d2fd254d-d9e7-49ee-ab0c-d82eb40be1e9.png
Name

B05771_MockupCover_Normal_.jpg

Delete

i

« Nice cover!

Submit |

bazinga.png

Delete

i

Submit |






assets/f1b4cdf9-96cc-49a6-a7d7-6af834a198e4.png
& C 1 @ localhost:8080

Learning Spring Boot - 2nd Edition

Id Name | Image

57f16c0883a5d2446127602¢ | test . Delete
57f16c0883a5d2446£27602f | test2 | s Delete
57f16c0883a5d2446£276030 | test3 | s Delete

Choose File No file chosen

Upload





assets/b3defb5c-fef6-4df1-81dd-531a93f01833.png
© © ® 4 localhost:8888/eureka/default x

< C O O localhost:8888/eureka/default

Apps [ VMware Intranet  } VMware [Jenkins] #& (Z) [) JSON Pretty Print [} JSON Editor Online... 4 Prograr
// 2017081319434
// http://localhost:8888/eureka/default

v

nane": “eureka",
"profiles”: [
"default”
1
“label": null,
"version": "a69475c00e47bc91949e76c79024f39720967a21" ,
"state": null,
© “propertySources”: [
J {
"name”: "hf
N "source”: {
"server.port": 8761,
"eureka. instance.hostnane": "localhost”,
"eureka. client. registerti thEureka" : false,
"eureka. client. fetchRegistry": false,
"eureka. client. servicerl.defaul tZone": "http://${eureka. instonce. hostnane} :${server. port} /eureka/"






assets/299d7678-3c4a-4d28-9e72-a6bcc3191dbf.png
Name

B05771_MockupCover_Normal_.jpg

Delete

Nice cover!

Submit

bazinga.png

Submit |






assets/b8c47804-d3f6-4935-92e1-e2757fe87924.png
Id Name Image

3 bazinga.png ». Delete

2 learning-spring-boot-2nd-edition-cover.jpg |o.. Delete





assets/82d9b4ad-d3c2-488b-b289-a87d2587cab0.png
L AN /- localhost:8080/application X \\

&« Cc O ‘(DIocaIhost:8080/application Q \ﬁr‘ -] A K

i Apps  [) VMware Intranet i VMware [Jenkins] #= ) [ JSON Pretty |

// 20170912231024
// http://localhost:8080/application

| {

"_links": {

v "self": {

"href": "http://localhost:8080/application”,
"templated": false

B

©CoeNOUH»WNBR
<

10 ~ "auditevents": {

11 "href": "http://localhost:8080/application/auditevents”,
12 "templated": false

13 b

14 ~ "beans": {

15 "href": "http://localhost:8080/application/beans",

16 "templated": false

17 b

18 - "autoconfig": {

19 "href": "http://localhost:8080/application/autoconfig"”,
20 "templated": false

21 b

22 v "configprops": {

23 "href": "http://localhost:8080/application/configprops”,
24 "templated": false

25 b

26 v "env": {

27 "href": "http://localhost:8080/application/env",

28 "templated": false

29 b

30 - "env-toMatch": {

31 "href": "http://localhost:8080/application/env/{toMatch}",
32 "templated": true

33 b

34 v "health": {

35 "href": "http://localhost:8080/application/health",

36 "templated": false

37 b

38 v "status": {

39 "href": "http://localhost:8080/application/status",

40 "templated": false





assets/eecf3649-cdb2-4244-81a9-3ac12e0c2812.png
DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status

COMMENTS n/a (1) (1) UP (1) - retina:comments:9000

IMAGES n/a (1) (1) UP (1) - retina:zimages





assets/8779f0b3-ae03-4ae5-be64-3b6788449da4.png
Owner

greg

Delete






assets/07aee548-9d7f-48fa-ae69-d0f406f456f5.png
Run/Debug Configurations

Name: | Learning Spring Boot - Remote| Share Single instance only
_ Code Coverage Logs
Main class: org.springframework.boot.devtools.RemoteSpringApplication
VM options:
Program arguments: https://learning-spring-boot.cfapps.io
Working directory: /Users/gturnquist/Dropbox/Greg/learning-spring-boot-2nd-edition

Environment variables:

Use classpath of module:  [3 5_part2_main

JRE: Default (1.8 - SDK of '5_part2_main' module)

B





assets/1054786d-e86b-4751-b042-c233c766732c.png
PP Learning Spring Boot ch7-part3 +

> &





assets/cff22c51-263e-49a1-a0da-06e35bcb1e3c.png
getComments

100.0 %
58
2
Host: 0.2/s
Cluster: 0.2/s
Circuit Open
Hosts 1 90th  18ms

Median ~ 13ms 99th  20ms
Mean  10ms 99.5th  20ms





assets/2f6088d3-37f4-4709-92b2-576f55905643.png
Received 2f@5fa8e: Do you like the new cover?

Publishing "You bet! Wish I could get it in a t-shirt"
Received 298b3bcf: You bet! Wish I could get it in a t-shirt
Received 2f@5fa8e: Me too. Did you get e-book, or print?
Publishing "Both"

Received 298b3bcf: Both

Publishing "I always get both"

Received 298b3bcf: I always get both





assets/3d6762d3-4c3b-4214-acbf-78e42f427410.png
integration.channel.output.errorRate.mean: 0,
integration.channel.output.errorRate.max: 0,
integration.channel.output.errorRate.min: 0,
integration.channel.output.errorRate.stdev: 0,
integration.channel.output.errorRate.count: 0,
integration.channel.output.sendCount: 1080,
integration.channel.output.sendRate.mean: 33.2953175275134,
integration.channel.output.sendRate.max: 0.10356745398044587,
integration.channel.output.sendRate.min: 0.00007268595695495606,
integration.channel.output.sendRate.stdev: 127.44592804513556,
integration.channel.output.sendRate.count: 1080,
integration.channel.output.receiveCount: -1,
integration.channel.input.errorRate.mean: 0,
integration.channel.input.errorRate.max: 0,
integration.channel.input.errorRate.min: 0,
integration.channel.input.errorRate.stdev: 0,
integration.channel.input.errorRate.count: 0,
integration.channel.input.sendCount: 1080,
integration.channel.input.sendRate.mean: 30.60592083415993,
integration.channel.input.sendRate.max: 0.10221006900072098,
integration.channel.input.sendRate.min: 0.000672169029712677,
integration.channel.input.sendRate.stdev: 20.733646866079425,
integration.channel.input.sendRate.count: 1080,
integration.channel.input.receiveCount: -1,





assets/2d1c1d44-105f-407e-83b1-d9dcae6a6834.png





assets/8d230aa5-3326-422a-9583-134f21bf50ad.png
Learning Spring Boot: Spring- X

oo

&< C' Y @ Secure https://learning-spring-boot.cfapps.io ¥

[@ VMware Intranet

# VMware [Jenkins] Y =

» [ Other Bookmarks

Learning Spring Boot - 2nd Edition

Id

Name

Image

8d22f555-
£830-4d38-
aff0-
4d11562013eb

B05771_MockupCover_Normal.png

Delete

37f6code-
Tbe3-4bbb-
9e6d-
82271822d4b4

bazinga.png

Delete

d1459c17-
e0f6-4a2a-
82f9-
b7243e47bab4

platform-spring-boot.png

Delete

Choose File No file chosen

Upload





assets/a96d9214-2a9e-41c1-9e8d-048e9e95fa53.png
ilmageiests

/..l
package com.greglturnquist.learningspringboot;

+import ...
, Copy Reference
ok -
* . @author Greg .| [ Paste
*/ Paste from History...
// .tag::code[] Paste Simple

public class Ima( .
Column Selection Mode

@Test
public void |  Find Usages
Image im  pefactor
assertThi .
assertThi Folding
} Analyze
} eod Go To
//.end::code[] Generate...

Recompile 'ImageTests.java'

X{38C
3"
38V
{38V
388

XF7

~N

1 38F9

Run 'ImageTests' ~{*F10

¢ Debug 'ImageTests'

~rF9

¥ Run 'ImageTests' with Coverage





assets/5431dcd1-367d-4da7-a45e-042ea1041d69.png
© 0 g Hystrix Monitor x GregLTumqui... & |

€ C 0 Olocahost7979ystriximo.. % D B AEH Q QO 0 $5 i

HYSTRIX

Hystrix Stream: http://localhost:8080/hystrix.stream )
Nyv/ DEFEND YOUR APP

Success | Short-Circuited | Timeout | Rejected | Failure | Error %

getComments
0/010.0%
00
0
Host: 0.0/s
Cluster: 0.0/s
Gircuit Closed
Hoss 1 9n  Oms

Medan Oms  %%h  Oms ‘
Vea  Oms 9950  Oms i

Thread Pools  Sort: Alphabetical | Volume |

CommentHelper

Host: 0.0/5

Cluster: 0.0/s

Aie 0 MaxActe 0
Qued 0 Executons 0

PooiSze 3 QueveSze 5





assets/31d0f198-451b-4148-ad9a-002fcb3b5a0f.png
Publishing "Do you like the new cover?"
Received 2f@5fa8e: Do you like the new cover?
Received 298b3bcf: You bet! Wish I could get it in a t-shirt
Publishing "Me too. Did you get e-book, or print?"
Received 2f@5fa8e: Me too. Did you get e-book, or print?
Received 298b3bcf: Both
Received 298b3bcf: I always get both
> |





assets/1016c0a9-b1c0-4e90-88cc-0fea2af91670.png
]

.d.a.0OptionalLiveReloadServer
.e.a.AnnotationMBeanExporter
.e.a.AnnotationMBeanExporter
.e.a.AnnotationMBeanExporter
.support.DefaultLifecycleProcessor
.support.DefaultLifecycleProcessor
.support.DefaultLifecycleProcessor
.r.c.CachingConnectionFactory
.amgp.rabbit.core.RabbitAdmin
r.ipc.netty.tcp.BlockingNettyContext
0.S.b.web.embedded.netty.NettyWebServer
org.mongodb.driver.connection

Oo0oo0OO0OO0OO0OOOO
LR RN N R NN
D00 0T

boot-cover. jpg)
poot-2nd-edition-cover. jpg)

]

c.g.l.LearningSpringBootApplication

: LiveReload server is running on port 35729

: Registering beans for JMX exposure on startup

: Bean with name 'rabbitConnectionFactory' has been a
: Located managed bean 'rabbitConnectionFactory': reg
: Starting beans in phase -2147482648

: Starting beans in phase 0

: Starting beans in phase 2147483647

: Created new connection: rabbitConnectionFactory#168
: Auto-declaring a non-durable, auto-delete, or exclu
: Started HttpServer on /0:0:0:0:0:0:0:0:8080

: Netty started on port(s): 8080

: Opened connection [connectionId{localValue:3, serve

: Started LearningSpringBootApplication in 6.655 seco





assets/67b6f601-6c3d-4690-8748-1f150459688d.png
Stop process |

|

‘ % LearningSpringBootEurekaServerApplication ‘
{ % LearningSpringBootimagesApplication
< |





assets/bfb56659-fe0f-47a9-be1b-c0396903019a.png
Name: | LearningSpringBootApplication

Main class:

VM options:

Program arguments:
Working directory:

Environment variables:

Use classpath of module:

JRE:

Spring Boot Settings
Enable debug output

Active Profiles:

_ Code Coverage Logs

wA

com.greglturnquist.learningspringboot.LearningSpringBootApplication

3 6_part2_main

Default (1.8 - SDK of '6_part2_main' module)

Hide Banner






assets/9c3e34b9-6d4d-4359-bbdc-c1c0c9a48382.png
000 gk x GregLTumau... -

&  C O Olcahosts’s1 * WHABROQO $5)
€ spring
System Status
Environment test
Data center default
Current time 2016-10-20T22:42:53 -0500
Uptime 00:19
Lease expiration enabled false
Renews threshold 5

Renews (last min) 4





assets/e9318986-0db3-4d9f-91d2-1ba12395bd8b.png
ootCommentsApplication ~ | iﬁ % B \gs V‘C
| Run 'LearningSpringBootCommentsAppl..." (1+F10)





assets/1ea27cf1-b1f7-47c0-ac52-d83b211f4b17.png
= comments
B build
gradle
src
% main
[ java
com.greglturnquist.learningspringboot.comments
© = Comment
© = CommentController
1 = CommentRepository
© = CommentService
ﬁ = LearningSpringBootCommentsApplication
=resources
#% application.yml
(& build.gradle





assets/856b91ed-305d-441c-b62a-b43d5b9bcdc1.png
Generate Q Gradle Project With Java

and Sprlng Boot 2o0.0(snapsHoT)

Project Metadata

Artifact coordinates
Group

com.greglturnquist.learningspringboot

Artifact /
learning-spring-boot-eureka-server

Dependencies
Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...
Selected Dependencies
4
Generate Project % + «

A
v





assets/3f4af7d5-b416-4bc5-bfac-9aef50cfc733.png
Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do

=





assets/e1e1a651-f41e-4ecc-8b4c-82cc1bbd72d8.png
Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do

=





assets/34bb4737-d2c2-469e-a01a-4d7586a3db83.png
v Busrc
v Bamain
v java
v Ex com.greghturnguist learningspringboot
£3 comments
Eximages
@ = MyCoolApplication





assets/ba6c8b7c-0fc9-4b96-94ce-9c3536b4c647.png
getComments

60 | 0 9

ol o 0.0 %

0

Host: 6.0/s

I Cluster: 6.0/s

Circuit Closed

Hosts 1 90th  14ms
Median  12ms 99th  32ms
Mean  13ms 99.5th  32ms






assets/d12e7609-e9e5-4c59-90e3-0052c6deee77.png
Casrc
v [EImain
v [java
v [Z1com.greglturnquist.learningspringboot

[E1 controllers
[E1domain
[Iservices
@'h MyCoolApplication





assets/dc3c0e08-f1ae-4c21-8116-4a8891f9e366.png
Name: | Learning Spring Boot ch7-part3 Share Single instance only

Choose configurations to run:

% Run 'LearningSpringBootConfigServer'

@3 Run 'LearningSpringBootEurekaServerApplication’
@3 Run 'LearningSpringBootimagesApplication’

3 Run 'LearningSpringBootCommentsApplication’
@3 Run 'LearningSpringBootHystrixDashboard'

+ — a ¥

Start configurations one by one with delay | 10 s





assets/74c36483-93df-4450-b191-c44941271403.png
createImage-files
createInage-flatitap
createInage-done
createInage-done
createInage-flatitap
createInage-files
createInage-files
createInage-when
createInage-when

0.5.d.m. core. ReactiveMongoTenplate
createInage-save
createInage-save
createInage-copy
createInage-copy
createInage-picktarget
createInage-newfile
createInage-newfile
createInage-picktarget
createInage-picktarget
createInage-newfile
createInage-copy
createInage-picktarget
createInage-newfile
createInage-files
createInage-when
createInage-when

0.5.d.m. core. ReactiveMongoTenplate
createInage-save
createInage-save
createInage-copy
createInage-copy
createInage-picktarget
createInage-newfile
createInage-newfile
createInage-picktarget
createInage-picktarget
org.mongodb. driver. connection
createInage-newfile
createInage-copy
createInage-picktarget
createInage-newfile
createInage-files
org.mongodb. driver. connection
createInage-save
createInage-save
createInage-when
createInage-when
createInage-save
createInage-flatitap
createImage-done

| -onSubscribe( [Synchronous Fuseable] FluxArray.ArraySubscription)
onSubscribe (FluxFlatiap. FlatMapitain)

+ onSubscribe(MonoIgnoreElements. IgnoreElementsSubscriber)

request (unbounded)
request (unbounded)

| request(256)

| onNext(Mock for FilePart, hashCode: 154449199)
onsubscribe( [Fuseable] Monokhen.WhenCoordinator)
request(32)

Saving Document containing fields: [ id, name, _class]

+ onSubscribe(FLuxOnErrorResune. ResuneSubscriber)

request (unbounded)
| onSubscribe( [Fuseable] MonoFlatiap. FlatMapitain)

| request(unbounded)
| onSubscribe( [Synchronous Fuseable] Operators.ScalarSubscription)
| onsubscribe( [Fuseable] FluxMapFuseable.MapFuseableSubscriber)
| request(unbounded)
| request(unbounded)
| onNext (upload-dir/alpha. jpg)
| onNext (upload-dir/alpha. jpg)

| onComplete()

| oncomplete()

| oncComplete()

| onlext(Mock for FilePart, hashCode: 430329518)

+ onSubscribe( [Fuseable] Monokhen. WhenCoordinator)

request(32)
Saving Document containing fields: [_id, name, _class]

+ onSubscribe(FLuxOnErrorResune. ResuneSubscriber)

request (unbounded)

onSubscribe( [Fuseable] MonoFlatMap. FlatMapain)

request (unbounded)

onSubscribe( [Synchronous Fuseable] Operators.ScalarSubscription)
onSubscribe( [Fuseable] FluxMapFuseable.MapFuseableSubscriber)
request (unbounded)

request (unbounded)

onNext (upload-dir/bravo. jpg)

pened connection [connectionId{localValue:4, serverValue:226}] to lo
onNext (upload-dir/bravo. jpg)

onComplete()

onComplete()

onComplete()

onComplete()

Opened connection [connectionId{localValue:5, serverValue:221}] to lo

+ onNext(Inage( 1d=B5C62c00-C315-4a6b-914b-05921020ee6b, name=bravo. jpg)

onNext (Inage (i0=7f4fb639-8b00-4791-b88a-366b2ccedbSs, name=alpha.jpg)
onComplete()

+ onComplete()

onComplete()
onComplete()

: onComplete()





assets/52cb0823-5ed1-409e-9d9f-184ed4a1e488.png
o0 @ Spring Initializr X (") Greg.L.Turnqui...

< C ¢ @ start.spring.io v O A Q0o D 5@

SPRING INITIALIZR

Generate a craderroject 2 With Spnng Boot  20.0(snaPsHoT) 4

Project Metadata

Artifact coordinates
Group

com.greglturnquist.learningspringboot

Artifact

learning-spring-boot

Dependencies

Add Spring Boot Starters and dependencies to your application

Search for dependencies

kﬂeb, Security, JPA, Actuator, Devtools...

Selected Dependencies

Generate Project % + «





assets/c1e25eb9-7531-4b11-a015-cdffc63e9e12.png
Run/Debug Configurations

me: | LearningSpringBootApplication Share
_ Code Coverage Logs

Main class: com.greglturnquist.learningspringboot.LearningSpringBootApplication

VM options:

Program arguments: --debug

Working directory:





assets/98b67736-ce7a-4593-a774-b3108f4e8a9c.png
Learning
Spring Boot 2.0

Second Edition

Simplify the development of lightning fast applications
based on microservices and reactive programming

1]






assets/56e7cf62-da24-493e-9e6e-f6a6ee0136ba.png
[ BN @/ retina:9000/info
C 0 @ retina:9000/info

{1}





assets/bf5286e1-74f2-4398-9c2c-daf9c6928b33.png
®





assets/5a1c6bfc-2e61-4773-9591-b78caabed58a.png
Learning Spring Boot - 2nd Edition

Id Name Image

1 learning-spring-boot-cover.jpg > Delete
2 learning-spring-boot-2nd-edition-cover.jpg |o.. Delete
3 bazinga.png ». Delete

Choose File No file chosen

Upload





assets/7a192f00-f0b6-41a4-a118-1272c2359e84.png
Learning Spring Boot - 2nd Edition

1of1

20 item(s) per page

Id

Name

Image

e Ilove the cover!

57f8641e83a5d272b18d4cel | B0O5771_MockupCover_Normal.jpg Delete Submit
e Can I order a copy yet?

57£8643b83a5d272b18d4ce3 | bazinga.png Delete Submit

57f8645883a5d272b18d4ceS | spring-boot-project-logo.png Delete 3pring Boot is awesome! | Submit

Choose File No file chosen

Upload






assets/87a84df6-6633-4395-9bc8-c83455333d0b.jpg





assets/bf362ab9-3cf9-4180-8cca-a02bb121ec82.png
©0.s.d.m.r.query.MongoQueryCreator. Created query Quer) earning-spring-boot-cover.jpg"}, Fields:
0.5.d.m. core. ReactiveMongoTemplate findone using query earning-spring-boot-cover. jpg"} fiel
deleteInage-when + onSubscribe( [Fuseable] Monohen.WhenCoordinator’

deleteInage-done onSubscribe (MonoIgnoreElenents. Ignoret Lementssubscriber)
deleteInage-done request (unbounded

deleteInage-when request (unbounded

deletelnage-record | onSubscribe( [Fuseable] MonoFlatiap. FlatMap¥ain

deletelnage-record | request (unbounded

0.5.d.m. core. ReactiveMongoTemplate findOne using query: { “name" : “learning-spring-boot-cover.jpg"} fields
deleteInage-find onSubscribe(FLuxOnErrorResume. ResumeSubscriber)

deleteInage-find request (unbounded)

deleteInage-file onSubscribe( [Fuseable] Operators. EnptySubscription

deleteInage-file
deleteInage-file

deleteInage-find

0.5.d.m. core. ReactiveMongoTemplate
deleteInage-find
deleteInage-record
deleteInage-when

deleteImage—done

request (unbounded)
+ onConplete()

onext (Inage(id=1, name=learning-spring-boot-cover. pg))
Remove using query: { "_id" : "1"} in collection: image.
+ onConplete()

| onComplete()
onComplete()
onComplete()






assets/c11693be-7218-46d7-a3d9-34a12edd034f.png
< C 1 @ localhost:8080

[1 VMware Intranet @VMware [Jenkins] E [

greg has [ROLE_ADMIN, ROLE_USER]

Learning Spring Boot





assets/579b6995-bbb7-476a-8469-478d0a385e87.png
Run || LivelmageRepositoryTests and 1 more

reE RE Izt E %

<) (o) <defau|t package>

"""" @ LivelmageRepositoryTests

u @ findAlIShouldWork

@ findByNameShouldWork

% @ EmbeddedimageRepositoryTests
________ @ findAllShouldWork

oo @ findByNameShouldWork

401ms
259ms
225ms

34ms
142ms
130ms

12ms





assets/00c25661-571a-4f80-b64b-4b2c2059f5f2.png
v [Esrc
v [Eimain
v Bljava 85% classes, 88% lines covered
v [ com.greglturnquist.learningspringboot 85% classes, 88% lines covered
@©  ApiController 25% methods, 25% lines covered
© v HomeController 83% methods, 90% lines covered
© v Image 100% methods, 100% lines covered
@ & ImageRepository
© v ImageService 100% methods, 92% lines covered
© ® InitDatabase 100% methods, 100% lines covered
(@ ® LearningSpringBootApplication 0% methods, 33% lines covered
© & ReactiveThymeleafConfig 100% methods, 100% lines covered





assets/a650fb87-f0f4-4903-834e-b7bd5811172d.png
localnost:8080/applicationjautaconig tion/2u X N[\ () Greg.L.Turnqui...

& © C {1 |® localhost:8080/application/autoconiy @ % | M B A B O QO E D & [+ $ 510 A

Apps [1 VMware Intranet 3 VMware [Jenkins] ¢+ (2) [1 JSON Pretty Print ] JSON Editor Online... » [ Other Bookmarks
1/ 2017912220059
I | 7 et somarcmscotonsasocontia o
3
4 - B
5+ ‘positiveMatches": [ LERY
6 -+ "AuditAutoConfigurationfauditlistener: N
7 . 1 o
8 ‘condition": “OnBeanCondition”,
9 “message”: "€ConditionalOrMissing8ean (types: org.springfranework.boot.actuate. audit. listener . AbstractAuditListener;
SearchStrategy: all) did not Find any beans”
10 ¥
1 1
12 . “AuditutoConfiguration. AuditEventRepositoryConfiguration®
FER 1
16 “condition”: "OneanCondition”,
15 “message": "ConditionalOrMissing8ean (types: org.springfranework.boot.actuate. audit. AuditEventReposttory;
SearchStrategy: all) did not Find any beans”
16 ¥
17 1
15 - "AudttbventsEndpointAutoConfigurationtauditiventsEndpoint: [
19 1
2 “OnBeanCondition”,
2

"eConditionalOnBean (types: org.springframemork.boot.actuate. audit . Audi tEventRepository; SearchStrategy:

Q11 found bean *auditéventRepository'; &Condi tionalOnkissingBean Ctypes:
org.springframenork.boot .actuate.audit . Audi tEventsEndpoint; SearchStrategy: all) did not find any beans”

2 1.





assets/b3a07b03-ba8d-4081-a86f-f5326e19039d.png
or : Fetching config from server at: http://localhost:8888

Located environment: name=comments, profiles=[default], label=master, v

or.:
on . : Located property source: CompositePropertySource [name='configService',
on : No active profile set, falling back to default profiles: default





assets/dbba400b-bde6-4626-ba09-e314f4d941de.png
getComments

6| 0 D
4‘ o 83.0 %
30
Host: 3.6/s
Cluster: 3.6/s
Circuit Open
Hosts 1 90th  16ms

Median  12ms 99th  26ms
Mean  13ms 99.5th  26ms





assets/a9c9931c-eeef-4176-8d8f-e92d635064b0.png
SPRING INITIALIZR

<«

Generate a crderoecc: With e ¢ and Spring Boot zoows

Project Metadata Dependencies

Artifact coordinates Add Spring Boot Starters and dependencies to your applicatior

Group Search for dependencies

com.greglturnquist.learningspringboot Web, Security, JPA, Actuator, Devtools...

Selected Dependencies

Artifact
learning-spring-boot Reactive MongoDB Thymeleaf

Generate Project % + «





assets/0e396e21-d871-4600-944c-8bc961f27f5b.png
Learning Spring Boot - 2nd Edition

Id Name Image

1 learning-spring-boot-cover.jpg > Delete
3 bazinga.png ». Delete
2 learning-spring-boot-2nd-edition-cover.jpg |o.. Delete

Choose File No file chosen

Upload





assets/29a8cdb2-7668-4b90-8c27-e66a216a9a73.png
Learning Spring Boot - 2nd Edition

greg & cConnect I






assets/5936803d-078a-444d-9a90-b4a6d710b193.png
Learning Spring Boot - 2nd Edition

Using the LiveReload plugin in your browser will speed up efforts.





assets/9f9a55ab-970f-48ef-aab1-468674f44d19.png
e @) Learning Spring Boot: Spring- X

& C { @& Secure https://learning-spring-boot.cfapps.io
[ VMware Intranet # VMware [Jenkins] [ @ [1 JSON Pretty Print {} JSON

Greetings!

greg(channel): Wow! Are we really in production?
phil(channel): We sure are.

[cool. Can't wait to work on the next feature
Send





assets/3c8611db-1d43-445c-b5a2-33225b24fa23.png
O0OO0ONNOOOOOOOOOOOOO
VOLLLLLLOLLLLLLOOO®’

HHHOTOOOO0O0O RO

.a.
.integration.channel.DirectChannel
.Cu
.Cu
.integration.channel.DirectChannel
.support.DefaultLifecycleProcessor
.endpoint.EventDrivenConsumer
.channel.PublishSubscribeChannel
.endpoint.EventDrivenConsumer
.support.DefaultLifecycleProcessor

r.c.CachingConnectionFactory

s.binding.BindableProxyFactory
s.binding.BindableProxyFactory

.binding.BindableProxyFactory
.binding.BindableProxyFactory
.binding.BindableProxyFactory

.p.RabbitExchangeQueueProvisioner

.1i.AmgpInboundChannelAdapter

.endpoint.EventDrivenConsumer
.endpoint.EventDrivenConsumer

: Created new connection: rabbitConnectionFactory#1470a7b3:0/SimpleConnection@31792as
: Channel 'unknown.channel.name' has 1 subscriber(s).
: Binding outputs for :interface org.springframework.cloud.stream.messaging.Processol
: Binding :interface org.springframework.cloud.stream.messaging.Processor:output
: Channel 'application.output' has 1 subscriber(s).
: Starting beans in phase 0
: Adding {logging-channel-adapter:_org.springframework.integration.errorLogger} as a
: Channel ‘'application.errorChannel' has 1 subscriber(s).
: started _org.springframework.integration.errorLogger
: Starting beans in phase 2147482647
s : Binding inputs for :interface org.springframework.cloud.stream.messaging.Source
s : Binding inputs for :interface org.springframework.cloud.stream.messaging.Processor
s : Binding :interface org.springframework.cloud.stream.messaging.Processor: input
.r.p.RabbitExchangeQueueProvisioner
r
a

declaring queue for inbound: learning-spring-boot-comments.learning-spring-boot, b
autoBindDLQ=false for: learning-spring-boot-comments.learning-spring-boot

: started inbound.learning-spring-boot
: Adding {message-handler: inbound. learning-spring-boot-comments. learning-spring-boot]
: started inbound.learning-sprin

—boot-comments. learning-spring-boot






assets/a95f8cfa-a0d1-43ff-a0eb-7dc3bbf5dc21.png
00O ‘ localhost:8080/application/he X

& C 0 @ localhost:8080/application/health
Apps [1 VMware Intranet ﬁVMware [Jenkins] ¢ Q

1 // 20170912234318

2 // http://localhost:8080/application/health
3

4 v {

5 "status": "DOWN",

6 v "details": {

7 v "mongo": {

8 "status": "UP",

9 v "details": {

10 "version": "3.4.6"

11 3}

12 1,

13 ~ "diskSpace": {

14 "status": "UP",

15 « "details": {

16 "total": 498937626624,
17 "free": 43624402944,
18 "threshold": 10485760
19 3}

20 1,

21 v "learningSpringBoot": {
22 "status": "DOWN",

23 v "details": {

24 "HTTP Status Code": 404
25 3}

26 3}

27 3}

N
oo
-





assets/fae0b29a-34af-4062-b861-16cb9cc8400e.png
v Basrc
v Bamain
v majava
¥ b com.gregltumauist learningspringboot
Ex comments
v Eaimages
@© = Image
® = ImageRepository
@ = ImageService
v Emops
@ = LearningSpringBootHealthindicator
@ = HomeController
@ = LearningSpringBootApplication





assets/eb0c2573-9052-431c-b5ea-83575f47fc78.png
Greg.L Tumaqui... (-

©® 0 ® 4 Hystrix Dashboard x
& 5 C 0 O localhost:7979/hystrix * EMAEBOQRO o %5
N
§\\ \\\\\\“mmmw,% //%
77N
Hystrix Dashboard
htpifocalhost:8080 hystrxstream )

Cluster via Turbine (default cluster): http://turbine-hostname: port/turbine stream
Cluster via Turbine (custom cluster): htp://turbine-hostname:portturbine stream?cluster=[clusterName]
Single Hystrix App: http://hystrix-app:port/hystrix stream

Delay: ms  Title: mages

Monitor Stream





assets/ab9c4164-8512-4084-9a74-8208c58adce3.png
Delete

1en can | get my t-shirt?

Submit






assets/4cc7d56f-ad8d-480e-876c-668c89c038a3.png
DS Replicas

Instances currently registered with Eureka

Application ~ AMIs  Availability Zones Status

COMMENTS n/a(2) (2) UP (2) - retina:comments:9001 , retina:comments:9000

IMAGES nfa(1) (1) UP (1) - retina:zimages





assets/11f06189-8b68-4376-81ce-7fb0ea4e7aba.png
Run ImageTests
rOEVE I +IDR

» (@) ImageTests (com.greglturnquist. Iearnmgsprmgboot) 49ms
"""" @ imagesManagedByLombokShouldWork 49ms





assets/cbfea104-fa6d-431a-aab2-6089548cfdca.png
status: "UP",
learningSpringBoot: {
status: "UP"
b
diskSpace: {
status: "UP",
total: 498937626624,
free: 89344151552,
threshold: 10485760
b
rabbit: {
status: "UP",
version: "3.6.4"
b
mongo: {
status: "UP",
version: "3.2.6"
b
binders: {
status: "UP",
- rabbit: {
status: "UP",
- binderHealthIndicator: {
status: "UP",
version: "3.6.4"





assets/fbb2b497-06c2-44d4-b78a-2e0fe4b1cd1c.png
Packh






assets/7d2757bb-352c-49dc-b6dd-ac5e2bdb7df9.png
\_partl_test~ P §¢ ?3% (IS . ivcs ves
o] J Run 'All in 4_part1_test' with Coverage
e - Ay -~

B I






assets/d0632016-4d50-461f-b992-db08edca285b.png
Learning Spring Boot - 2nd Edition

Id

Name

Image

57f07b6c8dd1b00alc3ceed4a | BO5771_MockupCover_Normal.jpg Delete
57f07b788dd1b00alc3ceedb | spring-boot-project-logo.png Delete
57f07ba48dd1b00alc3cee4d | bazinga.png Delete

Choose File No file chosen

Upload






assets/0f692f64-19dd-4795-825e-0bb81de090d9.png
org.mongodb.driver.cluster
org.mongodb.driver.connection
org.mongodb.driver.cluster
org.mongodb.driver.cluster
org.mongodb.driver.connection
org.mongodb.driver.cluster
0.s.j.e.a.AnnotationMBeanExporter
r.ipc.netty.tcp.BlockingNettyContext
0.S.b.web.embedded.netty.NettyWebServer
org.mongodb.driver.connection

: Cluster created with settings ihosts=[localhost:27017], mode=SINGLE, requiredCluste
: Opened connection [connectionId{localValue:1, serverValue:202}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription{
: Cluster created with settings {hosts=[localhost:27017], mode=SINGLE, requiredCluste
: Opened connection [connectionId{localValue:2, serverValue:203}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription{
: Registering beans for JMX exposure on startup

: Started HttpServer on /0:0:0:0:0:0:0:0:8080

: Netty started on port(s): 8080

: Opened connection [connectionId{localValue:3, serverValue:204}] to localhost:27017





assets/610f8970-1d8d-4367-a955-d1c43bf9d2a8.png
& 2> C 1 ® learning-spring-boot.cfapps.io

Learning Spring Boot - 2nd Edition
It's really handy to make local edits and watch them go out to the cloud automatically.

x3 - | v





js/kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

const kMaxFont = 0;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

/**
 * Setup the columns and calculate the total page count;
 */

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = 0;
	body.marginRight = 0;
	body.marginTop = 0;
	body.marginBottom = 0;
	
    var bc = document.getElementById('book-columns').style;
    bc.width = (window.innerWidth * 2) + 'px !important';
	bc.height = (window.innerHeight-kMaxFont) + 'px !important';
    bc.marginTop = '0px !important';
    bc.webkitColumnWidth = window.innerWidth + 'px !important';
    bc.webkitColumnGap = '0px';
	bc.overflow = 'visible';

	gCurrentPage = 1;
	gProgress = gPosition = 0;
	
	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '0px';
	bi.marginRight = '0px';
	bi.padding = '0';

	gPageCount = document.body.scrollWidth / window.innerWidth;

	// Adjust the page count to 1 in case the initial bool-columns.clientHeight is less than the height of the screen. We only do this once.2

	if (gClientHeight < (window.innerHeight-kMaxFont)) {
		gPageCount = 1;
	}
}

/**
 * Columnize the document and move to the first page. The position and progress are reset/initialized
 * to 0. This should be the initial pagination request when the document is initially shown.
 */

function paginate()
{	
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}
	
	setupBookColumns();
}

/**
 * Paginate the document again and maintain the current progress. This needs to be used when
 * the content view changes size. For example because of orientation changes. The page count
 * and current page are recalculated based on the current progress.
 */

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

/**
 * Update the progress based on the current page and page count. The progress is calculated
 * based on the top left position of the page. So the first page is 0% and the last page is
 * always below 1.0.
 */

function updateProgress()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
}

/**
 * Move a page back if possible. The position, progress and page count are updated accordingly.
 */

function goBack()
{
	if (gCurrentPage > 1)
	{
		gCurrentPage--;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		updateProgress();
	}
}

/**
 * Move a page forward if possible. The position, progress and page count are updated accordingly.
 */

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		gCurrentPage++;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		updateProgress();
	}
}

/**
 * Move directly to a page. Remember that there are no real page numbers in a reflowed
 * EPUB document. Use this only in the context of the current document.
 */

function goPage(pageNumber)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		updateProgress();
	}
}

/**
 * Go the the page with respect to progress. Assume everything has been setup.
 */

function goProgress(progress)
{
	progress += 0.0001;
	
	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;
	
	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}
		
	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();		
}

//Set font family
function setFontFamily(newFont) {
	document.body.style.fontFamily = newFont + " !important";
	paginateAndMaintainProgress();
}

//Sets font size to a relative size
function setFontSize(toSize) {
	document.getElementById('book-inner').style.fontSize = toSize + "em !important";
	paginateAndMaintainProgress();
}

//Sets line height relative to font size
function setLineHeight(toHeight) {
	document.getElementById('book-inner').style.lineHeight = toHeight + "em !important";
	paginateAndMaintainProgress();
}

//Enables night reading mode
function enableNightReading() {
	document.body.style.backgroundColor = "#000000";
	var theDiv = document.getElementById('book-inner');
	theDiv.style.color = "#ffffff";
	
	var anchorTags;
	anchorTags = theDiv.getElementsByTagName('a');
	
	for (var i = 0; i < anchorTags.length; i++) {
		anchorTags[i].style.color = "#ffffff";
	}
}



assets/205580a3-c729-4892-8034-8fcc5eba99c8.png
_ No file chosen

Greetings!

2f05fa8e: Do you like the new cover?

298b3bcf: You bet! Wish | could get it in a t-shirt
2f05fa8e: Me too. Did you get e-book, or print?
298b3bcf: Both

298b3bcf: | always get both

=





assets/b239d238-8d85-43fc-82a3-9f991cb8d154.png
Learning Spring Boot - 2nd Edition

Id

Name

Image

5809914283a5d2ac3e0eal0f6

platform-spring-boot.png

Delete

Submit

5809916283a5d2ac3e0ealf7

B05771_MockupCover_Normal.jpg

Delete

e Cool cover!

o Can't wait to get my copy

Submit

Choose File No file chosen

Upload






assets/2ae3f114-c19b-4889-94a3-6b0fef694cb9.png
o.s.integrétion.channel.DirectChannel

S.

LWLy nnnnoownwo

»H»H»H»H»H»H»H»m

s.i.codec.kryo.CompositeKryoRegistrar

1.

3333333

m.

findAll
findAll
o.s.integration.channel.DirectChannel
findAll
findAll
findAll
findAll
findAll
findAll
o.s.integration.channel.DirectChannel

: preSend on channel 'output', message: GenericMessage [payload=Comment(id=null, ima
tractMessageChannelBinder$SendingHandler
0.
.S.1.a.outbound.AmgpOutboundEndpoint
.i.m.AbstractHeaderMapper$HeaderMatcher
.S.1.a.outbound.AmgpOutboundEndpoint
.integration.channel.DirectChannel
.AbstractHeaderMapper$HeaderMatcher
.AbstractHeaderMapper$HeaderMatcher
.AbstractHeaderMapper$HeaderMatcher
.AbstractHeaderMapper$HeaderMatcher
.AbstractHeaderMapper$HeaderMatcher
.AbstractHeaderMapper$HeaderMatcher
.AbstractHeaderMapper$HeaderMatcher
AbstractHeaderMapper$HeaderMatcher
actMessageChannelBinder$ReceivingHandler

org.springframework.cloud.stream.binder.AbstractMessageChannelBinder$SendingHandle

1 registering [40, java.io.File] with serializer org.springframework.integration.cod
1 org.springframework. integration.amgp.outbound.AmgpOutboundEndpoint@52038bac receiv

headerName=[contentType]l WILL be mapped, matched pattern=x

: handler 'org.springframework.integration.amqgp.outbound.AmgpOutboundEndpoint@52038b
: postSend (sent=true) on channel 'output', message: GenericMessage [payload=Comment

headerName=[amqp_receivedDeliveryMode] WILL be mapped, matched pattern=x
headerName=[amqp_receivedRoutingKey] WILL be mapped, matched pattern=x
headerName=[amqp_receivedExchange] WILL be mapped, matched pattern=x
headerName=[amqp_deliveryTag] WILL be mapped, matched pattern=x
headerName=[amqp_correlationId] WILL be mapped, matched pattern=x
headerName=[amqp_redelivered] WILL be mapped, matched pattern=x
headerName=[contentType]l WILL be mapped, matched pattern=x
headerName=[contentType]l WILL be mapped, matched pattern=x
org.springframework.cloud.stream.binder.AbstractMessageChannelBinder$ReceivingHand
| onSubscribe( [Fuseable] FluxOnAssembly.OnAssemblySubscriber)

| request(256)

: preSend on channel 'input', message: GenericMessage [payload=Comment(id=null, imag

| onNext (Image(id=59894898c4d956e34025dacc, name=learning-spring-boot—cover.jpg))
request(1)
onNext (Image (1d=59894898c4d956e34025dacd, name=learning-spring—boot-2nd-edition—
request(1)

onComplete()
ostSend (sent=true) on channel 'input', message: GenericMessage [payload=Comment (

|
|
: | onNext(Image(id=59894899c4d956e34025dace, name=bazinga.png))
|
p





assets/a34d405a-41cc-41fc-b9db-d401cb53b08c.png
<hl>Learning Spring Boot - 2nd Edition</hl>
<h3>Using the LiveReload plugin in your browser will speed up efforts.k/h3>





assets/d5e1571a-d22b-420c-8a5a-aaace07430e9.png
id: 1,
name:

id: 2,
name:

id: 3,
name:

"Quick start with Java"

"Reactive Web with Spring Boot"

...and more!"





assets/e2411990-2442-4014-a654-a29eea03382c.png





assets/ea1b871f-0c5b-4e0e-9a3e-1f4bd145b844.png
Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do

l @greg Are you going to offer it in a t-shirt?





assets/d21a1b35-b327-4ab7-b90d-6359a2e41ed7.png
Learning Spring Boot - 2nd Edition

Using the LiveReload plugin in your browser will speed up efforts.

DevTools can also detect code changes too





assets/8efbc34a-8e16-4c39-8fb2-42bd433fd2e3.png
Limages
B build
gradle
src
% main
[ java
com.greglturnquist.learningspringboot
images
© = Comment
© = CommentController
© % Config
© % Image
@ % ImageRepository
© % ImageService
© % InitDatabase
© % UploadController
ops
@© % CustomMetrics
© % LearningSpringBootHealthindicator
@© » CommentSimulator
@© = HomeController
ﬁ = LearningSpringBootimagesApplication
resources
static
templates
mindex.html
#% application.yml
ntest
upload-dir
(& build.gradle





assets/6b0fcd6d-0706-4f0a-9f16-bae28658fddc.png
Received {"id":"599b90@cec4d95697c2bead8b"," imageIld" :"0a84beed-f441-48bf-9c6a-558dab29c9d2"," comment":"Nice cover!"}!





assets/3d8fd2b5-9775-4f00-af2e-a40ca2b29bee.png
Run HomeControllerTests

P @ E I +IIR

» @) HomeControIIerTests (com. greglturnqulst learningspringboot) 834ms
"""" @ baseRouteShouldListAllimages 527ms
| @ deletelmageShouldWork 161ms
@ fetchingNulllmageShouldFail 78ms

@ fetchinglmageShouldWork 68ms





