
  
    
      
    
  



 
   Introduction to Parallel Computing

              
           The constantly increasing demand for more computing power can seem
           impossible  to  keep  up  with.  However,  multicore  processors  capable  of
           performing  computations  in  parallel  allow  computers  to  tackle  ever
           larger  problems  in  a  wide  variety  of  applications.  This  book  provides
           a  comprehensive  introduction  to  parallel  computing,  discussing  both
           theoretical issues such as the fundamentals of concurrent processes, models
           of  parallel  and  distributed  computing,  and  metrics  for  evaluating  and
           comparing parallel algorithms, as well as practical issues, such as methods
           of designing and implementing shared- and distributed-memory programs,
           and standards for parallel program implementation, in particular MPI and
           OpenMP interfaces.
           
    Each chapter presents the basics in one place, followed by advanced
           topics, allowing both novices and experienced practitioners to quickly find
           what  they  need.  A  glossary  and  more  than  80  exercises  with  selected
           solutions  aid  comprehension.  The  book  is  recommended  as  a  text  for
           advanced  undergraduate  or  graduate  students  and  as  a  reference  for
           practitioners.
           
Zbigniew J. Czech is Professor of Computer Science at Silesian University
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           programming, design and analysis of algorithms, and parallel computing,
           on which he has more than 45 years of experience lecturing and conducting
           research. He has served as a research fellow at the University of York and
           the University of Canterbury in the United Kingdom, and has lectured at
           numerous universities in Poland and elsewhere, including the University of
           California–Santa Barbara, Indiana University-Purdue University, and the
           University of Queensland.
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   Preface

Solving contemporary scientific and technology problems requires the use of computers
with a high speed of computation. Over the last 60 years the rate of this speed has
increased 16 trillion ([image: ]) times. In the 1950s the speed of computation of a Univac 1
computer was about 1 kflop/s (flop denotes a floating-point operation), and in 2015
China’s supercomputer Tianhe-2 (Milky Way-2), which contained 3 120 000 cores
working in parallel, achieved the computation speed of more than 33 Pflop/s
(petaflop stands for one quadrillion, [image: ], floating-point operations). Despite a
significant increase in computational capabilities, researchers simplify models of
considered problems because their numerical simulation takes too long. The
demand for more and more computing power has increased and it is believed that
this trend will continue in the future. There are several reasons behind this
trend. Models of investigated phenomena and processes have become more
complex and larger amounts of data are being processed. The requirements
regarding accuracy of results also grow, which entails a higher resolution of models
being developed. The fields in which, through large computing power, significant
results have been achieved include: aeronautics, astrophysics, bioinformatics,
chemistry, economics and trade, energy, geology and geophysics, materials science,
climatology, cosmology, medicine, meteorology, nanotechnology, defense, and advanced
engineering.

    For example, in the U.S. National Aeronautics and Space Agency (NASA),
simulation problems related to research missions conducted by space shuttles have been
investigated [50]. A parallel computer SGI Altix with 10 240 processors, consisting of 20
nodes each holding 512 processors, installed in the J. Ames Center allowed for simulation
of a pressure distribution around a space shuttle during its flight. A package of
computational fluid dynamics used for this goal was a tool for designing geometry of the
parts of a space shuttle, that is, launchers and orbital units. Another group of issues
resolved in the NASA research centers concerned jet drive units. One of the tasks was to
simulate a flow of liquid fuel supplied to a space shuttle main engine by a turbine pump
([31], sect. 2.4).

   In order to improve aircraft performance and safety, NASA conducts research
in new aircraft technologies. One of the objectives is the accurate prediction
of aerodynamic and structural performance for rotorcraft designed for civil
and military applications. New physics-based computational tools to predict
rotorcraft flowfields by using the non-linear, three-dimensional, Navier-Stokes
equations have been developed. The tools have enabled high-fidelity simulations of a
UH-60 Blackhawk helicopter rotor in high-speed forward flight [68, 69]. All
simulations were run on the Pleiades petascale supercomputer [51] installed

in the NASA Advanced Supercomputing Division at Ames Research Center.
Each run of simulation used 1536–4608 cores included in Pleiades Westmere
nodes.

   After the final shuttle mission in 2011, NASA began to concentrate its efforts on
human space exploration in and beyond low-Earth orbit. The efforts include design of the
Space Launch System (SLS), the next generation heavy lift launch vehicle with its first
developmental flight planned in late 2017. Pleiades plays an important role in producing
comprehensive computational fluid dynamics (CFD) simulations for design analyses of
SLS vehicle. The analyses are used to predict the aerodynamic performance, load, and
pressure signatures for design variations of both crew and cargo vehicles. Up to 2012,
more than 3300 cases for seven different SLS designs have been simulated on
Pleiades using three independent CFD flow solvers: OVERFLOW, USM3D,
and NASA’s Cart3D. Best practices for simulating launch vehicle ascent using
those solvers were established during the Constellation Program. Simulations
were run on either the Columbia or Pleiades supercomputer using 64 to 96
processors [218].

   A significant impact on human development has been research in climatology. This
will help to answer such fundamental questions as: Is the observed recently average Earth
temperature rise a sign of ongoing global warming and a looming climate catastrophe? and
also: Is the temperature growth due to natural reasons or is it the result of the greenhouse
effect1
caused by increased emissions of carbon dioxide (CO[image: ]) and particulate matter into the
atmosphere, resulting from human activities including burning coal and other fossil fuels?
Answers to these questions are sought by numerical simulation of climate. For this study
a program based on the Community Climate System Model (CCSM3) [80], maintained
by the National Center for Atmospheric Research (NCAR), was used. It contained four
components that described the state of the atmosphere, land, oceans, and ice caps. The
components of a program were executed in parallel on disjoint sets of various number of
processors, which exchanged data describing, among other parameters, flows of
masses and energy. The CCSM3 version of a program allowed for simulation
of the globe climate with 75 km resolution (distance of points in a numeric
grid2)
over several hundred years [395]. Simulations were capable of analyzing “what if
?” cases; for example, one can predict to what extent sea levels will rise as
a result of melting ice, if the amount of CO[image: ] emitted into the atmosphere
doubles.

   The results presented in [112] attained on the Cray X1E and XT4 computers and
IBM p575 and p690 Cluster indicated that the Community Atmosphere Model
component could simulate a state of the atmosphere over a span up to several
tens of years, in a single day of computation by making use of several hundred
processors. Scalability of the component to simulate a state of oceans (Parallel
Ocean Program) was better. By making use of 500–1000 processors, results of
simulation for a period of several hundred years could be obtained in a single day of
calculation.

   Since CCSM3’s release in 2007, the work to improve and adapt its core to be
implemented on petaflop computers with a number of processors from 100 to 200
thousands has been continued [112]. In 2010 NCAR released the fourth version of CCSM
(CCSM4) [150], www.cesm.ucar.edu/model/cssm4.0/, and in the same year the

successor to CCSM, called the Community Earth System Model version 1 (CESM1),
www.cesm.ucar.edu/models/cesm1.0, [254], was published as a unified code release that
included CCSM4 code as a subset.

    Based on the CCSM4_alpha code version, high-resolution, century-scale
simulations of the Earth’s climate were run on the teraflop Cray XT4 and XT5
supercomputers [98]. The resolutions adopted for experiments were 50 km for the
atmosphere and land surface, and 20 km for ocean/sea-ice. The tests revealed that the
development version of CCSM4 was capable to achieve 2.3 simulated years per day on
the Cray XT5 utilizing 5844 computing cores. One of the enhancements in
the CESM1 model relative to the CCSM4 was the inclusion of an atmospheric
component that extended in altitude to the lower thermosphere. This atmospheric
model, known as the Whole Atmosphere Community Climate Model, allowed
simulation of the climate change from 1850 to 2005 [261]. The computations were
performed on the IBM Bluefire supercomputer. Using 192 POWER6 processors,
the model was capable of generating approximately 4.5 simulated years per
day.

   Over the last decade, several other models connected with the Earth’s climate have
emerged. One of them is the Non-hydrostatic Icosahedral Atmospheric Model (NICAM)
developed mainly at the Japan Agency for Marine-Earth Science and Technology, the
University of Tokyo, and the RIKEN research institute. Recently, NICAM has produced
the global atmosphere simulation with an unprecedented horizontal resolution of
870 m. The simulation has been executed with a performance of 230 Tflop/s for
68 billion grid cells while using 20 480 nodes (163 840 cores) of the K computer
[334, 223, 405].

   Powerful parallel computers have played a significant role in human genome reading.
In 1990, the U.S. and UK initiated the Human Genome Project (HGP), which aimed to
decipher the information contained in the human DNA (Deoxyribonucleic Acid). The
project was joined by China, France, Japan, and Germany. Parallel work on the
description of the human genome has been undertaken by American Craig Venter and his
employees in his biotechnology enterprise The Institute for Genetic Research,
transformed later into Celera Genomics. The research teams initially competed against
each other, but over time the race transformed into cooperation, so that studies were not
duplicated, which made it possible to control faithfulness of genome reading. In May
2001, the teams published results of their research independently [203, 390] and in April
2003 they announced completion of the projects. Studies have shown that the human
genome containing more than 3 billion base pairs has 30 000 genes coding proteins and
RNA molecules. They represent approximately 1.5% of the total DNA. The rest is
known as noncoding DNA (“junk DNA”) accumulated during man’s evolution
[400].

   To decipher mysteries of DNA Celera Genomics used a parallel computer of cluster
architecture consisting of ten 4-processor SMP (Symmetric Multiprocessor)
nodes, each with 4 GB of memory (Compaq ES40), and a 16-processor NUMA
(Nonuniform Memory Access) computer equipped with memory of capacity of
64 GB (Compaq GS160). Execution of a DNA sequencing program required
approximately 20 000 hours [390]. The computational infrastructure of the HGP
consortium comprised a computing server Compaq ES40 consisting of 27 nodes, each
with 108 processors, and a file server with external memory of capacity of 1
TB [203].


   Description of human genome greatly accelerated development of bioinformatics, a
separate discipline of research and applications. Contemporary bioinformatics represents
a convergence of various areas, including modeling of biological phenomena, genomics,
biotechnology. In the last few decades an enormous amount of biological data has been
collected, which generated demand for novel algorithms and tools to analyze and
decipher the complexity of such large data. Attaining these objectives requires
high-performance computing and advanced storage capabilities. A review of
applications of supercomputers in sequence analysis and genome annotation,
two of the emerging and most important branches of bioinformatics, is given
in [115].

   Despite gathering a vast amount of knowledge about the human genome, a number
of questions have not been answered yet. The role of pseudo-genes that have a form
of genes but do not encode proteins is not known. What is the meaning of
“discontinuity” of genes associated with presence of the so-called introns? And
does, however, the noncoding DNA contain useful information? The further
studies of the genome will be continued, because its complete understanding is
important for many fields. For example, in medicine it will give us an opportunity to
diagnose gene-based hereditary diseases and conduct gene therapy. Genetic tests
already allow for determining paternity and are used in criminology. In the future,
genetic knowledge will facilitate individual adjustment of drugs to the needs of
patients, which will extend people’s life expectancy and improve their quality of
life.

   It is likewise important to know the genomes of plants. By their modifications one
can breed new varieties of plants characterized by higher fertility and resistance
to drought and pests. For example, the results of decoding a maize genome
employing a Blue Gene/L computer [142, 143] with 1024 processors were reported
in [211].

   In recent decades an increasing role of computers in research has been observed.
Some scientific discoveries, such as the aforementioned reading of the human genome,
have been made due to substantial power of computation. The use of advanced methods
and means of computing to solve complex problems is a domain of computational
science. The third pillar of this field of science, in addition to theory and experiment, is
computer modeling and simulation of large-scale phenomena. The importance of
computational science in the context of competitiveness and prosperity of the society was
a subject of the U.S. President’s Information Technology Advisory Committee
report [312] (see also [291]).

   Parallel computers are expensive installations with a cost of tens of millions of
dollars. Therefore, for a long time only government research institutions were equipped
with them. But recently they have begun to appear in industrial sectors of
high income. Oil companies benefit from high-end computers by using them to
manage effectively the existing oil and gas deposits [220] (access.ncsa.uiuc.edu/
Stories/oil) and to search for new ones. Car manufacturers use sophisticated
software to simulate a vehicle collision with obstacles [338] and to simulate flow
of air around a car body. This helps to increase safety and efficiency of the
proposed designs and to reduce the time of introducing new car models into
sale [275]. Pharmaceutical companies use high-speed computers for designing new
drugs [28, 64, 119]. The faster a drug is discovered the sooner it can be patented
and brought to the market. In the 1970s aircraft manufacturers could simulate

a pressure distribution around a single wing of an aircraft. Currently such a
simulation is possible for the entire structure of an aircraft [393, 273]. As a
consequence, the use of expensive wind tunnels is increasingly rare. Application of
high performance computing equipment enables manufacturers not only to
increase profits and reduce production costs, but also to gain an advantage over
competitors.

    Other applications of parallel computers include numerical weather
prediction [345, 254], www.science.gov/topicpages/w/wrf+weather+research.html, and
forecasting natural disasters [201], such as earthquakes [104], earthquake.usgs.gov/
research/, volcanic eruptions, tsunami waves [32, 262], nctr.pmel.noaa.gov,
hurricanes [73], www.nhc.noaa.gov, tornados [404], and tropical cyclones [326].

   As a result of ongoing efforts to boost performance of processors, complexity of
integrated circuits (IC) and their degree of integration increase. Enhancement of this
performance by improving the technology used so far has recently faced insurmountable
obstacles. Packing more and more transistors into smaller and smaller volumes makes the
width of paths inside IC components approach the size of atoms. The rise of total
intensity of currents flowing between a large number of transistors causes an increase in
the amount of dissipated heat. Collection of this heat from very small volumes
becomes very difficult. Boosting the speed of computation by raising the clock
frequency has its limits due to delays of signals transmitted along the paths in a
chip. All these obstacles have given rise to construction of multicore processors
consisting of a number of cores contained in a single chip of a slightly larger size
compared with a conventional one. Since each core executes an independent
instruction stream, computations in a multicore processor are parallel in nature.
Multicore processors are becoming more and more popular. They are used in
general purpose and personal computers, computing servers, embedded systems,
gaming consoles, etc. Along with the popularization of multicore processors,
the importance of issues related to the design and implementation of parallel
programs for these types of processors—which are discussed in this book—will
grow.

   The speed of modern supercomputers due to parallel operation of more than 3 million interconnected
processors3
is now of the order of quadrillion operations per second. As a result of technological
advances this power systematically increases. Breaking the next barrier of computation
speed of 1 Eflop/s (exaflop denotes one quintillion, [image: ], operations) will facilitate the
solution of key issues in the study of health, prosperity, security, and the development of
mankind. In medicine and biological sciences it will be possible to simulate molecular
phenomena and to explain complex processes of protein folding [102]. Simulation
of electromagnetic, thermal, and nuclear interactions between particles in a
variable magnetic field assists in the development of devices in which one can
conduct controlled thermonuclear fusion (www.iter.org). Production of such
devices on an industrial scale would be a breakthrough in solving the energy
problems of the world, as well as in spacecraft propulsion technology. Fast parallel
computers with memories of large capacities give opportunity to explore huge
databases in world trade and economy. This allows for better understanding of
phenomena and economic trends for the benefit of people welfare. In the field of
defense—following adoption by a group of states of the Comprehensive Nuclear-Test-Ban
Treaty in 1996—performing time-consuming simulation has become essential to

maintain readiness of strategic weapons stockpiles. Fast computations may enhance
safety through the use of advanced cryptographic and cryptanalytic methods for
encryption and decryption of messages in real-time employing increasingly complex
codes.

   This book is devoted to the issues concerning implementation of parallel computing.
In particular, it discusses the stages of analysis, design, and implementation of parallel
programs. The book is recommended as a text for advanced undergraduate or graduate
students. It can also be helpful for practitioners who are involved in parallel
computing, such as programmers, system designers, and for all those interested in the
subject. The reader should be familiar with programming in at least one of
the high-level languages, for example C/C[image: ], as well as with the basics of
algorithms.

   The book is a result of the experience I have gathered over the past dozen years
conducting research and giving lectures on parallel computing for students at the Silesian
University of Technology, Gliwice, and the University of Silesia, Sosnowiec, in Poland.
A large number of valuable comments and suggestions on the first edition of
the book were conveyed to me by my colleagues: Agnieszka Debudaj-Grabysz,
Sebastian Deorowicz, Wojciech Mikanik, Rafał Skinderowicz, Jacek Widuch, and
Wojciech Wieczorek. The doctoral students: Mirosław Błocho, Sergiusz Michalski,
and Jakub Nalepa gave me useful remarks to the second edition of the book.
Jakub Nalepa prepared implementations of several parallel programs that are
enclosed in the exercise solutions, and Jakub Rosner helped in updating the
GPUs description. I would like to express my deep appreciation to all people
mentioned above for their time and commitment in helping to improve the content
and form of the two Polish editions, and the present English edition of the
book.

   I also thank the staff of the following Polish computing centers where computations
of the project were carried out: Academic Computer Center, Gdańsk (TASK); Wrocław
Center for Networking and Supercomputing (WCSS); Interdisciplinary Centre for
Mathematical and Computational Modelling, University of Warsaw (ICM); Academic
Computer Center CYFRONET AGH, Kraków; Poznań Supercomputing and Networking
Center (PCSS).

   The book consists of seven chapters. In Chapter 1 the concepts of a concurrent
process and thread as units executed under supervision of the operating system are
introduced. The ways processes communicate with each other, the issue of proving
correctness of concurrent programs and selected problems in concurrent programming are
also presented. Chapter 2 is devoted to basic models of parallel computation. The details
of the PRAM (Parallel Random Access Machine) and of the network models are
discussed. Chapter 3 focuses on the elementary parallel algorithms and methods of their
evaluation using selected metrics, such as parallel running time, speedup, cost, and
efficiency. The problem of scalability of parallel algorithms is formulated, and related to
it the Amdahl’s law, Gustafson–Barsis’s law, and Karp–Flatt metric are described.
Chapter 4 is devoted to the methods of parallel algorithms design. The basic steps of
design are considered, in particular decomposition of a computational problem into
tasks, analysis of computation granularity, minimizing the parallel algorithm
cost, and assigning tasks to processors. Chapter 5 deals with parallel computer
architectures. It provides a short description of structures of processor arrays,
multiprocessors with shared and distributed memory, computing clusters, and computers

with unconventional architectures. An overview of interconnection networks is
also given. Chapters 6 and 7 focus on principles of parallel program design for
message passing and shared memory models. These principles are illustrated with
examples of programs created by employing the MPI (Message Passing Interface)
library and OpenMP (Open Multiprocessing) interface. Each chapter of the book
is supplemented with exercises that permit the reader better understanding
and assimilation of the content presented in a chapter. Solutions to selected
exercises, and a glossary of parallel computing terms appear at the end of the
book.

Gliwice, Poland, May 2016

Zbigniew J. Czech
   










   1This issue of how hot the world will be due to the greenhouse effect was found in Science journal as
one of the 25 great puzzles of science in 2005 [117] (see also [340]).

2Simulation results for shorter periods of time with 10–20 km resolution were obtained using the
Japanese Earth Simulator parallel computer, see for example [271].

3See the description of Tianhe-2 supercomputer on p. 296.
                                                 

    

   1
 Concurrent
Processes


   1.1  Basic Concepts

A sequential program describes how to solve a computational problem in a sequential
computer. An example is the traveling salesman problem in which the number of cities
and the distances between each pair of cities are given. These are the input data on
which the output data are determined, which from the solution to the problem. The
solution is a closed route of the minimum length of the salesman passing through
every city exactly once. More precisely, a sequential program is a sequence of
instructions that solves the problem by transforming the input data into the
output data. It is assumed that a sequential program is executed by a single
processor.

   If more processors are to be used to solve the problem, it must be partitioned into a
number of subproblems that may be solved in parallel. The solution to the original
problem is a composition of solutions to the subproblems. The subproblems are solved by
separate components that are the parts of a concurrent program. Each component is a
traditional sequential program called a computational task, or, in short, task. A
concurrent program consists of a number of tasks describing computation that may be
executed in parallel. The concurrent program defines how the tasks cooperate with each
other applying partial results of computation, and how they synchronize their
actions.

   Tasks are executed in a parallel computer under supervision of the operating system.
A single task is performed as a sequential (serial) process, that is as a sequence of
operations, by a conventional processor that we call a virtual processor. In a
sequential process, resulting from execution of a single instruction sequence, the next
operation commences only after completion of the previous operation. Thus, the
order of operations is clearly defined. Let [image: ] and [image: ] denote the events of

beginning and end of an operation [image: ]. Then in a sequential process the following
relation between the times of termination of operation [image: ] and commencement
of operation [image: ] holds: [image: ]. Figure 1.1 shows the sequential
processes [image: ] and [image: ] that differ in the commencement and termination times
of operations [image: ], [image: ], [image: ]. If the operations of the processes are
identical, in terms of their arguments and results, the results of computation
of [image: ] and [image: ] will also be identical, although their execution times will be
different.


   



[image: ]

 
Figure 1.1. Sequential processes [image: ] and [image: ] that are equivalent with respect to
the results of computation; t denotes the time axis.

   

   Sequential processes that are performed simultaneously and asynchronously, in which
execution of operations can overlap in time, are called concurrent processes.
Due to asynchronicity there are many possible implementations or scenarios of
execution of concurrent processes. Considering these scenarios, we cannot determine
in advance which operation of a given process is preceded or followed by an
operation of another process, provided the processes do not synchronize their
action.1
In other words, operations of concurrent processes can be executed in any relative
order2
in different implementations. Figure 1.2 shows two of many scenarios of execution of
concurrent processes [image: ] and [image: ]. In the left part of the figure, operation
[image: ] of [image: ] is executed before operation [image: ] of [image: ], whereas in the right
part the execution of operations overlap in time. The admission of an arbitrary
relative order of execution of operations in various implementations means in
fact that no assumptions about the speed of virtual processors are made. It
is justified because this speed depends on the speed and the number of real
processors3
available in a computer in which the concurrent program will be implemented.






[image: ]

 
Figure 1.2.  Two  possible  scenarios  of  execution  of  concurrent  processes  [image: ]
and [image: ].

   
   If the actual number of real processors is at least equal to the number of virtual
processors, that is to the number of processes, then the processes can be executed in
parallel (Figure 1.3; the sequence of events is: [image: ], [image: ], [image: ], [image: ], [image: ], [image: ],
[image: ], [image: ], [image: ]). In this case, each process is performed by an appropriate real
processor. There is also a case in which only one real processor is available.
Then, the individual processes are performed by interleaving (Figure 1.4; the
sequence of events is: [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], [image: ], [image: ]).
If the concurrent program is designed correctly, then both these executions,
by a single or a larger number of processors, will give the same results. The
scenarios depicted in Figure 1.3 and 1.4 are extreme in terms of the number of real
processors available, p, and the number of virtual processors, v. For these scenarios
the following relations hold: [image: ], and [image: ] with any v, respectively. In
other scenarios we may have [image: ], where there is more real processors
available but its number is less than the number of processes to be executed.


                                                                     
[image: ]                        

                                                                     

 
Figure 1.3. Parallel execution of operations of processes [image: ], [image: ], and [image: ].
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Figure 1.4   Interleaving   of   operations   of   processes—one   real   processor
“implements” three virtual processors.

   

   1.1.1  Communication between Processes

In general, concurrent processes are executed independently, but they can communicate
with each other in specific points in time. Communication of processes can be
accomplished in two ways: employing shared memory or by message passing. In
the first way, it is assumed that a shared memory is available and all virtual
processes performing concurrent computation have access to it. Every processor can
perform some operations on a number of variables located in a shared memory.
These can be simple operations read or write on shared variables, but also
more advanced ones, such as exchange, test-and-set, compare-and-swap,
fetch-and-add. By making use of shared variables concurrent processes transfer to each
other the results of computation, as well as synchronizing their actions. For the
purpose of synchronization, it is important that these operations are atomic (see
Exercise 3).

   In the second way of communication, virtual processors exchange messages over
communication channels (shared memory is not available). Each channel
provides typically a two-way connection between a pair of processors. A set of
communication channels makes the interconnection network of a system.
Processors located in vertices of the network have the ability to perform
computations of a concurrent program, as well as to send and receive messages
from neighboring processors. In most circumstances no assumption is made
concerning the latency of message delivery between a source and target
processor.4
Consequently, computations are fully asynchronous because both the exact points in
time of execution of concurrent process operations, as well as sending and receiving
messages, cannot be identified in advance.


   1.1.2  Concurrent, Parallel, and Distributed Program

Concurrent processes that solve a computational problem can be implemented in three
basic ways:


    (i) processes are executed by a single processor by interleaving;
       

   (ii) each process is executed by a separate processor and all the processors have
       access to a shared memory;
       

   (iii) processes are executed by separate, distributed processors interconnected
       by communication channels.


   We assume that the two processes are concurrent, if it is possible to execute
them in parallel. These processes are parallel, if at any time both of them are
simultaneously executed. In this context, only processes from cases (ii) and (iii) can be
regarded as parallel. A concurrent program specifies the processes that may be
executed in parallel. It also describes how the issues of synchronization and
communication between processes are solved. Whether or not the processes are
actually executed in parallel depends on the implementation. If a sufficient
number of (physical) processors is available, then each process is executed by a
separate processor and the concurrent program is executed as the parallel
program. Parallel programs executed by distributed processors, for example by
processors contained in a computing cluster, are called distributed programs (see
Section 1.5, Notes to the Chapter, p. 24). Excluding cases (ii) and (iii), it is also
possible to execute v processes using p processors where [image: ]; in particular,
[image: ] may hold, as in case (i). Then some of the processes, or all of them,
must be executed by interleaving. Such a way of execution can be viewed as
pseudo-parallel.


   1.2  Concurrency of Processes in Operating Systems

An execution of three processes by a single processor via interleaving is
illustrated in Figure 1.4. Although such an execution is possible, in practice
it is inefficient because the processor while passing between processes has to
make a context switch. It involves saving the necessary data regarding the
state (context) of a process, such as the contents of arithmetic and control
registers, including the program counter, etc., so that execution of the process
can be resumed from the point of interruption. A context switch is generally
time-consuming,5
therefore interleaving in modern operating systems is accomplished in the form of
time-sharing.6
It includes allocating a processor to perform more operations of a process, during a given
period of time with some maximum length, for example 1 ms. In general, the tasks
executed as processes do not have to be the parts of a single concurrent program. They
can be independent, sequential computational tasks that should be performed on a
computer. 


   Let us investigate an example in which the following tasks should be carried out by a
single processor: the optimization of a given function, printing a file, and editing a
document. Execution of these tasks may be done through assignments of consecutive
periods of computation time of a processor to the optimization task, with the ability to
perform character operations in the tasks of printing and editing the files. An I/O
character operation does not require much computation time of the processor. Therefore,
it can perform the optimization task, probably computationally intensive, interrupting its
work at the times when the I/O devices (the printer and keyboard) need to be serviced.
Commonly, the service demands from I/O devices are requested via interrupts. In
practice, the allocation of computation time of processors is more complex since tasks
and interrupts are assigned priorities affecting the order in which computations are
performed.

   Note that traditional personal computers (PCs) equipped with a single processor
operate in the way described above. The operating system of a computer supervises the
computation by assigning the processor the concurrent processes to implement by
time-sharing, as well as handling interrupts taking into account their priorities. Processes
communicate with each other by employing the operating memory of the computer with
a single address space shared by all processes.

   Pseudo-parallel execution of several tasks by a single processor is referred to as
multitasking. This way of operation is also used in computing servers with many
processors, where the number of tasks greatly exceeds the number of processors. The
order of tasks execution in the systems with both a single and multiple processors is
determined by an operating system module designed to manage the processor’s
computation time, called a task scheduling module. In order to make best use of
processors this module solves the problem of load balancing among processors (see
Section 4.5).


   1.2.1  Threads

   As mentioned earlier, tasks that are components of a parallel program are executed
as sequential processes under supervision of an operating system. From the
implementation point of view a process is an execution entity created, supervised, and
destroyed by the operating system. In order to execute, the operating system allocates to
a process certain resources, such as computation time of a processor, memory space to
store instructions, data, and the process stack, the set of registers, including the program
counter and stack pointer.

    A process can be executed by a single thread or by a team of cooperating
threads. A thread is an execution entity able to run independently a stream of
instructions.7
If more than one tread executes a process, then the concurrent computation occurs
as the result of execution of a number of instruction streams. All the threads
executing a process share the resources allocated to it, in particular the address
space of a designated area of memory. In this memory the threads can store
computation results and messages that can be read by other threads. So it allows

the threads to communicate with each other. In addition to shared resources,
each thread has likewise a few resources for its exclusive use, such as the stack,
program counter register, memory to store private data, etc. Multiple threads can
be executed concurrently by a single processor or core applying time-sharing
(see p. 4). In such a case we talk about multithreaded execution. Multiple
threads can also be executed in parallel by several processors or a multicore
processor.


   1.3  Correctness of Concurrent Programs

Correctness of a concurrent program is more difficult to prove than correctness of a
sequential program, because it is necessary to demonstrate additional properties that
should have the concurrent program, namely the properties of safety and liveness. We
will discuss these properties later.

    The  proofs  of  correctness  of
terminating8
concurrent programs are conducted in a similar way as for sequential
programs.9
In general, a sequential program is correct if the desired relations are satisfied between
the input data and output data that are results of computation. The correctness of a
sequential program is expressed by a sentence of the form 

[image: ]

 where S denotes a program, and p and q are assertions called precondition and
postcondition, respectively. The precondition specifies the conditions that are satisfied
by the input data, or, in other words, by the state of memory with which execution of
the program begins. The postcondition specifies the desired conditions to be met by
the results of computation, or, in other words, by the state of memory once
the program has been executed. Thus it can also be said that the program
transforms the computer’s memory from a specified initial state to a required final
state.

    The correctness of a sequential program is formulated in two stages. The
sequential program S is partially correct, if for every terminating execution
of S with the input data satisfying precondition p, the output data satisfy
postcondition q. The sequential program S is totally correct, if it is partially
correct and every execution of S with the input data satisfying precondition p
terminates.

    Partial correctness does not take into account whether the computation of
program S terminates or not. Answering the question of whether the program will
eventually terminate for all valid input data satisfying precondition p, is called a
halting problem. Solving this problem is equivalent to showing that all iterative
instructions (loops) in the program always come to an end, as it is assumed
that execution times of other instructions involving primitive operations are

finite. Thus in practice, the proof of total correctness of the sequential program
includes proving that the program is partially correct and satisfies the halting
condition.

    As stated earlier, a concurrent program consists of components called tasks.
Components are sequential programs, so to prove the correctness of a concurrent (or
parallel10)
program, in the first place the correctness of its components must be demonstrated. Since the
concurrent processes participating in the execution of a concurrent program cooperate with each
other, additional properties that relate to safety and liveness must be proved. Safety properties
are the conditions that should always be satisfied, that is for all possible implementations (or
execution scenarios) of concurrent processes. In contrast, liveness properties are conditions that
should be satisfied eventually, which means that if a given condition should be satisfied, then for
every possible realization of concurrent processes, at some point of time it actually will hold.

   Concurrent processes during their execution often compete with each other trying to
gain access to shared resources. These may be variables in shared memory, files, disk
storage, I/O devices. In such a case we are dealing with the safety property whereby in
no time of the concurrent program execution a particular resource is used by more
than one process. This property is called mutual exclusion. Another safety
property is freedom from deadlock. The deadlock is a situation when two or more
processes do not terminate, because they cannot continue their action. Let us
examine one of the classic problems where the deadlock may arise. Suppose there
are two concurrent processes [image: ] and [image: ], and two resources A and B. Each
process needs access to both resources to perform its computation. Assume
that processes [image: ] and [image: ] issued the requests and got access to resources
A and B, respectively. Clearly, they are now deadlocked when asking for the
second resource, because process [image: ] holds resource A, that is needed by process
[image: ], and process [image: ] holds resource B that is needed by process [image: ]. As a
result, the processes will not terminate because none of them can continue its
action.

   Informally, the liveness property means that during each concurrent implementation
of a program, a required condition will be satisfied at some point. Consider an example
in which a number of processes compete for access to a shared resource, for example a
printer. The liveness property says that if any process issues a print request, then at
some point it will be assigned the printer. In other words, there will be no
individual starvation of the process as a result of not allocating the resource
to it.

    Related to the liveness property is a notion of fairness, which is intended
to limit all possible executions of concurrent processes to the fair executions. The fairness
constraint11
is the condition that prevents such execution scenarios, in which a
request issued by a process continually or infinitely often, is unserved,
because at all times requests of other processes are handled. There are two
basic12

types of fairness: weak and strong. The weak fairness condition states that if a process
continually issues a request, then it will eventually be handled. For strong fairness this
condition has the form: if a process issues its request infinitely often, then it will eventually
be handled. Consider a process, being a part of a concurrent program P, that issues and
constantly sustains the request for allocating the printer. If during each execution of P
such a request will eventually be handled, then these executions are weakly fair. Suppose
now that a process issues a print request, but after some time, when it is unhandled,
the process withdraws the request to perform other work. If we assume that the
request is issued and withdrawn infinitely often, then in the weakly fair executions it may
never be handled. This occurs when the printer control process, to which requests are
directed, checks whether it is a print request in the moments when it is just withdrawn.
To prevent this kind of situation the condition of strong fairness is formulated, which
requires that the request issued infinitely often by a process of P will eventually be handled.


   1.4  Selected Problems in Concurrent Programming

When designing and implementing concurrent systems the problems that do not occur in
sequential systems must be solved. They are concerned mainly with cooperation of
processes (tasks), which are essential for proper operation of systems. In this
section, we discuss some problems of concurrent programming and ways to solve
them.


   1.4.1  The Critical Section Problem

The critical section problem occurs when a group of processes compete for the resource,
wherein at any given time only one process can have access to it. Resources of this
type13 are
variables in shared memory, database records, files, physical devices. Note that the simultaneous use
of a printer by several processes would lead to illegible printing reports. Similarly, modifying the same
database records by multiple processes at the same time can cause data inconsistency. The fragment
of a process, or more accurately, of a task in which it makes use of a resource is called a critical
section. Exclusive use of a resource is achieved by ensuring that at any time only one task executes
its critical section. In other words, instructions of two or more critical sections cannot be interleaved.

   For example, let [image: ] and [image: ] be tasks. If task [image: ] wants to use the resource, it
must acquire permission for its use, which means the resource must be assigned to the
task. After the assignment of the resource, the task uses it in its critical section, and
after completing the section it releases the resource. When the resource is released by
task [image: ], it can be assigned to task [image: ]. If during the use of the resource by task [image: ],
task [image: ] issues the request for this resource, it must wait until the resource is released by
task [image: ].

   The critical section problem can be solved employing semaphores. A semaphore
s is a compound data structure with two fields: s.w and s.q, where the field
s.w takes nonnegative integer values, and the values of the field s.q are sets of

tasks (processes). On semaphore s the following operations are defined:

[image: ]

The operations wait and signal14
are atomic, which means that the actions within these operations cannot be
interleaved with any other instructions. In the sequel, we assume that the set of
blocked tasks on a semaphore is organized in a FIFO queue. Such a semaphore is
called blocked-queue semaphore. Before a semaphore s is used, it must be
initialized by assigning to the field [image: ] any nonnegative integer, [image: ],
and to component [image: ] the empty queue [image: ]. If the component [image: ] of a semaphore
may take any nonnegative integer value, then the semaphore is called general.
If this component may take only values 0 or 1, then the semaphore is called
binary.15
Note that performing the operation signal on a binary semaphore with the integer
component equals 1 is an error. If the semaphore queue is empty, then the component
should be increased by 1, which is unacceptable (other versions of semaphores are
discussed in the notes to this chapter). 


   An example of solving the critical section problem for two tasks [image: ] and [image: ] executed
independently of each other is depicted in Figure 1.5. The tasks are written with the syntax of Ada
language.16
In line 1, semaphore s is declared by applying the type semaphore defined as follows:

[image: ]

The specifications of tasks [image: ] and [image: ] are given in lines 2–3, and their bodies,
respectively, in lines 4–12 and 13–21. Both tasks use the infinite loop of the syntax:
loop… end loop. In each run of the loop the tasks perform the critical sections (lines 8
and 17). Suppose that in one of the tasks, say [image: ], the critical section should be
performed. Then, operation wait[image: ] in line 7 is executed. If [image: ] the integer
component of semaphore s is set to 0 and the task begins executing the critical section.
After its execution, component [image: ] is set back to 1 by operation signal[image: ] in line 9. If
task [image: ] tries to execute its critical section before the completion of the critical section
by task [image: ], then because [image: ] task [image: ] will be blocked and placed in the
queue by operation wait[image: ] in line 16. Only when task [image: ] completes its
critical section, operation signal[image: ] in line 9 will the execution of task [image: ] be
resumed.






[image: ]

 
Figure 1.5. Solving the critical section problem with a binary semaphore.

   

   Now we will show that solution in Figure 1.5 has the property of mutual exclusion.
Suppose that tasks [image: ] and [image: ] want simultaneously execute critical sections. To this
end, they perform operation wait(s). By definition, this operation is atomic so only one
of the tasks will enter the critical section. The second one will be blocked and put to
the queue. Similarly, if during execution of the critical section by one of the
tasks, the second task will also attempt to execute the critical section, it will
be blocked, because the integer component of semaphore s will be equal to
0.

   The solution in Figure 1.5 is also free of deadlock. Assume that both tasks [image: ]
and [image: ] have been blocked by operation wait[image: ]. Then [image: ] must hold, which
means that one of the tasks executes the critical section. This is contrary to the
assumption that both tasks are blocked. In the analyzed solution there is also no
starvation. Suppose that task [image: ] is in the queue, and task [image: ] executes the critical
section. After completing the critical section, task [image: ] performs operation signal(s)
resulting in resumption of execution of task [image: ]. Therefore it is impossible that task [image: ]
will continue to be blocked and task [image: ] again will be able to execute its critical
section.



   From the above considerations it appears that the safety and liveness conditions are
met, and so the solution in Figure 1.5 is correct. This solution can be easily generalized
to n tasks for [image: ] of the form depicted in Figure 1.6 with unchanged specification of
the semaphore. The generalized solution has the same properties as the previous one.
The property of freedom from starvation of competing tasks results from the use of a
FIFO queue within the semaphore. In the worst case, any task will receive a resource
after it is used by [image: ] tasks that may precede it in the queue of blocked tasks (see
Exercise 4).


   



[image: ]

 
Figure 1.6. Solving the critical section problem for n tasks where [image: ].

   

   Note that the solution to the critical section problem in Figure 1.5 relies on suitable
synchronization of execution of critical sections by tasks [image: ] and [image: ]. The
structure of synchronization is the same for both tasks. Before entering the
critical section, the tasks perform the pre-protocol in the form of operation
wait[image: ], and after exiting the critical section the post-protocol in the form of
operation signal[image: ]. In other, more advanced synchronization problems, the
structure is similar except that the pre- and post-protocols are usually sequences of
instructions.


   1.4.2  The Producer and Consumer Problem

Consider a problem in which a task, called producer, produces data and then passes
them to a processing task, called consumer. In a simple solution of interaction between
tasks, as just another chunk of data is created, the producer sends it to the consumer
that receives it and processes. The solution is based on synchronous communication
in which the producer must be ready to send data and the consumer ready
to receive them. If the producer can send data, but the consumer is unready
to receive them, the producer must wait for the readiness of the consumer.
There may be also the opposite situation, in which the consumer is able to
receive data, but the producer has not produced them. In both cases, either the
producer or the consumer are idle, although they could do something useful at that
time.

    Another solution of interaction between tasks is based on asynchronous
communication and involves the use of a buffer to which the producer inserts created
chunks of data and the consumer gets them out at the convenient times. The use
of the buffer is advantageous because the tasks do not need to communicate
directly, and also the instantaneous processing speed of the tasks can vary,
although their average speed values should be equal. The buffer is in fact the
queue, which may be implemented for example as a list or a one-dimensional
array. In what follows, assuming the implementation of the buffer is an array,
we will present the first solution to the problem at hand for a simpler case,
where the buffer has unlimited capacity. Then we will modify that solution for a
buffer with a limited capacity. Suppose that the following declarations are given:


[image: ]

The variable buffer is an unbounded one-dimensional array of elements of type data_type.
The variables in and out are indices indicating the array section that contains data to be
processed. The index out points to the first chunk of data, and in to the first free entry
in the buffer. The initial values of indices are 0. The following inequality is the invariant
during interaction of tasks: in ≤ out, wherein in = out indicates that the
buffer contains no data. If there is no data in the buffer and the consumer will
attempt to get them, its operation should be blocked until the data appear in the
buffer. To ensure this, a general semaphore nonempty is used, whose integer
component indicates how many chunks of data are in the buffer. Figure 1.7 shows a
solution to the producer and consumer problem with an unbounded buffer. The
producer after placing a chunk of data into the buffer (lines 8–9) increases the
integer component of semaphore nonempty by 1, or resumes the execution of
the consumer task if it is waiting in the queue for inserting data (line 10). To
get data from the buffer, the consumer performs operation wait(nonempty) in
line 17. If the value of the integer component of the semaphore is positive, it
is decremented by 1 and the data are retrieved (lines 18–19). Otherwise, if
nonempty.w = 0, the consumer task is blocked until data are inserted into the
buffer.


   



[image: ]

 
Figure 1.7. Solving the producer and consumer problem with an unbounded buffer.

   

   Note that the role of semaphore nonempty is a little different from semaphore s in
the program solving the critical section problem in Figure 1.5. The semaphore s was
used previously to synchronize a task access to a resource. Synchronization can be
defined simply as one task acquiring knowledge about the state of execution of another
task (or tasks). If task [image: ] wants to use the resource by performing operation wait(s)
(Figure 1.5, line 7), then in the case when the resource is free, it is assigned to task [image: ],
otherwise the task is blocked. Thus, task [image: ] acquires knowledge about the state
of execution of task [image: ], or more specifically, whether it uses the resource or
not.

   Returning to the producer and consumer problem, the semaphore nonempty is used
to acquire knowledge about whether the producer inserted data in the buffer. Depending
on whether data have been inserted or not, either the condition nonempty.[image: ] or
nonempty.[image: ] is satisfied. This use of a semaphore is referred to as condition (or
event) synchronization. The use of condition synchronization is essential, if a certain
operation can be performed in the correct way by a task only if some other
task has earlier executed its operation or when a specific event has occurred.


    Now we transform the solution to the producer and consumer problem in
Figure 1.7, so that data to be processed are stored in a bounded buffer. Assume the following
declarations: 
[image: ]

The variable buffer is now an n-element array of cyclic organization. This means that
when a chunk of data is inserted to the buffer at position [image: ], the value of index in
designating the first free entry in the buffer is set to 0. The out index is modified in a similar
way after retrieving data from position [image: ]. The declarations of variables in and out
and semaphore nonempty are as before. In addition, a general semaphore nonfull of the
initial value n is introduced, in order to prevent a situation in which the producer will
insert data into the full buffer. The modified solution to the producer and consumer problem
is depicted in Figure 1.8. This solution remains unchanged protection against retrieving
data from the empty buffer (lines 11 and 18), while the producer to make a data insertion
first performs operation wait(nonfull) in line 8. If the value of the integer component of
semaphore nonfull is positive, then it is reduced by 1 and the producer may perform the
insertion. If this value equals 0, which indicates that the buffer is full, the producer task
is blocked and placed in the queue. Once the data are retrieved by the consumer, operation
signal(nonfull) (line 21) is executed that either increases the value of the integer component
of semaphore nonfull, or resumes execution of the producer task if it is waiting in the queue.






[image: ]

 
Figure 1.8. Solving the producer and consumer problem with a bounded buffer.

   

   It can be demonstrated that in the discussed solution the retrieval of data from the
empty buffer and the insertion of data into the full buffer cannot occur. Furthermore, it
can be proved that the solution is deadlock-free, which means that blocking of execution
of both the producer and consumer cannot happen, and that none of the tasks can be
starved.

   Note that the sum of the integer components of semaphores nonempty and nonfull does
not exceed the buffer size n. During execution of code in Figure 1.8 the following invariant
is true: [image: ]. A group of semaphores, for which the sum of their
integer components does not exceed a fixed value N, form the so-called split semaphore. A
binary semaphore with [image: ] is referred to as a binary split semaphore. Use of a split
semaphore is recognized as one of synchronization methods, where the semaphores creating
a split semaphore are raised and lowered in various tasks. This is needed when the task must
wait for the events taking place in other tasks. In contrast, in the solution of the mutual
exclusion problem in Figure 1.5 the semaphore s is lowered and raised by the same task.



   1.4.3  The Dining Philosophers Problem

The dining philosophers problem is a classic problem of synchronization, in which
tasks require simultaneous access to more than one resource. This problem is
formulated as follows. Five philosophers are sitting at a round table spending
time on doing two things: thinking and eating. At the center of the table there
is a bowl of spaghetti constantly replenished, and five plates one in front of
each of the philosophers (Figure 1.9). To eat, a philosopher needs two forks
lying on the table to his/her right and left. A philosopher can pick up either
the right and then the left fork (or vice versa)—if they are available, that is
if they have not been picked up by neighbor philosophers—but not both at
a time. There are only five forks and each of them can only be used at one
time by one philosopher. So at most two philosophers not sitting at the table
next to each other can eat simultaneously. The philosophers can be perceived
as tasks that should have access to two resources (forks) in order to perform
their activities (eating). The problem lies in proper synchronization of access to
the forks, so that each of the philosophers could pursue alternate activities of
eating and thinking. Assume that the philosophers are numbered from 0 to 4
and that philosopher i has fork i on his/her left and fork [image: ] on
his/her right. Assume also that the forks are represented by binary semaphores:

[image: ]

An attempt to solve the problem is shown in Figure 1.10. Each philosopher is
represented by a single task. A philosopher first picks up the left and then the right fork
(lines 6–7). If any of the forks are unavailable a philosopher must wait. After successfully
picking up the forks a philosopher eats and then puts down the forks (lines 9–10).
Unfortunately, this solution is incorrect because it can deadlock, causing starvation of
the philosophers. It occurs when all philosophers pick up the left fork at the same
time (line 6). Then all the philosophers will be infinitely waiting for the right
fork17
(line 7).


   



[image: ]

 
Figure 1.9. The dining philosophers, [image: ] – philosophers, [image: ] – forks.

   

   



[image: ]

 
Figure 1.10. Solving the problem of the dining philosophers where deadlock may
occur.

   

   There are several ways to improve this solution in order to avoid deadlock and
ensure the liveness of philosophers. The first way is to reduce the number of philosophers
at the table to four. Then always one of the philosophers will be able to access both the
left and right fork. Figure 1.11 depicts the solution where the general semaphore up_to_4
is introduced (line 1) for ensuring that at most four philosophers can be present at the
table.


   



[image: ]

 
Figure 1.11. Solving the problem of the dining philosophers with reducing the
number of philosophers simultaneously present at the table (operations in lines 7–9
and 11–13 constitute the pre- and post-protocol, respectively).

   

   It is clear that none of the forks is used at the same time by two philosophers,
because access to a fork is granted by means of a binary semaphore that provides
allocation of a fork only to one philosopher. Besides, starvation of a philosopher cannot
occur. To verify this, suppose the contrary, that philosopher i is blocked forever on
semaphore up_to_4. In this case, four philosophers must sit at the table (otherwise
philosopher i would have been admitted to the table) of which at least one can pick up
two forks. When finished eating he/she leaves a place at the table by performing
operation signal(up_to_4) (line 13). Then philosopher i receives permission to have a
seat at the table, which is contrary to our earlier assumption. The above considerations
demonstrate that the safety properties of the presented solution are satisfied, and thus
the solution is correct. 

   Note that to produce a deadlock, tasks waiting for resources need to create the
following cycle: the first task is waiting for a resource that has a second task, which in
turn is waiting for a resource that has a third task etc., until the last task, which is
waiting for a resource that has the first task. Such a cycle, and thus the deadlock will not
occur if we introduce asymmetry in the operation of at least one task by forcing it to
pick up first the right fork and then left. Figure 1.12 shows the asymmetric solution in
which the even-numbered tasks pick up the left and right fork and the odd-numbered
tasks pick up forks in the reverse order. The proof of correctness of this solution is left to
the reader.






[image: ]

 
Figure 1.12. An asymmetric solution to the dining philosophers problem.

   

   1.4.4  The Readers and Writers Problem

In this problem the tasks called readers and writers are competing for access to a
common database. Readers and writers perform transactions that involve reading and
updating the database records, respectively. In order to ensure the consistency of data in
the database, a writer must have exclusive access to the database (or at least to the
record being updated) during completion of the transaction. In contrast, at a time when
none of the writers has access to the database, any number of readers can read the
database records.

   The concept of the database is understood here in a broader sense. It can be any
piece of memory, file or other resource, access to which is held on the above principles.
The problem of readers and writers is a more complex case of the critical section problem
(see p. 8), because readers can access the database with the exclusion of writers, and a
writer can access the database with the exclusion of all other tasks. The problem relies,
in fact, on proper synchronization of conditions (see p. 13) of access for readers
and writers. The access condition for a reader is that none of writers uses the
database, and for a writer that both readers and any other writer have no access to
it.

   A solution to the problem based on semaphores is illustrated in Figure 1.13. The following
declarations are used: 
[image: ]

The tasks of readers and writers are defined with help of Ada task types reader and
writer. The specifications and bodies of these tasks are given in lines 1–2 and 3–24. The
definitions of tasks as task objects appear in lines 25–26, where for example 100 readers
and 100 writers are declared in one-dimensional arrays. A crucial aspect of solution in
Figure 1.13 is counting the number of readers currently accessing the database.
For this purpose the variable no_of_readers is used. At the time when the first
reader wants to access the database, it performs operation wait(access) (line 8).
After acquiring access permission by the first reader, the subsequent readers do
not have to perform this operation, because the number of readers accessing

the database simultaneously is arbitrary. A subsequent reader reports only
that it accesses the database by increasing the value of variable no_of_readers
(line 7). The readers after completing their transactions reduce the value of
variable no_of_readers (line 12). When the number of readers becomes zero, the
operation signal(access) is carried out (line 13). This allows getting access to the
database by a writer waiting in the queue of the semaphore access, if any, as a
result of execution of operation wait in line 20. This writer will then obtain the
permission to access the database and after completing its transaction it releases the
database by performing operation signal in line 22. In addition to the semaphore
access, the semaphore s is used to provide mutual exclusion of tasks during
execution of critical sections, which modify the value of variable no_of_readers. The
critical sections consists of instructions in lines 7–8 and 12–13, where at the
entrance and exit of sections operations wait[image: ] and signal[image: ] are executed.





[image: ]

 
Figure 1.13. Solving the problem of readers and writers with semaphores.

   

    The advantage of the presented solution to the problem of readers and
writers is simplicity. Unfortunately, this solution is not completely correct, since
starvation of writers may occur if constantly a large number of readers will be
issuing the requests to the database. As a consequence, readers will continually
make use of the database—increasing and decreasing only the value of variable
no_of_readers (lines 7 and 12)—at the same time disallowing use of the database by
writers. The reason is that readers have a higher priority of access to the database
compared with writers. The correct solution to the problem with a monitor is
discussed in the next section, and with the use of semaphores is the subject of
Exercise 8.


   1.4.5  Monitors

In the problems discussed so far, in order to solve synchronization issues we have used
semaphores, which are low-level constructs. Semaphores must be employed with care,
because the improper implementation order of operations wait and signal or omission of
any of them can easily lock tasks and lead to malfunction of a concurrent program.
Finding these kinds of errors, especially in complex information systems, is
difficult.

   A higher-level construct with a greater degree of structuring is a monitor. It enables
handling synchronization questions with ensuring greater safety. A monitor is a special
module or package collecting data structures and procedures that operate on these
structures. Concurrent processes (tasks) can modify data structures included in a
monitor only by calling its procedures, which means they cannot modify these structures
directly.18
A vital feature of a monitor is that at any given time only one process can
execute a procedure contained in a monitor. A process that performs a monitor
procedure is said to be active within the monitor. If a process A calls a
monitor procedure and inside of the monitor there is an active process B, then the
execution of process A is blocked until process B leaves the monitor. In other
words, monitor procedures are executed with mutual exclusion of processes. This
guarantees mutual exclusion of access to the monitor data structures, which can
be modified by the monitor procedures. The mutual exclusion is ensured by
the implementation of a programming language that allows monitors to be
used.

   For the purpose of synchronization the condition variables and operations wait
and signal acting on these variables are introduced. If a monitor procedure invoked by a
process, say P, cannot continue its action because a certain condition is not satisfied,
then process P executes operation wait[image: ] on a variable a corresponding to this
condition (that is why a is called condition variable). The operation blocks the
execution of P and inserts it into the FIFO queue associated with variable
a. The blocked process is no longer active and does not impede access to the
monitor. This allows another process, say Q, to enter the monitor and perform its
action, as a result of which the condition associated with variable a can be
satisfied. The process Q may then signal the condition by implementing operation

signal[image: ], which will unblock process P waiting in the queue associated with
variable a.

   There is some difficulty with unblocking a process from the queue, due to the fact
that within a monitor only one process can be active. An active process is a
signaling process, so that soon after the execution of operation signal, the process
that is unblocked cannot be active as well. This can happen only when the
signaling process leaves the monitor. As between signaling and leaving the monitor
this process can perform further operations, one needs to be sure that when it
leaves the monitor, the condition signaled earlier is still satisfied. So usually it is
recommended that the signaling operation should be the last operation performed in the
monitor procedure. In addition, to ensure correctness of operations on condition
variables, immediately after leaving the monitor by the signaling process, the
process from the queue associated with the condition variable must be activated.
This means that it has a higher priority than processes waiting to enter the
monitor.

   As noted earlier, on condition variables operations wait and signal can be performed. They work
differently19
than the operations of the same names implemented on semaphores (see p. 9). Condition
variables are in fact distinct in nature compared to semaphores, whose integer
components make it possible to count the number of operations wait and signal
performed. Condition variables are not assigned a value. When a process executes
the operation wait on a condition variable, it is blocked and inserted into the
queue associated with this variable. When a process executes the operation
signal, it unblocks the first process waiting in the queue, if it is nonempty. If the
queue is empty, the execution of operation signal does not cause any action.
This means that multiple executions of operation signal on a condition variable
with an empty queue are not registered, as it happens in case of a semaphore.
However, the specific nature of these operations does not prevent them from
being employed to solve synchronization issues, because executions of operations
wait and signal can be counted by additional integer variables declared in a
monitor.

   In what follows, we will study solutions to the problems discussed in the previous
sections by using monitors. First, investigate a solution to the producer and consumer
problem (Figure 1.14). The producer to insert data in the buffer calls the monitor
procedure put (line 8), while the consumer to retrieve data from the buffer calls the
procedure get (line 15). The mutual exclusion of executions of these procedures is
guaranteed by the monitor. The advantage of employing the monitor is that
the producer and consumer tasks do not need to specify the details concerned
with inserting and retrieving data from the buffer, and with necessary checks
whether the buffer is full or empty, as it was in the solution with semaphores in
Figure 1.8.


   



[image: ]

 
Figure 1.14.  Solving  the  producer  and  consumer  problem  with  a  monitor
[image: ].

   

   The procedures for inserting and retrieving data as well as the implementation of the buffer
are collected in the monitor called Producer_Consumer (Figure 1.15). Inserting and retrieving
data are protected by condition variables nonfull and nonempty. If the procedure put finds out
that the buffer is full, then the producer task will be blocked and placed in the queue associated
with variable nonfull (line 8). The producer task is unblocked after the consumer task executes
procedure get that includes operation signal(nonfull) in line 20. Similarly, when the buffer has no
data the consumer task will be blocked and placed in the queue associated with variable nonempty
(line 16). It resumes operation when the producer task signals that data have been inserted
into the buffer (line 12). The degree of filling of the buffer is controlled by variable counter.


   



[image: ]

 
Figure 1.15. A monitor for the producer and consumer problem.

   

    The dining philosophers problem can be solved applying the
monitor Forks_Allocation presented in Figure 1.16. A philosopher
task20
before and after the activity of eating, calls procedures pick_up_forks (lines 4–9) and
put_down_forks (lines 10–20). After calling the former procedure philosopher i
leaves the monitor only when he/she is allocated two forks and can begin to eat.
Otherwise philosopher i is blocked and inserted in the queue associated with
condition variable can_eat[image: ] (line 6). The array element fork[image: ], taking integer
values in the interval between 0 and 2, indicates how many forks are currently
available for philosopher i. The array can_eat of condition variables enables
philosophers to be blocked when the number of available forks is fewer than 2.






[image: ]

 
Figure 1.16. A monitor for the dining philosophers problem.

   

   In Section 1.4.4 a no starvation-free solution to the problem of readers and writers
is discussed. Starvation of writers is caused by a higher priority for readers
than for writers in access to the database. Figure 1.17 shows a monitor that
allows organizing database access without starvation of writers. The monitor
contains declarations of variables employed to count the number of readers
and writers currently using the database (lines 2–3), as well as declarations of
variables to synchronize of access conditions (line 4). Recall that the condition for
access by a reader is that none of the writers uses the database, and by a writer
that both the readers and any other writer do not use it. In addition to these
variables the monitor contains the initial and final procedures that should be
called by readers and writers at the beginning and end of the use of database:







 Reader: 
…
Readers_Writers.start_reading;
READING DATA FROM THE DATABASE; 
Readers_Writers.stop_reading; 
…


   Writer: 
…
Readers_Writers.start_writing;
WRITING DATA TO THE DATABASE; 
Readers_Writers.stop_writing; 
…


In order to get permission to access the database a reader invokes procedure
start_reading (lines 5–12). The procedure checks whether an access condition for a reader
is satisfied (line 7). If the database is used by a writer or more writers are waiting for
access,21
then a reader is blocked and inserted in the queue. Otherwise, it is granted the access
permission. It can also happen that a group of readers are waiting for getting access in
the queue associated with variable reading_allowed. Then the first reader in the
queue will be unblocked by a writer, which after completion its transaction will
perform operation signal(reading_allowed) (line 29). The unblocked reader gains
access and also allows other readers to use the database by performing operation
signal(reading_allowed) (line 11). In fact, the cascade resumption of operation of
all readers waiting in the queue will take place. The first reader finishing the
execution of procedure start_reading sends the signal to the next reader, this
one to the next, and so on. As a result of the cascade of signals all readers
waiting in the queue will get access to the database. Note that new readers
that registered during the cascade resumption of readers do not get with them
access to the database. They will be blocked at the input to the monitor. This
is because the tasks blocked in the monitor to which a waking up signal was
sent are activated before the tasks wishing to enter the monitor. New readers
will therefore wait until the last reader in the cascade leaves the monitor, or
when a writer awakened by the last reader in the cascade finishes using the
database.


   



[image: ]

 
Figure 1.17. A monitor for the readers and writers problem.

   
   After using the database a reader invokes procedure stop_reading (lines 13–17).
If it is the last reader that uses the database, then by calling operation
signal(writing_allowed) (line 16) it allows getting access by a writer waiting in the
queue associated with condition variable writing_allowed, provided the queue is
nonempty.

   The writer to start writing data to the database calls procedure start_writing
(lines 18–24). The procedure checks whether the condition for access by the writer is
satisfied, that is whether the database is not used by any other writer or by readers

(line 20). Under this condition a writer is either granted access, or it is blocked and
placed in the queue (line 21).

   After making use of the database a writer calls procedure stop_writing (lines 25–30).
If the queue of readers is empty, then a waiting writer, if any, gets the permission to
access the database after operation signal(writing_allowed) is implemented (line 28).
Otherwise, the waiting readers are granted access as a result of executing operation
signal(reading_allowed) (line 29).

   It is not difficult to prove that starvation of writers and readers in the presented
solution cannot appear. Indeed, assume that the database is used by a group of readers,
and a number of writers arrived trying to access the database. After completion of
procedure start_writing the writers will be blocked as a result of invoking operation
wait(writing_allowed) (line 21). Since the arrival of the first writer, a group of readers
using the database will gradually decrease, because subsequent readers, if any, will be
blocked and placed in the queue (note that function empty(writing_allowed) in line 7
returns false). At the time when the last reader of the group finishes using the database,
it performs operation signal(writing_allowed) (line 16), which gives at least one writer
the permission to access the database. Similarly, a group of waiting readers
cannot be starved, because a writer after completing its transaction performs
operation signal(reading_allowed) (line 29), which allows at least one reader to use
the database. In the case of groups of waiting readers and writers, access to
the database will be granted alternately to a group of readers and a group of
writers.


   1.5  Notes to the Chapter

We explained in Section 1.1 what we mean by a concurrent, parallel, pseudo parallel,
and distributed program. There is no consensus as to the meaning of these terms in the
literature. Apt and Olderog ([23], p. 15) distinguish parallel programs in a group of
concurrent programs. The processes of parallel programs cooperate with each other via
shared memory and execute in computers that are integrated logically and physically.
The second group are distributed programs whose processes communicate by sending
messages. Processes have separate (private) address spaces and are implemented in
distributed systems, for example in clusters consisting of computers interconnected by a
network.

   Another basis for identifying a group of parallel programs is the purpose for which
programs are built. In this context, parallel programs can be regarded as designed to
accelerate computation, which results in solving complex problems in shorter time. In
contrast, in distributed programs attention is focused, among other aspects, on sharing
common resources and hardware and software fault tolerance, so that in case of a failure
of some system components, degradation in functionality of distributed programs would
be as small as possible.

   The first historical versions of multitasking operating systems were multiprogramming systems
in which one processor executed a number of programs in the so-called batch mode. A current
program was run until its completion or until waiting to perform an I/O operation. In the course of
this operation, execution of the current program was blocked and the processor was assigned to another
program. By overlapping I/O operations and computation, higher processor utilization was attained.


   Semaphores were introduced by Dijkstra [99]. Originally Dijkstra marked operations
wait and signal by letters P and V , respectively, which are abbreviations of terms in
Dutch, “proberen te verlangen” (wait) and “verhogen” (signal). Several variants of
semaphores differing in definitions of operations wait and signal [43] are introduced in
the literature. A blocked-set semaphore keeps blocked tasks in a set, not in a queue.
After execution of operation signal an arbitrary task from the set is unblocked. In
the case of employing this type of a semaphore, it is more difficult to ensure
liveness properties, such as freedom from starvation. Another type is a busy-wait
semaphore22
with the following definitions of operations wait and signal:

[image: ]

The execution of the if instruction within wait operation must be atomic, while
implementation of loop iterations can be interleaved with execution of any other
instructions. The disadvantage of a busy-wait semaphore is the need to perform
subsequent iterations of the loop until condition [image: ] is met. Such semaphores may be
used in parallel programs, where tasks are executed by separate processors. To ensure
that semaphores do not waste too much time in operation wait, contention among tasks
should be small.

   Depending on the definition, the strong and weak semaphores are distinguished. A
strong semaphore s has the following property: if the operation signal(s) is performed on
the semaphore infinite number of times, then eventually every waiting process will finish
the execution of the operation wait(s). For a weak semaphore, this property is: if the
value of the semaphore is always positive, then eventually every waiting process will
finish the execution of the operation wait(s). A busy-wait semaphore is weak, because it
is possible that the semaphore takes alternately the positive and 0 values, but in the
waiting task the condition [image: ] will be always checked in the times when the value
of s is equal to 0. Also, a blocked-set semaphore is weak (see Exercise 4). In
contrast, a blocked-queue semaphore (with the FIFO protocol) is strong. Each
execution of the operation signal(s) unblocks a single task from the queue. So any
task waiting in the queue eventually finishes the execution of the operation
wait(s).

   The monitor construct was proposed by Hoare [194] and Brinch Hansen [59]. For the
first time, monitors have been implemented by Brinch Hansen in the Concurrent
Pascal language. Programming languages that allow use of monitors include: Ada
2005 (by applying protected objects), C#, Concurrent Euclid, Java, Mesa,
Modula 3.


   1.6  Exercises


 1.  Given the following binary semaphores and tasks:
   [image: ]

    	   task A;          

	    

	task B;                   

	    

	task C;               


	   task body A is

	    

	task body B is       

	    

	task body C is   


	     wait(a);        

	    

	  wait(a);                

	    

	  wait(b); wait(a);


	     write(’A’);    

	    

	  write(’B’);             

	    

	  write(’C’);        


	     signal(a);      

	    

	  signal(b); signal(a);

	    

	  signal(a);         


	   end A;            

	    

	end B;                    

	    

	end C;               



   

   specify the possible output messages that can be printed as the result of concurrent
   implementation of tasks A, B and C.
   


 2.  Employing a binary semaphore, s: semaphore := [image: ], the tasks X and Y  can be
   implemented sequentially as follows:
    
 	   task X;          

	    

	task Y ;           


	   task body X is

	    

	task body Y  is


	     Operations X;

	    

	  wait(s);         


	     signal(s);       

	    

	  Operations Y ;


	   end X;            

	    

	end Y ;            



   

   Due to the use of semaphore s operations of task Y  will be executed after operations
   of task X. Given the tasks A, B, C, and D synchronize their execution by using
   semaphores according to the dependency graph depicted in Figure 1.18. As can be
   seen, the first task to execute is A, then tasks B and C should be executed in
   parallel, and finally task D.


    
 [image: ]

 
Figure 1.18. A dependency graph for tasks A, B, C, and D.
   

   

 3.  [43] (sect. 3.10), [22] (sect. 3.2), [362] Instruction lists of contemporary
   processors include complex instructions that make it possible to
   read, modify, and save values of shared variables in an atomic
   way.23
   Instructions of this kind facilitate synchronization of tasks. An example is
   the instruction test-and-set whose operation can be described as follows:

   [image: ]

    Notice that a variable s is first read and then its value is set to 1. The read and write
   operations are executed atomically (indivisible). The instruction returns the value of
   variable s that was read. The instruction test-and-set is useful to solve the critical
   section problem for any number of tasks [image: ] where [image: ] (see Figure 1.6):
   
[image: ]

    The pre-protocol includes a busy-waiting (or spinning) loop. Waiting continues until
   the variable s takes value 0, which means that no task executes a critical section. Busy
   waiting can be employed in multiprocessor computers for a small number of synchronized
   tasks.24
   Leaving the critical section is signaled in the post-protocol by setting [image: ].
   

   The group of complex atomic instructions also include instructions exchange,
   fetch-and-add, compare-and-swap, whose operation can be described as
   follows:


    	   procedure exchange([image: ]: integer) is


	       aux: integer;                             


	   begin                                      


	       aux := [image: ]; [image: ] := [image: ]; [image: ] := aux;  


	   end exchange;                                 



   

    	   function fetch-and-add([image: ], d: integer) return integer is


	       aux: integer;                                                      


	   begin                                                            


	       aux := [image: ]; [image: ] := [image: ];                                     


	       return aux;                                                      


	   end fetch-and-add;                                                    




   

    	   function compare-and-swap([image: ], [image: ], [image: ]: integer) return integer is


	       aux: integer;                                                                   


	   begin                                                                       


	       aux := [image: ];                                                                     


	       if [image: ] then [image: ] := [image: ]; end if;                                       


	       return aux;                                                                   


	   end compare-and-swap;                                                          



   

   Employing each of these instructions give solutions to the critical section problem
   for tasks [image: ], [image: ].
   


 4.  [43] (sect. 6.5) Demonstrate that starvation of tasks may appear in the critical
   section problem solution given in Figure 1.6 when a blocked-set semaphore s is
   used.
   

 5.  [266], [186], [22] (sect. 3.4), [188] (chap. 17) Parallel computation often proceeds in
   phases with the condition that execution of the next phase is allowed if computation
   of all tasks (processes) of the previous phase are completed. In such a case tasks
   must be synchronized applying barriers:
    	     …                                                                                                     

	    Computation of phase i


	     SYNCHRONIZATION BARRIER                                                          

	    Computation of phase [image: ]


	     SYNCHRONIZATION BARRIER                                                          

	    …


	  
	
	                                                                   

	

	                                                                      





    The simplest type of synchronization barrier in multiprocessor computers with
   shared memory is a centralized barrier. In its implementation each task
   when reaching a point of synchronization decreases the value of a shared
   variable, say counter, by 1. The initial value of the counter is p, and is equal
   to the number of synchronized tasks. If before reducing the value of the
   counter by a task the value is greater than 1, then the task after reducing the
   counter value is waiting by performing empty operations until all tasks
   reach the synchronization point. The last task that reduces the counter
   value from 1 to 0 restores its value to p and notifies the other tasks that
   computation can be continued. Give a solution of a centralized barrier with the
   instruction fetch-and-decrement of similar operation to the fetch-and-add in
   which instead of increasing the value of a variable decreasing is done (see
   Exercise 3).
   
   HINT: Since the barrier is generally used repeatedly, the solution should ensure
   that all tasks completed the previous execution of the barrier and reached its current
   execution.
   


 6.       [60],      [266],      [186]      A      barrier      for      more      tasks      can
   be         created         from         two-task         barriers         (Figure 1.19).
   The       array       w:       array(0 .. 1)       of      boolean      :=       (false,
   false)          records          whether          the          tasks          (processes)
   reached         a         synchronization         point.          Assume         that
   elements         [image: ]         are         associated         with         tasks         i
   for        [image: ],        1.        After        reaching        the        point        of
   synchronization,         task         i        assigns         the         value         of
   true           to            variable            [image: ]            (line 2).
   This        assignment        can        be        regarded        as        sending
   the        partner        of        number        [image: ]        a        signal
   about          reaching          the          point          of          synchronization.
   The        partner        is        waiting        for        this        signal        at
   line 3.        When        the        signal        is        received        it        is
   “deleted”         by         setting         the         variable         to         false
   (line 4).        Waiting        in        line 1        prevents        a        situation
   in        which        task        i       sets        variable        [image: ]
   to       true,       before       the       second       task       assigns       value
   false      to       this       variable       in       the       previous       execution
   of the barrier.  
 [image: ]

Figure 1.19. Synchronization in two-task barrier.
   

        Using two-task barriers a butterfly barrier can be constructed for p tasks,
   where p is a power of two ([image: ] for [image: ]). Figure 1.20 shows a structure of task
   communication in such a barrier for eight tasks. In general, a barrier consists of [image: ]
   rounds in which pairs of tasks synchronize their actions. The arrows indicate how signals
   are sent between pairs of tasks. The implementation of a butterfly barrier is as follows:

   
[image: ]

   The procedure barrier_initialization should be executed once before synchronization of tasks. To
   synchronize, each of [image: ] tasks calls the procedure barrier with a task number as the parameter.
   Since tasks perform the same action during synchronization, a barrier is classified as symmetrical.
   

    
 [image: ]  

                                                                     

 
Figure 1.20. A structure of task communication in a butterfly barrier.
   

   A disadvantage of the described barrier is that a number of synchronized
   tasks must be a power of two. This limitation does not appear in a dissemination
   barrier whose action is similar to a butterfly barrier. A dissemination barrier consists
   of [image: ] rounds, for any p where [image: ], in which tasks communicate with each
   other according to a scheme depicted in Figure 1.21. Following the example of the
   implementation of a butterfly barrier give the implementation of a dissemination barrier.


    
 [image: ]              

                                                                     

 
Figure 1.21. A structure of task communication in a dissemination barrier.
   

   

 7.  [43] (sect. 6.10) Provide simulation of a general semaphore employing binary semaphores.
   

 8.  [22] (sect. 4.4), [43] (sect. 7.6), [141], [363] (sect. 5.6), [375] (sect. 2.5.2) Figure 1.22 shows a starvation-free
   solution to the problem of readers and writers with semaphores. The following declarations
   are adopted: [image: ]

   
    (a) Prove    that    semaphores    s,    reading_allowed   and    writing_allowed
       are       binary       split       semaphores,       that       is       it       holds:
       [image: ].
       

   (b) Justify that in the presented solution the readers have precedence over
       writers in access to the database.
       

    (c) Modify the solution so that the writers have precedence over readers.
        HINT: Modify (i) the pre-protocol of a reader in such a way that a new
       reader is blocked when a writer is waiting, and (ii) the post-protocol of a
       writer so that a waiting reader is unblocked only when there is no waiting

       writer.
       


   (d) Assume  that  both  readers  and  writers  are  waiting  for  access  to  the
       database. Modify the solution protocols in such a way that access to the
       database is granted alternately to the readers and to a writer.
        HINT: After modification, the protocols should ensure that the following
       conditions are met: (i) a new reader is blocked, if a writer is waiting for
       access, (ii) after the use of the database by readers, a waiting writer should
       be unblocked, if one arrived; and (iii) after the use of the database by a
       writer all waiting readers should be unblocked, if there are such; if there are
       no waiting readers, a waiting writer should be unblocked, if there is such.



    
 [image: ]              

                                                                     

 
Figure 1.22. Solving the problem of readers and writers with semaphores without
starvation of writers.
   

   

 9.  In Section 1.4 we described the problems of resource allocation. In the producer
   and consumer problem, a resource was the buffer for storing data, and in the
   readers and writers problem—the database understood in a broad sense. In the first
   of these problems, the resource was allocated to the producer or to the consumer, if
   the resource was free. Access to the resource in the second problem was granted to a
   group of readers or to a writer. Now look at the problem in which p tasks numbered
   [image: ] compete for a resource that should be allocated on a basis of priorities of
   tasks. They invoke a procedure allocate_resource providing as parameters a period of
   time the resource will be used and a task number. After using a resource tasks perform
   a procedure release_resource. Allocation should be made by a shortest job next (SJN)
   principle25
   that gives higher priorities to tasks that will use a resource for a
   shorter time. A solution to the problem is illustrated in Figure 1.23.
   The following declarations of semaphores and variables are used:
   [image: ]

   
    (a) Implement a monitor to solve the problem of resource allocation formulated
       above.
       

   (b) Is the solution given in Figure 1.23 fair? If not, how it can be improved in
       this regard?
       

    (c) Modify the solution assuming that a resource consists of a certain number
       M of units, and the tasks will supply—in addition to a period of time and a
       task number—a number of units k for [image: ] that is requested or released.


      
 [image: ]


 
Figure 1.23  Solving  the  problem  of  resource  allocation  according  to  the  SJN
principle.
   

 

10.  One-lane bridge problem [43] (Appendix C) On the road along which vehicles from the south and
   from the north move there is a narrow bridge. At any moment only vehicles from one direction can
   cross the bridge. Modeling vehicles as tasks (processes) provides a starvation-free solution to the vehicle
   synchronization problem in which every vehicle will be able to finally cross the bridge. For this goal use: 
   
    (a) semaphores, and
       

   (b) a monitor.


    HINT: Modify the solution to the problem of readers and writers allowing use of
   a database (in this case the bridge) either by a group of readers (vehicles moving for
   example from the south) or by a group of writers (vehicles moving from the north).
   


11.  Sleeping barber problem [22] (sect. 5.2.5), [66] (pp. 246–7), [377] (sect. 8.3)

   There is a barbershop having two doors, a barber’s chair, and a waiting room for
   customers comprising n chairs. Customers enter through one door and leave through
   the other. After giving a haircut to a customer the barber opens the exit door of the
   barbershop and waits until the customer leaves. Then the barber invites to the chair
   the next customer from the waiting room, or falls asleep in the barber’s chair when the
   waiting room is empty. A customer wishing to get a haircut enters the barbershop. If the
   waiting room is full—the number of waiting customers is then equal to n—the customer
   leaves the barbershop to come back later. If the barber is busy but there are chairs
   available in the waiting room, the customer sits in one of the chairs. If the waiting room
   is empty and the barber sleeps, the customer awakens the barber and sits in the barber’s
   chair to have a haircut. Design a monitor coordinating the activities of the barber and
   customers.
        HINT: Assume that the barber and customers are tasks that require synchronization. The
   monitor representing the barbershop contains the procedures haircut and next_customer. The
   customers call the procedure haircut that returns control when the customer has been served or when
   the waiting room is full. The barber repeatedly calls the procedure next_customer in which it waits
   until the customer is seated, gives a haircut and then opens the exit door,
   enabling the customer to leave the barbershop.
   


12.  Cigarette smokers problem [306], [304], [377] (sect. 8.4) The problem involves
   synchronization of four tasks: three smokers and one agent. The smokers repeatedly perform
   actions of waiting for ingredients, making a cigarette and then smoking it. To make and
   smoke a cigarette three ingredients are needed: tobacco, paper, and matches. The agent
   has an infinite supply of all the three ingredients; however, each of the smokers has an
   infinite supply of only one of the ingredients. One smoker has tobacco, another has paper,
   and the third has matches. The agent repeatedly chooses two ingredients at random and
   makes them available to the smokers. A smoker that has the complementary ingredient
   picks up the two ingredients along with signaling it to the agent, makes a cigarette, and
   smokes it. For example, if the agent made available tobacco and paper, then the smoker
   with matches picks up both ingredients. Picking up the ingredients is signaled to the
   agent so that it can choose and make available the next pair of ingredients. In the problem
   under consideration the agent represents for example a computer operating system
   allocating resources to tasks that need them. Assume the following declarations of binary
   semaphores:
   [image: ]

    and the following attempt to solve the problem (we only give the operational
   parts of the tasks; MS denotes the operations of making and smoking a cigarette):


   
[image: ]

   

   The agent is implemented in the form of tasks [image: ], [image: ], and [image: ]. Smokers
   [image: ], [image: ], and [image: ] have infinite supply of matches, tobacco, and paper, respectively.
   Prove that this solution is incorrect because it can deadlock. Develop a correct solution.




   1.7  Bibliographic notes

General information about concurrent processes can be found in books by Apt
and Olderog [23], and Ben-Ari [43]. The book by Burns and Welling [63] is devoted to
concurrent programming in Ada language. Concurrency of processes in operating systems
is presented by Galvin et al. in [141] and by Tanenbaum [375]. Processes and threads
as units of the Unix operating system are discussed by Rochkind [327]. The features of
threads in operating systems Solaris 2, Windows, and Linux are introduced in books by
Galvin et al. [141] and Stallings [363]. Andrews discusses issues of multithreaded, parallel,
and distributed programming in [22]. Distributed systems are analyzed by Ghosh [151],
and Tanenbaum and Steen [376]. Multithreaded programming in Java is discussed in the
book by Lea [242]. Designing and proving the correctness of sequential and concurrent
programs are discussed by Apt and Olderog [23]. Concurrent programs in the systems
with shared and distributed memories, including the properties of safety, liveness,

and fairness, are discussed in books by Tel [378], Ben-Ari [43], Lynch [255], Roscoe [329],
Attiya and Welch [27], and Andrews [22]. Concurrency issues in different programming
languages are studied by Sottile et al. in [361]. Algorithms for process synchronization
and selected problems of concurrent programming are introduced by Taubenfeld [377].





   1Synchronization operations may impose a partial (as well as a total) order among operations
executed in processes.

2Recall that within each process operations are executed sequentially.

3Throughout this book, by a (real) processor we mean a uniprocessor or a core as a physical
device.
4Sometimes the upper limit of a latency is specified.

5Especially in superscalar processors equipped with pipelined instruction implementation units and
large caches (see Section 5.1).

6Also called time-slicing.

7Both a process and thread are executions entities of the operating system. In view of this similarity,
a thread is sometimes referred to as a lightweight process, and a traditional process as a
heavyweight process.

8We consider here concurrent programs whose processes terminate. There are also concurrent
programs with nonterminating processes. An example may be processes of a computer operating system,
or processes of a program that monitors a continuously working device by receiving and processing data
sent by its sensors.

9In this section we analyze the conditions of correctness of concurrent and sequential programs.
These conditions also apply to algorithms underlying those programs, because it may be
assumed that algorithms and programs, which are their implementations, are semantically
equivalent.

10By a parallel program we mean a concurrent program implemented by a sufficient number of
physical processors (see p. 3).

11The fairness constraint is not the property of a concurrent program. The constraint is imposed on
the system that schedules execution of concurrent processes.

12In addition, the fairness in expected linear time can be formulated in which the request issued
by a process will be handled before requests of any other process are handled more than once. One
can also formulate the FIFO fairness, where requests are handled in the order of their
submissions.
13Typically, only one process at a time can use a resource. However, there are resources that can be
shared by multiple processes. These resources are composed of a number of units, such as memory
cells, disk sectors, printers. Processes can apply for allocation of one or more units of the
resource.
14It isalso said that the operation wait and signal lowers and raises a semaphore, respectively.

15A binary semaphore is also called mutex. This term is used in the Pthreads and java.util.concurrent
libraries.
16In Ada a comment begins with characters --, and ends with a newline character. In this book,
comments will also be enclosed within characters [image: ] and [image: ], or /* and */.

17Note that the deadlock would cease to appear, if one of the philosophers gave up the left fork putting
it down.
18Packing data and procedures operating on these data in separate modules is referred to as
encapsulation.

19For this reason, operations on condition variables are sometimes labeled differently, for example
waitC and signalC.

20We omit the code of a philosopher task.

21Note that a reader can get access to the database, if it is not used by a writer. Checking the
additional condition—whether there are waiting writers—is to ensure the precedence of the first
blocked writer before waiting readers. The function empty acting on a condition variable
(line 7) returns true, if the queue of tasks associated with this variable is empty, and false
otherwise.
22A busy-wait semaphore does not contain component [image: ]. In the given definitions of procedures wait
and signal, component [image: ] is denoted by s.

23Compare the construct atomic in Section 7.6.

24When the number of tasks is growing, contention for access to the shared variable s increases. Note
that its value is stored in cache memories of multiprocessor computers. During each execution of
instruction test-and-set this variable is not only read, but also written. So, if any processor assigns
variable s a new value, then in the caches of other processors it will be marked as invalid. This in turn
will need updating the variable before its next reading. As a consequence, a large number of necessary
data transfers between shared memory and processor caches reduces the effectiveness of the presented
solution (see p. 178).

25The SJN principle can be applied for job scheduling in a case where jobs compete for allocation of
compute time of a processor, for example in the operating system of a computer.
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of
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   2.1  The Shared Memory Model

A model is a theoretical or physical object whose analysis or observation allows for
exploration of another real object or process. A model represents an explored
object in a simplified manner by taking into account only its basic features.
Due to simplifications models are easier to analyze than the corresponding real
objects.

    The subject of our interest are models of computers enabling the study of
computational processes executed within those computers. The models, called models of
computation, are helpful when analyzing and designing algorithms, as well as in
determining performance metrics used for evaluation of algorithms (see Section 3.1).
Models of computation should not be associated with a specific computer architecture, or
with a class of such architectures. In other words, their independence from hardware is
essential. Another essential feature should be versatility that ensures that algorithms
developed adopting these models can be implemented and run on computers with
different architectures. It is particularly important in the field of parallel computing
where diversity of architectures is high. As a result of this diversity several
models have been advanced. Unfortunately, due to relatively large number of
requirements that a model should satisfy, partly in conflict with each other,
none of the models developed so far has become a generally accepted model of
parallel computation. The frequently used are the shared memory model (or
parallel random access machine model, PRAM) and the network model. They
correspond to parallel computation conducted with the use of shared memory and by
sending messages over some communication network. Before discussing these

models, we will present a sequential model of computation underlying the PRAM
model.


   2.1.1  The RAM model

A widely accepted model of sequential computation is the machine with random access memory
(RAM). The model1
consists of a processor and memory containing
a potentially infinite number of cells [image: ] for [image: ] (Figure 2.1). In
each memory cell identified by its address i, a finite value expressed in binary,
perhaps very large, can be stored. The model assumes that the time to read
(write) a value from (in) a cell [image: ] is constant and equal to unit time,
regardless of a cell address. This constant access time is characteristic for
random access, as opposed to sequential access to cells of a tape in a Turing
machine.2
The RAM processor can execute instructions from some finite list that includes
instructions similar to those implemented in modern processors (Table 2.1). It has a
small number q where [image: ] of memory cells called arithmetic registers [image: ] for
[image: ]. An arithmetic register [image: ] can store, like a memory cell [image: ], any finite
value expressed in binary. In addition, the processor is equipped with a control register L
called a program counter. Its value is increased by 1 after execution of any instruction
that is different from JUMP, JPOS, JZERO and JNEG. In case of these instructions,
register L can be either set to value i (the second argument of an instruction), or
increased by 1.


   



[image: ]

 
Figure 2.1. The RAM model of sequential computation.

   

   




 Table 2.1 A sample list of processor instructions
 	Operation

	Argument

	Meaning                                                             


	

	

	

	LOAD      

	[image: ]     

	[image: ] := [image: ]                                                    


	STORE    

	[image: ]     

	[image: ] := [image: ]                                                   


	ADD       

	[image: ]     

	[image: ] := [image: ]                                             


	SUB        

	[image: ]     

	[image: ] := [image: ]                                             


	MULT     

	[image: ]     

	[image: ] := [image: ]                                             


	DIV        

	[image: ]     

	[image: ] := [image: ]                   


	JUMP     

	i           

	L := i                                                                


	JPOS      

	[image: ]     

	if [image: ] then L := i else L := [image: ]                  


	JZERO    

	[image: ]     

	if [image: ] then L := i else L := [image: ]                  


	JNEG      

	[image: ]     

	if [image: ] then L := i else L := [image: ]                  


	READ      

	k           

	Load a value from an external device to register [image: ]     


	WRITE    

	k           

	Write the contents of register [image: ] on an external device


	HALT      

	        

	Finish computations                                              


	

	

	

	         

                                                           



Argument a can be: [image: ], where i denotes an integer; [image: ] is a value of
argument a defined as follows: [image: ], [image: ], [image: ],
where ‘[image: ]’ stands for indirect addressing in which an argument is taken from a
memory cell of the address contained in cell [image: ]. Argument b may be i or
[image: ], with the meanings as above. k is the index of an arithmetic
register. Argument c may be [image: ] or l, where [image: ] is defined as:
[image: ].




   

   

   The processor is controlled by a RAM program, which is a sequence of instructions
implementing a given algorithm. The program is not stored in the memory, but in a
control unit of the model (for readability, not depicted in Figure 2.1). This ensures that
the program cannot be modified during its execution. While analyzing a RAM program,
it is convenient to assume that a program consists of a number of computational
steps, where each step is divided into three phases. In the first phase the processor
fetches an operand from a memory cell into an arithmetic register, in the second
phase it performs an arithmetic or logical (Boolean) operation on the contents
of the arithmetic registers, a control operation, an I/O operation etc., and in
the third phase it stores an operation result in the cell of indicated address.
Some phases of a computational step may be empty. It is assumed that the
execution time is the same for each computational step, and equals unit time.
Figure 2.2a presents a RAM program that computes a value of the polynomial

[image: ]

   using the Horner’s algorithm3
(Equation (2.1)) in which cell [image: ] stores a polynomial degree n for [image: ], cell
[image: ] stores a point x at which a value of the polynomial is computed and cells
[image: ] store coefficients [image: ]. The cells [image: ] and [image: ]
are auxiliary. A computed value of the polynomial appears in cell [image: ]
(Figure 2.2b).



   


                                                                     

[image: ]


 Figure 2.2. (a) A RAM program to compute the value of polynomial; (b) allocation
of variables to memory cells (aux. denotes an auxiliary cell).

   

   The RAM programs expressed by processor instructions are detailed and close to
the machine language. As a consequence they are barely legible. Therefore to
enhance readability they are usually presented on higher levels of abstraction
(Figure 2.3a and b). In further parts of this book we will write programs in the
pseudocode, as shown in Figure 2.3b.


   



[image: ]

 
Figure 2.3.  (a)  A  pseudocode  of  RAM  program  to  compute  the  value  of  a
polynomial, expressed on the middle level of abstraction; each step of the program,
consisting  of  three  phases:  fetching  the  argument,  performing  the  operation
and  saving  the  result  (some  phases  may  be  empty),  is  executed  in  unit  time
(Figure 2.2a); (b) an equivalent program written on the high level of abstraction.

   

    The basic metrics for evaluating performance of a sequential algorithm,
or an equivalent RAM program, are the running time and memory
requirement.4
The running time of an algorithm is defined by a function that evaluates the execution
time of an algorithm in terms of a size of input data. The execution time is measured by
the total number of primitive operations performed in an algorithm, for example
arithmetic, logical (Boolean), comparison, swap operations, etc., or by the number of
computational steps of constant execution time. Evaluating the running time of an
algorithm can be simplified by counting only certain primitive operations, called
dominant operations (or dominant computational steps). When selecting dominant
operations one should make sure that the total number of primitive operations is
bounded5
by the number of dominant operations executed in an algorithm. (In the sequel we will
use the term operation to indicate either a primitive or dominant operation). The size of
input data is a natural number that determines a size of a data set processed by an
algorithm. For example, in the problem of computing the value of a polynomial, it is the
degree n of the polynomial. The size of input data is also the size of the problem that is
solved.6
There are two types of running time metrics, the worst-case and average-case, defined as
follows


   	 
[image: ]
	(2.2)



   	 
[image: ]
	(2.3)



where [image: ] is a set of all sets of the input data d of size n, [image: ] is a probability of
processing data set d, and [image: ] is a number of operations (or computational steps)
executed in an algorithm while processing set d. In analogy to formula (2.2)
and (2.3), the worst-case and average-case memory requirements, [image: ]
and [image: ], are defined, where the unit of measure is a memory cell in which a
computer word of a fixed length representing a value processed in an algorithm is
stored.7


    Clearly, the running time of the previously specified
RAM implementation of Horner’s algorithm (Figure 2.3a) is
[image: ],8
where the value of 4 counts instructions (computational steps)
1–3 and 12, and [image: ] counts instructions 4–11 repeated n
times.9
The memory requirement of the program is [image: ], since in
order to implement the program the cells [image: ] (Figure 2.2b) are
required.


   2.1.2  The PRAM Model

As already mentioned, the RAM model underlines the parallel random access machine,
or the PRAM model of parallel computation. The model consists of a potentially infinite
number of identical RAM processors with their local memories [image: ] working
in parallel, and a potentially infinite global shared memory (Figure 2.4). Let [image: ]
for [image: ] denote cells of a shared memory. Each of the processors
executes its own program, as in the RAM model, employing the shared and local
memories.


   



[image: ]

 
Figure 2.4. The PRAM model of parallel computation.

   

    The processors operate synchronously, which means that consecutive
computational steps of the PRAM model are initiated by a central clock. A
computational step carried out in unit time consists of three phases. In the first phase at
most p processors perform simultaneous reads of cell contents of the shared or local
memories. Each processor fetches at most one argument and puts it in an arithmetic
register. In the second phase, each processor may perform an arithmetic or logical
operation on the argument contained in an arithmetic register. In the third and last
phase, at most p processors write results of operations in cells of the shared or local
memories. In particular, the processors may transfer data between memories.
For example, [image: ] downloads the contents of cell [image: ] from the shared
memory to cell [image: ] of the local memory of a processor. As in the RAM model
some of the phases of a computational step of a processor may be empty. In the
general case, programs executed by processors may be different, although it often
happens that they implement the same program. For identification purposes each
processor has a memory cell to which the processor number is loaded at the beginning of
computation (or it is stored in this cell permanently). The shared memory permits
processors to communicate with each other. Communication is fast, because in a
given step processor [image: ] can write a message (for example a value) in a fixed
cell of the shared memory, and in the next step processor [image: ] can read this
message.

   During implementation of a computational step of the PRAM model, conflicts
in access to shared memory cells may occur. Therefore several variants of the model are
distinguished according to the way memory access conflicts are resolved. In the exclusive
read, exclusive write (EREW) version of the PRAM, simultaneous access understood
as reads (or writes) by multiple processors from (or to) the same shared memory cell is
unacceptable.10

In the concurrent read, exclusive write (CREW) PRAM it is possible to simultaneously
read the contents of the same shared memory cell by multiple processors, but simultaneous
writes by multiple processors to the same cell are prohibited; in other words, only one
processor may write to a given cell. The computationally strongest variant—the concurrent
read, concurrent write (CRCW) PRAM—allows simultaneous reads (or writes) of
the contents from (or to) the same shared memory cell by multiple processors. Assuming
that simultaneous writes are acceptable the common, arbitrary, priority, and combining
CRCW PRAM models are distinguished. In the common CRCW PRAM processors
must write the same value to a given cell. The arbitrary CRCW PRAM permits the
different values to be written by individual processors to a given cell. Then, from these
processors one processor is selected arbitrarily that performs the write. Other processors
do not perform their writes. In the priority CRCW PRAM among processors that want
to write, a processor with the maximum priority is selected (in most circumstances, it
is a processor with the minimum number) that performs the write. Similarly to the previous
model other processors do not perform their writes. In the combining CRCW PRAM a
value written to a given cell is the result of a reduction operation on the arguments proposed
by respective processors. The reduction is done using a binary associative operation,
for example addition, multiplication, max operation etc. (see reduction problem on p. 79).

   An advantage of the PRAM is ease of carrying out the analysis of algorithms
designed for the model, like proving algorithm correctness or evaluating their
performance metrics. This is due to simplicity of the model. The model is also a common
ground for designers of algorithms; however, it has a significant drawback—it is
physically unrealizable for a large number of processors. If a number of
processors grow, then maintaining a constant access time of processors to the
shared memory, which is one of the core assumptions of the model, is technically
impossible.11
Therefore, it seems that future architectures of parallel computers with a large number of
processors will be based on the network model (see Section 2.2) in which processors with
both shared and distributed memories are interconnected by a network of communication
channels (see Sections 5.4.1 and 5.4.2).


   2.2  The Network Model

The network model consists of a number of processors that operate according
to the RAM model. In order to exchange data, processors are connected by
bidirectional communication channels, or links, that form an interconnection
network12
(Figure 2.513);
there is no shared memory in the model. Processors can operate either synchronously or
asynchronously, but typically the asynchronous mode is assumed. Processors
communicate and coordinate their activities by sending messages through
links of an interconnection network. Transfer of messages is implemented by
routing procedures running on all processors and cooperating with each
other.14



   



[image: ]

 
Figure 2.5. The network model of parallel computation.

   

   The network model defines a way the processors are connected to each other, which
is called interconnection network topology. It can be described by means of a graph
whose vertices represent processors, and edges represent bidirectional links between
processors.15
The graph can be an alternative diagram of a network model (see for example
Figure 2.6).


   



[image: ]

 
Figure 2.6. A completely-connected network.

   

   There are many network topologies, which are analyzed taking into account various
parameters enabling us to assess suitability of each topology for parallel computation.
The following parameters to evaluate a topology are distinguished: the diameter, degree,
bisection width, edge connectivity, and cost. The diameter of a network is the
maximum distance measured by the number of links (edges) between any two processors
or nodes (vertices) of a network. A network is the better the smaller diameter
it has, because in the worst case a message must be routed over the number
of links equal to the diameter of a network. The degree of a network is the
maximum number of neighbor links of a vertex in a network. If this degree is small,
then communication procedures performing routing of messages are simple and
thus more efficient, since a smaller number of channels is to be controlled by
a routing procedure. It is crucial how the diameter and degree of a network
change when the number of processors increases. In this respect a network is
good, if as the number of processors p increases the diameter of a network
grows at most logarithmically with p, and its degree remains constant, wherein
this constant is small. The bisection width of a network is the minimum
number of edges that must be removed from the network to split it into two equal
subnetworks.16
The product of a bisection width and a data transfer rate in a single channel, called
bisection bandwidth, specifies the number of bits that can be transferred per unit time
between the halves of a network. This bandwidth should be as large as possible. The edge
connectivity17
is a measure of multiplicity of paths between vertices of a network. It is defined as the
minimum number of edges that must fail—to be removed from a network—to make it
disconnected. The greater an edge connectivity, the better network resistance to damage.
Moreover, in networks with higher connectivity there is less contention of processes for
communication resources. The cost of a network can be defined in several ways.
In the simplest case, the measure of a cost is the total number of links of a
network.

    As already mentioned, a number of network topologies have been studied.
Undoubtedly, the best communication properties has a scheme in which the network
vertices are completely connected, that is if there is an edge between each pair of vertices
(Figure 2.6). The diameter of such a network equals 1 that provides fast communication
between vertices. The cost of the completely-connected network measured by the
number of edges (communication links) equals [image: ], where p
stands for a number of vertices (processors). This cost is too high to make the
network suitable for practical implementation. Likewise, the drawback of the
completely-connected network is a linearly increasing degree while the network is
scaled.



   We can see on this example that the choice of a network topology is a matter of
compromise. On the one hand, a network should be possibly sparse, with a
number of edges [image: ], because it is then inexpensive to implement. On the other hand,
consisting of a small number of edges it should have at the same time good
communication properties, that is a small diameter and the large bisection width and
edge connectivity. Of course, these requirements are contradictory.


   2.2.1  Mesh

The k-dimensional meshes whose vertices are arranged in an array [image: ]
[image: ] where [image: ], belong to the class of sparse networks. A vertex
[image: ] [image: ] is connected to vertices [image: ] [image: ] for
[image: ] if such vertices exist. Thus, almost every vertex is connected by edges
(links) with [image: ] other vertices. Figure 2.7a depicts the diagram of one-dimensional mesh
where each vertex except for the two vertices at the ends has two neighbors. Completing
a network with wraparound connections yields a ring, or a one-dimensional torus
(Figure 2.7b). The advantages of one-dimensional meshes are a small degree equals 2
and ease of scaling, whereas the disadvantage a large network diameter equals [image: ].
Figures 2.8a and 2.8b depict two-dimensional meshes [image: ] of degree 4 and diameter
[image: ]. A similar structure has a three-dimensional mesh (Figure 2.8c). The advantage
of two- and three-dimensional meshes is that they allow easy mapping of computations
carried out on regular structures. Examples include linear algebra computations
involving matrix operations, or computations in computer graphics, where an image
plane is partitioned into regular pieces processed by individual processors. Similar
partitions are used in algorithms of spatial modeling of various kinds of phenomena,
such as a flow of air in the atmosphere to predict the weather, a flow of fluids
in hydrodynamics, a distribution of magnetic fields in cores of transformers,
etc.
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Figure 2.7. A one-dimensional mesh (a); and one-dimensional torus (ring) (b).

   

   



[image: ]

 
Figure 2.8. A two-dimensional mesh [image: ] (a); two-dimensional torus [image: ] (b);
and three-dimensional torus [image: ] (c). 


   

   2.2.2  Mesh of trees

A variant of a two-dimensional [image: ] mesh is a two-dimensional mesh
of trees. It is created by removing edges of a mesh and adding vertices and
edges such that in each row and column of a mesh a complete binary tree is
formed (Figure 2.9). The diameter of a two-dimensional mesh of trees is equal to
[image: ],18
and its degree is 3.
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Figure 2.9. A two-dimensional mesh of trees [image: ].

   

   2.2.3  Cube

Meshes may contain any number of vertices on each dimension. Limiting this number to
two yields a cube, or hypercube, topology. A k-dimensional cube consists of [image: ]
for [image: ] vertices numbered [image: ]. It is convenient to represent numbers of
vertices in binary notation, [image: ]. The two vertices are connected by an edge, if
the bit strings w and [image: ] corresponding to the numbers of these vertices differ only at
one position. A zero-dimensional cube consists of a single vertex ([image: ])
(Figure 2.10a). A one-dimensional cube (Figure 2.10b) consists of two zero-dimensional
cubes, a two-dimensional cube consists of two one-dimensional cubes (Figure 2.10c), etc.
(another graphical form of a three-dimensional cube is shown in Figure 2.16b, and of a
four-dimensional cube in Figures S.2 and S.3b). At the same time, as already
mentioned, edges are led between vertices whose numbers differ at one bit. Thus, the
vertices of three-dimensional cubes composing a four-dimensional cube (Figure 2.10e)
are connected in such a way that vertex 0000 of the left three-dimensional cube is
connected to vertex 1000 of the right three-dimensional cube, vertex 0001 is connected to
vertex 1001, and so on, up to the pair of vertices 0111 and 1111. The diameter of a cube
is equal to its dimension [image: ], which is the advantage of this topology. The degree
of a cube is equal to [image: ], which is the drawback, because this degree can be large
for multidimensional cubes. A cube is not as easily scalable as for example a
one-dimensional mesh. To extend a k-dimensional cube into a [image: ]-dimensional
cube, [image: ] processors are needed. For instance, scaling a four-dimensional cube
into a five-dimensional cube, we need to double it, which requires adding 16
processors.
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Figure 2.10. A zero-dimensional cube (a); one-dimensional (b); two-dimensional
(c); three-dimensional (d); four-dimensional (e).

   

   2.2.4  Cube Connected Cycles

As noted, the disadvantage of a cube is logarithmic increase of degrees of vertices when a
cube is scaled. This disadvantage does not have a k-dimensional network of cube
connected cycles (CCC). Such a network is formed by replacing each vertex of a
k-dimensional cube with a cycle consisting of k vertices (Figure 2.11). Let [image: ] be a
vertex label in a CCC network, where [image: ] is the binary number of a cube vertex
that has been replaced by a cycle, and let i for [image: ] be the number indicating a
position of a vertex in a cycle. Then vertices of a CCC network labeled [image: ] and
[image: ] are joined with an edge, if the following conditions are met: (a) [image: ]
and [image: ], or (b) [image: ] and the bit strings w and [image: ] differ
only at one position. These conditions refer, respectively, to the edges between
vertices inside the cycles, C, and inside a cube, K. The sets of these edges can be
defined as follows: [image: ] and
[image: ]. A CCC network has the
diameter [image: ], where p is the number of vertices in a network (see Exercise 13),
and the degree of 3.
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Figure 2.11. A three-dimensional cube connected cycles.

   

   2.2.5  Butterfly

Another variant of a cube is a k-dimensional butterfly
network19
that consists of [image: ] stages numbered [image: ] (Figure 2.12a). At each stage of a
network there are [image: ] vertices numbered [image: ]. A vertex corresponds to a
pair [image: ] that specifies location of the vertex in the network,
where i is the network stage, and w is the k-bit binary number identifying the
network column. The vertices [image: ] and [image: ] are connected by an edge, if
[image: ], and either [image: ] or strings w and [image: ] differ only at the [image: ]th bit.
The network name is derived from the characteristic layout of its edges that
resembles a butterfly wing. As illustrated in Figure 2.12a, a three-dimensional
butterfly network consists of two two-dimensional networks of the same type.
Adopting a similar scheme for network combining, we can create recursively a
[image: ]-dimensional network out of two k-dimensional networks for any k.
The degree of a k-dimensional butterfly network is 4, and its diameter equals
[image: ], where [image: ] is a number of vertices of a network. If the
vertices in each column of a k-dimensional butterfly network are merged, and
the multiple edges are replaced by a single edge, we get a k-dimensional cube
(Figure 2.12b).
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Figure 2.12.   (a)   A   three-dimensional   butterfly   network   ([image: ]);   (b)
transformation of a butterfly network into a cube by merging vertices in columns
and replacing multiple edges with a single edge.

   

    Selected parameters of the discussed network topologies are presented in
Table 2.2. Note that none of these topologies is the best in terms of all parameters.






 Table 2.2  Selected  parameters  of  interconnection  network  topologies  (p is  the
number of vertices of a network)
	Network                      

	              

	Max.  

	Bisection

	Edge    

	          


	type                            

	Diameter          

	degree 

	width    

	connect.

	Cost          


	

	

	

	

	

	

	Completely-connected      

	1                    

	[image: ]

	[image: ]    

	[image: ]  

	[image: ]


	1-dimensional net.          

	[image: ]             

	2       

	1          

	1         

	[image: ]       


	1-dimensional torus         

	[image: ]     

	2       

	2          

	2         

	p              


	2-dimensional torus         

	[image: ]    

	4       

	[image: ]   

	4         

	[image: ]         


	2-dimensional mesh         

	[image: ]      

	4       

	[image: ]     

	2         

	[image: ] 


	Mesh of trees [image: ]     

	[image: ]         

	3       

	n          

	2         

	[image: ] 


	    ([image: ])       

	              

	      

	       

	       


	k-dimensional cube         

	[image: ]           

	[image: ]

	[image: ]     

	[image: ]  

	[image: ]


	    ([image: ])                

	              

	      

	       

	       


	Cube connected cycles     

	[image: ]

	3       

	p/(2k)   

	3         

	[image: ]        


	    ([image: ] for [image: ])

	              

	      

	       

	       

	          


	Butterfly                      

	[image: ]              

	4       

	p/(2k)   

	3         

	[image: ]         


	    ([image: ])       

	              

	      

	       

	       

	          



                                                                      



   

   

   2.3  Comparison of Parallel Computation Models

   The variants of the PRAM model (briefly, PRAM models) discussed before differ in
computational power. Informally, a PRAM model is computationally stronger, or more
powerful, if it enables development of faster algorithms to solve selected problems at lower
limitations that must be met during execution of algorithms. In this perspective PRAM
models can be arranged with respect to increasing computational power as follows:

[image: ]

   The arrangement shows that the weakest model is EREW PRAM, and the strongest,
combining CRCW PRAM. Moreover, any algorithm that runs in an EREW PRAM also
runs in a CREW PRAM; an algorithm that runs in a CREW PRAM also runs in a
common CRCW PRAM, etc. More precise relationship between the models
can be established by investigating possibility of simulating some models by
others.


Lemma 2.1. A set of operations of simultaneous read or write performed in a
p-processor CREW PRAM model, as well as in the common, arbitrary, and
priority CRCW PRAM models can be simulated by a set of operations of exclusive
read or write performed in a p-processor EREW PRAM model in [image: ]
time.

Proof. See Exercise 2. [image: ]

Based on the above lemma we can prove the following theorem:


Theorem 2.1. Computation of a p-processor CREW PRAM model, as well as of the
common, arbitrary, and priority CRCW PRAM models can be simulated in a p-processor
EREW PRAM model with a slowdown of [image: ] factor.

Proof. Execution times of computational operations (arithmetic, logic, etc.) on all
PRAM models are the same. According to Lemma 2.1 only simulation of simultaneous
reads and writes introduces a [image: ] slowdown. [image: ]

   Suppose that we have an algorithm that runs in [image: ] time in the CREW PRAM,
and in any of the CRCW models. Then Theorem 2.1 implies that in the EREW PRAM
this algorithm will run in time [image: ]. In other words, any algorithm for a PRAM
model with simultaneous read, or simultaneous read and write can be at most [image: ]
times faster than the fastest algorithm for the EREW PRAM for the same problem and
the same number of processors.


   Note that on the one hand a factor [image: ] that specifies difference in speed of
algorithms in PRAM models is not large. On the other hand, capability of
simultaneous read and simultaneous write clearly separate PRAM models from each
other.

    To demonstrate this, examine a search problem formulated as follows. Let
[image: ] and x be an array of distinct elements and an element stored in shared
memory. The problem is to find out whether element x is in array a. The problem
can be solved in [image: ] time in the n-processor CREW PRAM. In the first
step, all processors [image: ] for [image: ] read x in constant time. Then each
processor [image: ] checks if [image: ], and if so, a processor [image: ] for which [image: ]
is satisfied stores the value of 1 to cell [image: ] (the cell is initially set to zero).
In the EREW PRAM, solving this problem requires [image: ] time, because
exclusive reads do not permit the processors to download x in constant time.
In this model, x can be copied in each step of computation to a maximum of
one memory cell. Hence, the number of cells containing this element can at
most double at each step. Thus, in a constant number of steps only a fixed
number of processors will have access to x (see the broadcast procedure on
p. 98).

   The above example demonstrates that due to the lack of simultaneous read, the EREW
PRAM is strictly weaker computationally than the CREW PRAM. Similar separation in
terms of computational power—arising in this case from the lack of simultaneous
write—pertains to CREW and CRCW PRAM models. This can be shown on the problem to
determine the maximum (or minimum) element in array [image: ]. It was proved (see
bibliographic notes) that solving this problem in the CREW PRAM requires [image: ]
time,20
while in the CRCW PRAM models that enable simultaneous
writes the problem is solved in [image: ] time (see algorithm in
Figure 3.12).

   As can be seen in arrangement (2.4) the common CRCW PRAM is weaker than the
arbitrary CRCW PRAM, and this in turn is weaker than the priority CRCW
PRAM. It turns out, however, that if we impose no restrictions on the number of
processors and on capacity of shared memory of models, all variants of the
CRCW PRAM model are mutually equivalent. The following theorem can be
proved:


Theorem 2.2. Computation of a p-processor priority CRCW PRAM model can be
simulated in a [image: ]-processor common CRCW PRAM model with a slowdown of [image: ]
factor.

Proof. See Exercise 3. [image: ]

   The following theorem says that a combining CRCW PRAM is the strongest
computationally in arrangement (2.4).


Theorem 2.3. A combining CRCW PRAM model is strictly stronger computationally
than a priority CRCW PRAM model.

Proof. First, we prove that computation of the p-processor priority CRCW PRAM

model of m memory cells can be simulated with a slowdown of [image: ] factor in the
p-processor combining CRCW PRAM model of [image: ] memory cells. Denote
processors of the priority model by [image: ] for [image: ], and its memory cells
by [image: ] for [image: ]. Also denote processors of the combining model by
[image: ], and its [image: ] memory cells by [image: ] and [image: ]. The simulation proceeds as
follows:


   1. Processors [image: ] perform the same downloads from memory and operations on
     the collected values that processors [image: ] (the downloads and operations are
     carried out in the first and second phase of a computational step, respectively;
     see p. 36). However, in the third phase rather than immediately save results of
     operations in cells [image: ], processors [image: ] first write their numbers (identifiers)
     in cells [image: ] using the combining operation with operator [image: ].
     

   2. Processors [image: ] now perform appropriate writes to memory, that is they put
     results of operations (yielded in the second phase) in cells [image: ]. The writes
     are made, if the numbers of processors i are equal to the values of cells [image: ].
     The combining operation with operator [image: ] made earlier ensures that the
     number i and the value of cell [image: ] are equal only for processors with the
     minimum numbers, that is with the maximum priorities.


We continue to show that certain computation that can be performed in [image: ] time in the
combining CRCW PRAM cannot be performed in [image: ] time in the priority CRCW
PRAM. For that purpose, investigate a problem Parity[image: ] to
compute the value of [image: ]. It can be demonstrated (see bibliographic
notes) that this problem cannot be solved in [image: ] time in the priority CRCW
PRAM, while its solution in [image: ] time in the combining CRCW with [image: ]
processors is easy. Initially, processors [image: ] for [image: ] store values [image: ] into a
cell s applying the combining operation with the summation operator. In the
next step processor [image: ] executes operation [image: ] on the value of cell s,
which is the solution to the Parity[image: ] problem. Thus, the combining CRCW
PRAM model is strictly more powerful than the priority CRCW PRAM model.
[image: ]

   Just like for the PRAM models also for network models it can be pondered whether
they are equivalent in terms of computational power. The basis for this are abilities of
embedding one interconnection network into another network.


Definition 2.1. Given graphs [image: ] and [image: ], we say that
graph G has been embedded in graph [image: ], if the following functions have been
specified:


   (a) function [image: ] that assigns each vertex [image: ] of graph G, a vertex [image: ]
      of  graph  [image: ];  a  vertex  of  graph  [image: ] can  be  assigned  to  more  than
      one21

      vertex of graph G;
      

   (b) function [image: ] that assigns each edge [image: ] of graph G, a path—that is,
      a sequence of adjacent edges—from vertex [image: ] to vertex [image: ] in
      graph [image: ], where [image: ] and [image: ]; the path may consist of one
      or more edges.


Figure 2.13 presents examples of embeddings of the network with a complete binary tree
structure (see p. 204) into the two-dimensional mesh of size [image: ], and into the
three- and two-dimensional cubes (vertices and edges of graphs G and [image: ] in
Definition 2.1 correspond to processors and links of the networks).


   



[image: ]

  
Figure 2.13   Embeddings   of   a   binary   tree   structure   network   (a);   into
two-dimensional mesh (b); and into three- and two-dimensional cubes (c–d). 

   

    The notion of graph embedding is useful in designing parallel algorithms for
network models. Many of these algorithms are based on a certain structure, for example
on a tree-like structure (Figures 3.4, 3.6, 4.12). Implementation of an algorithm requires
then an embedding of this structure into a network with a given topology. More complex
algorithms consist of components, or tasks, that use results computed by other tasks. These
data relations between tasks are described by a data dependency graph, also referred to
as task dependency graph (see Figures 4.24, 4.26). To achieve short execution time of
an algorithm, processor loads should be balanced by allocating to processors the tasks in
an appropriate way (see Section 4.5). Making such an allocation is equivalent to embedding
a task dependency graph into a processor interconnection network of adopted topology.

   There may also be a case where we have an algorithm running on a network S of a
given topology. Then this algorithm can be run in a network [image: ] of other topology if an
embedding of network S into [image: ] is specified. Execution of the algorithm in network [image: ]
is then done by simulating computational steps of the algorithm that are performed in
network S. If processors in the two networks are identical, then execution times of
operations will be the same in both networks. In contrast, communication operations
may be performed with a slowdown, as a message transferred between processors through
a single link in network S may be transferred by a sequence of links in network [image: ].
Degree of a slowdown of an algorithm is determined by quality of embedding
of network S into [image: ]. This quality can be evaluated based on the following
parameters: the dilation (of communication paths), congestion, load factor, and
expansion.

   The dilation, d, is equal to the length of the longest path in network [image: ] that has
been assigned to a link (edge) of network S. The larger the dilation, the larger a number
of links through which communication is carried out. For example, the value of [image: ]
with congestion [image: ] means that a single communication operation in network S
requires in a worst case two steps during simulation of this operation in network
[image: ].

   The congestion, c, is equal to the maximum number of links (edges) of network S
that has been assigned to one link in network [image: ]. This parameter indicates a potential
communication bottleneck in network [image: ] that can occur when communication in
network S is performed simultaneously along different links. A slowdown of algorithm
implementation associated with this parameter can be alleviated by simulation of
communication in network [image: ] via pipelining.

   The load factor, l, is equal to the maximum number of processors (vertices) of
network S assigned to one processor of network [image: ]. It is an indicator of potential
slowdown of algorithm execution associated with the need to perform by a processor of
network [image: ] the computations of several processors of network S. This slowdown can be
reduced by appropriate organization of computations in a processor of network [image: ], for
example by overlapping communication and computation, which takes longer due to
dilation and congestion (see Section 4.4.5). Suppose that graphs G and [image: ] (see
Definition 2.1) describe networks S and [image: ], for which there is an embedding of S into
[image: ] with the values of dilation, congestion and load factor equal to 1 ([image: ]).
Then the function [image: ] is an injection retaining neighborhood of vertices, that is
[image: ] if and only if [image: ]. Thus, graph G is a subgraph of
[image: ].




   The expansion, e, equal to the ratio of the numbers of processors (vertices) in
network [image: ] and in network S is related to the dilation and congestion parameters. The
values of these parameters are usually small when we construct an embedding of a sparse
network with a small number of processors and links into a denser networks in which the
number of processors and links are greater. In such a case, small values of dilation
and congestion are achieved at the expense of a larger value of expansion. The
value of expansion can also depend on the specific size of a topology of network
[image: ], for example a number of processors in a cube must always be a power of
two.

   Note that processor 010 of the three-dimensional cube (Figure 2.13c) and processors
00, 01, and 11 of the two-dimensional cube (Figure 2.13d) are assigned two processors of
the tree (Figure 2.13a). Similarly, link (00, 01) of the three-dimensional cube is
assigned two links of the tree. The values of d [image: ] and e for the embeddings
depicted in Figures 2.13b–d are equal: for the mesh [image: ]—1, 1, 1, 9/7; for the
three-dimensional cube—1, 1, 2, 8/7; for the two-dimensional cube—1, 2, 2,
4/7.


Theorem 2.4. Any algorithm running in time T in a one-dimensional mesh of [image: ]
processors can be executed (via simulation) in the same time in a two-dimensional mesh
of processors with size [image: ].

Proof. Let us assign processors in the first row of a two-dimensional mesh, in order from
left to right, the numbers from 1 to n, processors in the second row, from right to left,
the numbers from [image: ] to [image: ], etc. (Figure 2.14b). Such a numbering of processors
from 1 to [image: ] provides the embedding of a one-dimensional mesh into a two-dimensional
mesh22
with the values of dilation, congestion, load factor and expansion equal to 1.
Consequently, if processors of both meshes are identical, any algorithm running in a
one-dimensional mesh of [image: ] processors can be executed in the same time in a
two-dimensional mesh of size [image: ]. [image: ]



   



[image: ]

 
Figure 2.14. Embedding one-dimensional mesh (a) into two-dimensional mesh (b).


   

Theorem 2.5. Any algorithm running in time T in a two-dimensional mesh of size
[image: ] can be executed in a one-dimensional mesh of [image: ] processors in [image: ]
time.

Proof. Consider the embedding23
of a two-dimensional mesh of size [image: ] into a one-dimensional mesh (see
Figure 2.15, [image: ]). Then each processor [image: ] of a two-dimensional mesh of size
[image: ] is assigned to an appropriate processor [image: ] from [image: ] processors of a
one-dimensional mesh. A processor [image: ] of a one-dimensional mesh will simulate
operation of a corresponding processor [image: ] of a two-dimensional mesh. We assume
that one computational step of processor [image: ] executed in unit time has three
phases that implement: (a) computations on local data, (b) two communication
operations with processors in adjacent columns to a column of processor [image: ] (if
such processors exist), and (c) two communication operations with processors
in adjacent rows to a row of [image: ] (if such processors exist). We assume that
processors of both meshes are homogeneous, so phase (a) will be performed in

processor [image: ] in the same time as in processor [image: ]. The running time of phase
(b) will also be the same, as processors adjacent to processor [image: ] correspond
processors in adjacent columns to a column of processor [image: ]. Regarding the
communication operations in phase (c), the pairs of processors in adjacent rows
with respect to a row of processor [image: ], correspond to the pairs of processors
in a one-dimensional mesh that are remote from each other by a number of
links in interval [image: ]. The communication operations between these
processors can be performed in a maximum of [image: ] steps (time units). As
a consequence, an algorithm running in time T in a two-dimensional mesh
can be executed in a one-dimensional mesh in [image: ] time.
[image: ]


   



[image: ]

 
Figure 2.15. Embedding two-dimensional mesh (a) into one-dimensional mesh (b).

   

The above theorem entails that due to worse communication properties of one-dimensional
meshes, algorithms designed for two-dimensional meshes can be executed in
one-dimensional meshes with a slowdown of [image: ] factor.

   Now we answer the question whether algorithms developed for multidimensional
meshes can be efficiently executed in networks of a cube topology. Consider a
one-dimensional torus (or one-dimensional mesh) with processors (vertices)
[image: ] and a k-dimensional cube with processors [image: ].
Assume that the numbers of processors of a mesh and cube are the same
and equal to [image: ]. To determine an embedding of a torus into a cube
with values of dilation, congestion, load factor and expansion equal to 1, a
bijection24
[image: ] should be provided that assigns processors of a torus to processors of a cube in
such a way that each link of a torus corresponds to one link of a cube. This
implies that a sequence of processor numbers of a cube is sought such that
neighboring numbers in a sequence differ only in one bit, since in a cube processors
with these numbers are joined by a link. Such a property has a sequence of the
reflected binary code, or Gray code. Let [image: ] be a sequence of k-bit binary
digits of this code. Construction of [image: ] can be described recursively by the
equation


   	 
[image: ]
	(2.5)



where [image: ] is the empty sequence, [image: ] is a sequence [image: ] whose each element is
preceded by digit 0, and [image: ] is a sequence [image: ] in reverse order whose each
element is preceded by digit 1. It follows from Equation (2.5) that a k-bit sequence [image: ]
for [image: ] is created based on a [image: ]-bit sequence [image: ] [image: ] [image: ] for
[image: ], where each element [image: ] is a sequence of binary digits of length [image: ]. To
create a sequence [image: ] one must copy a sequence [image: ] and then insert digit 0 at the
beginning of each element of an original sequence, and insert digit 1 at the beginning of
each element of the copy of a sequence. This yields sequences 0[image: ], 0[image: ] and
1[image: ], 1[image: ]. A sequence [image: ] is created by reversing the order of elements of the
second sequence and catenating the sequences: [image: ] [image: ] 0[image: ], 0[image: ],
1[image: ], 1[image: ]. Using the method of induction it can be shown that
in the created sequence [image: ] the pairs of adjacent binary digits differ only at

one position. In particular, this applies to the pairs 0[image: ], 1[image: ] and 0[image: ],
1[image: ].

   An embedding of a one-dimensional torus of [image: ] processors into a k-dimensional
cube25
is defined by bijection [image: ], where [image: ] and [image: ]
stands for an ith element of sequence [image: ]. Figure 2.16 illustrates an embedding
of a one-dimensional torus into a three-dimensional cube based on sequence
[image: ].


   



[image: ]

 
Figure 2.16. Embedding one-dimensional torus (a) into three-dimensional cube (b).


   

   The presented method to construct an embedding can be generalized for meshes with
a larger number of dimensions. Assume a two-dimensional mesh of [image: ]
processors for [image: ] and [image: ], and a k-dimensional cube of [image: ] processors
for [image: ]. Based on sequences [image: ] [image: ] [image: ] and [image: ] [image: ]
[image: ] a matrix P of size [image: ] whose elements are k-bit sequences of binary
digits that are numbers of processors of a cube can be created. A matrix has the
following structure:


   	 
[image: ]
	(2.6)



A feature of this matrix is that its adjacent elements differ in one position (binary digit).
The elements in each row are made up of the same sequence [image: ] being a component of
sequence [image: ], supplemented by consecutive components of sequence [image: ],
([image: ]), that differ in one position. Similarly, in the columns of matrix P there
are consecutive components of sequence [image: ], ([image: ]), that differ in one
position, supplemented by the same sequence [image: ]. A matrix contains numbers of all
processors of a cube and at the same time each pair of adjacent processors in rows and
columns is connected by a link. So a matrix provides an embedding of a two-dimensional
mesh into a cube defined as [image: ], where
[image: ]. Note that the value of dilation, congestion, load factor and expansion
of such an embedding equals 1. A sample embedding of a two-dimensional mesh into a
three-dimensional cube is given in Figure 2.17.


   



[image: ]

 
Figure 2.17. A two-dimensional mesh [image: ] (a); matrix P in which sequences
[image: ] and  [image: ]  are  separated  by  a  dot  for  greater  clarity  (b);  and  embedding  of
two-dimensional mesh [image: ] into three-dimensional cube (c). 

   

   When the sizes of a two-dimensional mesh are not defined by powers of two, that is
[image: ] for [image: ], the sizes can be extended to meet the requirements that enable
embedding of a mesh into a cube. The way of constructing embeddings of one- and
two-dimensional meshes into cubes described above can also be used for meshes with
dimensions [image: ] (see Exercise 12).


Theorem 2.6. Any algorithm running in time T in a d-dimensional mesh with [image: ]
and sizes [image: ] for [image: ], can be executed in the same time in a k-dimensional
cube of [image: ] processors with [image: ].

Proof. The truth of the theorem follows from existence of embeddings of multidimensional
meshes into cubes of suitable dimensions characterized by values of dilation, congestion,
load factor, and expansion equal to 1. [image: ]


   2.4  Notes to the Chapter

The network and PRAM models are not ideal models of parallel computation, therefore
efforts on their improvement are continued. One of the interesting models is the
bulk synchronous parallel model (BSP) proposed by Valiant [385]. Further
works on the BSP model are [46, 72, 285, 354]. Bilardi et al. [47] provided a
decomposable variant of this model. Another model of computation called LogP was
proposed by Culler et al. [88]. A variant of LogGP in which long messages can be
transmitted gave Alexandrov et al. [14]. The work by Bilardi and Pietracaprina [48]
is dedicated to theoretical aspects of computation models, including models
of parallel computation. The models often used in analysis of parallel sorting
algorithms are sorting networks (see Section 3.8). Their discussion can be found in
books by Gibbons and Rytter [153] (sect. 5.1), JáJá [205], Akl [12], Cormen
et al. [84] (chap. 28), Knuth [222] (sect. 5.3.4). The overview of contemporary
developed models of parallel computation is given in Rajasekaran and Reif [316]
(chaps. 1–16).

   The PRAM and network models are to some extent close to the modern parallel
computer architectures. So adopting these models facilitates programming of
those computers. Another model, particularly useful in the theoretical analysis
regarding computational complexity of parallel algorithms, is the model of logic
circuit.26
Informally, a logic circuit consists of gates operating in parallel, and wires transmitting
zero-one signals. Logic circuits do not contain memory and there is no concept of state defined
for them.27
Let [image: ] be a set of r-ary Boolean functions for [image: ]


   	 

[image: ]
	(2.7)



In what follows these functions will also be denoted by traditional symbols, for example
[image: ], (NOT), [image: ], (AND), [image: ], (OR).


Definition 2.2. A logic circuit over the base [image: ] is a finite, directed, acyclic graph
[image: ], in which each vertex [image: ] represents either an input variable [image: ] with
a value of 0 or 1, or a gate [image: ] for a certain function [image: ],
where [image: ] and [image: ]. An input degree of vertices representing
input variables equals 0, and of vertices representing gates [image: ] equals r. The
arcs28
[image: ] of the circuit lead from immediate predecessors [image: ] of gates [image: ] to
vertices representing these gates. A value [image: ] of a vertex [image: ] is determined as
follows: If [image: ], then [image: ]; if [image: ], then
[image: ]. The input and output data of circuit U are the
strings of bits [image: ] and [image: ], where [image: ] and [image: ] stand for the
values of the specified vertices of the circuit.

A logic circuit U with input data [image: ] and output data [image: ]
computes a function [image: ]. The size of circuit U is the number of its
vertices and the depth of U is the length of the longest path leading from a vertex
representing an input variable to a vertex representing an output variable. Since a circuit
computes a given function the size and depth of a circuit characterize the cost and time
of such computation, respectively. A sample logic circuit U of size [image: ] and
depth [image: ] is depicted in Figure 2.18 [205].


   



[image: ]

 
Figure 2.18. A logic circuit that for a string of bits [image: ] computes a string
of bits [image: ], where [image: ], [image: ], and [image: ] is the parity
bit defined as [image: ].

   

    A logic circuit of n input bits and m output bits is an object of a fixed
number of gates. On the basis of n input bits it computes a sequence of m
output bits. If the length n of the input data is changed, then for the modified
input data a new circuit must be given. It is different in case of computation
encountered in practice, where generally the same algorithm processes data of various
lengths.

   The concept of logic circuit can be generalized by adapting it for the computation of
function f  for bit strings of any length. One of the simplest generalization assumes that
the length m of an output string is a function of the length n of an input string. In
other words, the length of a bit string [image: ] that we denote as [image: ] is the
same29
for all n-bit input strings. A function [image: ] is represented by an infinite
sequence of circuits [image: ], called circuit family, where a circuit [image: ] computes a
function f  for input strings of length n.


Definition 2.3. [167] A family of logic circuits [image: ] is a collection of circuits in
which a circuit [image: ] computes a function [image: ]. A function
[image: ] computed by a family of circuits [image: ] is defined as
[image: ].

    Families of logic circuits on which no constraints on the character of circuits
[image: ] are imposed are called nonuniform. For these families it is difficult to
describe a subsequent circuit in the infinite sequence of circuits [image: ].
Borodin[55] and Cook[82] introduced the concept of uniform families of logic
circuits30
for which there must exist an algorithm for generating particular members of a family. A
family of such circuits is provided by specifying a program that on the basis of index n
evaluates a description [image: ] of circuit [image: ]. This program is specified for an assumed
model of computation. 


Definition 2.4. A family of logic circuits is logarithmic space uniform, if the
transformation [image: ] can be computed in [image: ] space by a deterministic
Turing machine, where [image: ] stands for the size of circuit [image: ].

According to this definition, a family is regarded to be logarithmic space uniform, if
there is a program for a Turing machine that in logarithmic space in a size
of circuit [image: ] evaluates its description on the basis of index n stored in the
unary form. This kind of logarithmic space uniformity is called Borodin-Cook
uniformity.

   As already mentioned, in addition to the previously discussed models there are other
models of parallel computation. Among them some are equivalent in terms of the
so-called efficient parallel computation. This means that if a problem has an efficient
solution (algorithm) in one model, then it also has one in other equivalent model. The
notion of efficient parallel computation is discussed in Section 3.7. In short, a
parallel computation is efficient, if it could be performed in a polynomial-logarithmic (or
polylogarithmic) time using a polynomial number of processors. The equivalence of
the logic circuit model and the CREW PRAM model conveys the following

theorem.


Theorem 2.7. A function [image: ] can be computed by a logarithmic space
uniform logic family of circuits [image: ] with depth [image: ] and size [image: ] if and
only if the function f can be computed by a CREW PRAM model on inputs of length n in
[image: ] time applying [image: ] processors.

Proof. The sketch of the proof can be found in the book by Greenlaw et al. [167]
(theorem 2.4.3). [image: ]


   2.5  Exercises


 1.  Let x and y be natural numbers stored in memory cells [image: ] and
   [image: ], respectively, of the RAM model. The greatest common divisor
   of numbers x and [image: ], can be computed by the Euclidean
   algorithm:31
   [image: ]

    Give the RAM programs on the low and middle level of abstraction (see
   Figure 2.2a and 2.3a) to compute the [image: ]. The desired result should appear
   in cell [image: ].
   


 2.  [84] (sect. 30.2), [205] (sect. 10.1), [335] (sect. 7.9.2) Prove that a set of
   operations of simultaneous reads or writes made in a p-processor priority
   CRCW PRAM model can be simulated by a set of operations of exclusive
   reads or writes made in a p-processor EREW PRAM model in [image: ]
   time.
    
   


 3.  [229], [214] (sect. 3.1), [57] (sect. 11.4) Prove that computation of a p-processor
   priority CRCW PRAM model can be simulated in a [image: ]-processor common CRCW
   PRAM model with a slowdown of [image: ] factor.
   

 4.  Figure 2.19a depicts a doubly twisted torus. Evaluate the parameters
   characterizing this interconnection network (see Table 2.2), and find out whether
   this type of a torus has better properties than a traditional two-dimensional
   torus.

    
 [image: ]

Figure 2.19. (a) A doubly twisted torus; (b) three-dimensional mesh, capital letters
denote coordinates of mesh processors: [image: ], [image: ], [image: ],
[image: ],    [image: ],    [image: ],    [image: ],    [image: ],
[image: ],    [image: ],    [image: ],    [image: ],    [image: ],
[image: ], [image: ], [image: ]. 
   

   

 5.  Prove that the ratio of the number of links of a k-dimensional cube for even k where
   [image: ] and the number of links of a two-dimensional square torus with the same
   number of processors equals [image: ].
         The value of this ratio implies that a four-dimensional cube has the same
   number of links that a two-dimensional torus of size [image: ] (Figure S.3b shows that
   these networks are identical). Cubes with dimensions of 8 and 16 have, respectively,
   two and four times more links than the corresponding tori. On the one
   hand this means that a cost of implementation of multidimensional cubes
   (proportional to a number of links) is greater than a cost of implementation of
   two-dimensional tori with the same number of processors, and on the other hand
   that communication properties of cubes are better than communication properties of
   tori.


   

 6.  Figure 2.20 illustrates the embeddings of complete binary trees of heights from 1 to
   4 into meshes of size [image: ] with values of dilation, congestion and load factor
   [image: ]. Investigate whether similar embeddings of trees of
   any height into meshes with an appropriate number of vertices can be
   constructed.

   
    
 [image: ]

Figure 2.20. Embeddings of binary trees of heights [image: ] (a), [image: ] (b), [image: ]
(c), and [image: ] (d), into meshes of appropriate size.
   



 7.  Prove that no embeddings exist (with [image: ]) of networks of a complete
   binary tree structure with [image: ] vertices into k-dimensional cubes with [image: ]
   vertices for [image: ].
   

 8.  [303] Prove that there are embeddings (with [image: ]) of networks of a
   double-rooted tree structure of [image: ] vertices (Figure 2.21) into k-dimensional cubes
   of [image: ] vertices for [image: ].
    
 [image: ]

 
Figure 2.21. A tree of [image: ] vertices with roots p and q; r and s are roots of complete
binary trees of height [image: ]. 
   

   

 9.  The following sequence of vertices: 000, 001, 011, 010, 110, 111, 101, 100 provides an
   embedding of a one-dimensional torus into a three-dimensional cube
   (Figure 2.16). Is this sequence the only one that specifies such an embedding? If not,
   give alternative sequences.
   

10.  Construct an embedding of a two-dimensional mesh of size [image: ] into a
   four-dimensional cube. Assume that coordinates of mesh processors consist
   of the row and column indices [image: ] for [image: ]. Is it possible
   to embed a two-dimensional torus of size [image: ] into a four-dimensional
   cube?
   

11.  Prove that into a k-dimensional cube it can be embedded (i) a two-dimensional
   mesh of size [image: ] when k is even, and (ii) a two-dimensional mesh of
   size [image: ] when k is odd.
   

12.  Examine a d-dimensional mesh of [image: ] processors for [image: ]
   and [image: ], and a k-dimensional cube of [image: ] processors, where
   [image: ]. Assume that each processor of the mesh is identified by
   coordinates [image: ] for [image: ]. Given the strings [image: ]
   an embedding of a d-dimensional mesh into a k-dimensional cube is defined by a
   bijection [image: ], where
   [image: ], and [image: ]. It implies that any
   d-dimensional mesh of a size defined by powers of two ([image: ]) can be embedded
   into a cube of an appropriate dimension.
        Give a bijection providing the embedding of the three-dimensional mesh
   shown in Figure 2.19b into a four-dimensional cube. Assume that coordinates
   of mesh processors consist of indices [image: ] for [image: ] and

   [image: ].
   


13.  [319] Prove that the diameter of a k-dimensional network of cube connected cycles
   is equal to [image: ], where p is a number of network
   vertices.
    
   


14.  A de Bruijn network32
   consists of [image: ] vertices. Let a bit string [image: ] be a vertex
   number of a network in binary notation. Then, the de Bruijn network comprises
   directed edges (arcs) leading from every vertex w of the network to vertices
   [image: ] and [image: ] (Figure 2.22). In the
   undirected version of a network edges lead from every vertex [image: ]
   to vertices [image: ] and [image: ], for [image: ].
    
 [image: ]

 
Figure 2.22. The de Bruijn network of dimension [image: ].
   

        Draw the diagram of the undirected version of a de Bruijn network of dimension
   [image: ], and evaluate the parameters characterizing the network listed in
   Table 2.2.




   2.6  Bibliographic Notes

The RAM model consisting of input and output tapes, a program, and a memory was
defined in the work by Aho et al. [7]. Descriptions of a newer form of the model that
suits better modern computer architectures can be found in the books by JáJá [205],
Akl [12], Savage [335]. The PRAM model was proposed in the article by Fortune and
Wylli [131] and then improved by Savitch and Stimson [336], Goldschlager [158],
Kučera [229], Snir [357]. Karp and Ramachandran [214], Fich et al. [125], Bovet and
Crescenzi [57], Akl [12] analyzed the PRAM model and its variants. The relationships
between the model variants, including the EREW, CREW, common, arbitrary and
priority CRCW, in terms of computational power were discussed in Snir [357], Cook
et al. [83], Boppana [53], Fich et al. [125]. In the paper [83], Cook et al. proved that
finding a maximum (or minimum) element in array [image: ] in a CREW PRAM model
takes [image: ] time. Vishkin [391], Chlebus et al. [75], Wah and Akl [394]
investigated how to simulate various models of parallel computation in a given
model. Theorem 2.3 is taken from the article by Bruda and Zhang [62]. The

Parity[image: ] problem is discussed in the work by Furst et al. [138]. As already
mentioned, practical value of the PRAM model is questioned because of difficulties
associated with its technical implementation. Advances in VLSI technology made
it possible to build a prototype of the PRAM model in a single chip, called
PRAM-on-chip [392].

   Meshes and tori are the most popular topologies and were used in early computers,
such as Solomon [355] and Illiac IV [35]. One of the first works on a cube topology was
the article by Sullivan and Bashkow [367]. A cube interconnection network was used in
the Caltech Cosmic Cube computer [343]. This computer has become a model
for commercial computers, in particular iPSC [76] and nCUBE [281, 300].
The degree of a cube equals [image: ], which is a disadvantage, because this
degree is large for multidimensional cubes. In the historical parallel computer
nCUBE 2, each of 4096 processors connected into a cube handled a total of
13 channels—12 communication channels leading to neighboring processors
[image: ], plus a single I/O channel. At the end of the 1980s superiority of
low-dimensional tori over cubes in terms of cost and ease of technical implementation
was demonstrated [5, 90]. From that moment, two- and three-dimensional tori as well as
meshes have become a kind of standard among interconnection topologies of
processors.33
They have been used in such computers as J-machine [288], Cray T3D [217] and T3E
[342], Intel DELTA [251], Alpha 21364 [279], Blue Gene [2, 142, 143]. Network models of
parallel computation with various topologies are analyzed in many works, for example by
JáJá [205], Leighton [244], Akl [12], Gibbons [152], Wilkinson and Allen [396],
Culler et al. [89], Roosta [328], Grama et al. [163], Quinn [314, 315], Dally
and Towles [91], Casanova et al. [67], Rauber and Rünger [319], Jha and
Jana [206], Solihin [360]. The issue of network embeddings is discussed by
Parhami [303], Grama et al. [163], Savage [335], Rauber and Rünger [319]. Monien
and Sudborough [276], and Stojmenović [366] presented studies of interconnection
networks with respect to their properties. Simulating PRAM models in networks with a
limited degree of vertices is considered by Alt et al. [16], Ranade [318], Herley
and Bilardi [187]. The article by Harris [184] gives the overview of results on that
issue.






   1The RAM model is also called von Neumann architecture. John von Neumann, 1903–1957, was a
mathematician, engineer, chemist, physicist, and pioneer of computer science. The computer architecture
he developed was described in the book First Draft of a Report on the EDVAC, published in
1945.
2Alan Mathison Turing, 1912–1954, was an English mathematician, logician and cryptographer. In
1936 he proposed a theoretical model of the machine, named later the Turing machine.

3William George Horner, 1786–1837, was a British mathematician. He worked on functional
equations, number theory, approximation theory, as well as on optics.

4The other terms are the time and memory complexities.

5More specifically, let e and d be, respectively, numbers of primitive and dominant operations (or
computational steps) executed in an algorithm. Then, we say that e is bounded by d, if [image: ] holds
for some positive constant c.

6There are exceptions to this rule. An example is the problem of computing a value of a given
function f  at point x with accuracy a, where a is for example the number of significant digits of value to
be computed. The size of the input is 2 (there are two data items: x and a) while the size
of the problem that determines difficulty of solving it depends on the required accuracy
a.
7The assumptions that the time of carrying out a single step in a RAM program, or the cost of
storing a datum in the memory equals the unit, means that the uniform cost criterion is applied.
Another possibility is to adopt a logarithmic criterion, where the time of performing operations on data
or the cost of storage is proportional to a number of processed or stored bits. This number is a
logarithmic function of a size of data.

8We assume that the reader is familiar with the big-Oh, big-Theta and big-Omega notations that are
employed in this book.

9Assuming that the dominant operations are multiplication and addition (Equation (2.1)) performed
in instructions 6 and 9 (Figure 2.3a), one can also conclude that [image: ].

10Note that conflicts may occur only among reads or among writes to the same cell. A conflict between
a read and write may not occur, as reads and writes are performed in the first and last phases,
respectively, of a PRAM computational step.

11The contemporary commercial computers with shared memory contain only up to a few dozen
processors.

12Except for processors, an interconnection network can also interconnect memory modules, I/O
peripherals, and other networked devices. Therefore, we will also presume that an interconnection
network is composed of nodes (memory modules, peripherals, other devices).

13Note the resemblance of the models presented in Figures 2.4 and 2.5.

14These procedures may also be implemented as separate hardware units.

15Defining the network model we consider the abstraction of an interconnection network. Further
information on the networks encountered in practice are presented in Section 5.6.

16The bisection width is the size of a network cut, that is of a disconnecting set that partitions a
network into two equal parts (Section 6.3). A disconnecting set of a connected network is a set of edges
whose removal disconnects a network.
17Another parameter that measures connectivity of a network is vertex connectivity being a
number of vertices (processors) whose failure makes a network divided into two subnetworks that cannot
communicate with each other.
18In this book, if not stated otherwise, [image: ] is the logarithm to the base 2, that is [image: ].
19The dynamic version of this network is discussed on p. 203.

20Figure 3.3 presents an algorithm to find the minimum element in [image: ] time for an EREW
PRAM in which size n of array a has been previously stored in local memories of processors. This size
could be stored in a CREW PRAM shared memory.

21This  means  that  function  [image: ] does  not  have  to  be  injective.  A  function  [image: ] is
injective, if it satisfies the condition: if [image: ], [image: ], then [image: ].

22Note that existence of such an embedding indicates that any mesh is a semi-Hamiltonian
graph.

23The values of dilation, congestion, load factor, and expansion of such an embedding are
[image: ], [image: ].  

24A bijection [image: ] (or one-to-one function) is an injective function satisfying the condition: for
each vertex [image: ] there is a vertex [image: ] for which [image: ]. This condition means that [image: ] is
also a surjection.

25If such an embedding exists, then a cube graph is Hamiltonian.

26Also referred to as Boolean circuit.

27The theory of logic (digital) circuits distinguishes combinational circuits not containing memory and
sequential circuits with memory. In combinational circuits the output signals are always the same for the
given input signals. The values of output signals in sequential circuits depend not only on
the input signals, but also on a previous state of a circuit remembered in a set of registers
(memory).

28Recall that directed edges in graphs are called arcs.

29In the general case this length may depend on a size of input data expressed on n bits.

30It was proved ([335] sect. 8.13.2) that sets of functions computable by uniform families of logic
circuits are the same as those computable by a Turing machine. In contrast, nonuniform families of logic
circuits have greater computational power, because they permit computing the functions that cannot be
computed by a Turing machine.

31Euclid, approx. 365 BC–approx. 300 BC, the Greek mathematician coming from Athens, most
of his life working in Alexandria was the author of the first theoretical work in mathematics. His
principal work—Elements—was a synthesis of the contemporary mathematical knowledge in the
field of geometry and number theory.

32Nicolaas Govert de Bruijn, 1918–2012, was a Dutch mathematician. He worked in many areas of
mathematics, including graph theory, combinatorics, logic.

33Note that the major advantage of a cube is its small diameter equal to [image: ] as measured by the
number of links. However, each p-processor parallel computer is a physical object existing in the
Euclidean three-dimensional space. Hence, the diameter of a network of any topology defined as the
maximum distance passed by an electrical signal carrying a message sent between processors is
[image: ].
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   3.1  Evaluation of Parallel Algorithms

In order to solve computational problems by appropriate algorithms, we need to carry
out their analysis. The goal of analysis is to demonstrate correctness of the algorithms
(see Section 1.3) and to examine their properties that are crucial in terms of suitability
for solving a problem at hand, as well as to compare performance of the algorithms and
select the best one. Another aspect of analysis may be to determine whether
the best algorithm we have is optimal, or in other words, no better algorithm
exists.

   A sequential algorithm is a sequence of precisely defined steps solving a problem,
that is computing the output data based on the input data. The precision in describing
the steps is necessary to be able to transform the algorithm into a computer program
that is the implementation of the algorithm. The computation of a sequential algorithm
is performed by one processor.

   If we want to solve a problem by using multiple processors, then the problem should
be decomposed into subproblems that can be solved in parallel. Each of the subproblems
is solved by a separate algorithm, which is a component of a parallel algorithm. So the
parallel algorithm consists of a certain number of separate algorithms that
can be executed simultaneously. The parallel algorithm also specifies how its
components use intermediate results of computation and how they synchronize their
work.

   The basic criteria for evaluating sequential algorithms include the running time
and memory requirement. The running time—or more precisely, the compute time of
a processor—and the occupied memory are the amounts of resources necessary to execute
an algorithm. Other evaluation criteria of sequential algorithms include universality,

understood as possibility of applying an algorithm to solve a class of problems,
simplicity, ease of implementation, and modification.

   Evaluating a parallel algorithm is more difficult than a sequential one, because an
additional factor (except the size of input data) is to be considered, which is the number
of processors of a parallel computer where the algorithm is implemented. A number of
evaluation criteria is also greater. We take into account, in addition to the running
time and memory requirement, the speedup, computational cost, efficiency,
communication cost, and portability. The latter criterion is important because as a
result of diversity of computer architectures, a parallel algorithm developed for
one architecture may be completely unsuitable for a computer with different
architecture.

   We now introduce the basic metrics for evaluating performance of a parallel algorithm. Suppose
that a parallel algorithm R solves problem Z of size n. The worst-case parallel running
time1
of algorithm R, or briefly running time, is defined as


   	 
[image: ]
	(3.1)



where [image: ] is a number of operations2
(or computational steps) carried out on input data d from the beginning of execution of
algorithm R by the first processor until the end of algorithm execution by all processors,
p is the number of processors, [image: ] is the set of all sets of input data d of
size n. Definition (3.1) determines the running time of a parallel algorithm in
the worst case, that is for the most “unfavorable” input data. It is assumed
that one operation or computational step is performed in a conventional unit
time.

   Let [image: ] be the worst-case running time of the best known (that is, the fastest)
sequential algorithm solving problem Z. The speedup of algorithm R is defined
as


   	 

[image: ]
	(3.2)



The maximum achievable value of speedup is p, that is [image: ] holds, since
employing p processors one can speed up computation of the best sequential
algorithm at most p times. Typically, the speedup achieved is less than p. The
reason for this may be insufficient degree of concurrency in problem Z (see p. 126)
leading to unbalanced computation loads of processors. Another reason is an
overhead associated with the time of data exchange (communication) between
processors and synchronization of their operation. Speedup is a measure of benefit
that is achieved through parallel computation. It specifies for how many times
you can shorten the time of solving a problem sequentially by using a parallel
algorithm.

   According to definition (3.1), [image: ] is the worst-case running time of parallel
algorithm R performed on a single processor, that is with [image: ]. Note that the times
[image: ] and [image: ] are different in the general case. They can be equal when
algorithm R is a parallel version of the best known sequential algorithm. However this
algorithm is not always amenable for parallelization and then algorithm R is based on a
different principle than the best known sequential algorithm. Equation (3.2) describes
the speedup obtained while solving computational problem Z by applying a
parallel algorithm. In contrast, equation [image: ] determines
the speedup attained by parallelization of a sequential algorithm with running
time [image: ]. These speedups are called absolute and relative speedup,
respectively.

   Within the running time3
[image: ] we may distinguish operations that must be performed sequentially,
[image: ], and operations that may be performed in parallel, [image: ].
Clearly, [image: ]. The reason to require operations
[image: ] to be executed sequentially is usually due to data dependencies.
For example, the operations of addition and multiplication in statements:

[image: ]

must be carried out sequentially, while execution of similar operations in statements:

[image: ]

can be done in parallel. Operations [image: ] are also called inherently
sequential. These operations appear in the algorithm subject to parallelization,
and their number typically result from specificity of a problem being
solved.4


   Assuming that operations [image: ] will be evenly spread across p processors, the
speedup [image: ] is given by:


   	 
[image: ]
	(3.3)



where [image: ] is the parallel overhead time. It includes, among other components, the
execution time of communication operations between processors. The time [image: ]
should be minimized during development of a parallel algorithm. It appears in the
denominator of Equation (3.3) and thus the larger it is, the smaller speedup is achieved.
In general, the time [image: ] increases with the number of processors used. However,
the value of fraction [image: ] appearing in the denominator of Equation
(3.3) decreases with the larger number of processors. The value of expression
[image: ] initially goes down and then increases after reaching a
minimum, because the increase in the second component of expression ceases to
be compensated by decreasing of the first component. As a result, when the
number of processors grows the speedup [image: ] of any parallel algorithm
initially increases and then decreases after reaching the maximum (we assume
that the size of a problem being solved remains constant, and the degree of
concurrency of a problem is so large that it permits the use of a sufficiently large
number of processors). This can be seen on the chart in Figure 3.8b (p. 78)
for [image: ].

   In most circumstances, the time [image: ] grows faster as n increases than the time
[image: ]. Therefore, for a fixed number of processors both the speedup [image: ] and
efficiency [image: ] (Equation (3.6)) grow when the size n of a problem being solved
increases. This phenomenon, called the Amdahl effect, can be observed on the charts in
Figures 3.8b and 3.8c, and in Figure 6.9.

   The speedup of parallel algorithm R can also be defined as the ratio of the execution
time of the best sequential algorithm in a parallel computer using a single processor, to
the execution time of algorithm R in this computer employing a predetermined
number of processors p. This definition, although correct, is less convenient for
evaluation of algorithms. It requires implementing algorithms and measuring their
execution times. These times depend both on a number of processors, p, as
well as on a size of input data, n. The results of measurements can exhibit
with greater accuracy the range of speedups that can be attained by using a
parallel algorithm. The running time functions (or their orders) enable evaluating
performance metrics of algorithms, including speedup, only with some constants of

proportionality.

   The cost of algorithm5
R, or briefly cost, is defined as follows:


   	 
[image: ]
	(3.4)



The cost is a number of operations (or computational steps) performed by all processors,
or in other words, the sum of all operations executed by processors while solving a
problem. The minimum value of the cost is equal to the running time [image: ], which
can be regarded as the cost of sequential algorithm executed by one processor,
[image: ]. If the cost of algorithm R is minimal, then it executes only the
operations of the fastest sequential algorithm (assuming that algorithm R is
a parallel version of this algorithm). Even spread of these operations across
processors allows us to attain the efficiency (defined below) equals 1, and the
speedup equals p. Achieving the minimum cost of a parallel algorithm by ensuring
[image: ] is difficult, since the cost of operations associated for example with
communication and synchronization of processors does not appear in the cost
[image: ], but only in the cost [image: ]. Therefore, these costs can be equal only if
processors executing a parallel algorithm do not communicate with each other
(that is rarely the case), or communication is so fast that its cost is negligible.
Since in practice these costs are not equal, their difference is defined as parallel
overhead:


   	 
[image: ]
	(3.5)




The operations contained in [image: ] constitute the overhead incurred in conducting
the computation in parallel, and are summed over all processors. They include redundant
operations, empty operations due to processors idling, operations of interprocessor
communication. In order to achieve good efficiency (defined below), parallel overhead
should be as small as possible. The ways to minimize this overhead are discussed in
Section 4.4.

   The efficiency of algorithm R, or processor utilization, is defined as


   	 
[image: ]
	(3.6)



The maximum value of efficiency equals 1. If this maximum is achieved, processors are
not idle while executing algorithm R (they devote to computation 100% of
its time), the cost of communication between them equals zero, and they do
not perform any redundant operations with respect to those included in cost
[image: ]. If the efficiency is less than 1, the speedup obtained is less than
p.

   In some cases the costs [image: ] and [image: ] satisfy inequalities


   	 
[image: ]
	(3.7)



for some constants r and s, [image: ]. The cost of parallel computation is thus asymptotically
equal to the minimum cost of sequential computation, that is [image: ].
Parallel algorithms having this property are called optimal in terms of cost or
cost-optimal.6

The efficiency of these algorithms [image: ]. From the standpoint of applications,
the most interesting are parallel algorithms that are optimal in terms of the cost and
have the shortest running time.


   3.1.1  Scalable Parallel Systems

By a parallel system we mean a parallel algorithm executed in a particular parallel
computer. Informally, scalability concerns the possibility of increasing speedup or,
equivalently, maintain constant efficiency with a growing number of processors used for
computation. Scalability is affected not only by the design of a parallel algorithm, but
also by the cost of communication between processors and the volume of their main
memories, that is by properties of a parallel computer in which an algorithm is
implemented.

   Consider the parallel algorithm that is a parallel version of a sequential algorithm.
Then Equation (3.6) defining the efficiency of the parallel algorithm takes the
form


   	 
[image: ]
	(3.8)



Inserting the term [image: ] from
Equation7
(3.5) into Equation (3.8) we get


   	 
[image: ]
	(3.9)



The parallel overhead [image: ] incurred in running the computation in parallel
increases with the number of processors used. It follows from Equation (3.9) that the
increase in the number of processors for a fixed n (that is for constant [image: ]) causes
the decrease in efficiency due to the increase of fraction [image: ]. In turn,
for the fixed number of processors p, increasing the problem size n increases
efficiency, because the time [image: ] grows generally faster than the cost [image: ].
The parallel overhead, [image: ], increases at least linearly with a number of
processors p for [image: ]. If a sequential algorithm contains the amount
[image: ] of inherently sequential operations, then they are executed in the
parallel algorithm by a single processor. While these operations are executed the
remaining processors are idle that causes the increase of cost [image: ] by term
[image: ]. Typically, this term grows faster than [image: ], because
costs of communication, amount of excessive operations etc., grow as well (see
Section 4.4).

   Equation (3.9) implies that in order to maintain the efficiency of a parallel system at
some fixed level with increasing number of processors, we must ensure:


   	 
[image: ]
	(3.10)



Thus, along with the increase of cost [image: ], the cost [image: ] should also increase.
This can be achieved by increasing the size n of a problem being solved. So in order to
properly utilize computational capabilities of processors, problems of increasingly larger
sizes should be solved, when a number of processors grows. Ensuring that Equation
(3.10) is satisfied, which provides asymptotically constant efficiency, [image: ], is
not always easy. It depends on the specifics of a problem, an algorithm that
solves a problem, and a parallel computer used for computation. We say that a
parallel system is scalable, if its efficiency can be maintained at a preset level by
simultaneously increasing the number of processors and the size of a problem being
solved.


   3.1.2  Isoefficiency Function


Suppose that the efficiency of a parallel system should be equal to some constant e for
[image: ], that is:


   	 
[image: ]
	(3.11)



Thus we have


   	 
[image: ]
	(3.12)



where [image: ]. Equation (3.12) entails that in order to maintain the
efficiency of a system at a constant level, along with the increase in a number of
processors used, a size of the problem n should be increased as well, so that
the time [image: ] grows as fast as the cost [image: ]. From Equation (3.12)
the size n of a problem as a function of the number of processors p can be
established.8
This function is called isoefficiency function, and is regarded as the metric of
scalability of parallel systems.

   For example, in Section 3.5 (p. 76) we present the algorithm to compute the sum of
n values with p processors. For this algorithm we have: [image: ] and
[image: ]. Equation (3.12) takes the form [image: ], and
the isoefficiency function equals [image: ]. Now, to
maintain constant efficiency after, for example, double increase in a number of
processors, from p to [image: ], the size of a problem should be increased from n to
[image: ].


   The isoefficiency function defines the rate of growth of the size of a problem, so as to
maintain constant efficiency. If this function grows slowly, then a parallel system is easily
scalable. A slight increase in the size of a problem is sufficient for efficient use
of computational capabilities of a growing number of processors. The greater
is the increase in the size of a problem that guarantees constant efficiency, a
system is less scalable. In the extreme case, with an exponential increase in
the size of a problem, the desired efficiency is attained for problems of huge
sizes, whose input data do not fit in computer memories. Given a volume of
memory, we may then evaluate the range of a number of processors, in which
a system is scalable. There are also systems that are unscalable, in which a
constant efficiency cannot be maintained regardless of the growth rate of problem
size.

   At the end of this section it is worth noting that the previously defined metrics, that
is the parallel running time, speedup, cost and efficiency, which are the basis for
evaluating performance of parallel algorithms, are functions of two variables—a number
p of processors and a size n of a problem. Comparison of algorithms with each other and
the choice of the best one is carried out by comparing these metrics, which is generally
not a trivial task.


   3.2  Amdahl’s Law

Suppose we have a sequential algorithm (or a program) of running time
[image: ] solving a problem of fixed size n. Let s be the fraction of
operations of a computation of this algorithm that must be performed
sequentially,9
and let r be the fraction of operations of a computation that can be performed in
parallel. Then we have: [image: ], [image: ] where [image: ]. The
speedup of the sequential algorithm that can be obtained after its parallelization can be
determined by simplifying Equation (3.3) through omission component [image: ]:

[image: ]

   Equation (3.14) known as Amdahl’s law evaluates the upper bound of speedup as
the function of fraction s and number of processors p for the problem of a fixed size n.
Figure 3.1 illustrates Equation (3.14). As you can see from the chart, an algorithm of an
inherently sequential fraction equal for example to [image: ] (or otherwise 1%) can be
speeded up by applying [image: ] processors at most 91 times. This speedup is much
smaller than the maximum speedup, which for [image: ] is equal to the number
of processors, that is 1000. Equation (3.14) also implies the upper bound of
speedup of an algorithm for arbitrarily large number of processors. It is equal
to


   	 
[image: ]
	(3.15)



For example, for the sequential fraction 1% ([image: ]) this bound is 100.


   



[image: ]

 
Figure 3.1. Speedup [image: ] as a function of sequential fraction s a sequential
algorithm for fixed n; p is set to 1000.

   

    In summary, Amdahl’s law allows us to answer a question to what extent a
sequential algorithm solving a problem of a given size n can be speeded up. The law

makes two simplifying assumptions. Firstly, it is assumed that operations [image: ] can
be evenly spread among processors, which gives maximum speedup—this assumption is
conveyed in Equation (3.13) by component [image: ]. Secondly, it is assumed that the
time [image: ] of parallel overhead, including the cost of communication between
processors, among others, is small and can be neglected. In practice, these simplifying
assumptions are rarely met and then upper bounds of speedup derived from the
Amdahl’s law take smaller values.

    Based on Amdahl’s law, the desire to construct parallel computers with an
increasingly larger number of processors can be questioned. Indeed, Equation (3.15)
implicates that maximum speedup that can be achieved does not depend on a number of
processors used, but on the amount of operations that must be performed sequentially in
a parallel algorithm.

   However, the attainable speedup in parallel computing can also be viewed from other
perspective, which is addressed in the next section.


   3.3  Gustafson–Barsis’s Law

   In Amdahl’s law the key interest is the execution time of an algorithm. For the
fixed size of a problem being solved the law demonstrates how this time can be
shortened by making use of a growing number of processors. In contrast, the
approach by Gustafson and Barsis determines attainable speedup while maintaining
constant time of parallel computation by increasing the size of a problem being
solved.

   Suppose that we simulate a complex phenomenon, for example weather condition, in
some geographical space using a parallel computer with a certain number of processors.
Then acquiring the results of simulation in, say, one-hour time of computation may be
regarded as acceptable. The increase in a number of processors allows us to improve the
accuracy of simulation results through the finer discretization of geographical space in
which a phenomenon occurs, while keeping the one-hour time of parallel computation.
Note that the finer discretization means that a new, larger computational problem is
solved.

   Let p be a number of processors, [image: ] a fraction of execution time of a parallel
algorithm to perform computation in a sequential manner, and [image: ] a fraction of execution
time of a parallel algorithm to perform computation in parallel (we omit the overhead
time arising from conducting computation in parallel). So we have: [image: ]. The
execution time of the same algorithm in a hypothetical sequential (uniprocessor)
computer is proportional to [image: ], where [image: ] corresponds to the execution time of a
parallel fraction of computation by a single processor. Speedup that would be
attained if the computation of a parallel algorithm is carried out in a uniprocessor
computer10
is as follows:


   	 

[image: ]
	(3.16)



Gustafson–Barsis’s law (3.16) defines the so-called scaled speedup, because along
with the change of a number of processors the size of a problem is scaled, so that a
constant parallel computation time is maintained (note that we assume [image: ]).
Scaled speedup is calculated based on the model with the variable size of a problem,
whereas speedup in Amdahl’s law (3.14) is evaluated assuming the model with
the fixed size of a problem. Figure 3.2 shows that scaled speedup is a linear
function of a sequential fraction of computation performed in a parallel computer.
For example, the value of scaled speedup for sequential fraction [image: ] is
990.


   



[image: ]

 
Figure 3.2. Scaled speedup [image: ] as a function of sequential fraction [image: ] of
computation in a parallel algorithm; p is fixed at 1000.

   

   In general, speedups determined by Gustafson–Barsis’s law are much greater than
those calculated adopting Amdahl’s law (see Figure 3.1). However, these speedups are
difficult to compare with each other. As observed previously, the laws take different
approaches to parallel problem solving. Furthermore, variables s and [image: ] defining
sequential fractions of computation are not identical. In the Gustafson–Barsis approach
variable [image: ] concerns computation of a parallel algorithm and in the Amdahl
approach—computation of a sequential algorithm. It is believed that values
of variable [image: ] in parallel algorithms decrease with an increase of the size of
problems. In the Amdahl approach, due to the fixed size of a problem a value of s is
constant.


   3.4  Karp–Flatt metric

Both the Amdahl and Gustafson–Barsis approaches neglect the time [image: ] related to
parallel overhead, and also assume that a parallel fraction of computation [image: ] can
be speeded up to the maximum extent, that is p times. Consequently, speedups
determined by Equations (3.14) and (3.16) are greater than those attained in
practice. Karp and Flatt proposed experimental calculation of a sequential
fraction f  of computation of a parallel algorithm, which allows evaluating obtained
speedups. According to Equation (3.3) the running time of a parallel algorithm
equals


   	 
[image: ]
	(3.17)



Let us define fraction f  covering the inherently sequential computation and overhead
associated with conducting computation in parallel as


   	 

[image: ]
	(3.18)


Employing this definition, Equation (3.17) can be written as

[image: ]

   After dividing the above equation by [image: ] and denoting [image: ]
by S (a fixed size n of a problem is assumed) we get


   
[image: ]


The fraction f  derived from the last equation:


   	 
[image: ]
	(3.19)



can be established experimentally on the basis of speedup S measured for a given
number of processors p. The smaller value of f  the better, an algorithm exhibits then

larger speedup and better efficiency. The increase in a value of f  with the rise in a
number of processors points to a growing share of time [image: ] (that includes
communication time between processors, among other things) in a total time of
computation.

    As an example, investigate the speedups of the programs built with the MPI
library and OpenMP interface to find the number of primes in interval [image: ]
(Figure 6.9, p. 237; and Figure 7.7, p. 280). Applying Equation (3.19) and experimentally
measured speedups the values of fraction f  were calculated, as shown in Table 3.1. As
can be seen, for a relatively small problem size, [image: ], the values of f  in
both programs are growing along with the increasing number of processors.
This reflects the increasing participation of parallel overhead time, including
communication time, in a total time of parallel computation. The values of
f  at [image: ] are much larger for the OpenMP program than for the MPI
program, and thus overhead time in the OpenMP program accounts for the
majority of a total computation time. When a size of the problem is larger,
[image: ], the f  fractions for the MPI program take more or less the same values
([image: ]–[image: ]), and for the OpenMP program they slowly grow. This means that in
these cases overhead time do not constitute a major part of the total time of
computation.11


   




 Table 3.1 Sequential fractions f  of programs to find prime numbers calculated on
the basis of speedups of Figure 6.9 (p. 237) and Figure 7.7 (p. 280) (N denotes not
calculated values due to limitation in a number of cores in a computer in which
experiments were conducted, see footnote on p. 236)
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	1.96

	0.020

	1.93

	0.036

	1.75

	0.143

	1.93

	0.036


	 3                                                                                                                  

	2.91

	0.015

	2.99

	0.002

	2.23

	0.173

	3.00

	0.000


	 4                                                                                                                  

	3.64

	0.033

	3.94

	0.005

	2.38

	0.227

	3.89

	0.009


	 5                                                                                                                  

	4.52

	0.027

	4.54

	0.025

	2.75

	0.205

	4.70

	0.016


	 6                                                                                                                  

	5.18

	0.032

	5.30

	0.026

	2.68

	0.248

	5.19

	0.031


	 7                                                                                                                  

	5.32

	0.053

	6.07

	0.026

	2.42

	0.315

	5.65

	0.040


	 8                                                                                                                  

	5.44

	0.067

	6.73

	0.027

	2.14

	0.391
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	5.65

	0.074

	7.47

	0.026
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	5.35

	0.097

	8.02

	0.027
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   3.5  Algorithms for the Shared Memory Model

In this section we discuss parallel algorithms to solve selected problems using the PRAM
model with shared memory.


   3.5.1  Finding the Minimum and Sum of Elements in [image: ] Time

First, we concentrate on the algorithm to solve the problem of finding the
minimum element in a set of numbers. Suppose that the numbers are stored
in array [image: ] where [image: ] for a certain integer [image: ]. We should find
a value of [image: ] for [image: ], [image: ]. A sequential algorithm
for this problem of the running time [image: ] is as follows:
 
[image: ]

    Figure 3.3 depicts a parallel algorithm to solve this problem that employs n
processors [image: ], [image: ]. In the course of finding the minimum element all processors
of a PRAM model implement the code shown in the figure. Execution is synchronous,
which means that in a given step of computation all processors perform the
same operation (in a sense of its kind, but not arguments) resulting from the
statements in lines 2–14. However, it may happen that in some steps processors
perform empty operations. For example, if the condition in statement if (line 8) in
a processor is not met, then this processor during execution of statement 9
performs empty operations. The algorithm uses the statement parfor, which
is a parallel version of a conventional statement for of the following syntax:

[image: ]

   



[image: ]

 
Figure 3.3. Finding the minimum element, [image: ].

   

The parfor statement denotes parallel execution of [image: ]sequence of statements[image: ] in
processors [image: ] with numbers i provided by [image: ]condition[image: ]. Just like in the if statement,
processors whose numbers do not satisfy the condition perform empty operations. The
algorithm in Figure 3.3 is suitable for an EREW PRAM model, because in every
step of computation processors refer to different cells of the shared memory.
Figure 3.4 demonstrates operation of the algorithm. The following equations give its parallel running
time,12 speedup,
cost, and efficiency: 
[image: ]

   As you can see, the speedup of the algorithm [image: ] increases along with an
increasing value of n. The algorithm is significantly faster than the sequential version,
because an exponential reduction in time to solve the problem is observed:
[image: ]. The cost of the algorithm equal to [image: ] is greater
than the cost [image: ] of the best sequential algorithm. Thus, the parallel algorithm is
not optimal in terms of cost. As the result its efficiency goes to zero while n
increases.


   



[image: ]

 
Figure 3.4.  An  illustration  of  finding  the  minimum  element  by  algorithm  in
Figure 3.3 ([image: ]).

   

    Note that to solve the problem to find the minimum element, n processors
were used. Hence, the number of processors is a linear function of problem
size: [image: ]. The function [image: ] is called processor complexity of the
algorithm.

   The disadvantage of the discussed algorithm is that the size of array a defined by n
must be a power of two. It can be removed by selecting the pairs of elements to compare
in a slightly different way (see Figure 3.5). The algorithm finds the sum of elements of
array a for any size n (see illustration in Figure 3.6).


   



[image: ]

 
Figure 3.5. Finding the sum of elements for any n.

   

   



[image: ]

 
Figure 3.6. An illustration of finding the sum of elements by algorithm in Figure 3.5
([image: ]).

   
    As already mentioned, a major drawback of the
algorithm13
shown in Figure 3.3 is that its efficiency goes to zero with increasing size of array a. The
reason is that the algorithm use too many processors in relation to the amount of
computation that must be performed. Figure 3.7 depicts the algorithm that uses an
arbitrary number of processors p for [image: ], which do not arise from the size of
array a, as it was in the previous algorithms. The array a is divided into p segments
assigned to particular processors, with [image: ] elements in each segment. In
the first phase of the algorithm (lines 2–10) processors compute the sum of
elements in their segments. In the second phase (line 11) the obtained subtotals
stored in elements [image: ], [image: ] are added together using the algorithm in
Figure 3.5.



   



[image: ]

 
Figure 3.7. Finding the sum of elements using p processors.

   

   The parallel running time, speedup, cost, and efficiency of the algorithm are as follows:

[image: ]

    If  the  algorithm  uses  [image: ]
processors,14
then these performance metrics will take the form:

[image: ]

   Note that the parallel running time of algorithms in Figure 3.3 (Equation (3.20))
and in Figure 3.7 (Equation (3.28)) is [image: ]. However, in the latter algorithm this
time is achieved with a smaller number of processors, that is with lower processor
complexity.15

   To compute the sum of n elements in [image: ] time we need at least [image: ]
processors. Assuming that the cost of computation should not exceed the cost of the
best sequential algorithm [image: ] (see p. 73), we have: [image: ],
[image: ], and hence [image: ]. So the algorithm in Figure 3.7 when uses
exactly [image: ] processors is optimal both with respect to the running time and
cost. This algorithm is also optimal in terms of cost asymptotically, because for [image: ],
[image: ] and [image: ] it holds: [image: ], and so
[image: ].

   Examining Equation (3.24) we can see that the parallel running time of algorithm in
Figure 3.7 is defined by two components: [image: ] and [image: ]. The first component
decreases with increasing p, while the second increases (Figure 3.8a). So there is a
certain number of processors [image: ] for which the parallel running time of the algorithm
reaches the minimum. This minimum number of processors derived from equation



[image: ]

 equals [image: ].
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Figure 3.8. (a) Parallel running time of algorithm given in Figure 3.7 for [image: ],
[image: ], [image: ]; (b) speedup (Equation (3.25)) for different values of n; (c)
efficiency (Equation (3.27)) for different values of n.


   

   The charts in Figures 3.8b–c show that for a fixed size n of a problem, along with a
growing number of processors p where [image: ], speedup increases and efficiency
decreases. Thus one can select a number of processors in range [2..[image: ]] by
adopting a compromise between the expected speedup and efficiency of processor
utilization.


   3.5.2  Brent’s Theorem

The algorithm to find the sum of elements in Figure 3.7, which is a modification
of the algorithm in Figure 3.3, assumes that a number p of processors is less
than n. A general method for executing any parallel algorithm employing a
smaller number of processors is simulation. Assume a parallel algorithm R of
running time t that uses [image: ] processors. Let [image: ] be a number of operations
performed in parallel in an i-th step of algorithm R where [image: ]. Naturally, we
have [image: ] for each i. Execution of algorithm R can be simulated by p
processors where [image: ] as follows. First, all operations of step [image: ] are
carried out, in groups of p operations. Then, operations in steps from [image: ]
to t are performed in a similar way. The time of simulation evaluates Brent’s
theorem.


Theorem 3.1. Execution of a parallel algorithm R running in time t, in which a total of
m computational operations are carried out, can be simulated by p processors in time
[image: ].

Proof. Simulated implementation of operations in step i of algorithm R can be
accomplished in time [image: ]. The total simulation time of operations in all the steps is
therefore [image: ]. [image: ]



   Figure 3.9 demonstrates a simulation process of aggregation of [image: ] numbers with
[image: ] processors according to the idea of algorithm in Figure 3.3. The consecutively
performed groups of up to 3 operations numbered from 1 to 7 are marked in
gray. According to the Brent’s theorem the number of simulation steps does
not exceed [image: ]. For any n where [image: ] the simulation time is
[image: ].
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Figure 3.9. Simulating aggregation of [image: ] numbers with [image: ] processors.

   

    The problems of finding the minimum element or the sum
of elements of a given set are special cases of the reduction
problem,16
which is formulated as follows. Given a set of n elements [image: ], [image: ] and a
binary, associative operator [image: ] determine the value of [image: ]. In other
words, the set of elements is to be “reduced” to one value characterizing the set.
Examples of operators that may occur in the reduction problem, in addition to [image: ]
and “[image: ],” are [image: ], multiplication “[image: ],” Boolean sum (alternative) “[image: ],” Boolean
product (conjunction) “[image: ],” exclusive or “[image: ]” (xor), juxtaposition (concatenation) of
words “[image: ].” We assumed above that operator [image: ] is associative, that is for
any elements [image: ], [image: ], [image: ] it is satisfied [image: ].
The operator may also be commutative, if for any elements [image: ], [image: ] we have
[image: ]. If reduction is applied to numeric values, integer or real, then
operators “[image: ],” “[image: ],” [image: ], [image: ] are both associative and commutative. The same is
true for operators “[image: ],” “[image: ],” “[image: ],” if we reduce Boolean values. However, if reduction
is applied to words (strings of characters), then the operation of concatenation “[image: ]” is
associative, but not commutative.

   Note that the algorithms we have discussed, for example those from Figures 3.5
and 3.7, are suitable for solving the reduction problem with any associative
operator [image: ].


   3.5.3  Prefix Computation

Given a set of elements [image: ], [image: ] and a binary,
associative17
operator [image: ] we wish to compute the prefixes defined as follows:
   

    [image: ],
[image: ],
[image: ],
…
[image: ].


The sequential algorithm presented below computes the prefixes in [image: ] time.


[image: ]

The parallel algorithm to compute the prefixes is given in Figure 3.10 and is illustrated in
Figure 3.11. The upper part of Figure 3.11 illustrates array s after initialization made in lines
2–4, and the lower part presents the states of array a after subsequent runs of for loop in lines
5–9. Note that every execution of operations in lines 6–8 doubles a number of elements [image: ]
having final prefix values. Therefore, this method of computing is referred to as recursive
doubling. The parallel running time of the algorithm determined by operations in lines 5–9 is
[image: ], while its cost is [image: ]. This cost is not optimal, because the cost of the sequential
algorithm to find prefixes is [image: ] (the optimal parallel algorithm with respect to the cost is the
subject of Exercise 1). It is worth noting that computing the prefixes is important not only as
the problem itself, but also because of its use as intermediate steps in many parallel algorithms.
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Figure 3.10. A parallel prefix algorithm.
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Figure 3.11   An   illustration   of   parallel   prefix   algorithm   ([image: ]   denotes
[image: ] for [image: ]).

   


    3.5.4  Finding the Minimum in [image: ] Time

Now we will present an algorithm to find the minimum element in a
set of n elements in [image: ] time (Figure 3.12). Assume that there are
[image: ] processors available and arranged in a virtual two-dimensional
mesh18
[image: ] of size [image: ]. Let [image: ] be an array of elements in which we want to find the
minimum element, and let [image: ] be an auxiliary array of elements taking values 0 or 1.
If [image: ] for some j, it means that element [image: ] is not minimum in array
a.


   



[image: ]

 
Figure 3.12. An algorithm to find the minimum in [image: ] time.

   

   Table 3.2 demonstrates an illustration of the algorithm on input [image: ].
In the upper part of the table we can see relations between elements of array a that are
checked by individual processors, while in the lower part the values of elements of array t
after the execution of line 8 and 12 are shown. The table indicates that the algorithm can
be executed in a CRCW PRAM model, because the processors in each rows and columns
of the mesh simultaneously read the same elements of array a. There are also
simultaneous writes to the same variable by several processors, for example in line 7.
Since the values to be written are the same, we can use a common CRCW PRAM
model.


   




 Table 3.2 An illustration of algorithm in Figure 3.12
	[image: ]
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	t      

	     1       

	     0       

	     1       

	     0       

	(after execution of line 8)  


	t      

	     1       

	     0       

	     1       

	     1       

	(after execution of line 12)


	     


                                                                 



   

   

   The parallel running time, speedup, cost, and efficiency of the algorithm are as follows:

[image: ]

   As can be seen, the algorithm is very fast, it computes the minimum in [image: ] time.
This is achieved, however, at the price of relatively high processor complexity,
[image: ]. Because the cost of the algorithm which is [image: ] exceeds significantly the
cost of the sequential algorithm equal to [image: ] (see p. 73), the efficiency decreases
rapidly to zero with the increase of n.





 

   3.5.5  Sorting in [image: ] Time

Figure 3.13 depicts the parallel sorting algorithm of [image: ] running time. It is based
on the idea of a sequential counting sort algorithm. As previously, we will use [image: ]
processors arranged in a virtual mesh of size [image: ].
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Figure 3.13. A parallel sorting algorithm in [image: ] time.

   

   Our goal to sort an array [image: ] in nondecreasing order will be accomplished by
copying the elements of array a into appropriate entries in array b, so that b is sorted.
This task boils down to evaluate an index in array b to which a particular element [image: ]
should be written. The index can be found by computing the values of an auxiliary array
[image: ] according to the following rules:


   	 
[image: ]
	(3.36)



The sum of ones in row i of array w for [image: ] determines the index in array b to
which element [image: ] should be inserted. In case when all sorted elements are
different from each other, the sum is a number of elements that are smaller
than element [image: ]. Thus, an index for [image: ] is equal to the sum increased by
1.



   As an example, let us analyze sorting an array [image: ]. Denote by “[image: ]” the
relation19
“[image: ] [image: ][image: ] [image: ][image: ].” The left side of Table 3.3 shows
the relations between elements of array a checked by respective processors to
compute array w, and the right side shows the resulting array w for array a
being sorted. The column [image: ] contains a number of ones in each row of array
w, which determines locations of elements [image: ] in array b (see line 17 of the
algorithm).


   




 Table 3.3 Relations checked by processors and values of array w
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    Examining the parallel running time of the algorithm, note that the
costs of lines 2–8 and 16–18 are constant, and of lines 9–15 are equal to
[image: ] for some constant of proportionality c. Thus, the algorithm operates
in [image: ] time. Here are all the performance metrics of the algorithm:

[image: ]

   The advantage of the algorithm is high speedup [image: ], while the disadvantage,
low utilization of processors [image: ], the worse, the more elements are
sorted.


   3.5.6  Matrix–Matrix Multiplication

Given the matrices a and b of size [image: ] we seek a matrix c being the product of matrices a
and b, that is [image: ]. The sequential algorithm to compute matrix c in [image: ] time is as
follows:  
[image: ]

   Suppose that we have [image: ] processors arranged in a three-dimensional virtual mesh
in which each processor is identified by coordinates i, j and k. For simplicity, let [image: ]

for some integer r where [image: ]. The parallel algorithm for matrix–matrix multiplication
in a CREW PRAM model is depicted in Figure 3.14.
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Figure 3.14. A matrix–matrix multiplication algorithm.

   

   The costs of computation in lines 2–4 and 10–12 are constant, while summation of
components of scalar products in lines 5–9 are done in [image: ] time. So the parallel running
time of the algorithm is logarithmic. The performance metrics of the algorithm are as
follows: 
[image: ]

   The cost [image: ] of the algorithm is not optimal.

   In addition to the above-mentioned performance metrics, the communication
cost20
of PRAM algorithms can be established. This cost is defined as the maximum size of
data transferred during execution of an algorithm between the shared memory and the
local memory of a processor.

    Let us find this cost for a modified version of the matrix–matrix
algorithm,21
given next, where instead of [image: ] only n processors are used.



   [image: ]

As can be seen, the [image: ] product operations [image: ] were spread evenly over the
processors so that processor [image: ] for [image: ] computes the components of
scalar products of the ith row of matrix a and all the columns of matrix b
(lines 2–8). So processor [image: ] computes values [image: ] for [image: ] and
[image: ]. To this goal, it must download from the shared memory the ith row of
matrix a, all columns of matrix b and write to the shared memory [image: ] elements
of matrix t. Accordingly, the number of data transferred between the shared
memory and the local memory of processor [image: ], defining the communication
cost of computation in lines 2–8, is [image: ]. It is worth noting
that this computation is performed in [image: ] time, which also evaluates the
order of the parallel running time of the whole algorithm and its cost [image: ],
which is optimal. In each of [image: ] iterations of for loop in lines 9–17, [image: ]
additions of scalar product components are done. These operations are evenly
distributed among the processors. The task of processor [image: ] where [image: ] is to
modify elements [image: ] for indices [image: ] and [image: ] where
[image: ]. For this purpose processor [image: ] reads [image: ] elements [image: ] from
the shared memory, aggregates them and then sends the modified elements

of matrix t to the shared memory. The communication cost in line 9–17 will
therefore be equal to [image: ]. The communication cost of operations in lines
18–22 is [image: ], because each processor [image: ] copies a single row of matrix t to
a corresponding row of matrix c. In conclusion, the modified algorithm for
matrix–matrix multiplication with n processors has the communication cost
[image: ].


   3.5.7  Computations on Lists

The basic data structure that we have used so far while discussing algorithms for a
PRAM model was one-dimensional array. Referring to data stored in arrays we used an
indexing operation. Now we present algorithms in which data are represented by using
lists or more complex list structures. When referring to data stored in this type of
structures we use pointers.



   Let L be an n-element list stored in the shared memory of a PRAM model. Let each
element i for [image: ] consist of two fields: [image: ] containing an object and
[image: ] containing a pointer to the next element in the list (note that particular
list elements can be stored in any cells of the shared memory). Consider the
problem of list ranking in which we wish to determine the distance [image: ] of
each object [image: ] from the end of a list. It can be done applying the following
equations:


   
[image: ]


It is easy to give a [image: ] sequential algorithm to solve this problem.

   Figure 3.15 presents a [image: ] parallel algorithm that assigns each element i of
list L a processor [image: ] for [image: ]. The algorithm uses the method of pointer
jumping. In each iteration of for loop (lines 9–16) processor [image: ] performs
computation on values [image: ] and [image: ] (line 9) and assigns to the pointer
[image: ] the value [image: ] (line 13). This assignment causes the so-called
pointer jumping that results in dividing each list into two sublists in every
subsequent iteration of the for loop (Figure 3.16). For example, after the first
iteration the list L is divided into two sublists comprising elements of even and odd
indices respectively (Figure 3.16b). After the next iteration the lengths of the
sublists are reduced by half. Before each iteration the sum of values w in elements
of a sublist starting at i is equal to the distance of object i from the end of
the original list L. This guarantees correctness of the algorithm, because every
time a pointer of element i ceases to point the current successor—as a result of
jumping to the next element of a sublist—the value [image: ] is added to [image: ].
Note that for correctness of the algorithm, synchronous operation of a PRAM
model is crucial. Specifically, during execution of statements in lines 12 and
13 the reads of variables made by the processors must take place prior to the
writes. All writes of variables are exclusive, and so the algorithm is of EREW
type.


   



[image: ]

 
Figure 3.15. A list ranking algorithm; each element i of list L is assigned a processor
[image: ] for [image: ].

   
   



[image: ]

 
Figure 3.16. An illustration of list ranking algorithm on 6-element list L; values
w[image: ]                                                                                               that
are                 set                 in                 the                 course                 of
computation are highlighted in gray; (a) list L after initialization, see lines 2–8 of
algorithm in Figure 3.15; (b)–(d) list L after subsequent executions of for loop in
lines 9–16.

   

   The parallel running time of the algorithm is [image: ], because one iteration in
lines 9–16 reduces the length of each sublist by half. Thus, to compute final values of
[image: ] it is sufficient to make [image: ] iterations. The cost [image: ] of the algorithm is
not optimal. After the algorithm is executed the original list L is destroyed (see
Figure 3.16d). If we want to preserve this list, then before executing the algorithm the

next pointers should be copied and operations should be performed on these copies.
Further examples of application of the pointer jumping method are subjects of
Exercises 7 and 8.



   3.5.8  The Euler Cycle Method

The Euler cycle method is useful in conducting optimal parallel computations on trees.
Let [image: ] be an undirected unrooted tree, and let [image: ] be a
directed graph derived from T by replacing each edge [image: ] with two arcs
[image: ] and [image: ]. The input and output degrees of vertices in graph [image: ] are
equal, therefore the graph is Eulerian. In such a graph an Euler cycle (or
circuit, tour) exists, which is a closed path passing through each arc of the graph
once.22
An Euler cycle in graph [image: ] can be provided by a successor function s, which assigns
each arc [image: ] an arc [image: ] being a successor of arc e in the cycle. Consider a
vertex [image: ] and a list of its adjacent vertices [image: ], [image: ],
where r is a degree of v. Assume that a successor of arc [image: ] in an Euler
cycle being constructed is arc [image: ] for [image: ].


   Suppose that the tree T is represented by modified adjacency lists (Figure 3.17a) in
which for every vertex [image: ] a list of adjacent vertices [image: ], [image: ] is
given. Unlike regular adjacency lists, the modified adjacency lists [image: ] are cyclic, that is
a pointer of the last element of list [image: ] containing vertex [image: ] points to the first
element of the list containing vertex [image: ]. The lists consist of [image: ] elements for
[image: ], because each edge [image: ] of tree T is represented twice. These representations
define the arcs of graph [image: ]. A vertex u on list [image: ] represents arc [image: ], and a vertex
v on list [image: ] represents arc [image: ]. To accelerate computation, in each element k for
[image: ] of a list besides a pointer next[image: ] leading to the next element, an
additional pointer next[image: ] is introduced. In the kth element of a list [image: ] containing
vertex u, a pointer next[image: ] points to an element of list [image: ] containing vertex v
(Figure 3.17c).






[image: ]


 Figure 3.17. (a) A tree representation in the form of modified adjacency lists L;
(b) sample tree T; (c) graphical presentation of the Euler cycle created for T; (d)
the successor function s specifying the Euler cycle stored in two-dimensional array
S.

   

   Figures 3.17b–c depict a sample tree and graphical demonstration of the Euler
cycle found on that tree: [image: ], [image: ], [image: ], [image: ], [image: ], [image: ],
[image: ], [image: ], [image: ], [image: ], [image: ], [image: ]. If we begin to construct the
cycle from, for example, arc [image: ], then the next arc will be
[image: ], a further [image: ], and so on. The successor
function s specifying the Euler cycle can be represented by a two-dimensional array S
whose each element [image: ] stores arc [image: ] occurring in the cycle after arc [image: ]
(Figure 3.17d).


Theorem 3.2. Let [image: ], where [image: ], be a tree specified by the modified
adjacency lists described above. An Euler cycle in graph [image: ] can be constructed
in [image: ] time in a [image: ]-processor EREW PRAM model.

Proof. Let us assign processors [image: ] to elements i of adjacency lists for
[image: ]. An Euler cycle provided by array S can be constructed as follows:

[image: ]

where w denotes the number of vertex stored in a pointed element of the list. Due to the
use of modified adjacency lists, statements in lines 2–5 are implemented in [image: ] time.
There are no conflicts in access to the shared memory by processors, so computation can
be carried out in an EREW PRAM model. [image: ]

   Let us present some applications of the Euler cycle method. We start with a problem
of transforming an unrooted tree [image: ] into a rooted tree. If as the root any

vertex [image: ] is selected, then a solution relies on evaluating for each vertex [image: ],
where [image: ], its parent[image: ] in tree T with root [image: ]. Let [image: ] be the Euler cycle in
graph [image: ] constructed in a way discussed before, and let [image: ],
[image: ] be an adjacency list. We transform cycle [image: ] into the Euler path [image: ]
by setting [image: ]. The created path [image: ], [image: ],
[image: ], …, [image: ] describes a process of visiting vertices in tree T.
The first vertex visited is [image: ], and then vertex [image: ] that is adjacent to [image: ]. In a
similar way the vertices of a subtree with root [image: ] are visited. After visiting
all the vertices of this subtree, a vertex [image: ] is visited and then in the same
way all its neighbors. It is easy to notice that the path [image: ] corresponds to the
depth-first search of tree T starting from root [image: ]. On the path [image: ] an arc
[image: ] appears always earlier than an arc [image: ], for each vertex
[image: ]. This observation is the basis of an algorithm to transform an unrooted
tree into a rooted one as illustrated in Figure 3.18. The algorithm creates an
array parent[image: ] providing the parents of vertices [image: ] in a rooted tree. In
addition, in a two-dimensional array z[image: ] for each arc [image: ] a marker is
given indicating whether during the depth-search of the tree an arc is visited
“forward” or “backward.” These markers are useful for a variety of computations on
trees (see Exercise 9). The parallel running time [image: ] where [image: ]
of the algorithm derives from step 3 where the prefix sums [image: ] in a list
composed of [image: ] arcs [image: ] belonging to path [image: ] are computed (for
example by applying the algorithm from Exercise 8 with operator [image: ][image: ]
“[image: ]”).


   



[image: ]

 
Figure 3.18. An algorithm to transform unrooted tree into rooted tree.

   

   As an illustration, investigate the transformation of unrooted tree T of Figure 3.17b
into the rooted tree with root [image: ]. Figure 3.19a shows the depth-first search of the
rooted tree, while Figure 3.19b depicts the path [image: ] obtained after setting
[image: ] (first column), and prefix sums [image: ] computed for arcs [image: ] of
path [image: ] (second column). We can see, for example, that the prefix sum for arc
[image: ] equal to 1 is less than the sum for arc [image: ] equal to 2,
therefore parent[image: ]. Similarly, since the prefix sum for arc [image: ] equal
to 3 is lower than the prefix sum for arc [image: ] equal to 8, we have parent[image: ]
(Figure 3.19c). 




[image: ]


 Figure 3.19 (a) Depth-first search of the rooted tree; (b) path [image: ], prefix sums
[image: ] and arc markers [image: ] (f  and b mark “forward” and “backward” arcs,
respectively); (c) arrays parent[v] and [image: ] denoting, respectively, a parent and a
number of descendants of vertex v, where [image: ].
                                   

                                   
   

   Adopting the solution to the problem to transform an unrooted tree ito a rooted
one, we can solve the problem to compute the number of descendants [image: ] of
vertices v where [image: ] in the rooted tree in [image: ] time. By descendants of
vertex v we understand vertices of the tree reachable from vertex v including
vertex v. To compute the number of descendants, the code given below should
be executed after operations in lines 2–3 of the algorithm in Figure 3.18 are
completed:

    
[image: ]
   The numbers of descendants [image: ] for the rooted tree depicted in Figure 3.19a are
presented in Figure 3.19c. For example, the number of descendants of vertex 3 is
computed as follows: [image: ].


   3.6  Algorithms for the Network Model

In this section we present selected parallel algorithms for certain types of the network
model.


   3.6.1  Matrix–Vector Multiplication in a One-dimensional Torus Network

Our first algorithm will multiply a matrix a of size [image: ] with an n-element vector x,
that is [image: ] (Figure 3.20). Suppose that multiplication is carried out by p processors,
[image: ], working asynchronously and connected in a one-dimensional torus
(Figure 2.7b, p. 43). Assume for simplicity that [image: ] is integer. Let us divide matrix
a into p submatrices, [image: ], [image: ], where each submatrix [image: ] has a size
[image: ]. The product of [image: ] can be obtained by computing the partial products
[image: ] for [image: ] of size [image: ], and then concatenating them into the resulting
vector [image: ]. The computation in the adopted topology of the network can
proceed as follows. Suppose that submatrices [image: ] and vector x
have been distributed into local memories of processors [image: ] for [image: ]. Each
processor [image: ] computes vector [image: ], and then sends it to its neighbor processor in a
                                   

                                   
clockwise direction. In the consecutive processors of the torus, vectors [image: ] are
concatenated into the resulting vector z that is finally received by processor
[image: ].
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Figure 3.20. A matrix–vector multiplication algorithm in a one-dimensional torus.
                                   

                                   
   

   Transfer of data between processors in the algorithm in Figure 3.20 is done by means of
communication statements with the following syntax: 
[image: ]

A [image: ]buffer[image: ] defines where the data are stored, and a [image: ]direction[image: ]
indicates a processor to which (or from which) the data are sent (or received). For the
purpose of the algorithm to compute the matrix–vertex product in a one-dimensional
torus, only two options, left and right, to provide a source or target processor are needed.
In the general case, instead of [image: ]direction[image: ] argument a processor number is used. We
assume that communication statements are implemented in a synchronous way, in
contrast to the computation that is performed by all processors asynchronously. If a
processor executes a receive statement, and the data have not yet arrived, its operation is
withheld until the data are received. Similarly, if a processor executes a send
statement its work is suspended until the data it sent are received by a target
processor. In other words, neither a source nor target processor are able to proceed with
computation until a message containing the required data has reached the target
processor.

   In line 10 of the algorithm, processor [image: ] sends its partial product y to processor
[image: ]. Processors [image: ] for [image: ] suspend their operation until they receive data from
processors [image: ] (line 12). On receiving them they extend vector z with computed
vector y (line 13), send the result to processors [image: ] and finish their action. In
line 17 processor [image: ] receives the final result of computation from processor
[image: ].

   The parallel running time [image: ] of the algorithm in Figure 3.20 consists of
computation time [image: ] and communication time [image: ]. The computation
time (lines 3–8) equals [image: ] for some constant c. Sending a message
containing data of size w between a pair of processors requires [image: ] time,
where [image: ] and s are the latency and speed of transmission, respectively.
The speed is measured by the time of transferring a single data item by a
communication channel. Thus the total communication time (lines 9–18) equals:
[image: ], and the parallel running time of the
algorithm is: [image: ]. It is easy to
demonstrate that this time is minimal when the number of processors in the torus is
equal to [image: ]. We encourage the reader to evaluate other
performance metrics of the algorithm.


   3.6.2  Matrix–Matrix Multiplication in a Two-dimensional Torus Network

Now, look into the problem of matrix–matrix multiplication in a two-dimensional torus
with [image: ] processors working synchronously. Processors [image: ] are identified
by a pair of indices [image: ], where [image: ] (see Figure 2.8b, p. 44). Let a
and b be matrices of size [image: ]. The goal is to compute matrix c being the
product of matrices a and b, that is [image: ] (Figure 3.21). Assume that initially
the elements of matrices a and b have been distributed across processors such
                                   

                                   
that each processor [image: ] has the elements [image: ] and [image: ]. The matrix
multiplication algorithm runs in two phases. In the first phase, the initial distribution of
elements of matrices is modified, so that the processors can compute the dot
products of appropriate rows and columns that are the components of matrix
c.
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Figure 3.21. A matrix–matrix multiplication algorithm in a two-dimensional torus.
                                   

                                   
   

   Modification of the initial distribution of elements of matrix a consists in cyclic shift
of rows i by [image: ] positions to the left, for [image: ] (lines 5–7). Similarly, the
elements of columns j of matrix b are shifted cyclically upward, for [image: ]
(lines 8–10). The statement for communication between processors has the form:

[image: ]

where [image: ]variable[image: ][image: ] is a name of variable whose value is passed, [image: ]variable[image: ][image: ]
provides a name of variable, to which the value is assigned, and [image: ]direction[image: ] selected
from the set [image: ], [image: ], [image: ], [image: ] specifies a processor from which the value is
received. As already mentioned, processors of the torus perform their computation
synchronously. We assume that the communication statement is implemented in unit
time, which is reasonable, because communication in the algorithm relates only to the
neighboring processors.



   Figure 3.22 presents the multiplication of sample matrices a and b of size [image: ]. It
depicts the changes in distribution of matrices elements after successive iterations of the
for loop in lines 14–24 (after the first iteration, the distribution is the same as after the
execution of phase 1). It is easy to verify that, for example, processor [image: ] computes
first [image: ] (Figure 3.22a), then [image: ] (Figure 3.22b) and finally
[image: ] (Figure 3.22c). The result is the value of element [image: ]
of the product. In a similar way, the other processors [image: ] compute their values
[image: ].
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Figure 3.22. Distributing elements of matrices a and b between processors after the
first (a), second (b), and third (c) iteration of for loop in lines 14–24 of algorithm
in Figure 3.21.
                                   

                                   
   

   The parallel running time, speedup, cost and efficiency of the algorithm are the
following: 
[image: ]

   Notice, that the algorithm is cost-optimal.


   3.6.3  Reduction Operation in a Cube Network

Now we present an algorithm to perform the operation of reduction employing a cube
network model, where processors operate synchronously (Figure 3.23). Suppose we are
given an array [image: ] and a cube with p processors, where n is much larger than p,
that is [image: ]. A binary associative operation [image: ] should be performed on all elements
of array a (see p. 79). Let this operation be addition, and suppose that the reduction will
be carried out in two phases, as in the algorithm in Figure 3.7. This means that
adding elements of array a is made first in p segments, and then p partial sums
will be added to each other. Processors with numbers satisfying the condition
[image: ], add [image: ] elements of array a, and the other processors add [image: ]
elements.
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Figure 3.23. An algorithm to reduction operation in a cube network.
                                   

                                   
   
   For communication between processors of the cube the following statements are
used: 
[image: ]

Suppose that these statements are executed in processor [image: ]. Then the first statement
transfers the value of [image: ]variable[image: ][image: ] from a processor with number [image: ]processor_no[image: ] to
processor [image: ]. This value is assigned to [image: ]variable[image: ][image: ] in [image: ]. The second statement
transfers the value of [image: ]variable[image: ][image: ] from processor [image: ] to processor with
[image: ]processor_no[image: ], where the value is assigned to [image: ]variable[image: ][image: ]. These statements are
                                   

                                   
implemented synchronously, that is if a source processor is sending data, then at the
same time a destination processor is receiving them (and vice versa). We assume that a
communication statement is performed in unit time, or in one computational step with
constant execution time. In line 16 of the algorithm in Figure 3.23, each processor [image: ]
for [image: ] receives the value of variable sum from processor [image: ] and stores
it in its own variable aux. Of course, at the same time processors [image: ] for
[image: ] send the values of variables sum. Illustration of the algorithm is shown in
Figure 3.24. The performance metrics for the algorithm in Figure 3.23 are given by
formulas (3.24)–(3.27). If [image: ], then formulas (3.28)–(3.31) are also
valid.
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Figure 3.24. A reduction operation in a three-dimensional cube; sample values to
be           summed           up
(computed in lines 2–12) (a), and the values after the first (b), second (c), and third
(d) iteration in lines 13–19 of the algorithm in Figure 3.23.
                                   

                                   
   

   3.6.4  Broadcast in a Cube Network

As we have seen, the result of reduction (Figure 3.23) is stored in variable sum of
processor [image: ]. Quite often this result is to be available in all processors of the cube. This
requirement can be fulfilled applying the following procedure that broadcasts the
value of sum to all processors of a cube in parallel running time [image: ].

[image: ]

Broadcast proceeds in a similar fashion as in Figure 3.24, except that the phases are
performed in the reverse order (d, c, b, a), and with reversed directions of data
transfer.


   3.6.5  Prefix Computation in a Cube Network

Applying a cube network we now solve the problem of prefix computation (see algorithm
in Figure 3.10). Recall that for a given set of elements [image: ] for [image: ], it is
required to compute the values [image: ] for [image: ], where [image: ] is a
binary, associative operation. In what follows we assume that it is addition operation and
the number of processors in the cube equals [image: ]. While analyzing the algorithm given
in Figure 3.25, it is convenient to represent processor numbers in binary notation.
Suppose that [image: ], then a processor number can be represented as a sequence
of bits [image: ], where [image: ] is the least significant bit. In each iteration of the
for loop in lines 6–16, variable j points to a particular bit in the processor
numbers. So in the first iteration ([image: ]) the bit [image: ] is tested. In the parfor
statements in lines 7–9 and 10–14, bit [image: ] of processors that communicate with each
other are 0 and 1, respectively. Thus, the data are transferred between pairs of
processors with numbers [image: ], [image: ], [image: ] and [image: ] (see
Figure 3.26). In the second iteration [image: ] the numbers of pairs of communicating
processors are [image: ], [image: ], [image: ] and [image: ], and so on. The
cube vertices are annotated with expressions [image: ], where v and w represent
current values of variables s and b, respectively. If v (or w) is [image: ], this means
that the value of v (or w) is equal to [image: ]. Evaluating the
parallel running time, speedup, cost and efficiency of the algorithm is left to the
reader.
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Figure 3.25. A prefix computation algorithm in a cube network.
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Figure 3.26. Values of variables s and b in the cube composed of [image: ] processors
before execution of the for loop in lines 6–16 (a), and then after the first (b), second
(c) and third (d) iteration of this loop in the algorithm in Figure 3.25.
                                   

                                   
   

   3.7  Classes of Problems Solved in Parallel

Solving the problem by a parallel algorithm, we should examine how many processors we
can use. The number of processors practically accepted, or otherwise reasonable, is
determined by a polynomial function of a problem size. This function defines
the processor complexity of a parallel algorithm (see p. 74). Of course, in most
circumstances any number p of processors can reduce the time to find a problem
solution—in the ideal case even up to p times. However, with a polynomial number of
processors to solve NP class problems, we cannot expect to reduce their exponential
execution time, observed in a sequential computer, into polynomial time. The use of a
polynomial number of processors to solve problems of class P looks much more
promising.

    The NC class (coined from: Nick Pippenger’s class) includes
problems that can be solved by fast parallel algorithms, that is of the
polylogarithmic23 parallel
time complexity,24
[image: ], and polynomial processor complexity, [image: ]. Inside the class NC the
subclasses [image: ] of problems solved by parallel algorithms of complexity [image: ]
are distinguished: [image: ]. The NC class problems are said to be
efficiently parallelizable. An example of the problem belonging to the NC
                                   

                                   
class, and more accurately to the subclass [image: ], is the problem of finding the
minimum element that can be solved by the algorithm of parallel time complexity
[image: ] with n processors (see Figure 3.3), or the sorting problem that can be
solved by the parallel algorithm of the same complexity with [image: ] processors (see
Figure 3.13).

   It can be proved that [image: ], that is the NC-class problems are included in the
class of problems solved in polynomial time employing a polynomial number of
processors.25
It is also believed that the inclusion is proper, although the problem [image: ]? remains
open. The situation is similar to the case of the key problem [image: ]? in the
complexity theory of sequential algorithms. To settle whether [image: ]? it is enough to
give a single problem from class P for which one can prove that it cannot be solved using
a parallel algorithm of polylogarithmic time complexity and polynomial processor
complexity. Unfortunately, despite many attempts no such a problem has been found yet.
However, within class P a group of difficult problems, called P-complete, were selected,
which with high probability are not solvable in parallel polylogarithmic time
with polynomial processor complexity. with polynomial processor complexity.
These problems seem to be sequential in nature, or in other words, inherently
sequential.

   In order to define precisely the P-complete problems we need a notion of reduction.
Reduction is an algorithm that solves a problem A by converting each of its example
(or instance) into an equivalent example of a problem B.


Definition 3.1. A problem A is reducible to a problem B, which is denoted by [image: ],
if there is a transform R that generates for each input data x of problem A the equivalent
input data [image: ] of problem B.


Definition 3.2. Problems A and B are equivalent if problem A is reducible to problem B,
and conversely, problem B is reducible to problem A.



Figure 3.27 illustrates Definition 3.1. As we can see, A and B are decision problems
whose solution is answer “yes” or “no” to the question related to a problem. For
example, for the traveling salesman problem given the number of cities n, the distance
matrix between them [image: ] for [image: ] and [image: ], and the length D, we ask
whether there is a closed path leading through all the cities exactly once of length at
most D. A functional version of this problem may ask to find the shortest path of a
salesman, which is equivalent to finding the value of a certain function [image: ] that
provides the desired length, where w are the input data of the problem including the
number n and distance matrix [image: ]. Considering only decision problems, as we are
doing in this subsection, does not cause loss of generality. It can be proved that for any
problem with the known limit on the value of function [image: ], if we can solve a decision
version of a given problem, we can also solve its functional version and vice
versa.


   
                                   

                                   

                                   

                                   
[image: ]

 
Figure 3.27. Reduction of problem A to B.
                                   

                                   
   

   The concept of reduction can be used to construct algorithms by transforming
a problem A into an equivalent example of a previously solved problem B.
In the theory of computational complexity, reduction is used to prove that a
given problem is at least as difficult as the other one. To make such a proof
viable, the cost of reduction evaluated by the computational complexity of
transform R, should not be greater than the complexity of solving problem
B.


Definition 3.3. A problem A is NC-reducible to a problem B, which is denoted by
[image: ], if the transform R of this reduction can be computed in polylogarithmic time
with a polynomial number of processors.


Definition 3.4. A problem B is P-complete if [image: ] and for each problem [image: ]
there is [image: ].

Informally, a problem B is P-complete, if one can solve it in polynomial time with a
polynomial number of processors, and every problem A from class P can be reduced to
problem B in parallel polylogarithmic time with a polynomial number of processors.
Until now more than 100 P-complete problems have been selected that are pairwise
equivalent with respect to NC-reduction. From Definition 3.4 the following theorem
follows:


Theorem 3.3. If any P-complete problem belongs to the NC class, then [image: ].

Proof. Suppose that a P-complete problem indicated in Figure 3.27 by B can be solved
by a parallel algorithm in polylogarithmic time employing a polynomial number of
processors. Then it follows from the figure that any problem [image: ] can also be solved
in parallel polylogarithmic time applying a polynomial number of processors,
because the costs of reduction R and solving problem B are of the same order.
[image: ]

   As already mentioned, many P-complete problems are currently known. One of them
is the circuit value problem, CVP. It plays a similar role as the satisfiability of
                                   

                                   
Boolean expressions problem in complexity analysis of NP-complete problems.
Proving P-completeness of a problem is often carried out by reducing it to the CVP. A
logic circuit, which we examine here, is the special case of a class of circuits described by
Definition 2.2. Let [image: ] be a set of r-ary Boolean functions according to formula
(2.7).


Definition 3.5. A logic circuit C over the base [image: ] is a finite, directed, acyclic
graph [image: ], where a vertex [image: ] from the set [image: ], [image: ] represents
an input variable [image: ] with a value of 0 or 1, or a gate [image: ] for a certain function
[image: ], or a gate [image: ] for a certain function [image: ] where [image: ]. The arcs
[image: ] of the circuit lead from immediate predecessors [image: ] and [image: ] of gates [image: ], to
vertices representing these gates. The size of the circuit is n. A value [image: ] of vertex
[image: ] is determined as follows: If [image: ], then [image: ]; if [image: ], then
[image: ]; if [image: ], then [image: ]. The value of
circuit [image: ] is [image: ].

Note that in the set [image: ] vertices (gates) [image: ] of higher indices can be
connected only to vertices of lower indices. Vertices are therefore arranged in topological
order that guarantees the absence of cycles in a circuit. Each gate has one or two
inputs while a number of outputs of a gate defining its output degree is not
limited.

Circuit value problem (CVP). Let C be a logic circuit over the base [image: ],
and let [image: ] be the values of input variables equal to 0 or 1 of circuit C. Answer the
question whether the circuit value [image: ].


Theorem 3.4. The circuit value problem is P-complete.

Proof. In the first, easier part of the proof, we need to prove that the problem is in class
P, which means that it can be solved with a polynomial number of processors
in polynomial time. According to the definition of a logic circuit, its vertices
[image: ] for [image: ] are arranged in topological order. The value of the
circuit [image: ] can therefore be found in n steps with a single processor
by evaluating successive vertices [image: ]. It is easy to see that even if the order
of vertices [image: ] was arbitrary, the value [image: ] could be computed in [image: ]
time.

   In the second, more difficult part of the proof, we need to show that all problems in
class P can be reduced, in terms of NC-reduction, to the CVP problem. In this part (we
present only its sketch) typically a one-tape, deterministic Turing machine is
assumed intended to decide languages L belonging to class P. For any language of
this class the machine answers the question whether any word x of length n
belongs to a given language L. The idea of the proof is to reduce, in terms of
NC reduction, the problem of deciding by the Turing machine of any language
[image: ] to the CVP problem. It can be demonstrated that for any word x it is
possible to construct an equivalent logic circuit C with a value of 1 if and only if
[image: ] (the details of the proof can be found in the literature; see Section 3.8).
                                   

                                   
[image: ]

   There are several variants of the circuit value problem. Below we give two of them.
In the first, called monotone circuit value problem only two-input AND and OR
gates are permitted. In the second, called unrestricted fan-in circuit value problem
no restrictions on the number of inputs on those gates are imposed. Both problems are
P-complete.

Monotone circuit value problem (MCVP). Given a logic circuit C over the base
[image: ] answer the question whether the circuit value [image: ].

Unrestricted circuit value problem (UCVP). Given a logic circuit C
over the base [image: ] in which the AND and OR gates can have any
number (greater than one) of inputs, answer the question whether the circuit value
[image: ].



   Figure 3.28 depicts an example of a logic circuit with size [image: ]. The value of each
vertex [image: ] of the circuit can be determined in constant time, thus in a sequential
algorithm the circuit value is found in n steps. Having n processors each of them can be
assigned a vertex [image: ]. Then establishing the values of vertices [image: ] and [image: ], consisting
of reading input variables [image: ] and [image: ] and conveying their values to further
parts of the circuit, can be performed in one step. Establishing the values of
vertices [image: ]–[image: ] must be made—as it seems—sequentially, that is successively in
pairs [image: ]–[image: ], [image: ]–[image: ], [image: ]–[image: ], and at the end in vertex [image: ], which
in the general case gives [image: ] complexity of a parallel
algorithm.
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Figure 3.28. A logic circuit.
                                   

                                   
   

   3.8  Notes to the Chapter


   3.8.1  Cole’s Parallel Sorting Algorithm

The parallel sorting algorithm already presented in this chapter (see Figure 3.13)
is designed for a CREW PRAM model and based on the idea of sequential
counting sort. The cost [image: ] of this algorithm is greater than the optimal
cost26
[image: ]. A drawback of the algorithm is a relatively large number of required
processors, which hinders its practical application. For example, to sort a sequence of
thousand elements it needs a million processors.

   Now we will discuss the cost-optimal parallel sorting algorithm for a CREW PRAM
model proposed by Cole [78]. The n-processor algorithm of [image: ] parallel execution
time is modeled on the sequential merge sort algorithm, where first the pairs of
adjacent elements of an input sequence (for simplicity one may think that this sequence
consists of integers) are merged into sorted subsequences. Then the sorted subsequences
of length 2 are merged into sorted subsequences of length 4, those in turn into
subsequences of length 8, etc. (Figure 3.29). For an n-element sequence a merge process
has [image: ] stages. Cole proved that each merging stage, particularly the final merging
of subsequences of sizes [image: ], can be done in [image: ] time with [image: ] processors. Thus,
the merge process operates in [image: ] parallel time and is optimal in terms of
cost.


   
                                   

                                   

                                   

                                   
[image: ]

 
Figure 3.29. A merge sort tree; elements of a sorted sequence of length n for [image: ]
are initially at leaves of the tree.
                                   

                                   
   

   Suppose that the sorted elements are pairwise different. We say that element x is
contained between elements a and b if and only if [image: ]. By a rank of element x in
sequence J we understand the number of elements within J preceding (in case of
numbers: less than) x, that is rank[image: ]. Let us define
the cross-rank function R as [image: ] for each element e of
sequence A. This function can be represented as a vector of length [image: ], whose
ith element is the rank of ith element of sequence A in sequence B. We say
that a sorted sequence [image: ] is a good sampler for a sorted
sequence J, if between any [image: ], where [image: ], adjacent elements of
sequence [image: ] there are at most [image: ] elements of
sequence J (we assume [image: ] and [image: ]). Informally, L is a good
sampler for sequence J, if the elements of L are (almost) equally distributed
between the elements of sequence J. The good sampler definition implies that if
[image: ] then between any adjacent elements of sequence [image: ] there appear at
most 3 elements of sequence J. Let [image: ], then the subsequence
[image: ] consisting of every second element of sequence J is a good sampler
for J. Likewise, if the subsequence [image: ] consists of every fourth
element of sequence J, then [image: ] is a good sampler for [image: ]. Figure 3.30 gives a
                                   

                                   
function that allows merging two sorted sequences J and K with help of a good
sampler L in [image: ] time. In line 3, sequences J and K are divided into sorted
subsequences [image: ] and [image: ]. Since L is a good sampler for both sequences J
and K, the subsequences [image: ] and [image: ] contain at most 3 elements each
(Figure 3.31a, [153]). In line 5, these subsequences are merged into at most 6-element
sorted sequences r[image: ], which concatenated together constitute the function result (line
7).
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Figure 3.30. A sequence merging algorithm.
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Figure 3.31. (a) Merging sequences J and K with help of a good sampler L; (b)
example for sequences [image: ], [image: ]
and [image: ].
                                   

                                   
   

    As an example, assume sequences [image: ] and
[image: ] as an input to the function. As a good sampler for J and
K we take [image: ] that satisfies the condition that between consecutive two,
three, four or five ([image: ]) elements of sequence [image: ] there are
contained, respectively, at most 3, 5, 7 and 8 elements of both sequences J and K
(that is no more than [image: ] elements). The division of sequences J and K
yields sorted subsequences (Figure 3.31b): [image: ], [image: ],
[image: ], [image: ] i [image: ], [image: ], [image: ],
[image: ]. After their merging we get: [image: ] [image: ] merge[image: ], [image: ]
[image: ] merge[image: ], [image: ] [image: ] merge[image: ],
[image: ] [image: ] merge[image: ]. The final function result is:
[image: ].


Lemma 3.1. Let L be a good sampler for sorted sequences J and K, and suppose that the
cross-ranks [image: ], [image: ], [image: ] and [image: ] are known. Then the parallel
execution time of function merge_with_help is [image: ] in a [image: ]-processor CREW
PRAM model.

Proof. See Exercise 15a. [image: ]

   Cole’s algorithm merges the sequences according to the tree depicted in Figure 3.29.
The stages of merge on the subsequent levels of the tree—starting at the leaves and
ending at the root—are performed adopting the pipeline method. We denote by
[image: ] the stages of the pipeline and by [image: ] the levels of the tree,
starting from the leaf level. The sorted sequences of elements are processed in the
vertices of the tree. Initially an ith leaf of the tree contains a single element sequence
with an ith element of the sequence being sorted, and the other (internal) vertices of the
tree contain empty sequences. We denote by [image: ] a sequence assigned to
vertex w at stage t. Let [image: ] be a subtree rooted at vertex w, and let [image: ]
be a sequence of elements placed initially at the leaves of subtree [image: ]. The
task of vertex w is to sort sequence [image: ]. For this purpose the consecutive,
longer and longer sequences [image: ] in vertex w are computed, where each
sequence [image: ] is a sorted subsequence of sequence [image: ]. We say that vertex w is
complete if and only if [image: ] for some stage t. Otherwise w is said
to be incomplete or active. Note that vertex w on kth level of the tree is
complete if and only if the length of a sequence [image: ] computed in this vertex is
[image: ].

    In the course of the algorithm in each incomplete vertex w the streams
of sorted sequences [image: ], [image: ] and [image: ], [image: ] are
received from the left and right vertex descendant, respectively. Moreover the
sequences are received in pairs [image: ] and [image: ]. On the basis of these streams an
internal stream of sorted sequences val[image: ], val[image: ] val[image: ] and an output
stream of sorted sequences [image: ], [image: ] are created in vertex w.
In each of these streams the next sequence is twice as long as the previous
sequence, as soon as the previous sequence becomes nonempty (in initial stages the
sequences of the streams may be empty in some vertices). Figure 3.32 presents
operations carried out in any incomplete vertex of the tree. In line 2, the sequences
                                   

                                   
[image: ] and [image: ] are received from the left and right descendants, where t is a
stage of the pipeline. The sequences are merged into sequence val[image: ] (line
3) with the help of a good sampler val[image: ] created at the previous stage
of the pipeline. In lines 4–5, a sequence [image: ] is computed, which consists of
every fourth element of sequence val[image: ]. This sequence is sent to the parent
of the vertex (operations in steps 4–5 are not carried out in the root of the
tree).


   
                                   

                                   

                                   

                                   
[image: ]

 
Figure 3.32. Cole’s parallel sorting algorithm—operations carried out in incomplete
vertex [image: ] at stage t.
                                   

                                   
   
   The above-described operations are performed in incomplete vertices. If a vertex is
complete its operation changes. Suppose that a vertex w at stage t becomes complete
(then it holds val[image: ]) and in line 5 in Figure 3.32, a sequence [image: ] consisting of
every fourth element of val[image: ] has been sent to the parent of vertex w. From that
moment in vertex w the operations shown in Figure 3.33 are performed. In
particular:


   
   	in stage [image: ] employing the function reduction(val[image: ]) a sequence [image: ]
   consisting of every second element of sequence val[image: ] is computed; the sequence
   [image: ] is sent to the parent of vertex w,
   

   	in  stage  [image: ]  a  sequence  [image: ]  containing  all  the  elements  of  sequence
   val[image: ] is sent to the parent of vertex w,
   

   	starting from stage [image: ] vertex w is no longer active, that is it does not perform
   any action.
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Figure 3.33. Cole’s parallel sorting algorithm—operations carried out in a complete
vertex w at stages [image: ], [image: ]
                                   

                                   
   


   We illustrate Cole’s algorithm on the sequence [image: ], [image: ], [image: ], 7, 5, 0, [image: ], [image: ]
(Figure 3.34; [image: ] denotes an empty string, bold dashed arrows indicate sending the
complete sequences val[image: ] to the parents, and thin dashed arrows—sending the
subsequences consisting of every fourth or every second element of sequences val[image: ]). At
stage [image: ] the elements of a sorted sequence, in the form of subsequences val[image: ] of
size [image: ], are put in the leaves of the tree. Since the leaves at stage 0 are complete, they
sent to the parents at stage [image: ] subsequences consisting of every second
element of sequences val[image: ], respectively, that is the empty subsequences.
At stage 2 the elements in leaves are sent to the parents, and in phase 3 they
are received and merged. The vertices on the first level of the tree (recall, we
number the levels from 0) are thus complete. They send to their parents first the
empty subsequences [image: ] (stage 3), and then the single element subsequences
(stage 4). The single element subsequences received by vertices on level 2 are
merged at stage 5 into two-element sequences [image: ] and [image: ], and then
the empty sequences are sent to the root, because the length of the merged
sequences are smaller than 4. Furthermore, at stage 5 the two-element sequences
[image: ], [image: ], [image: ], [image: ] are sent from vertices on level 1, which
are received and merged into the four-element sequences [image: ], [image: ], 4, [image: ]
and [image: ], 0, 2, [image: ] at stage 6. Note that for this merging the good samplers
[image: ] and [image: ] are employed computed at the previous stage. After the
four-element sequences are attained by vertices on level 2, their every fourth
elements [image: ] and [image: ] (stage 6), and then every second elements [image: ]
and [image: ] (stage 7) are sent to the root. At the time the sequences [image: ], [image: ], 4,
[image: ] and [image: ], 0, 2, [image: ] are sent from vertices on level 2 (stage 8), a good
sampler [image: ], 0, 5, [image: ] is already computed in the root of the tree. With its help
the four-element sequences are merged into the final output sequence at stage
9.
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Figure 3.34. An illustration of Cole’s parallel sorting algorithm.
                                   

                                   
                                   

                                   
   

   If Cole’s algorithm is to run in logarithmic time, the function merge_with_help[image: ]
must be implemented in [image: ] time. In such case, according to Lemma 3.1, the
two assumptions should be met. Firstly, a sequence L is a good sampler for
sequences J and K and secondly, the cross-ranks [image: ], [image: ], [image: ],
[image: ] can be computed in [image: ] time. We first prove the truth of the first
assumption.


Lemma 3.2. Let X, [image: ], Y and [image: ] be sorted sequences such that X and Y are good
samplers for [image: ] and [image: ], respectively. Then the sequence reduction[image: ] is a good
sampler for the sequence reduction[image: ], where the result of the reduction function
is a sequence consisting of every fourth element of its argument.

Proof. Note that if X and Y  are good samplers for [image: ] and [image: ], respectively, then
[image: ] is not necessarily a good sampler for [image: ] (therefore the reduction function is
used in the lemma). For example, let [image: ], [image: ], [image: ],
[image: ]. Then [image: ] and [image: ]. As can
be seen, between the elements 1 and 8 of sequence [image: ] there are 5 elements of
sequence [image: ], these are: 3, 4, 5, 7, 8.

   Before we proceed to the proof of the lemma, we will indicate that between r
consecutive elements of sequence [image: ] there are at most [image: ] elements of sequence
                                   

                                   
[image: ] (we assume that the analyzed sequences are complemented by extreme values
[image: ] and [image: ], if necessary). Namely, examine r consecutive elements [image: ],
[image: ] of sequence [image: ]. Suppose that among these r elements x elements come
from sequence X and y elements come from sequence Y , [image: ]. Without loss of
generality we may assume that element [image: ] belongs to X. There are two cases to
study:
     

   	Case  1:  [image: ]  belongs  to  X.  Since  X is  a  good  sampler  for  [image: ] there  are
     at most [image: ] elements of [image: ] between elements [image: ], [image: ].
     Similarly there are at most [image: ] elements of [image: ] between elements
     [image: ], [image: ], because they lie between [image: ] elements of Y  (we take into
     account the extreme values). Thus, between elements [image: ], [image: ] there
     are at most [image: ] elements of [image: ].
     

   	Case  2:  [image: ]  belongs  to  Y .  Let  us  add  element  [image: ]  of  sequence  Y   that
     precedes  [image: ],  and  element  [image: ]  of sequence X that  follows [image: ].  Then,
     among elements lying between [image: ], [image: ] there are elements of [image: ] lying
     between [image: ] elements of X, and there are elements of [image: ] lying between
     [image: ] elements of Y . Thus, in total we have [image: ]
     elements of [image: ].


    Returning to the proof of the lemma, let [image: ] and
let [image: ]. Consider [image: ] consecutive elements [image: ], [image: ] of
sequence Z, which are every fourth elements of sequence [image: ]. Between these
elements, including elements from [image: ] to [image: ], there are [image: ] elements of sequence
[image: ]. At the same time, in accordance with what we have demonstrated
above, between these elements occur at most [image: ]
elements of [image: ]. Computing a sequence [image: ] by reducing sequence [image: ] we
take into account only every fourth element. Thus, between [image: ] consecutive
elements of sequence Z there are at most [image: ] elements of
sequence [image: ], which means that sequence Z is a good sampler for sequence [image: ].
[image: ]

    As we have seen, in any incomplete vertex of the tree the sequences [image: ]
and [image: ] are received from the left and right descendants (Figure 3.32). On
their basis the sequence [image: ] is
computed and then the sequence [image: ] = reduction(val[image: ]) is sent to the
parent of the vertex. Lemma 3.2 proves that [image: ] is a good sampler
for [image: ]. So, for each incomplete vertex we have the following properties:

[image: ]

Thus, according to Lemma 3.1 a merge operation [image: ]
performed with help of [image: ] can be implemented in [image: ]
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   We assumed in Lemma 3.2 that the reduction function creates a sequence consisting
of every fourth element of its input sequence. However, at the penultimate and last
stages—before the vertex becomes complete—it receives sequences containing every
second and then all elements of sequences. Let val[image: ] be a sequence computed when a
vertex becomes complete. Then val[image: ] is computed on the basis of every second, and
val[image: ] on the basis of every fourth elements of received sequences. It is easy to see
that val[image: ] is a good sampler for [image: ] and [image: ], and val[image: ] is a good sampler
for [image: ] and [image: ]. So properties (3.49)–(3.50) are also true at the last stages of
vertex operation.

   We now prove that also the second assumption of Lemma 3.1 is true, which says
that the cross-ranks [image: ], [image: ], [image: ], [image: ] can be computed in [image: ]
time. In the proof we use the following observation: if [image: ] is an input or
output stream of sequences in any inner vertex of the tree, then the corresponding
stream of cross-ranks [image: ] is known.


Lemma 3.3. Let [image: ] be a sorted sequence of elements. Then the rank of
any element a in sequence S can be computed in [image: ] time by [image: ] processors in a
CREW PRAM model.

Proof. See Exercise 15b. [image: ]

   


Lemma 3.4. Let [image: ], [image: ] and S be sorted sequences such that [image: ]
and [image: ]. Then the cross-ranks [image: ] and [image: ] can be computed in
[image: ] time by [image: ] processors in a CREW PRAM model.

Proof. See Exercise 15c. [image: ]


Lemma 3.5. Let X, Y, [image: ], [image: ] and [image: ] be sorted sequences such that X
and Y are good samplers for [image: ] and [image: ], respectively. Suppose that the cross-ranks
[image: ] and [image: ] are known. Then the cross-ranks [image: ], [image: ],
[image: ] and [image: ] can be computed in [image: ] time by [image: ] processors in
a CREW PRAM model.

Proof. First we show how to compute [image: ]. Let [image: ]. Also
assume [image: ] and [image: ]. Let us divide sequence [image: ] into subsequences
[image: ], [image: ], where [image: ] contains elements of [image: ] lying
between [image: ] and [image: ], [image: ] contains elements of [image: ] lying between [image: ] and
[image: ], and so on. This division can be done in [image: ] time employing [image: ]
processors based on the cross-rank [image: ]. Likewise, we divide sequence U into
subsequences [image: ] for [image: ] consisting of elements of Y  lying in U
between [image: ] and [image: ]. The rank of element [image: ] in U is computed as follows:
                                   

                                   

[image: ]

The value of rank[image: ] is a component of the cross-rank [image: ], which is
easily computed while the sequence [image: ] is created. For this purpose for each
subsequence i, we must use [image: ] processors, so in total [image: ] processors are
required. Since X is a good sampler for [image: ], each subsequence [image: ] has at most three
elements. Thus the computation in lines 1–6, which gives the rank [image: ] is
performed in [image: ] time. The rank [image: ] can be computed in a similar
fashion.

   To compute the rank [image: ] the ranks [image: ] and [image: ] are needed. We
demonstrate how to compute [image: ]. Given an element [image: ] of sequence X and
the minimum element [image: ] of [image: ], the rank of element [image: ] in [image: ] is
equal to the rank of element [image: ] in [image: ]. This rank is evaluated as a part of
the representation of sequence [image: ]. So the rank[image: ] can be computed
in [image: ] time on a single processor. To compute the rank [image: ] take an
element y of sequence Y . On the basis of Lemma 3.4, we can compute the
rank[image: ], because the sequence [image: ] is known. Then, applying the values of
rank[image: ] and [image: ], we compute rank[image: ]. Thus, [image: ] can be
computed in [image: ] time by [image: ] processors. Likewise one can compute
[image: ]. [image: ]


Theorem 3.5. A sequence of n elements can be sorted in [image: ] time with [image: ]
processors in a CREW PRAM model.

Proof. Cole’s algorithm implies that if any vertex is complete at stage t, then the parent
of this vertex will be complete at stage [image: ]. Since the height of the merge
sort tree (Figure 3.29) is [image: ] and each stage can be realized in [image: ] time,
the running time of the algorithm is [image: ]. In what follows we prove that
the execution of stage [image: ] for [image: ] of the algorithm takes [image: ] time
when [image: ] processors are used (similar estimates can be provided for stages
[image: ] and [image: ]). Note that at stage [image: ] we have incomplete (active)
vertices on level k, and also a number of incomplete vertices on certain levels
higher than k, whereas the vertices below level k are incomplete. Examine the
execution of a stage for vertices on level k. In [image: ] vertices of this level the
sequences of length [image: ] are merged. According to Lemma 3.1 to merge two
such sequences in [image: ] time [image: ] processors are required, so for a total we
need n processors for all vertices on level k. In vertices on consecutive levels
                                   

                                   
from [image: ] upwards, the sequences of the following lengths: [image: ], [image: ],
[image: ], …, 1, respectively, are merged, which can be done in [image: ] time with:


[image: ]

 processors. Thus, to implement stage [image: ] in incomplete vertices on level k and on levels
higher than k we need [image: ] processors. In the algorithm under discussion there are
no conflicts among writes to the shared memory. However, there are conflicts
among reads during the [image: ] time computation of the rank of an element a in
a sorted sequence [image: ], [image: ] (see Lemma 3.3 and the answer to
Exercise 15b). Summing up, Cole’s algorithm runs in [image: ] time in a CREW PRAM
model. [image: ]

    Cole’s sorting algorithm (also in a more complicated EREW PRAM version
compared with the CREW PRAM version discussed above) was presented in the
article [78]. Likewise, it is presented in works [77, 79] and in books by Gibbons and
Rytter [153] (sect. 5.2), and by Casanova et al. [67] (sect. 1.4).


   3.8.2  Bitonic Sort—Batcher’s Network

Cole’s algorithm and the algorithm in Figure 3.13 are designed for a model with shared
memory. In the literature the sorting problem is also solved adopting a model of
comparator network. Such a network is made up of interconnected comparators
operating in parallel. A comparator is a device with two inputs and two outputs
(Figure 3.35a). The comparator with elements x and y on the inputs returns the
minimum and maximum of x and y (in this order) on the outputs. It is assumed that the
comparator operates in [image: ] time. In the sequel we will use the simplified designation
of the comparator depicted in Figure 3.35b. Among comparator networks a
special group of sorting networks are distinguished. Figures 3.35c–d show the
examples of sorting networks with [image: ] inputs and outputs. The number of
comparators in a network determines its size [image: ]. The size of the example
networks is [image: ]. The sequence of input elements depicted on the left side of
Figures 3.35c–d are to be sorted. They are forwarded to the outputs depicted on the
right side of the figures. In the course of sorting, the elements “flow” from left to
right changing their positions as the result of comparator operations. More
specifically, in time 0 the sequence (9,7,6,2) is entered on the inputs of the network in
Figure 3.35c. In time 1 the comparator from group A is active, since its inputs
become available, which are elements 9 and 7. In time 2 the comparator from
group B performs its work on elements 9 and 6, and so on. The groups whose
drawings are shaded and marked with letters from A to F include comparators to
which data arrive in the same time. So the comparators within a group can
operate in parallel. Note that in Figure 3.35c each group of the network contains
only one comparator, while in Figure 3.35d the groups A and C contain two
comparators. Thus the degree of parallelism in the latter network is higher.
Each comparator is located at a certain depth of the network. In the example
networks, the depth of the comparator in group A is 1, of the comparator in group
B is 2, and so on. The speed of a network is evaluated by its depth [image: ],
which is equal to the depth of the last group of comparators. Informally, the
depth of a network determines the maximum number of comparators that an
item of data has to pass from an input to an output of the network. Evidently,
the smaller the depth of the network, the better. The network in Figure 3.35c
demonstrates operation of a sequential algorithm of insertion sort, and that in
Figure 3.35d presents operation of a parallel algorithm of odd–even transposition
sort. Assuming that both networks have n inputs, the depths of networks in
Figures 3.35c and 3.35d are [image: ] and [image: ],
respectively.


   
                                   

                                   

                                   

                                   
[image: ]

 
Figure 3.35. A comparator (a–b) and the comparator networks corresponding to
sequential insertion sort (c) and to parallel odd-even transposition sort (d).
                                   

                                   
   

   Batcher [38] proposed a sorting network with n inputs and [image: ] depth. It
is composed of bitonic sorting networks (BSN) and merging networks (MN). We
will discuss them in turn, but first some definitions are needed. A bitonic sequence
consists of two monotone subsequences, the first of which is nondecreasing and the
second nonincreasing, or the other way around. For example, the sequences (2,4,7,9,6,1)
and (9,6,1,2,4,7) are bitonic. One of the subsequences may be empty, which
means that a nondecreasing or nonincreasing sequence are also bitonic. For the
                                   

                                   
purpose of sorting, we concentrate on sequences of lengths that are powers of
two,28
[image: ] for some [image: ].



   Suppose we are given a bitonic sequence such that [image: ]
or [image: ] for some index j,
where [image: ]. Then the sequences [image: ], [image: ]
and [image: ], [image: ] are bitonic. Moreover,
each element of the first sequence is not larger than all the elements of the second
sequence. Owing to this property, we can construct a bitonic sorting network BSN[image: ]
that enables sorting n-element bitonic sequences for [image: ] (see Figure 3.36; it is
assumed that the input sequence [image: ] for [image: ] is bitonic). A collection of
[image: ] comparators (shaded in the figure) create two bitonic sequences: [image: ] for
[image: ] and [image: ] for [image: ], [image: ], where [image: ] for all
pairs of indices i and j. The sequences [image: ] and [image: ] are recursively sorted by
networks BSN[image: ], BSN[image: ] etc. until the sorted nondecreasing sequence [image: ]
for [image: ] is obtained. Figure 3.37a demonstrates the process of sorting a
8-element bitonic sequence.
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Figure 3.36. A recursive scheme of bitonic sorting network.
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Figure 3.37
(a) Sorting 8-element bitonic sequence; (b) merging two nondecreasing 4-element
sequences: (2,5,6,9) and (1,3,5,7).
                                   

                                   
   

   While proving correctness of operation of a sorting network the zero-one principle is
often used. It states that if the network is working correctly for sequences [image: ],
then it operates equally well for sequences [image: ] for [image: ] consisting of
integers, reals or elements of any linearly ordered set.


Theorem 3.6. (zero-one principle) [222], [84], [335], [12] If a comparator sorting
network with n inputs correctly sorts all [image: ] sequences of zeros and ones [image: ], then
it sorts correctly arbitrary sequences of elements.

Proof. We carry out the proof by contradiction. Suppose that the comparator network
converts an input sequence [image: ], [image: ] into an output sequence [image: ],
[image: ]. Let f  be an arbitrary monotone function that satisfies [image: ] when
[image: ]. Let us replace each element of the sequence [image: ], [image: ] with a value
[image: ] for [image: ]. The sorting network consists of comparators, so any
comparison of elements [image: ] and [image: ] will be replaced by a comparison of values
[image: ] and [image: ]. Because we have [image: ] when [image: ], the set of
comparisons made by the network for the sequence [image: ], [image: ] will be the same
as for the sequence [image: ], [image: ]. So the network converts the sequence
[image: ], [image: ] into [image: ], [image: ]. Let us now assume that
the network correctly sorts the sequences of zeros and ones but it does not sort correctly
some sequence of elements [image: ], [image: ], that is in the output sequence
there appear elements [image: ] and [image: ] such that [image: ] for [image: ]. Consider
the function f  that for all elements less than or equal to [image: ] takes value 0,
and for all elements greater than [image: ] takes value 1. In this way, we define the
sequence [image: ], [image: ] consisting of zeros and ones, which is not
properly sorted by the network, which contradicts the assumption of the theorem.
[image: ]

The zero-one principle entails that to prove correctness of any network action, it is
sufficient to indicate that it works correctly for sequences consisting of zeros and
ones.


Lemma 3.6. The bitonic sorting network BSN[image: ] shown in Figure 3.36 correctly
sorts any bitonic sequence [image: ] for [image: ], [image: ] where [image: ] and
[image: ].

Proof. See Exercise 17a. [image: ]



   The second component of the Batcher’s sorting network is the merging network
MN[image: ] (Figure 3.38). On the input of this network two sequences [image: ] for
[image: ] and [image: ] for [image: ], [image: ] sorted in
nondecreasing order are entered. Based on these sequences, [image: ] comparators
(shaded in the figure) create two bitonic sequences: [image: ] for [image: ]
and [image: ] for [image: ], [image: ] such that [image: ] for all pairs of
indices i and j. The sequences are then recursively sorted in a nondecreasing
sequence [image: ] for [image: ] by the bitonic sorting networks BSN[image: ] for
[image: ], [image: ]. Figure 3.37b depicts merging of two nondecreasing 4-element
sequences.
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Figure 3.38. A recursive scheme of merging network.
                                   

                                   
   

Lemma 3.7. The merging network MN(n) depicted in Figure 3.38 merges correctly the
sequences sorted in nondecreasing order [image: ] for [image: ], [image: ] and [image: ] for
[image: ], [image: ] in one output sequence sorted in nondecreasing order
[image: ] for [image: ], [image: ].

Proof. See Exercise 17b. [image: ]

    It is easy to note that operation times of networks BSN[image: ] and MN[image: ]
defined by their depth are [image: ], and the sizes of networks are
[image: ]. Figure 3.39 shows the recursive scheme of a sorting network
S[image: ] proposed by Batcher. After expanding the recursion the full network consists of,
from left to right, the group of networks S[image: ], where each of the networks is a single
comparator, and then of subsequent groups of merging networks MN[image: ], MN[image: ]
MN[image: ]. Figure 3.40 illustrates the process of sorting 8-element sequence by Batcher’s
network.
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Figure 3.39. A recursive scheme of Batcher’s sorting network.
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Figure 3.40. Sorting 8-element sequence by Batcher’s network.
                                   

                                   
   

Theorem 3.7. Batcher’s network given in Figure 3.39 correctly sorts in nondecreasing
order any sequence of elements [image: ] for [image: ], [image: ].

Proof. Correctness of Batcher’s network can be easily proved by induction on the
nesting level of the network applying the zero-one principle and Lemmas 3.6 and 3.7,
which demonstrate correct operation of the network components, that is bitonic sorting
networks BSN(n) and merging networks MN(n). [image: ]

    The depth of the merging networks in particular groups equals 1 for the
networks MN[image: ], and then [image: ] for the merging networks
from MN[image: ] up to MN[image: ]. The depth of Batcher’s sorting network is
then: [image: ], and the size:
[image: ].

   Ajtai, Komlós, and Szemerédi [9] proposed a network with the optimum depth
[image: ] and optimum size [image: ]. The network has only a
theoretical importance, because due to complication in its design the constants of
proportionality in the estimates of [image: ] and [image: ] are very large. Therefore in
practice, Batcher’s network despite the inferior asymptotic depth is faster. A lot of works
were devoted to sorting networks. Information about them can be found in the works by
Jájá [205] (sect. 4.4), Cormen et al. [84] (chap. 28), Knuth [222] (sect. 5.3.4),
Casanova et al. [67] (chap. 2). Gibbons and Rytter [153] (sect. 5.3) presented a
description of the network proposed by Ajtai, Komlós, and Szemerédi and improved and
simplified by Paterson [305].


   3.8.3  The Parallel Computation Thesis

The parallel computation thesis is related to the NC complexity class. Let [image: ] be an
arbitrary function of size n of the problem.

THESIS. The class of problems that can be solved by means of a sequential computer using
[image: ] memory locations is equal to the class of problems that can be solved ba means
of a computer with unlimited parallelism in time [image: ].

Informally, the thesis says that the capacity of memory of sequential computation and
the time of parallel computation are polynomially related. The thesis is not a theorem,
but rather a hypothesis. The reason is the vague notion of a computer with
“unlimited parallelism.” It is assumed that such a computer—with unspecified
structure—must have sufficiently high potential. For example, it must have a
processor complexity significantly higher than polynomial to effectively simulate
computation of a sequential computer in time related polynomially to the memory
capacity used in sequential computation. In some specific cases the thesis can be
formulated as a theorem.


Theorem 3.8. [image: ].

Proof. See for example Papadimitriou [301] (Theorem 16.1), Bovet and Crescenzi [57]
                                   

                                   
(Lemma 12.2), Savage [335] (Theorem 8.15.1). [image: ]

The classes L and NL include problems that can be solved deterministically and
nondeterministically, respectively, in a sequential computer with [image: ] memory. In
the context of the parallel computation thesis the inclusion [image: ] is interesting. It
states that any problem that can be solved in a parallel computer in time [image: ] with
a polynomial number of processors, can be solved deterministically in a sequential
computer in memory [image: ].


   3.9  Exercises


 1. [12]  (chap. 4)  Develop  a  parallel  algorithm  to  solve  the  problem  of
   cost-optimal prefix computation for an EREW PRAM model.
        HINT: Divide the set of elements [image: ], [image: ] into [image: ] subsets, each of size
   [image: ]: 
[image: ]

    Let the consecutive subsets be assigned to processors [image: ], [image: ].
   In the first stage, each processor [image: ] computes sequentially the prefixes
   [image: ] for [image: ], [image: ] in its
   subset [image: ], [image: ]. This stage is carried out in
   [image: ] time. In the second stage the processors compute in parallel the
   prefixes for a subset [image: ], [image: ], employing for example the algorithm of
   Figure 3.10. Upon completion of this stage the quantities [image: ] are replaced by
   [image: ] for [image: ], [image: ]. The execution time of this stage is
   [image: ]. In the last stage, processors [image: ] for [image: ], [image: ] update
   sequentially the prefixes computed in the first stage on the basis of quantities
   [image: ]. The time of execution of the last stage, as well as of the entire algorithm, is
   [image: ]. Since the number of processors used is [image: ], the
   cost of the algorithm is equal to [image: ], and so it is
   optimal.
   


 2. [335] (sect. 2.6) The problem of prefix computation with segmentation is
   formulated as follows (see p. 80). Suppose we are given a set of elements [image: ] for
   [image: ], a set of tags [image: ] for [image: ] taking values 0 or 1 (tag [image: ] always
   equals 1), and a binary, associative operator [image: ]. We seek a set of quantities [image: ]
   for [image: ] called prefixes. Prefix [image: ] is equal to [image: ], if [image: ], otherwise
                                   

                                   
   [image: ] is the result of the operator [image: ] on element [image: ] and on all elements
   located to the left of [image: ] up to the first element [image: ] with tag [image: ], that is
   [image: ], where [image: ] and [image: ] for [image: ]. This
                                   

                                   
   problem can be solved in [image: ] time by the following sequential algorithm:
   [image: ]

   Give a [image: ] parallel algorithm to solve this problem in a n-processor PRAM
   model. Assume that [image: ] is a copy operator defined as: [image: ].
   
   HINT: Investigate the problem as a special case of prefix computation for pairs
   [image: ] and the operator [image: ] defined as follows:


   
   [image: ]

   

 3.  Suppose we are given an array [image: ] in which some elements are tagged, because,
   for example, these satisfy a certain condition. The tagged elements should be packed
   in subsequent positions in the left side of an array [image: ]. For instance, assume that
   the array [image: ] where [image: ] contains the lower- and uppercase letters, and the
   lowercase letters are tagged. Figure 3.41 presents an input array x and a
desired array y. For the array packing problem formulated above, it is
   easy to present a sequential algorithm running in [image: ] time. Applying
   the parallel prefix algorithm (Figure 3.10) provide a parallel algorithm to
   solve the array packing problem with cost [image: ] for an EREW PRAM
   model.
    
 [image: ]

 
Figure 3.41. Array packing.
   

   

 4. [11] (sect. 7.2.3) Matrix transpose. Given a matrix A of size [image: ] the transpose
                                   

                                   
   of A is the matrix [image: ] created by writing the rows of A as the columns of [image: ]. For
   example, if 
   [image: ]

    A sequential matrix transpose algorithm of complexity [image: ] has the form:
   
[image: ]

                                   

                                   
   Give a parallel algorithm to find the transpose of a matrix for an EREW PRAM
   model with [image: ] processors.
   


 5. Provide a parallel matrix–matrix multiplication algorithm of running time
   [image: ] and optimal cost [image: ].
        HINT: Use [image: ] processors in a CREW PRAM model.
   


 6. Provide a parallel matrix–matrix multiplication algorithm of running time
   [image: ] and optimal cost [image: ].
        HINT: Use [image: ] processors in a combining CRCW PRAM model with addition
   operation.
   


 7. [205] (sect. 3.2.2), [84] (sect. 30.2) Finding the roots of trees. A directed, rooted
   tree T is a directed graph [image: ], where V  is a set of vertices and E is a set of arcs.
   The root of the tree is a designated vertex [image: ]. The output degree of each vertex
   [image: ] in the tree equals 1. Suppose that for each vertex [image: ] there exists a
   path (sequence of arcs) leading from this vertex to root r. Assume that the arc
   leaving the root leads to itself, that is there is a loop in the root. Examine a
   directed forest F with n vertices consisting of a number of directed trees.
   Figure 3.42 depicts a sample forest with [image: ] vertices. Assume that the vertices
   are represented by the elements of lists, each element comprising the fields [image: ] and
   parent[image: ]. The first field holds an object and the second the pointer to a parent
   vertex. Design a parallel algorithm of [image: ] running time for a n-processor
   CREW PRAM model, in which for each vertex i where [image: ] the value
   [image: ] is determined, which is the root index of a tree vertex i belongs
   to.
        HINT: Use the method of pointer jumping.


    
 [image: ]

 
Figure 3.42. A sample forest.
   

   

 8. [84] (sect. 30.1.2), [67] (sect. 1.1.2) Suppose we are given a list containing elements
   of set [image: ], [image: ] (Figure 3.43a). Write a parallel prefix algorithm for
   this set of [image: ] running time in a n-processor EREW PRAM model
   (Figure 3.43b).
        HINT: Use the method of pointer jumping.


                                   

                                   
    
 [image: ]

 
Figure 3.43. Prefix computation on a list; (a) initial form of the list; (b) the list
after computation of prefixes.

   

 9. [205] (sect. 3.2.2) Algorithms operating on trees often use the tree traversal
   operation. It involves the systematic reviewing the tree vertices so that each of
   them is visited exactly once. There are several ways to traverse a tree. Two of them
   are preorder traversal and postorder traversal. We will define them recursively.
   If the tree is empty, then traversing it no vertex is visited. Otherwise the tree
   traversal involves two steps:
   
       Preorder  traversal:  (i)  visiting  the  root,  (ii)  traversing  in  preorder  the
       subtrees of the root from left to right;
       

       Postorder traversal: (i) traversing in postorder the subtrees of the root from
       left to right, (ii) visiting the root.


   Applying these definitions to the tree of Figure 3.19a we get preorder traversal:
   4  2  3  6  1  5  7 and postorder traversal 2  6  1  3  5  7  4. Let
   [image: ] be a tree rooted at [image: ] where [image: ]. Adopting the Euler
   cycle method give a parallel algorithm of running time [image: ] for a
   [image: ]-processor EREW PRAM model that determines the traversals of the tree T
   in:
   

    (a) preorder,
       

   (b) postorder.


   

10. [303] (sect. 2.3) Reduction operation in one-dimensional mesh. Given a
   one-dimensional mesh of processors [image: ] for [image: ] in which each processor stores
   a value, develop a parallel algorithm to determine and send to all mesh
   processors the maximum of these values. To transfer data use a statement
   [image: ], where [image: ] (see
   p. 94).
   

11. [163] (sect. 4.2) Broadcast. The broadcast procedure of type one-to-all was
   presented on p. 97, where a data item stored in a particular processor of a cube is
   sent to all other processors. Another type of broadcast, termed all-to-all, lies
   in the fact that data items stored in individual processors are sent to all
   other processors. Provide the procedures of type all-to-all for the following
   topologies:
   
    (a) one-dimensional torus,
       

   (b) two-dimensional torus,
       

    (c) cube.


   To transfer data in one- and two-dimensional tori use a statement [image: ]variable[image: ][image: ][image: ]
   [image: ]direction[image: ][image: ]variable[image: ][image: ] (see p. 94), and in a cube, the statements [image: ]variable[image: ][image: ]
   [image: ] [image: ]processor_no[image: ][image: ]variable[image: ][image: ] and [image: ]processor_no[image: ][image: ]variable[image: ][image: ]
   [image: ][image: ]variable[image: ][image: ] (see p. 97).
   


12. [11] (sects. 7.2.1 and 7.2.2), [230] (sect. 5.2) Matrix transpose in a
   two-dimensional mesh. Given a matrix [image: ] for [image: ] design a
   parallel algorithm to evaluate the transpose [image: ] of matrix A for a two-dimensional
   mesh of [image: ] processors [image: ] where [image: ] (see Exercise 4). Assume that
   initially each processor [image: ] stores an element [image: ] of matrix A. After
   completion of computation processors [image: ] should store elements [image: ] of the
   transposed matrix [image: ]. To transfer data use the statements send and
   receive.
   

13. [314] (sect. 6.2.3) Reduction in a two-dimensional mesh. Suppose we are
   given an array [image: ] and a two-dimensional mesh of [image: ] processors
   [image: ] for [image: ] and [image: ]. Give a parallel algorithm solving the
   problem of reduction with operation [image: ] in the given mesh. Assume that
   elements of array [image: ] are initially stored in variables a of individual
   processors and the result of reduction is to be stored in variable a of processor
   [image: ].
   

14. [12] (sect. 9.1), [205] (Example 1.11) Matrix–matrix multiplication in a cube.
   Given the matrices [image: ] and [image: ] for [image: ]
   and [image: ] and [image: ] present a parallel algorithm to compute a matrix
   [image: ] for [image: ] containing the product of matrices A and B,
   that is [image: ]. Assume that the algorithm will be implemented in a
   cube of [image: ] processors and that elements of the input matrices
   A, B and output matrix C are stored in the respective processors of the
   cube.
   

15. [153] (sect. 5.2), [67] (sect. 1.4) Cole’s parallel sorting algorithm. 
   
    (a) Prove Lemma 3.1.
       

   (b) Prove Lemma 3.3.
       

    (c) Prove  Lemma 3.4.  HINT:  Assume  that  the  cross-ranks  [image: ],
       [image: ], [image: ] for the sequences [image: ], [image: ], S are known. These are
                                   

                                   
       computed when the sequence representations are created.


   

16. [314] (sect. 10.3), [12] (problem 7.4), [163] (sect. 9.3.1) Odd-even transposition
   sort. Suppose we are given an array [image: ] whose elements are numbers. To sort
   the array in nondecreasing order we may use a sequential bubble sort algorithm
   (Figure 3.44a). In step i for [image: ] of the algorithm (line 2) the minimum
   element in a subarray [image: ] is moved to position [image: ]. The movement is
   accomplished by comparing and possible swapping the adjacent elements of a
   sub-array that is processed from right to left (lines 3–9). Since the execution time of
   operations in lines 4–8 is constant, the time complexity of the algorithm is
   [image: ].

   
    (a) Give a parallel version of the odd-even transposition sort for an EREW
       PRAM model with [image: ] processors [image: ], [image: ]. The array [image: ]
       is stored in the shared memory. The algorithm involves the alternating
       steps A and B. In step A the processors with odd indices compare and
       possibly swap the elements [image: ] and [image: ]. In step B the same action
       perform the processors with even indices (Figure 3.44b). 
       

   (b) [335] (sect. 7.5.2) Prove that to sort a n-element array it is sufficient to
       perform alternately at most n steps A and B.
        HINT: Apply the zero-one principle.
       


    (c) Evaluate performance metrics of the parallel algorithm developed. What is
       a disadvantage of the algorithm and how it can be removed?


    
 [image: ]

 
Figure 3.44. A bubble sort algorithm (a); demonstration of odd-even transposition
sort of array [image: ] (symbol [image: ] denotes the comparison and
possible swap of adjacent elements [image: ] and [image: ]) (b).
   

   

17. [84] (chap. 28) Batcher’s sorting network.
   
    (a) Prove Lemma 3.6.
                                   

                                   
                  HINT:          Analyze           a           bitonic           sequence
       [image: ] for some index j where
       [image: ] and [image: ] and [image: ]. Because the structure of the
       bitonic sorting network is recursive it suffices to indicate that the group
       of [image: ] comparators BSS(n) (shaded in Figure 3.36) divides the input
       sequence  [image: ]  on  two  subsequences  [image: ]  where  [image: ]
       for  [image: ],  and  [image: ]  where  [image: ]  for
       [image: ],  [image: ],  which  a)  are  bitonic  and  b)  satisfy  the
       condition [image: ] for all pairs of indices i and j. Use the zero-one principle.
       


   (b) Prove Lemma 3.7.
        HINT: Analyze similarities between operation of the groups of comparators
       on the input of a merging network and on the input of a bitonic sorting
       network.
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et al. [167] (Lemma 3.2.4), and Bovet and Crescenzi [57] (chap. 12). The problem
[image: ]? is investigated in the books by Garey and Johnson [144] (sect. 2.4),
Savage [335] (sect. 8.11), and Papadimitriou [301] (chap. 14). Equivalence of decision
and functional problems is discussed by Papadimitriou [301] (p. 246) and Greenlaw
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   1Another term for this time is worst-case parallel time complexity or briefly time complexity.
We will use these terms interchangeably.

2See p. 38.

3Note that [image: ] is measured in conventional time units. Since each operation is carried out in a
single unit, [image: ] can also be regarded as the number of operations.

4There is a class of P-complete problems in which operations must be performed mostly sequentially
(see Section 3.7).

5Another term for this cost is parallel work.

6Simulation of this kind of a parallel algorithm by one processor, gives an algorithm of
the running time equal asymptotically to the fastest known sequential algorithm solving a
problem.

7In case of the parallel version of a sequential algorithm, the running time [image: ] in Equation (3.5)
is replaced by [image: ].

8If functions [image: ] and [image: ] are complex, then it can be difficult to derive the isoefficiency
function in a closed form.

9These operations are called inherently sequential (see p. 65).

10On the assumption that such a computer will have a sufficient amount of main memory to perform
the computation carried out in a parallel computer. If this condition is not satisfied, a value of [image: ] will
increase, because some of data processed will reside on disk memory with longer access time compared
with main memory.

11Some irregularities for the numbers of processors p [image: ] 2–4 are due to limited accuracy of time
measurements and speedups calculated on this basis.

12Note that in line 3 of the algorithm elements of array a are copied to array b, so that after finding
the minimum the input data in array a are not modified. The algorithm runs in [image: ] steps
applying n processors, although finding the minimum itself requires [image: ] steps and [image: ]
processors.

13The same drawback has algorithm shown in Figure 3.5, whose performance metrics are similar to
those of algorithm shown in Figure 3.3.

14The increase in a number of processors from [image: ] upwards will decrease the linear
component [image: ] in formula (3.24). For a number of processors [image: ], the linear
component [image: ] in this formula is no longer greater than [image: ], since for [image: ] we have
[image: ].

15The algorithms in Figures 3.3 and 3.7 find the minimum and sum of elements in a given array.
However, the minimum or sum operations can be replaced in these algorithms by any other associative
operation (see p. 79).

16Commonly, in parallel programming systems there are functions to solve the reduction problem. For
example, in the MPI (Message Passing Interface) library this function is MPI_Reduce (p. 225) and in the
OpenMP (Open Multi-Processing) interface the clause reduction is designated for this goal
(p. 264).

17As in the reduction problem, operator [image: ] may, but need not to be commutative. Computation of
the prefix sums—operation [image: ] is then addition—is also called scan operation. Similarly to the
reduction problem also for the prefix computation there are usually appropriate functions
available. For example, in the MPI library we have for this purpose functions MPI_Scan and
MPI_Exscan.

18There are no physical links (channels) between processors as in the real mesh (see Figure 2.8a).

19The second part of the relation allows us to evaluate indices in array b to which groups of elements
equal to each other should be written.

20Also known as communication complexity.

21When establishing the communication cost, we assume that in an algorithm implementation each
processor will first download all necessary data from the shared memory to its local memory. Then, after
performing the computation on data in the local memory, the results obtained will be sent to the shared
memory.

22Leonhard Euler (1707–1783) was a Swiss mathematician and physicist. He made many discoveries in
various fields of mathematics, including graph theory. In 1736 he solved the famous seven bridges of
Königsberg problem proving the nonexistence of a cycle passing once through each edge of the graph
describing the system of bridges. He also gave the necessary and sufficient condition for existence of such
a cycle in any graph.

23The polylogarithmic complexity is a polynomial complexity relative to [image: ].

24The other term for parallel time complexity is parallel running time of an algorithm (see footnote on
p. 64).

25We use here a slightly modified definition of class P, which is essentially equivalent to the classical
definition, as parallel computation taking polynomial time conducted by a polynomial number of
processors can be simulated by a uniprocessor also in polynomial time.

26The lower bound of comparison-based sorting complexity is [image: ]. If sorted elements meet
certain constraints, then this bound is [image: ].

27Note that if sequences [image: ] and [image: ] are good samplers for [image: ] and [image: ], then the
sequence [image: ] is also a good sampler for both [image: ], and [image: ].

28Sequences that do not meet this condition may be supplemented by neutral elements.
         

                                   

                                   
    

   4
 Designing Parallel Algorithms




   4.1  Steps of Designing

As we stated in Section 3.1, a parallel algorithm is composed of a number of algorithm
components. These components are intended to solve the subproblems into which the
original problem has been divided. Normally, the components cooperate with each other
using intermediate results of computation as well as synchronize their action. The desired
output of the parallel algorithm is a composition of results computed by the
algorithm components. Since the subproblems are solved by the components of
a parallel program called tasks, we will use the terms subproblem and task
interchangeably.

   The process of designing a parallel algorithm consists of four steps:


   
   	decomposition  of  a  computational  problem  into  tasks  that  can  be  executed
   simultaneously, and development of sequential algorithms for individual tasks;
   

   	analysis of computation granularity;
   

   	minimizing the cost of the parallel algorithm;
   

   	assigning tasks to processors executing the parallel algorithm.
   


The following sections characterize these activities in more detail. In addition, we present
some general methods for designing parallel algorithms, such as the method of data
parallelism, the method of functional parallelism, the method of task pool, the method of
master and slaves, and the method of pipelining. These methods differ from each other

with respect to ways of exploiting potential parallelism in the computation that solve the
problem, as well as with respect to the ways of assigning processors the tasks to be
executed.


   4.2  Problem Decomposition


   4.2.1  Types of Decomposition 

Dividing a computational problem into tasks, called decomposition or partitioning,
can be done in several ways. We will discuss them on examples.


   Example 4.1 Evaluation of test results

Let us examine a problem of evaluation of multiple-choice test results. Suppose that the
test results are written on n sheets, where on each sheet there are m questions with
marked answers. Assume that the results have been read by an electronic reader and
stored in the memory of a parallel computer. The decomposition of the problem into
tasks can be done in the following ways.

   A task can be considered as computing the results of response to all questions
occurring in a single sheet. Then the number of tasks is equal to a number of sheets n. In
a simple case, each task can be executed by a separate processor that processes data
contained on a single sheet. In this approach the basis for task identifying is data
decomposition.1

   Another way to break down the problem into tasks is functional decomposition.
In this method the aim of a single task is to implement a function, which in our example
is evaluation of answers to a single test question. In such a decomposition the
number of tasks is equal to a number of questions m. Each task performs a
separate function on the portions of data related to a particular question in all test
sheets.

   A degree of concurrency of a problem (program) is defined as a number of
subproblems extracted in the problem to be solved in parallel, or as a number of tasks
executed simultaneously in the parallel or concurrent program. The maximum and
average degrees of concurrency can be distinguished. In the problem of test results
evaluation, the maximum degree of concurrency is determined by the larger value
of n and m. The greater the degree of problem concurrency, the better it is
suited for parallel execution. Designing an efficient parallel program is also easier
when relationships between tasks, that is the frequency of communication and
synchronization of their operation, are small. This is precisely the case with the above
problem in which the tasks—regardless of a method used for decomposition—are

independent of each other and in the course of execution they do not need to
communicate. It is enough to convey to tasks the data to be processed and then collect
and combine the computed results. In the literature such problems are called
embarrassingly parallel, which means problems easily solved in parallel (see
Section 4.8).


   Example 4.2 Sieve of Eratosthenes—functional decomposition 

    Now, let us focus on the problem of finding the prime
numbers,2
or briefly primes, in the interval [image: ] for some natural n employing the sieve of
Eratosthenes.3
In the first step of this method, all the numbers of a given interval are listed
(Figure 4.1a). The first number on the left is 2. It is left as the first prime number and
then the multiples of 2 are struck off the list (sieved) starting from the square of this
number, that is from [image: ], since these multiples are not prime (Figure 4.1b). After
removal of 4, a nonstruck off number greater than the last prime (that is 2) is 3.
It is left as the next prime and the multiples of 3 starting from [image: ] are
struck off (Figure 4.1c). The tasks of striking off the multiples of 2 and 3 from
the interval [image: ] can be carried out simultaneously. Likewise, following the
deletion of [image: ], the next prime number (nonstruck off from the interval and
greater than 3) is 5. So we can start the next task to strike off the composite
numbers being the multiple of 5 (Figure 4.1d). The sieve of Eratosthenes ends
when all the tasks are finished and the penultimate task finds a prime [image: ]
satisfying the condition [image: ] or else [image: ] (in the example in Figure 4.1,
[image: ]). The result of solving the problem are all numbers left in the interval
[image: ].


   



[image: ]

 
Figure 4.1. An illustration of Eratosthenes sieve for interval [image: ].

   

   The decomposition of the problem into tasks (or subproblems) described above is
referred to as functional decomposition. Each task is designed to implement a
separate function whose goal is to strike off composite numbers that are multiples of a
given prime. The tasks are dependent on each other, as in some of them the data are
computed that are used by other tasks. These dependencies between tasks, causing that
certain tasks should be executed before other tasks, can be represented by an
acyclic directed graph called task dependence graph. Figure 4.2 shows such a
graph for the problem of finding primes. In task [image: ] for [image: ] a
consecutive prime [image: ] ([image: ], and so on) is evaluated by striking off the
multiple of [image: ]. The prime found is sent to task [image: ]. A task [image: ] checks
whether [image: ], while task S collects information about completion of all tasks
and decides whether to finish computation. It can be seen on the dependency
graph presented in Figure 4.2 that the maximum degree of concurrency of the
problem, equal to the number of tasks [image: ], increases with n. This degree is
governed by an index k derived from inequality [image: ]. Thus, for a fixed n
a number of tasks that can be performed in parallel is limited. This implies
that speedup that can be achieved by applying the discussed algorithm is also
limited.


   



[image: ]

 
Figure 4.2. A task dependency graph.

   

   While implementing the above algorithm we need to define the memory representation
of numbers in the interval [image: ], as well as how the tasks can access these numbers. If a
PRAM model is adopted, in which the numbers are stored in a shared memory, in
addition to synchronizing tasks in accordance with the graph of Figure 4.2, it is
necessary to synchronize access to the numbers. One of the possible representations of
prime numbers is a characteristic vector. Assume that a given sequence is a
subsequence4
of some base sequence [image: ]. This subsequence can be represented by means of a
characteristic vector, which is a sequence of zeros and ones whose ith element is 1 if [image: ]
belongs to the subsequence, and 0 otherwise.

   In the case of the sieve of Eratosthenes for [image: ], the base sequence is as follows:
[image: ], its subsequence contains the prime numbers [image: ], and a
characteristic vector is [image: ], [image: ]. It is easy to see that the characteristic
vector of primes less than n consists of no more than n bits, that is [image: ] computer words, where
w is a number of bits making up a single word. The bits of the characteristic vector initially
have a value of 1, and striking off a composite number relies on changing the appropriate bit
to 0. At the time of such a change a task must have exclusive access to a specific word. Access
to the words by tasks should therefore be synchronized, for example using semaphores (see
Section 1.4.1).


   Example 4.3 Sieve of Eratosthenes—pipeline method

   A slightly different solution to the problem of finding primes can be proposed for the
network model of computation. Assume that the problem is decomposed into tasks [image: ]
for [image: ], and a task W  whose goal is to collect the results computed by tasks [image: ]
(Figure 4.3). All the numbers in an interval [image: ] are entered on the input of task [image: ].

A number [image: ] as the first prime is sent to task W , while the numbers in the interval
[image: ] are sieved by striking off the even numbers (multiples of two). The other, odd numbers
are sequentially transferred to task [image: ]. Operation of task [image: ] is similar. It first passes the
first received number [image: ] to W , and the remaining numbers—except the composite ones
being the multiples of three—one after another to task [image: ]. This solution, while maintaining
functional decomposition relies on a pipeline. On the input of the pipeline a stream of
numbers from 2 to n is entered. From this stream the tasks sieve the composite numbers
that are multiples of consecutively evaluated prime numbers. The task [image: ] is reached only
be the primes [image: ], where [image: ]. The maximum degree of concurrency of the
above solution is governed by a number of tasks [image: ] that may be performed simultaneously
in the pipeline (Figure 4.3). This pipeline can also be understood as a filter, which at
subsequent stages “filters” a stream of data by removing from it the composite numbers. 




[image: ]

 
Figure 4.3. A task dependency graph in a pipeline.

   

 Example 4.4 Sieve of Eratosthenes—data decomposition

As already mentioned, in functional decomposition the basis for dividing a problem into
subproblems (tasks) are functions to be realized. A different way of dividing is data
decomposition. Given n input items, they can be broken down into p parts for [image: ]
of size at most [image: ] and assigned to particular tasks. In each of the p tasks
all the necessary functions on portions of data assigned to a task are carried
out.

   For example, in the problem of finidng prime numbers employing the sieve of
Eratosthenes an interval [image: ] can be divided into p subintervals: [image: ],
[image: ], …, [image: ]. In each task associated with a given
subinterval the multiples of consecutive primes, that is 2, 3, 5 and so on, are struck off. If
we assume that p is sufficiently smaller than [image: ], then the primes less than [image: ] and
the first prime greater than [image: ] will be found by the task assigned to subinterval
[image: ]. This task (denoted as [image: ] in Figure 4.4) sends consecutively determined
primes to other tasks ([image: ]) and it also sends a signal to task S about the
end of computation when a prime greater than [image: ] is detected. The problem
solution are nonstruck off numbers in the subintervals processed by all tasks.





[image: ]

 
Figure 4.4. A task dependency graph in data decomposition. The task S collects
data concerning completion of all the tasks. 

   

   In general, the degree of concurrency of the parallel algorithm constructed using data
decomposition is p, for p satisfying [image: ].


   Example 4.5 Parallel image processing 

Suppose we are given a two-dimensional array of real numbers [image: ], whose
elements describe the image pixels. The values of the elements of coordinates [image: ],
where [image: ] are numbers from the interval [image: ] defining the brightness of
pixels. The pixels are greyscale with a value of [image: ] representing white and a value of
[image: ] representing black. Other values in the interval [image: ] represent appropriate
shades of gray. One of the operations that are carried out on images is filtering to remove
noise. To this end a mask of size for example [image: ] fields is passed over an image. There
are weights associated with the mask fields of coordinates [image: ] for [image: ],
which depend on the type of a filter. In the course of filtering the mask slides in such
a way that the field of coordinates [image: ] appears above each pixel [image: ]
of image L (Figure 4.5). New brightness of a pixel is given by the formula:


[image: ]

 where N is a normalization factor equal to the sum of filter weights. The new brightness
of pixel [image: ] is affected by neighboring pixels, while they make their share with certain
weights. If all the weights are nonnegative, then the filter is called smoothing
(or low-pass) filter. The weights for the three most commonly used smoothing
filters5
are given in Figure 4.6. 




[image: ]

 
Figure 4.5. An enlarged filter mask with assigned weights in each field (a) and
image L with the mask placed on pixel [image: ] (b).

   





[image: ]

 
Figure 4.6. Filter weights: (a) averaging filter; (b) lp2 filter; (c) Gaussian filter.

   

   The aim of the problem under consideration is to compare the results of smoothing a
given image L applying different filters. The tasks [image: ] and [image: ] create images
[image: ] and [image: ], respectively, using filters defined in Figure 4.6. Then it is
evaluated to what extent the created images are different from each other by computing
the distance between them. Let [image: ] be a certain threshold. Let us examine the
corresponding pixels [image: ] in images created, for example, in tasks [image: ] and [image: ]. We
will treat the two pixels as different, if [image: ]. The measure of a
distance between images is the number of pixels that are different from each
other for a given pair of images. The distances between pairs of images are
computed in tasks [image: ] and [image: ]. Based on images [image: ] and [image: ] the
“averaged” image [image: ]  is also created. It is built by the arrangement of the
corresponding pixels [image: ] of these images with respect to brightness and
taking into an “averaged ” image a pixel with the middle brightness. The image
[image: ] and its distance from the original image L are computed in task [image: ].
Figure 4.7 depicts a dependency graph between tasks, where the task C collects the
results of comparisons. As can be noticed, the maximum degree of problem
concurrency is equal to 4 and occurs when the tasks [image: ] are executed. The
average degree of concurrency, taking into account all the tasks [image: ] and C, is
[image: ].


   



[image: ]

 
Figure 4.7. A task dependency graph.

   

   4.2.2  Functional Decomposition

 The basis for task separation in functional decomposition are computations that
have to be carried out to solve a problem. These computations are divided into parts,
called functions, performed in parallel by separate tasks. Commonly, the computations
carried out within respective functions are different and are done on different data.


    In Example 4.1 (p. 126) concerning evaluation of test results, the functional
decomposition is done by assigning particular tasks the evaluation of the results of
answer to a single test question. Hence the number of extracted tasks is equal to the
number of questions included in the test. In the functional decomposition used in the
problem of finding primes by the sieve of Eratosthenes (Example 4.2, p. 126), each of the
extracted tasks (functions) performs sieving of composite numbers that are multiples of a
given prime.


   4.2.3  Data Decomposition

   Data decomposition is the most common method to extract tasks that can be
executed in parallel. It is frequently used when large amounts of data are processed. The
benefits of conducting parallel computing are then significant and sometimes only this
type of computing guarantees to process data in reasonable time. Decomposition may
concern the input, intermediate and output data. When designing a parallel algorithm all
possible partitions of data should be analyzed in order to choose the one that leads to
efficient computing.

   Decomposition of input data is based on partitioning these data into a number
of equal parts. Each of these parts is processed by a separate task, which evaluates on
the basis of its own part a certain amount of output data. Typically, the tasks perform
the same computation on the assigned parts of data. Decomposition of input data is used
in Example 4.4 (p. 129), in which the tasks find the primes in the assigned parts of input
data of sizes [image: ]. In some cases the results yielded after processing the parts of input
data are not final, and may require some further processing. An example is
the algorithm in Figure 3.7 (p. 76), where the input data in array [image: ] are
decomposed into p segments, where p is the number of tasks. After finding partial
sums in the segments they are summed up giving the end result (Figure 4.8).





[image: ]

 
Figure 4.8. A decomposition of input data in the summation problem. 

   

   Decomposition of output data assumes that the respective parts of these data
are computed by the tasks in parallel. This is possible if each element of the output data
can be determined independently as a function of the input data. Let us take a problem
of multiplication of matrices a and b of sizes [image: ], that is the problem to find the
product [image: ]. It can be obtained by performing multiplication of submatrices of size
approximately [image: ], as follows:

   Decomposition 1


   
[image: ]


The output data, that is matrix c, is composed of four submatrices, each of which can be
computed by a separate task. Decomposition of the problem into four tasks based on
decomposition of output data might look like this:
   

    Task 1: [image: ],
Task 2: [image: ],
Task 3: [image: ],
Task 4: [image: ].


   The above decomposition is not the only possible. Here is another decomposition,
where in matrix c the four submatrices of size [image: ] and the four tasks carried out
by individual processors are isolated:

   Decomposition  2


   

[image: ]


    Task 1: [image: ],
Task 2: [image: ],
Task 3: [image: ],
Task 4: [image: ].


A disadvantage of both decompositions is a relatively low degree of concurrency equal to
4. It is easy to point out that decomposition can be also done on the basis of
intermediate data, that is taking into account the products of submatrices [image: ]
appearing in Decomposition 1. These products can be evaluated by separate tasks in the
first stage, and in the second stage the selected pairs of intermediate results can be
combined into the final one:
   

    	Task 1: [image: ],

	   Task 7: [image: ],   


	Task 2: [image: ], 

	   Task 8: [image: ],   


	Task 3: [image: ], 

	   Task 9: [image: ],  


	Task 4: [image: ]. 

	   Task 10: [image: ],


	Task 5: [image: ], 

	   Task 11: [image: ],


	Task 6: [image: ], 

	   Task 12: [image: ].


	                   





Such a decomposition based on the intermediate data has a higher degree of concurrency
equal to 8. However, in this case the need for synchronization of computation arises due
to dependencies between groups of tasks 1–8 and 9–12.


   4.2.4  Recursive Decomposition

   Yet another way to partition a problem into tasks is recursive decomposition. It can
be used in cases, among others, where the problem is solved by the divide
and conquer method. In every step of this method the problem is divided
into a number of independent subproblems, or tasks. In most circumstances
the tasks are smaller instances of the original problem. After all the tasks are
executed, their results are combined into the solution to the original problem.
The tasks are executed in a similar manner and their division into subsequent
subtasks ends when they are so simple that they can be resolved in a trivial way.


    An example of application of the divide and conquer method is a recursive
algorithm to find both the minimum and maximum elements in a given array a
(Figure 4.9). In line 10 the central index is determined that splits the array into two
equal parts [image: ] and [image: ]. On this basis, the problem is decomposed into two
tasks that are executed in parallel. The aim of the tasks is to find both the minimum and
maximum elements in their parts of the array. On any next level of recursion the number
of parallel tasks doubles, and so the degree of concurrency increases. As can be seen
in Figure 4.10 the problem for an array [image: ] was decomposed into seven
tasks: [image: ]. When the size of an array part is equal to two, a
task returns as the result a pair of elements, where the first element of the
pair is the minimum element and the second the maximum. For example, in
Figure 4.10 the task [image: ] returns the pair [image: ] and [image: ] the pair [image: ].
These pairs are merged by the task [image: ] through comparing the minimum and
maximum elements, which yields the pair [image: ]. The described recursive
decomposition enables to solve the problem of finding both the minimum and
maximum elements in time [image: ], assuming that the necessary number of
processors are available, while a sequential algorithm is executed in time [image: ].






[image: ]

 
Figure 4.9. An algorithm to find both the minimum and maximum elements.

   





[image: ]

 
Figure 4.10. An example of recursive decomposition of the problem of finding both
the minimum and maximum elements in array [image: ]. 

   

   As another example of recursive decomposition look into a quicksort algorithm
(Figure 4.11). In lines 6–7, an array [image: ] is partitioned into two subarrays containing
elements [image: ] less than the pivot, and elements [image: ] equal to or greater than
the pivot. So the array is decomposed into two parts, which can be sorted by two
independent tasks (lines 8–9). The number of tasks executed in parallel doubles in each
successive stage of recursion. Figure 4.12 illustrates the recursive decomposition of the
problem of sorting an array [image: ]. As can be seen, the problem S is decomposed into
6 tasks: [image: ]. In the recursive decomposition the amount of computation
in successively generated tasks decreases. Because the dynamic generation of such tasks
involve certain costs, we can make sure that there are not too many of them, or
otherwise, that granularity of computation is not too fine. For this purpose,
rather than continuing the recursive decomposition, we may assign tasks at
the lowest level of recursion the relatively large parts of the array to sort. In
Figure 4.12 the threshold of size of an array part is equal to 5. The subarrays
of size below this threshold are not further divided into parts, but they are
sorted by adopting some simple method, for instance by the insertion sort.


   



[image: ]

 
Figure 4.11. A quicksort algorithm.

   





[image: ]

 
Figure 4.12. A recursive decomposition in quicksort. As a pivot (marked in gray)
the larger of two different leftmost elements in a given subarray is selected.

   

   4.2.5  Exploratory Decomposition

   This type of decomposition is used for the problems where a space of solutions is
searched. The space is divided into parts explored in parallel by a set of tasks. When
one of the tasks finds a solution, it sends a signal to other tasks to finish the
computation. As an example, explore a problem of finding the way through a maze
that does not pass any of the maze fields repeatedly, starting from the input
field (In) and ending with the output field (Out) (Figure 4.13a). Figure 4.13b
illustrates the space of solutions as a tree, which after partitioning into three
subtrees is explored by tasks [image: ] and [image: ]. At lower levels of the tree the
subsequent tasks can be created depending on the number of processors available.





[image: ]

 
Figure 4.13. A maze (a) and decomposition of the problem of finding the way
through the maze into three tasks (b).

   

   The problem of finding the path through a maze can be formulated in a number of
ways. The simplest of them asks to find any path leading from the input to output of the
maze. In such a case, a parallel algorithm ends its operation when any of the
tasks (processors) finds an acceptable solution, that is a path. Then the cost
of computation, which is proportional to the part of a solution space that is
searched, may be less or greater than the cost of a corresponding sequential
computation. It depends on the “position” of the solution in a solution tree.


   Figure 4.14 illustrates the decomposition of a tree into p subtrees with the various
possible positions of solutions to some hypothetical problem. Note that a parallel
algorithm consisting of p tasks finds each of solutions [image: ] for [image: ] very quickly;
it can be assumed that in the time [image: ] and cost [image: ]. If in a sequential
algorithm the subtrees are searched from left to right, then the time to find a
solution [image: ] is [image: ], where [image: ] is the time of searching a single
subtree.6
Thus, the largest speedup is attained when the solution [image: ] is sought. The time and cost
of finding any of solutions [image: ] by a parallel algorithm are [image: ] and [image: ],
respectively, and by a sequential algorithm [image: ]. So when a solution [image: ] is
looked for no speedup is achieved. Moreover, the cost of parallel computation is
much higher than the cost of sequential computation. By contrast, the solution
[image: ] is found in a parallel algorithm p times faster as compared to a sequential
algorithm.






[image: ]

 
Figure 4.14. A decomposition of a tree into p subtrees.

   

   The problem of maze traversal can also be formulated with the requirement of
finding the shortest (or longest) path. In this case the whole solution tree must be
searched. A parallel algorithm will then outperform a sequential one, if only
the work related to searching the subtrees will be deployed evenly among the
tasks.


   4.2.6  Speculative Decomposition

   Suppose we have a problem Z in which first a task A is executed and then one of the
tasks [image: ] or [image: ], depending on a certain condition checked at the end of task A
(Figure 4.15). If the task A does not transfer any input data to tasks [image: ], making only
the decision which of them should be followed, then the tasks A and [image: ] can be
implemented in parallel with four processors. After finishing the tasks, depending on the
results acquired in the task A, the computation is continued with the results obtained by
the appropriate task [image: ]. The results achieved in the other two tasks [image: ] are rejected.
This procedure is called speculative decomposition since while starting the execution
of tasks [image: ] it is known in advance that the results of all the tasks except
the one will be rejected. However this ensures a faster solution of problem Z,
because instead of sequential execution of task A and then the appropriate
task [image: ], these tasks are performed in parallel. The described approach can
be applied in case statements, where a task A involves computation of the
value of a selector and tasks [image: ] are multiple “branches” of a case statement.
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Figure 4.15. Parallel execution of tasks [image: ] and [image: ].

   

   At the end of discussion on how to decompose a problem into tasks, note that
practical parallel computation is often multistage. At each stage various kinds of
decomposition can be applied. In such a case we deal with mixed (hybrid)
decomposition.


   4.3  Granularity of Computation

The degree of concurrency is related to the notion of granularity of computation. When a
problem is decomposed into many small tasks, then we say that granularity is fine. When
the number of tasks is small and they are larger, then granularity is coarse. The amount
of work to be performed within a task determines a grain size. Depending on whether
the grain size of tasks is small or large, it is said that the computation is fine- or
coarse-grained.7

   Suppose that in the problem of evaluation of test results (Example 4.1, p. 126) we
have [image: ] sheets with the number of questions on each sheet [image: ]. Then using
data decomposition 1000 relatively small tasks can be performed concurrently, in
which evaluation of the response to 50 questions is made. So, granularity of
computation is fine. While applying functional decomposition the number of
concurrently performed tasks is equal to 50, where in each of the tasks the
pieces of data from 1000 sheets are processed. So, granularity of computation is
coarse.

   Explore the problem of multiplication of a [image: ] matrix a by a vector x, which was
discussed in Chapter 3 (see the algorithm in Figure 3.20). The product [image: ]
to be found is a vector whose components are the scalar products defined as
[image: ] for [image: ], 2, … , n. This formula implies that to evaluate the products,
[image: ] multiplications and [image: ] additions are required. The multiplications
can be implemented in parallel, so the problem can be decomposed into [image: ]
tasks to perform multiplications and n tasks to sum up the components of
scalar products. In such a decomposition the maximum degree of concurrency is
[image: ]. Clearly, a PRAM algorithm operating according to this scheme requires
[image: ] time and [image: ] cost, which is not optimal, assuming [image: ]
processors.

   Another way of decomposition is to extract n tasks each of which evaluates one
component [image: ] of the product. The tasks can be performed independently of each other.
The degree of concurrency of such a decomposition is n. Using the PRAM model,
these computation can be done in [image: ] time with n processors. The running
time of this solution is slightly higher than previously, but its cost [image: ] is
optimal.

   Reviewing the above ways of decomposition with respect to granularity, it can be
noticed that the first way has a higher degree of concurrency and finer granularity.
It could seem that in order to minimize the execution time of an algorithm,
granularity should be as fine as possible. The execution time of small tasks by a large
number of processors is short, and as a consequence the speedup achieved is
high.8
Although a high degree of concurrency and related to it finer granularity favor the use of

parallelism, a limitation can be communication costs. They are essential if the algorithm
is implemented adopting the network model. These costs commonly grow with the
number of (communicating) tasks, which means that the degree of concurrency
and granularity should be properly determined to produce optimum speedup.

    In Chapter 3 we discussed the problem of matrix–vector multiplication
applying the algorithm in Figure 3.20 designed for the network model in which
processors were arranged into a one-dimensional torus. In this algorithm, built on
the principle of output data decomposition (see Section 4.2.3), a number of
components of the product [image: ] for [image: ] computed by one task
(processor) is [image: ] (Figure 4.16a). The cost of task communication is equal to
[image: ], where [image: ] is the time to initiate data transmission, s the
speed of transmission, and p the number of tasks. Because the communication
cost is proportional to p, and the computation cost [image: ] is inversely
proportional to p, the optimal number of tasks minimizing the running time of the
algorithm is [image: ]. This quantity governs the optimal number
[image: ] of product components that can be extracted, or otherwise the optimal
granularity of computation carried out by the tasks. Note that the granularity
may be the finer, the smaller is the communication cost defined by constants
[image: ] and s.


   The problem of matrix–vector multiplication in a torus can also be solved by
partitioning intermediate data. Let us divide the matrix a and vector x on p blocks as
follows: [image: ] and [image: ], where submatrices [image: ] have a
size [image: ] and subvectors [image: ] size [image: ] (Figure 4.16b). The product [image: ] to
compute is defined as [image: ]. Each of processors [image: ] for
[image: ] can compute a vector [image: ] of size n, and then it can send the result to
a neighboring processor in a clockwise direction. The successive processors add vectors
[image: ] to each other, forming in processor [image: ] the final vector z. Obviously, in this
decomposition the vector computation cost is [image: ] and communication cost
[image: ]. Since the communication cost is higher in relation to
the communication cost for decomposition given in Figure 4.16a, the approach discussed
has worse running time and speedup. The optimal number [image: ] of processors
ensuring the shortest execution time of the algorithm is smaller than that in the
previous decomposition, which implies that the optimal granularity is coarser.






[image: ]

 
Figure 4.16. Multiplying matrix a by vector x: (a) decomposition based on input
data;
(b) decomposition based on intermediate data. 

   

   Evaluating a degree of concurrency only on account of a task number is approximate.
More accurate estimates are yielded by taking into consideration granularity of
computation. For example, let us assume that in the image processing problem discussed
in Section 4.2.1, numbers of primitive operations performed in each tasks are the
following: [image: ] operations in tasks [image: ], [image: ] operations in tasks from [image: ] to [image: ], [image: ]
operations in tasks [image: ], and [image: ] operations in task C. For the modified
dependency graph (Figure 4.17) a critical path can be found, which is the
longest path leading from any initial vertex of the graph—not having input
arcs—to any final vertex of the graph—not having output arcs. The sum of
operations implemented on the critical path governs the time of whole computation,
[image: ]. If [image: ] is the sum of all operations in the problem, then the ratio [image: ]
defines an average degree of concurrency taking into account granularity of
computation. Informally, this degree tells us how many operations, on average, can be
carried out simultaneously in every step of computation. In Figure 4.17 the
critical path is [image: ]–[image: ]–C. The average degree of concurrency is therefore:
[image: ].






[image: ]

 
Figure 4.17.  A  task  dependency  graph  taking  into  account  granularity  of
computation for an image of size [image: ].

   

   4.4  Minimizing Cost of Parallel Algorithm 


   4.4.1  The Parallel Overhead 

   As we know from Chapter 3, the cost of a parallel algorithm is [image: ], where p is
the number of processors used and [image: ] the time complexity of the parallel
algorithm. The cost is the sum of computational steps (operations) performed by the
processors when solving a given problem. The steps are counted from the start of the
computation by the first processor until the end of the computation by the last
processor. The minimum cost of the parallel algorithm is equal to the complexity
[image: ], which is the number of steps carried out by one processor in the fastest
sequential algorithm S solving the problem.

    Achieving the parallel algorithm cost [image: ] equal to the
cost9
[image: ] is difficult, therefore in practice the aim is to minimize the difference of costs
[image: ]. If we assume that [image: ] is the necessary cost to
solve the problem, then [image: ] is an overhead associated with performing
computation in parallel. The smaller is the cost [image: ], the more effective is the
parallel algorithm. Likewise, a smaller value of [image: ] means a larger value of the
quotient [image: ], which gives the efficiency of processor utilization (see
Equation (3.6)). Minimization of the cost [image: ] is achieved by making the cost
[image: ] of a parallel algorithm as small as possible. This minimization should be the
objective at all stages of algorithm design, that is starting from decomposition of the
problem into tasks, through implementation of the algorithm in a selected programming

language, up to assignment of tasks to processors executing the parallel program. The
main components of cost [image: ] are the costs of redundant computations,
processor idling, accessing common data, and communication (interaction) between
processors.


   4.4.2  Redundant Computations

We have made an assumption that finding the solution to a problem employing the
fastest known sequential algorithm requires [image: ] operations, or computational steps.
In the ideal case these operations are evenly spread across the processors and executed
simultaneously in a parallel algorithm. However, it may happen that the best algorithm
S of cost [image: ] is difficult to parallelize, for example due to the low degree of
concurrency (see p. 126). Then a starting point for development of the parallel algorithm
may be a bit worse sequential algorithm [image: ] of cost [image: ], where [image: ],
which is easier to parallelize. The difference [image: ] determines the amount
of redundant (or excess) computation performed in the parallel algorithm. In this
case, to keep the cost [image: ] small, the cost [image: ] of algorithm [image: ] should be as
close as possible to the cost [image: ]. Another possible approach is to design the
parallel algorithm based on a different principle than the best sequential algorithm, in
which the sum of essential operations necessary to solve the problem is close to cost
[image: ].


   4.4.3  Processor Idling

The idle processors instead of pursuing useful computations, for example those
included in the cost [image: ], perform empty operations. This increases the cost
[image: ]. Idling can be a result of the improper assignment of tasks to be performed,
which causes an unbalanced workload of processors. This issue is discussed in detail in
Section 4.5. The source of processor idling can be synchronization of their work. If not
all processors are ready for synchronization, then part of them ready before are idly
waiting for the other processors. The cause of idling may also be the different degrees of
concurrency at various stages of solving the problem. In the extreme case there are
sequential parts in a parallel program that can be performed only by a single
processor.

   It also happens that processors do not perform useful work waiting for completion of
transmission that provides data for further computation. This idling can be eliminated
by carrying out by processors local computation while the transmission proceeds (see
Section 4.4.5).


   4.4.4  References to Common Data


Parallel tasks often refer to common data. For example, in the problem of image
processing the tasks [image: ], [image: ] and [image: ] simultaneously use the elements of array
[image: ] (Example 4.5, Section 4.2.1), or the tasks 1–4 while computing the product
[image: ] refer to the elements of matrix b (Decomposition 2, Section 4.2.3). If the
computer architecture allows it, then data used by multiple processors are stored in the
shared memory. The reference time to data items located in the shared memory is
typically larger than the reference time to data items stored in local memories, due to
the necessity to resolve conflicts while reading or writing shared data by multiple
processors. Therefore, in order to reduce the cost [image: ], the number of references to
data in the shared memory should be minimized. One of the ways of minimizing the
number of references is suitable decomposition of data. Take, for example, the
number of references to elements of matrices a and b in Decomposition 1 (see
Section 4.2.3). Each task must read four submatrices of size [image: ], so for a
total of [image: ] elements, which for the four tasks yields [image: ] references.
However, in Decomposition 2 each task while finding a submatrix [image: ] reads a
submatrix [image: ] of size [image: ] and matrix b of [image: ] elements. In all four tasks
it yields [image: ] references (in the general case, the numbers of
references in Decomposition 1 and 2 are, respectively, [image: ] and [image: ]).
Thus, Decomposition 1 made both along the rows and columns of the output
matrix is advantageous, with respect to the number of references to the shared
data.

   Modern parallel computers are equipped with hierarchical memories in which
references to local memory cells (located closer to the reference point) take shorter
time than to nonlocal memory cells (located farther away from the reference
point). So in parallel algorithms the number of references to local memories
should be maximized, while the number of references to nonlocal memories
minimized—in particular to the cells of shared memory. If the elements of some data
structure are used repeatedly, the preferred solution can be to copy the structure
from the shared memory (or other nonlocal memory) to a local memory and
repeatedly refer to elements in this memory. This process is referred to as data
replication.

    Distributed memory computers do not have shared memory. Using common
data requires in this case transferring these data between tasks (processors)
via an interconnection network. Nowadays, transmission rates in such networks are much
smaller than the computation speed of processors. This applies to clusters consisting of
multicore processors or computers (see Sections 5.4.2 and 5.4.3). In order to reduce the
cost of parallel algorithms, the amount of data to be transferred in distributed memory
computers should be as small as possible. What’s more, the frequency of data transmissions,
due to the relatively large latency associated with each transmission, should be small.
So it is advantageous to send messages of larger size but rarely, than short messages with
high frequency. In general, the number of interactions between tasks (sending messages
between pairs of tasks, broadcasting messages to a group of tasks, synchronization, etc.)
should be minimized. This can be achieved, for example, by integrating small messages
into a message of larger size. It can also be profitable to replicate computation. Instead
of computing data in one task and broadcasting them to other tasks, they may be computed
in each task, thus avoiding communication—of course, by incurring the cost of redundant
computation. Naturally, the factors discussed above indicate that distributed memory
computers can be recommended for coarse-grained algorithms of large grain size and rare

communication.


   4.4.5  Overlapping Communication and Computation

   As already mentioned, the idle time of a processor may be caused by waiting for the
end of a transmission, which provides the processor with necessary data to proceed
computation. We may eliminate this idle time by structuring a program in a way that
allows the processor to perform useful work when the communication takes place. In
other words, it is beneficial to overlap in time processor computation and data
transmission. The easiest way to do that is by starting the transmission of data
prior to the time of their use. Once the transmission is initiated the processor
can proceed with local computation, while at the same time the transmission
occurs. Ideally, at the end of local computation the transmission also ends,
and the processor may continue its work on data it has just received. Such
overlapping communication and computation is possible when we know which
data will be needed after completion current computation. In general case,
however, it is difficult to predict which data at which point in time will be
required.

   Reducing periods of processor inactivity through overlapping communication and
computation is also possible in dynamic load balancing (see Section 4.5.3). In one of the
load balancing methods, the master processor has a centralized pool of tasks that are
assigned to the slave processors for execution. In a simple case, a slave processor after
completing the current task sends the request to the master to issue the next task.
While waiting for its receipt the slave processor remains idle. This approach can
be improved by deploying the task pool into more than one site, that is by
assigning the slave processors the mini-pools. When the number of tasks in a
mini-pool becomes small, a slave processor sends to the master a request for the
next task. In this way, the computation of a slave processor will overlap with
assigning and transferring the next task by the master. The effectiveness of this
improvement depends on the accuracy of predicting when a slave processor becomes
idle.

    Overlapping communication and computation may also occur when a single
processor implements multiple tasks adopting the time-sharing method. If in the
course of such pseudo-parallel execution, a current task can not be continued because it
initiated an operation carried out with a latency (for example, sending or receiving a
message, I/O operation, reference to nonlocal memory), the processor suspends the
current task and switches to another task. As soon as the operation comes to an end, the
processor may return to execute the suspended task. Thus, the processor works on those
tasks that are ready for execution. At the same time operations involving latency
proceed in other tasks.

   Note that the more tasks are executed by a processor, to a greater extent operations
carried out with a latency, in particular communication, can be overlapped with
computation. However, a large number of tasks increases the cost of context switching
(see Section 1.2), and can give rise to a longer time of task implementation when the

degree of concurrency in a set of tasks is greater than 1. The number of tasks performed
by a single processor should therefore be set as the result of a compromise. The described
method of hiding the latency of operations in pseudo-parallel implementation of
multiple tasks by one processor can reduce its idle time and is called parallel
slackness.

    To reduce the cost of an algorithm by overlapping communication and
computation, both the hardware and software of a parallel computer should support
the use of this method. In particular, the hardware should allow to carry out
simultaneously computation in a processor and data transmission. Modern
computers due to direct memory access (DMA) have such capability. In turn, the
software should provide nonblocking communication functions that allow to start a
transmission and continue the local computation without waiting for data to be
transferred. This makes it possible to carry out the computation and after some
time to check whether the initiated transmission is completed. For example,
in the MPI library the functions that facilitate overlapping communication
and computation include MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Test (see
Section 6.3.4).


   4.5  Assigning Tasks to Processors


   4.5.1  Load Balancing

   Once the problem has been decomposed into tasks (subproblems) and algorithms for
particular tasks have been developed, the computations are to be spread across the
available processors. The goal is to assign tasks to processors in such a way that the
execution time of a parallel program consisting of a number of tasks is as short as
possible. In most circumstances, it is assumed that the number of tasks is at least equal
to the number of processors. Minimizing the parallel program runtime is achieved by
uniform distribution of computations across processors, that is by load balancing.
In other words, the aim is to minimize the time in which processors are idle.


   Let us investigate an example of assigning 11 tasks of various size that do not
communicate with each other, so they can be performed in any order, to four processors.
Figure 4.18a depicts the assignment with uneven processor loads. The tasks are depicted
by rectangles of a certain degree of shading. The number of conventional time units inside
the rectangle represents the amount of computation to be done within each task. No shading
indicates that the processor is idle. The aggregate computation times of processors [image: ]
and [image: ] are, respectively, [image: ] and 4 units. Figure 4.18b gives the perfect assignment
of the same 11 tasks to four processors. As can be observed, due to the perfect load balancing,
the total execution time of the parallel program has been reduced from 6 to 5 units. Note
that the load imbalance increases the cost of a parallel program [image: ], thus also the cost
[image: ] of parallel overhead, discussed in Section 4.4. For example, for the assignment in
Figure 4.18a the cost [image: ] while in Figure 4.18b, [image: ].






[image: ]

 
Figure 4.18. Processor load balancing: (a) imperfect; (b) perfect.

   
   Let p be the number of processors, [image: ] for [image: ], 2, …, p, the times of completion of
computation by processors [image: ], and [image: ] the time of completion of computation
by the last processor. One of the measures of processor load imbalance is defined as follows:


   	 
[image: ]
	(4.1)



This quantity governs the fraction of the computation time by which processors remain
idle. For processors in Figure 4.18a this fraction is [image: ].

   It should be noted that in the general case, perfect balancing of processor workloads
is not easy to achieve for the following reasons. The first is the difficulty in
evaluating the execution times of tasks. These times may depend on input data or
intermediate results acquired. The number of tasks to complete can be also difficult to
evaluate before the beginning of computation. For example, in Section 4.2.4 we
described the quicksort algorithm in which the number of tasks depends on
the successive selection of the pivot elements, and on the threshold limiting
the size of small tasks. Another difficulty is different computational speed of
processors in heterogeneous computers. The computational speed depends on the
processor type, kind of operations executed (floating- or fixed-point), software
libraries used, etc. Finally, it is hard to establish the impact of communication
between tasks on implementation of computation (for simplicity, in Figure 4.18
communication between tasks has been omitted). Although the nominal data rate of
interconnection network links is frequently known, the transfer time of data
may depend on network load (see the chart of communication time [image: ] in

Figure 6.11). Likewise, communication between tasks which are concurrent
processes is nondeterministic. This is, for example, due to necessity to serve
by processors the emerging system events signaled by priority interrupts (see
Chapter 1).

   Even assuming that the number of tasks and their execution times are known,
minimization of the runtime of a parallel program belongs to the class of NP-complete
problems. Among them is the scheduling problem formulated as follows. Given n tasks
with execution times [image: ], …, [image: ] and an integer m, assign the tasks to m identical
machines (for example, computers) for execution so that the time for completion of work,
also called the length of a schedule, is minimum. A similar NP-complete problem,
which corresponds to the discussed minimization of the computation time, is the
bin packing problem. It involves packing n items of sizes [image: ]
to m bins, each of the same capacity c, in such a way that c is as small as
possible.

   Processor load balancing can be achieved by using a static or dynamic method. The
choice of the method depends on the nature of a parallel program, that is on the specifics
of its tasks and interaction between them.


   4.5.2  Static Load Balancing

    This type of load balancing is accomplished before a parallel program is
executed. When assigning tasks to processors several factors are taken into
consideration, including: the size of tasks measured by the amount of computation
involved, the volume of data processed by tasks, the frequency and size of messages
exchanged between tasks. Taking into account, for example, the interaction
between tasks a good assignment allocates tasks that communicate frequently
to processors that are in close proximity to each other in an interconnection
network. In general, the factors mentioned above are not measurable (or difficult to
measure) and finding the optimum assignment is the NP-complete problem. So
in practice the assignment is found in an approximate way applying simple
and fast-acting heuristic algorithms. To this aim, one may use for example
the round-robin algorithm, in which the tasks are assigned to subsequent
processors, with returning to the first processor when all processors have already
been assigned a task (see schedule(static) clause on p. 262). Another simple
approach is to exploit the randomized algorithm that picks out tasks to
be assigned at random. A more advanced heuristics, for example a genetic or
simulated annealing algorithm etc., can also be adopted. The algorithms used
in static load balancing are typically simpler than those applied in dynamic
balancing.

   In static load balancing the assignment of tasks to processors is associated with the
initial stage of design of a parallel algorithm, that is with decomposition of a problem
into subproblems. While extracting subproblems and designing tasks for them, it is
regularly assumed that they will be implemented by separate processors. Thus, already
at the stage of task development care is taken to ensure that their sizes measured by the
amount of computation are close to each other. This facilitates balancing of processor

workloads. The most common types of decomposition include data decomposition and
functional decomposition. In what follows we will discuss them in the context of load
balancing.


   4.5.2.1  Assigning Tasks Based on Data Decomposition

As mentioned earlier, data decomposition is based on dividing data to be processed
into a number of parts. Each data part is processed by a separate task, which
in turn is assigned for execution to a separate processor. So the assignment
of a part of data to a processor is equivalent to the assignment of a certain
amount of computation to a processor. To balance processor load the data to be
processes should be evenly distributed across the tasks. The distribution is
relatively easy to do, when data structures being processed are regular. For
example, if computation concern a k-dimensional matrix, each task can be
assigned the coherent block of elements associated with a part of the matrix.
Coherence of a block of elements may be important, if operations on the block
elements require references to elements of neighboring blocks. Figure 4.19a
presents the decomposition of a two-dimensional matrix of size [image: ] on p
equal10
blocks, where a single block contains the elements of [image: ] rows. Along the second
dimension, the matrix can be decomposed into p blocks consisting of [image: ] columns
(Figure 4.19b). These two decompositions have been applied to balance processor loads
in the matrix–vector multiplication algorithms (see algorithm in Figure 3.20
and Section 4.3, p. 138). The decomposition of a matrix on p blocks can also be
done with respect to both dimensions. In Figure 4.20a the blocks have a size
[image: ], and in Figure 4.20b [image: ], where [image: ]. The
decomposition presented in Figure 4.20a was adopted in order to balance processor
workloads in multiplication of matrices a and b of size [image: ] in Section 4.2.3
(p. 132).


   



[image: ]

 
Figure 4.19. A decomposition of [image: ] matrix on p blocks with respect to rows
(a) and columns (b).

   





[image: ]

 
Figure 4.20.  A  decomposition  of  [image: ]  matrix  on  p  blocks  with  respect
to  both  dimensions,  [image: ],  w[image: ]:  (a)  blocks  of size
[image: ]; (b) blocks of size [image: ], where [image: ].

   

   If coherence of blocks is not important, processors can be assigned successive parts of
a data structure being processed, such as particular elements, rows, columns, etc. For
example, in the first phase of algorithm in Figure 3.7 to compute the sum of elements of
one-dimensional array [image: ], the aggregation of elements into segments of
size [image: ] is done. The division of 19-element array a on such segments, and
their assignment to processors [image: ] are depicted in the upper part of
Figure 4.21. An alternate division in which the processors are assigned the subsequent
array elements is presented in the lower part of this figure. With this division
the lines 2–10 of the algorithm in Figure 3.7 should be modified as follows:

[image: ]

The assignment of data given in the lower part of Figure 4.21 is called cyclic
assignment, and in the upper part (as well as in Figures 4.19a–b and 4.20a–b)—block
assignment.11






[image: ]

 
Figure 4.21. Two decompositions of array [image: ] on five segments. 

   

   Processor load balancing by assigning equal parts of data is more difficult to do when
processed structures are not regular. Take a problem of designing an ecoregion
map for Poland defined on the basis of selected environmental parameters. In
order to create the map the area of Poland can be partitioned into a number of
square cells of side about 40 km (Figure 4.22). Each cell is described by a set of
parameters, such as temperature, rainfall, organic matter content in soil, etc. The cells
lying in zones of the same climate, terrain shape and properties of soil form a
single ecoregion. To perform load balancing the cells must be grouped into
a certain number of segments. The data in each segment are processed by a
single processor. Figure 4.22 demonstrates one of the possible groupings of cells
into segments of similar sizes that are assigned to processors. It is assumed
that the number of available processors used to design the ecoregion map is
5.


   



[image: ]

 
Figure 4.22. A partition of Poland area into 223 cells and five segments assigned
to processors [image: ]. Sizes of segments are equal to 42, 42, 46, 46, and 47
cells, respectively.

   

   Other data structures, whose even partition with the purpose of processor load
balancing can be difficult, are graphs. They have practical significance, because
they are frequently employed for modeling problems encountered in science
and technology. The graph in Figure 4.23 describes a hypothetical problem
of transferring goods in a transport network. Assume that both vertices and
edges of the graph are assigned some data, which have to be processed in order
to solve the transport problem. In the case when processing is to be done by
p processors, the easiest way to balance their loads is to partition the set of
vertices12
of the graph into k subsets, where [image: ], and assign them to individual processors. Let
us further assume that the edges of the graph represent interrelations between vertices. It
may therefore be preferable to break down the set of vertices in such a way that
the interrelations between the subsets of vertices (processors) are as small as
possible. Thus the number of edges connecting the subsets should be minimum.
Unfortunately, finding such a partition in the general case is not easy, since the class of
NP-complete problems include the bisection problem formulated as follows.
Given a graph [image: ] with an even number of vertices, partition the set of
vertices V  on subsets [image: ] and [image: ] such that [image: ], and
the number of edges [image: ] with one vertex in subset [image: ] and the second
in subset [image: ] is minimum (see also Section 6.3). Since the problem of graph
bisection ([image: ]) is difficult to solve, equally difficult is to partition the graph on
more subgraphs ([image: ]). Figures 4.23a and 4.23b depict two partitions of a
graph with 36 vertices into subgraphs of 12 vertices, where in the first partition
the number of edges connecting the subgraphs is 18 and in the second is 10.


   



[image: ]

 
Figure 4.23. Two partitions of the vertex set of a graph into subsets assigned
to processors [image: ], and [image: ]  ([image: ]); the numbers of edges connecting the
subgraphs are 18 (a) and 10 (b).

   

    The method of developing algorithms that involves extracting tasks by
decomposition of the input, intermediate or output data is called method of data
parallelism. It is often used in simulation problems, where similar operations on
different data are performed. The size of these data can often become very large, for
example in simulation of weather phenomena the data may describe the whole or
a part of the Earth’s atmosphere. In this method, to balance the load it is
enough to make an equal breakdown of data into segments, assign them to
tasks and statically allocate the tasks to individual processors. A characteristic
feature of problems that can be solved using the method of data parallelism
is that the degree of concurrency typically grows with the size of processed
data. This allows to effectively solve large problems with a large number of
processors.


   4.5.2.2  Assigning Tasks Based on Functional Decomposition 

   In functional decomposition the tasks into which the problem to be solved is divided
are intended to accomplish separate computational functions. The tasks are commonly
dependent on each other, as they compute data that are used by other tasks.
Dependencies between tasks are described by means of an acyclic dependency graph.
The vertices of the graph represent tasks, and the arcs represent dependencies
between tasks arising from the transfer of data or synchronization of their work
ensuring the appropriate order of task execution. Assignment of tasks based on
functional decomposition lies in partitioning the set of vertices of the dependency
graph into subsets that are assigned to respective processors. Assignment should
be done so as to make the execution time of a parallel program as short as
possible.

   With this respect, there are two possible extreme approaches that can be examined.
In the first one, all tasks are performed by a single processor. Then there is no
communication cost between tasks, but computations are not conducted in parallel as all
tasks are implemented by the same processor. In the second approach, each
task is performed by a separate processor, parallelization of computations is
then the maximum, but in turn the maximum are also costs of communication
(interaction) between processors. To minimize the execution time of a program a
trade-off between the degree of parallelism and cost of communication should be
investigated, taking into account the topology of a processor interconnection
network.13


   As an example, assume a dependency graph of tasks [image: ] in the form of a
binary tree. The tasks are to be executed in a computer whose processors [image: ],
and [image: ] are connected into a two-dimensional cube. The left side of Figure 4.24 gives
an assignment of tasks (vertices) of the dependency graph to particular processors,
and the right part of the figure, as a reminder, processor interconnection in a
cube. The task assignment was made at random. Figure 4.25a illustrates the
execution of the tasks in line with this assignment. It is assumed that both
the computations of tasks (marked in black) and transfers the results between
tasks (marked in gray) are performed in unit time. Evidently, the assignment
in Figure 4.24 is not optimal. The time to transfer the results computed in
task [image: ] from processor [image: ] to task [image: ] in processor [image: ] takes two units,
because the path between processors [image: ] and [image: ] is composed of two links.
This time in the optimal execution presented in Figure 4.25b is one unit. The
optimal execution is in accordance to the assignment to processors [image: ]
and [image: ] the sets of tasks [image: ], [image: ], respectively.
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Figure 4.24. An assignment of tasks to processors [image: ], and [image: ]  (a) and
the structure of two-dimensional cube (b).
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Figure 4.25. Executing tasks: (a) in line with assignment depicted in Figure 4.24;
(b) the time-optimal.


   

    Explore in turn the assignment of tasks done on the basis of functional
decomposition for the problem of image processing, which was discussed in Section 4.3.
Figure 4.26 depicts a modified graph presented in Figure 4.17, where in addition to the
implementation times of computation associated with the vertices, the communication
times associated with the edges are indicated. These times proportional to the amount
of data transferred are specified for example for the edges ([image: ], [image: ]), [image: ] and
[image: ], as [image: ], where a is the time to transfer one item of data assuming that data
transfer is conducted over one link. Figure 4.26 also illustrates an assignment of tasks
to execute in processors [image: ] and [image: ]. Figure 4.27 demonstrates the performance
of the tasks according to this assignment to processors connected into a two-dimensional
cube. Note that the time of execution of the parallel program is governed by the tasks
located on the critical path [image: ]–[image: ]–C. Furthermore, without increasing this time one
could give up the use of processor [image: ] and performing task [image: ] in processor [image: ] or [image: ]. 
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Figure 4.26. A task dependency graph considering the costs of computation and
communication, [image: ].
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Figure 4.27. Executing tasks in the image processing problem (for [image: ]).

   

    The method of developing algorithms in which tasks are extracted based on
functional decomposition and assigned to processors by partitioning the task dependency
graph is called method of functional parallelism. The method is effective if the
degree of problem concurrency, that is the number of tasks that can be performed
concurrently, is sufficiently large. Given the dependency graph, assignment of tasks is
made mostly in a static way. Efforts are then undertaken to minimize the amount of data
transferred between tasks, and also to minimize the frequency of interaction between
them. Assignment of tasks can also be done dynamically, for example by a
centralized method (see Section 4.5.3), but then the master process should pay
attention to existing interactions between tasks while establishing the effective
assignment.


   4.5.3  Dynamic Load Balancing

   In dynamic load balancing tasks are assigned to processors during execution of a
parallel program (see clauses schedule(dynamic) and schedule(guided) on p. 262).
Actually, this method is the only solution when tasks are generated during execution of a
program. If the execution times of tasks are difficult to evaluate or unknown (times
may vary depending on the input data being processed), then the method of
dynamic balancing gives more uniform distribution of loads across processors than
the static method. Processors are in fact assigned another tasks only when
they complete execution of the previous tasks, which minimizes the periods of
processor inactivity. One problem in dynamic load balancing is large amounts of
data processed by the tasks. If the computation performed on these data are
relatively simple, a gain resulting from assignment of computation to an idle
processor may be less than the cost of sending large amounts of data to it. This
particularly applies to computers with interconnection networks, or to computing
performed in computer networks, in which data transmission costs are relatively
high.

    The methods of dynamic load balancing can be divided into centralized and
decentralized—in particular distributed. 

   4.5.3.1  A Centralized Method

    In this method the tasks, in fact the data which define them, are stored in
a central data structure called work pool. The work pool can be generally accessible to
processors, for example by locating it in shared memory, or it may be managed by a master
processor that assigns tasks to be performed to slave processors and collects requests
regarding new tasks (Figure 4.28). When a slave processor completes execution of a task,
it sends a request to the master processor to issue the next task. If during the task execution
a new task is generated, then the slave processor sends to the master a request to add
this task to the work pool. When the tasks have similar size and priority, the work pool
can be organized into a simple FIFO queue. If the tasks differ in size, so in the amount of
computation to perform, then the tasks of larger sizes get a higher priority, which means
that they are transferred for execution before the tasks of smaller sizes. In this case, it is
better to represent the work pool by a priority queue. The centralized load balancing method
is often used due to its simplicity. It is usually adopted when the number of slave processors
is small and granularity of tasks is coarse. When the number of slave processors increases
and granularity of tasks is fine, a significant number of requests that must be handled by the
master processor becomes a bottleneck of the method. With a large number of slave processors
also the contention among them to communicate with the master processor aggravates.






[image: ]

 
Figure 4.28. A centralized method of load balancing. 

   

   4.5.3.2  A Decentralized Method

   To remove this drawback the work pool can be split into several smaller pools. A
sample scheme of decentralized load balancing is plotted in Figure 4.29. In addition
to the master processor [image: ] it comprises the master processors [image: ], and [image: ]. Each
of them has its own work pool (queue of tasks) and balances loads of associated with it a
subgroup of slave processors. At the start of work processor [image: ] splits the
original work pool between processors [image: ], and [image: ]. The presented sample
scheme is the result of decomposition of the problem of load balancing into three
subproblems. The number of these subproblems (master processors) can be arbitrary.





[image: ]

 
Figure 4.29. A scheme of decentralized load balancing.

   

   4.5.3.3  A Distributed Method

   The centralized method in the extreme leads to the distributed method, where
there are no master processors at all. Each processor not only manages its own work pool
but also executes the tasks. Load balancing is done by migration of tasks, in which case
tasks are sent among processors in two ways: on the initiative of a receiving or a sending
processor. In the first case, a processor requests the selected processors to send
tasks to execute when its work pool is empty or contains a very few tasks.
Studies have indicated that this approach works well in heavily loaded systems.
The second way to transfer tasks, that is on the initiative of a sender, lies in
the fact that a heavily loaded processor with a large number of tasks sends
some of them to those processors that can accept them. This approach is a
good option in lightly loaded systems. A sample scheme of distributed load
balancing for processors connected into a ring is depicted in Figure 4.30. When a
processor is underloaded it asks its neighbors to convey tasks for execution.
Similarly, when a processor is overloaded it proposes to hand out some of its
tasks to the neighbors. Such a scheme can be applied to other topologies, for
example to a multidimensional cube. One may also ponder a variant in which
an interconnection topology is not taken into account. Processor [image: ] uses for
example a round-robin algorithm to send the requests (if necessary) successively to
processors in accordance to their increasing numbers, ignoring itself in this sequence,
that is [image: ],[image: ][skip [image: ]],[image: ], [image: ], and so on (p is
the number of processors). Processors can also be selected at random. Note
that the methods of dynamic load balancing: centralized, decentralized and
distributed, are more complicated and thus harder to implement than static
methods. A disadvantage of dynamic methods, particularly in the context of
fine-grained computation, is relatively large time overheads associated with their
implementation.


   



[image: ]

 
Figure 4.30. A distributed method of load balancing. 

   

   Related to distributed load balancing is the problem of detecting termination of
distributed computation. Suppose that a certain distributed computation involves
execution of a number of tasks. Some of them are known before the start of
the computation, others are created dynamically. In a simple case, the end of
the computation can be detected by one of the tasks after reaching a certain
local condition of termination, for example as a result of finding an object with
certain properties in a searching problem. This task then sends a message to
other tasks, that the computation should be terminated. The situation is more
complex if the global termination condition requires each task to reach a local
termination condition. Since every task has only local knowledge, in order to
identify the global state of the computation it is necessary to attain information
whether the local conditions are met in all other tasks. Another well-known
problem in distributed computing is the leader election problem, which was
formulated during development of the token ring local area networks (see
Section 4.8).

   Customarily, parallel algorithms are constructed by adopting one of the known

general methods. Earlier we discussed the methods of data parallelism and functional
parallelism. At the end of this chapter we will briefly describe further three
methods.

   Algorithms in which tasks are spawn dynamically or vary greatly in the amount of
computation are designed by employing a task (work) pool, in which processors are delivered
work to perform as they become idle. The structure of an algorithm constructed by this method
is similar to the centralized load balancing scheme. The tasks of the algorithm are stored in
a compact data structure available in shared memory, for example as a list, priority queue,
hash table etc., or in a distributed structure in processors equipped with an interconnection
network. The tasks to be implemented can be known in advance or may be generated
dynamically as the algorithm progresses. In computers with an interconnection network it is
better if the amount of data related to a task is small relative to the amount of computation
that must be performed on the data. Then transferring tasks to processors does not incur high
costs of communication. To ensure equal load of processors and minimize the costs of taking
out and inserting tasks into the pool, the granularity of tasks is appropriately evaluated.

    As an example, look into the following sequential algorithm in which
the row elements of two-dimensional array A of size [image: ] are sorted:

[image: ]

In a parallel version created by the data parallelism method, we may use n
processors every of which sorts an assigned row of array A. This solution has
a low time complexity, that is a short execution time. However, due to the
different times of sorting individual rows caused by varying degrees of initial
arrangement of their elements, the processor loads will not be balanced. Processors
sorting rows of better arrangements complete their work earlier and wait for the
processor whose row requires the maximum number of operations to sort it.


   The same or likewise sorting time can be achieved by using the task pool method
and fewer processors. Initially, the tasks to sort respective rows of the array are inserted
into the pool. Each task is identified by the index of an array row that should be sorted
(Figure 4.31). Processors get from the pool the index of a row, sort its elements, and
then get the next index until the pool is empty, which means that all the rows have been
sorted. In this method the processor loads are better balanced than in the previous
solution, since when a processor completes execution of the current task, it gets from the
pool the next one.






[image: ]

 
Figure 4.31. The work pool method.

   

   In a master-worker method a designated processor, called master, organizes
implementation of tasks that are components of the algorithm to solve a given problem.
The tasks are sent by the manager to a number of workers. Once the tasks are completed
the workers return the computed results to the manager, which combines them into the
final solution to the problem. To provide load balancing the manager employs a suitable
procedure to assign tasks to processors applying for example the round-robin or
randomized algorithm, taking into consideration the size of tasks, provided they
can be determined. As in the task pool method it is assumed that each task
can be implemented by any processor. In case of large number of tasks and
fine-grained computation the manager can become a bottleneck of the method. When
granularity of computation is fine, the workers can carry out their tasks faster
than the manager is able to generate them. The method is applied both in
computers with shared and distributed memory. The negative impact of high costs of
communication in systems with interconnection networks can be alleviated, for example,
through overlapping communication and computation carried out by workers (see
Section 4.4.5).

   In the parallel algorithm constructed by a pipeline method a stream of data is processed
by a certain number of processors arranged into a pipeline. The data stream, broken up into
separate items, is entered on the left side of the pipeline and moves right. Every processor
performs an individual task (a computational function) on each incoming data item. This
task (or a processor) is sometimes referred to as a pipeline stage. There are similarities
between the pipeline method and the producer and consumer method, as a processor in
the pipeline is in fact a consumer of data provided to it by the preceding processor, and it is
also a producer of data for the next processor. The pipeline is most effective if the execution
times of its stages (tasks) are the same. If this condition is not met, then the slowest
processor—due to, for example, higher computation load—slows down the work of other
processors. With a diverse task granularity, operation of the pipeline can be improved by
introducing buffers of input data at various stages of the pipeline (see the producer and
consumer problem, Section 1.4.2). Furthermore, granularity of tasks should not be too fine,
so that the costs of data transfer between stages do not exceed the profits from performing
computation in parallel. In general, the pipeline structure does not need to be a sequence
of processors. The pipeline processors can be arranged for example into a two-dimensional
matrix or may have a structure of any directed graph. The pipeline method is used not only
to construct algorithms (see p. 128), but can also be applied in hardware systems (see p. 175).


   4.6  Notes to the Chapter



   4.6.1  Foster’s Method

In this section, we present a method of parallel algorithm design for distributed memory
computers proposed by Foster [132] (chaps. 1–2). The components of a parallel
programming model adopted by Foster are tasks and channels. A parallel computation
is a set of concurrently executed tasks, which cooperate with each other by sending
messages over channels (Figure 4.32). A task incorporates a sequential program, local
memory, and a set of I/O ports. In addition to reading and writing its local memory, a
task can send and receive data (messages) using output and input ports. A pair
consisting of input and output ports can be connected by a channel which is a FIFO
queue. So, the tasks receive messages in the order they are placed in the output
port located at the other end of a channel. The operation to send a message is
asynchronous, that is, it ends just after inserting the message in the output port. The
operation to receive a message is, however, synchronous: it suspends task execution, if
the message is not available in the input port. In this case, we say that the task is
blocked until the message arrives. It is assumed that access to local data stored in
the local memory of a task is faster than access to nonlocal data stored in the
memories of other tasks. Access to nonlocal data must be implemented through
channels.


   



[image: ]

 
Figure 4.32.  A  parallel  programming  model.  The  left  side  describes  a  parallel
computation  represented  by  a  directed  graph  whose  vertices  depict  tasks,  and
arcs—channels. The right side illustrates a single task that encapsulates a sequential
program, local memory and a set of I/O ports that define an interface of a task to
its environment.

   

   The model allows for the number of tasks to change over time. In addition to local
memory access and data transfer via channels, the tasks can also create other tasks and
end their operation. Similarly, the channels between tasks can be created and deleted
dynamically. Thus, a directed graph representing a parallel computation, an example of
which is depicted in Figure 4.32, can change. 

   Foster distinguished the following stages in his method (Figure 4.33):
     

   1. Partitioning (decomposition) of computations and data into tasks of small
     size.
     

   2. Defining  communication  between  tasks  necessary  to  coordinate  their
     execution.
     

   3. Agglomeration  (aggregation)  of  tasks  to  increase  their  size  and  thus  to
     improve efficiency of potential parallel algorithms, and to reduce the cost of
     their development.
     

   4. Mapping  (or  assigning)  tasks  to  processors  so  as  to  maximize  processor
     utilization and minimize communication costs.


We will characterize these steps in more detail.






[image: ]

 
Figure 4.33. Foster’s method of designing parallel algorithms. 

   

   4.6.2  Partitioning

   The purpose of this stage is to divide computations that solve a problem into a
large number of small tasks. The division should take maximum advantage of
performing computations in parallel. In other words, it should yield a fine-grained
decomposition of a problem. This does not preclude to give up opportunities for
parallel execution of tasks in later design stages due to, for example, high costs
of communication or specific features of a parallel computer. Indeed, in the
third stage it is possible to reduce computation granularity by agglomerating
tasks to increase their size, and as a result to improve efficiency of potential
parallel algorithms. Foster points out that separation of tasks is based most
often on data to be processed or computations to be performed. As we know,
this corresponds to data and functional decompositions. Of course, to extract
tasks the other types of decomposition can also be used, that is: recursive,
exploratory, speculative and mixed, which we discussed in Sections 4.2.4–4.2.6. For
each design stage, Foster drew up a checklist, which is helpful in evaluating
correctness of stage implementation. For the partitioning stage the checklist is as
follows:


   
   	The number of extracted tasks is at least an order of magnitude greater than
   the number of processors in a target computer. If this condition is not fulfilled,
   there will be little flexibility in later design stages.
   

   	The partitioning avoids redundant computation and storage requirements. If this

   is not the case, the parallel algorithm may not be scalable to address problems
   of larger size.
   

   	The extracted tasks are roughly the same size. Otherwise, it may be hard to
   balance the loads of processors.
   

   	The number of tasks scale with problem size. If not, the parallel algorithm may
   not be able to solve large problem instances when more processors are available.
   

   	The  alternative  partitions  into  tasks  have  been  examined.  Their  early
   identification  increases  flexibility  in  choosing  design  options  in  subsequent
   stages.



   4.6.3  Communication

    The tasks defined by a partition are expected to execute in parallel,
however, they do not execute independently from each other. In general, the
tasks14
communicate with each other to exchange partial results of computation and to
synchronize their actions. In this stage the communication requirements related to data
exchange between tasks and the channel structures to satisfy these requirements are
defined. Foster distinguished two types of communication: local and global. If
a task communicates with a small set of other tasks, the communication is
categorized as local. To implement such communication, we define channels
through which a task sends or receives data from other tasks. The second type of
communication categorized as global occurs when a large number of tasks
communicate with each other. One example of such communication is gathering by a
selected task data sent by all other tasks, or another, gathering in all tasks data
sent by all other tasks. To carry out global communication we do not define
channels suitable for this purpose, because typically languages and libraries used to
implement a parallel algorithm include appropriate means to organize such
communication.15
It is worth recalling that communication operations should be avoided, if possible,
because their costs are included in the parallel overhead, which reduces an algorithm
efficiency (see Section 4.4.1).

   A checklist for the stage discussed is as follows:


   
   	The tasks perform roughly the same number of communication operations, or
   otherwise, communication operations are evenly distributed among processors.
   

   	Each task communicates only with a small number of neighbors (as in the left

   side of Figure 4.32).
   

   	Communication operations are performed concurrently.
   

   	Computations of tasks are implemented concurrently. If not, consider reordering
   of compute and communication operations.



   4.6.4  Agglomeration

   In the previous stages we focused on the maximum utilization of potential for
parallel execution. While decomposing the problem, we aimed to extract as many tasks
as possible. It may, however, prove that the algorithm with a large number of tasks
implemented in a real parallel computer will be ineffective. Create and perform
these tasks in the form of processes or threads will in fact be associated with
significant time overhead. Besides, if the number of tasks exceeds the number
of available processors, for example by a few orders of magnitudes, then the
tasks will have to be executed via time-sharing, which brings further delays. In
the agglomeration stage, we explore whether it is worthwhile to combine some
tasks, so as to provide a smaller number of tasks, each of greater size, and thus
to increase efficiency of the parallel program. We also examine whether it is
useful to replicate data and computation (see p. 141). Usually it is advisable
that the number of tasks obtained after agglomeration slightly exceeds the
number of processors. This provides the potential to overlap communication on
computation (see Section 4.4.5). If a target computer is known we may strive to ensure
that the number of tasks is equal to the number of available processors. Then
the final stage of design that relies on assigning tasks to processors becomes
trivial.

    One of the objectives of agglomeration is to reduce communication costs by
decreasing the number of tasks. If we combine certain tasks into a larger one, the data
processed by those tasks become directly available in memory of the resulting task. So
there is no need to refer to these data by means of channels. The essence of this way of
communication elimination is to increase the locality of references to data. Reducing
communication costs can also be achieved by aggregating messages sent by combined
tasks into messages of larger size. Indeed, it is better to send long messages than short
ones, because of the latency associated with each data transmission (see pp. 94
and 142).

   The second objective of the agglomeration stage, next to minimize communication
costs, is ensuring adequate scalability and portability of the designed algorithm. This is
achieved by isolating a sufficient number of tasks. If the number of tasks created in the
agglomeration stage is too small, then due to low scalability of the algorithm, its
execution by more processors than was originally assumed would be impossible. For
example, assume that we want to process a three-dimensional data structure of size
[image: ]. If the structure is decomposed along one dimension, then the
algorithm can be implemented by a maximum of 10 tasks (one task will process

[image: ] elements of the structure). So this way of decomposition limits the
maximum degree of algorithm concurrency to 10. Foster recommends—by the
so-called rule of thumb—that a number of tasks yielded by the agglomeration
stage should be an order of magnitude greater than the number of available
processors.

   The third objective of the agglomeration stage is to reduce the costs of developing a
parallel program. When it is designed based on a sequential program, the efforts should
be made to ensure full use of it. In other words, we should strive to make sure that the
amount of necessary changes to transform it into a parallel program are as small as
possible.

   Here is a checklist for the agglomeration stage:


   
   	Agglomeration  reduced  communication  costs  by  increasing  locality  of  data
   references. If not, then verify whether this could be achieved by adopting an
   alternative agglomeration method.
   

   	If agglomeration has replicated computation, then their execution time is shorter
   than the execution time of communication operations that have been eliminated.
   

   	If agglomeration has replicated data, then their size is so small that it does not
   worsen scalability of the algorithm by limiting the range of problem sizes it can
   solve.
   

   	The   tasks   created   by   agglomeration   have   similar   computation   and
   communication costs.
   

   	The number of tasks is an increasing function of the size of a problem being
   solved.
   

   	The  number  of  tasks  after  agglomeration  is  as  small  as  possible,  on  the
   one  hand,  and  sufficiently  large  in  relation  to  the  number  of  processors  in
   target parallel computers, on the other hand. In other words, the degree of
   algorithm concurrency is appropriate considering the number of processors of
   those computers.
   

   	A  trade-off  is  made  between  the  selected  methods  of  decomposition  and
   agglomeration, and the expense of modifying a sequential program that underlies
   the development of a parallel program.



   4.6.5  Mapping

   In the last stage of parallel algorithm design we map (or assign) tasks separated
by agglomeration to processors. In a centralized multiprocessor this assignment is done
automatically by the operating system. However, in distributed memory computers, which
are investigated here, the assignment problem must be solved by the algorithm designer.
The goal is to assign tasks to processors in such a way that the execution time of a parallel
algorithm is as short as possible. This is attained, on the one hand, by assigning tasks to
different processors to increase parallel execution of tasks. On the other hand, tasks that often
communicate with each other are assigned to the same processor, which increases locality
of data references and as a consequence reduces communication costs. In most cases, these
activities remain in conflict with each other, because the increase in degree of computation
implemented in parallel by using multiple processors usually increases communication cost, and
vice versa.

   It is known that the problem of finding the optimal assignment that minimizes
execution time of a parallel algorithm by a compromise between the degree of task
parallelism and the cost of communication is NP-complete (see p. 144). For this reason, to
solve the assignment problem in practice some kinds of heuristic algorithms are
commonly used.

   Important role in minimizing the execution time of a parallel algorithm plays
processor load balancing. Uniform distribution of computation (tasks) between
processors reduces times in which processors are idle, and as a result it reduces the total
execution time of the algorithm. By reducing idling of processors we also get better
efficiency of their utilization.

   In some cases assigning tasks to processors so as to balance their loads can be easy.
Look into an example in which the number of tasks is known before execution. Suppose
that the tasks have been extracted by employing data decomposition, which split
processed data into a number of equal parts. It is likely that the amount of
computations associated with each of these parts will be the same, or similar to
each other. By assigning these computations in the form of tasks to particular
processors we will balance their loads. Moreover, if we store data in a regular
structure, processors assigned to its parts will communicate with a small number of
neighbors. An illustration of decomposition of data stored in a matrix, and
with the block assignment of tasks to processors is given in Figure 4.20. Load
balancing can also be done by data decomposition with the cyclic or block-cyclic
assignments (see p. 146), and it can be based on functional decomposition (see
p. 149).

   In the above example, we assumed that the number of tasks was known before
execution of the algorithm. In such a case we deal with static load balancing. If the
tasks can be created and deleted during execution of the algorithm, then load balancing
is dynamic in nature. Both static and dynamic load balancing are more difficult to
accomplish, if the tasks vary in size, that is with an amount of computation to perform.
Static load balancing for tasks with different sizes can be achieved by applying a
round-robin or randomized algorithm (see Section 4.5.2). For dynamic load
balancing the centralized, decentralized and distributed methods are applied (see
Section 4.5.3).

   A checklist for the mapping stage is as follows:



   
   	In order to minimize communication costs consider whether a processor should
   be assigned only one task or more of them.
   

   	Conduct the usefulness analysis of both static and dynamic method of task
   assignment.
   

   	If a static method is used, make sure that the number of tasks is an order of
   magnitude greater than the number of processors.
   

   	If a dynamic method is used, verify whether the master performing assignment
   will not become a bottleneck.



   4.7  Exercises


1.    Write  a  parallel  program  to  compute  the  value  of  the  integral
   of  one  variable  function  [image: ]  in  an  interval  [image: ].  Informally,  the
   value   is   equal   to   the   area   of   the   region   in   the   xy-plane   that   is
   bounded  by  the  graph  of  f ,  the  x-axis  and  the  vertical  lines  [image: ]
   and  [image: ].  This  area  can  be  approximated  by  the  sum  of  areas  of  n
   rectangles:16
   [image: ],  where  [image: ] is  the  integration  step,
   n the  number  of  elementary  intervals  of  integration,  and  [image: ] for
   [image: ], 1, …, [image: ] are the points inside the integration interval. A sequential
   program to compute the integral value may look as follows:
   [image: ]

   HINT: Apply the master-worker17
   method. To transfer data, use the instructions send([image: ]variable[image: ]processor_no[image: ])
   and receive([image: ]variable[image: ]processor_no[image: ]), where variable is the name of a variable
   whose value is sent or received, and processor_no is the number of destination or
   source processor.

   


2.   [315] (chap. 10) Following the Monte Carlo method develop a parallel program
   to estimate the value of [image: ]. Assume a quarter circle of radius 1 embedded
   in a square of side 1. Then the ratio of the area designated by the quarter circle
   to the area of the square is [image: ]. Suppose we generate n-fold a pair of random
   numbers [image: ] uniformly distributed on the interval [image: ]. Each pair defines
   the coordinates of a point lying inside the square. Let T be the number of points
   (out of n points) falling inside the quarter circle, that is satisfying the condition
   [image: ]. If the number of points n is increasing, then the ratio [image: ] will
   be getting closer to the ratio of the area of the quarter circle to the area of the
   square. Consequently, the ratio [image: ] will be increasingly better approximation
   of [image: ]. Figures 4.34 and 4.35 depict, respectively, a sequential program to
   estimate the value of [image: ], and its running results for different values of n.  
   [image: ]

 
Figure 4.34. A sequential algorithm to estimate the value of [image: ].
   

    
 [image: ]

Figure 4.35. Computing
estimation  of  [image: ];  (a) [image: ],  [image: ],  [image: ];  (b) [image: ],
[image: ], [image: ]; (c) [image: ], [image: ], [image: ]. 
   

        Remarks [126, 210]: The essence of Monte Carlo methods is the use of random
   numbers to solve problems. Based on the series of such numbers, a random sample is
   created of some hypothetical population related to the problem under consideration.
   Then the statistical evaluation of a selected parameter of the random sample is
   performed, which gives the problem solution. The solution thus acquired is
   associated with a certain risk in terms of its accuracy. Hence the method derives its
   name from the Monte Carlo casinos in the Duchy of Monaco—the capital of
   European gambling. Monte Carlo methods are used to solve a variety of
   problems, for example to find approximate solutions to NP-hard problems of
   discrete optimization, to solve partial differential equations, to solve some

   questions in the game theory, etc. In many cases, Monte Carlo methods are
   competitive with respect to other methods, and sometimes they are the
   best.
   
      In the above example of estimating the value of [image: ], a random sample is a set of
   points [image: ] for [image: ] and an estimated parameter is the ratio of the
   number of points satisfying condition [image: ] to the number of all points in the
   sample. The Monte Carlo method to solve this problem does not converge very well.
   The approximation error of the [image: ] value decreases in line with the function [image: ].
   The estimation of [image: ] can be found more quickly and with greater accuracy by
   computing the value of integral [image: ]. This can be done by dividing
   the integration interval [image: ] into a number of subintervals, say n, and
   estimating the area under the graph of integrated function [image: ] by the
   sum of rectangles or trapezoids areas (see Exercise 1). Interestingly, the
   value of this integral can also be evaluated by choosing the Monte Carlo
   method, generating n random values of x uniformly distributed on the
   interval [image: ], and then computing the arithmetic mean of the integrand
   values in these points. This approach is justified since the following equation
   holds:


   
   [image: ]

   
   where function f  must be integrable, and have possibly a finite number of
   discontinuity points with finite values. We encourage the reader to compare the
   results of integration with the trapezoidal method (see Exercise 1) and the Monte
   Carlo method.
   


3.   [396] (sect. 3.2.2), [315] (Exercise 9.9), [259, 308] Provide a parallel program to compute the
   Mandelbrot set18
   M containing complex numbers obtained by iterating a function: 
   [image: ]

     where  [image: ]  for  [image: ],  1,  2,[image: ]is  the  complex  number  of  the  form
   [image: ],  generated  in  a  [image: ]th  iteration  based  on  [image: ],  and

   c  is  the  complex  number  as  to  which  we  want  to  determine  whether
   or  not  it  belongs  to  set  M.  The  initial  value  of  [image: ]   in  the  iteration
   process  is  0.  Iterations  are  performed  until  the  modulus  (absolute  value)
   of  [image: ]  is  greater  than  2  (then  in  subsequent  iterations  it  will  go  to
   infinity) or when the number of iterations reaches a predetermined limit. 

         If the modulus of z during the iteration process is limited, then
   the complex number c belongs to set M; otherwise, it does not belong
   to it. The modulus of a complex number [image: ] is defined as
   [image: ]. The value of [image: ] can be found from equation
   [image: ]. Let [image: ] and [image: ] denote the real and
   imaginary parts of [image: ]. Then the real and imaginary parts of [image: ] are equal to:
   
[image: ]

    where [image: ] and [image: ] are the real and imaginary parts of number c. Figure 4.36
   presents the image of the Mandelbrot set on the complex plane. The numbers c
   belonging to the set are marked as black pixels of coordinates [image: ]. The
   Mandelbrot set is coherent, and its image is contained entirely within a rectangle of
   vertex coordinates [image: ] and 0, 5 [image: ] i. The image is generated by a
   program presented in Figure 4.37 assuming the following data declarations:

   
[image: ]

 
   [image: ]

 
Figure 4.36. An image of the Mandelbrot set.
   
   

   
 [image: ]

 
Figure 4.37. A sequential program to compute the image of the Mandelbrot set.
   

   

4.   [298] (chap. 6), [290], [396] (sect. 4.2.3), [315] (sect. 3.6) Construct a
   parallel program to solve the n-body problem. The problem concerns
   the impact of gravitational forces on the motion of bodies, and it appears
   in various fields of science. For example, astrophysicists try to evaluate
   the position and velocity of stars and planets traveling in the universe,
   and chemists the position and velocity of molecules or atoms moving in
   gases or liquids. The solution to the problem for n-element set of bodies
   can be attained by simulation their motion in time and space. The input
   data are the mass, position and velocity of each body in the initial time of
   simulation [image: ], and the output data—the position and velocity of bodies in
   user-preset points in time [image: ],[image: ], [image: ], where [image: ] determines the
   size of simulation step, and K the number of steps. The purpose of this
   exercise is to develop a parallel program simulating the movement of n

   bodies taking into account their mutual attraction forces. For simplicity,
   we assume that the bodies move on a plane, that is in a two-dimensional
   space.
        The formulation of the problem is as follows. We are given a set of n bodies on
   positions [image: ][image: ] and velocities [image: ][image: ] at time t for [image: ] (quantities in
   bold denote vectors; in a two-dimensional space a position vector [image: ][image: ] is governed
   by components [image: ] for each space dimension, and a velocity vector [image: ][image: ]
   by components [image: ] on these dimensions). According to the law of universal
   gravitation,19
   the attraction force of body i by body j is equal to:


   	 
   [image: ]
	(4.2)


   
   where [image: ] is the gravitational constant, [image: ] and [image: ]
   are the masses of bodies i and j, [image: ] is the vector directed from body i
   to j, and [image: ] is the length of vector [image: ], which is the distance between
   bodies i and j. The first factor in Equation (4.2) expresses the force acting on
   body i. It is proportional to the product of the masses of the two bodies
   and inversely proportional to the square of the distance between them.
   The second factor gives the direction of the force in the form of the unit
   vector directed from body i to j. Observe that body i attracts body j with
   the force of the same magnitude, but with opposite direction. The total
   force [image: ][image: ] acting on body i is equal to the sum of attractions of [image: ]
   bodies:


   	 

   [image: ]
	(4.3)


   
   According to the Newton’s second law of motion, acceleration [image: ][image: ] with which a
   body moves is proportional to the applied force and inversely proportional to
   the body weight, that is [image: ][image: ] [image: ][image: ] [image: ][image: ] [image: ][image: ],
   where [image: ][image: ] and [image: ][image: ] are, respectively, the second derivative of the
   body’s position with respect to time, and the first derivative of the body’s
   velocity with respect to time. Equation (4.3) yields the following differential
   equation:


   	 
   [image: ]
	(4.4)


   
   It is difficult to find the exact solution to the above equation. It can be solved in an
   approximate way assuming that in the interval [image: ] both acceleration and velocity
   of body i do not change and are equal, respectively, to [image: ] and [image: ]. So we have:
   
[image: ]

    Equations (4.5) and (4.6) allow us to calculate the velocity of body i in time
   [image: ] based on its acceleration in time t, which is equal to [image: ], as
   well as the position of body i in time [image: ] based on its velocity in time t, which is
   [image: ].20
   Since the position and velocity of bodies are known in the initial time of
   simulation [image: ], thus we can compute them in moments [image: ] and so
   on. Figure 4.38 presents a sequential program to simulate motion of n
   bodies in a two-dimensional space for the following data specifications:

   
[image: ]

     Note  that  the  bodies’  positions  are  stored  in  a  two-dimensional  array
   pos  of  n  rows  and  two  columns  indexed  0  and  1.  The  columns  0  and
   1   store   the   x  and   y  components   of   bodies’   positions,   respectively.
   The   same   applies   to   variables   of   velocity   vel   and   force   F.   
   
   [image: ]

 
Figure 4.38. A sequential program to solve the n-body problem.
   

        Now let us explain how the forces [image: ], [image: ] are computed in
   lines 8–19 of the program in Figure 4.38. They are found by using the partial forces
   [image: ] that can be represented by the matrix:


   	 

   [image: ]
	(4.7)


   
   The forces [image: ] are the result of aggregation of partial forces [image: ] for [image: ],
   1,[image: ], [image: ] that appear in the matrix rows. Notice that the values of [image: ] lying
   symmetrically on opposite sides of the matrix main diagonal are equal to the
   modulus, but have opposite signs. Therefore, when determining the values of
   [image: ] (in lines 15–16 executed for [image: ] and [image: ], 2,[image: ],
   [image: ]), also the values of [image: ],[image: ], [image: ], located in the first
   column of matrix [image: ] are evaluated. These negative values are accumulated
   in appropriate variables [image: ] in lines 17–18. The values [image: ],[image: ],
   [image: ] for the second and further rows of the matrix are found in a similar
   fashion.
   
    As mentioned earlier, this exercise is to write a parallel program to
   simulate the movement of n bodies considering the forces of mutual
   attraction. Assume, dear reader, that the bodies—unlike to the stars
   and planets—move in a two-dimensional space. Their trajectories can
   intersect, but at no time two bodies can appear in the same point of
   space.21
   In this case, the denominator in Equation (4.3) would have reached a value of 0 and
   determining the force [image: ] would be impossible. Assume that the number of
   bodies may be large, for example of thousands. Propose a suitable decomposition of
   the problem into tasks, and then perform an analysis of computation granularity to
   minimize their costs.
   


5.   Develop a parallel program to construct the optimal binary search tree.
   Formulation of the problem to build such a tree is as follows [85] (sect. 15.5), [221].
   We are given a sequence [image: ] consisting of n different keys arranged
   in ascending order, that is satisfying conditions [image: ]. For the given
   sequence we want to construct a binary search tree with the minimum expected cost
   of search. For each key [image: ], where [image: ], 2,[image: ], n, we know the probability
   [image: ] with which the key will be searched for in the tree. Since the keys not
   belonging to sequence K can also be searched for, we introduce pseudo-keys
   [image: ], which represent keys from the outside of this sequence.
   More specifically, pseudo-keys [image: ] and [image: ] represent, respectively, all keys
   less than [image: ], and all keys greater than [image: ], whereas pseudo-keys [image: ] for

   [image: ], 2,[image: ], [image: ] represent all keys lying between [image: ] and [image: ]. For
   each pseudo-key [image: ] the probability [image: ] of searching for it in the tree is
   known. Table 4.1 contains the probabilities [image: ] and [image: ] of searching for the
   keys in a sample sequence [image: ]‘there’, ‘play’, ‘cat’, ‘no’, ‘is’, ‘mice’[image: ],
   and Figures 4.39a and b depict the worst and the optimal tree in terms
   of the expected cost of search. Let us note that any subtree of a binary
   search tree includes subsequent keys from a sequence [image: ] for
   [image: ] as the internal vertices, and the leaves in this subtree must be
   pseudo-keys [image: ]. For example, the subtree with root [image: ] in
   the tree given in Figure 4.39a contains keys [image: ], and its leaves are
   pseudo-keys [image: ] and [image: ]. Since every search ends either successfully with
   finding a key [image: ], or unsuccessfully with finding a pseudo-key [image: ], it holds:
   
 

 Table 4.1 Probabilities [image: ] and [image: ] for a sample sequence of [image: ] keys.
    	i   

	 0  

	  1   

	  2   

	 3  

	 4  

	 5  

	  6   
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	‘play’
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	‘no’

	 ‘is’ 
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	[image: ]

	   

	 0.15 
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	0.05

	0.10
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	 0.05 
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	0.04

	 0.02 

	 0.08 

	0.06

	0.05

	0.06

	 0.09 


                                            


   

   

     
   [image: ]

   
   Let the cost c of searching for a key [image: ] or [image: ] in a tree T be equal to the number of
   comparisons of keys in the examined vertices. Then the expected cost of searching for any key
   in T is: 
[image: ]

    where g is the depth of the vertex with key [image: ] or [image: ] in T. Based on this formula
   we can count the expected cost of search for any key in the tree in Figure 4.39b as:
   [image: ] [image: ].
   

  
 [image: ]

 
Figure 4.39. The worst (a) and the optimal binary search tree (b) for keys in
Table 4.1. The expected costs of search in these trees are, respectively, 4.16 and
2.9.
   

   The problem in question is to find the optimal binary search tree, that is of
   minimum expected search cost. We will solve the problem by the method of dynamic
   programming.22
   To this end, we must demonstrate that it has the property of optimal
   substructure [85] (sect. 15.3). Suppose we have an optimal binary search tree T
   and its arbitrary subtree [image: ] with keys [image: ],[image: ], [image: ]. Then [image: ] must be the
   optimal search tree for keys [image: ] and pseudo-keys [image: ]. If
   there would be a subtree [image: ] with the less expected cost of search than the cost of
   subtree [image: ], then in place of the subtree [image: ] in T we could insert the subtree [image: ]
   and obtain the tree with the lower cost than the cost of tree T. This however would
   deny its optimality. We have thus demonstrated that our problem has the property
   of optimal substructure, or otherwise, the sought optimal tree consists of optimal
   subtrees.
   
   Employing the method of dynamic programming we will build the sought tree in
   an upward way beginning from the smallest optimal subtrees and finding larger and
   larger subtrees, benefiting from the previously built and saved smaller subtrees. Let
   us examine how we can find optimal subtrees. Given keys [image: ], one of
   them, for example [image: ], where [image: ], will be the root of the optimal binary
   search tree [image: ] containing these keys. The left subtree of root [image: ] will contain keys
   [image: ],[image: ], [image: ] and pseudo-keys [image: ], and the right subtree
   keys [image: ] and pseudo-keys [image: ]. To be sure that the tree
   [image: ] is optimal, we must check all candidates for the root [image: ], where [image: ],
   and also evaluate all optimal search trees containing keys [image: ],[image: ],
   [image: ], and those containing keys [image: ]. When building the
   optimal tree for keys [image: ] consisting of two subtrees, the following
   two special cases may occur. In the first of them as root [image: ] we select
   key [image: ]. Then the left subtree does not contain any keys. However, taking
   into account that the tree also includes pseudo-keys, we assume that the
   left subtree contains one pseudo-key [image: ]. Similarly, in the second case,
   where [image: ], we assume that the right subtree contains pseudo-key
   [image: ].
   
   It is worth adding here that the second property, which should have a problem
   to be effectively solved by dynamic programming, is the property of common

   subproblems [85] (sect. 15.3). We say that a problem has this property, if a
   recursive algorithm to solve the problem repeatedly computes a solution to the same
   subproblem.23
   This makes a space of significantly different subproblems that need to be
   solved relatively small, which ensures good efficiency of algorithm built by
   dynamic programming. In the dynamic programming method the discussed
   property is exploited by solving each subproblem only once and storing the
   attained solution. This solution is then used in constant time, whenever a
   subproblem occurs in further computation. It is easy to see that the problem to
   construct the optimal binary search tree has the common subproblems
   property, because it can be solved by repeatedly computing the optimal search
   subtrees of different sizes. Likewise, as we will show later, the number of
   subproblems solved—that is the optimal subtrees built—is relatively small, since
   [image: ].
   
   Now, let us focus on how we can evaluate recursively the exact expected cost of
   search in the optimal tree with keys [image: ], where [image: ] and
   [image: ]. Denote this cost by [image: ]. In the trivial case, when [image: ],
   there is only one pseudo-key [image: ] in the tree. The expected cost of search is
   then [image: ]. If [image: ], we select the root [image: ] among the keys
   [image: ], and then as the left subtree we take the optimal binary search
   tree with keys [image: ], and as the right subtree—the optimal
   binary search tree with keys [image: ]. What is the cost [image: ]
   of the tree constructed in this way? Note that if any subtree becomes a
   subtree for a certain vertex, then the depth of all vertices of this subtree
   increases by 1. According to Equation (4.8) the expected cost of search in this
   subtree increases by the sum of probabilities of all keys which are in it.
   Denote the sum of these probabilities in a tree with keys [image: ]
   as:


   
   [image: ]

   
   The cost of search in a tree with root [image: ], where [image: ]
   is:


   

   [image: ]

   
   It holds:


   
   [image: ]

   
   and so:


   	 
   [image: ]
	(4.9)


   
   To find the minimum value of cost [image: ] according to Equation (4.9), we must
   consider all possible roots [image: ], which is given by the recursive formula:
   
[image: ]


    A sequential program to determine the optimal binary search tree
   is given in Figure 4.40 assuming the following data declarations:
   
[image: ]

     In  addition  to  arrays  p  and  q  to  store  probabilities  of  searching  for
   the  keys,  and  arrays  e  and  w  needed  to  determine  search  costs,  we
   introduce  an  array  R  that  keeps  the  roots  of  consecutively  evaluated
   optimal   subtrees.   The   final   values   stored   in   this   array   allow   us   to
   reconstruct the structure of the optimal binary search tree that is found. 
 

   [image: ]

 
Figure 4.40. A sequential program to find the optimal binary search tree applying
dynamic programming.
   

        The input data of the program in Figure 4.40 are arrays of probabilities p and q,
   and the output data are the value [image: ] that provides the minimum expected cost
   of search and the array R. The main part of the program consists of three nested for
   loops. The external for loop (line 6) processes the subtrees of larger and larger size,
   ranging from the subtrees with one key ([image: ]) to the tree with n leaves ([image: ])
   (pseudo-keys are also taken into consideration). In the nested for loop (line 7) the
   values of variables i and j are set that define the sequence of keys [image: ] in
   a currently processed subtree. In the most nested for loop (line 10) the
   root [image: ] is sought, for which the expected search cost in a subtree with
   keys [image: ] is minimum, according to Equations (4.9) and (4.10).
   Because the ranges of control variables of all three for loops contain at most
   n values, the time complexity of the program is [image: ]. It is also worth
   noting that the number of subproblems solved, that is the number of optimal
   subtrees built, is [image: ] (their roots are stored above the main
   diagonal in array R). Figure 4.41 presents arrays e and R computed by
   the program for the sample sequence of keys given in Table 4.1. These
   results define the optimal binary search tree illustrated in Figure 4.39b. 

   
[image: ]


 Figure 4.41 Arrays e and R obtained by the program in Figure 4.40 for input
data in Table 4.1.
   


    The purpose of this exercise is to develop a parallel program to find the optimal
   binary search tree. The starting point for achieving this objective can be a sequential
   program given in Figure 4.40. We also encourage the reader to write a procedure
   to reconstruct the structure of the optimal binary search tree based on
   array R. For example, for array R in Figure 4.41 this structure may have a
   form:
   
k4 is the root for keys: d0 k1 d1 k2 d2 k3 d3 k4 d4 k5 d5 k6 d6
k2 is the left son of k4
k2 is the root for keys: d0 k1 d1 k2 d2 k3 d3
k1 is the left son of k2
k1 is the root for keys: d0 k1 d1
k3 is the right son of k2
k3 is the root for keys: d2 k3 d3
k5 is the right son of k4
k5 is the root for keys: d4 k5 d5 k6 d6
k6 is the right son of k5
k6 is the root for keys: d5 k6 d6


   



   4.8  Bibliographic Notes 

Different aspects of parallel algorithms design are discussed in many works including:
JáJá [205], Kumar et al. [230], Wilson [398], Akl [12] and [11], Wilkinson and Allen
[396], Grama et al. [163] (chap. 3), Quinn [315] (chap. 3) and [313] (chap. 3), Mattson
et al. [264] (chap. 5), Miller and Boxer [270], Rajasekaran and Reif [316] (chaps. 17–33),
and Casanova et al. [67]. Methods of problem decomposition into tasks that can
be executed simultaneously are discussed, i.a., in books by JáJá [205] (sect. 2.4), Foster
[132] (sect. 2.2), Wilkinson and Allen [396] (sect. 4.1), Grama et al. [163] (sect. 3.2),
Casanova et al. [67] (chaps. 3 and 4). The term embarrassingly parallel problem
(see Example 4.1, p. 126) indicating a problem easily solved in parallel was introduced
in the book by Fox et al. [135]. Its authors classified problems solved in parallel into
groups: synchronous, loosely synchronous, asynchronous and easily solved in parallel.
Characteristic vector as a means for data representation, which we used in Example 4.2
(p. 128), is discussed in the book by Reingold et al. [323]. The issues related to granularity
of computation are discussed in books by Wilson [398] (sect. 2.5.1), Wilkinson and Allen
[396] (sect. 1.5), Grama et al. [163] (sect. 3.1.1 and sect. 5.3). Methods of parallel
algorithm cost minimization are overviewed in the book by Grama et al. [163] (chap. 5).
Questions concerning assignment of tasks to processors and load balancing are analyzed
in books by Quinn [314] (chap. 5), Bharadwaja [44], Wilkinson and Allen [396] (chap. 7),
Drozdowski [113], Dutot et al. [116], and Casanova et al. [67] (chaps. 6–8). Scheduling
of tasks described by dependency graphs taking into account processor interconnections
are evaluated in works by [45] and Robert [325]. The problem of ecoregion map

design is discussed in the article by Hoffman and Hargrove [196]. The knapsack problem
and the scheduling problem are considered in books by Papadimitriou [301] and Vazirani
[389]. The problem of detecting termination of distributed computation was formulated
in the article by Francez [136]. Different algorithms to solve this problem are presented
in works by Dijkstra and Scholten [101], Tel [378], and Lynch [255]. Leader election as a
major problem in distributed computing is explored in books by Lynch [255] and Attiya
[27]. An example of sorting rows of a two-dimensional array presented on p. 154 is taken
from the book by Grama et al. [163]. Content of Section 4.6 regarding the method
for designing parallel algorithms is based on the book by Foster [132] (chaps. 1–2).
Description of this method can also be found in the book by Quinn [315] (sects. 3.1–3.3).





   1It is also referred to as domain decomposition.

2A positive integer r greater than 1 is a prime number, if it cannot be divided evenly by any number
except 1 or itself. Otherwise r is composite.

3The Greek mathematician Eratosthenes of Cyrene (276–194 BC), custodian of the great Library of
Alexandria, was one of the most spectacular people in the ancient world.

4Sequence [image: ] is a subsequence of sequence [image: ], if there is a strictly increasing
sequence of indices [image: ] such that for all [image: ] we have [image: ].

5The lp2 filter name comes from second order lowpass filter.

6This is a simplification, since the subtrees do not have to be equal, so their search times can be
different.
7Some authors also distinguish the medium-grained computation.

8Observe that for each problem there is a time limit of parallel execution, which can not
be reduced by increasing the number of tasks (processors). For example, in the problem of
matrix–vector multiplication [image: ] primitive operations (multiplications and additions) are
to be performed. Therefore, the problem can not be decomposed into more than [image: ]
tasks.

9The time complexity [image: ] of the sequential algorithm can be viewed as its cost in accordance
with identity [image: ], where the multiplier 1 is the number of processors used for
computation (see p. 66).

10If p divides n.

11There is also possible block-cyclic assignment, in which processors are assigned separate blocks of
data in a cyclic manner.

12Depending on the problem the partition may also be applied to the set of edges.

13We assume that computation are carried out in accordance with the network model.

14The tasks are executed as processes, so we may also talk about communicating processes.

15These are means of the so-called collective communication (see for example Sections 6.3.5, 6.4.2 and
reduction clause on p. 264).

16This formula is also called rectangle rule. Instead of rectangles we may use trapezoids (see
Exercise 1 in Chapter 6), or some more advanced methods to approximate each of n subareas.

17Also called master-slave method.

18From the name of Benoît B. Mandelbrot (1924–2010), a French mathematician, recognized as the
father of fractal geometry. He described the Mandelbrot set and introduced to mathematics the concept
of fractal.

19Also referred to as Newton’s law of gravitation.

20Such approximate solving, and in essence, integration, of a differential equation is called Euler’s
method. Leonhard Euler (1707–1783) was a Swiss mathematician, physicist, and astronomer, one of the
founders of modern mathematics.
21Such an assumption is not made when motion of galaxies are simulated. Galaxies treated as
generalized “stars” can in fact interpenetrate.

22It is believed that the method was invented by American mathematician Richard Ernest Bellman,
1920–1984. He also formulated the principle of optimality, which states that “an optimal sequence of
decisions in a multistage decision process problem has the property that whatever the initial state and
decisions are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decisions” [42].

23For comparison, in problems solved effectively by using the “divide and conquer” method, in every
step of recursion significantly different subproblems can be solved.
                                        

    

   5
 Architectures
of
Parallel
Computers


   5.1  Classification of Architectures

Roughly speaking, computer architecture is a structure of computer system
components. Architecture, in addition to manufacturing technology, is a major factor
determining the speed of a computer. Therefore designers devote a great deal of
attention to improving computer architectures. One of architecture classifications is
Flynn’s taxonomy, which is based on the concepts of instruction stream and data stream.
An instruction stream is a sequence of instructions executed by a processor, and a
data stream is a sequence of data processed by an instruction stream. Depending on
the multiplicity of instruction and data streams occurring on a computer, Flynn has
distinguished four classes of architectures (Figure 5.1).


   



[image: ]

 
Figure 5.1. Flynn’s taxonomy.

   
    Computers of SISD architecture, in brief SISD computers, are conventional
computers wherein a processor executes a single instruction stream processing a single
data stream. In modern processors, regularly more than one instruction is executed
within a single clock cycle. Processors are equipped with a certain number of functional
units enabling implementation of instruction in a pipelined fashion. Processors with
multiple functional units are called superscalar.

   Suppose that the process of executing an instruction consists of six sequentially
performed microoperations (also termed microinstructions): fetch instruction (FI),
decode instruction (DI), calculate operand address (CA), fetch operand (FO), execute
instruction (EI), write result (WR). A sequence of microoperations making up the
process of implementing an instruction is called pipeline. Each microoperation in the
sequence is also called stage of a pipeline, so in our example we have the 6-stage
pipeline.1

Assume that the separate functional units (hardware circuitry) [image: ] have been
implemented in a processor to perform particular microoperations. Pipelined execution of
an instruction stream [image: ] is illustrated in Figure 5.2. In the first stage
(clock cycle 1), unit [image: ] fetches instruction [image: ] from program memory and forwards it to
unit [image: ] for decoding. In the second stage (clock cycle 2) unit [image: ] decodes instruction
[image: ], and unit [image: ] fetches instruction [image: ]. At the end of stage 2, units [image: ] and
[image: ] send results of their operation to units [image: ] and [image: ], respectively, and so
on.



   



[image: ]

 
Figure 5.2. A pipelined execution of instruction stream [image: ]

   

   If we assume that each instruction consists of p microoperations (in our example
[image: ]), then the execution of n instructions by the pipelining method takes [image: ]
clock cycles. So the execution of one instruction takes [image: ] cycles. For large n
this value tends to 1, which means that the average execution time of an instruction is
equal to one cycle, instead of p cycles, as in a conventional processor. The speedup with
respect to sequential computation equal to [image: ]—that for large n tends to
p (the length of a pipeline)—is acquired due to overlapping in time the execution of
microoperations of several instructions.

   The description of instruction pipelining given above is simplified, since we tacitly
assumed that each stage (microoperation) can be completed in one cycle, which is not
always the case. Moreover, in a pipelined way only instructions that are independent of
each other can be freely executed. In most circumstances, however, there are data
dependencies between instructions. For example, a previous instruction [image: ] in an
instruction stream may produce a value needed by a further instruction [image: ]. So
basically, the implementations of [image: ] and [image: ] can not overlap in time, as it
happens in a pipeline. This situation is called data hazard and needs additional
synchronization. Typically, a pipeline for [image: ] is stalled for some cycles, until a needed
value produced by a certain microoperation in the pipeline for [image: ] becomes
available.

   A further difficulty arises when a conditional branch is executed, because depending
on the condition one of two instruction streams can be run after the branch. Suppose we
have a series of instructions [image: ], and [image: ], where [image: ] computes a condition value, [image: ] is
a conditional branch, and [image: ] is the first instruction of the target stream to be
executed after the branch. Let us ask whether the pipelines for instructions [image: ]
and [image: ] can start in cycles, say, [image: ] and [image: ]. There is no problem
with the pipelines for [image: ] and [image: ], these can begin at cycles k and [image: ].
However at cycle [image: ] we do not know the address of instruction [image: ]. This
address will be established by microoperation EI in a pipeline for [image: ]. As a
consequence, the pipeline for [image: ] must be stalled for a few cycles until this
address is available. This situation, called control hazard, also requires proper
synchronization.

   To increase performance, computers may also use several processors pursuing
unrelated instruction streams operating on separate data. Another way to increase
processing power, which is taken in vector computers, is to have a vector processor
next to a conventional one. It implements an instruction set containing
vector instructions that consist of a series of operations on vectors of data.
The operations are carried out by specially designed pipelined arithmetic-logic
units. Even though some part of operations are executed in parallel, vector
computers, as well as those with pipelined processors or with several processors
working independently, are classified as conventional computers of SISD
architecture.2



   One of the problems faced by designers of conventional computer architectures is
different speed of processors and main memories. Speed of modern processors is much
greater than speed of memories, and differences between these rates, despite advances in
manufacturing technology of integrated circuits, continue to grow. However, the higher
the processing speed, the greater must be the rate at which data are supplied for
computation. Unfortunately, reading and writing in contemporary main memories run
slower.3
This problem is alleviated by means of hierarchical memories. The main memory is
complemented by, for example, two level 1 and 2 cache memories [image: ] and [image: ], or
briefly caches (Figure 5.3). Caches have much smaller capacities than the main memory,
but there are much faster. Furthermore, caches on lower levels are faster and have
smaller capacities than those on higher levels. In particular, this pertains to caches [image: ]
and [image: ]. Caches are composed of blocks in the form of sequences of a fixed number of
cells with consecutive addresses. The contents of each block stored in a cache memory
corresponds to the contents of a particular block of cells in the main memory.
Ordinarily, all blocks stored in memory [image: ] are also stored in memory [image: ]. A
central processing unit (CPU) shown in Figure 5.3 includes, among others,
arithmetic-logic unit, arithmetic registers, instruction fetching and decoding
units. The CPU and cache [image: ] are always incorporated in a single chip. The
cache [image: ] can be made as a separate chip, but together with cache [image: ] it
is increasingly an integral part of the CPU. Recently, the level 3 caches [image: ]
are also used; they are implemented outside the processor chip. In caches the
independent modules that store program instructions and data can be isolated (see
Figure 5.4).


   



[image: ]

 
Figure 5.3. The processor and main memory.
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Figure 5.4. A diagram of a dual-core processor.

   

   Faster realization of computing using caches is achieved due to temporal and spatial
locality of memory references. Temporal locality refers to the phenomenon that a
particular memory location, once referenced at one point in time, will be referenced again
sometime in the near future. Thus, it is worthwhile to keep the contents of the referenced
location in cache. For example, instructions (and their operands) implemented iteratively
in loops are generally fetched very often. Spatial locality refers to the phenomenon that
once a particular location is referenced, a nearby location is often referenced in
the near future, for example during array processing. Therefore, caches store
blocks4
consisting of successive memory locations. Transferring the whole blocks between the
main memory and caches is also favorable with respect to gain higher average
transmission rate.

   Let us examine briefly how a processor equipped with a cache memory works.
When the processor needs to read a cell from the main memory, it first checks
whether a copy of this cell is in the cache. If so—which is referred to as a cache
hit—the processor reads the contents of the cell from the cache. Note that this
reading is much faster than that from the main memory. Otherwise—that is,
when a cache miss occurs—the processor transmits the corresponding block of
main memory to the cache and reads the contents of a cell. If the processor
needs to write the value into a cell, this value is stored both in the cache and
main memory. In practice, writing to the main memory can be carried out
slightly later. This is advantageous when more cells have been modified in the
cache, and the update of the main memory is made by a single transmission of a

block of cells. In case of delayed update, contents of the main memory and the
cache may be inconsistent, or incoherent, in certain points in time. The lack of
such coherence creates problems during execution of parallel programs in
multiprocessors with shared memory, in particular of multithreaded programs
implemented on separate processors equipped with caches (see flush construct on
p. 273).


   5.1.1  Multicore Processors

    In 1965 Gordon E. Moore, co-founder of the Intel Corporation,
based on empirical data predicted that the complexity of integrated
circuits measured by the number of transistors would double every 18
months.5
Amazingly, this anticipation, known as Moore’s law, turned out to be true over the last
few decades, both in relation to microprocessors and DRAM memories. Since dense chip
packaging permits to increase the compute rate by increasing clock frequencies, so
essentially, Moore also predicted twofold increase in processor speed within 18 months. In
the function of time, this gives an exponential growth.

   Lately, however, this growth has slowed down, because of approaching several
physical barriers that caused significant problems in semiconductor chip design. Let
us mention a few of them. Increasing the speed of computation by increasing
processor clock frequencies is in fact restricted. This is due to limitations in
packaging more and more transistors in a chip. High integration of semiconductor
circuits makes the width of wires connecting nearby transistors begin approaching
the size of atoms. Likewise, the growing intensity of currents flowing between
a large number of transistors results in an increase of heat released within a
chip. A challenging problem in circuit development is how to remove this heat
from small size circuits, or how to cool them efficiently, so that they will not
overheat. Last but not least, the growing amount of electrical energy consumed by
processors has recently become unacceptable. To use modern parallel computers
containing millions of processors, the capacity from a few up to more than a dozen
of MW are required, which is the power delivered by a small power station.


   A new trend in the pursuit to increase the rate of computation is to develop multicore
processors.6
Such processors are made up of a number of cores within a single chip of a slightly
larger size compared with a conventional processor die. A core is the part of
a processor, which can store data and execute instructions. Generally, these
functions are accomplished by all cores, however in practice there are significant
variations in architecture of cores. Depending on the approach, caches, functional
units or other components may be used only by a selected core or they may be
shared by a group of cores. A diagram of a dual-core processor is presented in
Figure 5.4. The processor comprises two-level cache memories [image: ] and [image: ]. In
memories [image: ] the modules to store program instructions and data being processed have
been isolated. Each core has an exclusive access to the modules assigned. The module
[image: ] is a single uniform cache memory shared by both cores. It stores both instructions
and data.

    Structure of a multicore processor is often similar to a symmetric
multiprocessor (SMP) (see Sections 5.3.1 and 5.4.2) manufactured as a single
chip. Currently, the number of cores in processors ranges from two to several
dozen7
and tends to increase. Multicore processors are becoming more and more popular. They
are used, among others, in personal computers, in various kinds of servers, for example in
servers with a cluster structure (discussed in Section 5.4), in video game consoles.
Programs created for multicore processors are multithreaded in nature (see
Chapter 7).


   5.2  Processor Arrays

     According to Flynn’s taxonomy, processor
arrays8 have
a SIMD (single instruction stream, multiple data streams) architecture. The basic component
of these computers is a control processor that sends to processing elements [image: ]
successive program instructions for execution (Figure 5.5). Processing elements can
perform only arithmetic or logic operations. They do not incorporate units to control
execution of a program, because this role plays the control processor. Data exchange
between processing elements is carried out via an interconnection network of a
certain topology. Processor arrays operate synchronously, that is, in a cycle all
processing elements perform in lock-step fashion the same operation on data stored in
local memories, or some other action, for example communication operation. If we
assume that data in these memories form a matrix, then processing elements perform
simultaneously a current operation on each element of the matrix. Processor arrays have
some capabilities to diversify operations carried out by individual processing
elements. With each instruction the control processor transmits the activity
mask which is a binary word indicating whether a processing element should
implement a given instruction or not. Masks facilitate the skipping of some program
instructions in selected processing elements, thereby allowing diversification of
computation.
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Figure 5.5. A typical organization of a processor array (SIMD).

   

    The disadvantage of processor arrays is inefficient execution of if/else
instructions, therefore they should be avoided, if possible. Consider the instruction
if B then [image: ] else [image: ]. First, the processing elements investigate whether Boolean
expression B evaluates to true. Then, all the elements in which this condition holds,
perform an instruction sequence [image: ], while the others are idle. Similarly, in the next
phase, when a part of elements execute [image: ], the rest of elements are inactive.
Thus, processing elements during execution of if/else instructions are not fully
utilized.

   Processor arrays can be used in cases where large regular data structures are
processed adopting the method of data parallelism (see p. 147). The examples are
programs to simulate atmospheric phenomena, in which computation is carried out on
multiple measurement data like values of temperature, pressure, humidity, etc., arranged
mostly in regular three-dimensional structures. Another field of processor arrays
application is image processing, where there is a need to perform relatively complex
low-level operations on large sets of pixels.

    Early and somewhat later processor arrays (see Section 5.9) started out as
general-purpose computers. However, they turned out to be less useful for “irregular”
problems, for which the algorithms have an advanced flow control. It seems that
currently processor arrays as general-purpose computers reached the twilight stage of
development.9

   It is worth noting, however, that systems operating in the SIMD mode are included
in recent processors manufactured by companies like Intel, AMD/ATI, etc. For the
programming needs of these systems the processor instruction lists have been enriched

with extensions MMX (MultiMedia eXtension) and SSE (Streaming SIMD
Extensions). The SIMD computations employing extensions MMX and SSE are used in
the multimedia field permitting faster processing of multimedia files including
images, videos, audio tracks. The SIMD systems are also increasingly being
used in graphics processing units (GPU), which we discuss in more detail in
Section 5.7.


   5.3  Multiprocessor Computers

   Multiprocessor computers, or briefly multiprocessors, contain a multiplicity of
independent processors. Each processor operates on a separate clock and is equipped
with its own memory, arithmetic registers, program counter, etc. Processors
asynchronously perform multiple streams of instructions that process different data. The
multiple streams of instructions may be related to each other. For example, they may
correspond to subproblems that have been identified during problem decomposition.
Therefore each multiprocessor is provided with appropriate hardware and software means
permitting processors to communicate with each other. According to Flynn’s
taxonomy a multiprocessor is a multiple-instruction multiple-data (MIMD)
architecture.

   Multiprocessors can be divided into two categories: multiprocessors with shared
memory and multiprocessors with distributed memory.



   5.3.1  Shared-memory Multiprocessors

     In this architecture processors share a common, called also global or shared,
memory address space that allows them to store results of computation and to
communicate with each other (Figure 5.6). If the time taken by a processor
to access any memory cell (global or local) in a computer is identical, then it
is classified as uniform memory access (UMA) computer. If the access to
certain memory cells is longer than to other cells, then the computer is called
nonuniform memory access (NUMA) computer. The UMA multiprocessors in which
all processors are homogeneous (in terms of hardware and software) and have
equally fast access to other common resources like I/O devices, buses, etc., are
referred to as symmetric multiprocessors (SMP). Communication between
processors in shared-memory multiprocessors is implemented via read and write
operations to common memory. For example, processor [image: ] writes the message to
a certain memory location, and processor [image: ] reads from the same memory
location. Concerning shared memory of multiprocessors, it is required that
as the number of processors increases, at the same rate should increase the
memory bandwidth, also called memory throughput. This width governs
the amount of data that can be uploaded (downloaded) to (from) memory per
unit time. In order to increase the bandwidth, a memory can be divided into
independent modules operating in parallel. Access to the memory is attained via an
interconnection network (Figure 5.6), such as the crossbar switch, common
bus, omega network, or another multistage network (see Sections 2.2 and 5.6).
Multiprocessor computers with shared memory are also referred to as tightly
coupled.


   



[image: ]

 
Figure 5.6. A structure of a typical shared-memory multiprocessor.

   

   5.3.2  Distributed-memory Multiprocessors

    In these multiprocessors instead of shared memory an interconnection network is
used for communication between processors (Figure 5.7). Local memories of processors
make up the distributed memory of a computer. The communication model supported by
interconnection networks is message passing. Two processors communicate when one
processor sends a message to the second processor, and the second processor receives the
message.10
A distributed-memory multiprocessor mostly built of commodity components is called
cluster (see Section 5.4 for more details). A massively parallel processing system
(MPP) refers to a distributed-memory multiprocessor composed of more specialized
components.11
The MPPs aggregate a large number of processors and are used for compute-intensive
applications, for example for modeling complex, dynamic systems such as world’s weather,
motion of galaxies, etc. While developing parallel programs for distributed-memory

multiprocessors, it is fundamental to bear in mind in which local memories reside data
that are to be processed. Low communication complexity (see Section 3.1) of such
programs is achieved by appropriate data distribution between processor memories.
Multiprocessor computers with distributed memory are also referred to as loosely
coupled.


   



[image: ]

 
Figure 5.7. A structure of a typical distributed-memory multiprocessor.

   

   5.3.3  Distributed Shared Memory

   Program development is easier when your parallel computer contains shared memory.
Therefore, in distributed-memory multiprocessors a distributed shared memory (DSM)
is implemented. The idea is to provide access to all distributed memories of a computer
by employing a single address space. To this aim, the virtual addresses of this space are
assigned to the cells of local memories of respective processors. When a processor refers
to a memory cell that is not present in its local memory, the DSM system after
converting12
the virtual address of the cell into the physical address, performs the transfer of cell’s
contents from the local memory of a corresponding processor using message passing.
Data transfers from nonlocal memories are invisible to the programmer, thus creating an
illusion of existence of shared memory that is actually physically distributed. Obviously,
references to nonlocal memories are associated with greater latency in data
transfer, which is the price one pays for benefits of having a single address
space.

   As already mentioned, symmetric multiprocessors (SMP) guarantee equally fast
access to common and local memories. This kind of memory access is called uniform
(UMA). However, when a number of processors are large, meeting this requirement
by designing fast enough hardware devices and efficient software routines is
difficult. Therefore, most modern multiprocessors comprise modular memory with
hierarchical or distributed structure. In such a structure the reference time to the
cells located closer to a reference point is shorter than to more distant cells.
This kind of memory access is called nonuniform (NUMA). In particular,
nonuniform memory access is characteristic for the distributed shared memory
computers.


   5.4  Clusters

   One of the ways to increase computing power is duplicating processing units and
combining them into systems called clusters. Computer clusters are conceived as
parallel computer systems consisting of connected nodes that comprise processors,
memories, buses, etc., which cooperate with each other. From the user’s point of view a
cluster is an integrated pool of computing resources. Cluster nodes, which are
autonomous computer subsystems, communicate with each other by sending messages.
Communication between processors inside nodes is accomplished by accessing the shared
memory with a single address space. Typically, communication between nodes is 10 to
1000 times slower than communication within a node. If the number of processors
in cluster nodes is greater than the number of nodes, then a cluster is called
constellation. Clusters of high rates of computation comprising a large number of
processors or cores—nowadays from hundreds of thousands to several millions—are

called massively parallel processing systems, in short MPPs. In a cluster
definition given above we have characterized cluster’s architecture in a general way.
Depending on the components of this architecture several types of clusters are
distinguished.


   5.4.1  Symmetric Multiprocessor Clusters

   Clusters of this type are composed of a certain number of nodes that are symmetric
multicompressors (SMP, see Section 5.3) (Figure 5.8). Processors in the SMP
nodes have access to shared memories (denoted by M in the figure) provided,
for example, by crossbar switches (see Section 5.6.2.2). These memories with
respect to a set of SMP nodes are distributed, so downloading by processors the
contents of memory cells located in other nodes is done by message passing.
The memory access in a cluster is therefore not uniform, that is of NUMA
type.
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Figure 5.8. A structure of a computer cluster consisting of SMP nodes; M – shared
memory; P – processor.

   

   To accelerate operation, processors in the SMP nodes are ordinarily furnished with
cache memories, which store the contents of blocks of shared memory cells. This creates
the problem of ensuring coherence of data contained in caches and modified by different
processors. Typically, the data coherence problem is resolved by suitable hardware
components, and solutions in this respect are referred to as ccNUMA (cache coherent
NUMA).


   5.4.2  Multicore Processor Clusters 

   The structure of clusters consisting of multicore processors (MP) is similar to the one
depicted in Figure 5.8, except that multicore processors replace SMPs in the structure
nodes. In MP clusters the amounts of computational work done employing shared
memory is less than in SMP clusters. This is due to the fewer number of cores comprised
in multicore processors relative to the number of processors in SMP subsystems. In
present-day computers, multicore processors have from several to several dozen
cores,13
while the number of processors contained in symmetric multiprocessors range from a
dozen to several dozen.

   Programs for both types of clusters (SMPs and MPs) can be developed with the
MPI library and OpenMP interface, which serve to specify computation and,
respectively, inter- and intra-node communication. By virtue that in SMP clusters
greater amount of computation and communication is done using shared memory, they
are better suited to implement programs of finer granularity and diversified references to
data, that is both of local and nonlocal character.


   5.4.3  Computer Clusters

   A computer cluster is built by connecting via a network a plurality of computers,
each of which constituting a cluster node. In a simple case computers may be connected
by means of a single wire (Figure 5.9a), other possible structures are the ring (Figure 5.9b),
star, etc. If computers are identical in terms of architecture, and hardware and software
configuration, a cluster is homogeneous. Another type are heterogeneous clusters,
which are combinations of any processing units, for example, multiprocessors, PCs, etc.
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Figure 5.9.  A  cluster  composed  of  computers:  connected  by  a  single  wire  (a);
connected  into  a  ring  (b);  a  front-end  computer  provides  support  for  task
dispatching and cluster management.

   

   In recent years, employing symmetric multiprocessors or multicore processors, the
clusters of processing power exceeding several dozen of Pflop/s (petaflop stands for one
quadrillion, [image: ], floating-point operations) have been built. This kind of massively
parallel processing systems (MPPs), also called supercomputers, occupy leading
positions on the list of fastest computers in the world. Mostly, these are proprietary
clusters designed and manufactured out of electronic components produced by a specific
maker. Unluckily, costs of such clusters can reach tens of millions of dollars and only a
few companies are able to produce them. Also the public of these systems is limited and
covers mainly best-funded research laboratories or organizations of government
nature.

    An interesting alternative to expensive supercomputers are commercial
off-the-shelf, or commodity, clusters built with hardware units commonly
available on the market. An example would be a cluster of PCs
(workstations14)
connected via Ethernet. The first cluster consisting of personal computers was set up in
1994 at NASA’s Goddard Space Flight Center. Its creators have called it Beowulf, from
the name of the hero of medieval legend, who defeated the mighty monster
Grendel. Since then, the name Beowulf cluster is synonymous with low cost
cluster built with standard PCs and commercially available communication
network.

   Beowulf clusters are becoming increasingly popular because of numerous advantages,
which include: an extremely favorable performance to cost factor, flexibility in selecting a
structure, ease of expansion and modernization with advances in technology, a wide
variety of available hardware components and software, frequently free of charge and
highly portable. In terms of software, Beowulf clusters often run Linux (or
other Unix-like) operating system and free, open source software developed on
the basis of the GNU Project (www.gnu.org). Due to good scalability large
Beowulf clusters might contain from a few to tens of thousands of processors.
The clusters being discussed have also disadvantages, for example they are not
suitable for fine-grained computation or requiring the use of large shared memory.
Low costs that promote the availability of clusters raise the need to use low
cost communication networks with relatively low transmission speeds and large
latencies.15
Therefore, Beowulf clusters more efficiently solve problems that require coarse-grained
computation, where data processing time prevail over communication time.

   In computer clusters, user applications are running according to the asynchronous
network model with message passing (Section 2.2). To implement distributed
computations commonly the Message Passing Interface (MPI) (Chapter 6) or Parallel
Virtual Machine (PVM) libraries are employed.


   5.4.4  Features and Use of Clusters


   5.4.4.1  Cluster Features

Clusters have different features depending on their architecture, hardware equipment,
manufacturing technology, and many other factors. Let us examine some of
them.

   In terms of node packaging, clusters can be divided into compact or slack. In a
compact cluster, the nodes are densely packaged in one or more racks located in a room.
The nodes are not connected to external devices like keyboards, monitors, mice, printers,
etc. A slack cluster is composed of nodes, such as workstations, PCs, symmetric
multiprocessors (SMPs), etc., along with the accompanying external devices. These
nodes may be situated in various rooms, buildings, and even remote areas. The
methods of node packaging affect the length of communication links, which in turn
have an impact on the choice of link technology. In compact clusters, typically
the networks of high bandwidth and low latencies are used. These are in most
cases specialized proprietary networks. Nodes of slack clusters are typically
connected by conventional local area networks (LAN) or by wide area networks
(WAN).

   Considering management or control, clusters can be classified as centralized or
decentralized. Centralized clusters are managed by a central operator who typically
owns the cluster. Decentralized cluster nodes belong to different owners who can
reconfigure them, upgrade, and turn on or off in any time. An example would be a
cluster of workstations, whose individual users are employees of an institution. The
management of such a cluster is more difficult and can be implemented in a centralized
way by a single operator or in a decentralized manner by several operators. Mostly, a
compact cluster has centralized control, while a slack cluster may be controlled either
way.

   If the hardware and software components in all nodes are uniform, a cluster is
homogeneous, otherwise it is heterogeneous. The nodes of a homogeneous cluster
have processors of the same type, most likely from the same vendor, and work under
supervision of the same operating system. In heterogeneous clusters the nodes have
different internal structures and manufacturing technologies. An important question in
this type of clusters is interoperability, which is essential for load balancing through task
migration, or for ensuring high cluster availability. In homogeneous clusters a
binary program may migrate to other nodes and continue its execution. It is
impossible in heterogeneous clusters, since binary programs can not be implemented in
processors with different architectures and instruction lists.

   From a security point of view a cluster can be either exposed or enclosed. In an
exposed cluster the communication paths (links) between nodes are exposed to the
outside world. These paths, and thus the cluster nodes, can be accessed from the
third-party computers by using standard protocols, for example TCP/IP. This reduces a
cluster security, unless its communication procedures perform adequate protective
measures, such as encryption of transmitted messages. Intense, external communication
running over links by which cluster nodes communicate with each other can disrupt
or decrease the speed of a cluster. In addition, standard protocols slow down
communication because of high overheads. In an enclosed cluster all communication links
are located inside the cluster. Thus, they are not exposed to external interference.
Consequently, outside communication does not affect the work of a cluster. The
disadvantage is that so far there is no standard defining effective, intra-cluster

communication. Therefore, an enclosed cluster often uses a specific protocol developed
specially for its needs.

   A cluster can be classified either as dedicated or enterprise. A dedicated cluster is
normally homogeneous, and it is managed by a single operator. A cluster of this type is
customarily used as a conventional mainframe computer or supercomputer. It is
configured and administered as a single machine that allows multiple users to log in and
run their applications in an interactive or batch mode. A dedicated cluster has mostly
large computational power (throughput) and a short response time. The primary goal of
an enterprise cluster is to utilize idle resources of the system. The cluster nodes are
SMPs, desktop workstations, etc., with peripherals. The nodes—owned by the employees
or teams of a company—can be geographically distributed. The enterprise cluster
administrator has only a limited control over the cluster nodes, because the decision
whether a node is running or not is made by its owner. As a rule, the owner’s tasks
have a higher priority than the tasks carried out by the whole cluster. As a
rule, the nodes are interconnected by a low-cost network, for example by the
Ethernet.


   5.4.4.2  Cluster Use

Clusters can be used to solve collectively a computational problem. This is
accomplished by decomposing the problem into independent parts, so that each
processor can find a solution to its part in parallel with the others. Clusters can be
employed as computing servers. In this case, a single processor or a group of
processors, implement independent computing jobs submitted by the users.
Clusters are also designed for web servers, database servers, mail servers, among
others.

   Some clusters must meet particular requirements, for example high reliability (or
otherwise high availability) or load balancing. A cluster being a compound of computers
is potentially more resilient to failure than a single computer. The increase in resilience is
achieved with hardware and software by duplicating each node that is necessary for
proper functioning of a cluster. In time of failure the jobs of a damaged node are
taken over by its counterpart. The basic problem that must be solved in a high
availability cluster is to guarantee that user data are not lost during a failure. Load
balancing in a cluster that involves uniform task allocation among the nodes is
relevant when the response time to incoming user requests is vital. A cluster
of this type minimizes the response time by preventing situations in which
one user task is directed to an idle node where the service takes fractions of
seconds, while the other is processed by a heavily loaded node in which the
service takes a few or a few dozen seconds. With the aim of load balancing, a
number of algorithms is proposed for allocation of tasks to cluster nodes (see
Section 4.5.3).


   5.5  Computers of Unconventional Architectures 

                                                                     

                                                                     
    In the previous sections we discussed the parallel computer architectures
commonly applied in practice. Apart from that, the unconventional architectures are
presented in the literature. Computers based on these architectures have not
achieved significant commercial success, but part of them are successfully used
to answer a selected number of specific computing problems. We will briefly
describe some of these architectures, including the dataflow computers and systolic
computers.


   5.5.1  Dataflow Computers

   Conventional sequential computers are based on the RAM model, which is controlled
by a sequence of instructions stemming from flow of control in a program being
executed. Both the type of operations done, as well as their order are governed by
successive program instructions. Data play a passive role in computation, they are simply
fetched at times when they become necessary for operation. In order to perform a
computation in parallel, the RAM model is extended to support the pipelined
instruction execution and simultaneous work of many processors (or multiple RAM
models).

   In dataflow computers an operation to implement is governed by availability of its
operands, and not by the current instruction of a program. A dataflow computer
performs simultaneously all operations that can be currently done, that is whose
operands are known. So data play an active role in computation, as their availability
establish the operation and the time when it is executed. In a multiprocessor computer,
parallel computation is specified by a programmer by indicating which sequences of
operations can be executed concurrently. In a dataflow computer possibilities of parallel
execution are not specified explicitly. They come from dependencies between data, since
the input data of operations are the output data (results) of operations done
previously.


   5.5.1.1  Dataflow Computation Model

     Let us study an example of a triangle with side lengths a, b
and c. Suppose we want to evaluate the triangle’s area with Heron’s
formula:16
[image: ], where s is the area, and p is one-half the triangle’s
circumference (perimeter). The area can be found by a sequential computer in the
following steps:



    	   1:  [image: ] := [image: ];

	    

	 6:  [image: ] := [image: ]; 


	   2:  [image: ] := [image: ];

	    

	 7:  [image: ] := [image: ]; 


	   3:  p := [image: ];     

	    

	 8:  [image: ] := [image: ];


	   4:  [image: ] := [image: ]; 

	    

	 9:  [image: ] := [image: ];


	   5:  [image: ] := [image: ]; 

	    

	10:  s := sqrt[image: ]; 
 




   Figure 5.10 gives the data flow graph, which is a model of above computation.
The graph vertices represent operations, and the arcs (directed edges) flow of data or
flow of control values. In vertex 1 the sum of input data a and b is found. The outcome is
conveyed as the input value to vertex 2, in which the length of triangle’s circumference
equal to [image: ] is computed. In vertex 3, that represents the division operation,
one-half of the circumference is computed (note a slightly different designation of
constant arguments that are always available; in this case it is the constant
2).
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Figure 5.10. A data flow graph to evaluate triangle’s area.

   

    A monadic or dyadic operation in vertex v is implemented, if on each input
arc of v there is one data item, and there is no data item on the output arc
of v, which means that the result previously obtained in vertex v has been
consumed17
by a direct successor vertex (or vertices) of v. It is said that if the above conditions
are met, then a vertex fires. The presence, or availability, of data on input
or output arcs is commonly indicated by tokens (Figure 5.11a–c). Once an
operation is implemented tokens representing input data are deleted, and the token
representing an outcome of operation is produced on an output arc. Figure 5.11c
illustrates another elementary operation, which is copying. A vertex with copy
operation fires, when a data item appears on its input arc. As a result, the data
item—in fact a token representing this item—is copied on all output arcs of the
vertex.
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Figure 5.11. Vertex states before and after execution of (a) dyadic operation [image: ];
(b) monadic operation [image: ]; (c) copy operation.

   

    Suppose that the input data [image: ] and c become available in the graph of
Figure 5.10. So, as the first the operation in vertex 1 is executed. Its result is passed to
vertex 2, whose operation is performed as the second in the sequence. The third
operation done is the division in vertex 3, followed by simultaneously executed
subtractions in vertices 4, 5, and 6, and then—also simultaneously performed—by
operations in vertices 7 and 8. As the last, operations in vertices 9 and 10 are done.
Owing to parallel execution of certain operations, the value of s is computed in 7 steps,
instead of 10, as it was in the sequential case. From the above description it follows, that
the computation is asynchronous and it is controlled by data flow. The possibility of
parallel execution of certain groups of operations does not have to be explicitly indicated.
Parallel execution occurs naturally and i conditioned by availability of input data. This
execution pertains to elementary operations, so the dataflow computation is
fine-grained.


   Figure 5.12 depicts a ring-shaped structure of a dataflow computer. The memory
stores records containing data needed to perform operations that correspond to vertices
of a data flow graph. A record includes an operation code (Op), numbers of input and
output data of a vertex ([image: ]in and [image: ]out), data values with flags signaling whether
data are available, and pointers to vertices that are recipients of operation results. The
instruction fetch unit consists of a number of subunits to search concurrently memory
records in order to find an operation that can be executed. If all record flags indicate
that input data of a vertex are available, the appropriate instruction to perform
an operation is created and placed in the queue. Instructions are fetched and
implemented by processors, and their results are sent to the memory update unit.
This unit brings up to date data in relevant records based on results of the
executed operation. The final results of computation are transferred to the I/O
devices.


   



[image: ]

 
Figure 5.12. A general dataflow computer structure.

   

   There are two versions of the firing rule for a vertex: static and dynamic. In the
static one (Figure 5.11a–b), a vertex fires when on each of its inputs there is a token and
there is no token on its output. This rule prevents more than one token from occupying
an arc at a time. In the second, dynamic version, a vertex fires when on each of its
inputs there is at least one token and the absence of token on its outputs is
not necessary. So in this version it is possible to have multiple tokens on arcs.
Depending on a version of the firing rule, a data flow is referred to as static
or dynamic. The dynamic data flow facilitates better exploitation of natural
concurrency in computation, but it gives rise to implementation problems. A token
representing a data item must, in this case, have tags which permit to associate it
with the appropriate dataset. A tag in the form of a label or color contains the
information as to when and how a token was produced and which dataset it belongs
to.



    To express more complex computation we need conditional operations.
Figure 5.13a presents a relational operation to verify whether the numeric inputs
satisfy a relation rop, for example [image: ], [image: ], [image: ], etc. If a relation is satisfied, the
operation result transmitted to the output is a Boolean token with a value of
true (denoted by T), otherwise false (denoted by F). The values T and F are
typically used to control the computation process. For greater clarity the arcs on
which the control data T and F are passed will be denoted by dotted lines. The
sink operation (Figure 5.13b) absorbs any token at its input and generates
no output. The gate operation named T (Figure 5.13c) accepts a Boolean
input s and another input of any type. It moves the non-Boolean input token to
the output, if [image: ]. Otherwise, when [image: ], the gate is equivalent to the
sink, that is the non-Boolean input is absorbed. The gate named F operates in
a similar fashion (Figure 5.13d), however the condition that must be met to
move the non-Boolean input token to the output is [image: ]. To perform the
merge operation (Figure 5.13e) it is required that only one of two inputs is
available. If so, the input token is moved to the output. The operation is nondeterministic in
the sense that if both inputs are available only one of them, randomly selected, is moved
to the output, while the other is absorbed. Therefore, this operation should only be used
when a data flow graph guarantees only one of its inputs have a token at a
time.
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Figure 5.13   Elementary   operations   related   to   conditional   computation:
(a) relation with operator rop; (b) sink; (c) and (d) gates; (e) merge.

   

    The elementary conditional operations can be combined into more advanced
conditional operations. The select operation (Figure 5.14a) moves to the output the
token on the input that corresponds to the Boolean control value s. For example, if
[image: ], then the token from the input marked T is moved to the output. The select
operation does not require tokens on both inputs. The operation fires when the Boolean
input s and at least one token on inputs are available. In the case when both inputs are
available the not moved token is absorbed. The switch operation (Figure 5.14b) moves
the input token to one of outputs marked T or F depending on the Boolean
input s.
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Figure 5.14. Advanced conditional operations and their implementation: (a) select;
(b) switch.

   

   As an example, let us investigate how we can compute the sum of the first n terms of
the harmonic series 

[image: ]

 The computation can be written as follows: 
[image: ]

and its data flow graph is depicted in Figure 5.15. The right part of the figure refers
to implementation of the for loop, and the left part describes summation of
harmonic series. Before commencing the computation the initial tokens with the value of
F should be placed on the control inputs of the select operations. This example points
out how we can describe dataflow computation written with a for statement. Another
example presents computation expressed by a repeat statement. The aim is to
approximate the value of [image: ] with a given precision, say [image: ]. We will acquire the
approximation by finding the zero of the function [image: ] using Newton’s
method.18
Its idea is to find successively better approximations in an iterative process.
The iterations start with an initial guess of the zero, [image: ], which should be
greater than [image: ]. Let us assume [image: ]. Having [image: ] we can compute the next
approximation: [image: ], where [image: ] is the derivative of
a function whose zero is sought. The subsequent approximation is obtained
using [image: ] and the formula: [image: ], and so on. The iterative
process is completed, if for some approximation [image: ] the precision condition is
satisfied: [image: ]. A conventional program to compute successive
approximations looks as follows: 
[image: ]

A graph of equivalent data flow computation is plotted in Figure 5.16. Before the
computation begins the tokens representing an initial approximation [image: ] and the control
value F should be introduced (at the top of the figure).
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Figure 5.15. Computing the sum of the first n terms of the harmonic series.
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Figure 5.16. Approximating the value of [image: ]; sqr denotes the square operation.

   

   To describe data flow computation we need an appropriate programming language.
Properties and various proposals of data flow programming languages are discussed in many
works. Languages of this type are functional in nature, and have distinctive characteristics
that enable programmers to build up data flow graphs with relative ease. For example, in
SISAL19
1.2 language the computation of harmonic series, discussed earlier, can be written
applying the following sequential for loop construct: 
[image: ]

The keyword old preceding the variable name provides the value computed in the
previous iteration of the loop, or the value in the initial section, if this is the first
iteration of the loop. The statements between the repeat and until keywords describe
the computation performed inside the loop, and the loop termination condition follows
the keyword until. In the returns section, value of H specifies the result of the for
loop execution, which is the last value computed for H. In SISAL 1.2 language, this
result is regarded as the value of the for loop, which is just one of the language
expressions.

   The works to construct dataflow computers have been conducted in the universities
and research institutions in several countries. The research group under the leadership of
Jack Dennis working in the Massachusetts Institute of Technology (MIT), US, has built a
computer with static data flow. In the same institute the group led by Arvind proposed
the tagged-token architecture with dynamic data flow. This architecture became the
basis for the development—together with Motorola—of the MIT/Motorola Monsoon
computer. In 1981 John Gurd and Ian Watson and colleagues in the Manchester
University, UK, have built the Manchester dynamic data flow machine of a ring-shaped
structure.

   Other dataflow systems include the Epsilon processor built in Sandia National
Laboratories, New Mexico, US, and the LAU system developed in the CERT-ONERA
research center in Toulouse, France. The most hardware implementations of dataflow
computers have been done in Japan. One of the first was the SIGMA-1 computer built
in Electrotechnical Laboratory in Tsukuba. In the same laboratory a series of machines
called EM were developed, whose last model EM-5 had a hybrid architecture combining
both the features of a dataflow computer and of a conventional control-flow based computer.

In 1991 the Sharp and Mitsubishi companies built the data-driven processor, DDP. The
Enhanced data-driven engine, EDDN, comprising 1024 computing nodes connected by
a two-dimensional torus network were manufactured by Sanyo. The commercial version
of this computer named Cyberflow become available as a personal computer in 1992. It
contained from 4 to 64 computing nodes and achieved a processing speed of 640 Mflop/s.

   Despite an interesting idea underlying flow computation, and multiple research
conducted in the field from the beginning of 1970s, dataflow computers have not become
competitive in comparison with conventional computers. The reason for this is the
enormous hardware complexity of dataflow computers, as well as difficulties in expressing
their computation and developing appropriate programming language compilers. Views
about the future of data flow computation are divided. Some people regard this idea as a
research curiosity claiming that profitable construction of equipment to carry out this
kind of computation is not possible. Others believe that the reason for failure is
nondeterministic (asynchronous) operation, arguing that conventional computers
achieved success, among others, due to synchronous arrangement of their work based
on a central clock. Proponents contend that in the future building dataflow
computers will be profitable thanks to advances in manufacturing technology
of VLSI circuits and the results of further work on ways to express data flow
computation.


   5.5.2  Systolic Computers

   A systolic computer, also called systolic array, is a special-purpose architecture
consisting of processors (computing units) connected in a multidimensional array or less
regular structure. Data being processes are pumped through the array by a master or
control processor, in several directions in a pipeline fashion. Processors implement
operations synchronously as their inputs become available. Figure 5.17 presents an
example of two-dimensional array of processors [image: ] for multiplying matrices
[image: ] and [image: ] of size [image: ]. Within one working cycle processors
perform operations in lines 5–7 of Figure 5.18. The “[image: ]” symbol denotes
a data transfer operation, where left and up provide the directions of data
movement. As the result of execution of these operations the data contained in the
rows of matrix A move in the memories of processors in a direction from left
to right, and the data in columns of matrix B in a direction from the top to
bottom.20
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Figure 5.17. Multiplying matrices [image: ] and [image: ] in a systolic array;
“0” denotes one cycle delay.
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Figure 5.18. Multiplying matrices [image: ] and [image: ] of size [image: ].

   

    The word “systolic” has been borrowed from the medical field, because the
processed data are pumped through the systolic array like blood circulating
in the circulatory system, flowing in and out of a heart at regular intervals.
The final product terms of [image: ] are stored in variables c of particular
processors. The variables are first initialized to zero and after completion of
computation they hold the scalar products of corresponding rows and columns
of matrices A and B. When multiplying the matrices a systolic array carry
out [image: ] additions and multiplications in [image: ] cycles. The complexity of
the multiplication algorithm is thus [image: ]. Figures 5.19 and 5.20 present a
similar algorithm of complexity [image: ] to multiply two-dimensional matrix
[image: ] by vector [image: ]. Notice that to perform the above algorithms, the
elements of a systolic array do not need to be processors in the true sense. One can
use simpler processing elements instead, capable of performing only specific
arithmetic operations like multiplication and accumulation of results in variable
c.
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Figure 5.19    Multiplying    [image: ]   matrix    [image: ]  by    n-element
vector [image: ].
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Figure 5.20    Multiplying    [image: ]   matrix    [image: ]  by    n-element
vector [image: ] in a systolic array; “0” denotes one cycle delay.

   

   The last class in Flynn’s taxonomy comprises multiple-instruction single-data
architectures (MISD). In a computer of such an architecture, multiple streams of
instructions should process a single data stream. So far, a computer operating exactly
according to this principle has not been constructed. Some researches believe that the
MISD class includes discussed above systolic computers.


   5.6  Interconnection networks


   5.6.1  Characteristics of Interconnection Networks

Interconnection networks commonly found in practice are composed of nodes,
communication channels and switches. Network nodes can be processors, memory
modules, I/O peripherals, or any other networked devices. The connections
between nodes are established by means of communication channels (links)
and switches. Links through which data can be sent are usually binded into
wiring looms consisting of copper or fiber optic cables, or paths in an integrated
circuit. Depending on the manufacturing technology, links have various data
transfer rates. Interconnection networks are divided into static and dynamic
(Figure 5.21). In a static network links are permanent connections between nodes. A
dynamic network is equipped with switches, which make possible to set up
connections between nodes according to the needs. A single switch contains
a number of input and output ports. The total number of ports determines
the so-called switch degree. The primary function of a switch is to set up the
connections between the input and output ports. A switch may provide additional
features, for example buffering and routing messages, which involve specifying
paths on which messages travel to their destination nodes. It may also have the
ability to broadcast messages from a given input port to all or selected output
ports.
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Figure 5.21. Interconnection networks: static (a) and dynamic (b). The network
nodes (processors, memory modules, etc.) and switches are marked with circles
without and with shading, respectively.

   

   5.6.2  Network Topologies

   A diversity of network topologies are used to interconnect nodes into networks
(some of them have been discussed in Section 2.2). A network interconnection should
have good communication properties, and at the same time low implementation cost.
These requirements are contradictory, so building a network a trade-off must be made.
Another feature to be taken into consideration when designing a network is its ease of
scaling, or expansion.


   5.6.2.1  Bus Networks

One of the simplest network topologies connects the network nodes (processors, shared
memory modules, I/O devices, and other components of a computer) by means of a
bus (Figure 5.22). The advantage of this topology is low implementation cost
and short distance between nodes, [image: ], resulting in fast data transmission.
Since at any given time only one sender (node) can transfer data on the bus, it
contains a special hardware unit called arbiter to resolve conflicts in access to the
bus.21
The cost of the network, which can be estimated as [image: ], where N is the number of
nodes, include mainly the costs of interfaces connecting particular nodes to the bus. A
bus network can easily be extended by adding new nodes, but with expansion of a
network its communication properties deteriorate. This is caused by limited
bandwidth of the bus, which at a certain network size becomes a bottleneck of
the topology. To mitigate this limitation caches are used, relying on the fact
that many memory references are local, that is they lead to nearby memory
locations. These references do not involve data transmission from a shared memory
module—provided the data from an appropriate module are cached—thereby
significantly reduce the requirements for bus bandwidth. If the bus bandwidth
becomes insufficient, the network can be expanded by adding a second bus
working in parallel with the first, although it increases the cost of the network.
Contemporary parallel computers with shared bus contain up to several dozen
processors.
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Figure 5.22. A computer structure with a bus topology (P – processors, M – shared
memory modules, C – caches, D – I/O devices).

   

 5.6.2.2  Crossbar Networks

   One of the ways to connect p processors to m memory modules is to use a crossbar
switch (Figure 5.23). A crossbar switch is a mesh of switches that establish on request
the connections between processors and memory modules. A switch is nonblocking,
meaning that data transmission running between a given processor and memory module
does not block transmissions between other processors and memory modules. The
number of switches required for the implementation of the network is pm. The number of
memory modules m is usually taken to be at least equal to p, so that each
processor has access to at least one module at any time. In such a case, the cost of
the network evaluated by the number switches is [image: ] (the
number of nodes [image: ]). This cost is high, therefore in practice a crossbar
network is used in computers (or SMP nodes) with a relatively small number of
processors.
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Figure 5.23. A structure of a crossbar network.

   

   Observe that the previously discussed bus network is easily scalable in terms of the
number of nodes, because its cost is equal to [image: ]. However, it is not scalable in terms
of a rate of data transmissions (conducted “in parallel” between pairs of nodes), which
decreases along with the growing number of nodes due to limited bus bandwidth. In this
context, a crossbar network has opposite properties. Taking into account the cost of the
network, it is difficult to scale in terms of the number of nodes. However, with an
increase in the number of nodes it is possible to provide a high data transmission
rate.


   5.6.2.3  Multistage Networks

   A structure of a multistage network interconnecting p processors and m memory
modules is given in Figure 5.24. The network consists of [image: ] nodes, and
has a number of stages [image: ] for [image: ], where each stage is a group of
switches. The output links of a stage lead to the inputs of the next stage, but the
pattern of mutual interconnections between stages depends on the network
type.
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Figure 5.24. A multistage network of stages [image: ].

   


   5.6.2.4  Omega Networks

    One of the often used multistage networks is omega network, for which
[image: ] for some integer [image: ] ([image: ]) (Figure 5.25). The interconnection of a
network has [image: ] stages, where each stage contains [image: ] switches with two inputs
and two outputs. A network stage has p inputs and p outputs numbered [image: ],
going from top to bottom. The interconnections between stages are defined as
follows.22
Let i denote the output number (address) of a given network stage, and let j be the
input number of the next stage. Assume that output i is connected to input j.
Then we have [image: ], except for output [image: ] that leads to input
[image: ].
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Figure 5.25. An omega network for [image: ].

   

   Denote the inputs of a switch by a and b, and its outputs by [image: ] and [image: ]. A switch
can have two states. In the first state, data from input a are transmitted to output [image: ],
and data from input b are transmitted to output [image: ]. The second state is the other way
around, data from input a are moved to output [image: ], and data from input b to output
[image: ]. Denote these states by A and B, respectively. The rules of routing messages—containing
read/write requests to memory module cells issued by processors, or containing cell contents
transmitted from memory modules to processors—look as follows. Suppose that processor
with number x (or briefly processor x) forwards a message to memory module with number y.

   Then the message along with numbers x and y is passed to the switch of the first
stage of the network. If the most significant bits of x and y are the same, then the switch
will set up in state A, otherwise in state B. The message passes to the second stage of
the network, and the routing continues on similar rules, however the second most
significant bit of x and y is tested, and so on. The states of switches on the path from
processor [image: ] to memory module [image: ] are depicted in Figure 5.26. Moreover, the
links f  and g over which the message travels are marked. If during message transmission
any pair of nodes (processor – memory module) wanted to use either link f  or g, it
would then be impossible. That is why the omega network is considered as
blocking.
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Figure 5.26. States of the omega network switches during transmission of a message
between processor [image: ] and memory module [image: ].

   

    An omega network is composed of [image: ] switches, its cost is therefore
[image: ]. This cost is lower than the cost of crossbar network, but data transmission
time between nodes increases from [image: ] to [image: ], because messages must travel
through [image: ] stages of the network.



   5.6.2.5  Butterfly Networks

A butterfly network23
has [image: ] stages and interconnects [image: ] nodes: processors, memory
modules, etc. Eeach stage [image: ] of a network comprises [image: ] switches, numbered
[image: ] from top to bottom, each with two inputs and two outputs. So one
stage has N inputs and N outputs. Figure 5.27 illustrates a network with [image: ] stages
interconnecting [image: ] processors ([image: ]) and [image: ] memory modules
([image: ]), [image: ]. Let us designate the coordinates of a switch in
the network by [image: ], where i for [image: ] is a row index, and j for [image: ] is
a column index (a network stage). Then, a switch [image: ] for [image: ] has a
one-way connections to switches [image: ] and [image: ], where z is an integer created
by negation of j-th most significant bit in the binary representation of index i (the least
significant bit number is 0). Hence, the first connection leads straight to a switch in
the next stage, that is without changing the row index, and the second one to
a switch lying on a slant. For instance, the upper left switch of coordinates
[image: ] has connections to switches [image: ] and [image: ], and the switch of
coordinates [image: ] (below in the column) has connections to switches [image: ]
and [image: ]. It is worth noting that the network is unidirectional, which
means that messages from the nodes are sent to stage [image: ] (to the right in
Figure 5.27), and are received from the last stage of the network, or [image: ] in
Figure 5.27.
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Figure 5.27. A butterfly network. Points [image: ] on the right side of the figure
are connected by links to the corresponding points on the left side of the figure.

   

   Routing of messages—which include processor references to cells in memory modules,
or cell contents transmitted from memory modules to processors—proceeds as follows. In
order to send a message from a switch [image: ] to [image: ] the address [image: ] is
evaluated, where [image: ] stands for the bitwise addition modulo 2. Then, from stages
[image: ] for [image: ] and 2 the message is sent straight (without change in index
i), if bit [image: ] of address R is equal to 0, or on a slant, if bit [image: ] is equal to
1.

    A butterfly network includes [image: ] switches, thus
its cost is [image: ]. The diameter of the network is logarithmic and is
[image: ].


   5.6.2.6  Tree Networks

   In a tree network there is only one path for transferring data between any pair of
nodes. The class of tree networks include one-dimensional mesh (Figure 5.28a), star
network (Figure 5.28b) and binary tree network (Figure 5.28c—static network;
Figure 5.28d—dynamic network). To send a message in a binary tree network, the
processor sends it up the tree to the root of the smallest subtree containing the source
and target nodes for the message being sent. From the root the message is sent down the
subtree to the destination node. A disadvantage of the network of a binary tree structure
is that the links lying closer to the root of the tree are a communication bottleneck of

this topology. Note that all messages sent from processors sitting in the left subtree have
to go through the tree root and its neighboring links. To avoid this problem, in the
so-called fat tree network the links are gradually multiplied at higher levels of the tree
(Figure 5.29 and 5.30).
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Figure 5.28. Tree networks: (a) one-dimensional mesh; (b) star; (c) static binary
tree; (d) dynamic binary tree.
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Figure 5.29. A fat tree.
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Figure 5.30. A fat tree implemented by means of switches arranged in two butterfly
networks  connected  to  each  other  with  the  opposite  sides;  groups  of  switches
surrounded by a dashed line provide gradual multiplication of data routes at higher
levels of the tree.

   

   5.6.2.7  Metrics for Dynamic Interconnection Networks

Evaluating dynamic interconnection networks in terms of their usefulness for parallel
computing and technical feasibility, can be carried out by applying similar metrics as for
static interconnection networks (Section 2.2). Before discussing some of the
metrics, we need to expand slightly the concept of network node assuming that
it can be not only a processor, memory module, I/O device etc., but also a
switch.

   The diameter of a dynamic network specifies the maximum number of links along
which a message must pass from a source to target node. The diameter approximates the
latency in message transfer through the network. Therefore, while evaluating the
diameter of a dynamic network we should pay attention on the longest path between a
pair of processors, and not between a pair of nodes (for example, between a pair of
switches). The maximum degree of a vertex node, which is the number of links
adjacent to it, impacts the complexity of the routing procedure running in a processor or
the complexity of a switch. The bisection width of a network is the minimum
number of links that must be removed from a network to divide it into two
equal parts. The bisection width multiplied by the bandwidth of a single link
determines the number of bits that can be transferred per unit time between the two
halves of a network. The general definition of this metric is slightly modified for
dynamic networks, because only processors are the source and target points of data
transmissions. Therefore, the halves of a network—created by removing links that define
the bisection width—should be understood as subnetworks containing half the
number of network processors, and not half the number of its nodes. The edge
connectivity,24
which is a measure of multiplicity of routes between pairs of network processors, is the
number of links that must be removed from a network to make it disconnected in terms
of communication between processors. Finally, the cost of a dynamic network, unlike in
a static network, is evaluated by a number of network switches, since as a rule the cost of
a switch exceeds the cost of a link.

    Table 5.1 contains the metrics of the discussed earlier dynamic networks. As
specified in the table, the network cost—beginning from a crossbar switch and ending
with a dynamic tree—are declining, and their diameters are rising. The omega, butterfly
and dynamic tree networks have a logarithmic diameter at a cost not exceeding
[image: ].


   




 Table 5.1 Selected metrics describing dynamic interconnection networks  
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   5.7  Notes to the Chapter

In addition to Flynn’s taxonomy, other taxonomies of computer architectures are
considered in the literature. They are described for example in the works by
Feng [122], Handler [182], Schwartz [339], Treleaven [382], and Skillicorn [352].
The proposal of classification for high performance computers gave Dongarra
et al. [108]. Admittedly, so far the taxonomies proposed in these works have
not gained much popularity. Despite its approximate nature, by far the most
commonly used is Flynn’s taxonomy. An example of the difficulties in applying this
classification are vector computers. In most studies they are classed as SISD
computers. However, due to parallel implementation of operations on vector
elements, these computers represent, according to some authors, a subclass of SIMD
computers [364]. Tanenbaum [374] (p. 629) believes that by reason of the variety of
architectural features of parallel computers, the problem of their taxonomy is still
open.

   Early processor arrays include: Illiac IV [35], Thinking Machines CM-1, CM-2,
CM-525
[89, 91, 192, 346, 380], MasPar MP-1 [282], and later: CPP DAP Gamma II, Quadrics
Apemille. As we mentioned in Section 5.2, processor arrays of SIMD architecture have
not proved to be useful as general purpose computers. However, in recent years as a result
of advances in manufacturing technologies of multicore processors, multiprocessors and
graphics processing units (GPU) [120], the idea of SIMD computation is becoming popular
again. The response of manufacturers to the need to execute a large number of arithmetic
operations in such applications as computer graphics (for example, 3D rendering), video
games, pattern processing and recognition, video stream processing (for example, compression
and decompression), computer vision and others, was to design and manufacture of graphics
processing units of powerful computing capabilities. These include, among others, the Nvidia
[145], Tesla [253], Fermi, Kepler, and Maxwell processor architectures [289], the AMD/ATI
Radeon HD 4000/5000 series processors, the Sun UltraSPARC T2 processor, the Cell Broadband
Engine26
architecture developed by Sony, Toshiba and IBM.

    Nowadays, a strong market position has Nvidia company (www.nvidia.com)
manufacturing, among others, the GeForce Titan X GPU processor, containing 3072
streaming processors, also called CUDA cores. Each streaming processor is equipped with
a single-precision floating-point arithmetic unit and 512 32-bit registers. Processors
are grouped into 24 clusters, or streaming multiprocessors, each consisting of
128 processors. Within a cluster, processors operating in the SIMD mode have
access to the shared memory of capacity of 96 kB. A cluster always resides on a
single chip, so the shared memory has a short access time. Apart from the
shared memory, a GPU has also a global memory accessible to all streaming
processors. The capacity of the global memory is 12 gigabytes, but the access time
to it is much longer than to the shared memory. Each of the 3072 streaming
processors can perform concurrently up to 16 threads, so the maximum number of
threads27

that can be run is 49 152. A thread performed by a processor can remain in one of three
states: executed, ready and blocked. At a given time, only one thread is run. If during
the thread execution the reference to the global or shared memory occurs, which entails a
latency from a few to a few hundred cycles, a warp scheduler places a thread into a
queue of blocked threads, and resumes execution of one of the threads that are ready to
run. Context switching between concurrent threads does not entail any additional cost,
because all the contexts are available at any given time. This allows processors to carry
out efficiently fine-grained computation. Due to a high number of threads per
processor, some of them as a rule are ready to execute, while others are waiting for
completion of memory transactions. Hiding the latency of memory access by
giving a processor many different threads and having it work on the threads
that are ready, while others are waiting for memory transactions to complete
is called parallel slackness (see Section 4.4.5). Such an approach ensures a
high level of processor utilization, especially of a GPU floating-point arithmetic
unit.

    To facilitate the use of GPUs, Nvidia has developed the
CUDA28 parallel
programming environment29
comprising, inter alia, tools to prepare programs in C/C++ and function libraries, such
as math.h, FFT, BLAS, etc. [180, 289]. For the purpose of implementing a
multithreaded parallel processing employing GPUs, a program has to include the
relevant parts describing such a processing. However, in the CUDA environment it
is not necessary to specify in detail the threads and their management, as is
the case in the OpenMP programs (see Chapter 7). In CUDA both the GPU
architecture and details of implementation of multithreaded computation are
hidden from the user. Programs written in C/C++ consist of the parts which
should be run sequentially on the host unit (CPU), and of the parts to be run
in parallel on a GPU. Creating a multithreaded program is the job of a
compiler. As an illustration, we give the sequential and parallel versions of the
SAXPY30
function in the standard Basic Linear Algebra Subprograms (BLAS) library
(Figure 5.31). The function adds two vectors, one of which is multiplied by a scalar value
alpha [180].
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Figure 5.31. Sequential and parallel versions of SAXPY function.

   

   The CUDA C/C++ languages have been extended with capabilities to define the kernel
functions,31
which, after being called on the host (CPU), are executed in parallel by N threads in N
copies on the graphics processor (GPU). The declaration of a kernel function must be
preceded by the qualifier keyword _ _global__. The number of threads to implement and
their structure are provided in a function call between triple angle brackets [image: ] and
[image: ]. Threads can be organized into one-, two- or three-dimensional arrays called
thread blocks. Each thread has a unique index in a block determined by the 3-element
predefined vector threadIdx of components threadIdx.x, threadIdx.y and
threadIdx.z. A block of threads is performed by one multiprocessor, and so
all threads in a block have access to data stored in the shared memory of the
multiprocessor. A kernel function may be run by multiple blocks of threads, arranged in
one-, two- or three-dimensional arrays called grids. The index of a thread in a
grid is determined by additional predefined variables blockIdx and blockDim.
In the example given in Figure 5.31 the threads first evaluate their indices
(line 13), and then each of them computes a single component of a final vector y
(line 14). The call of the saxpy_par kernel function (line 18) specifies—between the
angle brackets—the number of blocks in a grid, and the number of threads in
each block. In the example, a grid is a one-dimensional array of blocks of size
no_of_blocks, and every block is a one-dimensional array of threads of size 256. The
number of threads simultaneously performing the function saxpy_par is therefore
[image: ].

   Originally, the development of graphics processors was stimulated by applications in the graphics field.
In the recent years, these processors have been also used for general-purpose processing. More information on
this issue can be found in the works by Nyland et al. [290], Sanders and Kandrot [333], Keller et al. [215],
Kirk and Hwu [219], Cheng et al. [74], Rajasekaran et al. [317] (chaps. 7, 9, and 11), and Rosner [330].

   The C.mmp computer was the first prototype of a MIMD multiprocessor with shared
memory based on a crossbar switch [403]. Crossbar switches or variations thereof have
been used in the following computers: Sun Ultra HPC Server, Fujitsu VPP 500, Convex
Exemplar [81, 379]. A contemporary massively parallel processing system is, for
example, Tianhe-2 containing 3 120 000 cores (as for November 2015, www.top500.org).
The ccNUMA systems can be found in such commercial computers as Bull
NovaScale, HP Superdome, SGI Altix 4000 [364], SGI Origin 2000 [240], [89]
(sect. 8.5).

   Butterfly networks have been applied in computers: IBM RP3 [309], BBN Butterfly
[39], NEC Cenju-4 [280], and the omega network in NYU Ultracomputer [160, 161]. The
fat tree interconnection was used in Thinking Machines CM-5 [198, 245], Meiko CS-2
[40, 337], Roadrunner (see Exercise 2 and p. 299).


   5.8  Exercises


1.   [200] Provide the differences between the clusters:

   
    (a) compact and slack,
       

   (b) centralized and decentralized,
       

    (c) homogeneous and heterogeneous,
       

   (d) exposed and enclosed,
       

    (e) dedicated and enterprise.


   

2.   By using the Web site Top 500 (www.top500.org) present the characteristics, performance metrics and
   architectural features of the three fastest parallel computers (supercomputers) in the world. Examine,
   among others, the achieved speed of computation, number and type of processors or cores, processor
   interconnection network, memory hierarchy, required power capacity, type of software used, etc.

    
   


3.   Draw a data flow graph to compute the approximate value of [image: ] by Wallis’
   formula:32
   	 
   [image: ]
	(5.1)


   

4.   Write an odd–even transposition sort algorithm of n-element sequence of numbers
   carried out in a one-dimensional systolic array [image: ] for [image: ] (see Exercise 16
   in Chapter 3). Assume that before sorting, the elements of a sequence were placed
   in processors of the systolic array (Figure 5.32). In step A of the algorithm the pairs
   of processors [image: ], where the index i is odd, exchange stored elements and change
   their order, if the order of elements is incorrect. A similar operation is done in step B by the
   pairs of processors [image: ], for which the index i is even. Assume that data exchange
   in the systolic array can be done by means of instruction exchange([image: ]variable[image: ],[image: ]t[image: ]),
   where [image: ]variable[image: ] is the name of a variable whose values are exchanged between
   processors [image: ] and [image: ], and [image: ]t[image: ] is the tag equal to 1 or 0. If [image: ] (or 0),
   the exchange is made for a pair of processors [image: ], where i is odd (or even).
    
  [image: ]

 
Figure 5.32.  An  illustration  of  odd-even  transposition  sort  carried  out  in  a
one-dimensional systolic array.
   

   

5.  [244] The Beneš network consists of two back-to-back butterfly networks, as depicted in Figure 5.33.
   The r-dimensional Beneš network has [image: ] stages, each with [image: ] switches. The first [image: ] stages
   form an r-dimensional reverse butterfly, and the last [image: ] stages an r-dimensional forward-going

   butterfly.33
   The middle stage of the network (stage [image: ] in Figure 5.33) is shared by these
   butterflies. Each switch of the network has two inputs and two outputs. It transmits
   the input values to the outputs in one of two ways, either crossing or straight
   through. Beneš networks belong to the family of permutation networks. A network with
   [image: ] inputs and n outputs is said to be a permutation (or rearrangeable) network,
   if for any one-to-one mapping [image: ] of the inputs to the outputs, we can construct
   edge-disjoint paths in the network connecting the ith input to the [image: ]th
   output for [image: ]. A sample Beneš network is given in Figure 5.34, wherein
   the switches are set in a way to rearrange input permutation [image: ]
   into output permutation [image: ]. Prove the following theorem:
    
 [image: ]

 
Figure 5.33. Beneš network of dimension [image: ] consisting of [image: ] stages. Each
stage contains [image: ] switches.
   

    
  [image: ]

 
Figure 5.34.  A  two-dimensional  ([image: ])  Beneš  network  that  rearranges  an
input permutation according to one-to-one mapping [image: ] for
[image: ].
   


   THEOREM. Let [image: ] be a one-to-one mapping of [image: ] inputs to [image: ] outputs on an r-dimensional Beneš
   network. There is a set of edge-disjoint paths connecting input i to output [image: ] for [image: ].
   


6.   Demonstrate that the graphs describing an omega network and butterfly network are
   isomorphic.34
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   1The Intel Pentium 4 processor had a 20-stage pipeline. In modern processors pipelines are
shorter.
2In some studies vector computers are categorized as a subclass of SIMD computers.

3The problem of growing gap between speeds of processors and memories, which is one of the
obstacles in increasing processing power of modern computers is referred to, among others, as memory
wall or von Neumann bottleneck.
4Blocks are also called cache lines.

5In fact, in 1965 Moore predicted a double increase of circuit complexity every year; however in 1975
he revised this estimate to 18 months.
6Some people think that by packing multiple cores in a single chip, Moore’s law relating to speed of
processors will continue to apply.

7In 2006 Intel developed a prototype of 80-core processor intended for research purposes.

8They are also called single-instruction-multiple-data computers, and data parallel architectures.

9In the early nineties of the last century the part of processor arrays on the compiled annually
lists of 500 parallel computers with the highest rates of computation amounted to a few
percent (www.top500.org). Since 1998 to date processor arrays have not appeared on these
lists.
10Distributed-memory multiprocessors communicating by sending messages are also called
multicomputers.

11The classification regarding MPPs is fuzzy. In the literature, MPPs are also referred
to as clusters mostly built of proprietary components that can scale to a larger number of
nodes.

12The conversion is carried out applying the translation lookaside buffers (TLB).

13The number of cores contained within integrated chips has a clear upward trend (see
p. 180).

14At present, computing capabilities of personal computers and workstations are virtually the
same.

15The basic Ethernet data transfer rate (IEEE 802.3) is 10 Mbit/s, or 100 Mbit/s, 1 Gbit/s and
10 Gbit/s, in the fast and Gigabit versions (802z and IEEE 802.3ae). Transmission latencies in the fast
or Gigabit Ethernet are of the order of 50–100 [image: ]s. Technically speaking, data can be transmitted with
higher speeds, for example by employing InfiniBand or Myrinet networks, but their use increases the cost
of clusters.
16Heronof Alexandria, who lived around the first century AD, was a Greek mathematician, geometer
and inventor.
17Note that the computation like in Figure 5.10 can be executed repeatedly in a loop. Then in any
iteration we need to be sure that the previous iteration has been completed.

18Sir Isaac Newton, an English physicist and mathematician, lived in 1642–1727.

19An abbreviation of Streams and Iteration in a Single Assignment Language.

20Note that there is some similarity to the pipelined computation discussed in Section 5.1. In the
matrix multiplication data are processed simultaneously in four horizontal pipelines and four
vertical.
21Node access to the bus can be coordinated by various algorithms.

22It is also said that omega interconnections are set up according to the perfect shuffle algorithm.

23A static version of the network has been discussed on p. 46.

24Similarly as for static networks one may also take into consideration vertex connectivity (see
Section 2.2).

25The CM-5 computer had characteristics of both a processor array (SIMD) and multiprocessor
computer (MIMD).

26The most popular application of Cell processors, on which the CBE architecture is based, is the
video game console Sony PlayStation 3.

27In view of a large number of fine-grained, data parallel threads employed in CUDA, the
parallel computation in GPUs are also referred to as SIMT – single instruction, multiple
thread.
28An abbreviation of Compute Unified Device Architecture.

29The Nvidia CPUs canalso be used by applying OpenCL (Open Computing Language) environment
and DirectX library.

30It stands for Single-Precision A[image: ]X Plus Y.

31Besides, CUDA enables to define the host functions with the qualifier keyword _ _host__ that can be
called and executed in a host, and the device functions with the qualifier keyword _ _device__ that can
be called and executed in a graphics processor (GPU).

32John Wallis, English mathematician, cryptographer and theologian, lived in the years 1616–1703. He
was involved in analysis of infinite series, and laid the foundation of differential and integral
calculus.

33In the literature sometimes a distinction is made (though not always in a consistent way) between a
forward-going and reverse butterfly [89].

34Graph isomorphism is a one-to-one mapping [image: ] between the sets of vertices of two graphs
[image: ] and [image: ], where [image: ] – sets of vertices, [image: ] – sets of edges, preserving the
neighborhood of vertices, that is, [image: ], if and only if [image: ]. If this condition is met,
then graphs G and [image: ] are called isomorphic.
                                                                  

    

   6
 Message-passing Programming  
 
   6.1  Introduction

One of the types of parallel processing is distributed computing. This type of
processing can be conducted in integrated computers with distributed memory, or in
clusters, which are systems of homogeneous or heterogeneous networked computers. In
distributed computing the tasks communicate via communication channels (or links).
The channels form an interconnection network between processors or computers.
Processors or computers that are vertices of a network perform computing tasks, as well
as send and receive messages.

   In this chapter we explore how to implement parallel programs that consist of tasks
cooperating with each other using message passing. Parallel programs should
be written in a suitable programming language. Probably the only language
specially developed to describe parallel computing with message passing was
occam.1
This language proposed by May et al. in Inmos company was based on the CSP
notation (acronym for Communicating Sequential Processes) defined by Hoare. In the
1980s occam was used as the programming language for transputers—systems of
large-scale integration, each combining a processor and four communication channels.
Along with development of computer hardware, it turned out that occam due to certain
weaknesses and restrictions is insufficient to describe distributed computing. Nowadays,
these are often carried out using C or Fortran languages augmented by functions
intended for cooperation of parallel processes. The most popular libraries of
such functions are PVM (Parallel Virtual Machine) and MPI (Message Passing
Interface).

    The PVM library was developed in Oak Ridge National Laboratory. It
permits the creation and execution of parallel programs in heterogeneous networks
consisting of sequential and parallel computers. Another popular and largely
universal library that is used to build distributed programs is MPI. It can be
applied together with the OpenMP interface in computers with distributed memory (see
Section 5.4.3), in particular in clusters composed of multicore processors or SMP nodes (see

Sections 5.4.2 and 5.4.3, and Chapter 7). The library is highly portably enabling to build
scalable programs for applications where achieving high computational performance is essential.

   In what follows we discuss the basic functions of the MPI library, or in short MPI.
We show examples of how to use some of these functions when constructing parallel
programs in C. The history of MPI dates back to the early nineties of the last century. In
April 1992 the workshop on standards for message passing in a distributed memory
environment was held. The workshop sponsored by the Center for Research on Parallel
Computing was attended by more than 80 people from about 40 organizations interested
in development of distributed computing, among others, the representatives of parallel
computer manufacturers and scientists from universities, government and industry
laboratories. At the meeting a working group to develop a standard library
emerged.

   The group presented its preliminary proposal in November 1992. It had been discussed
and improved until May 1994, when the version MPI-1.0 of the library standard was
published. The group continued its work and since 1994 the following versions have been
released: MPI-1.1 (June 1995), MPI-1.2 (July 1997), MPI-2.0 (July 1997), MPI-2.1 (June
2008), MPI-2.2 (September 2009), MPI-3.0 (September 2012), and MPI-3.1 (June 2015).

   MPI-2, compared with MPI-1, has been extended to include dynamically created
tasks, parallel I/O, one-sided operations, and bindings for C++ and Fortran 90. MPI-3 is
considered to be a major update to the MPI standard. The updates include significant
extensions to MPI functionality, including the nonblocking versions of collective
operations, new one-sided communication operations, and a new Fortran 2008 binding.
Furthermore, the deprecated bindings have been removed, as well as many of the
deprecated routines and MPI objects.

   The MPI implementation is a software component of virtually all commercial parallel
computers, including those with shared memory. Free of charge, portable versions of the
library are available in the Internet, such as MPICH and MPICH2 versions
(www-unix.mcs.anl.gov/mpi) developed in Argonne National Laboratory and
Mississippi State University, the LAM version (www.lam-mpi.org) developed in Ohio
Supercomputer Center, the Open MPI version (www.open-mpi.org) developed by a
consortium of academic, research and industrial bodies under the project of the same
name.


   6.2  The MPI Model of Computation

    Programs that describe distributed computing with message passing
are built adopting the network model (Figure 2.5). It is assumed that a computing
system consists of some number of processors equipped with local memories,
and that it does not have shared memory. To exchange data and synchronize
operation, processors are connected by bidirectional communication links constituting
an interconnection network. The network enables sending messages between
any pair of processors. When a message is sent, its contents is transferred from
the local memory of a source processor to the local memory of a destination
processor along the path (route) leading through intermediate processors in the network.

Such a transfer is implemented by message routing procedures running in each processor,
and is transparent to the user. Therefore, it is assumed that processors in the MPI model
of computation communicate via a completely-connected network (Figure 2.6).
The tasks, or processes, being the parts of a parallel program are executed by separate
processors.2
At the beginning of computation the user specify how many processes should be
performed in parallel. The program completes its execution when all its processes finish their
operation. In the early version of the MPI library it was assumed that all processes were
created before execution of the program, and that the number of processes was constant,
that is it was not changed while the program was running. This way of creating and
termination of processes is referred to as static (dynamic creation of processes, that is during
execution of the program, was made possible from version MPI-2 onwards). Processes are
assigned unique identifiers (or ranks) in the form of numbers between 0 to [image: ], where
p is the number of processes run. Each process is the result of executing the same program.
This means that the processor executing a process has its own copy of the program, and
so also a copy of each variable that is declared in it. Customarily, an MPI program examines
the rank of a process, and based on it specifies various series of instructions for different
processes. This method of programming is called SPMD (single program, multiple data),
which means that using a single program multiple streams of data are processed in different
processes. In general, the processes are performed independently of one another, that is
asynchronously, as in the MIMD computers with distributed memory (see Section 5.1).
However, some of MPI communication functions cause synchronization of process
activities. Therefore execution of MPI processes are referred to as asynchronous or loosely
synchronous.


   6.3  Minimum Graph Bisection

   In Section 4.5.2 we considered the problem of partition of graph vertices into
k equal subsets, so that the number of edges running between the subsets was minimum.
Now we develop a parallel program employing the MPI library that solves this problem
for [image: ]. In other words, we solve the minimum graph bisection problem defined as
follows.3
Let [image: ] be a graph, where V  denotes the set of vertices and E the set of edges. Let the
number of vertices [image: ] be even. Partition the set of graph vertices into two equal subsets
[image: ] and [image: ], so that the number of edges connecting the vertices of subsets [image: ] and [image: ] is
minimum. An example of the minimum graph bisection is plotted in Figure 6.1. The number
of edges running between the vertices of sets [image: ] and [image: ] is 3. Note that
for the bisection [image: ] and [image: ] the number of edges between the vertices
will increase to 7. The minimum graph bisection problem is NP-complete, therefore to find
optimal solutions to its larger instances in reasonable time is impossible, provided P [image: ] NP.
However, it is relatively easy to provide a polynomial algorithm to find an approximate solution. 




[image: ]

 
Figure 6.1. An example of minimum graph bisection.

   

   The minimum graph bisection problem is a special case of the minimum cut (briefly
min-cut) problem. The minimum cut of a connected graph is the minimum
subset of its edges whose removal makes the graph disconnected. Two connected
components produced by such a cut need not be equal, that is [image: ] can
hold.

   In the literature an approximate polynomial algorithm to solve the maximum cut
problem is presented. Below we give a modification of this algorithm to solve the minimum
bisection problem for the graph [image: ] in time [image: ]. The bisection is denoted
by [image: ], where [image: ] and [image: ], and its cost is equal to the number of
edges running between vertices of sets [image: ] and [image: ]. The algorithm carries out local
optimization, as a random bisection of the graph is improved as long as it is possible.

[image: ]

Figure 6.2 gives an MPI program4
to find the minimum bisection of a graph, where each of [image: ] worker processes
improves a separate, randomly generated bisection of the graph (we assume that the
program is executed by p processes). The results acquired by the workers are collected by
the master process, which selects the best solution among the results. The program
reduces not so much the time to find a solution, as increases the likelihood that the
attained solution will be optimal by taking into account many bisections of the
graph.


   



[image: ]

[image: ]

 
Figure 6.2. An MPI program to find the minimum graph bisection.

   


   To continue, look into the program paying particular attention to the use of MPI
library functions. The program begins with directives including the header files regarding
the standard I/O library and basic type constants in C, and the MPI library (lines 1–3).
Then the declarations of global arrays g and partition are given (lines 5–6), so
that they are available in functions main and search. The array g stores the
vertex incidence matrix of the input graph. If the elements of g with coordinates
[image: ] and [image: ] are equal to 1, then the graph has an edge connecting vertex i
and j. If the elements have a value of 0, the edge does not occur. The array
partition defines the bisection of the graph, where elements of indices from 1
to [image: ] comprise numbers of vertices of the first half of the graph, [image: ],
and elements of indices from [image: ] to [image: ] of the second half, [image: ].


   6.3.1  Program Compilation and Execution

    In many systems an MPI parallel program is compiled by the command:

     mpicc -o <executable-program-name> <source-program-name>.c

   and run by the command:5

     mpirun -n <number-of-processes> <executable-program-name>

        <program-arguments>

In the above command, <number-of-processes> specifies how many processes
should be executed in parallel, while the texts <executable-program-name> and
<program-arguments> are forwarded to processes through variables argc and argv
(appearing in the head of the main function in Figure 6.2, line 9) in accordance with
principles of C language.


   6.3.2  Functions MPI_Init and MPI_Finalize

    The purpose of function MPI_Init (line 16) is to allow an MPI implementation to
perform some setup before other MPI functions may be called. The function
can be called at most once. This call need not to appear in the first program
instruction, but it must precede all further calls of MPI functions. Before the
end of its operation every process must call function MPI_Finalize (line 40).
This call allows an MPI implementation to carry out some cleanup to release
resources used by MPI. The call to function MPI_Init or MPI_Finalize declared
as:


[image: ]

   will return a code that indicates successful completion of the operation. Whenever
possible, the calls to MPI functions return an error code if an error occurred during the
call.6
The function will return MPI_SUCCESS if it completed successfully. Other
codes correspond to errors that may occur during function execution and are
implementation-dependent.

   Note that all MPI identifiers, in particular function identifiers, begin with the prefix
MPI_, followed by a capital letter and a string of lowercase letters and underscores. All
MPI constants are sequences of capital letters and underscores commencing with the
prefix MPI_, for example MPI_SUCCESS.


   6.3.3  Functions MPI_Comm_rank and MPI_Comm_size 

     In line 17, the function MPI_Comm_rank with arguments MPI_COMM_WORLD
and &id is called. It returns, in variable id, the rank (number) of the process that makes
the call. The rank identifies the process in a communicator, which is an opaque object
with unknown internal structure that provides the environment for exchange messages
between processes. Processes belonging to the communicator have unique ranks in it,
and may send messages to each other. To send a message, a process uses the appropriate
communication function and specifies the rank of a destination process in the communicator.
Once the function MPI_Init has been called a predefined communicator MPI_COMM_WORLD
is provided that include all active processes. They are numbered from 0 to [image: ],
where p is the number of processes specified by the argument number-of-processes of
command mpirun issued at the startup of the MPI program (see Section 6.3.1). If necessary,
for any group of communicating processes one can define a new communicator using the
MPI_COMM_WORLD (see Section 6.4.1). The number of processes in any communicator can
be determined applying the function MPI_Comm_size. In line 18 the number of processes
in the communicator MPI_COMM_WORLD is found, which is the number of processes
being executed in a given program run. The result of the function call is returned in
variable p.


   6.3.4  Functions MPI_Send and MPI_Recv 

    As already mentioned, the minimum graph bisection program is run by the master
process with number 0 and worker processes with numbers from 1 to [image: ]. The
program is written following the SPMD method, so based on the process number

evaluated in line 19 the separate series of instructions are specified for the master
(lines 20–31) and worker processes (lines 34–38). The master process inputs
the data describing the graph, creates the array g (line 20) and then sends it
to each worker (lines 21–22). For this purpose, the function MPI_Send on the
sender side (line 22) and the function MPI_Recv on the recipient side (line 35) are
called.7
These functions are designed to realize point-to-point communication. The declaration of
function MPI_Send looks as follows:
  
[image: ]

The message being sent by a process is stored in its memory space intended to keep
program data, beginning from address message. So before the message is sent the process
has to create it and save at this address. The arguments count and datatype indicate,
respectively, the number of data entries contained in the message and their type. All data
entries included in the message must be of the same type. It may be one of the
types defined in MPI (Table 6.1) or the so-called derived type defined by the
user (see Exercise 3 and its solution on p. 299). The argument destination
defines a process number (rank) to which the message is to be transmitted,
and the tag is the integer number from the interval at least 0 to 32 767 (this
interval is implementation-dependent and may be wider). The tag allows the
receiving process to differentiate messages. Indeed, in the course of computation
a process may receive messages sent for various purposes, and from various
processes. The argument communicator indicates the communicator in which
the message is sent. All arguments of function MPI_Send are marked as input.






 Table 6.1 Basic datatypes defined in MPI with corresponding C types
 	MPI datatype     

	C datatype              


	

	

	MPI_CHAR          

	signed char       


	MPI_SHORT         

	signed short int  


	MPI_INT           

	signed int        


	MPI_LONG          

	signed long int   


	MPI_UNSIGNED_CHAR 

	unsigned char     


	MPI_UNSIGNED_SHORT

	unsigned short int


	MPI_UNSIGNED      

	unsigned int      


	MPI_UNSIGNED_LONG 

	unsigned long int 


	MPI_FLOAT         

	float             


	MPI_DOUBLE        

	double            


	MPI_LONG_DOUBLE   

	long double       


	MPI_BYTE          

	–                        


	MPI_PACKED        

	–                        


                                 



   

   

   The execution of MPI_Send is implementation-dependent and can proceed in several ways.
In the first option, a process calling MPI_Send suspends its operation when a receiving process is
not ready to accept the message, and then it waits until the receiving process reports readiness
to communicate. Upon notification of readiness the message has been transmitted, and both the
processes continue computation. This way of executing the send operation is called synchronous,
or blocking. The second option assumes that buffering is supported in a computing system.
When MPI_Send is invoked the message is copied into a temporary system buffer, and the sending
process resumes its work. Such execution of send operation is called buffered.
It speeds up a concurrent program, because the sending process is not blocked
waiting for the message to be delivered, but can pursue further work. Assuming that
buffering is available for both communicating processes, the message from the temporary
buffer of the sending process can be transferred to a similar buffer of the receiving
process. The transferred message will then be read when the receiving process calls
the function MPI_Recv. In the absence of buffering on the receiving side the message will
wait in the temporary buffer of the sender until it is requested by the receiving process.

    Apart from MPI_Send there is also the MPI_Isend function (the prefix of
I stands for immediate) that does not block a sending process, regardless of
whether the system furnishes buffering or not. Invocation of MPI_Isend only
starts the operation of sending a message, and control immediately returns to
a calling process that can continue its work. Later on the process may use,
respectively, the function MPI_Test or MPI_Wait to query the status of send operation
or wait for its completion. When you initiate sending a message, and before
checking whether it has been completed, you can not change the contents of
the send buffer indicated by argument message. The function MPI_Isend is
useful for implementation of overlapping communication and computation (see
Section 4.4.5).

    To receive a message the function MPI_Recv is provided with the following
header:

[image: ]

The argument message points to the buffer to store the message in the receiving process.
The arguments count and datatype define the maximum number of data entries to
receive along with their type. Typically, the receiving process does not need to know the
length of the received message, arising from the value of count specified by a sender
and the datatype argument. What matters is that there is enough space to
store a message in the receive buffer. For example, if for the message buffer 100
bytes is allotted, then MPI_Recv will be able to receive and store messages of

any length not exceeding 100 bytes. The source specifies the number (rank)
of a source process, from which a message is received. The argument tag is
used to discriminate messages, and the argument communicator indicates the
communicator where a message is being received. The last argument of MPI_Recv
is a pointer to a structure that stores information on the result of a receive
operation. The structure of type MPI_Status, allocated by the user, has three fields
(and perhaps additional fields) containing the source, tag and error code of the
received message. The field names are the following: 

[image: ]


   The structure is helpful if the argument source in MPI_Recv call is not the process
number from which the message is expected, but the wildcard value MPI_ANY_SOURCE
meaning that a message from any process will be accepted. In such a case, the field
status -> MPI_TAG contains the number of a process that sent the message. The
same applies to the argument tag with the wildcard value MPI_ANY_TAG, which
indicates that messages of any tag are acceptable. The filed status -> MPI_TAG
contains in this case the message tag received. The structure pointed to by
status also returns information about the number of data elements included in
the received message. This number is available only indirectly by calling the
function:


[image: ]

that takes as input the status fixed by MPI_Recv and computes the number of data
entries received. The number of entries returned in count is not available directly
because of efficiency reason. Most often, a receiving process knows the number
of entries in the expected message, so its counting is superfluous. However,
MPI_Get_count permits to compute it if needed. The structure indicated by
status may also contain further fields, depending on the implementation of the
library.

   The arguments message and status of MPI_Recv are marked as input, and the
remaining arguments of the function are marked as output. A message can be received
if the source, tag and communicator values specified by MPI_Recv matches
the values of corresponding arguments specified in the send operation. This
means that the values of these arguments are either identical in both function
calls, or as arguments source and tag in MPI_Recv, the wildcard values
MPI_ANY_SOURCE and MPI_ANY_TAG are used, indicating that any source and/or tag are
acceptable.8
One cannot use a wildcard value for communicator. The function MPI_Recv
is blocking, that is a process invoking it suspends in case when the awaited
message has not yet arrived. Only after the receive buffer contains the newly
received message, MPI_Recv returns control and the process may continue its
avtivity.

    Similarly to MPI_Isend (see p. 222) also a nonblocking version of the receive
function named MPI_Irecv is provided. It initiates the receive operation by
informing the system that it may start writing data into the receive buffer, and
returns control to the caller. After some time the user can make sure whether
the receive operation came to an end by means of the function MPI_Test and
MPI_Wait.

   Returning to the discussion of the minimum graph bisection program, the worker
processes after receiving matrix g (line 35) call the parameterless function search (line
36). The function generates a random partition of the graph (lines 46–48) that is further
improved as long as it is possible (lines 49–62). Once the function is completed the
workers send to the master the number of edges of the resulting partition (line 37) and

the partition itself (line 38). The master selects the best partition among those obtained
(lines 26–29) and outputs it to a peripheral device (line 31). Here is the result of the
program for a graph depicted in Figure 4.23 (illustration of the result is given in
Figure 6.3).

    Minimum bisection cost: 4
     Graph components: 
     S1: 16 30 25 29 6 12 36 7 8 15 9 27 28 10 11 26 14 13
     S2: 34 2 23 17 32 19 24 4 5 31 20 18 22 1 21 35 3 33 


   



[image: ]

 
Figure 6.3. The minimum bisection of the graph given in Figure 4.23.

   

   The MPI library is extensive, its MPI-3 standard includes 441 functions. However,
each parallel program can be written employing only six basic functions: MPI_Init,
MPI_Finalize, MPI_Comm_rank, MPI_Comm_size, MPI_Send, and MPI_Recv.


   6.3.5  Collective Communication—Functions MPI_Bcast and MPI_Reduce

 
  Now consider how the minimum graph bisection program can be improved. The key
to effectiveness of parallel programs are costs of communication, therefore the
program parts involved in data exchange should be analyzed in the first place. In
lines 21–22 of Figure 6.2, the master process sends out graph g sequentially to
[image: ] worker processes, thus complexity of this operation is [image: ]. Sending an
item of data from the root (or source) processor to [image: ] processes can be
accomplished in [image: ] time applying a scheme plotted in Figure 6.4. In the
first phase, the root process 0 sends the data item to process 1. In the second
phase, processes 0 and 1 transfer the item simultaneously to processes 2 and 3,
and so on. An operation of sending out one or more data items by a single
process to a number of other processes (in short one-to-all operation) is known as
broadcast.9
A broadcast operation in MPI is done by the function MPI_Bcast:


[image: ]

where arguments message, count and datatype indicate, respectively, the starting
address of a buffer, number and type of data items to be broadcast, the argument root
specifies a process broadcasting the data items, and the argument communicator defines
the group of processes involved in a broadcast. MPI_Bcast broadcasts a message from
the root process to all processes in the communicator. The message contains
a number of data items defined by count, stored in the contiguous memory
space starting at address message. The function must be called with identical
arguments10
in all processes participating in a broadcast. All arguments of MPI_Bcast called in the
root process are marked as input, and in the receiving processes the argument message
is marked as output and other arguments as input. It is unacceptable to use MPI_Recv to
receive a message broadcast by MPI_Bcast. We use the function MPI_Bcast in an
improved minimum graph bisection program (Figure 6.5) to broadcast adjacency matrix
g (lines 23 and 34).


   



[image: ]

 
Figure 6.4. A broadcast scheme for eight processes.

   

   



[image: ]

 
Figure 6.5. A minimum graph bisection program—improved version.

   

    MPI_Bcast belongs to a group of collective communication functions, in
contrast to functions MPI_Send and MPI_Recv that are intended for point-to-point
communication. A collective communication is an operation in which a group of
communicating processes work together to spread or collect a set of one or more
data items. An example of all-to-one type function belonging to the group of
MPI collective communication functions is MPI_Reduce. The function serves to
reduce11
the data items stored locally in the processes of a group to a single item that
characterizes the collection of these items. For example, while optimizing a complex
function the respective processes may find the local optima of the function, from which
the global optimum is selected by using a reduction operation. The header of MPI_Reduce
is as follows:


[image: ]



   MPI_Reduce reduces the data items provided in the operand buffer of each process in
the communicator, applying the operation, and returns the reduced value in the result
buffer of the process with rank root. Each process can provide one item, or a sequence of
count items, in which case the reduce operation is executed item-wise on each entry of
the sequence. The elements of the operand and result buffers must be placed in
continuous storage areas, whereby these areas can not overlap. Both buffers must have
the same number of elements with the same datatype. Table 6.2 specifies the MPI’s
predefined operations and types of their arguments in C (user-defined operations are also
allowed). All operations, except MPI_MAXLOC and MPI_MINLOC, reduce the data items
located in memories of individual processes into a single item. In operations
MPI_MAXLOC and MPI_MINLOC both the input and output data are pairs of values (see
lines 14–17 defining the structures operand and result, and also lines 27
and 37 of the program). An input pair consists of a data item to be reduced
and the number of a process in which this item resides. An output pair for
MPI_MAXLOC—the reduce result in a root process—consists of the maximum value across
all the processes and the number of a process in which this value appeared (for
MPI_MINLOC this is the minimum value). In case when the maximum or minimum
value repeats in several processes, the lowest process number is returned. Since
the data reduced can be of different types, MPI introduces additional data
types for pairs of values, as shown in Table 6.3. The arguments of MPI_Reduce
calls in all processes of a reduce group except for the root are marked as input,
excluding the argument result that is insignificant. In the root process the
argument result is marked as output and the other arguments are marked as
input.


   




 Table 6.2 MPI’s predefined reduce operations
 	Name       

	Meaning                      

	Datatypes in C  


	

	

	

	MPI_MAX   

	Maximum                    

	Integer and real 


	MPI_MIN   

	Minimum                     

	Integer and real 


	MPI_SUM   

	Sum                           

	Integer and real 


	MPI_PROD  

	Product                       

	Integer and real 


	MPI_LAND  

	Boolean (logical) and      

	Integer            


	MPI_LOR   

	Boolean or                   

	Integer            


	MPI_LXOR  

	Boolean exclusive or       

	Integer            


	MPI_BAND  

	Bitwise and                  

	Integer and byte


	MPI_BOR   

	Bitwise or                    

	Integer and byte


	MPI_BXOR  

	Bitwise exclusive or         

	Integer and byte


	MPI_MAXLOC

	Maximum and its location

	Pairs of values  


	MPI_MINLOC

	Minimum and its location 

	Pairs of values  


                       



   

   






 Table 6.3 MPI’s datatypes for MPI_MAXLOC and MPI_MINLOC operations
 	Name                    

	Meaning                                   


	

	

	MPI_2INT          

	Pair of int values                       

	MPI SHORT INT 

	Pair of short and int values


	MPI_LONG_INT       

	Pair of long and int values           


	MPI_LONG_DOUBLE_INT

	Pair of long double and int values


	MPI_FLOAT_INT      

	Pair of float and int values         


	MPI_DOUBLE_INT     

	Pair of double and int values        


                      



   

   

   The MPI_Allreduce function is the same as MPI_Reduce except that the outcome
appears in the result buffer of all the group members. The improved version
of the minimum graph bisection (Figure 6.5) uses MPI_Allreduce to select
the best partition among all partitions produced by the processes (lines 27
and 37). Note that the master process in this version also builds its own partition.
 


   6.4  Sorting

 Figure 3.13 in Section 3.5 shows the PRAM algorithm to sort an array [image: ] in
[image: ] time with [image: ] processors. The processors arranged in a virtual mesh of size
[image: ] compute the elements of an auxiliary array [image: ] taking values 0 or 1.
An element [image: ] is equal to 1 if a condition [image: ] [image: ][image: ] [image: ]
[image: ] is satisfied, otherwise it is equal to 0. The sum of ones in a row i of
array w for [image: ] gives the index in array b where element [image: ] should
be inserted, so as to get array b with elements [image: ] sorted in nondecreasing
order.

   Figure 6.6 presents an MPI implementation of this PRAM algorithm. Once the array a has been
input by process 0, it is broadcast to other processes (line 21, Figure 6.6). Then the “coordinates”
i and j of the processes in the mesh (line 23), and the elements of array w (lines 24–25) are
computed. Now we should find the sums of elements contained in the rows of this array. For this
purpose it is convenient to use communicators that include processes in respective rows of the mesh. 





[image: ]

 
Figure 6.6. An MPI sorting program.

   

   6.4.1  Creating New Communicators—Function MPI_Comm_split

    As we stated in Section 6.3.3, at the start of an MPI program all its processes
belong to the communicator MPI_COMM_WORLD. Processes in the communicator have
unique numbers (identifiers) in the interval between 0 and [image: ], where p is the number
of processes executed. In the sorting program we want to partition [image: ] processes into n
subgroups forming separate communicators. Each communicator should include the
processes belonging to a given row of the mesh. Such the communicators can be created
by making use of the following function:


[image: ]

The function splits the group of processes included in old_communicator
into disjoint subgroups, one for each value of color. For each of these new
subgroups, it creates a new communicator containing all processes that specify
the same color. A handle to the representative communicator is returned in
new_communicator. Inside each subgroup, the processes are ranked in the order based on
the value of the argument key. The ties are broken according to the rank of
processes in old_communicator. The function belongs to the group of collective
operations which means that all processes in old_communicator must call the
function.12
However, each process is permitted to supply different values for color and keys. The
first three arguments of MPI_Comm_split are marked as input, and the last argument as
output.

    The sorting program creates the communicators containing the processes of
individual rows of the mesh in line 26. The processes in communicators are assigned new
numbers: [image: ] according to the value of the variable j. Within communicators
the processes aggregate the values of w employing the function MPI_Reduce (line 27).
After aggregation the variables ind in processes of rank 0 located in the first column of
the mesh contain the indices of array b into which elements of array a are to be
inserted.


   6.4.2  Collecting and Spreading Data—Functions MPI_Gather
and MPI_Scatter


   Inserting elements of array a into array b—that is the actual sorting—is accomplished
using the function MPI_Gather (line 30). Before it is called, the communicators, each
containing processes of a single column of the mesh, are created (line 28). In fact, only
the communicator for the first column will be then used. What is important is the
new numbering of processes in this column defined by the values of variables
ind.13
The specification of function MPI_Gather that facilitates to insert the sorted elements of
array a into array b is as follows:


[image: ]

MPI_Gather is a collective communication function that gathers data from all processes
in communicator (root process included). Each process forwards send_count elements
contained in its send_buffer to the root process. The root receives the elements and
stores them in rank order in its recv_buffer, which means that as the first in the buffer
are stored data received from process 0, then from process 1, and so on. The gathered
messages must be of the same size, so the values of send_count must be the same in all
processes. All the parameters of the function except for recv_buffer are marked as
input. The recv_buffer is marked as output, but it is significant only in the root
process.

   As already mentioned, the actual sorting in the program studied is carried out with
the function MPI_Gather called in line 30. The function gathers data—in our case
elements a[i]—in rank order of processes. Since these ranks are evaluated based on
indices ind, the elements a[i] reach in ascending order the adequate locations in array
b. Following the sorting, the created communicators are deleted with the MPI_Comm_free
function (lines 38–39).

    The discussed sorting program is an adaptation of the algorithm given in
Figure 3.13 of complexity [image: ], developed for a model with shared memory
(CREW PRAM). The complexity of the sorting program built for the model with
distributed memory depends on the complexity of functions MPI_Comm_split,
MPI_Reduce and MPI_Gather, which have been used in the program. Assuming a
conducive interconnection network topology of a parallel computer one can ensure a
logarithmic running time of these functions.

   The sorting program has a disadvantage, namely the sorted array b is created in
the process of rank i (in the first column of the mesh) for which the value of
an element a[i] is minimum across all the elements of array a. However, you
can make the sorted array to be available in all processes of the first column

of the mesh. To this end, in line 30 instead of MPI_Gather use the function
MPI_Allgather:


[image: ]

Note that this function does not have the argument root. The meanings of other
arguments are the same as in the function MPI_Gather.

   The inverse operation to MPI_Gather is MPI_Scatter:


[image: ]

MPI_Scatter is a collective communication function that spreads data to all processes in
communicator (root process included). The root process splits the contents of its send
buffer into p equal-sized segments, where p is the number of processes in communicator.
The ith segment for [image: ] is sent to the ith process. Each process receives
send_count elements and stores them in its receive buffer. As for MPI_Gather the first
three arguments of MPI_Scatter are, as a rule, similar to the subsequent three
arguments. Indeed, these arguments describe the data received by each process, and not
all the data to be scattered. The argument recv_data is marked as output and other
arguments as input.

    For example, let process 0 is supposed to split a floating-point array a of
size n into p segments (n is evenly divisible by p), and to distribute them to
respective processes. Then processes of the communicator should call the function:


[image: ]

When the function returns all the processes (including process 0) will contain the
relevant parts of array a in arrays loc_a.



6.5  Finding Prime Numbers

   Now we will present a program to find prime numbers (briefly primes) in the interval
[image: ] for some natural n. The program is built on the basis of data decomposition similar
to that described in Example 4.4 in Section 4.2.1. Besides, it uses the observation that
to find the primes in interval [image: ] it is enough to know the primes

in interval [image: ]. This is because any composite number belonging to the
interval B is divided by one or more primes from interval A. Let us call the primes from
A as divisors. Then, to see if any number [image: ] is composite, it is enogh to verify if it is
divisible by any of divisors.

   For example, if we want to find the primes in the interval [image: ], we first find
the primes in the interval [image: ] applying, say, sieve of Eratosthenes. There are 25 of
such primes (divisors), they are: [image: ]. Then, for any number [image: ], we check
whether it is divided by one of these divisors.

   To minimize communication costs, in the first phase of a program given below, all
processes determine divisors in the interval A (see Figure 6.7, lines 27–37). In the second
phase, data decomposition is done through partition of the numerical interval
[image: ] into p subintervals of length [image: ], where p is
the number of processes carrying out the computation. The processes with
ranks [image: ] are assigned, respectively, the subintervals [image: ],
[image: ] [image: ], where [image: ]. Working in parallel
the processes find in their subintervals the primes by eliminating composite numbers that
are multiples of divisors from range A (lines 38–50). Although subintervals
are equal (subinterval [image: ] can be shorter) the numbers of primes found in
each subinterval are different (see Table 6.4). These numbers are collected by
process 0 in array number_grom using the MPI_Gather function called in line 52.


   



[image: ]

[image: ]

 
Figure 6.7. An MPI program to find the prime numbers.

   






 Table 6.4  Numbers  of  primes  [image: ]  found  by  processes  in  their  subintervals,
[image: ]; p is the number of processes; [image: ]
 	p

	 [image: ]  

	 [image: ]  

	 [image: ]  

	 [image: ]  

	 [image: ]  

	 [image: ]  

	 [image: ] 

	 [image: ] 

	 [image: ] 

	 [image: ] 


	

	

	

	

	

	

	

	

	

	

	

	 1

	664579

	      

	      

	      

	      

	      

	     

	     

	     

	     

	 2

	348620

	315959

	 

	 

	 

	 

	 

	 

	 

	

	 3

	239248

	216201

	209130

	      

	      

	      

	     

	     

	     

	     

	 4

	183235

	165385

	159686

	156273

	 

	 

	 

	 

	 

	

	 5

	149103

	134177

	129651

	126891

	124757

	      

	     

	     

	     

	     


	 6

	125998

	113250

	109372

	106829

	105278

	103852

	     

	     

	     

	     


	 7

	109295

	 98111

	 94614

	 92595

	 91165

	 89886

	88913

	     

	     

	     


	 8

	 96655

	 86580

	 83621

	 81764

	 80278

	 79408

	78573

	77700

	     

	     


	 9

	 86742

	 77597

	 74909

	 73165

	 72002

	 71034

	70364

	69739

	69027

	     


	10

	 78717

	 70386

	 67857

	 66320

	 65340

	 64311

	63771

	63120

	62686

	62071


    



   

   

   


   6.5.1  Function MPI_Gatherv

The numbers of primes in respective subintervals, collected in line 52, are needed to
gather all primes found by the processes. However, this can not be done with
MPI_Gather, because this function requires the data gathered to be equal-sized. In our
case we need the function MPI_Gatherv:


[image: ]

The function MPI_Gatherv is an extended version of MPI_Gather. It allows varying counts
of data to be gathered from the processes. The counts are specified in an array argument
recv_counts[]. More flexibility is also provided as to where the data gathered are
placed on the root by adding the new argument displacements[] to the function. The
root process, including itself, gathers recv_counts[i] elements from each process i in
the communicator. It inserts the elements received from process i in a contiguous group
of elements of recv_buffer beginning with element displacements[i]. All
MPI_Gatherv arguments are significant on process root, wherein recv_buffer is
marked as output, and the remaining arguments are marked as input. On other
processes, only arguments send_buffer, send_count, send_datatype, root,
and communicator are significant, and they are input arguments. The values
of counts, types and displacements should be specified in such a way that no
location on the root is written more than once. Otherwise a call is erroneous.


   To illustrate the function MPI_Gatherv let us examine the following example.
Suppose that the root process should collect various parts of array a evaluated in particular
processes. The parts should be stored in the portions of array buffer, whose initial
addresses differ by the value of step. The following sequence of instructions computes the
values of necessary arguments, and then calls the function MPI_Gatherv (see Figure 6.8).


   [image: ]





[image: ]

 
Figure 6.8. An illustration of MPI_Gatherv. 


   

   6.5.2  Function MPI_Wtime

   In order to benchmark the quality of decomposition of the problem to find prime
numbers into parallel executable tasks, we have measured the running time of the
program developed and computed its speedup. To measure the running time of a section
of code, or of a complete MPI program, the following function is provided:


[image: ]

It returns a double-precision floating-point number representing elapsed wall-clock time
since some point of time in the past. MPI guarantees that this point of time does
not change during the life of a process. One would use the function this way:



   [image: ]

Note that the time read is local to the process (processor). Thus, the times returned by
MPI_Wtime() for the same block of code in individual processes can be different. The
precision of the result returned by MPI_Wtime may be acquired by calling the function:


[image: ]

If time is measured, for example, with precision of 1 [image: ], the function returns the value
of [image: ], which is the number of seconds between successive clock tics. Here is the way
one would measure the execution time of an MPI program consisting of several processes:


   [image: ]

The MPI_Barrier calls with the argument indicating the communicator containing
processes running the computation, guarantee all processes to begin and end execution of
a benchmarked program. The measurement of time is usually performed by a single
process, in the example above it is process 0. Unfortunately, this way to measure time is
not perfect, because MPI_Wtime reads the elapsed wall-clock time instead of the pure
execution time of a process or program. If one or more processes are suspended by the
operating system of a parallel computer to handle various events (like interrupts from the
clock, external devices, etc.), then the time to service these events will be included
in the running time of a program. The measurement error is also affected by
execution time of the function MPI_Barrier and of the function MPI_Wtime

itself. This error can be corrected through measuring the running times of these
functions.

   The running time of the program to find prime numbers is measured by process 0 in line 25,
when all the processes start the computation, and then in lines 62–63, immediately after the
MPI_Gatherv call to synchronize the work of processes. The measurement results are included in
Table 6.5.14
Execution times of the program have been averaged over the series of 20 measurements.
Evaluating the averages, we excluded outliers, that is the measurement points
distant from other measurements. The last row of the table gives execution
times [image: ] of the sequential version of the program. These times have been taken
as reference points to compute speedups, [image: ]. Both the MPI program
and the sequential version were compiled with a mpicc compiler. The speedups
S obtained indicate that parallelization of finding prime numbers is relatively
good. As expected, the relative speedups ([image: ]) decreases with the increasing number
of processes p and grow for larger values of n. The results are illustrated in Figure 6.9. 






 Table 6.5  Results  of  measurements  for  the  MPI  program  to  find  prime
numbers  in  range  [image: ],  p –  number  of  processes  running  the  computation
(seq. denotes   the   sequential   version),   t –   computation   time   in   seconds,
S – speedup, E – efficiency
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	 1                                                                                                                  

	0.0390

	   

	   

	0.77

	   

	   

	16.34

	   

	   

	 2 

	0.0204

	1.96

	0.98

	0.39

	1.93

	0.97

	 8.02 

	1.93

	0.97


	 3                                                                                                                  

	0.0138

	2.91

	0.97

	0.25

	2.92

	0.97

	 5.17 

	2.99

	1.00


	 4                                                                                                                  

	0.0106

	3.64

	0.91

	0.19

	3.81

	0.95

	 3.93 

	3.94

	0.99


	 5                                                                                                                  

	0.0087

	4.52

	0.90

	0.18

	4.50

	0.90

	 3.41 

	4.54

	0.91


	 6                                                                                                                  

	0.0080

	5.18

	0.86

	0.15

	5.36

	0.89

	 2.92 

	5.30

	0.88


	 7                                                                                                                  

	0.0073

	5.32

	0.76

	0.14

	5.96

	0.85

	 2.55 

	6.07

	0.87


	 8                                                                                                                  

	0.0074

	5.44

	0.68

	0.12

	5.96

	0.75

	 2.30 

	6.73

	0.84


	 9                                                                                                                  

	0.0071

	5.65

	0.63

	0.12

	6.46

	0.72
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Figure 6.9. Speedups S and efficiency E as a function of the number of processes
for the MPI program to find prime numbers; the dashed line marks the maximum
speedup equal to the number of processes.

   

   6.6  Matrix–vector Multiplication

    In Section 3.6 we discussed the matrix–vector multiplication algorithm
in a one-dimensional torus (algorithm in Figure 3.20). Now we will present its MPI
implementation (Figure 6.10). Recall that the objective is to multiply matrix a of size
[image: ] by n-element vector x. We assume that the processes of the program are arranged
in a virtual ring, or one-dimensional torus (Figure 2.7b). Let us partition matrix a into
p submatrices [image: ], where p is the number of processes. The task of
each process is to compute a partial product [image: ] for [image: ]. If n is evenly
divided by p, the size of every submatrix [image: ] is equal to [image: ]. Otherwise submatrices
[image: ], [image: ] have a size [image: ], and submatrices [image: ], [image: ] a size
[image: ], where [image: ]. The computed partial products are concatenated into
the resulting vector [image: ]. To this end, process 0 after computing the
product [image: ] forwards it to process 1, which concatenates the products [image: ] and sends the
result to process 2, and so on. The complete vector z is received by process 0 from process
[image: ].


   



[image: ]

[image: ]

 
Figure 6.10. An MPI program to matrix–vector multiplication.

   

   The program in Figure 6.10 allocates the memory for vectors x, y, z and for submatrix b (lines 19–31), and
computes the number of rows of submatrix b that are processed in particular processes (lines 32–35). Then
it computes the partial products [image: ] (lines 37–41) and concatenates them into the resulting vector z
(lines 42–55). 

   As we stated in Section 3.6, the time to compute the partial products in lines 37–41 is
equal to [image: ], for some constant of proportionality c, and the time of data transfer
in lines 42–55 is [image: ], where [image: ] denotes the latency
time of transmission, and s the speed of transmission measured by the time to transfer a
single data item between two processes. Because with the increase in the number of processes
p the time [image: ] decreases and [image: ] increases, the parallel running time of the program
determined by the sum [image: ] reaches its minimum for the number of processes
[image: ]. Figure 6.11 shows the charts of times [image: ], [image: ] and [image: ].
These results were acquired by multiple executions of instructions in lines 37–41 (for [image: ])
and 42–55 (for [image: ]), which were timed with the function MPI_Wtime (as well as for finding
prime numbers, the measurements have been conducted in the Halo cluster, see the footnote
on p. 236). Some imperfection can be seen on the charts in measuring short operation times by
using MPI_Wtime, as well as the impact of the network load on communication times. The
charts exhibit some imperfection in estimating short operation times with MPI_Wtime,
as well as the impact of the network load on measurements of communication time. The
chart for T indicates that the shortest running time of the program is attained for 10–12
processes.






[image: ]

 
Figure 6.11.  The  times  of  computation  [image: ]  and  communication  [image: ],  and  the
total running time [image: ] of the matrix–vector multiplication program (each
graph depicts 9 series of measurements).

   

   6.7  Exercises


1.           [298]         (chap. 3)         Employing         the         MPI         library
   write            a            parallel            program            to            compute
   the     value     of     the     integral    of     one     variable     function
   [image: ]   in     an     interval     [image: ].     The     numerical     integration
   problem        has        been        formulated        in        Exercise 1        in
   Chapter 4.      In      the      MPI      program,      to      broadcast      the
   parameters       of       integration       use       the       MPI_Bcast     and
   MPI_Reduce       functions          with          potential          complexities
   [image: ].       To       increase       the       accuracy       of       integration,
   rather         than         the         method         of         rectangles         use
   the         trapezoidal         method,         in         which         the         area
   in        the        jth        elementary        interval        of        integration
   is         approximated         by         an         area         of         trapezoid
   (trapezium)        with        the        bases        of        lengths        [image: ]
   and         [image: ]         and         the         height         [image: ].
   The          method          of          trapezoids          approximates          the
   integral value by the formula:15
   [image: ],  where  [image: ]  is
   the step of integration, n the number of elementary intervals of integration,
   and [image: ]  for  [image: ]  are  points  within  the  interval  of
   integration. Assume that the integrated function is [image: ].

   

2.   [396] (sect. 3.2.3) Construct an MPI program to estimate the value of [image: ].
   Use the Monte Carlo method. The problem to compute the approximation has
   been formulated in Exercise 2 in Chapter 4. The sequential program to solve
   the problem expressed in the pseudo-code is presented in Figure 4.34.
   

3.   Design a parallel program to compute the Mandelbrot set M. Use the MPI
   library. The problem of computing the set M has been formulated in Exercise 3
   in  Chapter 4.  The  sequential  solution  to  the  problem  described  in  the
   pseudo-code is presented in Figure 4.37.
   

4.   Develop an MPI program to solve the n-body problem that was formulated
   in Exercise 4 in Chapter 4. The sequential program to solve the problem and its
   parallel version written in the pseudo-code are given in Figures 4.38 and S.14.
   

5.   Applying the MPI library provide a parallel program to construct the optimal
   binary search tree. The formulation of the problem to find such a tree is
   discussed in Exercise 5 in Chapter 4. The sequential solution to the problem
   given in the pseudo-code is specified in Figure 4.40.
   



   6.8  Bibliographic Notes

Occam language is discussed in the Inmos company manual [202], and in the book
by Jones and Goldsmith [208]. Solutions to sample problems written in this language are
introduced in the book by Feo [123]. The description of the CSP notation that was the basis
for the occam language is presented in Hoare’s article [195]. The analysis of the weaknesses
of this language can be found in the book by Wilson [398] (sect. 5.1.4). The first version
of the PVM library that emerged in the summer of 1989 was used only in the Oak Ridge
laboratory. Only after correction and improvement, it has been made available publicly
as version 3 in March 1993 [148, 149] (www.csm.ornl.gov/pvm, www.netlib.org/pvm3).
The MPI-1 standard is described in the work by Snir et al. [358], and MPI-2 in the work
by Message Passing Interface Forum [267]. Information about both versions can be found
on the sites www.mpi-forum.org and www.netlib.org/mpi, and also in the work by
Gropp [168]. The MPI-3 standard is presented in the book by Message Passing Interface
Forum [268]. The assumptions and objectives of the Open MPI project are presented
in the articles by Graham et al. [162], and Gabriel et al. [139]. Good textbooks
for learning the principles of applying the MPI library are the books by Pacheco
[297, 298], Gropp et al. [170], Quinn [315], and Rauber and Rünger [319].
The SPMD (single program, multiple data) method to build parallel programs
was proposed by Darema-Rogers et al. [92]; see also the article by Darema
[93]. An approximate, polynomial algorithm to find the maximum cut of the
graph is analyzed in the book by Hromkovič [197]. The program to find prime

numbers presented in Section 6.5 is modeled on the work by Lansdowne [238].





   1The language name came from William of Ockham, philosopher and theologian, who lived
approx. 1287–1347. He formulated the principle of the so-called Occam’s razor, according to which
“entities should not be multiplied without necessity,” and so rejecting any entities whose recognition is
not supported by experience.

2We assume here that each processor executes a single process. However, in a general case a processor
can execute several processes by interleaving (see p. 5).

3In the sequel, we use the terms partition and bisection interchangeably.

4In program texts presented in this and the next sections, instructions written in Courier can be used
without change in the final implementation, and those requiring further elaboration are shown in Courier
italics, for example see lines 20 and 31.

5Another popular startup command for MPI programs is mpiexec.

6Note however, that MPI may not be able to detect some errors. Other errors may be too expensive
to detect, or even may prevent MPI from returning control to the caller.

7The faster broadcast of this array implemented by the function MPI_Bcast is discussed in
Section 6.3.5.
8Note that the wildcard values MPI_ANY_SOURCE and MPI_ANY_TAG can not occur in a call of
MPI_Send.
9The broadcast of data carried out in a similar fashion in a cube connected network model is
implemented in the algorithm shown in Figure 3.23 (see p. 98).

10This implies that the amount of data sent by a root is exactly equal to the amount of
data received by each process. In function MPI_Recv the amount of received data may be
different, as long as the data size does not exceed the size of space allocated to the receive
buffer.

11We formulate the problem of reduction in Section 3.5 (p. 79), and discuss the algorithm to solve
this problem in a cube in Section 3.6 (Figure 3.24).

12If a process is not to be a member of any communicator, it may provide the color value
MPI_UNDEFINED, in which case new_communicator returns MPI_COMM_NULL.

13Note that processes in the remaining columns of the mesh, call MPI_Comm_split in line 28
with values of variables ind equal 0. In this case, the numbers of processes in the created
communicators (in interval from 0 to some maximum number) are assigned considering the number of
processes in the old communicator, which in our program is MPI_COMM_WORLD. At the same
time the relative order of numbering is retained. If process A in an old communicator has a
greater number than process B, then also the number of A will be greater in the newly created
communicator.
14The measurements were carried out in the computer cluster Halo installed at the Interdisciplinary
Centre for Mathematical and Computational Modelling, University of Warsaw, Poland, consisting of
computing nodes with the following characteristics: 98 2-processor AMD Opteron 246 nodes,
2 GHz/2 GB (IBM eSerwer 325), and 12 nodes each equipped with four 2-core AMD Opteron 875
processors, 2.2 GHz/16 GB (Sun V40z).

15This formula is also called trapezoidal rule.
                                                                 

    

   7
 Shared-memory Programming  
 
   7.1  Introduction

Another basic type of parallel processing, next to message-passing computing, is
shared-memory computing. As the name indicates, this type of computing assumes
that programs have access to shared memory covering the whole or a part of
the operating memory of a parallel computer. A single program is executed
by one or more collaborating threads created and deleted dynamically. The
threads executed in parallel can operate on both the shared data and private
data.

    In this chapter we concentrate on the principles of shared-memory
programming with the use of OpenMP API (Open Multi-Processing Application
Programming Interface) that works in conjunction with C/C++ and Fortran
languages.1
The interface is defined by the collection of compiler directives, library functions, and
environment variables. These elements allow users to indicate to a compiler the parts of a
sequential program that can be executed in parallel. Basically, the interface is intended
to create programs on shared-memory architectures (see Section 5.3). However,
supported by MPI it can also be used to write parallel programs on clusters
equipped with shared as well as distributed memory (see Sections 5.4.1 and
5.4.2).

   The first version of the interface was developed by the OpenMP Architecture Review Board
(ARB) in 1997. The board, which is still active, includes representatives of computer and
software manufacturers, as well as a wide range of experts from various research institutions and
universities.2
What is important, from the very beginning OpenMP received support from the
leading computer companies such as Compaq, Digital, IBM, Intel, and Silicon
Graphics. The producer group supporting OpenMP is constantly growing, as
evidenced by creation of compilers for C, C++ and Fortran that accept the
interface. The OpenMP 2.5 version (May 2005) has become a kind of standard.
The work on version 3.0 was completed in May 2008, and on version 3.1 in

July 2011. The OpenMP 4.0 specification was released in July 2013. This
specification along with OpenMP 4.1 draft for public comment (July 2015) are available
at http://openmp.org/wp/openmp-specifications.

   Note that a slightly different approach to shared-memory programming has been
taken in the Pthreads library developed under the auspices of the Institute of Electrical
and Electronics Engineering (IEEE). The library is the result of effort of the committees
in charge of defining a Portable Operating System Interface (POSIX, 1003.1c IEEE-1995
standard). It contains functions to execute multiple threads in uniprocessor systems via
time sharing. It is also useful for developing programs for small, in terms of the
number of processors, SMP computers. A similar approach to create parallel
programs as in OpenMP, based on using user-specified directives allowing the
compiler to build a highly effective code, is applied in High Performance Fortran
(HPF).


   7.2  The OpenMP Model of Computation

   An OpenMP parallel program is executed by multiple threads, where each thread
performs a task. This type of execution is discussed on p. 5. Let us recall its basic
features in the context of the OpenMP model of computation.

   The OpenMP program is implemented as a single process under supervision of a
computer operating system. To this end, the operating system allocates some
resources to the process, including computation time of a processor, memory space
to store instructions and data, the set of registers, etc. The process can be
executed by a single thread or by a team of cooperating threads. A thread is an
execution entity that is able to run independently a stream of instructions. If
multiple threads collaborate to implement a process, the parallel computation
arises as the result of simultaneous execution of a number of instruction
streams.3
All the threads executing a process share the resources allocated to it, in particular the
address space of a designated area of memory. In this memory the threads can store
computation results and messages that can be read by other threads. So it allows the
threads to communicate with each other. In addition to shared resources, each thread has
also a few resources for its exclusive use, such as the stack, program counter register,
memory to store private variables.

   OpenMP provides the shared memory model of computation, which is similar
to the PRAM model (see Figure 2.4). However, there are some differences between these
models. The first is that OpenMP threads are executed by processors or cores
asynchronously while in the PRAM model succesive computation cycles of processors
are initiated by a central clock.

   The second difference concerns the memory, or more specifically, the OpenMP
relaxed-consistency shared memory model. The model assumes that all threads executing
a program have access to the shared memory, or briefly, the memory, as a place
to store and retrieve variables. Furthermore, each thread may have its own
temporary view of the memory. This concept is related to all kinds of

intervening memory structures of modern computers, such as processor/core
registers, cache, other local storage etc., occurring between the thread and the
memory.

   If at any computation step in PRAM, a group of processors update some shared
variables, then in the next step the new values of these variables are available to all
processors. In contrast, OpenMP allows a thread to cache the new values of
shared variables and thereby to avoid going to the memory for every access to a
variable. As the result, the updates of shared variables made by the thread are not
recorded in the memory itself, but only in the thread’s temporary view of the
memory.

   However, OpenMP also requires that updated values of shared variables must be
available to the threads just after every implicit or explicit barrier. This is accomplished
by a flush operation. A barrier is a synchronization point in the execution of a program
encountered by a team of threads, beyond which no thread in the team may execute until
all threads in the team reach that point (see p. 251). Therefore, the OpenMP application
developer should assume that between synchronization points, the values of shared
variables in the memory and in a thread’s temporary view of the memory can be
different.4

    Except for the shared memory, each thread also has access to
another kind of memory in which it can store private data. This memory
must not be accessed by other threads and is called threadprivate
memory.5
OpenMP distinguishes between the two kinds of access to variables referenced in
blocks of code associated with the constructs: shared and private. The kind of
access to a variable is controlled by a data-sharing attribute clause provided
in a construct’s directive (see the shared and private clauses on p. 260). A
variable referenced in a block of code associated with a construct has the original
variable, which is the variable of the same name that exists at the point the
construct is encountered by a team of threads. Each reference to the shared
variable in the block is a reference to the original variable. For each private
variable referenced in a block, a new variable of the same language-specific
attributes as for the original variable is created in the threadprivate memory of each
thread.

   An OpenMP parallel program is executed in line with the fork-join paradigm
(Figure 7.1) in which multiple threads perform tasks defined implicitly or explicitly by
OpenMP directives. When an OpenMP program begins execution, only a single thread,
called the initial thread, is active (Figure 7.1). It executes sequentially, as
though enclosed in an implicit task region defined by an implicit inactive parallel
region6
surrounding the whole program. Whenever a thread encounters a parallel construct, it
creates a team of itself and a specified number of additional threads (this corresponds to
a fork in Figure 7.1). The initial thread becomes the master of the new team. A set of
implicit tasks is created. The number of created tasks is equal to the number of threads
in the new team. The code for all tasks is the same. It is defined by the code occurring
inside the parallel construct. The tasks are assigned to individual threads in
the team and become tied, which means that a task is always executed by a
thread, to which it was originally assigned. The task region associated with the
task being executed by the encountering thread is suspended and the threads

perform their implicit tasks. There is an implied barrier at the end of the parallel region.
After the end of the parallel region, only the master thread resumes execution. All other
threads of the team terminate (this corresponds to a join in Figure 7.1). The master
thread resumes execution of the task region that was suspended at the time of
encountering the parallel construct.


   



[image: ]

 
Figure 7.1. The fork-join paradigm of parallel execution in OpenMP; [image: ] denotes
the initial or master thread.

   

   7.3  Creating a Parallel Program

One of the ways to create an OpenMP parallel program is to take a sequential program
solving the problem at hand, and transform it into a parallel one. In the first step of this
approach we need to identify the parallelism contained in a sequential program by
specifying the respective instructions, sequences of instructions or larger sections of code
that can be implemented in parallel. Then, by applying directives we tell the compiler
the sections to be performed in parallel, and provide information on how to distribute
the computational work enclosed in those sections among the threads. In C,
which is the base language in our considerations, every directive begins with
the prefix #pragma omp followed by the directive name and number of clauses
that can be separated by commas or white spaces. The general format of a
directive7 looks
like this: 
[image: ]

A directive must end with the new line character. An example is the directive:

[image: ]

used to parallelize a for loop. The clauses shared(a) and private(i) indicate that
variable a should be shared by the threads executing iterations of the for loop, and
variable i should be private in each thread (see the clause shared on p. 260 and clause
private on p. 260). The directive should occur in a separate line before the block of code
to which it relates. The block is understood as one instruction or a sequence of
instructions with one entry and one exit enclosed in parentheses { }. In the last
example, after the directive a block consisting of a single for instruction or a nest
of multiple for instructions should be specified. Longer directives may carry
on in the next lines after a standard continuation character “\,” for example:

[image: ]

   OpenMP defines a few internal control variables (the so-called ICVs) to control
execution of a multithreaded program. These variables are not accessible directly in an
application, but their values can be queried and set by the user through OpenMP
library functions and environment variables. One of these functions is:

[image: ]

which retrieves the number of threads in the current team. The
number of threads can be set by assigning to the environment variable
OMP_NUM_THREADS the required value. For example, in the csh shell the

command:8

[image: ]

sets this variable to 4. Before executing a program the value of variable OMP_NUM_THREADS is
used to initialize the OpenMP internal control variable nthreads-var, which provides the
number of threads created to perform successive parallel regions (see Section 7.4.1). The
value of this variable can also be modified in the course of program operation through the
function:9

[image: ]

Likewise, it is possible to fix temporarily the number of threads to implement a given
region. This can be done by the clause num_threads(integer-expression) whenever
the region is initiated.

    Another useful function of the OpenMP library is:

[image: ]

The function returns the number of the calling thread. In each parallel region the threads
are numbered with consecutive integers ranging from 0 up to one less than the number of
threads in the team, determined by the variable nthreads-var or by the clause
num_threads. The master thread always has number 0.

   Identifying sources of parallelism in a sequential program is usually not difficult.
Sometimes it is necessary to restructure the program so as to more parts thereof could be
performed in parallel. The restructuring is then aimed to increase the degree of program
concurrency. Sometimes the sequential program can be hard to parallelize. In this case
one may think about changing the algorithm underlying the sequential program so as to
make it more susceptible to parallelization.

   An alternative way to create a parallel program is automatic parallelization. To
this end, compilers have been developed to analyze the control and data flows of a
sequential program with a view to identify independent groups of instructions that may
be executed in parallel. Particular attention is paid to the nested loops, which as a rule
consume most of the program execution time. If the loop iterations are independent
of one another, then in the parallel code these can be performed by separate
processors. Quite often, however, data dependencies occur between the iterations. For
example, the values of some variables set in previous iterations can be used in
subsequent iterations. Dependencies between iterations or between other parts of a
sequential code may be affected by the input data of the program that are not
known at compile time. In the absence of information or confidence whether the
program parts are independent, to ensure correctness a parallelizing compiler
takes a conservative approach and does not introduce any change into those
parts.

    In comparison with automatic parallelization, OpenMP follows a different
approach. Namely, the programmer helps the compiler to create the parallel code by
providing, through appropriate directives, which parts of a sequential program

can be executed in parallel, and by providing information how this is to be
accomplished. In the case when the programmer has a profound knowledge
about operation of the sequential program, for example when he/she is the
author of the program, the use of OpenMP has an advantage over automatic
parallelization. Likewise, the programmer has the ability to restructure the sequential
program or to change the algorithm, if the performance of the parallel code is not
satisfactory.

   As already mentioned, the compiler directives in C/C++ take the form of pragmas
that provide information to the compiler, and are handled by a preprocessor. The
preprocessor ignores unrecognized pragmas that enables to compile an OpenMP parallel
program and to produce a sequential object code in the environments where OpenMP
has not been implemented. In this regard, some problems may arise when OpenMP
library functions are called, which interact with the OpenMP runtime system either to
get information from it, or to control the execution of a program. In order to
overcome this, we can use conditional compilation. In the following example the
way of compilation of an instruction containing the reference to the function
omp_get_thread_num is controlled by the appropriate conditional compilation
statement: 
[image: ]

    The OpenMP specification requires the macro _OPENMP to be defined in the
environment in which the API has been implemented. The macro should have the
decimal value yyyymm where yyyy and mm are the year and month designations of the
version of the OpenMP API that the implementation supports. Due to ignoring the
unrecognized pragmas and conditional compilation, we can include in one file both the
sequential and parallel versions of a program. Operating on a single file, which is
characteristic for the SPMD programming method, facilitates maintenance of those
versions.10

    One of the greatest advantages of OpenMP is that it allows incremental
parallelization in which an existing sequential program is transformed into a parallel
program one section of code at a time.11
In such a process the programmer can parallelize a section of the sequential program by
inserting suitable directives, and leave the rest of it unchanged. When compilation and
testing of this program version turn out to be successful, another section can be
parallelized. One may stop the process of incremental parallelization if a desired speedup
has been achieved or its further increase requires too much effort. Note that during
parallelization the developer also has the option to reorganize the sequential program,
while maintaining semantic meaning, to increase its exploitable parallelism. The
incremental program development makes parallel programming with OpenMP relatively
simple and fast. Learning OpenMP does not require much time, because it is not as
powerful (in terms of the number of directives, features, etc.) as, for example,
MPI.

   Apart from the advantages, which are undoubtedly incremental parallelization and
maintaining sequential and parallel versions in one file, OpenMP is also burdened with

disadvantages. One of them is the difficulty to obtain high speedups when applying a
growing number of threads, or saying otherwise, OpenMP programs are harder to scale
than, for example, MPI programs. This is due to potential inconsistencies between data
kept in the shared memory and in threads’ temporary views of this memory. Although
those inconsistencies are acceptable, to ensure the correctness of computations on shared
data, OpenMP enforces consistency in multiple points of a program. This is done
through implicit and explicit flush operations that involve data transmissions
between shared memory and caches (see p. 184). The transmissions are expensive,
because data rates between these memories compared to the computation speed of
modern processors, are much smaller. Frequent data inconsistencies, owing to high
communication costs, increase the time of computation and thus decrease the
speedup.

    Another difficulty in creating a parallel program that uses shared memory is
sometimes a substantial effort required to ensure its correctness. Typically, this effort
grows with increasing complexity of the parallel code. One of the reasons is a
race condition in access to shared variables. The race arises when several
threads read and write a shared variable without any synchronization to order the
variable accesses. If there is a sequence of such reads and writes, then because of
nondeterministic execution of a multithreaded program, there is no way to predict in
what order the reads and writes will be performed. This order usually varies in
different executions of the parallel code. The causes of nondeterminism are unequal
relative execution rates of threads, variable data transfer times within a parallel
computer due to varying load of transmission systems, the need to service priority
interrupts by processors, etc. The errors associated with improper synchronization of
data accesses can be very subtle, and because of nondeterministic computation
very difficult to detect. This extends the testing and debugging time of parallel
programs.


   7.4  Basic Constructs


   7.4.1  The Construct and Region Concepts

We now describe the basic programming constructs, or briefly constructs,
of the OpenMP interface to create parallel programs. According to the
specification of the interface, the construct is defined to be an executable
directive12
and the associated statement, loop(s), or structured block. A structured block, or
block in short, is an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom. The point of entry cannot be a labeled statement
and the point of exit cannot be a branch of any type. So, a block can be a sequence of
statements enclosed in {and} braces (a compound statement) where a single entry is the
first statement of the sequence, and a single exit is the last statement of the sequence.
However, the control transitions (jumps) into or from the interior of the block may not

occur. The construct does not encompass the code of any called routines, if any,
which means that it includes only the code appearing in the lexical extent of its
directive.

   Another key concept of the interface is a region of code. A region includes all code
encountered during a specific instance of the execution of a given construct or OpenMP
library routine. A region contains any code in called routines, and also any
implicit code introduced by the Open MP implementation. The task generation at
the point in which a task directive is encountered belongs to the region of the
encountering thread. However, the explicit task region associated with the task
directive is not a part of the region of that thread. In other words, a region may be
viewed as the dynamic or runtime extent of a construct or of an OpenMP library
routine. During execution of a program the same construct may bring about many
regions.


   7.4.2  Parallel Construct

This construct plays a fundamental role in OpenMP and it is
intended to specify which computation should be performed in
parallel.13
The program parts that are not enclosed by the parallel construct are implemented
sequentially by the initial thread. The general form of the parallel construct is as follows:

[image: ]

When a thread T encounters a parallel construct, the thread creates a team of threads to execute the
parallel construct.14
The new team consists of thread T, which becomes the master of the team, with a
thread number of zero for the duration of the new parallel region. Along with the team, a
set of implicit tasks, equal in number to the number of threads in the team, is created.
The code for each implicit task is determined by the code of a block associated with the
parallel construct. The implicit tasks are performed in parallel by the team of
threads, one task per thread. The above implies that the code of the region
associated with the parallel construct is not divided among the threads, but it
is executed in the same form by every thread. When some sections of code
should be performed by different threads, it has to be explicitly specified by
making use, for example, the thread number returned by the OpenMP library
routine omp_get_thread_num. Thus, although all threads execute the same (replicated)
code of the parallel construct, the computation paths in the respective threads can be
different. At the end of a parallel region, the threads are synchronized by an implicit
barrier15
that forces all threads to wait until the computation inside the region has
been completed. Once the execution of a region is completed only the
master thread continues execution of code beyond the end of the parallel
construct.16

Here is a program containing the parallel construct that illustrates the possibility of
performing different computation by individual threads:

[image: ]

In this case the block consists of two statements included in braces { }
(lines 5–9). In line 2 the header file omp.h is included in order to be able
to use OpenMP library routines. Diversification of computation in thread
1 occurs in lines 7–8. The result of the program execution is as follows:

[image: ]

The threads are executed in a nondeterministic fashion. Therefore in the above
sequence the order of result printed by the respective threads may vary in different
executions.

    In the parallel construct the following clauses can be used (in C/C++):

[image: ]

These clauses are described in Section 7.5.
 

   7.4.3  Program Compilation and Execution


Compilation of an OpenMP program written in C can be carried out
using a C compiler, and specifying the appropriate option. The example
programs presented in this chapter were compiled by the command:

[image: ]

where -mp option indicated that the source program was written using the
OpenMP interface. For the program execution the following commands were used:

[image: ]

where setenv command was optional, when the number of threads was set in the
program by calling omp_set_num_threads routine. In the compilation command pgcc
one can use the -Minfo option that makes the compiler to report additional
information on the compiled program. Here is a sample of such information:

[image: ]


   7.4.4  Loop Construct

OpenMP contains a group of constructs, called worksharing constructs, that are used
to distribute computation among the threads in a team. The constructs enable the user
to specify the program fragments that should be executed in parallel, as well as to clarify
how the computation should be divided across the individual threads. In C/C++ this
group comprises the loop construct, sections construct, and single construct. We will
discuss them one by one.

    The syntax of the loop construct is as follows:

[image: ]


where the for-loops is a loop nest17
consisting of one or more associated loops. The construct causes the iterations of the
associated loops to be distributed among threads that already exist in the team implementing
the parallel region. Therefore, the loop construct must be enclosed by the parallel
construct. After completion of all iterations of the loops the threads are synchronized
applying an implicit synchronization barrier, unless a nowait clause is present (see p. 262).
Here is an example of a simple loop construct where the for-loops contains only one loop:
 
[image: ]

    The clause default(none) in line 1 requires that each variable that is accessed in
the construct must have its data-sharing attribute explicitly determined, except for
the loop iteration variable (see below and p. 261). The variables a, b and n are
specified to be shared, and variable i to be private, which means that each
thread has its own copy of it. In fact, specifying the data-sharing attribute for
this variable is unnecessary because the loop iteration variable is private by
default18
in the loop construct, even if it was previously specified to be shared. After the iterations,
the value of this variable is undefined, unless the lastprivate clause is used (see p. 261).
The result of executing the above example by four threads for n equals 10 is as follows:

[image: ]

     As noted earlier, also in this case due to nondeterministic computation the
assignment of loop iterations to the threads, as well as the order of printed messages may
vary in different program implementations.

   If the parallel construct includes the loop construct with one or more associated loops
and no other statements, a shortcut for both constructs can be used. Instead of a full

version: 
[image: ]

     one can use a combined version, also called the parallel loop construct:

[image: ]

 Clauses that are acceptable in the combined worksharing loop construct belong to
the set of clauses allowed for the parallel and loop constructs. The combined version not
only reduces the size of the object code, but also permits a compiler to make
the code faster. In particular, for the combined version a compiler inserts only
one implicit synchronization barrier into object code instead of two. Using the
combined version, the example program from p. 252 can be written as follows: 

[image: ]

   One of the valid clauses for the loop construct is collapse[image: ] where n must be a
constant positive integer expression. The clause is used to indicate how many loops are
associated with the loop construct. If the clause is not present, only the outermost loop
in the for-loops is associated with the loop construct. When there is more than one
loop associated with the loop construct, the iterations of all these loops are
collapsed into one larger iteration space. Based on this space, iterations are
distributed among the threads according to the schedule clause (for details see
p. 262).

    In the example given below, the i and j loops are associated with the loop
construct.


[image: ]

Due to the collapse(2) clause used in the loop construct directive (line 7),
the iterations of the i and j loops are collapsed into one loop with a larger
iteration space. The order of the iterations in the collapsed iteration space is
evaluated by the sequential execution of the iterations in the i and j loops. In our
example, the iteration space defined by the pairs of values of variables (i, j) is as
follows: (1,1), (1,2), (1,3), (2,1), (2,2), (2,3). The result of execution of these
iterations by the team of 6 threads (see clause num_threads(6) in line 5) is:

[image: ]

  Clearly, each thread executes just one iteration. Also note that in the sequentially
last iteration of the collapsed space, i has the value 2 and j has the value 3. Because
ilast and jlast are lastprivate (see line 7), the values of these variables
are assigned by the sequentially last iteration of the collapsed i and j loop.
Consequently, the example prints: ilast: 2 jlast: 3, as can be seen above.

   The structure of all associated for-loops in the loop construct is subject to certain
restrictions.19 The
point is that before executing the loops, it should be possible to compute the iteration count of all
associated loops.20
Therefore, all associated for-loops must have the following canonical form:


[image: ]

The init-expr can be one of the following: [image: ], integer-type [image: ], pointer-type
[image: ], and the test-expr one of the following: v rel-op b, b rel-op v. The v can be a
variable of a signed or unsigned integer type, or a variable of a pointer type. The lb and b
must be loop invariant expressions of a type compatible with the type of v. The rel-op
can be one of the relational operators: [image: ], [image: ], [image: ], [image: ]. The alternate options for
the incr-expr are as follows: [image: ][image: ]v, [image: ][image: ]v, v[image: ][image: ], v[image: ][image: ], v [image: ][image: ] incr, v
[image: ][image: ] incr, v [image: ] v {[image: ]}incr, v [image: ] incr [image: ] v, where incr must be a loop invariant
integer expression.

   Here are the clauses that can be used in the loop construct (in C/C++) (see
Section 7.5):  

[image: ]


   7.4.5  Sections Construct

Another worksharing construct for distributing computation across the threads is the sections construct
of the syntax: 
[image: ]

The construct encloses a number of independent sections describing the separate
computational tasks. A section begins with directive #pragma omp section,
optional for the first section, followed by the block of code. Blocks are executed in
parallel by a team of threads created when the innermost enclosing parallel
construct is initiated. Each block is executed by one of the threads in the context
of its implicit task. The threads participating in the execution of blocks are
synchronized by an implicit barrier at the end of the sections construct, unless the
nowait clause is specified. If the number of threads is at least equal to the
number of sections, each block is performed once by a separate thread (some
threads may be idle). If the number of sections is larger than the number of

threads, some threads are assigned a larger number of sections to execute. The
way the blocks are scheduled among the threads is implementation defined.
The number of sections defines the maximum degree of concurrency of the
construct.

    Here is an example of parallel execution of three independent
jobs (we assume that the number of threads is at least three):

[image: ]

Similarly to the parallel loop construct also the sections construct can be written in a combined
form, also called the parallel sections construct. In the example we study, lines 4–15 can be
written as: 
[image: ]

   While applying the sections construct one should be aware that it may lead to
unbalanced thread workloads. Suppose that in the last example the jobs vary with
respect to the amount of computation. Then the threads that perform their
jobs faster will be awaiting at the implicit synchronization barrier, until the
other threads complete their computation. Moreover, if only two threads, for
example [image: ] and [image: ], will execute the program, then one of them, say [image: ],
will be assigned two jobs. The thread [image: ] after finishing its job will be most
likely awaiting at the synchronization barrier, unless the execution of the job
by thread [image: ] requires the same time as the execution of two jobs by thread

[image: ].

   The list of clauses supported by the sections construct is as follows (see Section 7.5):

[image: ]


   7.4.6  Single Construct

The third and final21
construct to divide computation among threads in a parallel region is the single construct of
the syntax: 
[image: ]

  As the name of the construct suggests, the block of code enclosed by the construct is
implemented by a single thread. This thread is a member of the team of threads created
to execute the innermost enclosing parallel construct. The choice of the thread
executing the block is nondeterministic. During this execution other threads of the team
wait at the implicit synchronization barrier on exit from the single construct.
After the block is executed all threads in the team continue their action. In the
section of code given below, the messages indicating the start and end of the job
execution are printed in the single construct, to avoid multiple prints by other
threads. 
[image: ]

   The clauses supported by the single construct are listed below (see Section 7.5): 


[image: ]


   


   7.4.7  Task Construct

As mentioned in Section 7.2, an OpenMP program is executed by multiple threads
that perform tasks created either implicitly or explicitly. When any thread
encounters a parallel construct, the thread creates a team of threads and a
set of implicit tasks, one per thread. If during the computation the need for
generating a new task arises, we may use a task construct of the following syntax:

[image: ]

     When any thread encounters a task construct, the thread generates a
new explicit task, called a child task, based on the code provided in the
associated block. The data environment of the child task is defined in line with the
data-sharing attribute clauses appearing on the task directive, the innermost
enclosing parallel construct directive, as well as with defaults that apply. The
encountering thread may either suspend the execution of its current task region, and
begin the execution of the child task region, or the thread may postpone the
child task execution until later time. In the latter case, the child task can be
assigned to any other thread in the team that is available to perform the task’s
work.

   For the purpose of coordinating implementation of tasks by the OpenMP runtime
system, the task scheduling points are introduced. Each thread can suspend execution
of the current task region at any task scheduling point, in order to execute a different
task region. If the suspended task region concerns a tied task, the execution of the region
is later resumed by the thread to which the task was originally assigned. However, if
the suspended task region concerns an untied task (the untied clause is then
present on a task construct), any thread can resume its execution. The task
scheduling points are implied at the following places: the point just after the creation
of an explicit task, the point after the last instruction of a task region, in a
taskyield region, in a taskwait region, or in an implicit or explicit barrier
region.

   All explicit tasks created in a given parallel region complete their operation before
the master thread leaves the implicit barrier at the end of the region. In addition,
operation of the task is completed when a task synchronization construct is used,
which can be a taskwait or barrier construct.

   Below, as an example, a recursive function F() is given to compute the nth Fibonacci
number22 by making use
of the multiple explicit tasks executed in parallel (lines 9–20). Note that the taskwait construct specified
in line 17 guarantees that all generated tasks complete their operation as the result of execution of the

taskwait region. 
[image: ]

Here is the result of execution of the above program:

[image: ]

   The clauses supported by the task construct are as follows (see Section 7.5, and the
OpenMP specification for description of the final and mergeable clauses):   

[image: ]


   7.4.8  Taskyield Construct

The one directive taskyield construct of the syntax:

[image: ]


  constitutes an explicit task scheduling point. When a thread reaches the taskyield
construct, the OpenMP runtime system may enforce the thread to make a task switch.
This involves suspending execution of the current task, and beginning or resuming
execution of a different task assigned to the current team of threads. There are a few
restrictions regarding the placement of the taskyield construct inside a program. For
example, the construct cannot be used in place of a statement following an if, while, do,
switch, or label.


   7.5  Clauses


   7.5.1  The Purpose of Clauses

The clauses are optional components of directives beginning the OpenMP constructs.
They are used to further control execution of the constructs. For each directive there
is a valid set of clauses that can appear on the directive. The order in which
clauses occur on directives is not significant. Some clauses accept the parameters
defined by variables or expressions. Since clauses are processed prior to the
execution of a construct, the values of these variables and expressions should be
established in the external program parts with respect to the construct being
initiated.


   7.5.2  Shared Clause

The shared(list) clause specifies a list of variables to be shared by tasks generated by
a parallel construct or task construct. All variables listed in the clause are stored in
the shared memory in a single copy. Before performing a region associated with a
construct, these variables have some initial values. Within the region the threads
executing their tasks can read and modify values of these variables. Once the region is
completed, the variables take the values resulting from their possible modifications
during execution of the region by the threads. Note that in a parallel or task
construct, if no default or private clause is present, the variables referenced in those
constructs are shared.

    Employing shared variables one should pay particular attention on the race
condition in access to these variables. Such a race can occur when one thread sets the
value to a variable, and the other thread reads this value. There are special constructs to
synchronize access to shared variables, such as the barrier construct and the
critical construct. Examples of the shared clause are demonstrated on pp. 252 and
278.


   7.5.3  Private Clause

The private(list) clause provides a list of variables to be private to each task generated
by a parallel or task construct. For each variable appearing on the list, a new variable
is created in each task. The language-specific attributes of the new variable are derived
from the original variable. The new variable is available only in the code of a given task.
At the start and after completion of a construct, the values of private variables are
undefined.23

   Some variables do not need to be declared as private. This applies to the associated
loop iteration variables specified in the loop construct (for details see Section 7.4.4), as
well as to formal parameters and variables of local functions called within the block
associated with a construct. Variables and parameters of this kind are treated by default
as private. The examples how to use the private clause are given on pp. 252 and
278;.


   7.5.4  Firstprivate Clause

As noted earlier, the value of a variable declared as private on a construct directive is
undefined at the start of the construct. However, we can initialize the variable of this
type by applying the firstprivate clause, which extends the functionality provided by
the private clause. The firstprivate(list) clause specifies the variables on the list
to be private to a task, and initializes each of them with the value of the original variable
prior to the execution of the construct.

   In the following example, based on the previously computed values of elements a[0],
a[1][image: ] a[n-1] (line 2), the values of elements a[n], a[n+1][image: ] a[2n--1] are
computed within the for loop (lines 5–7). Once the loop is completed, the
value of element y[i] is set (line 8). In this context, parallel execution of the
for loop in line 4 requires array a to be specified as firstprivate (also note
that only the outermost i loop is associated with the parallel loop construct):

[image: ]



   7.5.5  Lastprivate Clause

The value of a variable declared as private on a construct directive is undefined not only
at the start but also after the construct. When the value of a private variable needs to
be accessed beyond the construct, we can modify its data-sharing attribute
with the lastprivate(list) clause. As for the firstprivate clause, also the
lastprivate clause extends the functionality provided by the private clause. The
lastprivate clause specifies the variables on the list to be private to an implicit task,
and causes the original variable to be updated after the end of the construct.
When the lastprivate clause having a variable, say x, on the list appears
in the directive of a loop construct, the value of x from the sequentially last
iteration of the associated loops is assigned to the original variable. Similarly, when
such a clause appears in the directive of a sections construct, the value of
x from the lexically last section of the construct is assigned to the original
variable.

    The following is a modified example from p. 254:

[image: ]

  The element of array b in line 5 is computed differently than the earlier elements,
with the value of index i equal to n - 1.

    Another example of the lastprivate clause can be found in a program on
p. 254.


   7.5.6  Default Clause

The default clause of the syntax default(shared|none), explicitly determines the
data-sharing attributes of variables that are referenced in a parallel or task construct.
This concerns the variables whose data-sharing attributes would be otherwise implicitly
determined.24

   The default clause with the argument shared makes all variables referenced in a
construct that have implicitly determined data-sharing attributes to be shared. When
the default clause is specified with the none argument, it is required that each variable
referenced in the construct with no predetermined data-sharing attribute, must have its
data-sharing attribute explicitly determined through a data-sharing attribute
clause.

   It is recommended to use the default(none) clause, because the developer is then
required to provide the data-sharing attributes for all variables accessed in a construct
(excluding those with predefined attributes). This can be a bit cumbersome, but
increases the likelihood of program correctness. The example use of the default clause is
on p. 252.


   7.5.7  Nowait Clause

The OpenMP API defines the following worksharing constructs: the loop, sections, and
single constructs. There is an implied barrier at the end of each of these constructs to
guarantee that all threads will complete the worksharing region before moving on to
further parts of code. This may, however, give rise to idleness of threads waiting at the
barrier. To avoid the implied barrier, you can specify the nowait clause in the directive
of a worksharing construct. In this case, threads that finish early may proceed straight to
the code following the construct without waiting for the other members of the team to
finish the construct. Skipping synchronization barriers may decrease the execution time
of a program by shortening the periods during which the threads stay idle.
Nevertheless, we must be careful while using a nowait clause, since it may lead to
bugs. For example, suppose we have a construct that produces values used
in subsequent sections of a program. If we were to apply a nowait clause to
the construct, threads might attempt to reference values that have not been
computed.

   The minimal graph bisection program given in Figure 7.3 (Section 7.8, line 21)
demonstrates the use of nowait clause.


   7.5.8  Schedule Clause

The schedule clause is intended to control the way the iterations of the associated loops
of the loop construct are partitioned into contiguous subsets, called chunks, and how
these chunks are distributed among threads of the team. The syntax of the clause is
schedule(kind[,chunk-size]). The parameter kind determines the scheme with which
chunks are assigned to threads. The optional parameter chunk-size, equal to the number
of consecutive iterations in each chunk, defines the granularity of workload distribution
across the threads. Each thread implements one or more chunks within its implicit task.
The parameter kind can take one of the following values: static, dynamic, guided,
auto, and runtime.

   When schedule(static, chunk-size) is specified the iterations are assigned to
the threads in chunks of size chunk-size in a round-robin manner, in order of the thread
number. The size of the last chunk to be distributed may be less than chunk-size. When
no chunk-size is present, the iteration space is partitioned into chunks of approximately
equal size, and every thread yields at most one chunk. Static distribution is the simplest
variant of work allocation scheme, and it is frequently accepted in compilers as default. It
is also usually recommended, because the overhead associated with its implementation is
the smallest.

   When schedule(dynamic, chunk-size) is used, the iterations are assigned to
threads as the threads request them. The thread executes the chunk of chunk-size
iterations, then requests another chunk, until there are no more chunks to be executed.
The last chunk may have fewer iterations than chunk-size. When no chunk-size is
provided, its default value is 1.

   The clause schedule(guided, chunk-size) supports guided distribution that is
similar to dynamic distribution. Iterations are assigned to threads on their demand,
except that the size of chunks decreases with the program execution. The size of each

chunk is proportional to the number of unassigned iterations divided by the
number of threads. As the program executes, this size decreases to 1 (if no
chunk-size is specified). The parameter chunk-size sets the threshold for the size of
chunks. For a chunk-size with value k, where [image: ], the threads are assigned the
chunks of decreasing size but not less than k (only the last chunk may have size
less than k). Reduction of the size of chunks aims to improve the efficiency of
computation. Assigning initially larger chunks of iterations lessens the overhead
related to their distribution. The decreasing number of iterations remaining to
execute toward the end of computation, often leads to poorly balanced thread
workloads. To balance them, the smaller chunks are then conducive. Dynamic and
guided distribution schemes are useful when the amount of work is hard to
predict, and there is difficult to balance the workloads of respective threads.

    The last two types of the schedule clause are schedule(auto) and
schedule(runtime). They are similar to each other in that they transfer the decision
regarding scheduling to the compiler and/or OpenMP runtime system. By choosing the
auto type, the programmer gives the implementation the freedom to choose any possible
distribution of iterations across the threads. When runtime type is chosen, the schedule
and chunk size are taken from the OpenMP control variable run-sched-var. If
this variable is set to auto, the schedule is implementation defined. The value
of run-sched-var can be set by assigning the OMP_SCHEDULE environment
variable the appropriate value. Here are some examples of such assignments:

[image: ]

Note that the variable OMP_SCHEDULE controls the schedule type and chunk size of
all loop directives that specify the schedule type as runtime.

    For the sake of illustration, we have executed the following section
of code with four threads and various types of workload schedules:

[image: ]


The for loop sorts the rows of array a. Each row is filled with identical sequences of
random numbers. Therefore it can be assumed that the time of sorting a row, which
evaluates the granularity of computation, is the same in every iteration of the loop.
Table 7.1 specifies the number of iterations assigned to each of the four threads
depending on the schedule clause used. The penultimate column of the table (denoted
by Max) gives the maximum number of [image: f  ]or loop iterations (the row sorts) carried out
by one of the threads, and the last column (denoted by R) contains the total number of
requests for another chunk of iterations to the OpenMP runtime system, made by all
threads. The execution time of the example code section given above depends on both
the values of Max and R. In the general case, the choice of the schedule type minimizing
that time is not easy. In our example, where the execution times of iterations are equal,
and the number of threads divides evenly the number of iterations, the best
workload balance is achieved by the clause schedule(static). Likewise, the
distribution of iterations among the threads is done during compile time, so the
time to handle requests to the runtime system does not increase the execution
time of code ([image: ]). For dynamic and guided distributions, the low values of
chunk-size increases the number of requests issued to the runtime system. However,
when the chunk-size grows, the imbalance of thread workloads grows as well.
Figure 7.2 depicts numbers of iterations assigned to individual threads for selected types
of schedules. The static distribution assigns thread 0 the iterations i = 0, 1, …, 24,
thread 1 the iterations i = 25, 26, …, 49, and so on. One can see that for the
dynamic,10 and guided,10 schedules there is a significant imbalance of thread workloads
resulted from the large size of chunks. For the schedule guided,10, thread 0 is assigned
initially a double-size chunk of iterations, and then all threads are assigned equal chunks
of 10 iterations. The dynamic,10 schedule assigns equal chunks of 10 iterations to each
thread.


   




 Table 7.1 Numbers of iterations assigned to threads for different types of the
schedule clause
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	schedule(static) 
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	25
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	schedule(dynamic)                                                           

	25

	24

	25

	26

	 26 
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	schedule(dynamic,2)                                                         

	26

	24

	24
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	 26 
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	28

	24

	24
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	 25
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	28
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	 28 
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	28
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	24

	 28 
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	25

	24
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	 26 
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	24
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	 28 
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	28
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	 28 

	 13
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	28

	24

	24
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	 28 

	 12


	schedule(guided,10)                                                         

	30

	20

	30

	20

	 30 

	  9
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Figure 7.2. Numbers of iterations executed by threads.

   

   7.5.9  Reduction Clause

The reduction clause is designed to solve the reduction problem in which for a given set
of n elements [image: ], [image: ] the value [image: ] is to be found, where [image: ]
is a binary, associative operator (see p. 79). An example would be aggregating the array
elements: 
[image: ]

  This reduction can be implemented by a number of OpenMP threads applying a critical
construct25
(see the algorithm in Figure 3.7 and the description of critical construct on p. 271):

[image: ]

    We can make this implementation more efficient by specifying a reduction
clause in the directive of the for loop in line 5. The syntax of the clause is
this:


   [image: ]

where the first argument defines the operator that should be used for reduction, and the
second one is the list of variables that will be assigned the results of reduction. By means
of a reduction clause the considered aggregation can be written as follows:

[image: ]

  The reduction clause creates for each implicit task, a private copy of each variable
on the list, and initializes appropriately each copy for the operator (in the example above

the operator is + and the list contains only a single variable sum). Once the region is
completed, the original variable is updated by combining its original value with the final
values of all private copies, that hold the partial results of reduction, using the operator
specified.26
Thus, if the variable sum in line 1 of the last example was assigned a
different initial value than 0, then after the loop construct this value would
be increased by the sum of elements of array x. Table 7.2 lists the valid
operators27
and their initialization values. It is worth noting that the reduction clause can be
specified in the loop, parallel, and sections constructs. 





 Table 7.2 Valid operators and their initialization values in the reduction clause
 	Operator

	 Initialization value               

	Operator

	 Initialization value               


	

	

	

	

	+       

	 0                        

	|      

	 0                        

	* 

	 1   

	^ 

	 0


	-       

	 0                        

	&&     

	 1                        

	& 

	 ~0   

	|| 

	 0


	max     

	
  Least
   representable
   value
   in
   the
   reduction
   variable
   type                              

	min    

	
  Largest
   representable
   value
   in
   the
   reduction
   variable
   type                               


	        


                                                            



   

   

   7.5.10  If Clause

The if clause lets us decide whether a parallel region should be performed by a team of
threads, or by one thread. There are times when the amount of work in the region is
relatively small. Then it is better to execute the region by only one thread, because
creating threads involves the time overheads. The if clause of the syntax: if(e), where
e is a scalar integer expression, can only occur in a parallel construct. In the case when
the value of the expression is 0 (which corresponds to the Boolean value false), the
parallel region is executed by a single thread. Otherwise, when this value is
different from 0 (which corresponds to the Boolean value true), the parallel
region is executed by a team of threads. Here is an example of the if clause:

[image: ]

     If the value of n (established outside the region) is greater than 2,
the block of instructions associated with the parallel construct, specified
in lines 2–10, will be performed by a team of threads. Below we give two
executions of this fragment of code for different values of n and four threads.

[image: ]

 



   7.5.11  Num_threads Clause

As we stated in Section 7.3, the number of threads to use for parallel regions can
be fixed through the environment variable OMP_NUM_THREADS or the function
omp_set_num_threads. The clause num_threads(w), where w is an expression that
evaluates to a positive integer, allows the number of threads that will execute a parallel
region to be temporarily fixed to the value of w. The clause can only appear in the
directive of a parallel construct, and applies just to the current construct.
Any subsequent construct will be performed by the number of threads defined
by the variable OMP_NUM_THREADS or the routine omp_set_num_threads, unless
the construct contains the num_threads clause. This clause is useful when the
program correctness depends on the number of threads that implement the
program. The clause also permits to minimize the time of code execution by
adjusting appropriately the number of threads performing parallel regions. An
example of the num_threads clause can be found in an example program on
p. 254.


   7.5.12  Copyin Clause

The copyin(list) clause can occur on the parallel directive and combined parallel worksharing
directive. The clause performs the copying of the values of the master thread’s threadprivate
variables28 appearing on
the list, to the corresponding threadprivate variables of each other thread of the team in the parallel region.
The copying is done after the team of threads is created, and prior to the execution of the parallel region.

    Below, a section of code illustrating the use of the copyin clause is given. In
lines 6–7 the initial thread’s threadprivate variables el and size take the values of
parameters t and n of the prepare function. Once the team of threads to execute the
parallel region (defined in lines 8–11) has been created, the initial thread’s
threadprivate variables el and size become the threadprivate variables for the master
thread of the team. Thus, the copyin clause provided in line 8 causes the values
of these variables to be copied to the corresponding threadprivate variables
in the remaining threads of the team. As a result, the values of all copies of
threadprivate variables el and size in each thread of the team will be equal to
the values of actual parameters t and n when the prepare function is called. 


[image: ]


   7.5.13  Copyprivate Clause

The copyprivate(list) clause can be used only on the directive of a single
construct (see Section 7.4.6). The clause supports the distribution of values of
private or threadprivate variables appearing on the list, from the implicit task
executing the single region to the variables of other implicit tasks belonging to the
parallel region. The distribution is done after the block of code associated with
the single construct has been executed, and before any member of the team
of threads leaves the implicit barrier at the end of the construct. Beyond the
barrier, each variable specified on the list in all other implicit tasks is updated
with the value of the corresponding variable in the implicit task whose thread
executed the block. Since the barrier is crucial for the proper operation of the
copyprivate clause, it must not be used in conjunction with the nowait clause (see
p. 262).

    The clause can be used to enter input data to a program and
distribute them to other threads in the team, as shown below:


[image: ]


   7.6  Master and Synchronization Constructs

   7.6.1  Master Construct

The master construct has the following syntax:

[image: ]

  The construct defines the block of code that is executed by the master thread of a
team only, that is by thread 0. Other threads do not execute the block. There is no
implicit synchronization barrier both on entry to and exit from the construct. Thus the
other threads of the team, of numbers larger than 0, while encountering the construct
omit it. The master construct, although similar to the single construct (see
Section 7.4.6), is not classified as a worksharing construct. Here is an example of a master

construct: 
[image: ]

The threads execute the computation of the first phase in lines 3–6. Then the master
thread prints intermediate results (line 8), while the other threads proceed to execute
computation of further phases (line 9). The master construct allows, for example, all
I/O operations to be placed in thread 0. Because of lack of implied barriers,
the master construct can be used as a more efficient version of the single
construct.


   7.6.2  Barrier Construct

One of essential conditions for the correctness of a shared-memory parallel program is
that shared variables are referenced in the right order. For this purpose, OpenMP
provides synchronization constructs, which can guarantee that subsequent reads
and writes of those variables done by the threads follow the required order.
Synchronizing the work of threads also prevents a race condition that can arise when
two or more threads modify the value of the same shared variable at the same
time.

    The barrier construct of the syntax:

[image: ]

synchronizes explicitly the operation of threads executing the parallel region. More
specifically, all threads of the team executing the region must execute the barrier
construct and complete execution of all explicit tasks generated in the region up to the
point of synchronization, before any thread are allowed to continue execution beyond the
barrier. All threads “cross” the barrier simultaneously, and then each of them continues
its operation independently.

    As we already mentioned, at the end of each parallel construct
and worksharing construct, the threads are synchronized by an implied
barrier. The explicit barrier construct, which we analyze, is used only
if an additional synchronization is necessary, as in the following example:


[image: ]

  The barrier specified in line 9 guarantees that at the start of further computation
(line 10), all threads in the team have completed the execution of the while loop in
lines 5–8.


   7.6.3  Taskwait Construct

The taskwait construct consisting of one directive of the syntax:

[image: ]

     constitutes an explicit task scheduling point. As already mentioned (see the
tyskyield construct in Section 7.4.8), the task scheduling points allow the OpenMP
runtime system to coordinate execution of tasks. When a thread encounters the
taskwait construct, the thread suspends execution of the current task region until
execution of all its child tasks created before the taskwait construct is completed. The
construct cannot be used in place of a statement following an if, while, do, switch, or
label.


   7.6.4  Critical Construct

In the course of threads execution, they may compete for access to shared resources that
include, among others, objects stored in the shared memory. One of the safety
properties of a parallel program requires that at any given time only one thread
can have access to a shared resource (see Section 1.3 and Section 1.4.1). The
code fragment where the thread uses a shared resource is defined as critical
section. The property of exclusive use of the resource, called mutual exclusion,
is achieved by ensuring that at any time only one thread executes its critical
section. For this goal, OpenMP supplies the critical construct of the syntax:


[image: ]

  The critical construct enforces execution of the block, which constitutes a critical
section, by a single thread at a time. The critical construct may have an optional
name.29
Moreover, an OpenMP program may contain several critical constructs with the same
name. A thread waits at the beginning of the critical construct until no thread
is executing a block associated with any critical construct with the same
name. The construct is used in the minimum graph bisection program (see
Figure 7.3, lines 26–29) and in the program to find prime numbers (see Figure 7.6,
lines 35–36).


   



[image: ]

[image: ]

 
Figure 7.3. The OpenMP program to find the minimum graph bisection.

   

   7.6.5  Ordered Construct

The ordered construct enables a block of code enclosed in a for loop to be executed
sequentially, while allowing the rest of code in the loop to be run in parallel. Besides, the
block is executed in the order of loop iterations. The ordered construct has the form:

[image: ]

  When the thread running the first loop iteration encounters an ordered construct,
it executes the block associated with the construct without waiting. However,
when the ordered construct is encountered by a thread in any subsequent loop
iteration, the thread waits at the entry to the construct until execution of all blocks
associated with ordered constructs belonging to all previous loop iterations have
terminated.

   The ordered construct allows the user, for example, to output the results computed by
respective threads in the order of loop iterations. It can also be applied to examine whether
there is a race condition in access to shared variables. Here is an example of using this
construct: 
[image: ]

    Note that when the ordered construct is used (line 5), the ordered clause
on the loop construct must be specified (line 1). The result of execution

of the above example for [image: ] and four threads looks as follows:

[image: ]

     You can see that the reports pertaining to the values of elements of array a
computed by particular threads appear in the random order, however the values of those
elements printed in the ordered construct (lines 5–6) are listed in the order of loop
iterations.


   7.6.6  Atomic Construct

The syntax of the atomic construct can take one of two forms:

[image: ]

or 
[image: ]

  The atomic construct allows multiple threads to read, update, and write a storage
location atomically. The construct is a more efficient version of the critical construct,
particularly when implemented in processors having indivisible (atomic) instructions of
type: read the memory location – update – write the memory location (see
Exercise 3 in Chapter 1). Unlike the critical construct the atomic construct has
significant limitations as to the ways the expression-statement and block can be

specified.

   The expression-statement can take one of the following forms depending on the
clause used: if the clause is read then: [image: ] =[image: ]; if the clause is write then:
[image: ] =expr; if the clause is update or not present then: [image: ]++;, [image: ]--;,
++[image: ];, --[image: ];, [image: ] binop=expr;, or [image: ] =[image: ] binop expr; if the clause is
capture then: [image: ] =[image: ]++;, [image: ] =[image: ]--;, [image: ] =++[image: ];, [image: ] =--[image: ];, or
[image: ] binop=expr;.

   The block can be: {[image: ] =[image: ];[image: ] binop=expr;}, {[image: ] binop=expr;[image: ] =[image: ];},
{[image: ] =[image: ];[image: ] =[image: ] binop expr;}, {[image: ] =[image: ] binop expr;[image: ] =[image: ];},
{[image: ] =[image: ];[image: ]++;}, {[image: ] =[image: ];++[image: ];}, {++[image: ];[image: ] =[image: ];}, {[image: ]++;[image: ] =[image: ];},
{[image: ] =[image: ];[image: ]--;}, {[image: ] =[image: ];--[image: ];}, {--[image: ];[image: ] =[image: ];}, or 
{[image: ]--;[image: ] =[image: ];}.

    In the above terms, x and v are both
l-value30
expressions with the scalar type, expr is an expression with the
scalar type, and binop is one of: +, *, -, /, &, [image: ], |, [image: ],
or [image: ].

   The atomic construct with the read (write) clause ensures an atomic read (write)
of the storage location x regardless of the computer word size. When the update clause is
specified,31
the construct forces an atomic update of x with the designated operator. The atomic
construct with the capture clause ensures an atomic update of x using the designated
operator while also capturing the original or final value of x with respect to the atomic
update. The original or final value of x is stored in the memory location v
depending on the form of the block or expression-statement associated with the
construct.

   Here is a simple example of updating the shared variable counter by employing the atomic
construct: 
[image: ]


   7.6.7  Flush Construct

The OpenMP API makes a general assumption that the values of shared variables are
available in all threads. However, this assumption faces a certain problem connected with
the architecture of modern parallel computers. To increase computing speed, processors
(or cores) are equipped with cache memories (see Section 5.1). If a thread running in a
processor updates the value of a shared variable, the result of such an operation is
recorded in the processor’s cache. Therefore, the update is not immediately “visible” to
other threads, because they do not have access to caches of other processors. The
problem of ensuring consistency of data in caches and shared memory, called data
consistency (or coherence) problem, is solved in parallel computers through
appropriate hardware and software components. Details of these solutions depend on the

type of a platform.

    OpenMP introduces the concept of a thread’s temporary view of the shared
memory that represents all kinds of processor’s internal memory structures like
registers, cache, local memory, etc. (see p. 244). It is not required that a thread’s
temporary view of the shared memory is consistent with the shared memory at all
times, which is a core assumption of the OpenMP relaxed-consistency memory
model.

   However, OpenMP enforces data consistency in multiple points of computation
through an implicit flush operation. This operation is implied at thread synchronization
points, among others, during a barrier region, at entry to and exit from parallel,
critical, and ordered regions, at exit from worksharing regions (unless a nowait
is present), immediately before and after every task scheduling point. The flush operation
is not implied at entry to worksharing regions, and at entry to or exit from a master region.

   When the updates to shared variables should be immediately known to all threads
in-between synchronization points, we may use a flush construct consisting of one directive:

[image: ]

     where the optional list contains the names of shared variables separated
by commas. The construct executes the flush operation that enforces
shared data to be consistent. It applies to all variables appearing in the
list.32
If no list is specified, it applies to all thread-visible shared variables.


   7.7  Threadprivate Directive

   Let us recall that a private(list) clause specifies the list of variables to be private
to each implied task created by a parallel construct, and executed by a thread. For
each variable appearing on the list, a new private variable is created in each task. The
new variable is available only in the code of a given task, and after completion of the
parallel region the variable ceases to exist.

   The threadprivate directive33
allows new kind of private variables, called threadprivate variables, to be defined, whose
values may persist across multiple parallel regions. The threadprivate directive of the
form: 
[image: ]

creates in each thread of the team a copy of each threadprivate variable
appearing on the list. All copies of a threadprivate variable are initialized
once, in the way defined within the program, prior to the first reference
to a copy. The storage and thus lifetime of these copies lasts according to
how static variables are handled in an adopted language (in our case, in
C).34

   In parallel regions, the master thread of the team references the initial thread’s

copy of the threadprivate variable. The value of this copy persists between any two
consecutive references to the variable in the program, made either by the master or
initial thread.

   When a threadprivate variable is referenced in two consecutive parallel regions, then
threads with the same number in their respective regions, excluding the master, reference
the same copy of that variable. Nevertheless, the values of copies of threadprivate variables
referenced by those threads persist between two consecutive parallel regions if the following
conditions, among others, are satisfied: none of the two parallel regions is nested within
another parallel region, and both regions are executed by the same number of threads.

   The threadprivate directive is used in line 4 of a program section presented on
p. 268. The directive creates private copies of global variables job, el and size in the
threads executing the parallel region defined in lines 8–11.





   7.8  Minimum Graph Bisection

Now we focus on a minimum graph bisection program created by employing the
OpenMP API. The MPI version of this program was discussed in Section 6.3. The
difference between the MPI and OpenMP versions is that the minimum partitions of the
graph are now stored in an array results (see Figure 7.3, lines 8–11). Each element
of the array holds the minimum number of edges between the halves of the
graph (results[].min) and the partition (bisection) of the graph (results[
].partition[N]). The graph partitions are computed in the for loop in lines 19–20.
Among the partitions acquired, the best partition having the smallest value of the field
results[].min is selected. This is done in another for loop (lines 22–25).

   Creating a parallel version of the minimum bisection program is relatively easy. It
boils down to the parallelization of both for loops (lines 19–20, and 22–25), and to the
use of a critical construct. In the second for loop, each thread goes through the group
of elements of array results and evaluates the private index w_min_p indicating the best
partition in the group (lines 22–25). Then, based on the w_min_p indices determined in all
threads, the index w_min defining the best partition is found. Assigning a value to the index
w_min must be done in a critical section (lines 27–29), because each thread can potentially
modify the index w_min with its own value of w_min_p. The respective directives related
to the parallel, loop, and critical constructs are specified in lines 15–16, 18, 21, and 26.


   7.9  Sorting

In Section 3.5 we introduced the algorithm of complexity [image: ] to sort an n-element
array a with [image: ] processors (Figure 3.13). The MPI program based on this algorithm
was discussed in Section 6.4.

   We now present its OpenMP version. Our starting point is a sequential program,
which may look as shown in Figure 7.4. The result of its execution looks as follows:

[image: ]


   



[image: ]

 
Figure 7.4. A sorting program—sequential version.

   

   The sequential version consists of the four for loops. The first and the last loop are
simple ones, and the other two constitute a loop nest. Figure 7.5 gives a parallel version
of the sorting program, where the iterations of the loops have been distributed among
the threads by applying the three loop constructs (lines 10–11, 12–17, and 18–19).
In addition, a critical construct is applied to compute the indices ind[i]
in array b where elements a[i] should be inserted (lines 16-17). Note that
the MPI program discussed in Section 6.4 requires [image: ] processes while the
OpenMP version can be performed with any number of threads in range from 2 to
N.
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Figure 7.5. An OpenMP sorting program.

   

   7.10  Finding Prime Numbers

The program to find the prime numbers in the interval [image: ] written with help of the
MPI library was discussed in Section 6.5. Recall that the program had two phases. In
the first phase, the prime numbers in the interval [image: ], called divisors, were
evaluated employing the sieve of Eratosthenes. In the second phase, the primes in the
interval [image: ] were sought. Any number [image: ] was prime, if it was
divided by none of the divisors in the interval A.

   The OpenMP program based on this idea is depicted in Figure 7.6. In the first
phase, the divisors in the interval A are found (lines 17–24). Only the initialization of an
auxiliary array a in this phase runs in parallel (lines 17–18). The further part of the
phase implementing the sieve of Eratosthenes runs sequentially (lines 19–24). The
second phase, in which the prime numbers in the interval B are determined, is performed
in parallel by the team of threads (lines 26–38). The primes found are stored in the
primes array (line 10). Placing a prime in the array and updating the no_of_primes
index are done inside the critical section (lines 35–36). Note that in the MPI program
the prime numbers in the interval A were stored in the array divisors. The
presented program stores these primes in the array primes in elements from 0
to [image: ].


   



[image: ]

 
Figure 7.6. An OpenMP program to find prime numbers.

   

   Employing the library function omp_get_wtime, we have measured the running time
of the program to find the prime numbers (lines 15 and 39), and computed
the speedups for the number of threads used from 1 to 8. The function:

[image: ]

returns a double-precision floating-point number representing elapsed wall-clock
time since some point of time in the past. This point is chosen arbitrarily, but it is
guaranteed not to change during the execution of an application program. The time read
is local to the thread, thus the values returned by omp_get_wtime in respective threads
can be different. The way to measure the running time of an OpenMP program is the
same as in the MPI library (see p. 235).



   Another function that can be useful while measuring the running time of a program
is: 
[image: ]

     that returns the precision of the timer used to measure the passage of
time. The omp_get_wtick returns a floating-point value equal to the number of
seconds between successive clock tics of the timer used by omp_get_wtime. For
example, if time is measured with precision of 1 [image: ], omp_get_wtick returns
the value of [image: ], which is the number of seconds between successive clock
tics.

   Table 7.3 contains the running time measurements, speedups and efficiency for the program to find
the prime numbers.35
The last row of the table identifies the running times [image: ] of the sequential version of the
program.36
The speedup was calculated as [image: ], where t was the running time of the OpenMP
program for a given number of threads. The results are illustrated in Figure 7.7. The
charts indicate that the speedups and and efficiency obtained for the increasing
number of threads are inferior to those observed for the MPI program (see
Figure 6.9).


   




 Table 7.3 Results of measurements for the OpenMP program to find the prime
numbers in the interval [image: ], w – number of threads used (seq. denotes the
sequential version), t – running time in seconds, S – speedup, E – efficiency
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Figure 7.7. The speedup, S, and efficiency, E, as a function of the number of
threads executing the OpenMP program to find the prime numbers; the dashed line
represents the maximum achievable speedup equal to the number of threads.

   

   7.11  Exercises


 1.  [298] (chap. 5) Write an OpenMP program to compute the value of the
   integral of one variable function [image: ] in an interval [image: ]. The integration
   problem  has  been  defined  in  Exercise 1  in  Chapter 4.  Use  the  trapezoidal
   method of integration in your program (see Exercise 1 in Chapter 6). Assume
   that the number of elementary intervals of integration is evenly divisible by the
   number of threads.
   

 2.   [315]  (sects. 17.8.2–3)  Develop  an  OpenMP  program  to  compute  the
   approximation  of  [image: ].  Use  the  Monte  Carlo  method.  The  problem  to
   compute the approximation has been formulated in Exercise 2 in Chapter 4.
   Its sequential solution expressed in the pseudo-code is presented in Figure 4.34.
   

 3.  Provide a parallel program to compute the Mandelbrot set M. Use the
   OpenMP  API.  The  problem  of  computing  the  set  M has  been  formulated
   in  Exercise 3  in  Chapter 4.  The  pseudo-code  of  sequential  solution  to  the
   problem is presented in Figure 4.37. The MPI implementation of the parallel
   solution is given in Figure S.16.
   


 4.  [298] (chap. 6) By making use of the OpenMP API, design a parallel program
   to solve the n body problem. It was formulated in Exercise 4 in Chapter 4.
   The  sequential  and  parallel  programs  to  solve  the  problem  are  given  in
   Figures 4.38 and S.14.
   

 5.  Develop an OpenMP program for constructing the optimal binary search
   tree.  The  formulation  of  the  problem  to  find  such  a  tree  is  discussed  in
   Exercise 5 in Chapter 4. The sequential solution to the problem is specified
   in Figure 4.40.



   7.12  Bibliographic notes

OpenMP is mainly used to create programs for parallel computers with shared memory.
The book by Chapman et al. [71] (sect. 6.4) describes how OpenMP along with MPI
can also be used on architectures equipped with both shared and distributed memory.
Versions 2.5 [292], 3.0 [293], 3.1 [294], 4.0 [295], and 4.1 [296] of the OpenMP
standard are available on the sites of the OpenMP Architecture Review Board
(ARB), www.openmp.org, and cOMPunity organization, www.compunity.org. The
book by Chapman et al. [71] is a good textbook to learn OpenMP. Further
information on the interface and its method of use can be found in the books by Quinn
[315] and Chandra et al. [70]. Other approaches to multithreaded programming with the
Pthreads library are described in the books by Lewis and Berg [248] and Pacheco [298]
(chap. 4), and by using the POSIX interface, in the study by the International
Organization for Standardization [204]. Different varieties of multithreading on
academic and commercial computer examples are discussed in the survey by
Ungerer et al. [384]. The handbook by Koelbela et al. [224] is dedicated to High
Performance Fortran in which, as in OpenMP, one can use directives to enable the
compiler to produce efficient object code. As we noted in Section 7.2, parallel
computation in OpenMP occurs within a process while in MPI multiple processes are
executed in parallel. The book by Gropp et al. [169] discusses how to construct
MPI programs with multithreaded processes. The fork and join operations
have been introduced in the work by Dennis i Van Horn [97]. As mentioned
in Section 7.3, a parallel object program can be created through automatic
parallelization of a sequential source program. The methods of automatic parallelization
are considered in the books by Kennedy and Allen [216] and Wolfe [401]. In
shared-memory computers and those equipped with caches, the data consistency problem
arises (see the flush construct on p. 273). The issues related to this problem, in
particular various models of memory consistency, are explored in the works by
Adve and Gharachorloo [4], Hill [191], Tanenbaum [374] (sect. 8.3.2), Adve
and Boehm [3], Dubois et al. [114] (chap. 7), and Solihin [360] (chaps. 7, 9,
10).






   1The discussion of the interface presented in this chapter is based on the OpenMP 3.1 specification
released in July 2011.

2In 2001 the organization cOMPunity emerged. This is a forum for sharing information and
experience among community members interested in development of the interface.

3Note that the parallel computation in OpenMP occurs within a process, while in MPI multiple
processes are executed in parallel. However, employing MPI one can also write programs in which some
or all processes are multithreaded.

4We say more about consistency of data in caches and the shared memory, referred to as
memory consistency (or coherence) problem while discussing the flush operation (see
p. 273).

5The threadprivate memory of a thread includes a stack and a static memory space (see also a
private clause on p. 260, and a threadprivate directive in Section 7.7). 

6A parallel region includes all code encountered during a specific instance of the execution of a given
construct or of an OpenMP library routine (see Section 7.4.1 for more details). A parallel region is
inactive or active depending on whether it is implemented by only one or more than one thread,
respectively. In other words, the inactive parallel region encloses the sequential part of an OpenMP
program.

7The format of directives in C++ is the same as in C, while in Fortran directives are written as
comments.
8Instead of setenv, the command export is used in some other shells.

9If the value of variable OMP_NUM_THREADS has not been defined, and the function omp_set_num_threads
has not been invoked, the initial value of variable nthreads-var is implementation defined. Often, it is
fixed to the number of cores or processors available in a given computer, supplied by the operating
system.

10Some compilers have an -openmp-stubs option that enables compilation of OpenMP
programs in sequential mode. The OpenMP directives are ignored and a stub OpenMP
library is linked. For example the stub for the omp_get_thread_num routine is as follows:
[image: ]

11In contrast to the big bang approach that is typically used with MPI. It relies on converting a
sequential program (if available) into a parallel program in one step.

12All OpenMP directives except the threadprivate directive are executable directives, which means
they can be placed in an executable context.

13For a general description of execution of the parallel construct, see Section 7.2 on p. 245 where the
fork-join paradigm is introduced.

14The issue how the number of threads in the team can be established is discussed on
p. 247.

15Threads can also be synchronized explicitly by applying the barrier construct (see p. 270).

16The other threads of the team can either be destroyed or inserted into a pool from where they are
retrieved to implement further constructs.

17When the for-loops consists of more than one associated loop, they must be perfectly nested. There
must be no code nor any OpenMP directive between any two loops.

18If the for-loops contains more than one associated loop, then the iteration variables of all these loops
are private by default.

19We list these restrictions for C only.

20There are no OpenMP worksharing constructs for the while (Boolean-expression) {...} and
do {...} while (Boolean-expression) loops, since it is difficult to evaluate the count of iteration for
these loops.

21OpenMP includes also the worksharing construct that is supported in Fortran only.

22The Fibonacci numbers are defined as follows: [image: ] (or [image: ]), [image: ], [image: ]
for [image: ].

23Private variables created in a task have automatic storage duration. Thus the lifetime of these
variables lasts until the block associated with a construct in which they are created exits. The values of
private variables, as well as the values of formal parameters and local variables of functions invoked by a
thread, are allocated on the stack being a part of the thread’s threadprivate memory (see the footnote on
p. 245).

24The data-sharing attributes of variables referenced in a construct can be predetermined, explicitly
determined, or implicitly determined. For example, the loop iteration variables in the associated for-loops of
a loop construct have the predetermined data-sharing attribute which is private. The attributes for
variables that do not have predetermined data-sharing attributes, and are not listed in a data-sharing
attribute clause on the construct, are implicitly determined (for more details see the OpenMP
specification).

25A similar reduction on the minimum values carried out via a critical construct appears in the
minimum graph bisection program (Figure 7.3, lines 26–29).

26The values of private copies for the “-” operator are added to the value of the original variable to
form its final result.
27For the allowedargument data types for the operators, and the usage of max and min operators see
the OpenMP specification.

28See the threadprivate directive in Section 7.7.

29The critical constructs with no name in a given program are considered to have the same
unspecified name.

30For the definition of the l-value expression, see the C standard (ISO/IEC 9899), sect. 6.3.2.1
Lvalues, arrays, and function designators.

31When the update clause is not present, the atomic construct is equivalent to atomic
update.

32Since the issue of data sharing is more complex than it appears to be, the user is discouraged from
using a flush construct with a list as error-prone.

33The threadprivate is a declarative directive, as opposed to the executable directives (see the
footnote on p. 250), which means that it may only be placed in a declarative context.

34Copies of threadprivate variables are stored in the static memory spaces that are parts of threads’
threadprivate memories (see the footnote on p. 245).

35The experiments were carried out on the computer cluster Halo, see the footnote on
p. 236.

36To compile the OpenMP program and its sequential version we used the same compiler, which was
pgcc. The multithreaded version was compiled with the option --mp appropriate for OpenMP mode, and
the sequential version without this option. The sequential version was timed using the clock
function.
                                                                                                                   


    

   Solutions to Exercises

This chapter contains solutions to selected exercises specified at the end of book’s
chapters.


   Chapter 1

7. Below, operations WAIT and SIGNAL for the general semaphore with an initial value
of the integer component equal to n are shown. Simulation of the semaphore is
implemented by means of binary semaphores s and access. The semaphore s is
employed for mutual exclusion of tasks that modify a value of the counter to
store a current value of the integer component of the general semaphore. The
semaphore access is introduced to block and unblock a task that uses the general
semaphore. 
[image: ]

Another solution of simulation of the general semaphore was proposed by Barz [37] (see

also [383]): 
[image: ]

11. Below, the monitor to solve the sleeping barber problem is given. The monitor
contains four variables with nonnegative values and four condition variables.
The variable chairs with an initial value of n counts a number of free chairs in
the waiting room. The variables barber, barber_chair and open take values 0
or 1. The initial value of these variables equal to 0 means that the barber is
busy, the barber’s chair is free, and the exit door from the barbershop is closed.


[image: ]
 
   Chapter 2

1. The RAM programs expressed on the middle and low level of abstraction to compute

the GCD[image: ] are provided in Figure S.1.


   



[image: ]

 
Figure S.1. The RAM programs to compute the GCD[image: ] expressed on the
middle (a) and low (b) level of abstraction. Before computation the numbers x and
y are stored in cells [image: ] and [image: ], the result is stored in cell [image: ].

   

10. The embedding of a two-dimensional mesh of size [image: ] into a four-dimensional
cube is defined by matrix P given below. The elements [image: ] and [image: ] designating numbers
of processors of a cube assigned to processors of a mesh are the components of string [image: ]
(see matrix (2.6)):


   
[image: ]


For better readability, these elements are separated by a dot. Figure S.2 illustrates the
embedding yielded by matrix P.


   



[image: ]

 
Figure S.2.  An  illustration  of  embedding  of  a  two-dimensional  mesh  of  size
[image: ] into  a  four-dimensional  cube.  Capital  letters  denote  coordinates  of  a
mesh processors: [image: ], [image: ], [image: ], [image: ], [image: ],
[image: ],   [image: ],   [image: ],   [image: ],   [image: ],   [image: ],
[image: ], [image: ], [image: ], [image: ], [image: ].

   

   The figure indicates that not only a mesh of size [image: ] can be embedded into a
four-dimensional cube, but also a torus of this size. After embedding a mesh there are
free links left in a cube—marked by the dashed lines—allowing mapping of the
wraparound connections of a torus (see Figure S.3a). It can be seen that the
interconnection networks of a torus of size [image: ] and of a four-dimensional cube are
identical. In other words, the graphs describing these networks are isomorphic (see
Figure S.3b and the footnote on p. 211).


   



[image: ]

 
Figure S.3. (a) A two-dimensional torus; the wraparound connections marked by
the dashed lines correspond to unused links of a cube after embedding into it a mesh
of size [image: ], see Figure S.2; (b) an alternative diagram of a four-dimensional
cube.

   

   Chapter 3

1. A parallel algorithm of cost [image: ] to compute the prefixes for an EREW PRAM
model and its illustration are given in Figure S.4 and S.5, respectively. In the first stage
of the algorithm processors [image: ], [image: ] for [image: ] and [image: ]
compute sequentially the prefixes in the assigned subsets of elements (lines 2–7 and
Figure S.5a). In the next stage the prefixes are computed in parallel in the set [image: ],
[image: ] (lines 8–12 and Figure S.5b). In the last stage, based on the values of
[image: ] the prefixes computed in the first stage are updated (lines 13–17 and
Figure S.5c).


   



[image: ]

 
Figure S.4. A parallel prefix algorithm of cost [image: ].

   

   



[image: ]

 
Figure S.5.  An  illustration  of  the  parallel  prefix  algorithm  for  [image: ]  and
[image: ] and [image: ]; part (a) shows array s after completion of stage 1
of the algorithm; part (b) depicts subsequent steps of computation in stage 2; part
(c) presents the sequential updating of prefixes computed in stage 1.

   

   5. The matrix–matrix multiplication algorithm for a [image: ]-processor CREW PRAM
model is shown in Figure S.6. Its [image: ] execution time is larger than that of the
algorithm shown in Figure 3.14, but its cost is optimal: [image: ].


   



[image: ]

 
Figure S.6.  A  parallel  matrix–matrix  multiplication  algorithm  of  running  time
[image: ] and optimal cost [image: ].

   

6. Figure S.7 depicts the matrix–matrix multiplication algorithm for a [image: ]-processor,
combining CRCW PRAM model. In line 4 a write operation denoted by [image: ] occurs. If
several processors perform such a write operation to the same memory location – in our
case it is [image: ] – then in this cell the sum of values computed in individual processors
is written, that is in the case considered the sum of products [image: ]. Since the
combining model assumes that the execution time of operations in lines 3–4 is constant,
the time complexity of the algorithm is [image: ] and its cost [image: ]. This
cost is optimal given the complexity of the sequential algorithm discussed on
p. 84.
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Figure S.7.  A  parallel  matrix–matrix  multiplication  algorithm  of  running  time
[image: ] and optimal cost [image: ].

   

9a.  The sequence of vertices [image: ] of a tree visited in preorder can be found by the
algorithm given in Figure S.8. This order is consistent with visiting the “forward” arcs
[image: ] on the corresponding Euler path [image: ]. Therefore, the “forward” and “backward”
arcs are assigned the weights 1 and 0, respectively (line 2). Then, using the prefix sums
computed in line 3 the sequence of vertices [image: ] of a tree visited in preorder is found
(lines 4–9). Table S.1 describes the output of the algorithm for the tree presented in
Figure 3.19a.


   




 Table S.1 The Euler path [image: ], the tags [image: ]v[image: ] of arcs (f  denotes “forward”
and b “backward”), the weights of arcs and prefix sums computed in the course of
preorder traversal of the tree in Figure 3.19a (a); the resulting array pre[image: ] (b)
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Figure S.8. An algorithm to find the sequence of tree vertices visited in preorder.

   

11b.  The all-to-all broadcast procedure in a two-dimensional torus is similar as in a
one-dimensional torus. First, the data are broadcast in rows of the torus and then in
columns (Figures S.9 and S.10). The time complexity of the broadcast procedure is
[image: ] assuming that the execution time of statements in lines 5–6
and 10–11 is constant.
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Figure S.9. An all-to-all broadcast procedure in a two-dimensional torus.

   

   



[image: ]

 
Figure S.10. An illustration of all-to-all broadcast in a two-dimensional torus of size
[image: ]; processors that communicate with each other during the data broadcast in
rows and columns are marked with thick lines; (a) after initialization in line 3; data
to be broadcast: a, [image: ]; (b) after broadcast of data in rows; (c) the final state
after broadcast of data in columns.

   

14. For a better understanding of the multiplication algorithm of [image: ] matrices A and
B, which is presented in Figure S.11, we assume that [image: ] processors of a cube
for [image: ] are arranged in a three-dimensional matrix of size [image: ]. Each
processor [image: ] for [image: ] of a cube is located within this matrix at position
[image: ], where [image: ] and [image: ]. Let a binary representation of
r have a form: 

[image: ]

 It is a composition of binary representations of indices i, j and k. Note that in the
[image: ] matrix processors having equal one or two of indices [image: ] form a cube. In
particular, processors with one equal index form a cube consisting of [image: ] processors, and
with two equal indices—a cube consisting of n processors. Suppose that processor [image: ]
contains the variables a, b and c stored in the cells of its local memory, which we also
denote as [image: ], [image: ] and [image: ]. Furthermore, assume that initially the
processors at positions [image: ] store in variables [image: ] and [image: ] the elements of
the input matrices [image: ] and [image: ] for [image: ]. After
execution of the algorithm the elements of the output matrix [image: ] for
[image: ] will be stored in variables [image: ] of processors at positions
[image: ].
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Figure S.11. A matrix–matrix multiplication algorithm in a cube.

   

   The matrix–matrix multiplication algorithm consists of three steps. In the first step,
the elements of matrices A and B are distributed across [image: ] processors, such that a
processor at position [image: ] stores the elements [image: ] and [image: ]. This is done by means
of the following operations:
       

    (i) Sending  the  values  of  variables  [image: ]  i [image: ]  to  processors
       at   positions   [image: ]   for   [image: ].   As   the   result,   we   have
       [image: ] and [image: ] for [image: ].
       

   (ii) Sending  the  values  of  variables  [image: ]  to  processors  at  positions
       [image: ] for  [image: ].  As  the  result,  we  have  [image: ]  for
       [image: ].
       

   (iii) Sending  the  values  of  variables  [image: ]  to  processors  at  positions
       [image: ] for  [image: ].  As  the  result,  we  have  [image: ]  for
       [image: ].


In the second step, each processor at position [image: ] computes [image: ],
so we have [image: ] for [image: ]. Note that in this step all
[image: ] multiplications are performed simultaneously. In the third step, the sums
[image: ] for [image: ] are computed, which give as the result
the [image: ] elements of the output matrix C. In Figure S.11 the algorithm to multiply
matrices A and B is shown, in which [image: ] for [image: ] or [image: ] denotes
a set of processor numbers r for [image: ] with binary representations
[image: ], that is with representations in which a bit [image: ]
equals b. In addition, r and [image: ] are the two numbers of processors, such that
[image: ] and for which the binary representations differ only at position m
for [image: ] and [image: ].

   To describe the above algorithm in more detail let us examine a three-dimensional
matrix of size [image: ], into which the cube processors can be arranged. This
matrix consists of n layers numbered from 0 to [image: ]. Each layer contains [image: ]
processors. At the beginning of computation the processors of layer 0 store
the elements of the input matrices [image: ] and [image: ] for [image: ].
During the first iteration of the for statement in line 2 (for [image: ]) the
processors in layer 0 send the elements [image: ] and [image: ] to processors of
layer1
[image: ]. During the second iteration of this statement (for [image: ]) processors of
layer 0 transmit elements [image: ] and [image: ] to processors of layer [image: ], and at
the same time processors of layer [image: ] transmit these data to processors of
layer [image: ]. In subsequent iterations the transmissions proceed in a similar
fashion, while the distance between the layers of processors sending data and
the layers of processors that acquire them reduce by half. Operations (ii) and
(iii) are performed in a similar way. In lines 7–11 each processor in column i
and layer i for [image: ] sends the contents of variable [image: ] to all
processors in its row. Similarly, in lines 12–16 each processor in row i and layer i for
[image: ] sends the contents of variable [image: ] to all processors in its
column. In step 2 (lines 17–19) processors multiply the values of variables a and b

stored in their local memories. Step 3 is performed similarly as in the case of
operation (i) in step 1. A pair of processors in the corresponding layers add the
values of their variables c, while the distance between layers doubles at each
iteration.

   It is easy to note that the time complexity of the algorithm is [image: ]. Step 2
(lines 17–19) is performed in [image: ] time, and steps 1 and 3 consisting of four for
statements in lines 2–16 and 20–24, are executed in [image: ] time. The number of
iterations of all for statements is equal [image: ] (it holds [image: ]), and the
execution time of each iteration is [image: ]. The cost of the algorithm [image: ] is not
optimal, because the cost of a standard sequential matrix–matrix multiplication
algorithm is [image: ].

    Figure S.12 demonstrates the multiplication of matrices [image: ] and
[image: ] of size [image: ] in a cube containing [image: ] processors. In
Figures S.12a–d the vertices of the cube are labeled by expressions [image: ], where [image: ]
and [image: ] denote the values of variables stored in processor [image: ] for [image: ]. In
Figure S.12e the vertices of the cube are labeled by the values of variables [image: ],
and in Figure S.12f by the values of elements of the computed output matrix
[image: ].
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Figure S.12. An illustration of the matrix–matrix multiplication algorithm in a
cube;  (a)  initial  state;  (b)  after  execution  of  operation  (i)  in step 1;  (c)  after
execution of operation (ii) in step 1; (d) after execution of operation (iii) in step 1;
(e) after execution of step 2; (f) after execution of step 3.

   

   Chapter 4

4. A good starting point to decompose the [image: ]-body problem into tasks is matrix
(4.7) containing partial forces [image: ] (see lines 4–20 of the sequential program,

Figure 4.38). We will present three approaches to tackle the decomposition. In the first
approach [image: ] tasks are extracted. The aim of each task is to compute
a force [image: ] lying above the main diagonal of matrix (4.7). The values in the matrix
rows are then summed up (for example by n additional tasks) to get the resultant forces
[image: ] for [image: ] acting upon all bodies. Note that if the number of bodies
is in the order of thousands, then the number of tasks into which the problem analyzed is
decomposed will be in the order of millions. On the one hand, computation of high degree of
parallelism and fine granularity (finding partial force [image: ] requires only 18 floating-point
operations; see lines 8–19 in Figure 4.38) are beneficial. Potentially, they can yield high
speedup, and the fine-grained parallel algorithms scale well. On the other hand, amounts
of data that must be transferred between [image: ] tasks increase, and thereby enlarge
communication costs.

   In the second approach to decomposition, n tasks can be extracted that aim at
computing and aggregating the partial forces [image: ] for [image: ] in each row in
the matrix, which yield the resultant forces [image: ]. In this case, the partial forces with a
plus sign can be summed up in one task without having to transfer them. We must,
however, send and receive from other tasks the forces with a minus sign, which are
located below the main diagonal of matrix (4.7). In this approach the decomposition has
a degree of concurrency equal to n, smaller communication costs and coarser
granularity. Its use, however, is limited. If the number of bodies is in the order of
thousands, we need the same number of processors, which in practice may not be
possible.

   Therefore, in a third option for decomposition, we assume that a moderate number
of processors p is available, for example a dozen or several dozen processors of a
computing cluster, or several cores of a multicore processor. Under this assumption, we
extract p tasks, a single task for each processor or core, whose purpose is to compute
forces [image: ] for [image: ] rows of matrix (4.7). Recall that each row defines the resultant force
acting on a given body. Thus, assigning specific rows of the matrix to a task
corresponds to assigning the bodies for which a task will execute appropriate
computation.

   To continue, let us concentrate on how a task I for [image: ] can evaluate
the resultant forces for [image: ] bodies assigned to it. The shape of matrix (4.7) indicates
that for a fixed body i, it is easy to compute and sum up partial forces [image: ] with a plus
sign (for [image: ]). Some of these quantities, after changing their sign, have to be sent to
other tasks. Another quantities, lying below the main diagonal of matrix (4.7)) and
included in force [image: ], have to be acquired from some other tasks. Surely, we could
organize these computations with necessary data transfers between tasks, although this is
not a trivial issue.

    There is a simpler method in this regard [110, 257, 298]. Namely, assume
that the tasks are arranged into a virtual ring, in which a task I sends data
to a recipient task [image: ], and receives data from a sender task
[image: ]. Communication between tasks proceeds in phases. In a given
phase each task sends and receives data indicating positions of [image: ] bodies, and
computed up to that point the data defining current forces acting on these
bodies. In this way, after [image: ] phases each task gains access to coordinates
of positions of other bodies. So it will be able to evaluate the impact of the

bodies assigned to this task – in the form of partial forces [image: ] – on the rest of
bodies.

   Figure S.13 presents the successive phases of data exchange determining the body
positions [image: ] and current values of resultant forces [image: ]. As illustrated, for three tasks it
is sufficient to make two communication phases to compute the impact of the bodies
assigned to particular tasks on other bodies. As the result of a final transfer
(Figure S.13c) the modified data reach the tasks from which they were originally
dispatched. Let us notice that the bodies have been assigned to tasks in a block manner.
For example, for the three tasks and nine bodies, task 0 performs computation for
bodies of numbers 0, 1, 2, task 1 for bodies 3, 4, 5, and task 2 for bodies 6, 7,
8.
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Figure S.13. Exchanging data between tasks in a virtual ring when computing
the resultant forces [image: ] for [image: ]; the number of tasks [image: ], the
number                                            of                                            bodies
[image: ].

   

   Figure S.14 presents a parallel program to solve the n-body problem with p tasks.
All the tasks execute this program in parallel. We assume that the tasks synchronize
their operation while executing sending and receive instructions. The data structures
used in the program are as follows:
   
[image: ]

In the masses array each task stores the masses of n bodies. The arrays pos_I, vel_I and
F_I contain the positions, velocities and resultant forces for [image: ] bodies assigned to each
task. Once the input data have been entered and their relevant parts have been sent to
the tasks (lines 2–3, Figure S.14), the numbers of sender and recipient tasks in the
virtual ring are evaluated (lines 4–5). The for loop in lines 6–23 runs K simulation steps
of body motion. In each step, first the resultant forces [image: ] acting on the bodies
assigned to individual tasks are found (lines 7–15). The forces are computed from the
formula (4.3) (see lines 8–19 of the sequential program in Figure 4.38) and the virtual
ring of tasks discussed previously and illustrated in Figure S.13. Using these
forces the new positions and velocities of bodies are computed (lines 16–21,
Figure S.14).
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Figure S.14. A parallel program to solve the n-body problem by p tasks.

   

   Chapter 5

2.  We will describe the most powerful supercomputer in the world during the period
from June 2013 to November 2015, according to the Top 500 list, and a supercomputer
that as the first broke the 1 Pflop/s barrier of computation speed, that is [image: ] (one
quadrillion) floating-point operations per second.


   Tianhe-2 (Milky Way-2) supercomputer


   Overview

The Tianhe-2 (TH-2) supercomputer has been the most powerful computing system since
June 2013, with a performance of 33.86 Pflop/s on the Linpack benchmark using
3 120 000 cores. The TH-2 was developed by Chine’s National University of Defense
Technology (NUDT), based in Changsha, Hunan province, and Inspur, a multinational
information technology company headquartered in Jinan, Shandong, China. The TH-2

supercomputer is located at the National Super Computer Center in Guangzhou,
China.


   Computing Nodes

The TH-2 is a cluster composed of Intel’s Ivy Bridge (Xeon E5-2692 12 C) and Xeon Phi
31S1P components, and a custom TH Express-2 interconnection network. The
complete system has 16 000 nodes. Each node consists of 2 Intel Ivy Bridge
processors, memory, and 3 Intel Xeon Phi coprocessors. An Ivy Bridge 12-core
processor operates at 2.2 GHz, and can perform 8 double precision flops per cycle
per core. This gives [image: ] flop/cycle [image: ] Tflop/s peak
performance per processor. An Intel Xeon Phi coprocessor has 57 cores. Each core can
have 4 threads of execution and the cores can do 16 flops per cycle per core.
With a clock frequency of 1.1 GHz this yields a theoretical peak performance
of [image: ] flop/cycle [image: ] Tflop/s, for each Xeon Phi. So
on a node it gives: [image: ] Tflop/s plus [image: ] Tflop/s, or [image: ]
Tflop/s per node. The complete TH-2 has the theoretical peak performance of
[image: ] Pflop/s employing [image: ]
compute cores.

   Note that the TH-2 performance on the Linpack benchmark is 33.86 Pflop/s, which
related to the theoretical peak performance indicates the [image: ] efficiency
of the system’s use.


   Memory

Each Ivy Bridge processor has 32 GB of memory, and each Xeon Phi coprocessor has
8 GB of memory for a total of [image: ] GB of memory per node. With
[image: ] nodes it brings the total memory to [image: ] PB for the compute part of the
TH-2. In addition, there is a global shared parallel storage system containing [image: ] PB,
which uses the H2FS hybrid hierarchy file system.


   The Interconnect

The TH-2 processors communicate with each other by the proprietary high-speed
interconnection network called TH Express-2. The network, Chinese in origin and built
by NUDT, has a fat tree topology with 13 switches at the top level, each switch
having 576 ports. The interconnect uses an optoelectronics hybrid transport
technology. A broadcast operation implemented in MPI is running at 6.36 GB/s,
and the latency, measured with 1 k of data within [image: ] nodes, is about
[image: ]s.



   The Front-end Processors

In addition to the computing nodes, the TH-2 includes a front-end system composed of
4096 Galaxy FT-1500 processors designed and developed at NUDT. These processors are
based on the SparcV9 architecture, and are not considered as part of the compute
system. A 16-core FT-1500 processor uses 40 nm technology, and has a 1.8 GHz cycle
time with a peak performance of 144 Gflop/s. To compare, a 12-core Intel Ivy Bridge
processor uses 22 nm technology, and has a 2.2 GHz cycle time with a peak performance
of 211.2 Gflop/s.


   The Software Stack

The TH-2 software stack consists of four segments called environments: system
environment, application development environment, application environment,
and management environment. The TH-2 is run under supervision of the
Kylin2
Linux operating system developed at NUDT. The system is compatible with other
mainstream operating systems and supports multiple computing platforms. Kylin Linux
is a part of the TH-2 system environment. Besides, the system environment includes a
resource management module based on Slurm Workload Manager. In the TH-2
application development environment there are Fortran, C, C[image: ], and Java
compilers, Intel icc 13.0.0 compiler and MKL-11.0.0 math library, OpenMP,
and MPI 3.0 based on MPICH version 3.0.4. In addition, NUDT developed a
directive based programming model called OpenMC, which can be used instead of
OpenMP and either CUDA, OpenACC, or OpenCL. The application environment
contains the HPC application service and cloud computing platform, scientific data
visualization system, and parallel numerical toolkit for multi-field of scientific
applications. The last environment comprises the autonomic fault tolerant management
system.


   Power and Cooling

The peak electrical power consumption for the TH-2 is at 17.8 MW. This power is just
for the processors, memory and interconnection network. Including external cooling, the
supercomputer draws an aggregate of 24 MW. The cooling system used is a
closed-coupled chilled water cooling with a customized liquid water cooling unit. It has a
cooling capacity of 80 kW, and uses Guangzhou city water to supply cool water for the
system.

   In recent years growing importance has been attached to the energy efficiency of a
particular computer architecture. The efficiency is measured by the rate of computation
that can be delivered by a computer for every watt of power consumed. In
this respect, the TH-2 performance per watt was equal to [image: ]

Gflop/s/W. Among the top 10 systems on the 46th edition of the Top 500 list
issued in November 2015, the best energy efficiency of [image: ] Gflop/s/W was
attained by the Cray XC30 (Piz Daint), 7th on the list, and by the BlueGene/Q
(Sequoia) and BlueGene/Q (Mira) with [image: ] Gflop/s/W, ranked as 3rd and 5th,
respectively.3

   Further information on Tianhe-2 can be found in [105], as well as at www.tianhe2.org
and www.top500.org.


   Roadrunner Supercomputer

    Roadrunner, built by IBM for the Los Alamos National Laboratory in New
Mexico, USA, was the most powerful computer in the world in 2008. It
achieved the sustained computation speed of 1.026 Pflop/s while performing the
Linpack benchmark. The computer name came from the New Mexico state
bird.4
Roadrunner had a hybrid design and contained two types of processors. The first type
involved the dual-core processors AMD Opteron 2210 1.6 GHz, and the second, 9-core
processors IMB PowerXCell 8i, 3.2 GHz. The numbers of these processors were 6 480 and
12 960, respectively, which gave in total of [image: ]
cores.5
The Opteron processors with two general-purpose cores served both to carry out
computation jobs and to provide data to PowerXCell processors. Moreover,
the Opteron processors helped in system operation and implementation
of communication between the system modules. The PowerXCell processors,
acting as accelerators for the Opteron processors, were equipped with a general
purpose core and the eight cores to perform floating-point vector operations
in the SIMD mode. The Roadrunner system required 2.35 MW of electrical
power,6
so it attained an operational rate of 437 Mflop/s per watt of power used. Roadrunner
was a cluster of multicore processors structured into a fat tree (see Figure 5.29). A basic
module of the structure called TriBlade consisted of two Opteron processors, 16 GB
RAM, and four PowerXCell processors, 16 GB RAM. A higher-level module, called
connected unit (CU), consisted of 180 TriBlade systems. These systems were connected
to each other on the lower level of the tree by a 288-port InfiniBand switch (Voltire Grid
Director ISR 9288). The complete configuration of the computer contained 18 CUs
connected on the higher level of the tree by 8 Infiniband switches of the same type.
Figure S.15 depicts the architecture of Roadrunner. As can be seen, there were 12 links
between each pair of switches in a lower and higher level of the tree. In addition,
each lower-level switch controlled 188 links, which provided communication
between TriBlade modules included in CUs. A single link had a 2 GB/s transfer
rate.


   



[image: ]

 
Figure S.15. Roadrunner architecture; (A) 8 InfiniBand switches at the higher level
of the fat tree; (B) 18 InfiniBand switches at the lower level of the fat tree; (C) 18
connected units.

   

   As regards to software, the Opteron processors worked under the supervision of Fedora Linux
operating system. In the major part they ran user tasks Adopting the SPMD (single program,
multiple data) programming model. Only floating-point operations were submitted by the Opteron
processors to be done in the PowerXCell accelerators. Communication with other processors was
organized using the MPI library. Its implementation was based on the results of the Open MPI
project. Further information on Roadrunner software and hardware equipment can be found in [225].

   Roadrunner became operational in 2008 and was shut down in March 2013.


   Chapter 6



3. An MPI program to compute the image of the Mandelbrot set M is provided in
Figure S.16. In lines 40–56 processes I for [image: ] examine whether the points in
image segments of size [image: ], where [image: ], assigned to individual
processes belong to set M. The image segments computed by the processes are collected
into the complete image by applying the function MPI_Gather (line 57). The image is
output in line 59. The function MPI_Gather uses a derived datatype pixel_type
created in lines 34–39.


   



[image: ]

[image: ]

 
Figure S.16. An MPI program to compute the image of the Mandelbrot set.

   

   A derived datatype, defined by the user in terms of the basic, predefined datatypes
like MPI_INT, MPI_FLOAT etc., makes it possible to transfer multiple data chunks using a
single communication. The data chunks can be of different types and may be deployed in
noncontiguous memory areas. This happens, for example, when the structures or
selected sections of arrays are transferred. Derived datatypes may be used in
functions MPI_Send and MPI_Recv, as well as in collective communication functions
such as, for example, MPI_Gather. A derived datatype is an opaque object that
specifies (i) a sequence of primitive types, and (ii) a sequence of integers defining the
displacements of data portions (in bytes) reflecting the deployment of transferred data in
memory. The pair of sequences (i) and (ii) (or sequence of pairs) defines a type map,
while a sequence (i) without displacements defines a signature of a derived
datatype.


   Let der_type be a derived datatype with a map Map[image: ],
[image: ], where [image: ] are primitive types, and [image: ] are displacements.
The signature associated with this type is Sign[image: ], [image: ]. The
map of a derived type along with the buffer address b define the communication buffer
consisting of n elements in which ith element of address [image: ] has type [image: ]. The
message created on the basis of one derived type der_type consists of n elements of types
defined by signature Sign(der_type). The handle to a derived datatype can be used to
provide data types transferred by communication functions. For example, in a function
call MPI_Send(b, 1, der_type[image: ]) the send buffer is defined by the buffer
address b and the type der_type. Similarly, the receive buffer in a function call
MPI_Recv(b, 1, der_type[image: ]) is determined by the buffer address b and the type
der_type.

   The following is a header of one of MPI functions to create derived datatypes:

[image: ]

The function constructs a derived type consisting of count data blocks. Each block may
contain a number of data elements of the same predefined type located in the contiguous
memory region. The array argument block_lengths[] specifies the lengths of individual
blocks measured by data elements contained in each block. The third argument defines
the displacements of each block (in bytes) with respect to a selected block. This block is
a reference point for other blocks and has a displacement 0. The block displacements
may be positive, negative, and need not appear in increasing order. This means
that the order of specified displacements need not coincide with the order of
blocks in memory. The data types of elements in the blocks are indicated in
block_types[]. The function returns a handle to a constructed type in the argument
derived_type_handle. To find the displacements, in bytes, the following function is useful:

[image: ]

It returns the address of a location in memory.



   The program to compute the image of the Mandelbrot set, creates the derived
datatype pixel_type (line 20, Figure  S.16) to collect the image segments by the
function MPI_Gather (line 57). An image segment is a two-dimensional array of pixel
structures of size [image: ] where [image: ]. The pixel_type is composed of
three blocks of length 1 containing data of type MPI_FLOAT, MPI_FLOAT and MPI_SHORT
(lines 21–22). In fact, this type describes the structure pixel declared in lines 9–12. The
elements of displacements[] array are computed in lines 34–37, and the pixel_type is
constructed by the function MPI_Type_create_struct in line 38. Once the type is
created it is conveyed to MPI by the function MPI_Type_commit (line 39). Note that
in the call of MPI_Gather (line 57), the second and fifth argument taking the
value of [image: ] indicate the number of transferred structures described by
pixel_type.

   More information on derived datatypes can be found, for example, in the book by
Snir [358].


   Chapter 7

2. An OpenMP program to compute the approximate value of [image: ] by adopting the
Monte Carlo method is described in Figure S.17. Starting the execution of the OpenMP
program, one should provide the number of points n (line 7) to be generated, and the
integer to initiate the random number generator in each thread (line 15). of points
[image: ] satisfying the inequality [image: ] are computed. The values of counters are
added in the critical section (lines 21–22), and the result of program’s work is output in
line 24.


   



[image: ]

 
Figure S.17. An OpenMP program to compute the approximate value of [image: ].

   

5.   Parallelization in an OpenMP program to construct the optimal binary
search tree (Figure S.18) concerns the initialization and evaluation of elements
of arrays e and w (lines 14–19), as well as the computation associated with
finding the costs of optimal subtrees (lines 21–30). These computations are
distributed among the threads of the current team by means of the #pragma omp
parallel for directives specified in lines 14, 18 and 21. A function given in
Figure S.19 reconstructs the structure of the yielded optimal binary search
tree.


   



[image: ]

 
Figure S.18. An OpenMP program to construct the optimal binary search tree.
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Figure S.19. A function to reconstruct the structure of the optimal binary search
tree based on array R.

   




   1Note that processors of layers from 1 to [image: ] also perform these transfers. However, they do
not play a significant role in computation, because the values of variable [image: ] and [image: ] in processors of
these layers are random in this time. Such negligible transfers also occur in further iterations of the for
statement under consideration.
2The operating system is named after the mythical creature quilin.

3Note that in August 2015, the Shoubu supercomputer of RIKEN outside Tokyo, Japan, topped the
Green 500 list of the most energy efficient computing systems with 7.032 Gflop/s/W (at that time
Shoubu was 160th on the Top 500 list).

4The comical Roadrunner prefers running to flying and has been clocked at speeds of 15 miles per
hour. Roadrunners are approximately 22 inches in length and their diet consists of insects, lizards,
centipedes, mice and snakes (http://www.50states.com).

5Apart from compute processors Roadrunner comprised additional processors intended to operate the
system. Full configuration consisted of 6920 Opteron processors and 12 960 PowerXCell processors, for a
total of 130 480 cores.
6Note that this amount of electrical power for the system resulted in a huge amount of cooling. One
may safely assume that 1 W of cooling is required for every watt of power. So that means that
Roadrunner needed about 4.7 MW of total power.
                                                             

    

   Glossary 

When developing this glossary we have benefited, among others, from the glossaries
contained in the studies by Wilson [397, 398]. The terms defined in the presented
glossary are highlighted in italics. Page numbers indicate where the respective terms are
discussed in the book.

Address space  An area of a computer’s memory, inside which addresses are
  contiguous and may refer to one another directly. A computer with a shared memory
  has only one user-visible address space. Computers with a hierarchical or distributed
  memory may have several address spaces (pp. 5, 182). See also: distributed shared
  memory, uniform (nonuniform) memory access.

Amdhal effect  A regularity exhibiting an increase of speedup, [image: ], and efficiency,
  [image: ], of a parallel algorithm with an increase of the size of a problem being solved,
  n, using the constant number of processors, p (p. 65). See also: Amdahl’s
  law.

Amdahl’s law  A rule, which states that the speedup, [image: ], of a parallel algorithm
  solving a problem of size n is limited, that is: [image: ], where s is
  the fraction of operations in a computation that must be executed sequentially, and p
  is the number of processors used. The rule indicates that the upper bound of
  the parallel algorithm speedup for arbitrarily large number of processors is:
  [image: ] (p. 65). See also: Gustafson–Barsis’s law,
  Karp–Flatt metric, Amdhal effect.

Bisection bandwidth  The product of a network bisection width and a data transfer
  rate in a single communication channel. It is a measure of bandwidth and evaluates
  the number of bits that can be transferred per unit time between the halves of a
  network (p. 42).

Bisection width  The minimum number of edges (links) that must be removed from a
  network to split it into two equal subnetworks with the accuracy to one node (pp. 42, 206,
  216).

Bus  A device, shared by the components of a computer system (processors, memory
  modules, I/O peripherals, etc.), intended for transmitting data between the
  components. A shared bus is one of the simplest topologies to interconnect nodes into a
  network (p. 199). See also: interconnection network, memory bandwidth.

   Butterfly network  A static version of a k-dimensional butterfly network consists of [image: ]
  stages numbered [image: ]. At each stage of the network there are [image: ] vertices (nodes) numbered
  [image: ]. A pair [image: ] associated with each vertex specifies the
  location of the vertex in the network, where i is the integer number denoting a network stage, and
  w is the k-bit binary number identifying a network column. The vertices [image: ] and [image: ] are

  connected by an edge (link), if [image: ], and either [image: ] or strings w and [image: ] differ only at the
  [image: ]-th bit.

       In a dynamic version, the network has [image: ] stages and interconnects
  [image: ] nodes. Each stage of the network comprises [image: ] switches numbered [image: ],
  [image: ], each with two inputs and two outputs. So one stage has N inputs and
  N outputs. Let [image: ] be the coordinates of a switch in an array of network
  switches, where i for [image: ] is a row index, and j for [image: ]
  is a column index (that is, a stage of the network). Then, a switch [image: ]
  for [image: ] has a one-way connections (links) to switches [image: ]
  and [image: ], where z is an integer created by negation of the j-th most significant
  bit in the binary representation of index i (the least significant bit number
  is [image: ]) (pp. 46, 203, 206). See also: topology, memory bandwidth, interconnection
  network.

Cache consistency (coherence)  The problem of ensuring that the values of copies of
  a particular data item in caches of several processors in a multiprocessor computer, are
  (visibly) equal to the value of this data item in a shared memory (pp. 178, 185, 249,
  273).

Cache memory  A fast memory, local to a single processor. The cache is used to
  reduce the average time to access data in the much slower main memory. Data
  transfers between the cache and main memory are made automatically by hardware.
  Data are transferred in blocks called cache lines. When a processor needs to read or
  write a cell in the main memory, and finds out that the cell contents is in the cache, a
  cache hit occurs. In this case the processor reads or writes data in the cache line.
  When a cache miss occurs (the memory cell contents is not in the cache) the cache
  allocates a new entry for the cache line, copies in data from the main memory, and
  fulfills the request applying the contents of the cache (pp. 177, 179, 184, 200). See also: cache
  consistency (coherence).

Cluster  A parallel computer system composed of connected nodes containing
  processors, memories, buses, etc., which cooperate with each other. From the user’s
  point of view a cluster is an integrated pool of computing resources. Cluster nodes,
  which are autonomous computer subsystems, communicate with each other by message
  passing. Communication between processors inside nodes is accomplished by accessing
  shared memory with a single address space. If the number of processors in cluster
  nodes is greater than the number of nodes, then a cluster is called constellation.
  Clusters can be employed as computing servers, web servers, database servers,
  etc. Depending on the building blocks used, the following types of clusters
  can be distinguished: symmetric multiprocessor clusters (p. 184), multicore
  processor clusters (p. 185), and computer clusters, in particular Beowulf clusters
  (p. 186).

Communication channel  Communication channels, or links, next to switches
  are used to establish connections between network nodes. Links over which
  data can be sent are usually binded into wiring looms consisting of copper or
  fiber optic cables, or paths in an integrated circuit. Depending on the manufacturing
  technology, links have various data transfer rates (pp. 3, 41, 198). See also: interconnection network.

Comparator (sorting) network model   A comparator network is made up of
  interconnected comparators operating in parallel. A comparator is a device with two
  inputs and two outputs. The comparator with elements x and y on the inputs returns
  the minimum and maximum of x and y (in this order) on the outputs. It can be

  assumed that the comparator operates in [image: ] time. There is a special type of
  comparator networks called sorting networks. In a sorting network the elements
  being sorted “flow” from inputs to outputs of the network changing their
  positions as the result of comparator operations. It is possible to construct a
  sorting network with the optimum depth [image: ] and optimum size
  [image: ] where n is the number of elements sorted (p. 113). See
  also: network model, logic (Boolean) circuit model, parallel random access
  machine—PRAM.

Computational complexity The basic metrics to evaluate performance of a sequential
  algorithm are the running time, [image: ], and memory requirement, [image: ], (other terms
  used are: time and memory complexities), where n is a size of input data, also called
  a size of a problem being solved. The running time is measured by the total number
  of primitive (dominant) operations performed by the algorithm while processing input
  data, for example arithmetic, logical (Boolean), etc., or by the number of computational
  steps of constant execution time. It is assumed that one operation or computational
  step is implemented in a conventional unit time. The running time of a parallel algorithm
  is a function of two variables, the number of processors used, p, and the size of input
  data, n. The running time of the parallel algorithm is measured from the beginning
  of algorithm execution by the first processor until the end of algorithm execution by all
  processors. The average-case and worst-case complexities are distinguished, determined for
  “typical” and “most unfavorable” input data, respectively. The memory complexity
  is defined in a similar fashion as the time complexity, however the unit of
  measure is a memory cell in which a computer word of a fixed length representing
  a value processed in an algorithm is stored. The assumptions that the time
  of execution of a single computational step, or the cost of storing a datum
  in memory equals the unit, means that the uniform cost criterion is applied.
  Another possibility is to adopt a logarithmic criterion, where the time of performing
  operations on data or the cost of storage is proportional to a number of processed
  or stored bits. This number is a logarithmic function of a size of data (pp. 36, 64).
  See also: speedup, cost, efficiency, processor complexity, Nick Pippenger’s (NC) class,
  P-complete problems.

Computer architecture  The structure of its components. The most popular parallel
  computer architectures include: multiprocessor computers (multiprocessors) with
  shared memory (p. 182), with distributed memory (p. 183), and clusters (p. 186). See
  also: model of sequential computation, network model, parallel random access
  machine—PRAM, Flynn’s taxonomy.

Concurrent (parallel) program  A concurrent program specifies a number of
  sequential (serial) processes that can be executed in parallel. The concurrent program
  also defines how the processes cooperate with each other and how they synchronize
  their actions. The processes are specified as tasks, which are components of the
  concurrent program. Tasks are traditional sequential programs. If a sufficient number
  of (physical) processors is available, then each process of the concurrent program is
  executed by a separate processor, and the concurrent program is executed as the
  parallel program (pp. 1, 3).

Concurrent processes  Two or more sequential (serial) processes in which execution
  of operations can overlap in time. While considering possible realizations of concurrent
  processes, we cannot determine in advance which operation of a given process is
  preceded or followed by an operation of another process, provided the processes do not

  synchronize their action. In other words, concurrent processes are executed
  asynchronously (p. 2).

Condition variable See: monitor.

Constellation  See: cluster.

Contention  Contention arises when a number of tasks (concurrent processes) attempt
  to access a resource that can not be shared. Examples of situations in which contention
  occurs are the following: multiple concurrent processes performed in the same
  processor try to acquire its compute cycles, multiple messages are to be sent in a
  network through the same link, multiple tasks simultaneously reference the same
  memory block, or simultaneously send a message to the same task (pp. 7, 42, 152,
  271).

Core  A part of a processor, which can store data and execute instructions.
  Commonly, these functions can be accomplished by any core. In practice
  however, there are significant variations in core architectures. For example,
  depending on the approach, caches, functional units or other components may
  be used only by a selected core or may be shared by several cores. In some
  cases, a core can perform a number of instruction streams, called threads
  (p. 179).

Cost  The cost of a parallel algorithm is defined as [image: ], where [image: ]
  is the worst-case time complexity of the parallel algorithm, and p is the number of
  processors or cores used. The cost is the sum of computational steps (or primitive
  operations) carried out by individual processors while executing the parallel algorithm.
  The minimum value of the cost is equal to the time complexity [image: ] of the best
  known (that is, the fastest) sequential algorithm to solve a given problem. This
  complexity can be regarded as the cost of the best sequential algorithm executed by
  one processor, [image: ] (p. 66). See also: speedup, efficiency, computational
  complexity, processor complexity.

Critical section  A part of a concurrent (parallel) program that may not be
  simultaneously executed by more than one process. In other words, it is the program
  section that requires mutual exclusion of access (pp. 8, 271). See also: mutual exclusion,
  deadlock.

Crossbar switch  A network topology that makes it possible to connect p processors
  with m memory modules. A crossbar switch is a mesh of switches that establish on
  request the connections between processors and memory modules. The switch is
  nonblocking, meaning that data transmission running between a given processor and
  memory module does not block transmissions between other processors and
  memory modules (pp. 182, 184, 200, 206). See also: memory bandwidth, interconnection
  network.

Cube  A k-dimensional cube, or hypercube, consists of [image: ] for [image: ] vertices
  (nodes) numbered [image: ], [image: ]. In the cube, the two vertices are connected by
  an edge (link), if the bit strings w and [image: ] corresponding to the numbers of these
  vertices differ only at one position. A zero-dimensional cube consists of a single vertex
  ([image: ]). A one-dimensional cube consists of two zero-dimensional cubes, a
  two-dimensional cube consists of two one-dimensional cubes, etc. The diameter of a
  cube is equal to its dimension [image: ], which is the advantage of this topology. The
  degree of a cube is equal to [image: ], which is the drawback, because this degree can be
  large for multidimensional cubes (pp. 44, 48). See also: topology, interconnection
  network.


Cube connected cycles  A network of cube connected cycles (CCC) results from
  replacing each vertex (node) of a k-dimensional cube with a cycle consisting of k vertices.
  Let [image: ] be a vertex label in a CCC network, where [image: ] is the binary number
  of a cube vertex that has been replaced by a cycle, and let i for [image: ] be the number
  indicating a position of a vertex in a cycle. Then vertices of a CCC network labeled [image: ]
  and [image: ] are joined with an edge (link), if the following conditions are met: (a) [image: ]
  and [image: ], or (b) [image: ] and the bit strings w and [image: ] differ only at one
  position. These conditions refer, respectively, to the edges between vertices inside the cycles,
  and inside a cube. A CCC network has the diameter [image: ], where p is the number of
  vertices in the network, and the degree of 3 (pp. 45, 48, 60). See also: topology, interconnection
  network.

Dataflow computer  A dataflow computer performs simultaneously all operations that
  can be currently done, that is, whose operands are known. A program for a
  dataflow computer is specified by means of a data flow graph whose vertices
  represent operations, and the arcs (directed edges) flow of data or flow of
  control values. An operation in a vertex of a data flow graph is executed, if the
  data items (operands) on the input arcs of the vertex become available. The
  result of operation is passed on the output arc of the vertex. The parallel
  computation described by a data flow graph is fine-grained in nature, as it
  pertains to elementary operations carried out asynchronously (p. 189). See also:
  granularity.

Data transfer rate  A measurement of the amount of data transmitted through a
  communication channel (link) between two nodes (for example, between two
  processors) on a network in a given time period. Data transfer rates are typically
  measured in bits per second (p. 42).

Deadlock  A situation in which two or more processes do not terminate, because they
  cannot continue their action. The deadlock arises when each of the processes belonging
  to some set of processes is suspended, waiting for the event that can only occur in
  another process belonging to this set (p. 7).

Degree of concurrency  A number of subproblems (tasks) extracted in an original
  problem to be solved in parallel, or a number of tasks executed simultaneously in a
  parallel (concurrent) program. The maximum and average degrees of concurrency can
  be distinguished (pp. 126, 139).

Diameter of network  A diameter of a network is the maximum distance measured by
  the number of links (edges) between any two nodes (vertices) of the network. A
  network is the better the smaller diameter it has, because in the worst case a message
  must be routed over the number of links equal to the diameter of the network (pp. 42,
  205).

Distributed memory  A memory physically divided into modules, where each module
  is associated with a separate processor of a parallel computer. From the user’s
  perspective, a distributed memory can constitute a shared memory with a single
  address space, or a memory composed of modules with separate address spaces (p. 183).
  See also: distributed shared memory.


   Distributed program  A parallel program executed by distributed processors, for
  example by processors included in a computing cluster (pp. 4, 24).

Distributed shared memory  A hardware or software implementation of a virtual
  shared memory in a distributed-memory multiprocessor computer. The idea is to
  provide access to all distributed memories of a computer to each processor by

  employing a single address space. To this aim, the virtual addresses of this space are
  assigned to the cells of local memories of respective processors. When a processor
  refers to a memory cell that is not present in its local memory, a distributed
  shared memory system after converting the virtual address of the cell into the
  physical address, performs the transfer of a cell’s contents from the local
  memory of a corresponding processor using message passing. Data transfers
  from nonlocal memories are invisible to the programmer, thus creating an
  illusion of existence of shared memory that is actually physically distributed.
  (p. 183).

Efficiency  The efficiency of a parallel algorithm (or processor utilization)
  is defined as [image: ], where [image: ] is
  the speedup of the parallel algorithm, p is the number of processors used,
  and [image: ] and [image: ] are worst-case time complexities of the fastest
  known sequential algorithm and parallel algorithm, respectively, designed to
  solve a respective problem. The maximum value of efficiency equals 1. If
  this maximum is achieved, processors are not idle while executing a parallel
  algorithm, the cost of communication between them equals zero, and they do not
  perform any redundant operations with respect to those included in cost
  [image: ] (p. 66). See also: speedup, cost, computational complexity, processor
  complexity.

Embedding  Given graphs [image: ] and [image: ], we say that graph
  G has been embedded in graph [image: ], if the following functions have been provided:
  (a) function [image: ] that assigns each vertex [image: ] of graph G, a vertex [image: ]
  of graph [image: ]; a vertex of graph [image: ] can be assigned to more than one vertex of graph
  G; (b) function [image: ] that assigns each edge [image: ] of graph G, a path—that is,
  a sequence of adjacent edges—from vertex [image: ] to vertex [image: ] in graph [image: ],
  where [image: ] and [image: ]; the path may consist of one or more edges. The
  notion of graph embedding is useful to establish the equivalence of network models in
  terms of computational power, as well as in design of parallel algorithms for those models.
  Suppose we have a parallel algorithm running on a network S of a given topology. Then
  this algorithm can be run in a network [image: ] of other topology, if an embedding of network
  S into [image: ] is provided. The quality of embedding can be evaluated based on the following
  parameters: the dilation, congestion, load factor, and expansion. The dilation is equal
  to the length of the longest path in network [image: ] that has been assigned to a link (edge) of
  network S. The congestion is equal to the maximum number of links of network S that has
  been assigned to one link in network [image: ]. The load factor is equal to the maximum number
  of nodes (vertices) of network S assigned to one node of network [image: ]. The expansion is
  equal to the ratio of the numbers of nodes in network [image: ] and in network S (pp. 50, 51).

Fairness constraint  Condition that prevents such execution scenarios of concurrent
  processes, in which a request issued by a process continually or infinitely often is
  unserved, because at all times requests of other processes are handled. There are
  two basic types of fairness: weak and strong. The weak fairness condition
  states that if a process continually issues a request, then it will eventually be
  handled. For strong fairness this condition has the form: if a process issues its
  request infinitely many times, then it will eventually be handled. Note that the
  fairness constraint is not the property of a concurrent program. The constraint
  is imposed on the system that schedules execution of concurrent processes
  (p. 7).


Fat tree  A network topology in which links are gradually multiplied at the higher levels
  of a tree (pp. 205, 205). See also: tree network, interconnection network.

Flynn’s taxonomy  A classification of computer architectures based on the multiplicity
  of instruction and data streams occurring on a computer. The classification
  distinguishes four classes of architectures (p. 175):


    
    	SISD  (single  instruction  stream,  single  data  stream)—a  single  instruction
    stream  processes  a  single  data  stream.  Most  conventional  uniprocessor
    computers are built according to this architecture (p. 175).  
    

    	SIMD (single instruction stream, multiple data stream)—a single instruction
    stream processes synchronously multiple data streams. In other words, a single
    stream of operations (a process) generates heterogeneous data streams. These
    operations  can  also  be  performed  on  vector  elements  in  vector computers.
    Typical representatives of this architecture are processor arrays (p. 180).
    

    	MISD (multiple instruction streams, single data stream)—multiple instruction
    streams process a single data stream. So far, a computer operating exactly
    according to this principle has not been constructed. Some researches believe
    that the MISD class includes systolic computers (p. 198).
    

    	MIMD  (multiple  instruction  streams,  multiple  data  streams)—multiple
    instruction streams process asynchronously multiple data streams. In other
    words,  heterogeneous  processes  generate  heterogeneous  data  streams.  This
    architecture is used in multiprocessors (p. 182).


   See also: computer architecture, uniprocessor, processor array, multiprocessor.

Grain size  See: granularity.

Granularity Granularity  refers to the amount of computation in a unit of work, which
  is executed between communication events. A unit of work may be defined to be an
  entire task or its section, such as a sequence of instructions. The amount of
  computation to be performed within a unit of work determines a grain size. A
  computation is fine-grained if its units of work are small, or coarse-grained if they are
  large. Fine-grained computations incur higher task scheduling and communication
  overhead, but facilitate better load balancing. Coarse-grained computations reduce
  scheduling and communication overhead by increasing the size of work units. This
  implies more opportunity for performance increase, but may impede load balancing
  (pp. 137, 191).

Gustafson–Barsis’s law  A rule, which states that the speedup of a parallel algorithm solving
  a problem of scalable size is limited, that is: [image: ], where [image: ] is a fraction of
  execution time of a parallel algorithm to perform computation in a sequential manner, and p is
  the number of processors used. The above speedup is the so-called scaled speedup, because along
  with the change of a number of processors the size of a problem is scaled, so that a constant
  parallel computation time is maintained (p. 70). See also: Amdahl’s law, Amdhal effect, Karp–Flatt
  metric.


Hierarchical memory  Memory composed of levels, wherein each higher level has a
  larger capacity and a longer access time (pp. 141, 177, 184). See also: nonuniform memory

  access—NUMA.

   Interconnection network   An interconnection network is composed of nodes,
  communication channels (links), and switches. Network nodes can be processors,
  memory modules, I/O peripherals, or any other networked devices. The connections
  between nodes are established by communication channels and switches.
  Interconnection networks are divided into static and dynamic (pp. 41, 198). See also:
  topology.

Isoefficiency function  The isoefficiency function (in other words, of constant
  efficiency) determines the impact of scaling the size of a problem on the efficiency of
  an algorithm solving the problem. For a fixed efficiency e, [image: ], the isoefficiency
  function, [image: ], of the algorithm determines the size n of the problem to be
  solved with p processors to achieve efficiency e (p. 68). See also: scalable,
  scalability.

Karp–Flatt metric  Karp–Flatt metric is an experimentally determined sequential
  fraction f  of computation of a parallel algorithm defined as [image: ],
  where S is the speedup of the parallel algorithm obtained for a given number of
  processors p. The smaller value of f  the better, then the algorithm exhibits larger
  speedup and better efficiency. The increase in a value of f  with the rise in a number of
  processors points to a growing share of overhead, often communication time between
  processors, in a total time of computation (p. 71). See also: Amdahl’s law, Amdhal
  effect, Gustafson–Barsis’s law.

Latency The   amount of time it takes for a packet of data to travel from the source to
  destination node in an interconnection network. The time taken to service a request.
  For example, the latency of a file system is the time required to decode and execute a
  null operation (pp. 94, 142, 187, 206).

Link See: communication channel.

Liveness properties  Properties that should have a correct concurrent (parallel)
  program. Liveness properties are conditions that should be satisfied “eventually,”
  which means that if a given condition should be satisfied, then for every
  possible realization of concurrent processes, at some point of time it actually
  will hold. For example, if a process issues a request for a resource, it will be
  assigned to the process at some point of time. In other words, there will be no
  individual starvation of the process as a result of not allocating the resource to it
  (p. 7).

Load balancing  The aim of load balancing is to assign tasks of a parallel program to
  available processors in such a way that the runtime of the program is as short as
  possible. Minimizing the program runtime is achieved by uniform distribution of
  computational workloads across processors. One of the measures of processor workload
  imbalance is defined as [image: ], where p is the number of
  processors, [image: ] for [image: ] the time of completion of computation by the i-th
  processor, and [image: ] the time of completion of computation by the last
  processor. The goal of load balancing is to minimize the value of L, which identifies the
  fraction of the computation time by which processors remain idle. In the
  broader sense, load balancing is dividing workloads across multiple computing
  resources, such as processors or cores, servers, network links, disk drives,
  etc. In this context the aim is the best use of resources, so as to maximize
  throughput, minimize response time, avoid overload of any single resource. Load
  balancing can be implemented with hardware, software, or a combination of

  both (p. 143). See also: overlapping communication and computation, parallel
  slackness.

Locality   There are two basic types of locality: temporal and spatial locality. Temporal
  locality refers to the phenomenon that a particular memory location, once referenced
  at one point in time, will be referenced again sometime in the near future.
  Thus, it is worthwhile to keep the contents of the referenced location in cache
  memory. Spatial locality refers to the phenomenon that once a particular
  location is referenced, a nearby location is often referenced in the near future.
  Therefore, caches store blocks (cache lines) consisting of successive memory
  locations (pp. 156, 178, 159).

Logic (Boolean) circuit model  Informally, a logic circuit consists of gates operating
  in parallel, and wires transmitting zero-one signals. The logic circuit does not contain
  memory, and there is no concept of state defined for it. More precisely, the logic
  circuit over the base [image: ], [image: ], is a finite, directed,
  acyclic graph [image: ], in which each vertex [image: ] represents either an
  input variable [image: ] with a value of 0 or 1, or a gate [image: ] for
  a certain function [image: ], where [image: ] and [image: ]. The arcs
  [image: ] of the circuit lead from immediate predecessors [image: ] of gates [image: ] to
  vertices representing these gates. A value [image: ] of a vertex [image: ] is found as
  follows: If [image: ], then [image: ]; if [image: ], then
  [image: ]. The input and output data of circuit U
  are the strings of bits [image: ] and [image: ], where [image: ]
  and [image: ] stand for the values of the specified vertices of the circuit. The logic
  (Boolean) circuit model is particularly useful in theoretical considerations
  regarding computational complexity of parallel algorithms (pp. 56, 102). See also:
  network model, comparison (sorting) network model, parallel random access
  machine—PRAM.

Massively parallel processing system—MPP  A computer of high rate of
  computation comprising a large number of processors or cores, nowadays from
  hundreds of thousands to several millions, typically of cluster architecture (p. 184). See
  also: supercomputer, cluster.

Memory bandwidth  A memory bandwidth, also called memory throughput, evaluates
  the amount of data that can be uploaded (downloaded) to (from) memory per unit
  time. In order to increase the bandwidth, the memory can be divided into independent
  modules operating in parallel. Access to the memory is then achieved via an
  interconnection network (p. 182). See also: crossbar switch, omega network, bus, butterfly
  network.

Mesh  A network topology in which p processors (nodes) are arranged in k-dimensional,
  [image: ], array [image: ], where [image: ]. A processor
  [image: ] is connected to processors [image: ] for
  [image: ], provided the processors of these coordinates exist. Thus, each
  processor (except for boundary ones) is connected to [image: ] other processors. Two- and
  three-dimensional meshes are useful for computations carried out on regular data
  structures, where a respective processor works on data associated with a segment of a
  plane or space, and connections between processors correspond to adjacency of data
  segments (pp. 43, 204). See also: interconnection network.

Mesh of trees  A mesh of trees network topology is a variation of a two-dimensional
  [image: ] mesh. It is created by removing the edges (links) of the mesh and

  adding the vertices (nodes) and edges so that in each row and column of the
  mesh a full binary trees emerge. The diameter a two-dimensional mesh of
  trees is [image: ], and the maximum vertex degree is 3 (pp. 45, 48). See also:
  topology.

Message passing  A method of communication in which processors send messages to
  one another through communication channels (links). The arrangement of links
  defines an interconnection network between processors (pp. 3, 41, 184, 187). See also:
  routing.

Monitor   A monitor is a special module or package collecting data structures and
  procedures that operate on these structures. Like a semaphore, the monitor allows to
  solve problems of synchronization, while ensuring greater safety. Concurrent processes
  (tasks) can modify data structures included in the monitor only by calling its
  procedures, that is, processes cannot modify these structures directly. At any
  given time only one process can execute a monitor procedure, thus access to
  procedures of the monitor is performed with mutual exclusion of processes. For the
  purpose of synchronization, the condition variables and operations wait and
  signal acting on these variables are introduced. If a monitor procedure invoked
  by a process, say P, cannot continue its action because a certain condition
  is not satisfied, then process P executes operation wait(c) on a variable c
  corresponding to this condition. The operation blocks the execution of process P
  and inserts it into the FIFO queue associated with variable c. This allows
  another process, say Q, to enter the monitor and perform its action, as a
  result of which the condition associated with variable c can be satisfied. The
  process Q may then signal the condition by executing operation signal[image: ],
  which will unblock process P waiting in the queue associated with variable c
  (p. 18).

Moore’s law  In 1965 Gordon E. Moore based on empirical observations predicted that
  complexity of integrated circuits measured by the number of transistors would double
  every 18 months. Since dense chip packaging permits to increase the compute rate by
  increasing clock frequencies, so essentially, Moore also predicted twofold increase in
  processor speed within 18 months. In the function of time, this gives an exponential
  growth. Lately, however, this growth has slowed down, because of approaching several
  physical barriers that caused significant problems in semiconductor chip design
  (p. 178).

Multicore processor  A processor made up of a number of cores contained within a
  single chip of a slightly larger size compared with a conventional processor die.
  Architectures of modern multicore processors are diverse (p. 179). See also:
  thread.

Multiprocessor A MIMD architecture computer composed of multiple independent
  processors. Each processor operates on a separate clock and has its own memory,
  arithmetic registers, program counter, etc. Processors asynchronously perform multiple
  streams of instructions that process different data. A multiprocessor can be equipped
  with shared memory (p. 182) or distributed memory (p. 183). See also: computer
  architecture, Flynn’s taxonomy, symmetric multiprocessor—SMP.

Multistage network  A network topology in which several layers of switches
  interconnect p objects of one type with m objects of another type, for example, p
  processors with m memory modules (p. 201). See also: interconnection network.

Multitasking   Pseudo-parallel execution of several tasks (processes) by the operating

  system on a uniprocessor. Typically, multitasking is implemented via time-sharing.
  When the operating system passes between tasks, it performs a context switch. The
  order of task execution is determined by a module of the operating system designed to
  manage the processor’s computation time, called a task scheduling module.
  Multitasking is also applied in computers with multiple processors when the number of
  tasks greatly exceeds the number of processors. The first historically versions of
  multitasking operating systems were multiprogramming systems in which higher
  processor utilization was achieved by overlapping I/O operations and computation
  (pp. 5, 24). See also: overlapping communication and computation, parallel
  slackness.

Mutual exclusion  A situation in which at most one process (or task) may realize a
  specific action, for example, use of a resource. To provide mutual exclusion ordinarily
  semaphores or monitors are exercised (pp. 7, 8, 271).

Network model  A model of parallel computation consisting of a number of processors
  that operate according to the RAM model. In order to exchange data, processors are
  connected by bidirectional communication channels (links) that form an
  interconnection network. There is no shared memory in the model. Processors can
  operate either synchronously or asynchronously, but typically the asynchronous mode
  is assumed. Processors communicate and coordinate their activities by sending
  messages over links of an interconnection network. See also: computer architecture,
  comparison (sorting) network model logic (Boolean) circuit model, parallel random
  access machine—PRAM.

Nick Pippenger’s (NC) class   Includes problems that can be solved by fast parallel
  algorithms, that is of the polylogarithmic parallel time complexity, [image: ], and
  polynomial processor complexity, [image: ]. Inside the class NC the subclasses [image: ] of
  problems solved by parallel algorithms of complexity [image: ] are distinguished:
  [image: ]. The NC class problems are said to be efficiently parallelizable. It
  can be proved that [image: ], that is the NC-class problems are included in the
  class of problems solved in polynomial time with a polynomial number of
  processors. It is also believed that the inclusion is proper, although the problem
  [image: ]? remains open (p. 100). See also: P-complete problems, computational
  complexity.

Nonuniform memory access—NUMA  A multiprocessor with nonuniform
  memory access does not support constant-time read or write operations. Modern
  multiprocessors are equipped with hierarchical or distributed memories in which
  references to local memory cells (located closer to the reference point) take
  shorter time than to nonlocal memory cells (located farther away from the
  reference point) (pp. 84, 141). See also: uniform memory access—UMA, address
  space.

Omega network  A multistage network that can interconnect p processors with m
  memory modules, where [image: ] for some integer [image: ]. The network has
  [image: ] stages, each stage containing [image: ] switches with two inputs and two
  outputs. A network stage has p inputs and p outputs numbered [image: ], [image: ]. The
  interconnections between stages are defined as follows. Let i denote the output number
  (address) of a given network stage, and let j be the input number of the
  next stage. Assume that output i is connected to input j. Then we have
  [image: ], except for output [image: ] that leads to input [image: ]. It is also
  said that omega interconnections are set up according to the perfect shuffle

  algorithm (pp. 182, 201, 202, 206). See also: topology, memory bandwidth, interconnection
  network.

Operating system  System software coordinating the work of computer hardware
  components, such as processor(s), memories, I/O devices, etc. The operating system
  provides basic services and supports standard operations including multitasking,
  management and access to the file system, allocation and release of memory, network
  communication (pp. 1, 4, 5, 236, 244).

Overlapping communication and computation  It helps to eliminate idle time of a
  processor caused by waiting for completion of a transmission that provides the
  processor with necessary data to proceed computation. A simple way of overlapping is
  to initiate a transmission early enough, so that it is completed before the data will be
  needed for computation. To achieve this, we must be able to select computations that
  can be performed before the communication and do not depend on it. Reducing
  periods of processor inactivity through overlapping communication and computation is
  also useful in dynamic load balancing. In one of the methods for this type of load
  balancing, the master processor has a centralized pool of tasks to be assigned to slave
  processors for execution. Each of the slaves also has its own mini-pool of tasks. When
  there is only a few tasks in a mini-pool, a slave processor sends a request for the
  next task to the master. As the result, the work of a slave processor on the
  current tasks will overlap with selecting and transferring the next task by
  the master. The effectiveness of this improvement depends on the accuracy
  of predicting when a slave processor becomes idle (p. 142). See also: parallel
  slackness.

Parallel algorithm  An algorithm designed to solve a particular computational problem, composed
  of a number of component algorithms describing the computation steps that can be performed
  simultaneously. The parallel algorithm specifies how the component algorithms cooperate with each
  other exploiting the acquired results of computation, as well as how they synchronize their actions
  (p. 63).

Parallel random access machine—PRAM  A model of parallel computation, also
  called shared memory model. It consists of a potentially infinite number p of identical
  random access machines (RAM) working in parallel, and a potentially infinite
  global shared memory. The RAM machine processors, or briefly processors,
  operate synchronously, and can execute different streams of instructions. A
  computational step of the PRAM model, carried out in unit time, consists of
  three phases. In the first phase, at most p processors perform simultaneous
  reads of cell contents in the shared or RAM local memories. Each processor
  fetches at most one argument and puts it in an arithmetic register. In the
  second phase, each processor may perform an arithmetic or logical operation
  on the argument contained in an arithmetic register. In the third phase, at
  most p processors write results of operations in cells of the shared or local
  memories. Some of the phases of a PRAM computational step in a respective
  processor may be empty. According to the way the conflicts in access to the
  shared memory are resolved, the following variants of the PRAM model are
  distinguished:


    
    	EREW (exclusive read, exclusive write) PRAM—in any step of computation,
    simultaneous access understood as reads (writes) from (to) the same shared

    memory cell by multiple processors are unacceptable.
    

    	CREW (concurrent read, exclusive write) PRAM—in any step, simultaneous
    reads of the same shared memory cell by multiple processors are allowed, but
    simultaneous writes to the same cell are prohibited; in other words, only one
    processor may write to a given cell.
    

    	CRCW (concurrent read, concurrent write) PRAM—in any step, simultaneous
    reads from the same shared memory cell, or simultaneous writes to the same cell
    by multiple processors are allowed. Furthermore, because simultaneous writes
    are acceptable, the common, arbitrary, priority and combining subvariants of
    the CRCW PRAM are defined, depending on how the conflicts occurring in
    simultaneous writes to the same cell are resolved.


The advantage of the PRAM model is simplicity, which implies ease of carrying out analysis
of algorithms, like proving correctness or evaluating performance metrics. The model is
also a common ground for designing parallel algorithms. The drawback of the model is
that it is physically unrealizable for a large number of processors. As the number of
processors grow, maintaining a constant access time to the shared memory becomes
technically impossible (p. 39). See also: random access machine—RAM, computer
architecture, network model, comparison (sorting) network model, logic (Boolean) circuit
model.

Parallel slackness  Hiding the latency of operations by giving a processor many different
  tasks, and having it work on the tasks that are ready while others are waiting for operations
  involving latency to complete. When the processor can not continue execution of a current
  task, because it initiated an operation carried out with a latency (for example, sending or
  receiving a message, I/O operation, access to a nonlocal memory), the processor suspends
  the current task and switches to another task. As soon as the operation comes to an end,
  the processor may return to execute the suspended task. Thus, the processor works on
  those tasks that are ready for execution. At the same time operations involving latency
  proceed in other tasks (p. 143). See also: multitasking, overlapping communication and
  computation.

P-complete problems  A problem B is P-complete if one can solve it in polynomial
  time with a polynomial number of processors, and every problem A from class P can
  be reduced to problem B in parallel polylogarithmic time with a polynomial number of
  processors. P-complete problems make a group of difficult problems, which with high
  probability are not solvable in parallel polylogarithmic time with polynomial processor
  complexity. These problems seem to be sequential in nature, or in other words,
  inherently sequential (p. 101). See also: Nick Pippenger’s (NC) class, computational
  complexity.

Pipelining   Solving multiple problem instances by dividing the computation into a
  series of independent parts, corresponding to stages of a pipeline. At any moment, each
  stage is working on a respective part of computation. The results of computation of
  one stage are the input data of the next stage. A pipeline is understood as a collection
  of parallel processes performing pipelined computation, or as a piece of hardware
  consisting of processing elements connected in series. A conventional processor pipeline
  performs a number of microoperations overlapped within a single clock cycle,
  which are particular execution steps of instructions performed in parallel

  (p. 175). In vector processors pipelining speeds up execution of an operation
  carried out on the elements of a vector or vectors (pp. 177, 128, 155). See also: vector
  computer.

Problem decomposition (partitioning)  Dividing a problem into smaller
  subproblems (tasks) that can be solved in parallel. Depending on the way the
  division is done, the following types of decomposition can be distinguished:
  functional, data (domain), recursive, exploratory, speculative, and mixed (hybrid)
  (p. 125).

Processing element  See: processor array.

Processor array  A SIMD architecture computer equipped with a control processor
  that sends to processing elements successive program instructions for execution.
  Processing elements operate synchronously and can perform only arithmetic or logic
  operations. They do not incorporate units to control execution of a program, because
  this role plays the control processor. Data exchange between processing elements is
  effected by an interconnection network of a specific topology (p. 180). See also: computer
  architecture, Flynn’s taxonomy.

Processor complexity  A number of processors necessary to execute a parallel
  algorithm expressed as a function of problem size, [image: ]. In practice, the acceptable
  processor complexity is a polynomial complexity, [image: ] (pp. 74, 77, 100). See
  also: computational complexity, Nick Pippenger’s (NC) class, P-complete
  problems.

Random access machine—RAM  A model of sequential computation. It consists of
  a processor, and memory containing a potentially infinite number of cells. The model
  assumes that a memory cell access takes unit time, regardless of a cell address (from
  historical reason such memory access is called random, or direct). The RAM processor
  can execute instructions from some finite list including instructions similar to those
  implemented in modern processors. The RAM processor has a small number of
  memory cells called arithmetic registers, and it is controlled by a RAM program, which
  is a sequence of instructions implementing a given algorithm. The program is not
  stored in the memory, but in a control unit of the model. This ensures that the
  program cannot be modified during its execution (p. 35). The RAM model
  underlines the parallel random access machine (PRAM) model. See also: computer
  architecture.

Ring  One-dimensional torus (pp. 43, 48).

Routing Operations  related to moving a message from the source to destination node
  in an interconnection network. A routing algorithm (procedure) provides the rules that
  allow to make the decision in intermediate nodes, where to send the message next
  (pp. 41, 199, 202, 206).

Safety properties  Properties that should have a correct concurrent (parallel)
  program. Safety properties are conditions that should be “always” satisfied,
  that is for all possible realizations (or execution scenarios) of concurrent
  processes. The examples can be mutual exclusion or freedom from deadlock
  (p. 7).

Scaled speedup See: Gustafson–Barsis’s law.

Scalability, scalable  Scalability is a feature of a system providing for an increase of its
  size (scale) without significant worsening of functional properties and the necessity to
  change the rules of operation. A scalable parallel computer is capable of delivering an
  increase in performance proportional to the amount of hardware furnished, in

  particular to the number of processors. A scalable computer architecture is
  one that can be used as a design for arbitrarily large machines. A parallel
  system, understood to be a parallel algorithm executed in a respective parallel
  computer, is scalable if its efficiency can be maintained at a preset level
  by simultaneously increasing the number of processors used and the size of
  a problem being solved. Scalability of a parallel system is the better, the
  smaller is the growth rate of its isoefficiency function (pp. 42, 45, 67, 199, 200, 215,
  249).

Semaphore  Semaphores are used to solve synchronization problems that may arise
  during cooperation of concurrent processes. A semaphore s is a compound data
  structure with two fields: s.w and s.q, where the field s.w takes nonnegative integer
  values, and the values of the field s.q are sets of processes (tasks). On a semaphore s
  only two operations can be performed: wait[image: ] and signal[image: ] (send a “wake up”
  signal). If the value of [image: ] is nonnegative, then the wait[image: ] operation suspends
  execution of the process, and adds it to the set [image: ]. Otherwise the value of [image: ] is
  decreased by 1. The task added to the set [image: ] is said to be blocked on semaphore s.
  If the set [image: ] is nonempty, then the signal(s) operation deletes and unblocks one of
  the processes from [image: ] and resume its execution. Otherwise the value of [image: ] is
  increased by 1. Before a semaphore s is used, it must be initialized by assigning to the
  field [image: ] any nonnegative integer, and to component [image: ] the empty queue [image: ].
  If the component [image: ] of a semaphore may take any nonnegative integer value, then
  the semaphore is called general. If this component may take only values 0 or 1, then
  the semaphore is called binary (p. 9). See also: monitor.

Sequential computation model See: random access machine—RAM.

Sequential (serial) process  A sequence of operations in which the next operation
  commences only after completion of the previous operation. A sequential, or
  serial, process results from execution of a task, which is a component of a
  concurrent (parallel) program. The sequential process, or briefly process, may be
  finite or infinite. From the implementation point of view the process is a
  unit created, supervised and destroyed by the operating system. In order to
  execute, the operating system allocates to the process certain resources, such as
  computation time of a processor, memory space that stores instructions, data, and
  the stack of the process, a set of registers, including the program counter
  and stack pointer. The process can be executed by a single thread or by a
  team of cooperating threads. In the latter case, the concurrent computation
  occurs as the result of execution of a number of instruction streams (pp. 1,
  5).

Shared memory  A memory available for each computational process. From the user’s
  perspective the shared memory has a single address space. Physically, the shared
  memory can be designed as a single unit, or it can be composed of several memory
  modules operating in parallel (pp. 3, 39).

Shared memory model See: parallel random access machine—PRAM.

Speedup  The speedup of a parallel algorithm is defined as [image: ],where
  [image: ] and [image: ] are the worst-case time complexities of the fastest known sequential
  algorithm and the parallel algorithm, respectively, to solve a given computational problem.
  The maximum achievable speedup is equal to the number of processors or cores, p, used in
  the parallel algorithm. The speedup is a measure of benefit that is achieved through parallel
  computation. It specifies for how many times one can shorten the time of solving a problem

  sequentially by making use of a parallel algorithm. The speedup obtained by parallelization of
  a sequential algorithm with the running time [image: ] is equal to [image: ]
  (p. 64). See also: cost, efficiency, computational complexity, processor complexity.

Star network See: tree network.

Supercomputer  A computer at the frontline of contemporary processing
  capacity—particularly speed of computation. At present (beginning of 2016) most
  supercomputers are parallel multiprocessors containing several millions of processors or
  cores, capable of performing petascale computation with the rate exceeding 30 Pflop/s
  (quadrillion, [image: ], floating-point operations per second). The term “supercomputer”
  began to be used since the introduction of Cray-1 supercomputer in 1976. It
  was a vector computer equipped with a pipelined processor with a speed of
  more than 100 Mflop/s. See also: massively parallel processing system—MPP,
  cluster.

Switch  A building block of a dynamic interconnection network. A single switch has a
  number of input and output ports. The primary function of a switch is to set up
  connections between the input and output ports, which allows the topology of an
  interconnection network to be fixed according to the needs. A switch may provide
  additional features, for example buffering and routing messages, which involves
  specifying paths on which messages travel from the source to destination nodes
  (p. 198).

Symmetric multiprocessor—SMP  A uniform memory access multiprocessor in
  which all processors are homogeneous (in terms of hardware and software) and have
  equally fast access (“symmetric”) to other common resources like I/O devices, buses,
  etc. (p. 182).

Systolic computer  A systolic computer, also called systolic array, is a special-purpose
  architecture consisting of processors (computing units) connected in a multidimensional
  array or less regular structure. Data being processes are pumped through the array by
  a master or control processor, in several directions in a pipeline rhythmic fashion.
  Processors execute operations synchronously as their inputs become available. In
  practice, instead of processors usually simpler processing elements are used, which are
  capable of performing only specific arithmetic operations like addition, multiplication
  etc. (p. 196).

Task  A component of a concurrent (parallel) program, or the member of a set of
  independent computational jobs executed in a computing server (pp. 1, 125). See also:
  sequential (serial) process.

Thread  An execution entity that is able to run independently a stream of instructions.
  A process can be executed by a single thread or by a team of cooperating
  threads. Both a process and thread are units of an operating system. In order
  to execute, the operating system allocates to the process some resources,
  including computation time of a processor, memory space to store instructions
  and data, the set of registers, etc. All the threads executing a process share
  the resources allocated to it, in particular the address space of a designated
  area of memory. In this memory, threads can store computation results and
  messages that can be read by other threads. So it allows threads to communicate
  with each other. In addition to shared resources, each thread has also a few
  resources for its exclusive use, such as the stack, program counter register,
  memory to store private data. Multiple threads can be executed concurrently by
  a single processor (or core) via time-sharing. In such a case we talk about

  multithreaded execution. Multiple threads can also be executed in parallel by several
  processors or a multicore processor (pp. 5, 244). See also: sequential (serial)
  process.

Topology  A family of graphs sharing specific properties or created by the same
  general rule. Based on the given topology an interconnection network is built
  intended for communication between processors, memory modules and other
  devices. Sample topologies are: mesh, torus, mesh of trees, cube, cube connected
  cycles, bus, crossbar switch, omega network, butterfly network, tree network
  (pp. 41, 199).

Torus  A network topology in which the nodes (vertices) form a k-dimensional mesh
  with additional links (edges) connecting each pair of corresponding nodes located on
  the boundaries of the mesh (the so-called wraparound connections). In a k-dimensional
  torus each node is connected to [image: ] other nodes (pp. 43, 44, 48). See also: interconnection
  network.

Tree networks    In tree networks, defined by a class of network topologies, there is only one communication
  path between each pair of nodes. The class of tree networks include the one-dimensional mesh, star network,
  static and dynamic binary tree network, and fat tree network (p. 204). See also: topology, interconnection network.

Uniform memory access—UMA  A multiprocessor with uniform memory access
  allows any cell of the memory to be read or written by any processor in the same,
  constant time (pp. 182, 184). See also: nonuniform memory access—NUMA, address space.

Uniprocessor  A computer equipped with a single processor (p. 175). See also: computer architecture, Flynn’s taxonomy, core.

Vector computer   A computer that has a vector processor next to a conventional one.
  The vector processor implements an instruction set containing vector instructions that
  consist of series of operations on vectors of data. The operations are carried out by
  specially designed pipelined arithmetic-logic units (p. 177). See also: Flynn’s taxonomy,
  computer architecture.
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19

Input data: array a[l..n] in the shared memory of a CREW PRAM model with n® processors;
local variables to store size n, and processor number as a pair of variables i, .

Auxiliary data: array w(l..n, 1..n] in the shared memory; local variables k and r.

Output data: array b[L.n] in the shared memory containing elements of array a[l.n] in
nondecreasing order.
begin
parfor P,;, 1 <i,j <n do
if (ali] > alj]) or ((ali] = a[j]) and (i > j)) then
wli,j] = 1
clse

wli, j]
end

for 7 := 1 to [logn] do {count the ones in rows of array w}
parfor Py, 1 <i<n, 1<j<[k/2]do

wli,j) = wli, ] + wliyk+1- s

end

ko= [k/2
end
parfor P,;, 1 <i<n, j=1do {values w(i,1] are indices in array b where elements afi]
should be inserted}

bluwfi, 1] +1] = ali;

end

end
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1 begin
2 | parfor P, 1<i,j < /pdo

3 result := w; {initialization}

1 for k:=1to \/p— | do {broadcast in rows}

5 w <« right(w);

6 result := result U w;

7 end

8 w = result;

o for k:= 1 to \/p— 1 do {broadcast in columns}
10 w < down(w);

1 result = result U w;

12 end

13 end
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9
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Input data: A rooted tree T = (V, E) for [V| = n with root p € V represented by the modified
adjacency lists; the corresponding Euler path D created on the basis of the Euler
cycle & in graph T’ = (V, E') stored in array S; an array z[v, u] containing the
tags indicating whether (v,u) € D is a “forward” or “backward” arc; the
adjacency lists, array S and array z are placed in the shared memory of an EREW
PRAM model with 2(n — 1) processors; a local variable (in a local memory of
each processor) to store the processor number i.

Auxiliary data: prefix sums collected in a two-dimensional array ofv, u], where (v,u) are the
arcs of path D.

Output data: the array pre[l..n] defining the sequence of vertices v € V of tree T visited in
preorder.
begin
Assign weights to arcs of path D: w
“backward” arcs;
Compute prefix sums v, u] based on weights w in the list of arcs (v, u) defining path D;
pre(1] := p; {for the root of tree T}
parfor P;, 1<i< 2(n— 1) do {processors are assigned to arcs of path D}
if (v,u) is & “forward” arc then
| prelofo,ul + 1] -
end

] = 1 for “forward” arcs and wlv, u] = 0 for

end
end
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| cli, ] := cli, d] + ali, k] * blk, jl;
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1 procedure min_maz(a|
2 begin

3 | ifj—i+1=2 then {trivial task of size 2}
1 if ali] < alj] then

5 et

o else

” | weburn (sfdl, o)

s end

o | else

10 k= (j+i—1)/2 {central index in array a}

1 (mint,maz1) := min_maz(ali..k]); {parallel execution}

12 (min2,maz2) = min_maz(alk + 1..3]); {of tasks}

1 return (MIN(mint ,min2), MAX(maz! ,maz2)); {combining the results}
1 | end

15 end
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1 begin
parfor P;, 1 <i < n do

end
for [ := 1 to logn do {sum up components of scalar products}

for j =1 to n do
for k:= 1 to n do {compute components ¢[i, j, k| of scalar
products}

| i, 5, K] == ali, k] = blk, 5

end

end

parfor P;, 1 <i<ndo
for j:=1 ton do

for k:=1 to n/2 do
Ui, g, k] = tli, . 2% k — 1]+ t[i,5,2 % k];
end

end

parfor P;, 1 <i<ndo

For it 1 e do
cli, g = tli, . 1];
end

end
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1 procedure quicksort(ali..j]);
2 begin
if j —i+ 1 < threshold then
| “Sort ali..j] using some simple method;
else
Choose a pivot element;
Move array elements around the pivot;
quicksort(ali..k]);
quicksort(alk + 1..]);
0 end
11 end

P I IS Y





OEBPS/Images/image01924.gif
Input data: matrices a[l..n, 1..n] and b[1..n, 1..n| in the shared memory of a CREW PRAM
model with n® processors; local variables to store size n (n = 2" for integer r
where 7 > 0), and processor number made up of variables 7, j and k.

n the shared memory; local variable I.

Auxiliary data: matrix ¢[L..n, L.n, L.
Output data: product of matrices ¢ = ab in the shared memory.

1 begin

2 | parfor Pjx, 1 <i, j, k <n do {compute components of scalar products}
s | | A e afi k] e ol

4 | end

5 for [ := 1 to logn do {sum up components of scalar products}
6 parfor P, 1 <i,j <n, 1 <k<n/2 do

7 | tfi k] s= #0052 b — 1]+ t[i, 5, 2 % K);

s end

9 | end

1w | parfor P, 1<i,j <n, k=1do

|| elig] = 10

12 | end
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for i :=2 to n do

| sli] = sli — 1] ® =[i];
end
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Input data: array z[l..n] in the shared memory of an EREW PRAM model with n processors;
local variables to store size n and processor number i.

Auxiliary data: local variable j.
Output data: prefixes stored in array s[1..
1 begin
parfor P,, 1 <i < n do {initialize prefix array}
| sli) = oli;

] in the shared memory.

parfor P, 2 <i<n do

2
3

4

s | forj:=0to logn] —1do
6

v ~ 2] @ slif;
s
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Input data: array a[l..n] in the shared memory of a CRCW PRAM model with n® processors;
local variables to store size n, and processor number as a pair of variables i, .

Auxiliary data: array ¢[1..1] in the shared memory.

Output data: value of min{a[i]} for i = 1, 2, ..., n returned in line 15; if there are several
minima in array a, then the leftmost minimum element is returned.

begin
parfor P, j,i=1,1<j <n do {processors in the first row are active}
| tj] := 0; {initialize array ¢}
end
parfor P, ;, 1 < i, j <n do {all processors are active}
if ali] < alj] then {a[j] is not minimum}
|t =1
end
if (t[i] = 0) and (i < j) then {t[i] = 0 means that a[i] is minimum}
| #0j] == 1; {¢[3] = 0 holds only for one 5}
end

end
parfor P,;,i=1, 1< j <n do {processors in the first row are active}
if £j] = 0 then
| return alj]; {return the minimum element}
end

end
end
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1 begin

hre := 2.5/ (res_re — 1);
him = 2.0/ (res_im — 1);
for i := 0 to res_im — 1 do
1.0+ i him;
0 to res_re — 1 do
2.0+ j * hre;
; are := 0.0; zim == 0.0;
repeat
1= zre % zre — zim % zim + ere;
.0 % z7e % zim + cim;
zre =t ki=k+ 13
until (zre + zre + zim * zim > 4.0) or (k > iter_limit);
if k < iter_limit then
| color := white;
else
| color := black;
end
Plot pixel (¢im, re) in the color specified by variable color;
end
end

end
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zre, zim: real; {real and imaginary parts of z}

cre, cim: real; {real and imaginary parts of c}

 integer = 238; {resolution on the real axis}

192; {resolution on the imaginary axis}
color: (white, black); {pixel color}

hre, him: real; {step on the real and imaginary axes}
iter_limit: integer := 256; {limit of iterations}

t: real; {auxiliary variable}
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begin
Input data: masses and initial positions and velocities of n bodies;
for k:=1 to K do {perform K simulation steps}
fori:=0ton— 1 do {set 0.0 to components z and y of forces I}
Fi,0] := 0.0; Fi,1] := 0.0;
end
for i:=0to n— 1 do {compute forces F' acting upon all bodies}
for i+1ton—1do
pos|j,0] — pos[i, 0]; {compute components of vector r; ;}
7y == pos|j, 1] — pos[i, 1];
di sqri(rz vz + vy *r_y); {compute distances between bodies i and j}
dis s # dis + dis;
-2 := G * masy[i] + masy[j] * r_z/dis; {compute partial forces}
-y = G + masyli] * masy[j] * r_y/dis;
Fli,0) := F[3,0] + f_; {compute components & and y of force F}}
Fli, 1] = Fli,1] + fy;
F[j,0] := F[j,0] - f_a; {compute components z and y of force Fj}
Fj1) = Flj. - [
end
end
for 0 to n—1 do {compute new positions and velocities of bodies}
posli, 0] i= pos[i, 0] + delta-t * velli, 0];
posi, 1] := pos(i, 1] + delta_t * velli, 1];
wel[i, 0] := velli, 0] + delta_t + Fi, 0] /masses|i];
velli, 1] = velli, 1] + delta_t * F[i, 1] /masses[i];
end
Output results of simulation: positions and velocities of n bodies;
end
end
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pos, vel, F: array[0..n —1,0..1] of real; {positions, velocities, forces for n bodies}
delta_t: real := ...; {simulation step size}

fz, foy: real; {partial forces}

7.z, r_y: real; {components of vector r; ;}
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1 #include <stdio.h>
2 #define N 10 /% size of array to be sorted */

3 int main(int argc, char *argv[]) {
float a[N]={1.4, 1.2, 1.1, 1.1, /* array to be sorted */
5 0.47, 0.99, 7.86, 2.3, 9.0, 6.7};
6 float b[N]; /* array after sorting */
7 int ind[N]; /* indices in array b */
8 int i, j;
o for (i = 0; i < N; i++) ind[i] = 0; /x initialize indices */
10 for (i =05 i < N; i++)
11 for (j = 0; j < N; j+) /* compute index for element alil] */
12 if ((alil > al3D) Il ((alil == al[j]) && (i > j))) ind[il++;
13 for (i = 0; i < N; i++) b[ind[i]] = alil; /* actual sorting %/
14 printf("a:\n"); /* before sorting */
15 for (i = 0; i < N; i++) printf("%6.2f", al[il);
16 printf("\nb:\n"); /* after sorting */
17 for (i = 0; i < N; i++) printf("%6.2f", b[il);
18 printf("\n");
19 return 0;
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#include <stdio.
#include <math.h
#include <omp.h>
#include <stdlib

#define N 100000
#define S (int)s
#define M N/10

int main(int arg
long int a[S +
long int primes
long int i, k,

h>
>

.h>

00 /* define interval [2..N] #/
qrt (N)

) char ) |
T e i e v

R T C I I
number, remainder;

long int no_of div; /* number of divisors */

long int no_of_primes =

double time; /*

variable for time measure */

time = omp_get_wtime(); /* measure the time */

/* compute divi
#pragma omp par:
for (i =2; i <
for (i =
if (ali]

1)

sors in interval [2..S] #/
allel for default(none) shared(a)
S; i++) alil = 1; /* initialization */

{

primes [no_of primes++] = i; /% store a divisor */

/* strike off
for (k =i +

}

composite numbers that are multiple of i */
i; k <= S; k += i) a[k] = 0;

no_of_div = no_of_primes; /* store number of divisors */

/% find primes
#pragma omp par:
shared (n

for (number = S
for (k = 0; k
remainder = (
if (remainder

if (remainder
#pragma omp c

in parallel */

allel for default(none) private(k, remainder) \
0_of primes, no_of div, primes)

+ 1; number <= N; number++) {

< noof div; k++) {

number % primes[k]);

== 0) break; /+* composite number */

1=0) {

ritical

primes [no_of primes++] = number; /* store a prime number */

}
b

time = omp.get.wtime() - time; /* compute running time */

printf("tine:
return 0;

}

%t sec\n", time);

/* number of primes in array primes ¥/
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1 #include <stdio.h>
2 #define N ... /* size of array to be sorted */

3 int main(int argc, char *argv[]) {

4 float a[N]; /* array to be sorted */
5 float b[N]; /* array after sorting */
6 int ind[N]; /* indices in array b */
7 dint i, j;

& # pragma omp parallel

10 #pragma omp for

11 for (i = 0; i < N; i++) ind[i] = 0; /x initialize indices %/
12 #pragma omp for collapse(2) private(i, j)

13 for (i =0; i < N; i++)

14 for (j = 0; j < N; j++) /* compute index for element al[il */
15 if ((alil > a[iD) 11 ((alil aljl) & G > 3)))

16 #pragma omp critical

ite ind[i]++;

18 #pragma omp for

19 for (i = 0; i < N; i++) blind[i]] = a[il; /# actual sorting */
20}

21 printf("a:\n"); /* before sorting */

22 for (i = 0; i < N; i++) printf("%6.2f", alil);

23 printf("\nb:\n"); /# after sorting */

24 for (i = 0; i < N; i++) printf("%6.2f", b[il);

25 printf("\n");

26 return 0;
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s: semaphore := (1,0); —— binary semaphore for mutual exclusion
access: semaphore == (1,0); - binary semaphore for blocking
and unblocking the tasks
counter: integer = n;
procedure WAIT;
begin
wait(access); wait(s); counter := counter—
if counter> 0 then signal(access); end if;
signal(s
end WAIT;

procedure SIGNAL;

begin
wail(s); counter == counter+1;
if counter= 1 then signal(access); end if;
signal(s);

end SIGNAL;
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s: semaphore = (1,0); —— binary semaphore for mutual exclusion
(0,0); - binary semaphore for blocking
and unblocking the tasks

access: semaphore

counter: integer
procedure WAIT;
begin
wail(s); counter := counter
if counter< 0 then signal(s); wait(access); end if;

signal(s);
end WAIT;
procedure SIGNAL;
begin
wait(s); counter = counter+1;
if counter< 0 then signal(access); else signal(s); end if;
end SIGNAL;
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int omp_get_thread num(void); {
return

}
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3. if R, = 0 then goto 16 1. Ry = Ry — My {Ry == y—a}
4 iy {Ry = ) 12. if Ry < 0 then goto 1
5. L= My {Ry ==z —y} 13. if R; = 0 then goto 1
6. if R, < 0 then goto 10 4. Myi= Ry {y:=y—a}
7. if R, = 0 then goto 10 15. goto 11
8 M =R, {o:=a—y) 16. stop
. LOAD L1 {step 1} & JNEG 1,12 {step 6}  15. JNEG 1,1 {step 12}
. LOAD 2.2 {step 2} 9. JZER 1,12 {step 7}  16. JZER 1,1 {step 13}
SUB 1,2 10. STORE 1,1 {step 8} 17. STORE 1,2 {step 14}
JZERO 1,19 {step 3} 11. JUMP 6 {step 9} 18. JUMP 13 {step 15}
LOAD 1,1 {step 4} 12, LOAD 1,2 {step 10} 19. HALT {step 16}
LOAD 22 {step 5} 13. LOAD 2,1 {step 11}
SUB 1.2 14. SUB 1,2
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monitor Sleeping_barber is

chairs: natural := n; —- number of free chairs in the waiting room
barber, barber_chair, open: natural := 0;
barber_free, barber_chair_occupied, door_open, customer_left: condition;
procedure haircut is
begin

if chairs > 0 then - - there are free chairs in the waiting room

if barber= 0 then - - barber is busy
chairs := chairs—1; —— occupy a chair in the waiting room

wail (barber_fre

chairs = chairs+1; -— exempt a chair in the waiting room
end if;
barber = 0;

1; - - occupy the barber’s chair
cupied);

signal(barb
HAIRCUT;
if open= 0 then - - wait for opening the exit door
it it e

end if;
open = 0; — - close the exit door
signal(customer_left);

end if;

end haircut;
procedure nezl_customer is
begin
barber := 1; — - barber is free
signal(barber-free);
if barber_chair= 0 then - - barber’s chair is not occupied
wait(barber_chair_occupied);

end if;

HAIRCUT;

barber_chair := 0; - - exempt the barber’s chair
open := 1; —— door opening

signal(door_open);
if open= 1 then -~ customer has not left yet
wail(customer_left);
end if;
end nezt_customer;
end Sleeping_barber;
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depth-first search of the tree is visited “forward” or “backward.”

1 begin
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o | parentfu 2lv,u) = “forward”;
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begin

{Phase 1: Modify the distribution of elements of matrices a i b in the torus.}
for k=2 to n do
parfor P, ;, 1 <i,j <ndo
if i > k then {shift cyclically rows of matrix a to the left}

| a < right(a);
end
if j > k then {shift cyclically columns of matrix b upward}

| b < down(b);
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end
{Phase 2: Compute the product of matrices a and b.}
for k=1 to n do
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if k=1 then

e
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w: array(0..p — 1,0 ..logp — 1) of boolean; —- array for storing signals

partner: array(0..p —1,0..logp — 1) of integer; — - identifiers (numbers)

— - of partners

procedure barrier_initialization is
power, round, i: inleger;

begin
power :
for round

0 to logp — 1 do
for i := 0 to p — 1 step power 2 do
for j := i to i + power— 1 do
partner(j, round) := j + power; —— determine the partners
partner(j + power, round) = j;
w(j, round) = false; w(j + power, round) = false;
end for;
end for;
power = power % 2;
end for;
end barrier_initialization;
procedure barrier(i: integer) is -~ i is a task number
round: integer;
begin
for round := 0 to logp — 1 do
while w(partner (i, round), round) do skip; end while;
w(partner(i, round), round) := true;
while not w(i, round) do skip; end while;
w(i, round) = false;
end for;

end barrier:
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while not w(0) do skip; end while; while not w(1) do skip; end while;
w(0) := false; w(l) = false;
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1 task type reader; —- task type specifications
2 task type wri
3 task body reader is

4 begin

5 loop

6 wait(s); —— pre-protocol of reader

7 if nw > 0 then —— writer is accessing the database
8 nwr = nwr + 1; signal(s); wait (reading_allowed);
9 end if:

10 nr = nr 41

11 if nwr > 0 then — there are waiting readers

12 nwr = nwr — 1; signal(reading_allowed);

13 else signal(s); end if;

14 READING DATA FROM THE DATABASE;

15 wait(s); nr = nr — 1; - post-protocol of reader
16 if nr = 0 and nww > 0 then;

17 nww = nww — 1; signal(writing_allowed);

18 else signal(s); end if:

19 end loop;
20 end reader;
21 task body writer is

22 begin

23 loop

24 wait(s); —— pre-protocol of writer

25 if nr > 0 or nw > 0 then

26 nww = nww + 1; signal(s); wait(writing_allowed );
27 end if:

28 nw = nw + 1; signal(s);

290 ‘WRITING DATA TO THE DATABASE;

30 wait(s); nw = nw — 1; —— post-protocol of writer
31 if nwr > 0 then - there are waiting readers

32 nwr = nwr — 1; signal(reading_allowed);

33 else if nww > 0 then —— there are waiting writers
34 nww = nww — 1; signal(writing_allowed);

35 else signal(s); end if;

36 end loop;
37 end writer;
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end loop; end loop; end loop;
Smoker P;: Smoker Py: Smoker Py:
loop loop loop
wait(tobacco); wait(paper); wait(tobacco);
wait(paper); wait(matches); wait(matches);
signal(agentS); signal(agentS); signal(agentS);

end loop: end loop: end loop:
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1 procedure allocate_resource(time, task_number
2 begin

3 wait(s);

4 if free = no then

5 Insert the pair (time, task-number) to the queue;
6 signal(s); wait (z[task_number] );
7

8

9

end if;
Jfree := no; signal(
end alloca
10 procedure release_resource;
11 begin
12 wait(s); free == yes;
13 if queue # () then

_resource

14 Delete from the queue the pair (time, task_number)
with the minimum value of time;
15 signal(z[task_number|);

16 else signal(s); end if;
17 end release_resource;
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parfor P;, 1 <i<2(n—1) do
u = wli]; v = wlnezts[i]]; t := wlnextli]];
Slu,v] = (v,t);
end
end
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1 task Philosopher;; ——fori=0,1,...,4
2 task body Philosopher; is

3 begin

4 loop

5 THINK;

6 wait(fork(i)); —— pick up the left fork

7 wait (fork((i + 1) mod 5)); — pick up the right fork

8 EAaT;

9 signal (fork(i)); —— put down the left fork

10 signal (fork((i + 1) mod 5)); —— put down the right fork

11 end loop;
12 end Philosopher;;
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up_to_4: semaphore := (4,0);

— semaphore limiting the number
~ of philosophers at the table to 4

task Philosophers; ——fori =0, 1,...,4
task body Philosopher; is

loop

THINK;

wait(up-to_{ ); —— get permission to have a seat at the table
wait (fork(i)); — pick up the left fork

wait (fork((i + 1) mod 5)); ~— pick up the right fork

BAT;

signal (fork(i)); —— put down the left fork

signal(fork((i + 1) mod 5)); —— put down the right fork
signal(up_to_4 ); —— release the seat at the table

end loop;

15 end Philosopher;;
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int MPI_Get_count(
MPI_Status *status,
MPI Datatype datatype,
int* count) ;
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int MPI Recv(
voidk
int
MPI Datatype
int
int
MPI_Comm
MPI_Status*

message,
count,
datatype,
source,

tag,
communicator,
status);
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int MPI_Send(
voidk
int
MPI Datatype
int
int
MPI_Comm

nessage,
count,
datatype,
destination,
tag,
communicator) ;
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int MPI_Init(int* argc, charkk* argv);
int MPI_Finalize(void);
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1 task Philosopher;; ——fori =0,1,...,4
2 task body Philosopher; is

3 p, ¢ natural; —— auxiliary variables
4 begin

5 ifimod?2=0 then - for even-numbered tasks
6 pi=i; q:= (i +1) mod 5;

7 else —— for odd-numbered tasks
s .
9

pi=(i+1)mod 5; ¢
end if;
10 loop
11 THINK;
12 wait(fork(p));
13 wait (fork(q));
14 EAT;
15 signal (fork(p));
16 signal (fork(q));

17 end loop;
18 end Philosopher;;
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s: semaphore := (1,0); —— binary semaphore for mutual exclusion
access: semaphore = (1,0); -~ binary semaphore synchronizing
— - access to the database
no_ofreaders: natural := 0; —— number of readers accessing
— - simultaneously the database
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task type reader; —— task type specifications
task type writer;
task body reader is
begin
loop
wail(s);
no-of readers :

o-0f -readers + 1;

if no_of _readers = 1 then wait(acce end if;
signal(s);

READING DATA FROM THE DATABASE;

wait(s);

no-of.readers := no_of -readers — 1;
if no_of _readers = 0 then signal(access); end if;
signal(s);
end loop;
end reader;
task body writer is
begin
loop
wait(access
WRITING DATA TO THE DATABASE;
signal (access);
end loop;
end writer;
Readers: array(1..100) of reader;
Writers: array(1 ..100) of writer;
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buffer: array(0..n — 1) of data_type; - - bounded buffer

in, out: natural := 0; —— buffer indices

nonemply: semaphore = (0,0); - general semaphore indicating
—— how many chunks of data are in the buffer

nonfull: semaphore := (n,(); - - general semaphore indicating
_— how many free entries are in the buffer
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int MPI_Reduce(

void* operand,
void* result,
int count,

MPI Datatype datatype,
MPI_Op operation,
int root,

MPI_Comm communicator) ;
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#include <stdio.h>
#include <limits.h>

#include <mpi.h>

#define N 37 / for the graph with 36 vertices %/

int g[N][N]; /* the graph described by vertex incidence matrix */
int partition[N]; /x elements 1..(N-1)/2 and (N+1)/2..(N-1) contain vertices of
the first and second half of the graph */

int search(); /* this function does not change */

s int main(int arge, charxk argv) {

int id; / identifier (number) of a process */
int p; /* number of processes ¥/
int source; /* identifier of a source process */
int dest; /% identifier of a destination process */
MPI_Status status; /* Teturn status from the receive function */
struct {
int min; /% minimum number of edges */
int id; /* process idemtifier %/
} operand, result;
MPIInit(%arge, &argv); /* initialize MPI */
MPI_Comm_rank (MPI_COMM WORLD, &id); /# get process number /
MPI Comm_size (MPI_COMMWORLD, &p); /% get number of processes */
if (id == 0) { /* process O - master */
Enter data describing the graph and create array g;
MPIBcast(g, NN, MPI_INT, 0, MPI_COMMWORLD); /* broadcast array g /
operand.min = search(); /x search for best graph partition */
operand. id =
/* reduce the values from the operand structures */
MPI_Allreduce(&operand, &result, 1, MPI2INT, MPI.MINLOC, MPI_COMM_WORLD);
if (result.id != 0)
MPI Recv(partition, N, MPIINT, result.id, 1, MPI_COMMWORLD, &status);
Output the value of result.min and the partition array;
)
else { /% processes 1..p-1 - workers x/
/% receive array g %/
MPI Bcast(g, NN, MPI_INT, O, MPI_COMM_WORLD);
operand.min = search(); /* search for best graph partition %/
operand.id = id;
MPI_Allreduce(&operand, &result, 1, MPI2INT, MPI_MINLOC, MPI_COMM_WORLD);
if (result.id == id) /# send the minimal partition %/
MPI_Send(partition, N, MPI_INT, 0, 1, MPI_COMM_WORLD);
)
MPI Finalize();
return 0;
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int MPI_Bcast(

voidk message,
int count,
MPI Datatype  datatype,
int root,

MPI_Comm communicator) ;
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task Producer; —— task specifications
task Consumer;
task body Producer is
data: data_type; —— auxiliary variable containing a chunk of data
begin
loop
ProbpUCE data;
wait(nonfull); —— check if the buffer is not full

buffer(in) := data; —— insert data

in := (in + 1) mod n;

signal(nonempty); —— signal data insertion
end loop;

end Producer;
task body Consumer is
data: data.type; —— auxiliary variable
begin
loop
wait(nonempty); —— check if there are data in the buffer
data := buffer(out); — retrieve data from the buffer
out = (out + 1) mod n;
signal(nonfull); —— signal that the buffer is not full
CONSUME data;
end loop;
end Consumer;
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Jork: array(0..4) of semaphore
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s: integer := 0; — - shared variable
task Z;;
task body Z; is
begin
loop
while fest-and-set(s) = 1 do skip; end while; —- pre-protocol
CRITICAL SECTION
5 = 0; == post-protocol
- - remainder of the task
end loop;
end Z;;
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function test-and-set(s: integer) return integer is

auz: inleger; - - auxiliary variable
begin
auzr = s; 5 = 1;

return auz;
end test-and-set;
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monitor Producer_Consumer is
buffer: array(0..n — 1) of data_type;
in, out: natural = 0; — buffer indices
counter: natural := 0; -~ counter indicating how many chunks of data
—— are in the buffer

nonempty, nonfull: condition; —— condition variables
procedure put(d: in data) is
begin

if counter = n then wait (nonfull); end if;
buffer(in) := d; —— insert data into the buffer
in := (in + 1) mod n;
counter = counter + 1;
signal(nonemply); —— signal data insertion
end put;
procedure get(d: out data) is
begin
if counter = 0 then wait(nonempty); end if;
buffer(out); — retrieve data from the buffer
out := (out + 1) mod n;
counter = counter — 1;
signal(nonfull); —- signal that buffer is not full
end get;
end Producer_Consumer;
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task Producer; —— task specifications
task Consumer;
task body Producer is
data: data_type; —— auxiliary variable containing a chunk of data
begin
loop
PRODUCE data;
Producer_Consumer. put(data);
end loop;
end Producer;
task body Consumer is
data: data_type; —— auxiliary variable
begin
loop
Producer_Consumer. get(data);
CoNSUME data;
end loop;
end Consumer;
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int MPI_Scatter(
void¥
int
MPI Datatype
void¥
int
MPI Datatype
int
MPI_Comm

send_buffer,
send_count,
send_datatype,
recv_buffer,
recv_count,
recv_datatype,
root,
communicator) ;
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int MPI_Allgather(

voidk send butfer,
int send_count,
MPIDatatype  send datatype,
voidk recv_buffer,
int recv_count,

MPI Datatype recv_datatype,
MPI_Comm communicator) ;
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int MPI Gather(
voidk
int
MPI Datatype
voidk
int
MPI_Datatype
int
MPI_Comm

send buffer,
send_count,
send_datatype,
recv_buffer,
recv_count,
recv_datatype,
root,
communicator) ;





OEBPS/Images/image02826.gif





OEBPS/Images/image04157.gif





OEBPS/Images/image02825.gif
n/2





OEBPS/Images/image04156.gif
int MPI_Comm_split(

MPI_Comm old_communicator,
int color,
int key,

MPI_Comm new_communicator);
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1 #include <stdio.h>
2 #include <mpi.h>
3 #define N ... /* the size of array to be sorted */

4 int main(int argc, char** argv) {

5 float a[N]; /* array before sorting */

6 float b[N]; /+ array after sorting */

7 int k, w; /* auxiliary variables */

& int i, j; /% "co-ordinates" of a process */

o int id; /% identifier (number) of a process */
10 int p; /* number of processes */

11 int ind = 0; /* index in array b */

12 MPI_Comm row.comm; /* Tow communicator */

13 MPI_Comm col_comm; /% column communicator */

14 MPLInit(%argc, &argv); /* initialize MPI */
15 MPI_Comm_rank(MPI_COMM WORLD, &id); /* get process number */

16 MPI_Comm_size(MPI_COMMWORLD, &p); /* get number of processes */
17 /* is the number of processes correct? */

18 if((p =N * N) &k (id == 0)) {

19 printf("You need %d processes!\n", N * N); return 1;

20 }

21 Input array a in process 0 and broadcast it to other processes;

22 /% compute "co-ordinates" of a processe in virtual mesh %/
i=4dd / N; j=id % N;

24 if ((alil > aliD) Il ((alil == aljl) & (i > j))) w =
25 else w = 0;

26 MPI_Commsplit(MPI_COMM_WORLD, i, j, &row_comm);

27 MPI_Reduce(&w, &ind, 1, MPI_INT, MPISUM, 0, row_.comm);

28 MPI_Comm_split(MPI_COMM_WORLD, j, ind, &col_comm);

20 if (j == 0)

30 MPI Gather(za[il, 1, MPI.FLOAT, b, 1, MPI_FLOAT, 0, col comm);

31 if ((j == 0) && (ind == 0)) { /# process i, where a[il is minimal */
32 printf("a:\n"); /* before sorting */

33 for (k = 0; k < N; k++) printf("%f ", alkl);

34 printf("\nb:\n"); /% after sorting */

35 for (k = 0; k < N; k++) printf("4f ", blkl);

86 printf("\n");

38 MPI_Commfree(&row_comm); /* delete communicators */
39 MPI_Comm free(&col_comm);

40 MPI Finalize();
41 return 0;
az }
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monitor Forks_Allocation is
Jork: array(0..4) of natural := (2,2,2,2,2);
can_eat: array(0..4) of condition;
procedure pick-up_forks(i: in natural) is
begin
if fork(i) < 2 then wait(can_cat(i)); end i
Jork((i + 1) mod 5) := fork((i + 1) mod 5) — 1;
Jork((i = 1) mod 5) := fork((i — 1) mod 5) — 1;
end pick_up_forks;
procedure put.down_forks(i: in natural) is
begin
Jork((i + 1) mod 5) == fork((i + 1) mod 5) + 1;
Jork((i — 1) mod 5) := fork((i — 1) mod 5) + 1;
if fork((i + 1) mod 5) = 2 then
signal(can_eat((i + 1) mod 5));
end if;
if fork((i — 1) mod 5) = 2 then
signal(can-cat((i — 1) mod 5));
end if;
end put_down_forks;
end Forks_Allocation;
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31

monitor Readers.Writers is
no-of.readers: matural := 0;
no_of-writers: natural := 0;

reading.allowed, writing_allowed: condition; —— condition variables
procedure start_reading is
begin

if (no-of -writers > 0) or not empty(writing_allowed) then
wait(reading.allowed);
end if;
no-of-readers := no-of -readers + 1;
signal(reading-allowed);
end start.reading;
procedure stop_reading is
begin
no-of-readers := no_of readers — 1;
if no_of -readers = 0 then signal (writing-allowed); end if;
end stop_reading;
procedure start_writing is
begin
it (no-of -writers > 0) or (no-of -readers > 0) then
wait (writing-allowed);
end if;
no_of-writers := no_of -uriters + 1;
end start_uwriting;
procedure stop_uriting is
begin
no_ofwriters = no_of -uriters — 1
it empty(reading.allowed) then signal (writing.allowed)
else signal(reading.allowed) end if:
end stop_uriting;
end Readers Writers;
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wait(s): loop if s > 0 then s := s — 1; break; end if; end loop;
signal(s): s 1= s+ 1.
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end loop;
end Tj;
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buffer: array(0..00) of data_type; —~ unbounded buffer

in, out: natural := 0; - - buffer indices

nonemply: semaphore = (0,0); —— general semaphore indicating how many
__ chunks of data are in the buffer
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task Producer; —— task specifications
task Consumer;
task body Producer is
data: data_type; —— auxiliary variable containing a chunk of data
begin
loop
PRODUCE data;
buffer(in) := data; —— insert data into the buffer
in = in+1;
signal (nonempty); —— signal data insertion
end loop;
end Producer;
task body Consumer is
data: data_type; —— auxiliary variable
begin
loop
wait(nonempty); —— check if there are data in the buffer
data := buffer(in); —— retrieve data from the buffer
in = in+1;
CoNSUME data;
end loop;
end Consumer;
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43 int search() { /* search for the best graph partition */

41 int i, j, no_of edges, nne, better partition;

45 /% create random partition of the graph */

a6 for (i = 1; i < N; i++) partition[il = i;

a7 for (i = N - 1; i >= 2; i--) /* random(i) returns a number */

48 swap(partition[i], partition[random(i)]); /* from range [1..i] %/
19 no_of edges = edg(); /* edg() returns the number of edges

50 between halves of the graph stored in the partition array */
51 do { /* swap vertices between halves of the graph */

52 better_partition = 0;

53 for (i =1; i <= (N - 1) / 25 i++) {

s for (= W+ 1) /2§ <N g |

55 swap(partition[i], partition[jl);

56 nne = edg(); /* new number of edges between */

57 halves of the graph */

58 if (nne < no.of_edges) {

59 no_of_edges = nne; better_partition = 1;

60

61 else swap(partition[i], partition[j]); /* undo the swap */
o2}

63

64 } while (better partition == 1);
65 return no_of_edges;
o6 }
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#include <stdio.h>
#include <limits.h>

#include <mpi.h>

#define N 37 /+ for the graph with 36 vertices */

int g[N][N]; /* the graph described by vertex incidence matrix */
int partition[N]; /* elements 1..(N-1)/2 and (N+1)/2..(N-1) contain vertices of
the first and second half of the graph */

int search(); /# serach for the best graph partition */
int edg(); /* count the number of edges between halves of graph */

int main(int arge, char*x argv) {
int id; /* identifier (number) of a process */
int p; /* number of processes */
int source; / identifier of a source process */
int dest; /* identifier of a destination process */
MPI Status status; /* return status from the receive function */
int i, min = INTMAX, t, temp[N];
MPI_Init(%argc, &argv); /* initialize MPI */
MPI_Comm rank (MPI_COMMWORLD, &id); /* get process number */
MPI_Comm size (MPI_COMMWORLD, &p); /* get number of processes */
if (id == 0) { /* process 0 - master */
Enter data describing the graph and create array g;
for (dest = 1; dest < p; dest++) /* broadcast array g */
MPI Send(g, NxN, MPI.INT, dest, 0, MPI_COMM_WORLD);
for (source = 1; source < p; source++) { /* gather results */
MPI Recv(kt, 1, MPIINT, source, 1, MPI_COMMWORLD, &status);
MPI Recv(temp, N, MPI_INT, source, 2, MPICOMMWORLD, &status);
if (t < min) {

min =
for (i = 1; i < N; i++) partition[il = temp[il;
}
}
Output the value of min and the partition array;
}

else { /* processes 1..p-1 - workers */

/* receive array g */

MPIRecv(g, N+N, MPI_INT, 0, 0, MPI.COMMWORLD, &status);
min = search(); /* search for the best graph partition */

MPI Send(4min, 1, MPT_INT, 0, 1, MPI_COMMWORLD);

MPI Send(partition, N, MPI.INT, O, 2, MPI.COMMWORLD);
MPI Finalize();

return 0;
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1 begin

2 (Y1,Y3) = random bisection of graph G;

3 while there are vertices v € Yy and w € Y5 whose swap reduces the
cost of bisection do

4 Swap vertices v and w, that is move vertex v from set Y; to Y,
and vertex w from set Y5 to set Y7;
5 end

6 end





OEBPS/Images/image00903.gif
n>2





OEBPS/Images/image00904.gif





OEBPS/Images/image00902.gif
T





OEBPS/Images/image00808.gif





OEBPS/Images/image00809.gif





OEBPS/Images/image00806.gif





OEBPS/Images/image00807.gif





OEBPS/Images/image02681.gif
R[X, X']





OEBPS/Images/image02680.gif
R|U, X'|





OEBPS/Images/image04011.gif





OEBPS/Images/image00810.gif





OEBPS/Images/image02679.gif





OEBPS/Images/image04010.gif





OEBPS/Images/image00811.gif





OEBPS/Images/image02678.gif
O(1)





OEBPS/Images/image04009.gif





OEBPS/Images/image02677.gif
RIX", U





OEBPS/Images/image04008.gif
R=zdy





OEBPS/Images/image02676.gif





OEBPS/Images/image04007.gif





OEBPS/Images/image02675.gif





OEBPS/Images/image04006.gif





OEBPS/Images/image02674.gif





OEBPS/Images/image04005.gif
a,b,...





OEBPS/Images/image02673.gif
\U ()|





OEBPS/Images/image04004.gif





OEBPS/Images/image02672.gif





OEBPS/Images/image04003.gif
S3





OEBPS/Images/image04002.gif





OEBPS/Images/image00812.gif





OEBPS/Images/image00815.gif





OEBPS/Images/image00816.gif
Py





OEBPS/Images/image00813.gif





OEBPS/Images/image00814.gif





OEBPS/Images/image00797.gif





OEBPS/Images/image00798.gif





OEBPS/Images/image00795.gif
1018





OEBPS/Images/image00796.gif





OEBPS/Images/image00801.gif
0j41





OEBPS/Images/image02691.gif





OEBPS/Images/image00799.gif





OEBPS/Images/image02690.gif





OEBPS/Images/image04021.gif





OEBPS/Images/image00800.gif





OEBPS/Images/image02689.gif





OEBPS/Images/image04020.gif
O(plogp)





OEBPS/Images/image02688.gif





OEBPS/Images/image04019.gif





OEBPS/Images/image02687.gif





OEBPS/Images/image04018.gif





OEBPS/Images/image02686.gif
X'(i+1)





OEBPS/Images/image04017.gif





OEBPS/Images/image02685.gif





OEBPS/Images/image04016.gif
log N +1=logp+ 2= 0O(logp)





OEBPS/Images/image02684.gif





OEBPS/Images/image04015.gif
Q(plogp)





OEBPS/Images/image02683.gif
R[X, X']





OEBPS/Images/image04014.gif
(N/2)log N

p(logp+1)





OEBPS/Images/image02682.gif
R[Y, X']





OEBPS/Images/image04013.gif





OEBPS/Images/image04012.gif





OEBPS/Images/image00804.gif





OEBPS/Images/image00805.gif





OEBPS/Images/image00802.gif
t(07) < t(0iv1)





OEBPS/Images/image00803.gif





OEBPS/Images/image00830.gif





OEBPS/Images/image00831.gif





OEBPS/Images/image00828.gif





OEBPS/Images/image00829.gif





OEBPS/Images/image02701.gif
o(1)





OEBPS/Images/image02700.gif
R|U, X'|





OEBPS/Images/image04031.gif





OEBPS/Images/image02699.gif





OEBPS/Images/image04030.gif
p(logp + 1)





OEBPS/Images/image02698.gif





OEBPS/Images/image04029.gif





OEBPS/Images/image02697.gif





OEBPS/Images/image04028.gif
logp + 2





OEBPS/Images/image02696.gif





OEBPS/Images/image04027.gif





OEBPS/Images/image02695.gif





OEBPS/Images/image04026.gif
(p/2)logp





OEBPS/Images/image02694.gif





OEBPS/Images/image04025.gif





OEBPS/Images/image02693.gif





OEBPS/Images/image04024.gif
logp+ 1





OEBPS/Images/image02692.gif
(a;, X')





OEBPS/Images/image04023.gif





OEBPS/Images/image04022.gif





OEBPS/Images/image00833.gif





OEBPS/Images/image00834.gif





OEBPS/Images/image00832.gif





OEBPS/Images/image00837.gif





OEBPS/Images/image00838.gif





OEBPS/Images/image00835.gif
Ok,1





OEBPS/Images/image00836.gif
]





OEBPS/Images/image00819.gif





OEBPS/Images/image00820.gif





OEBPS/Images/image00817.gif





OEBPS/Images/image00818.gif





OEBPS/Images/image00821.gif





OEBPS/Images/image02711.gif





OEBPS/Images/image02710.gif
3logn





OEBPS/Images/image04041.gif
(P;, Pis1)





OEBPS/Images/image02709.gif





OEBPS/Images/image04040.gif





OEBPS/Images/image02708.gif
logn





OEBPS/Images/image04039.gif
P;





OEBPS/Images/image02707.gif
t+3





OEBPS/Images/image04038.gif





OEBPS/Images/image02706.gif





OEBPS/Images/image04037.gif





OEBPS/Images/image02705.gif
O(logn)





OEBPS/Images/image04036.gif
N = no_of_blocks x 256





OEBPS/Images/image02704.gif





OEBPS/Images/image04035.gif





OEBPS/Images/image02703.gif
R|UY’|





OEBPS/Images/image04034.gif
<L <L





OEBPS/Images/image02702.gif





OEBPS/Images/image04033.gif
1 /* Sequential computation of the sum of vectors y alfa * x + y. */
2 void saxpy.seq(int n, float alfa, float *x, float *y)

s {

a4 for (imt i = 0; i < n; i++)

5 y[i] = alfa * x[i] + y[il;

o

7 /* calling the function saxpy.seq */

8 saxpy.seq(n, 2.0, x, y);

9

10 /* Parallel computation of y := alfa * x + y in CUDA. */

11 __global__ void saxpy par(int n, float alfa, float #x, float *y)

12 {

13 dint i = blockIdx.x * blockDim.x + threadIdx.x;

14 if (A < n) y[il = alfa * x[i] + y[il;

15

16 /* calling the kernel function saxpy.par (a block comprises 256 threads */
17 int no_of blocks = (n + 255) / 256;

18 saxpy_par<<<no_of_blocks, 266>>>(n, 2.0, x, y);
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wait(s): If s.w > 0, then s.w := s.w — 1, otherwise suspend execution of the task
performing operation wait and add it to set s.g. The task added to set 5.
is said to be blocked on semaphore s.

signal(s): 1f set s.q of tasks is nonempty, then delete and unblock one of the
tasks from s.q and resume its execution, otherwise s.w == s.w + 1.
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1 begin

® N e w R e

9

Input the values of a, b and n;
= (b —a)/n; {integration step}

mtegml 0;
for j =0 ton—1do

‘ integral := integral +f(a -+ j x h);
end
integral = integral xh;
Output the integral value;
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1 #include <stdio.h>

2 ginclude <omp.h>

3 int F(int n);

4 int main(int argc, char *argv(]) {
int i;

6 for (i=0;i<6; i++) printf("F(%d) = %d ", i, F(i));

7 retumn 0;

8}

9 int F(int n) {

10 intij;

11 if (n < 2) return 1;

o

12 else {

13 #pragma omp task shared(i)
14 i=Fn-1);

15 #pragma omp task shared(j)
16 j=Fmn-2);

17 #pragma omp taskwait

18 return i+ j;

v}

20 )}
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10}

jpragma omp parallel

Jjob_1();

#pragma omp single
printf("Starting job 2\n");
job_2();

#pragma omp single
printf("Completion of job 2\n");
job_3();
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Iloat a|100[100]; /* array of random numbers */
#pragma omp parallel for schedule(...)
for (i=0; i< 100; i++)

sort(&al[i][0]);
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#pragma omp parallel Tor shared(a, b, n) lastprivate(l)
for (i i<n-1 i) {
b[i] = afi] * ail;

}
bl[i] = a[i] + a[i]; /* the value of iisn -1 */
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#include <stdio.h>

int a;

float b;

#pragma omp threadprivate(a, b);

void get_input_data() {
#pragma omp single copyprivate(a, b)

{

scanf ("%d %f", a, b);
} /* values of a and b are distributed across other threads */

}
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#include <stdlib.h>
float *job, el;
int size;
#pragma omp threadprivate(job, el, size)
void prepare(float t; int n) {
el = t;
size = n;
#pragma omp parallel copyin(el, size)

build_jobs();
B
B
void build_jobs() {
int i;
job = (float *)malloc(sizeof (float) * size);

for (i = 0; i < size; i++) job[il = el;

}
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#pragma omp parallel if(n > 2) shared(a, n)

{

#pragma omp single
printf("n=Yd the number of threads=/d\n", n, omp_get num threads());
#pragma omp for
for (i = 0; i < mj; i++) {
alil =i * i
printf ("Thread %d computed a[%d]l=%d\n", \
omp_get_thread nun(), i, alil);
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sum = O;
#pragma omp parallel for shared(n, x) reduction(+:sum)
for (i = 0; i < n; i++)

sum = sum + x[i];
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#pragma omp parallel shared(n, sum, x) private(partial_sum)

partial_sum = O;
#pragma omp for
for (i =0; i < nj i++)
partial_sum = partial sum + x[i];
#pragma omp critical
sum = sum + partial_sum;
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sum = sum + x[i];
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#pragma omp parallel for shared(a, n) ordered
for (i = 0; i < n; i++) {

}

alil =i * i;

printf ("Thread %d computed a[%d]=%d\n", \
omp_get_thread num(), i, alil);

#pragma omp ordered

printf("alldl=%d\n", i, alil);
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minp = results[w].min; wminp = w;
}

#pragna omp critical

if (minp < min) {
min = minp; wmin = wminp;

}

}

Oulput the value of results [w.min] .min and the results[wmin].partition[N] array;
return 0;

}

int search(int b) { /* search for the best graph partition; b is an index in
array results ¥/
int i, j, no_of_edges, nne, better_partition;
int edg(b); /* find the number of edeges between halves of the graph */
/* create random partition of the graph */
for (i = 1; i <N; i++) results[bl.partition[i] = i;
for (i = N - 1; i >= 2; i--) /# random(i) returns a number from range [1..i]
*/
swap(results[b].partition[i], results[b].partition[random(i)]);
no_of_edges = edg(b); /* edg(b) returns the number
of edges between halves of the graph stored in the
results[b].partition[N] array */
do { /* swap vertices between halves of the graph */
better_partition
for (i=1; 4 <= (N - 1) /2 ire) {
for (j = (W +1) /2 j<N; j+o) {
swap(results[b].partition[i], results[bl.partition[jl);
nne = edg(b); /* new number of edges between
halves of the graph */
if (nne < no_of_edges) {
no_of edges = mne; betterpartition = 1;
}
else swap(results[b].partition[i], results[b].partition[jl); /* undo the
swap */
}
}

} while (better_partition
return no_of_edges;

}
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#include <stdio.h>
#include <omp.h>

#include <limits.h>

#define N 37 /* for the graph with 36 vertices */
#define NRES ... / number of results */

int search(int b); /* serach for the best graph partition */

int g[N][N]; /# the graph described by vertex incidence matrix */

struct {

int min; /* the minimum number of edges */

int partition[N]; /% elements 1..(N-1)/2 and (N+1)/2..(N-1) contain vertices
of the first and second half of the graph */

} results[NRES];

int main(int argc, charxx argv) {

int min = INT.MAX, minp = INTMAX, w, wmin, wminp;

Enter data describing the graph and create array g;

#pragma omp parallel shared(min, results, wmin) \
firstprivate(min_p) private(wmin_p)

{

#pragma omp for
for (w = 0; w < NRES; w+) /% find the results */
results[u] .min = search(w);

#pragma omp for nowait /# reduce the results */
for (w = 0; w < NRES; wh+)

if (results[w].min < minp) {
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1 #pragma omp parallel private(i, step)
L

3 i = omp_get_thread num();

4 step = omp_get_num_threads();
5 vhile (i < n) {

6 sort(alil[0]);

7 i += step;

L

9 #pragma omp barrier

10 .../* further computation */
11} /* end of parallel region */
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#include <staio.nh>

#include <omp.h>

int main(int argc, char *argv[]) {
#pragma omp parallel

printf("Region execution by thread %d.\n", \
omp_get_thread_num());

if (omp_get_thread_num() == 1)
printf("— — — Thread 1 performs extra computation.\n");
} /* end of parallel region */
return 0;
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#endif
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1 begin

2 | Enter input data: masses, initial positions and velocities of n bodies;
3 | Send relevant parts of input data to tasks;
4 | sender:=(I+1) mod p {index of sender task};
5 recipient := (I — 1+ p) mod p {index of recipient task};
6 for k:=1 to K do {perform K simulation steps}
4 Compute gravitational forces F-I between bodies assigned to task I;
s for phase := 1 to p — 1 do {perform p — 1 phases of data exchange in the virtual ring of
tasks}
9 Send pos_I and F.I to recipient;
10 Receive pos] and F_I from sender;
1 J := (I + phase) mod p; {J is the task number from which data were received};
12 Update forces F.I with forces between bodies assigned to task I and bodies assigned
to task J;
13 end
14 Send pos_I and F.I to recipient;
15 Receive pos_l and F_I from sender;
16 for i := 0 to n/p — 1 do {for the bodies assigned to task I}
17 pos_1[i,0] := pos_I[i,0] + delta_t = vel_I[i, 0] {compute the new positions};
18 pos-I[i,1] = pos_I[i, 1] + delta_t x vel_I[i, 1);
19 el I[i, 0] := vel_I[i,0] + delta_t + F_I[i,0] /masses[I « n/p +i| {compute the new
velocities};
20 vel_I[i, 1] := vel_I[i, 1] + delta_t « F_I[i, 1] /masses[I *n/p +i;
21 end
2 Output results of simulation: positions and velocities of bodies;
23 | end

24 end
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masses: array|0..n — 1] of real; {masses of bodies}

pos_I, vel LI, F_I: array[0..n/p —1,0..1] of real; {positions, velocities and
forces of n/p bodies assigned to task I}

Gt i et e e o st sty

phase, i, k, K, sender, recipient, w: integer;

p: integer; {the number of tasks}

nteger; {the task number (identifier); I = 0,1,...,p—1}
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#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#define white O /* colors */

#define black 1

#define resre 238 /* resolution on the real axis %/
#define res_im 192 /* and on the imaginary axis %/
#define iter_limit 266 /* limit of iterations */

struct pixel { /# data describing an image pixel */

float re, im; /* pixel coordinates */

short int kolor;

struct pixels* mem.alloc(int v, int w); /* memory allocation function */
int main(int argc, chars* argv) {

int p; /* number of processes */

int I; /* identifier (number) of a process */

struct pixelk* segment; /* image part (segment) of the Mandelbrot set */
struct pixelx* image; /% complete image of the Mandelbrot set %/

int r; /* segment size on the imaginary axis */

MPI Datatype pixel type; /* derived type */

MPI Datatype block types([3] = {MPI_FLOAT, MPI_FLOAT, MPI_SHORT};

int block lengths[3] = {1, 1, 1};

MPI_Aint disp[3]; /# displacements */

float cre, cim, zre, zim; /% components of complex numnbers c and z %/
float hre, him; /* step on the real and imaginary axes */

int i, j, k;

float t; /* auxiliary variable */

MPI.Init(&argc, &argv); /* initiate MPI */

MPI_Comm_rank (MPI_COMM_WORLD, &I); /* get process number */

MPI_Comm_size (MPI_COMM_WORLD, &p); /# get number of processes; it is assumed
that p divides evenly res_im and p <= res.im */

r = res.im / p; /* compute segment size on imaginary axis */

segment = mem_alloc(r, res.re); /* memory allocation for a segment */

if (I == 0) image = mem.alloc(res_im, res_re); /* memory allocation for the
image of set M */

MPI Get_address (&(segment[0][0].Te), &disp[0]); /* create the derived type %/
MPI_Get_address(&(segment[0] [0].im), &disp[1]);

MPI Get_address (&(segment[0][0].color), &disp[2]);

for (i =2; i >= 0; i—-) disp[i] = disp[i] - disp[0];
MPI_Type_create_struct(3, block lengths, disp, block types, &pixel type);
MPI_Type_commit (&pixel_type);

hre = 2.5 / (resre - 1);

him = 2.0 / (res.im - 1);
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for (i = 0; i < 1rj i++) {
cim = -1.0 + (I * r + i) * him;
for (j = 0; j < resre; j++) {
cre = -2.0 + j * hre;
k = 0; zre = 0.0; zim = 0.0;

zre * zre - zim * zim + cre;

zim = 2.0 * zre * zim + cim;

zre = t; k = k + 1;}

while ((zre * zre + zim * zim <= 4.0) & (k
segment[i][j].re = cre; segment[il[jl.im = cim;
if (k <= iter_limit) segment[il[j].color = white;
else segment[i][j].color = black;

}

MPI_Gather (&segment[0] [0], r * res_re, pixel type, &image[0][0], r * res.re,
pixel_type, 0, MPI_COMM_WORLD);
if (I 0)
Output the image pizels (image[1][3].1m,image[i][j].1e) in color
image[i] [j].color, 0 <i <res.im, 0 < j < res_re;
Free the memory allocated for arrays segment and image;
MPI_Type_free (&pixel type);
MPIFinalize(); /% close MPI */
return 0;
} /* main */

iter_limit));

struct pixel** mem.alloc(int v, int w) { /* memory allocation function */
struct pixel* data;

struct pixel** ptr_array; /* array of pointers */

int i;

ptr.array = (struct pixel **)malloc(v * sizeof (struct pixel *));

data = (struct pixel *)malloc(v * w * sizeof (struct pixel));

for (i = 0; i < v; i++) ptr.array[i] = &(datali * wl);

return ptr_array;
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>

4 int main(int argc, charx* argv) {

int p; /* number of threads */

int i, k; /% variable i stores the thread number */

int n = atoi(argv[1]); /* number of points to generate */

int t, T = 0; /% counters: local and global */

double x, y; /% coordinates of a point */

10 double v = (double) (RANDMAX) + (double)1; /* auxiliary value */
11 #pragma omp parallel private(i, k, p, t, x, y)

©® w oo

13 p = omp.get.num threads(); /* get number of threads */

14 i = omp.get-threadnum(); /* get the thread number */

15 srand(atoi(argv[2]) * (i + 1)); /* initialize the random number generator */
16 t=0;

17 for (k=i; k<n; k=k+p) {

18 x = (double)rand() / v; y = (double)rand() / v;

19 if (x k¥ x+y*xy<1.0)t=1t+1;

0}

21 #pragma omp critical

22 T=T+t;

24 printf("Estimate of pi for a number of points generated: \
%d is: %f\n", n, 4.0 * (double)T / (double)n);

25 return 0;

26 } /% main %/
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1 #include <stdio.h>
2 #include <omp.h>

3 #include <limits.h>

4 #define n ... /% number of keys ¥/

5 int main(int argc, charx* argv) {

6 float pln + 1]; /* probabilities of searching for keys */

7 float q[n + 1]; /* and for pseudo-keys */

8 float eln + 1][n + 1]; /* costs of searching for keys in optimal subtrees */
9 float wln + 1][n + 1]; /* sums of probabilities %/

10 int R[n + 1][n + 1]; /* roots of subtrees */

1 int i, j, T, s

12 float t; /% auxiliary variable %/

13 Enter probabilities p[1..n] and q[0..nl;

14 #pragma omp parallel for shared(e, q, w) private(j)

15 for (j = 0; j <= n; j++) /* initialize arrays e and w */

16 e[01[j] = wl0l[j] = qlj];

17 for (i = 1; i <= n; i++) /* complete computing array w */

18 #pragma omp parallel for shared(i, p, q, w) private(j)

19 for (j = i; j <= m; j++) wlil[jl = wli - 110 - 11 + p[j] + ql3];
20 for (s = 1; s <= n; s++) { /* for subtrees with s keys %/

21 #pragma omp parallel for shared(e, R, s, w) private(i, j, T, t)
22 for (i=1; i <=n-s+1; it9) {

2 j=i+s-1; els][j] = INTMAX;

24 for (r=1; r<=j; r++) { /x for roots r =i, i + 1, ..., j */
25 t=elr - illr - 11 + e[j - r]1[j] + wls1[3l;

26 if (t < e[s][j]) { /* check cost t of subtree rooted at r */
27 els1[jl = t; RIsI[j] = x;

28

2w}

s}

a1

32 Ouiput the results: cost e[n][n] and array R;
33 return 0;
34 } /% main %/
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1 /% A function to reconstruct the tree; array R contains the roots
2 of optimal subtrees; r is a root of the current subtree; low and
3 high are the low and high vertices of the current subtree */

4 void reconstruct_the tree(int R[J[n + 1], int r, int low, int high) {
5 dint i;

¢ printf("k%d is the root for keys: d%d", r, low - 1);

7 for (i = low; i <= high; i++) printf("k%d d%d ", i, i);

s printf("\n");

9 if (r - low > 0) {

10 printf("k%d is the left son of k%d\n", R[r - low][r - 1], 1);

11 reconstruct_the tree(R, Rlr - lowl[r - 1], low, r - 1);

13 if (high - r > 0) {
14 printf("k%d is the right son of k%d\n", R[high - r][highl, 1);
15 reconstruct_the_tree(R, R[high - r][highl, r + 1, high);

17 } /* reconstruct_the_tree */
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Input data: sequences J and K being merged, stored in the shared memory of a CREW
PRAM model with |J| + | K| processors; local variables (in a local memory of each
processar) to store the sizes |J| and |K|, and a processor number i; good sampler
L for sequences J and K and the functions R[L, J), RL, K], R[J, L] and R[K, L.

ubsequences 7; for 1 < i < |L| + 1 stored in the shared memory containing

results of merging subsequences J(i) and K (i).

Auxiliary data:

Output data: sequence resulting from merging input sequences J and K.

function merging.with_help(J, K, L);

begin
Divide sequences J and K into |L] + 1 sorted subsequences J(i) = (j), where j € J and
liy <3< 1y and K(i) = (k), where k € K and by < k <1, for 1< < |L| + 1
parfor P, 1<i<|L|+1do

| i s= merge(J (i), K (i));
end
return rira... 15

end
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1

Input data: sequences Xy, and Yy
Auxiliary data: sequence val,,,, from the previous stage.

Output data: sequences valy, and Z,.

begin
Receive sequences X0 and Yy,¢ from the left and right descendants;
vl = merge with_help(X ¢, Yot vl ); {merging sequences X, and Y, with help
of good sampler valy,, 1}
Zuy += reduction(valy,); {reduction returns a sequence consisting of every fourth element
of valy,}
Send sequence Zu to the parent;

end
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Output data: sequence Zy, 1 0F Zys1a-
begin
case stage_number {stage_number > t}
t+1: Send sequence Z, 41 = reduction(val,, ) to the parent; {reduction returns a
sequence consisting of every second element of val,, ;}
1+ 2: Send sequence Zy 2 = valy, to the parent;
other: skip; {from stage ¢ + 3 a vertex is no longer active};
end
end
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if (number <= N) {

for (k = 0; k < noof div; k++) {

remainder = (number % divisors(k]);

if (remainder == 0) break; /* composite number */

}

if (remainder != 0) primes[no_of primes++] = number; /* save prime number */
}
}

coll_numbers = (int *)malloc(p * sizeof (int));
MPI Gather (4no_of primes, 1, MPIINT, coll numbers, 1, MPIINT, 0,
MPI_COMM_WORLD) ;
disp = (int *)malloc(p * sizeof(int)); /* displacements */
disp[0] = 0;
total = coll numbers[0]; /* total number of primes found */
for (i =1; i < p; i++) {
displi] = displi - 1] + collnumbers[i - 11;
total += coll numbers[il;
b
/* collect prime numbers in process 0 */
MPI Gatherv(primes, no_of primes, MPILONG, primes, coll numbers, disp,
MPI_LONG, O, MPI_COMM WORLD);
if (id == 0)
time = MPIWtime() - time; /* compute execution time */
MPI_Finalize();
Release the allocated memory;
return 0;

}
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#include <stdio.h>
#include <math.h>
#include <mpi.h>
#include <stdlib.h>

#define N 10000000 /* define interval [2..N] %/
#define S (int)sqrt(N)

7 #define M N/10

8 int main(int argc, char*x argv) {

long int a[S + 1]; / auxiliary array */

long int divisors[S + 1]; /* divisors in interval [2..S] */
long int primes[M]; /* primes in a subinterval x/

long int number, remainder;

int sub.l; / subinterval length x/

int no_of primes; /+ number of primes in a subinterval */

int no_of.div; /* number of divisors stored in array divisors */
int total /* total number of primes found */

int id; /* identifier (number) of a process */

int p; /* number of processes */

int *coll numbers; /# array of collected numbers of primes /
int *disp; /* array of displacements ¥/

int i, k;

double time; /* variable for time measure */

MPI Init(%argc, &argv); /* initialize MPL */
MPI_Comm_rank(MPI_COMM_WORLD, &id); /* get process number x/
if (id == 0) time = MPIWtime(); /x measure the time */
MPI_Comn_size(MPI.COMM.WORLD, &p); /* get number of processes */
/% compute divisors in interval [2..S] =/

for (i = 2; i <= §; i++) alil = 1; /* initialization */

i = 1; no.of primes = no.of div = 0;

while (i < 8) {
Qe
if (ali] 0 {

primes [no_of div++] = divisors[no_of primes++] = i; /* store a prime
(divisor) */

/* strike off composite numbers that are multiples of i %/

for (k =1+ 1i; k <=8; k += 1) alk] = 0;

}

}

/% £ind primes in subintervals in parallel */

sub.l = (N - 8) / p; /* compute subinterval length */

if (N = S) % p != 0) sublt+;

if (id > 0) no_of primes = 0;

for (number = § + 1 + sub.l * id; number < § + 1 + sublx (id + 1); number++){
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double start, stop;

start = MPIWtine();

/* section of code whose execution time is measured */
stop = MPIWtime(Q);

printf("Execution time was %f seconds\n", stop — start);
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int a[100];

MPI_Comm_rank(comm, &id);

for (i =0; i <p; i++) {
disp[i] = i * step; /* step should be >= 100 */
recv_counts[i] = 100 — i;

}

send_count = 100 — id;

MPI_Gatherv(a, send_count, MPI_INT, buffer, recv_counts,

disp, MPI_INT, comm);
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int MPI_Gatherv(

voidk send_buffer,

int send_count,
MPIDatatype  send datatype,
voidk recv_buffer,

int recv_counts[],
int displacements[],
MPI Datatype recv.datatype,
int root,

MPI_Comm communicator) ;
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1 double start, stop;
2 MPI_Barrier(communicator);
8 if (id == 0) start = MPIWtime();
4 /* MPI program whose execution time is measured */
MPI_Barrier(communicator) ;
if (id == 0) {

stop = MPIWtime();

printf ("That took %f seconds\n", stop — start);

}
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}

/* send and concatenate partial products in the torus */

if (id = 0) {

MPI Send(y, nr, MPIDOUBLE, 1, 7, MPI_COMM_WORLD);

MPI_Recv(z, N, MPI.DOUBLE, p - 1, 7, MPI.COMMWORLD, status);
}

else { /*id=1.. p- 1%/

g = N % p; /* compute sizes of data to send and receive ¥/
if (id <= g) recv = id * s;

else recv.count = g * s + (id - g) * (N / p);

send_count = recv_count + nr;

MPIRecv(z, N, MPI.DOUBLE, id - 1, 7, MPI.COMM.WORLD, status);
for (i = 0; i < nr; i++) zlrecv + il = y[il;

MPI_Send(z, send.count, MPIDOUBLE, (id + 1) % p, 7, MPI.COMM.WORLD);

)

MPI Finalize();
Teturn 0;
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#include <stdio.h>
#include <mpi.h>
#include <stdlib.h>

#define N 1000 /* define size N x N of matrix a */
#define R N/2 /% define the maximum size (N/2) x N of submatrix b */

int main(int argc, chars* argv) {

double **b; /% submatrix b contains a section of matrix a */
double *x, %y, *z; /% vectors x, auxiliary y and resultant z */
int nr; /* number of rows of submatrix b */

int id; /* identifier (number) of a process */

int p; /* number of processes */

int i, j, g;

int s; /% ceiling of N / p */

int send.count, recv.count; /* data sizes */

MPI_Status* status;

MPI_Init(&argc, &argv); /* initialize MPI */
MPI_Comm_rank (MPI_COMM_WORLD, &id); /% get process number */
MPI_Comn_size (MPI_COMM_WORLD, &p); /* get number of processes */

x = (double *)malloc(N * sizeof(double));
(double *)malloc(N * sizeof (double));
(double *)malloc(N * sizeof (double));
b = (double **)malloc(R * sizeof (doublex));

if Ox 11ty 11tz 1] )
printf("Allocation error\n"); exit(1);
for (i = 0; i <R; i+ {
b[i] = (double *)malloc(N * sizeof (double));
if (Pb[D) {
printf("Allocation error b[%d]\n", 1); exit(2);
}

/* compute number of rows of submatrix b */
nr=s =N/ p;

if ((id <N % p) & (N% p !'=0)) nr = nr + 1;
if (N % p 0) s++; /% ceiling of N / p */

Input matric a and vector @ in process 0 and broadcast submatriz b and vector @ to other

processes;

/% compute partial products y = bx in processes 0 .. p-1 %/
for (i = 0; i < nr; it {

y[il = bli][1] * x[1];

for (j = 1; j < N; j++) yl[il += b[il[j] * x[j];

}
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