

 [image: Distributed Computing with Go]

 Distributed Computing with Go

 Practical concurrency and parallelism for Go applications

 V.N. Nikhil Anurag

 BIRMINGHAM - MUMBAI

 Distributed Computing with Go

 Copyright © 2018 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval
 system, or transmitted in any form or by any means, without the prior written permission
 of the publisher, except in the case of brief quotations embedded in critical articles
 or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy
 of the information presented. However, the information contained in this book is sold
 without warranty, either express or implied. Neither the author, nor Packt Publishing
 or its dealers and distributors, will be held liable for any damages caused or alleged
 to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the
 companies and products mentioned in this book by the appropriate use of capitals.
 However, Packt Publishing cannot guarantee the accuracy of this information.

 Commissioning Editor: Dominic Shakeshaft

 Acquisition Editor: Frank Pohlmann
Project Editor: Radhika Atitkar

 Content Development Editor: Monika Sangwan

 Technical Editor: Nidhisha Shetty

 Copy Editor: Tom Jacob

 Proofreader: Safis Editing

 Indexer: Rekha Nair

 Graphics: Tom Scaria

 Production Coordinator: Nilesh Mohite

 First published: February 2018

 Production reference: 1270218

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-78712-538-4

 www.packtpub.com

 mapt.io

 Mapt is an online digital library that gives you full access to over 5,000 books and
 videos, as well as industry leading tools to help you plan your personal development
 and advance your career. For more information, please visit our website.

 Why subscribe?

 	

 Spend less time learning and more time coding with practical eBooks and Videos from
 over 4,000 industry professionals

 	

 Improve your learning with Skill Plans built especially for you

 	

 Get a free eBook or video every month

 	

 Mapt is fully searchable

 	

 Copy and paste, print, and bookmark content

 PacktPub.com

 Did you know that Packt offers eBook versions of every book published, with PDF and
 ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get
 in touch with us at service@packtpub.com for more details.

 At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
 free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

 V.N. Nikhil Anurag is a Go developer currently working in Berlin. He speaks at conferences about how
 to use Go in domains such as concurrency, file systems, and distributed systems. He
 is also trying to bridge the gap between the rich literature on concurrency and the
 practice of programming goroutines and channels. He did his Bachelor's in Electronics
 and Instrumentation Engineering from JNTU, India and Master of Science in Control
 System from University of Sheffield, UK.

 About the reviewers

 Pankaj Khairnar is a cofounder and CTO at Qwentic (A Golang specialized development company). He
 loves programming, and for the last 10 years, he has been developing highly scalable
 and distributed enterprise applications using various technologies.

 I would like to thank my wife and friends for their support.

 Jinzhu Zhang is a veteran coder, creator/contributor of many open source projects, such as GORM.
 He is on Github at github.com/jinzhu.

 Packt is searching for authors like you

 If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals,
 just like you, to help them share their insight with the global tech community. You
 can make a general application, apply for a specific hot topic that we are recruiting
 an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

 	
 Copyright and Credits

 	
 Distributed Computing with Go

 	
 Packt Upsell

 	
 Why subscribe?

 	
 PacktPub.com

 	
 Contributors

 	
 About the author

 	
 About the reviewers

 	
 Packt is searching for authors like you

 	
 Preface

 	
 Who this book is for

 	
 What this book covers

 	
 To get the most out of this book

 	
 Download the example code files

 	
 Download the color images

 	
 Conventions used

 	
 Get in touch

 	
 Reviews

 	
 Developer Environment for Go

 	
 GOROOT

 	
 GOPATH

 	
 src/

 	
 pkg/

 	
 bin/

 	
 Package management

 	
 go get

 	
 glide

 	
 go dep

 	
 Structuring a project

 	
 Working with book's code

 	
 Containers

 	
 Docker

 	
 Docker versus Virtual Machine (VM)

 	
 Understanding Docker

 	
 Testing Docker setup

 	
 Dockerfile

 	
 main.go

 	
 Testing in Go

 	
 variadic.go

 	
 variadic_test.go

 	
 Running tests in variadic_test.go

 	
 addInt.go

 	
 addInt_test.go

 	
 Running tests in addInt_test.go

 	
 nil_test.go

 	
 Running tests in nil_test.go

 	
 Summary

 	
 Understanding Goroutines

 	
 Concurrency and parallelism

 	
 Concurrency

 	
 Code overview

 	
 Serial task execution

 	
 Serial task execution with goroutines

 	
 Concurrent task execution

 	
 Parallelism

 	
 Go's runtime scheduler

 	
 Goroutine

 	
 OS thread or machine

 	
 Context or processor

 	
 Scheduling with G, M, and P

 	
 Gotchas when using goroutines

 	
 Single goroutine halting the complete program

 	
 Goroutines aren't predictable

 	
 Summary

 	
 Channels and Messages

 	
 Controlling parallelism

 	
 Distributed work without channels

 	
 Distributed work with channels

 	
 What is a channel?

 	
 Solving the cashier problem with goroutines

 	
 Channels and data communication

 	
 Messages and events

 	
 Types of channels

 	
 The unbuffered channel

 	
 The buffered channel

 	
 The unidirectional buffer

 	
 Closing channels

 	
 Multiplexing channels

 	
 Summary

 	
 The RESTful Web

 	
 HTTP and sessions

 	
 A brief history of HTTP

 	
 HTTP sessions

 	
 The REST protocol

 	
 The server and client architecture

 	
 The standard data format

 	
 Resources

 	
 Reusing the HTTP protocol

 	
 GET

 	
 POST

 	
 PUT and PATCH

 	
 DELETE

 	
 Upgradable components

 	
 Fundamentals of a REST server

 	
 A simple web server

 	
 Designing a REST API

 	
 The data format

 	
 The book resource

 	
 GET /api/books

 	
 GET /api/books/<id>

 	
 POST /api/books

 	
 PUT /api/books/<id>

 	
 DELETE /api/books/<id>

 	
 Unsuccessful requests

 	
 Design decisions

 	
 The REST server for books API

 	
 main.go

 	
 books-handler/common.go

 	
 books-handler/actions.go

 	
 books-handler/handler.go

 	
 How to make REST calls

 	
 cURL

 	
 GET

 	
 DELETE

 	
 PUT

 	
 POST

 	
 Postman

 	
 net/http

 	
 Summary

 	
 Introducing Goophr

 	
 What is Goophr?

 	
 Design overview

 	
 OpenAPI specification

 	
 Goophr Concierge API definition

 	
 Goophr Librarian API definition

 	
 Project structure

 	
 Summary

 	
 Goophr Concierge

 	
 Revisiting the API definition

 	
 Document feeder – the REST API endpoint

 	
 Query handler – the REST API endpoint

 	
 Conventions

 	
 Code conventions

 	
 Diagram conventions

 	
 Logical flow diagrams

 	
 The doc processor

 	
 The doc store

 	
 The index processor

 	
 The line store

 	
 The consolidated flow diagram

 	
 Queue workers

 	
 Single stores

 	
 Buffered channels

 	
 The Concierge source code

 	
 Running tests

 	
 The Concierge server

 	
 Summary

 	
 Goophr Librarian

 	
 The standard indexing model

 	
 An example – books with an index of words

 	
 The inverted indexing model

 	
 An example – the inverted index for words in books

 	
 Ranking

 	
 Revisiting the API definition

 	
 The document indexer – the REST API endpoint

 	
 The query resolver – the REST API endpoint

 	
 Code conventions

 	
 Librarian source code

 	
 main.go

 	
 common/helpers.go

 	
 api/index.go

 	
 api/query.go

 	
 Testing Librarian

 	
 Testing feeder.go using /api/index

 	
 Testing /api/query

 	
 Summary

 	
 Deploying Goophr

 	
 Updating Goophr Concierge

 	
 Handle multiple Librarians

 	
 Aggregated search results

 	
 Orchestrating with docker-compose

 	
 Environment variables and API ports

 	
 The file server

 	
 The Goophr source code

 	
 librarian/main.go

 	
 concierge/main.go

 	
 concierge/api/query.go

 	
 simple-server/Dockerfile

 	
 simple-server/main.go

 	
 docker-compose.yaml

 	
 .env

 	
 Running Goophr with docker-compose

 	
 Adding documents to Goophr

 	
 Searching for keywords with Goophr

 	
 Search – "apple"

 	
 Search – "cake"

 	
 Search – "apple", "cake"

 	
 Individual logs with docker-compose

 	
 Authorization on a web server

 	
 secure/secure.go

 	
 secure/secure_test.go

 	
 Test results

 	
 Summary

 	
 Foundations of Web Scale Architecture

 	
 Scaling a web application

 	
 The single server instance

 	
 Separate layers for the web and database

 	
 Multiple server instances

 	
 The load balancer

 	
 Multi-availability zones

 	
 The database

 	
 SQL versus NoSQL

 	
 Which type of database should we use?

 	
 Database replication

 	
 Master-replica replication

 	
 Master-master replication

 	
 Failover cluster replication

 	
 Monolith versus microservices

 	
 Mediator design pattern

 	
 Deployment options

 	
 Maintainability of multiple instances

 	
 Summary

 	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

 The Go programming language was developed at Google to solve the problems they faced
 while developing software for their infrastructure. They needed a language that was
 statically typed without slowing down the developer, would compile and execute instantaneously,
 take advantage of multicore processors, and make working across distributed systems,
 effortless.

 The mission of Distributed computing with Go is to make reasoning about concurrency and parallelism, effortless and provide the
 reader with the confidence to design and implement such programs in Go. We will start
 by digging into the core concepts behind goroutines and channels, the two fundamental
 concepts in Go around which the language is built. Next, we will design and build
 a distributed search engine using Go and Go's standard library.

 Who this book is for

 This book is for developers who are familiar with the Golang syntax and have a good
 idea of how basic Go development works. It would be advantageous if you have been
 through a web application product cycle, although it's not necessary.

 What this book covers

 Chapter 1, Developer Environment for Go, covers a list of topics and concepts required to start working with Go and rest
 of the book. Some of these topics include Docker and testing in Go.

 Chapter 2, Understanding Goroutines, introduces the topic of concurrency and parallelism and then dives deep into the
 implementation details of goroutines, Go's runtime scheduler, and many more.

 Chapter 3, Channels and Messages, begins by explaining the complexity of controlling parallelism before introducing
 strategies to control parallelism, using different types of channels.

 Chapter 4, The RESTful Web, provides all the context and knowledge required to start designing and building
 REST APIs in Go. We will also discuss the interaction with a REST API server using
 different available approaches.

 Chapter 5, Introducing Goophr, opens the discussion on what is meant by a distributed search engine, using OpenAPI
 specification to describe REST APIs and describing the responsibilities of the components
 of a search engine, using OpenAPI. Finally, we'll describe the project structure.

 Chapter 6, Goophr Concierge, dives deep into the first component of Goophr by describing in detail how the component
 is supposed to work. These concepts are further driven home with the help of architectural
 and logical flow diagrams. Finally, we'll look at how to implement and test the component.

 Chapter 7, Goophr Librarian, is a detailed look at the component that is responsible for maintaining the index
 for the search terms. We also look at how to search for given terms and how to order
 our search results and many more. Finally, we'll look at how to implement and test
 the component.

 Chapter 8, Deploying Goophr, brings together everything we have implemented in the previous three chapters and
 start the application on the local system. We will then test our design by adding
 a few documents and searching against them via the REST API.

 Chapter 9, Foundations of Web Scale Architecture, is an introduction to the vast and complex topic on how to design and scale a system
 to meet with the demands at web scale. We will start with a single instance of a monolith
 running on a single server and scale it up to span across multiple region, have redundancy
 safeguards to ensure that the service is never down and many more.

 To get the most out of this book

 	The material in the book is designed to enable a hands-on approach. Throughout the
 book, a conscious effort has been made to provide all the relevant information to
 the reader beforehand so that, if the reader chooses, they can try to solve the problem
 on their own and then refer to the solution provided in the book.

 	The code in the book does not have any Go dependencies beyond the standard library.
 This is done in order to ensure that the code examples provided in the book never
 change, and this also allows us to explore the standard library.

 	The source code in the book should be placed at $GOPATH/src/distributed-go. The source code for examples given will be located inside the $GOPATH/src/distributed-go/chapterX folder, where X stands for the chapter number.

 	Download and install Go from https://golang.org/ and Docker from https://www.docker.com/community-edition website

 Download the example code files

 You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

 You can download the code files by following these steps:

 	Log in or register at http://www.packtpub.com.

 	Select the SUPPORT tab.

 	Click on Code Downloads & Errata.

 	Enter the name of the book in the Search box and follow the on-screen instructions.

 Once the file is downloaded, please make sure that you unzip or extract the folder
 using the latest version of:

 	WinRAR / 7-Zip for Windows

 	Zipeg / iZip / UnRarX for Mac

 	7-Zip / PeaZip for Linux

 The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Distributed-Computing-with-Go. In case there's an update to the code, it will be updated on the existing GitHub
 repository.

 We also have other code bundles from our rich catalog of books and videos available
 at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used
 in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/DistributedComputingwithGo_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file
 extensions, pathnames, dummy URLs, user input, and Twitter handles. For example, "Now that we have all the code in place, let's build the Docker image using the Dockerfile file."

 A block of code is set as follows:

 // addInt.go

package main

func addInt(numbers ...int) int {
 sum := 0
 for _, num := range numbers {
 sum += num
 }
 return sum
}

 When we wish to draw your attention to a particular part of a code block, the relevant
 lines or items are set in bold:

 // addInt.go

package main

func addInt(numbers ...int) int {
 sum := 0
 for _, num := range numbers {
 sum += num
 }
 return sum
}

 Any command-line input or output is written as follows:

 $ cd docker

 Bold: Indicates a new term, an important word, or words that you see on the screen, for
 example, in menus or dialog boxes, also appear in the text like this. For example,
 "Select System info from the Administration panel."

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book's title in the subject of your message. If you have questions
 about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
 do happen. If you have found a mistake in this book we would be grateful if you would
 report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet,
 we would be grateful if you would provide us with the location address or website
 name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either
 writing or contributing to a book, please visit http://authors.packtpub.com.

 Reviews

 Please leave a review. Once you have read and used this book, why not leave a review
 on the site that you purchased it from? Potential readers can then see and use your
 unbiased opinion to make purchase decisions, we at Packt can understand what you think
 about our products, and our authors can see your feedback on their book. Thank you!

 For more information about Packt, please visit packtpub.com.

 Developer Environment for Go

 Go is a modern programming language built for the 21st century application development.
 Hardware and technology have advanced significantly over the past decade, and most
 of the other languages do not take advantage of these technical advancements. As we
 shall see throughout the book, Go allows us to build network applications that take
 advantage of concurrency and parallelism made available with multicore systems.

 In this chapter, we will look at some of the topics required to work through rest
 of the book, such as:

 	Go configuration—GOROOT, GOPATH, and so on.

 	Go package management

 	Project structure used throughout the book

 	Container technology and how to use Docker

 	Writing tests in Go

 GOROOT

 In order to run or build a Go project, we need to have access to the Go binary and
 its libraries. A typical installation of Go (instructions can be found at https://golang.org/dl/) on Unix-based systems will place the Go binary at /usr/bin/go. However, it is possible to install Go on a different path. In that case, we need
 to set the GOROOT environment variable to point to our Go installation path and also append it to our PATH environment variable.

 GOPATH

 Programmers tend to work on many projects and it is good practice to have the source
 code separate from nonprogramming-related files. It is a common practice to have the
 source code in a separate location or workspace. Every programming language has its
 own conventions on how the language-related projects should be set up and Go is no
 exception to this.

 GOPATH is the most important environment variable the developer has to set. It tells the
 Go compiler where to find the source code for the project and its dependencies. There
 are conventions within the GOPATH that need to be followed, and they have to deal with folder hierarchies.

 src/

 This is the directory that will contain the source code of our projects and their
 dependencies. In general, we want our source code to have version control and be hosted
 on the cloud. It would also be great if we or anyone else could easily use our project.
 This requires a little extra setup on our part.

 Let's imagine that our project is hosted at http://git-server.com/user-name/my-go-project. We want to clone and build this project on our local system. To make it properly
 work, we need to clone it to $GOPATH/src/git-server.com/user-name/my-go-project. When we build a Go project with dependencies for the first time, we will see that
 the src/ folder has many directories and subdirectories that contain the dependencies of our
 project.

 pkg/

 Go is a compiled programming language; we have the source code and code for the dependencies
 that we want to use in our project. In general, every time we build a binary, the
 compiler has to read the source code of our project and dependencies and then compile
 it to machine code. Compiling unchanged dependencies every time we compile our main
 program would lead to a very slow build process. This is the reason that object files exist; they allow us to compile dependencies into reusable machine code that can
 be readily included in our Go binary.

 These object files are stored in $GOPATH/pkg; they follow a directory structure similar to that of src/, except that they are within a subdirectory. These directories tend to follow the
 naming pattern of <OS>_<CPU-Architecture>, because we can build executable binaries for multiple systems:

 $ tree $GOPATH/pkg
pkg
└── linux_amd64
 ├── github.com
 │ ├── abbot
 │ │ └── go-http-auth.a
 │ ├── dimfeld
 │ │ └── httppath.a
 │ ├── oklog
 │ │ └── ulid.a
 │ ├── rcrowley
 │ │ └── go-metrics.a
 │ ├── sirupsen
 │ │ └── logrus.a
 │ ├── sony
 │ │ └── gobreaker.a
 └── golang.org
 └── x
 ├── crypto
 │ ├── bcrypt.a
 │ ├── blowfish.a
 │ └── ssh
 │ └── terminal.a
 ├── net
 │ └── context.a
 └── sys

 bin/

 Go compiles and builds our projects into executable binaries and places them in this
 directory. Depending on the build specs, they might be executable on your current
 system or other systems. In order to use the binaries that are available in the bin/ directory, we need to set the corresponding GOBIN=$GOPATH/bin environment variable.

 Package management

 In the days of yore, all programs were written from scratch—every utility function
 and every library to run the code had to written by hand. Now a days, we don't want
 to deal with the low level details on a regular basis; it would be unimaginable to
 write all the required libraries and utilities from scratch. Go comes with a rich
 library, which will be enough for most of our needs. However, it is possible that
 we might need a few extra libraries or features not provided by the standard library.
 Such libraries should be available on the internet, and we can download and add them
 into our project to start using them.

 In the previous section, GOPATH, we discussed how all our projects are saved into qualified paths of the $GOPATH/src/git-server.com/user-name/my-go-project form. This is true for any and all dependencies we might have. There are multiple ways
 to handle dependencies in Go. Let's look at some of them.

 go get

 The go get is the utility provided by the standard library for package management. We can install
 a new package/library by running the following command:

 $ go get git-server.com/user-name/library-we-need

 This will download and build the source code and then install it as a binary executable
 (if it can be used as a standalone executable). The go get utility also installs all the dependencies required by the dependency retrieved for
 our project.

 The go get utility is a very simple tool. It will install the latest master commit on the Git
 repository. For simple projects, this might be enough. However, as projects start
 growing in size and complexity, keeping track of the version of dependency being used
 might become critical. Unfortunately, go get is not great for such projects, and we might want to look at other package management
 tools.

 glide

 The glide is one of the most widely used package management tool in Go community. It addresses
 the limitations of go get, but it needs to be installed manually by the developer. The following is a simple
 way to install and use glide:

 $ curl https://glide.sh/get | sh
$ mkdir new-project && cd new-project
$ glide create
$ glide get github.com/last-ent/skelgor # A helper project to generate project skeleton.
$ glide install # In case any dependencies or configuration were manually added.
$ glide up # Update dependencies to latest versions of the package.
$ tree
.
├── glide.lock
├── glide.yaml
└── vendor
 └── github.com
 └── last-ent
 └── skelgor
 ├── LICENSE
 ├── main.go
 └── README.md

 In case you do not wish to install glide via curl and sh, other options are available and described in better detail on the project page,
 available at https://github.com/masterminds/glide.

 go dep

 The go dep is a new dependency management tool being developed by the Go community. Right now,
 it requires Go 1.7 or newer to compile, and it is ready for production use. However,
 it is still undergoing changes and hasn't yet been merged into Go's standard library.

 Structuring a project

 A project might have more than just the source code for the project, for example,
 configuration files and project documentation. Depending upon preferences, the way
 the project is structured can drastically change. However, the most important thing
 to remember is that the entry point to the whole program is through the main function, which is implemented within main.go as a convention.

 The application we will be building in this book, will have the following initial
 structure:

 $ tree
.
├── common
│ ├── helpers.go
│ └── test_helpers.go
└── main.go

 Working with book's code

 The source code discussed throughout the book can be obtained in two ways:

 	Using go get -u github.com/last-ent/distributed-go

 	Downloading the code bundle from the website and extracting it to $GOPATH/src/github.com/last-ent/distributed-go

 The code for complete book should now be available at $GOPATH/src/github.com/last-ent/distributed-go and the code specific for each chapter will be available in that particular chapter
 number's directory.

 For example,

 Code for Chapter 1 -> $GOPATH/src/github.com/last-ent/distributed-go/chapter1

 Code for Chapter 2 -> $GOPATH/src/github.com/last-ent/distributed-go/chapter2

 And so on.

 Whenever we discuss code in any particular chapter, it is implied that we are in the
 respective chapter's folder.

 Containers

 Throughout the book, we will be writing Go programs that will be compiled to binaries
 and run directly on our system. However, in the latter chapters we will be using docker-compose to build and run multiple Go applications. These applications can run without any
 real problem on our local system; however, our ultimate goal is to be able to run
 these programs on servers and to be able to access them over the internet.

 During the 1990s and early 2000s, the standard way to deploy applications to the internet
 was to get a server instance, copy the code or binary onto the instance, and then
 start the program. This worked great for a while, but soon complications began to
 arise. Here are a few of them:

 	Code that worked on the developer's machine might not work on the server.

 	Programs that ran perfectly on a server instance might fail upon applying the latest
 patch to the server's OS.

 	For every new instance added as part of a service, various installation scripts had
 to be run so that we can bring the new instance to be on par with all the other instances.
 This can be a very slow process.

 	Extra care had to be taken to ensure that the new instance and all the software versions
 installed on it are compatible with the APIs being used by our program.

 	It was also important to ensure that all config files and important environment variables were copied to the new instance; otherwise, the application
 might fail with little or no clue.

 	Usually the version of the program that ran on local system versus test system versus
 production system were all configured differently, and this meant that it was possible
 for our application to fail on one of the three types of systems. If such a situation
 occurred, we would end up having to spend extra time and effort trying to figure out whether the issue is specific to one particular instance,
 one particular system, and so on.

 It would be great if we could avoid such a situation from arising, in a sensible manner.
 Containers try to solve this problem using OS-level virtualization. What does this mean?

 All programs and applications are run in a section of memory known as user space. This allows the operating system to ensure that a program is not able to cause major
 hardware or software issues. This allows us to recover from any program crashes that
 might occur in the user space applications.

 The real advantage of containers is that they allow us to run applications in isolated
 user spaces, and we can even customize the following attributes of user spaces:

 	Connected devices such as network adapters and TTY

 	CPU and RAM resources

 	Files and folders accessible from host OS

 However, how does this help us solve the problems we stated earlier? For that, let's
 take a deeper look at Docker.

 Docker

 Modern software development makes extensive use of containers for product development
 and product deployment to server instances. Docker is a container technology promoted
 by Docker, Inc (https://www.docker.com), and as of this writing, it is the most predominantly used container technology. The other major alternative
 is rkt developed by CoreOS (https://coreos.com/rkt), though in this book, we will only be looking at Docker.

 Docker versus Virtual Machine (VM)

 Looking at the description of Docker so far, we might wonder if it is yet another
 Virtual Machine. However, this is not the case, because a VM requires us to run a
 complete guest OS on top of our machine, or hypervisor, as well as all the required
 binaries. In the case of Docker, we use OS level virtualization, which allows us to
 run our containers in isolated user spaces.

 The biggest advantage of a VM is that we can run different types of OSes on a system,
 for example, Windows, FreeBSD, and Linux. However, in the case of Docker, we can run
 any flavor of Linux, and the only limitation is that it has to be Linux:

 Docker container versus VM

 The biggest advantage of Docker containers is that since it runs natively on Linux
 as a discrete process making it lightweight and unaware of all the capabilities of
 the host OS.

 Understanding Docker

 Before we start using Docker, let's take a brief look at how the Docker is meant to
 be used, how it is structured, and what are the major components of the complete system.

 The following list and the accompanying image should help understand the architecture
 of Docker pipeline:

 	Dockerfile: It consists of instructions on how to build an image that runs our program.

 	Docker client: This is a command-line program used by the user to interact with Docker daemon.

 	Docker daemon: This is the Daemon application that listens for commands to manage building or running
 containers and pushing containers to Docker registry. It is also responsible for configuring
 container networks, volumes, and so on.

 	Docker images: Docker images contain all the steps necessary to build a container binary that can
 be executed on any Linux machine with Docker installed.

 	Docker registry: The Docker registry is responsible for storing and retrieving the Docker images. We can use a public Docker registry or a private one.
 Docker Hub is used as the default Docker registry.

 	Docker Container: The Docker container is different from the Container we have been discussing so
 far. A Docker container is a runnable instance of a Docker image. A Docker container
 can be created, started, stopped, and so on.

 	Docker API: The Docker client we discussed earlier is a command-line interface to interact with
 Docker API. This means that the Docker daemon need not be running on the same machine
 as does the Docker client. The default setup that we will be using throughout the
 book talks to the Docker daemon on the local system using UNIX sockets or a network
 interface:

 Docker architecture

 Testing Docker setup

 Let's ensure that our Docker setup works perfectly. For our purpose, Docker Community
 Edition should suffice (https://www.docker.com/community-edition). Once we have it installed, we will check if it works by running a few basic commands.

 Let's start by checking what version we have installed:

 $ docker --version
Docker version 17.12.0-ce, build c97c6d6

 Let's try to dig deeper into details about our Docker installation:

 $ docker info
Containers: 38
 Running: 0
 Paused: 0
 Stopped: 38
Images: 24
Server Version: 17.12.0-ce

 On Linux, when you try to run docker commands, you might get Permission denied error. In order to interact with Docker, you can either prefix the command with sudo or you can create a "docker" user group and add your user to this group. See link
 for more details https://docs.docker.com/install/linux/linux-postinstall/.

 Let's try to run a Docker image. If you remember the discussion regarding the Docker
 registry, you know that we do not need to build a Docker image using Dockerfile, to
 run a Docker container. We can directly pull it from Docker Hub (the default Docker
 registry) and run the image as a container:

 $ docker run docker/whalesay cowsay Welcome to GopherLand!

Unable to find image 'docker/whalesay:latest' locally
Trying to pull repository docker.io/docker/whalesay ...
sha256:178598e51a26abbc958b8a2e48825c90bc22e641de3d31e18aaf55f3258ba93b: Pulling from docker.io/docker/whalesay
e190868d63f8: Pull complete
909cd34c6fd7: Pull complete
0b9bfabab7c1: Pull complete
a3ed95caeb02: Pull complete
00bf65475aba: Pull complete
c57b6bcc83e3: Pull complete
8978f6879e2f: Pull complete
8eed3712d2cf: Pull complete
Digest: sha256:178598e51a26abbc958b8a2e48825c90bc22e641de3d31e18aaf55f3258ba93b
Status: Downloaded newer image for docker.io/docker/whalesay:latest

< Welcome to GopherLand! >

 \
 \
 \
 ## .
 ## ## ## ==
 ## ## ## ## ===
 /""""""""""""""""___/ ===
  ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~
       \______ o          __/
         \            __/
            \__________/
  

            The preceding command could also have been executed, as shown here though, merely
               using docker run ..., which is more convenient:
            

            $ docker pull  docker/whalesay & docker run docker/whalesay cowsay Welcome to GopherLand!

            Once we have a long set of built images, we can list them all and similarly for Docker
               containers:
            

            $ docker images
REPOSITORY                         TAG            IMAGE ID            CREATED             SIZE
docker.io/docker/whalesay   latest         6b362a9f73eb    2 years ago         247 MB
$ docker container ls --all 
CONTAINER ID        IMAGE                COMMAND                  CREATED             STATUS                     PORTS               NAMES                                   
a1b1efb42130        docker/whalesay      "cowsay Welcome to..."   5 minutes ago       Exited (0) 5 minutes ago                       frosty_varahamihira 
  

            Finally, it is important to note that as we keep using docker to build and run images
               and containers, we will start creating a backlog of "dangling" images, which we might
               not really use again. However, they will end up eating storage space. In order to
               get rid of such "dangling" images, we can use the following command:
            

            $ docker rmi --force 'docker images -q -f dangling=true'
# list of hashes for all deleted images.

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Dockerfile

            
         
         
         
         
            
            
            Now that we have the basics of Docker under our belt, let's look at the Dockerfile file we will be using as a template in this book.
            

            
            Next, let's look at an example:

            FROM golang:1.10
# The base image we want to use to build our docker image from. 
# Since this image is specialized for golang it will have GOPATH = /go                

ADD . /go/src/hello
# We copy files & folders from our system onto the docker image                       

RUN go install hello 
# Next we can create an executable binary for our project with the command,
'go install' ENV NAME Bob
# Environment variable NAME will be picked up by the program 'hello' 
and printed to console.ENTRYPOINT /go/bin/hello
# Command to execute when we start the container  
 
# EXPOSE 9000 
# Generally used for network applications. Allows us to connect to the
application running inside the container from host system's localhost. 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            main.go

            
         
         
         
         
            
            
            Let's create a bare minimum Go program so that we can use it in the Docker image.
               It will take the NAME environmental variable and print <NAME> is your uncle. and then quit:

            package main 
 
import ( 
    "fmt" 
    "os" 
) 
 
func main() { 
    fmt.Println(os.Getenv("NAME") + " is your uncle.") 
} 

            Now that we have all the code in place, let's build the Docker image using the Dockerfile file:
            

            $ cd docker
$ tree
.
├── Dockerfile
└── main.go"
0 directories, 2 files 
 
$ # -t tag lets us name our docker images so that we can easily refer to them 
 
$ docker build . -t hello-uncle  
Sending build context to Docker daemon 3.072 kB 
Step 1/5 : FROM golang:1.9.1 
 ---> 99e596fc807e 
Step 2/5 : ADD . /go/src/hello 
 ---> Using cache 
 ---> 64d080d7eb39 
Step 3/5 : RUN go install hello 
 ---> Using cache 
 ---> 13bd4a1f2a60 
Step 4/5 : ENV NAME Bob 
 ---> Using cache 
 ---> cc432fe8ffb4 
Step 5/5 : ENTRYPOINT /go/bin/hello 
 ---> Using cache 
 ---> e0bbfb1fe52b 
Successfully built e0bbfb1fe52b 
 
$ # Let's now try to run the docker image. 
$ docker run hello-uncle 
Bob is your uncle. 
 
$ # We can also change the environment variables on the fly. 
$ docker run  -e NAME=Sam hello-uncle 
Sam is your uncle. 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Testing in Go

            
         
         
         
         
            
            
            Testing is an important part of programming, whether it is in Go or in any other language.
               Go has a straightforward approach to writing tests, and in this section, we will look
               at some important tools to help with testing.
            

            
            There are certain rules and conventions we need to follow to test our code. They can be listed as follows:
            

            
            
               
               	Source files and associated test files are placed in the same package/folder

               
               	The name of the test file for any given source file is <source-file-name>_test.go

               
               	Test functions need to have the "Test" prefix, and the next character in the function
                  name should be capitalized
               

               
            

            
            In the remainder of this section, we will look at three files and their associated
               tests:
            

            
            
               
               	variadic.go and variadic_test.go

               
               	addInt.go and addInt_test.go

               
               	nil_test.go (there isn't any source file for these tests)
               

               
            

            
            Along the way, we will introduce any further concepts we might use.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            variadic.go

            
         
         
         
         
            
            
            In order to understand the first set of tests, we need to understand what a variadic
               function is and how Go handles it. Let's start with the definition:
            

            
            Variadic function is a function that can accept any number of arguments during function
               call.
            

            
            Given that Go is a statically typed language, the only limitation imposed by the type
               system on a variadic function is that the indefinite number of arguments passed to
               it should be of the same data type. However, this does not limit us from passing other
               variable types. The arguments are received by the function as a slice of elements
               if arguments are passed, else nil, when none are passed.
            

            
            Let's look at the code to get a better idea:

            // variadic.go 
 
package main 
 
func simpleVariadicToSlice(numbers ...int) []int { 
   return numbers 
} 
 
func mixedVariadicToSlice(name string, numbers ...int) (string, []int) { 
   return name, numbers 
} 
 
// Does not work. 
// func badVariadic(name ...string, numbers ...int) {} 

            We use the ... prefix before the data type to define a functions as a variadic function. Note that
               we can have only one variadic parameter per function and it has to be the last parameter.
               We can see this error if we uncomment the line for badVariadic and try to test the code.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            variadic_test.go

            
         
         
         
         
            
            
            We would like to test the two valid functions, simpleVariadicToSlice and mixedVariadicToSlice, for various rules defined in the previous section. However, for the sake of brevity,
               we will test these:
            

            
            
               
               	simpleVariadicToSlice: This is for no arguments, three arguments, and also to look at how to pass a slice
                  to a variadic function
               

               
               	mixedVariadicToSlice: This is to accept a simple argument and a variadic argument
               

               
            

            
            Let's now look at the code to test these two functions:

            // variadic_test.go 
package main 
 
import "testing" 
 
func TestSimpleVariadicToSlice(t *testing.T) { 
    // Test for no arguments 
    if val := simpleVariadicToSlice(); val != nil { 
        t.Error("value should be nil", nil) 
    } else { 
        t.Log("simpleVariadicToSlice() -> nil") 
    } 
 
    // Test for random set of values 
    vals := simpleVariadicToSlice(1, 2, 3) 
    expected := []int{1, 2, 3} 
    isErr := false 
    for i := 0; i < 3; i++ { 
        if vals[i] != expected[i] { 
            isErr = true 
            break 
        } 
    } 
    if isErr { 
        t.Error("value should be []int{1, 2, 3}", vals) 
    } else { 
        t.Log("simpleVariadicToSlice(1, 2, 3) -> []int{1, 2, 3}") 
    } 
 
    // Test for a slice 
    vals = simpleVariadicToSlice(expected...) 
    isErr = false 
    for i := 0; i < 3; i++ { 
        if vals[i] != expected[i] { 
            isErr = true 
            break 
        } 
    } 
    if isErr { 
        t.Error("value should be []int{1, 2, 3}", vals) 
    } else { 
        t.Log("simpleVariadicToSlice([]int{1, 2, 3}...) -> []int{1, 2, 3}") 
    } 
} 
 
func TestMixedVariadicToSlice(t *testing.T) { 
    // Test for simple argument & no variadic arguments 
    name, numbers := mixedVariadicToSlice("Bob") 
    if name == "Bob" && numbers == nil { 
        t.Log("Recieved as expected: Bob, <nil slice>") 
    } else { 
        t.Errorf("Received unexpected values: %s, %s", name, numbers) 
    } 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Running tests in variadic_test.go

            
         
         
         
         
            
            
            Let's run these tests and see the output. We'll use the -v flag while running the tests to see the output of each individual test:
            

            $ go test -v ./{variadic_test.go,variadic.go}                                                                                                              
=== RUN   TestSimpleVariadicToSlice        
--- PASS: TestSimpleVariadicToSlice (0.00s)                                           
        variadic_test.go:10: simpleVariadicToSlice() -> nil                           
        variadic_test.go:26: simpleVariadicToSlice(1, 2, 3) -> []int{1, 2, 3}         
        variadic_test.go:41: simpleVariadicToSlice([]int{1, 2, 3}...) -> []int{1, 2, 3}                                                                                      
=== RUN   TestMixedVariadicToSlice         
--- PASS: TestMixedVariadicToSlice (0.00s) 
        variadic_test.go:49: Received as expected: Bob, <nil slice>                   
PASS                                       
ok      command-line-arguments  0.001s    

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            addInt.go

            
         
         
         
         
            
            
            The tests in variadic_test.go elaborated on the rules for the variadic function. However, you might have noticed
               that TestSimpleVariadicToSlice ran three tests in its function body, but go test treats it as a single test. Go provides a good way to run multiple tests within a
               single function, and we shall look them in addInt_test.go.
            

            
            For this example, we will use a very simple function as shown in this code:

            // addInt.go 
 
package main 
 
func addInt(numbers ...int) int { 
    sum := 0 
    for _, num := range numbers { 
        sum += num 
    } 
    return sum 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            addInt_test.go

            
         
         
         
         
            
            
            You might have also noticed in TestSimpleVariadicToSlice that we duplicated a lot of logic, while the only varying factor was the input and
               expected values. One style of testing, known as Table-driven development, defines a table of all the required data to run a test, iterates over the "rows"
               of the table and runs tests against them.
            

            
            Let's look at the tests we will be testing against no arguments and variadic arguments:

            // addInt_test.go 
 
package main 
 
import ( 
    "testing" 
) 
 
func TestAddInt(t *testing.T) { 
    testCases := []struct { 
        Name     string 
        Values   []int 
        Expected int 
    }{ 
        {"addInt() -> 0", []int{}, 0}, 
        {"addInt([]int{10, 20, 100}) -> 130", []int{10, 20, 100}, 130}, 
    } 
 
    for _, tc := range testCases { 
        t.Run(tc.Name, func(t *testing.T) { 
            sum := addInt(tc.Values...) 
            if sum != tc.Expected { 
                t.Errorf("%d != %d", sum, tc.Expected) 
            } else { 
                t.Logf("%d == %d", sum, tc.Expected) 
            } 
        }) 
    } 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Running tests in addInt_test.go

            
         
         
         
         
            
            
            Let's now run the tests in this file, and we are expecting each of the row in the testCases table, which we ran, to be treated as a separate test:

            $ go test -v ./{addInt.go,addInt_test.go}                           
=== RUN   TestAddInt                       
=== RUN   TestAddInt/addInt()_->_0         
=== RUN   TestAddInt/addInt([]int{10,_20,_100})_->_130                                
--- PASS: TestAddInt (0.00s)               
    --- PASS: TestAddInt/addInt()_->_0 (0.00s)                                        
        addInt_test.go:23: 0 == 0          
    --- PASS: TestAddInt/addInt([]int{10,_20,_100})_->_130 (0.00s)                    
        addInt_test.go:23: 130 == 130      
PASS                                       
ok      command-line-arguments  0.001s       

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            nil_test.go

            
         
         
         
         
            
            
            We can also create tests that are not specific to any particular source file; the
               only criteria is that the filename needs to have the <text>_test.go form. The tests in nil_test.go elucidate on some useful features of the language which the developer might find useful
                  while writing tests. They are as follows:

            
            
               
               	httptest.NewServer: Imagine the case where we have to test our code against a server that sends back
                  some data. Starting and coordinating a full blown server to access some data is hard.
                  The http.NewServer solves this issue for us.
               

               
               	t.Helper: If we use the same logic to pass or fail a lot of testCases, it would make sense to segregate this logic into a separate function. However, this
                  would skew the test run call stack. We can see this by commenting t.Helper() in the tests and rerunning go test.
               

               
            

            
            We can also format our command-line output to print pretty results. We will show a
               simple example of adding a tick mark for passed cases and cross mark for failed cases.
            

            
            In the test, we will run a test server, make GET requests on it, and then test the
               expected output versus actual output:
            

            // nil_test.go 
 
package main 
 
import ( 
    "fmt" 
    "io/ioutil" 
    "net/http" 
    "net/http/httptest" 
    "testing" 
) 
 
const passMark = "\u2713" 
const failMark = "\u2717" 
 
func assertResponseEqual(t *testing.T, expected string, actual string) { 
    t.Helper() // comment this line to see tests fail due to 'if expected != actual' 
    if expected != actual { 
        t.Errorf("%s != %s %s", expected, actual, failMark) 
    } else { 
        t.Logf("%s == %s %s", expected, actual, passMark) 
    } 
} 
 
func TestServer(t *testing.T) { 
    testServer := httptest.NewServer( 
        http.HandlerFunc( 
            func(w http.ResponseWriter, r *http.Request) { 
                path := r.RequestURI 
                if path == "/1" { 
                    w.Write([]byte("Got 1.")) 
                } else { 
                    w.Write([]byte("Got None.")) 
                } 
            })) 
    defer testServer.Close() 
 
    for _, testCase := range []struct { 
        Name     string 
        Path     string 
        Expected string 
    }{ 
        {"Request correct URL", "/1", "Got 1."}, 
        {"Request incorrect URL", "/12345", "Got None."}, 
    } { 
        t.Run(testCase.Name, func(t *testing.T) { 
            res, err := http.Get(testServer.URL + testCase.Path) 
            if err != nil { 
                t.Fatal(err) 
            } 
 
            actual, err := ioutil.ReadAll(res.Body) 
            res.Body.Close() 
            if err != nil { 
                t.Fatal(err) 
            } 
            assertResponseEqual(t, testCase.Expected, fmt.Sprintf("%s", actual)) 
        }) 
    } 
    t.Run("Fail for no reason", func(t *testing.T) {
        assertResponseEqual(t, "+", "-")
    })
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Running tests in nil_test.go

            
         
         
         
         
            
            
            We run three tests, where two test cases will pass and one will fail. This way we
               can see the tick mark and cross mark in action:
            

            $ go test -v ./nil_test.go                                          
=== RUN   TestServer                       
=== RUN   TestServer/Request_correct_URL   
=== RUN   TestServer/Request_incorrect_URL 
=== RUN   TestServer/Fail_for_no_reason    
--- FAIL: TestServer (0.00s)               
  --- PASS: TestServer/Request_correct_URL (0.00s)                                  
        nil_test.go:55: Got 1. == Got 1.  
  --- PASS: TestServer/Request_incorrect_URL (0.00s)                                
        nil_test.go:55: Got None. == Got None. 
  --- FAIL: TestServer/Fail_for_no_reason (0.00s)   
      nil_test.go:59: + != - 
 FAIL
 exit status 1
 FAIL command-line-arguments 0.003s 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we started by looking at the fundamental setup for running Go projects
               successfully. Then we looked at how to install dependencies for our Go projects and
               how to structure our project. We also looked at the important concepts behind Containers,
               what problems they solve, and how we will be using them in the book along with an
               example. Next, we looked at how to write tests in Go, and along the way, we learned
               a few interesting concepts when dealing with a variadic function and other useful
               test functions.
            

            
            In the next chapter, we will start looking at one of the core fundamentals of Go programming—goroutines
               and the important details to keep in mind when using them.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Understanding Goroutines

            
         
         
         
         
            
            
            
               
               Software development and programming has advanced quite a lot in the past decade.
                  Many concepts that were previously considered academic and inefficient are beginning
                  to find a place among modern software solutions. Two such concepts are coroutines
                  (goroutines in Go) and channels. Conceptually, they have evolved over time and they
                  have been implemented differently in each programming language. In many programming
                  languages such as Ruby or Clojure, they are implemented as libraries, but in Go, they
                  are implemented within the language as a native feature. As we shall see, this makes
                  the language really modern, quite efficient, and an advanced programming language.
               

               
            

            
            In this chapter we will try to gain an understanding of Go by looking at goroutines
               and the following topics:
            

            
            
               
               	Concurrency and parallelism

               
               	Go's runtime scheduler

               
               	Gotchas when using goroutines

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Concurrency and parallelism

            
         
         
         
         
            
            
            Computer and software programs are useful because they do a lot of laborious work
               very fast and can also do multiple things at once. We want our programs to be able
               to do multiple things simultaneously, that is, multitask, and the success of a programming
               language can depend on how easy it is to write and understand multitasking programs.
            

            
            Concurrency and parallelism are two terms that we are bound to come across often when
               looking into multitasking and they are often used interchangeably. However, they mean
               two distinctly different things.
            

            
            The standard definitions given on the Go blog (https://blog.golang.org/concurrency-is-not-parallelism) are as follows:
            

            
            
               
               	Concurrency: Concurrency is about dealing with lots of things at once. This means that we manage to get multiple things done at once in a given period
                  of time. However, we will only be doing a single thing at a time. This tends to happen
                  in programs where one task is waiting and the program decides to run another task
                  in the idle time. In the following diagram, this is denoted by running the yellow
                  task in idle periods of the blue task.
               

               
               	Parallelism: Parallelism is about doing lots of things at once. This means that even if we have two tasks, they are continuously working without
                  any breaks in between them. In the diagram, this is shown by the fact that the green
                  task is running independently and is not influenced by the red task in any manner:
               

               
            

            
            

            
            It is important to understand the difference between these two terms. Let's look at
               a few concrete examples to further elaborate upon the difference between the two.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Concurrency

            
         
         
         
         
            
            
            Let's look at the concept of concurrency using a simple example of a few daily routine
               tasks and the way we can perform them.
            

            
            Imagine you start your day and need to get six things done:

            
            
               
               	Make hotel reservation

               
               	Book flight tickets

               
               	Order a dress

               
               	Pay credit card bills

               
               	Write an email

               
               	Listen to an audiobook

               
            

            
            The order in which they are completed doesn't matter, and for some of the tasks, such
               as  writing an email or listening to an audiobook, you need not complete them in a
               single sitting. Here is one possible way to complete the tasks:
            

            
            
               
               	Order a dress.

               
               	Write one-third of the email.

               
               	Make hotel reservation.

               
               	Listen to 10 minutes of audiobook.

               
               	Pay credit card bills.

               
               	Write another one-third of the email.

               
               	Book flight tickets.

               
               	Listen to another 20 minutes of audiobook.

               
               	Complete writing the email.

               
               	Continue listening to audiobook until you fall asleep.

               
            

            
            In programming terms, we have executed the above tasks concurrently. We had a complete day and we chose particular tasks from our list of tasks and started
               to work on them. For certain tasks, we even decided to break them up into pieces and
               work on the pieces between other tasks.
            

            
            We will eventually write a program which does all of the preceding steps concurrently,
               but let's take it one step at a time. Let's start by building a program that executes
               the tasks sequentially, and then modify it progressively until it is purely concurrent
               code and uses goroutines. The progression of the program will be in three steps:
            

            
            
               
               	Serial task execution.

               
               	Serial task execution with goroutines.

               
               	Concurrent task execution.

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Code overview

            
         
         
         
         
            
            
            The code will consist of a set of functions that print out their assigned tasks as
               completed. In the cases of writing an email or listening to an audiobook, we further
               divide the tasks into more functions. This can be seen as follows:
            

            
            
               
               	writeMail, continueWritingMail1, continueWritingMail2

               
               	listenToAudioBook, continueListeningToAudioBook

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Serial task execution

            
         
         
         
         
            
            
            Let's first implement a program that will execute all the tasks in a linear manner.
               Based on the code overview we discussed previously, the following code should be straightforward:
            

            package main 
 
import ( 
    "fmt" 
) 
 
// Simple individual tasks 
func makeHotelReservation() { 
    fmt.Println("Done making hotel reservation.") 
} 
func bookFlightTickets() { 
    fmt.Println("Done booking flight tickets.") 
} 
func orderADress() { 
    fmt.Println("Done ordering a dress.") 
} 
func payCreditCardBills() { 
    fmt.Println("Done paying Credit Card bills.") 
} 
 
// Tasks that will be executed in parts 
 
// Writing Mail 
func writeAMail() { 
    fmt.Println("Wrote 1/3rd of the mail.") 
    continueWritingMail1() 
} 
func continueWritingMail1() { 
    fmt.Println("Wrote 2/3rds of the mail.") 
    continueWritingMail2() 
} 
func continueWritingMail2() { 
    fmt.Println("Done writing the mail.") 
} 
 
// Listening to Audio Book 
func listenToAudioBook() { 
    fmt.Println("Listened to 10 minutes of audio book.") 
    continueListeningToAudioBook() 
} 
func continueListeningToAudioBook() { 
    fmt.Println("Done listening to audio book.") 
} 
 
// All the tasks we want to complete in the day. 
// Note that we do not include the sub tasks here. 
var listOfTasks = []func(){ 
    makeHotelReservation, bookFlightTickets, orderADress, 
    payCreditCardBills, writeAMail, listenToAudioBook, 
} 
 
func main() { 
    for _, task := range listOfTasks { 
        task() 
    } 
} 

            We take each of the main tasks and start executing them in simple sequential order.
               Executing the preceding code should produce unsurprising output, as shown here:
            

            Done making hotel reservation.
Done booking flight tickets.
Done ordering a dress.
Done paying Credit Card bills.
Wrote 1/3rd of the mail.
Wrote 2/3rds of the mail.
Done writing the mail.
Listened to 10 minutes of audio book.
Done listening to audio book.

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Serial task execution with goroutines

            
         
         
         
         
            
            
            We took a list of tasks and wrote a program to execute them in a linear and sequential
               manner. However, we want to execute the tasks concurrently! Let's start by first introducing
               goroutines for the split tasks and see how it goes. We will only show the code snippet
               where the code actually changed here:
            

            /******************************************************************** 
  We start by making Writing Mail & Listening Audio Book concurrent. 
*********************************************************************/ 
// Tasks that will be executed in parts 
 
// Writing Mail 
func writeAMail() { 
    fmt.Println("Wrote 1/3rd of the mail.") 
    go continueWritingMail1()  // Notice the addition of 'go' keyword. 
} 
func continueWritingMail1() { 
    fmt.Println("Wrote 2/3rds of the mail.") 
    go continueWritingMail2()  // Notice the addition of 'go' keyword. 
} 
func continueWritingMail2() { 
    fmt.Println("Done writing the mail.") 
} 
 
// Listening to Audio Book 
func listenToAudioBook() { 
    fmt.Println("Listened to 10 minutes of audio book.") 
    go continueListeningToAudioBook()  // Notice the addition of 'go'   keyword. 
} 
func continueListeningToAudioBook() { 
    fmt.Println("Done listening to audio book.") 
} 

            The following is a possible output:

            Done making hotel reservation.
Done booking flight tickets.
Done ordering a dress.
Done paying Credit Card bills.
Wrote 1/3rd of the mail.
Listened to 10 minutes of audio book.

            Whoops! That's not what we were expecting. The output from the continueWritingMail1, continueWritingMail2, and continueListeningToAudioBook functions is missing; the reason being that we are using goroutines. Since goroutines
               are not waited upon, the code in the main function continues executing and once the control flow reaches the end of the main function, the program ends. What we would really like to do is to wait in the main function until all the goroutines have finished executing. There are two ways we
               can do this—using channels or using WaitGroup. Since we have Chapter 3, Channels and Messages, dedicated to channels, let's use WaitGroup in this section.
            

            
            In order to use WaitGroup, we have to keep the following in mind:
            

            
            
               
               	Use WaitGroup.Add(int) to keep count of how many goroutines we will be running as part of our logic.
               

               
               	Use WaitGroup.Done() to signal that a goroutine is done with its task.
               

               
               	Use WaitGroup.Wait() to wait until all goroutines are done.
               

               
               	Pass WaitGroup instance to the goroutines so they can call the Done() method.
               

               
            

            
            Based on these points, we should be able to modify the source code to use WaitGroup. The following is the updated code:
            

            package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
// Simple individual tasks 
func makeHotelReservation(wg *sync.WaitGroup) { 
    fmt.Println("Done making hotel reservation.") 
    wg.Done()
} 
func bookFlightTickets(wg *sync.WaitGroup) { 
    fmt.Println("Done booking flight tickets.") 
    wg.Done() 
} 
func orderADress(wg *sync.WaitGroup) { 
    fmt.Println("Done ordering a dress.") 
    wg.Done() 
} 
func payCreditCardBills(wg *sync.WaitGroup) { 
    fmt.Println("Done paying Credit Card bills.") 
    wg.Done() 
} 
 
// Tasks that will be executed in parts 
 
// Writing Mail 
func writeAMail(wg *sync.WaitGroup) { 
    fmt.Println("Wrote 1/3rd of the mail.") 
    go continueWritingMail1(wg) 
} 
func continueWritingMail1(wg *sync.WaitGroup) { 
    fmt.Println("Wrote 2/3rds of the mail.") 
    go continueWritingMail2(wg) 
} 
func continueWritingMail2(wg *sync.WaitGroup) { 
    fmt.Println("Done writing the mail.") 
    wg.Done() 
} 
 
// Listening to Audio Book 
func listenToAudioBook(wg *sync.WaitGroup) { 
    fmt.Println("Listened to 10 minutes of audio book.") 
    go continueListeningToAudioBook(wg) 
} 
func continueListeningToAudioBook(wg *sync.WaitGroup) { 
    fmt.Println("Done listening to audio book.") 
    wg.Done() 
} 
 
// All the tasks we want to complete in the day. 
// Note that we do not include the sub tasks here. 
var listOfTasks = []func(*sync.WaitGroup){ 
    makeHotelReservation, bookFlightTickets, orderADress, 
    payCreditCardBills, writeAMail, listenToAudioBook, 
} 
 
func main() { 
    var waitGroup sync.WaitGroup 
    // Set number of effective goroutines we want to wait upon 
    waitGroup.Add(len(listOfTasks)) 
 
    for _, task := range listOfTasks{ 
        // Pass reference to WaitGroup instance 
        // Each of the tasks should call on WaitGroup.Done() 
        task(&waitGroup) 
    } 
    // Wait until all goroutines have completed execution. 
    waitGroup.Wait() 
}

            Here is one possible output order; notice how continueWritingMail1 and continueWritingMail2 were executed at the end after listenToAudioBook and continueListeningToAudioBook:
            

            Done making hotel reservation.
Done booking flight tickets.
Done ordering a dress.
Done paying Credit Card bills.
Wrote 1/3rd of the mail.
Listened to 10 minutes of audio book.
Done listening to audio book.
Wrote 2/3rds of the mail.
Done writing the mail.

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Concurrent task execution

            
         
         
         
         
            
            
            In the final output of the previous section, we can see that all the tasks in listOfTasks are being executed in serial order, and the last step for maximum concurrency would
               be to let the order be determined by Go runtime instead of the order in listOfTasks. This might sound like a laborious task, but in reality this is quite simple to achieve.
               All we need to do is add the go keyword in front of task(&waitGroup):
            

            func main() { 
    var waitGroup sync.WaitGroup 
    // Set number of effective goroutines we want to wait upon 
    waitGroup.Add(len(listOfTasks)) 
 
    for _, task := range listOfTasks { 
        // Pass reference to WaitGroup instance 
        // Each of the tasks should call on WaitGroup.Done() 
        go task(&waitGroup) // Achieving maximum concurrency 
    } 
 
    // Wait until all goroutines have completed execution. 
    waitGroup.Wait() 

            Following is a possible output:

            Listened to 10 minutes of audio book.
Done listening to audio book.
Done booking flight tickets.
Done ordering a dress.
Done paying Credit Card bills.
Wrote 1/3rd of the mail.
Wrote 2/3rds of the mail.
Done writing the mail.
Done making hotel reservation.

            If we look at this possible output, the tasks were executed in the following order:

            
            
               
               	Listen to audiobook.

               
               	Book flight tickets.

               
               	Order a dress.

               
               	Pay credit card bills.

               
               	Write an email.

               
               	Make hotel reservations.

               
            

            
            Now that we have a good idea on what concurrency is and how to write concurrent code
               using goroutines and WaitGroup, let's dive into parallelism.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Parallelism

            
         
         
         
         
            
            
            Imagine that you have to write a few emails. They are going to be long and laborious,
               and the best way to keep yourself entertained is to listen to music while writing
               them, that is, listening to music "in parallel" to writing the emails. If we wanted
               to write a program that simulates this scenario, the following is one possible implementation:
            

            package main 
 
import ( 
    "fmt" 
    "sync" 
    "time" 
) 
 
func printTime(msg string) { 
    fmt.Println(msg, time.Now().Format("15:04:05")) 
} 
 
// Task that will be done over time 
func writeMail1(wg *sync.WaitGroup) { 
    printTime("Done writing mail #1.") 
    wg.Done() 
} 
func writeMail2(wg *sync.WaitGroup) { 
    printTime("Done writing mail #2.") 
    wg.Done() 
} 
func writeMail3(wg *sync.WaitGroup) { 
    printTime("Done writing mail #3.") 
    wg.Done() 
} 
 
// Task done in parallel 
func listenForever() { 
    for { 
        printTime("Listening...") 
    } 
} 
 
func main() { 
    var waitGroup sync.WaitGroup 
    waitGroup.Add(3) 
 
    go listenForever() 
 
    // Give some time for listenForever to start 
    time.Sleep(time.Nanosecond * 10) 
 
    // Let's start writing the mails 
    go writeMail1(&waitGroup) 
    go writeMail2(&waitGroup) 
    go writeMail3(&waitGroup) 
 
    waitGroup.Wait() 
} 

            The output of the program might be as follows:

            Done writing mail #3. 19:32:57
Listening... 19:32:57
Listening... 19:32:57
Done writing mail #1. 19:32:57
Listening... 19:32:57
Listening... 19:32:57
Done writing mail #2. 19:32:57

            The numbers represent the time in terms of Hour:Minutes:Seconds and, as can be seen, they are being executed in parallel. You might have noticed
               that the code for parallelism looks almost identical to the code for the final concurrency
               example. However, in the function listenForever, we are printing Listening... in an infinite loop. If the preceding example was written without goroutines, the
               output would keep printing Listening... and never reach the writeMail function calls.
            

            
            Now that we understand how goroutine can be used to run concurrent programs, let's
               look at how Go is allowing us to do this. We shall next look at the scheduler used
               by Go runtime.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Go's runtime scheduler

            
         
         
         
         
            
            
            The Go program, along with the runtime, is managed and executed on multiple OS threads.
               The runtime uses a scheduler strategy known as M:N scheduler, which will schedule M number of goroutines on N number of OS threads.
               As a result, whenever we need to run or switch to a different goroutine, the context
               switching will be fast, and this also enables us to use multiple cores of the CPU
               for parallel computing.
            

            
            A solid understanding of Go's runtime and scheduler would be quite interesting and
               useful, and now would be a good time to look at them in detail.
            

            
            From the Go scheduler's perspective, there are primarily three entities:

            
            
               
               	Goroutine (G)

               
               	OS thread or machine (M)

               
               	Context or processor (P)

               
            

            
            Let's look at what they do. We will also be looking the partial struct definitions
               of these entities to provide a better idea of how scheduling is implemented and how
               it works.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Goroutine

            
         
         
         
         
            
            
            It is the logical unit of execution that contains the actual instructions for our
               program/functions to run. It also contains other important information regarding the
               goroutine, such as the stack memory, which machine (M) it is running on, and which
               Go function called it. The following are some of the elements in the goroutine struct
               that might come in handy for this section:
            

            // Denoted as G in runtime 
type g struct { 
    stack         stack // offset known to runtime/cgo 
    m               *m    // current m; offset known to arm liblink 
    goid           int64 
    waitsince   int64   // approx time when the g become blocked 
    waitreason string  // if status==Gwaiting 
    gopc          uintptr // pc of go statement that created this goroutine 
    startpc       uintptr // pc of goroutine function 
    timer         *timer  // cached timer for time.Sleep 
 
    // ... 
} 

            An interesting thing to know is that when our Go program starts, a goroutine called
               main goroutine is first launched, and it takes care of setting up the runtime space
               before starting our program. A typical runtime setup might include things such as
               maximum stack size, enabling garbage collector, and so on.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            OS thread or machine

            
         
         
         
         
            
            
            Initially, the OS threads or machines are created by and managed by the OS. Later
               on, the scheduler can request for more OS threads or machines to be created or destroyed.
               It is the actual resource upon which a goroutine will be executed. It also maintains
               information about the main goroutine, the G currently being run on it, thread local storage (tls), and so on:
            

            // Denoted as M in runtime 
type m struct { 
    g0               *g         // goroutine with scheduling stack 
    tls               [6]uintptr // thread-local storage (for x86 extern register) 
    curg            *g         // current running goroutine 
    p                 puintptr   // attached p for executing go code (nil if not executing go code) 
    id                 int32 
    createstack [32]uintptr // stack that created this thread. 
    spinning      bool        // m is out of work and is actively looking for work 
 
    // ... 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Context or processor

            
         
         
         
         
            
            
            We have a global scheduler which takes care of bringing up new M, registering G, and
               handling system calls. However, it does not handle the actual execution of goroutines.
               This is done by an entity called Processor, which has its own internal scheduler and a queue called runqueue (runq in code) consisting of goroutines that will be executed in the current context. It
               also handles switching between various goroutines and so on:
            

            // Denoted as P in runtime code 
type p struct { 
    id     int32 
    m     muintptr // back-link to associated m (nil if idle) 
    runq [256]guintptr 
 
    //... 
} 

            From Go 1.5 onwards, a Go runtime can have a maximum number of GOMAXPROCS Ps running at any given point in the program's lifetime. Of course, we can change
               this number by either setting the GOMAXPROCS environment variable or by calling the GOMAXPROCS() function.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Scheduling with G, M, and P

            
         
         
         
         
            
            
            By the time the program is ready to start executing, the runtime has machines and
               processors set up. The runtime would request the OS to start an ample number of Machines
               (M), GOMAXPROCS number of Processors to execute goroutines (G). It is important to
               understand that M is the actual unit of execution and G is the logical unit of execution.
               However, they require P to actually execute G against the M. Let's look at a possible
               scenario to better explain the scheduling process. First let's look at the components
               we shall be using for the scenario:
            

            
            
               
               	We have a set of M ready to run: M1...Mn

               
               	We also have two Ps: P1 and P2 with runqueues—runq1 and runq2 respectively

               
               	Last but not least, we also have 20 goroutines, G1...G20, which we want to execute
                  as part of the program
               

               
            

            
            Go's runtime and all of the components, M1...Mn, P1 and P2, and G1...G20, are represented
               as shown in the following figure:
            

            
            

            
            Given that we have two Processors, the global scheduler would ideally distribute the
               goroutines between the two Processors equally. Assume that P1 is assigned to work
               on G1...G10 and and puts them into its runqueue, and similarly P2 puts G11...G20 in
               its runqueue. Next, P1's scheduler pops a goroutine from its runqueue to run, G1,
               picks a machine to run it on, M1, and similarly P2 runs G11 on M2. This can be illustrated
               by the following diagram:
            

            
            

            
            A process's internal scheduler is also responsible for switching out the current goroutine
               with the next one that it wants to execute. If everything is going well, the scheduler
               will switch the current goroutine for one of three possible reasons:
            

            
            
               
               	Time slice for current execution is over: A process will use schedtick (it is incremented every time the scheduler is called) to keep track of how long
                  the current goroutine has been executing and, once a certain time limit is reached,
                  the current goroutine will be put back in the runqueue and the next goroutine is picked
                  up for execution.
               

               
               	Done with execution: Simply put, the goroutine is done executing all of its instructions.
                  In this case, it will not be put back in the runqueue.
               

               
               	Waiting on system call: In some cases, the goroutine might need to make a system system
                  call, and as a result, the goroutine will be blocked. Given that we have a handful
                  of processors, it doesn't make sense to block such an expensive resource. The good
                  news is that in Go, the processor is not required to wait on the system call; instead
                  it can leave the waiting M and G combo, which will be picked up by the global scheduler
                  after the system call. In the meantime, the processor can pick another M from the
                  available machines, pick another goroutine from its runqueue, and start executing
                  it. This is explained with the help of the following diagram:
               

               
            

            
            

            
            The previous diagram explains that the processor P1 is running goroutine G1 on machine
               M1. G1 will now begin making a system call. This can be illustrated in the following
               diagram:
            

            
            

            
            The previous diagram explains that the processor P1 detaches itself from machine M1
               and goroutine G1 due to a system call. P1 picks a new machine, M5, and a new goroutine, G9,
               to execute:
            

            
            

            
            In the previous diagram, the G1-M1 system call is completed. Now G1 is put back in
               the P1 runqueue and M1 is added to the set of idle machines.
            

            
            In the last part of this section, we are going to discuss another strategy implemented
               in the scheduler, called work-stealing.
            

            
            Let's say that processor P1 has 10 goroutines and P2 has 10 goroutines. However, it
               turns out that the goroutines in P1 were quickly completed and now there are zero
               goroutines in P1's runqueue. It would be a tragedy if P1 were idle and waiting for
               the global scheduler to provide it with more work. With the help of the work-stealing
               strategy, P1 starts checking with other processors and, if another processor has goroutines
               in its runqueue, it will "steal" half of them and start executing them. This ensures
               that we are maximizing the CPU usage for our program. Let's ask two interesting questions:
            

            
            
               
               	What if a processor realizes that it can't steal any more tasks? The procesor will
                  wait for a little while expecting new goroutines and, if none are created, the processor
                  is killed.
               

               
               	Can a processor steal more than half of a runqueue? Even if we have many processors
                  at work, work-stealing will always take half of the target processor's runqueue.
               

               
            

            
            This can be illustrated with the following diagram:

            
            

            
            The preceding diagram shows two processors, P1 and P2, executing a goroutine each
               from their runqueue on two machines. Let's consider that the tasks for processor P2
               complete while P1 is running. This is shown in the figure here:
            

            
            

            
            Processor P2 has exhausted its runqueue, and does not have any more goroutines to
               execute. Thanks to the work-stealing strategy, P2 has "stolen" half of the goroutines
               from P1's runqueue and can start executing them, as shown in the figure here:
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Gotchas when using goroutines

            
         
         
         
         
            
            
            By this point, we should have developed a good understanding of how goroutines and
               the scheduler works. Let's now look at a few things that may catch us by surprise
               while working with goroutines.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Single goroutine halting the complete program

            
         
         
         
         
            
            
            We know that goroutines run across multiple threads and multiple cores. So what happens
               when we have a panic in one of the threads? Here is an example that would let us simulate
               such a situation. We will create a lot of similar goroutines, whose sole purpose is
               to take a number and divide it by itself after subtracting 10 from the denominator.
               This will work fine for the majority of cases, except when the number is 10. The following code implements the described functionality:
            

            package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
func simpleFunc(index int, wg *sync.WaitGroup) { 
    // This line should fail with Divide By Zero when index = 10 
    fmt.Println("Attempting x/(x-10) where x = ", index, " answer is : ", index/(index-10)) 
    wg.Done() 
} 
 
func main() { 
    var wg sync.WaitGroup 
    wg.Add(40) 
    for i := 0; i < 40; i += 1 { 
        go func(j int) { 
            simpleFunc(j, &wg) 
        }(i) 
    } 
 
    wg.Wait() 
}

            The output of the previous code can be as follows:

            Attempting x/(x-10) where x =  39  answer is :  1
Attempting x/(x-10) where x =  20  answer is :  2...
Attempting x/(x-10) where x =  37  answer is :  1
Attempting x/(x-10) where x =  11  answer is :  11
panic: runtime error: integer divide by zerogoroutine 15 [running]:main.simpleFunc(0xa, 0xc42000e280)        
...exit status 2

            Essentially, a lot of goroutines were put in the runqueue, and upon being executed
               in random order, their outputs were printed to the console. However, as soon as the
               goroutine with index == 10 was executed, it raised a panic which was not handled by
               the function, and this resulted in the complete program halting and exiting with status
               code 2. This shows that even a single error or panic that hasn't been handled will halt
               the complete program!
            

            
            However, it wouldn't make sense to crash the program because we faced a panic that
               we might have been able to handle graciously. Go allows us to recover from a panic
               with an appropriately named function called recover. Let's look at how to use recover in the previous code example:
            

            package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
func simpleFunc(index int, wg *sync.WaitGroup) { 
    // functions with defer keyword are executed at the end of the function 
    // regardless of whether the function was executed successfully or not. 
    defer func() { 
        if r := recover(); r != nil { 
            fmt.Println("Recovered from", r) 
        } 
    }() 
 
    // We have changed the order of when wg.Done is called because 
    // we should call upon wg.Done even if the following line fails. 
    // Whether a defer function exists or not is dependent on whether it is registered 
    // before or after the failing line of code. 
    defer wg.Done() 
    // This line should fail with Divide By Zero when index = 10 
    fmt.Println("Attempting x/(x-10) where x = ", index, " answer is : ", index/(index-10)) 
} 
 
func main() { 
    var wg sync.WaitGroup 
    wg.Add(40) 
    for i := 0; i < 40; i += 1 { 
        go func(j int) { 
            simpleFunc(j, &wg) 
        }(i) 
    } 
 
    wg.Wait() 
}

            The output for the preceding code can be as follows:

            Attempting x/(x-10) where x =  39  answer is :  1                                     Attempting x/(x-10) where x =  14  answer is :  3                                     Recovered from runtime error: integer divide by zero                                  Attempting x/(x-10) where x =  3  answer is :  0                                      ...Attempting x/(x-10) where x =  29  answer is :  1                                     Attempting x/(x-10) where x =  9  answer is :  -9 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Goroutines aren't predictable

            
         
         
         
         
            
            
            In this chapter, we started by looking at how Go enables us to write code that is
               concurrent and, to an extent, parallel. Then we followed up with a discussion on how
               Go schedules goroutines over machines and processors. It is possible that we might
               be able to reason how the goroutines are going to be distributed over machines and
               processors, which in turn might let us write non-standard or hacky Go code.
            

            
            Consider the code from the Parallelism section, where we tried to simulate listening to music while writing a few emails.
               Here is the output of the code for quick reference:
            

            Done writing mail #3. 19:32:57
Listening... 19:32:57
Listening... 19:32:57
Done writing mail #1. 19:32:57
Listening... 19:32:57
Listening... 19:32:57
Done writing mail #2. 19:32:57

            We can now easily infer that there were at least two Ps, and one of them was being
               used by the goroutine printing Listening..., while the other P was handling the goroutines related to writing emails.
            

            
            This is all well and good, however consider the case where GOMAXPROCS is set to 1 or the system has low hardware capabilities which might result in fewer machines.
               It is possible that this might lead to the goroutine printing Listening... run forever and never giving control to the other goroutines. In reality, the Go
               compiler should detect this case and accordingly plan the scheduling of goroutines.
               However, it would be better to plan our code so that we do not have to rely on Go's
               scheduler and its current implementation.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            Goroutines are concurrent and, to an extent, parallel; however, we should think of
               them as being concurrent. The order of execution of goroutines is not predictable
               and we should not rely on them to be executed in any particular order.
            

            
            We should also take care to handle errors and panics in our goroutines because even
               though they are being executed in parallel, a panic in one goroutine will crash the
               complete program. Finally, goroutines can block on system calls, however this will not block the execution of
                  the program nor slow down the performance of the overall program.

            
            We looked at a few of the design concepts behind Go's runtime scheduler to understand
               why all of this happens.
            

            
            You might be wondering why we haven't discussed channels in this chapter. The reason
               is that by not relying on channels we were able to look at goroutines in their most
               elemental form. This allowed us to dive deeper into the concept and implementation
               of goroutines.
            

            
            In the next chapter, we shall be looking at channels and how they further empower
               goroutines.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Channels and Messages

            
         
         
         
         
            
            
            
               
               In Chapter 2, Understanding Goroutines, we looked at how goroutines work, how to use them in a concurrent fashion, and some
                  of the common mistakes that might occur. They were simple to use and reason about,
                  but they were limited because they are able to spawn other goroutines and wait on
                  system calls. In reality, goroutines are more capable than what was shown in the previous
                  chapter, and to uncover their full potential we need to understand how to use channels,
                  which is the aim of the current chapter. Here, we will look at the following topics:
               

               
            

            
            
               
               	Controlling parallelism

               
               	Channels and data communication

               
               	Types of channels

               
               	Closing and multiplexing channels

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Controlling parallelism

            
         
         
         
         
            
            
            We know that spawned goroutines will start executing as soon as possible and in a
               simultaneous fashion. However, there is an inherent risk involved when the said goroutines
               need to work on a common source that has a lower limit on the number of simultaneous
               tasks it can handle. This might cause the common source to significantly slow down
               or in some cases even fail. As you might guess, this is not a new problem in the field
               of computer science, and there are many ways to handle it. As we shall see throughout
               the chapter, Go provides mechanisms to control parallelism in a simple and intuitive
               fashion. Let's start by looking at an example to simulate the problem of burdened
               common source, and then proceed to solve it.
            

            
            Imagine a cashier who has to process orders, but has a limit to process only 10 orders
               in a day. Let's look at how to present this as a program:
            

            // cashier.go 
package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
func main() { 
    var wg sync.WaitGroup 
    // ordersProcessed & cashier are declared in main function 
    // so that cashier has access to shared state variable 'ordersProcessed'. 
    // If we were to declare the variable inside the 'cashier' function, 
    // then it's value would be set to zero with every function call. 
    ordersProcessed := 0 
    cashier := func(orderNum int) { 
        if ordersProcessed < 10 { 
            // Cashier is ready to serve! 
            fmt.Println("Processing order", orderNum) 
            ordersProcessed++ 
        } else { 
            // Cashier has reached the max capacity of processing orders. 
            fmt.Println("I am tired! I want to take rest!", orderNum) 
        } 
        wg.Done() 
    } 
 
    for i := 0; i < 30; i++ { 
        // Note that instead of wg.Add(60), we are instead adding 1 
        // per each loop iteration. Both are valid ways to add to WaitGroup as long as we can ensure the right number of calls. 
        wg.Add(1) 
        go func(orderNum int) { 
            // Making an order 
            cashier(orderNum) 
        }(i) 
 
    } 
    wg.Wait() 
} 

            A possible output of the program might be as follows:

            Processing order 29
Processing order 22
Processing order 23
Processing order 13
Processing order 24
Processing order 25
Processing order 21
Processing order 26
Processing order 0
Processing order 27
Processing order 14
I am tired! I want to take rest! 28
I am tired! I want to take rest! 1
I am tired! I want to take rest! 7
I am tired! I want to take rest! 8
I am tired! I want to take rest! 2
I am tired! I want to take rest! 15
...

            The preceding output shows a cashier who was overwhelmed after taking 10 orders. However,
               an interesting point to note is that if you run the preceding code multiple times,
               you might get different outputs. For example, all of the 30 orders might be processed
               in one of the runs!
            

            
            This is happening because of what is known as the race condition. A data race (or race condition) occurs when multiple actors (goroutines, in our
               case) are trying to access and modify a common shared state, and this results in incorrect
               reads and writes by the goroutines.
            

            
            We can try to solve this issue in two ways:

            
            
               
               	Increasing the limit for processing orders

               
               	Increasing the number of cashiers

               
            

            
            Increasing the limit is feasible only to a certain extent, beyond which it would start
               degrading the system or in the case of the cashier, work will neither be efficient
               nor 100% accurate. On the contrary, by increasing the number of cashiers, we can start
               processing more orders consecutively while not changing the limit. There are two approaches
               to this:
            

            
            
               
               	Distributed work without channels

               
               	Distributed work with channels

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Distributed work without channels

            
         
         
         
         
            
            
            In order to distribute the work equally among the cashiers, we need to know the amount
               of orders we will get beforehand and ensure that the work each cashier receives is
               within his/her limit. This is not the most practical solution, because it would fail
               in a real-world scenario where we would need to keep track of how many orders each
               cashier has processed and divert the remaining orders to the other cashiers. However,
               before we look at the correct way to solve it, let's take time to better understand
               the problem of uncontrolled parallelism and try to solve it. The following code attempts
               to solve it in a naïve manner, which should provide us with a good start:
            

            // wochan.go 
 
package main 
 
import ( 
   "fmt" 
   "sync" 
) 
 
func createCashier(cashierID int, wg *sync.WaitGroup) func(int) { 
   ordersProcessed := 0 
   return func(orderNum int) { 
         if ordersProcessed < 10 { 
               // Cashier is ready to serve! 
               //fmt.Println("Cashier ", cashierID, "Processing order", orderNum, "Orders Processed", ordersProcessed) 
               fmt.Println(cashierID, "->", ordersProcessed) 
               ordersProcessed++ 
         } else { 
               // Cashier has reached the max capacity of processing orders. 
               fmt.Println("Cashier ", cashierID, "I am tired! I want to take rest!", orderNum) 
         } 
         wg.Done() 
   } 
} 
 
func main() { 
   cashierIndex := 0 
   var wg sync.WaitGroup 
 
   // cashier{1,2,3} 
   cashiers := []func(int){} 
   for i := 1; i <= 3; i++ { 
         cashiers = append(cashiers, createCashier(i, &wg)) 
   } 
 
   for i := 0; i < 30; i++ { 
         wg.Add(1) 
 
         cashierIndex = cashierIndex % 3 
 
         func(cashier func(int), i int) { 
               // Making an order 
               go cashier(i) 
         }(cashiers[cashierIndex], i) 
 
         cashierIndex++ 
   } 
   wg.Wait() 
} 

            The following is one possible output:

            Cashier  2 Processing order 7
Cashier  1 Processing order 6
Cashier  3 Processing order 8
Cashier  3 Processing order 29
Cashier  1 Processing order 9
Cashier  3 Processing order 2
Cashier  2 Processing order 10
Cashier  1 Processing order 3
...

            We split the available 30 orders between cashiers 1, 2, and 3, and all of the orders were successfully processed without anyone complaining about
               being tired. However, note that the code to make this work required a lot of work
               on our end. We had to create a function generator to create cashiers, keep track of
               which cashier to use via cashierIndex, and so on. And the worst part is that the preceding code isn't correct! Logically,
               it might seem to be doing what we want; however, note that we are spawning multiple
               goroutines that are working on variables with a shared state, ordersProcessed! This is the race condition we discussed earlier. The good news is that we can detect
               it in wochan.go in two ways:
            

            
            
               
               	In createCashier function, replace fmt.Println("Cashier ", cashierID, "Processing order", orderNum) with fmt.Println(cashierID, "->", ordersProcessed). Here is one possible output:
               

               
            

                  3 -> 0
      3 -> 1
      1 -> 0
      ...
      2 -> 3
      3 -> 1  # Cashier 3 sees ordersProcessed as 1 but three lines above, Cashier 3     
      was at ordersProcessed == 4!
      3 -> 5
      1 -> 4
      1 -> 4 # Cashier 1 sees ordersProcessed == 4 twice.
      2 -> 4
      2 -> 4 # Cashier 2 sees ordersProcessed == 4 twice.
      ...

            
               
               	The previous point proves that the code is not correct; however, we had to guess the
                  possible issue in the code and then verify it. Go provides us with tools to detect
                  data race so that we do not have to worry about such issues. All we have to do to
                  detect data race is to test, run, build, or install the package (file in the case
                  of run) with the -race flag . Let's run this on our program and look at the output:
               

               
            

                  $ go run -race wochan.go 
      Cashier  1 Processing order 0
      Cashier  2 Processing order 1
      ==================
      WARNING: DATA RACE
      Cashier  3 Processing order 2
      Read at 0x00c4200721a0 by goroutine 10:
      main.createCashier.func1()
          wochan.go:11 +0x73
    
      Previous write at 0x00c4200721a0 by goroutine 7:
      main.createCashier.func1()
          wochan.go:14 +0x2a7
    
      Goroutine 10 (running) created at:
      main.main.func1()
          wochan.go:40 +0x4a
      main.main()
          wochan.go:41 +0x26e
    
      Goroutine 7 (finished) created at:
      main.main.func1()
          wochan.go:40 +0x4a
      main.main()
          wochan.go:41 +0x26e
      ==================
      Cashier  2 Processing order 4
      Cashier  3 Processing order 5
      ==================
      WARNING: DATA RACE
      Read at 0x00c420072168 by goroutine 9:
      main.createCashier.func1()
          wochan.go:11 +0x73
    
      Previous write at 0x00c420072168 by goroutine 6:
      main.createCashier.func1()
          wochan.go:14 +0x2a7
    
      Goroutine 9 (running) created at:
      main.main.func1()
          wochan.go:40 +0x4a
      main.main()
          wochan.go:41 +0x26e
    
      Goroutine 6 (finished) created at:
      main.main.func1()
          wochan.go:40 +0x4a
      main.main()
          wochan.go:41 +0x26e
      ==================
      Cashier  1 Processing order 3
      Cashier  1 Processing order 6
      Cashier  2 Processing order 7
      Cashier  3 Processing order 8
      ...
      Found 2 data race(s)
      exit status 66

            As can be seen, the -race flag helped us to detect the data race.
            

            
            Does this mean that we cannot distribute our tasks when we have shared state? Of course
               we can! But we need to use mechanisms provided by Go for this purpose:
            

            
            
               
               	Mutexes, semaphores, and locks

               
               	Channels

               
            

            
            Mutex is a mutual exclusion lock that provides us with a synchronization mechanism
               to allow only one goroutine to access a particular piece of code or shared state at
               any given point in time. As already stated, for synchronization problems, we can use
               either mutex or channels, and Go recommends using the right construct for the right
               job. However, in practice, using channels provides us with a higher level of abstraction
               and greater versatility in terms of usage, though mutex has its uses. It is for this
               reason for that, throughout this chapter and the book, we will be making use of channels.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Distributed work with channels

            
         
         
         
         
            
            
            We are certain about three things now: we want to distribute our orders among the
               cashiers correctly, we want to ensure that the correct number of orders are processed
               by each cashier, and we want to use channels to solve this problem. Before we address
               how to solve the cashier problem using channels, let's first look at the basic syntax
               and usage of a channel.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            What is a channel?

            
         
         
         
         
            
            
            A channel is a communication mechanism that allows us to pass data between goroutines.
               It is an in-built data type in Go. Data can be passed using one of the primitive data
               types or we can create our own complex data type using structs.
            

            
            Here is a simple example to demonstrate how to use a channel:

            // simchan.go 
package main 
 
import "fmt" 
 
// helloChan waits on a channel until it gets some data and then prints the value. 
func helloChan(ch <- chan string) { 
    val := <- ch 
    fmt.Println("Hello, ", val) 
} 
 
func main() { 
    // Creating a channel 
    ch := make(chan string) 
 
    // A Goroutine that receives data from a channel 
    go helloChan(ch) 
 
    // Sending data to a channel. 
    ch <- "Bob" 
} 

            If we run the preceding code, it would print the following output:

            Hello, Bob

            The basic pattern for using channels can be explained by the following steps:

            
            
               
               	Create the channel to accept the data to be processed.

               
               	Launch the goroutines that are waiting on the channel for data.

               
               	Then, we can either use main function or other goroutines to pass data into the channel.
               

               
               	The goroutines listening on the channel can accept the data and process them .

               
            

            
            The advantage of using channels is that multiple goroutines can wait on the same channel
               and execute tasks concurrently.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Solving the cashier problem with goroutines

            
         
         
         
         
            
            
            Before we try to solve the problem, let's first formulate what we want to achieve:

            
            
               
               	Create a channel orderChannel that accepts all orders.
               

               
               	Launch the required number of cashier goroutines that accept limited numbers of orders
                  from orderChannel.
               

               
               	Start putting all orders into orderChannel.
               

               
            

            
            Let's look at one possible solution that tries to solve the cashier problem using
               the preceding steps:
            

            // wichan.go 
package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
func cashier(cashierID int, orderChannel <-chan int, wg *sync.WaitGroup) { 
    // Process orders upto limit. 
    for ordersProcessed := 0; ordersProcessed < 10; ordersProcessed++ { 
        // Retrieve order from orderChannel 
        orderNum := <-orderChannel 
       
        // Cashier is ready to serve! 
        fmt.Println("Cashier ", cashierID, "Processing order", orderNum, "Orders Processed", ordersProcessed) 
        wg.Done() 
    } 
} 
 
func main() { 
    var wg sync.WaitGroup 
    wg.Add(30) 
    ordersChannel := make(chan int) 
 
    for i := 0; i < 3; i++ { 
        // Start the three cashiers 
        func(i int) { 
            go cashier(i, ordersChannel, &wg) 
        }(i) 
    } 
   
    // Start adding orders to be processed. 
    for i := 0; i < 30; i++ { 
        ordersChannel <- i 
    } 
    wg.Wait() 
} 

            On running the preceding code with -race flag, we can see that the code ran without any data races:
            

            $ go run -race wichan.go 
Cashier  2 Processing order 2 Orders Processed 0
Cashier  2 Processing order 3 Orders Processed 1
Cashier  0 Processing order 0 Orders Processed 0
Cashier  1 Processing order 1 Orders Processed 0
...
Cashier  0 Processing order 27 Orders Processed 9

            The code is quite straightforward, is easy to parallelize, and works well without
               causing any data races.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Channels and data communication

            
         
         
         
         
            
            
            Go is a statically typed language, and this means that a given channel can only send
               or receive data of a single data type. In Go's terminology, this is known as a channel's
               element type. A Go channel will accept any valid Go data type including functions. Here is an
               example of a simple program that accepts and calls on functions:
            

            // elems.go 
package main 
 
import "fmt" 
 
func main() { 
    // Let's create three simple functions that take an int argument 
    fcn1 := func(i int) { 
        fmt.Println("fcn1", i) 
    } 
    fcn2 := func(i int) { 
        fmt.Println("fcn2", i*2) 
    } 
    fcn3 := func(i int) { 
        fmt.Println("fcn3", i*3) 
    } 
 
    ch := make(chan func(int)) // Channel that sends & receives functions that take an int argument 
    done := make(chan bool)    // A Channel whose element type is a boolean value. 
 
    // Launch a goroutine to work with the channels ch & done. 
    go func() { 
        // We accept all incoming functions on Channel ch and call the functions with value 10. 
        for fcn := range ch { 
            fcn(10) 
        } 
        // Once the loop terminates, we print Exiting and send true to done Channel. 
        fmt.Println("Exiting") 
        done <- true 
    }() 
 
    // Sending functions to channel ch 
    ch <- fcn1 
    ch <- fcn2 
    ch <- fcn3 
 
    // Close the channel once we are done sending it data. 
    close(ch) 
 
    // Wait on the launched goroutine to end. 
    <-done 
} 

            The output of the preceding code is as follows:

            fcn1 10
fcn2 20
fcn3 30
Exiting

            In the preceding code sample, we say that the channel ch has the element type of func(int) and the channel done has the element type of bool. There are a lot more interesting details in the code, but we shall discuss them
               in the following sections.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Messages and events

            
         
         
         
         
            
            
            So far we have been using the term data to refer to the values that are being sent and received from a channel. While this
               might be easy to understand so far, Go uses two specific terms to describe the type
               of data that is being communicated over the channels. They are called messages and events. In terms of code they are identical, but the terms are used to help us understand
               the type of data that is being sent. In a nutshell:
            

            
            
               
               	Messages are generally values we want the goroutine to process and act on them if
                  required.
               

               
               	Events are used to signify that a certain event has occurred. The actual value received might not be as important as the act of receiving
                  a value. Note that though we use the term event, they are still a type of message.
               

               
            

            
            In the previous code example, values sent to ch are messages, while the value sent to done is an event. An important point to note is that element types of event channels tend
               to be struct{}{}, bool, or int.
            

            
            Now that we understand what channel element types, messages, and events are, let's
               look at the different types of channels.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Types of channels

            
         
         
         
         
            
            
            Go provides us with three major variations on channel types. They can be broadly classified
               into:
            

            
            
               
               	Unbuffered

               
               	Buffered

               
               	Unidirectional (send-only and receive-only type channels)

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The unbuffered channel

            
         
         
         
         
            
            
            This is the basic channel type available in Go. It is quite straightforward to use—we
               send data into the channel and we receive data at the other end. The interesting part
               is that any goroutine operating on an unbuffered channel will be blocked until both
               the sender and receiver goroutines are available. For example, consider the following
               code snippet:
            

            ch := make(chan int) 
go func() {ch <- 100}     // Send 100 into channel.                
                             Channel: send100          
go func() {val := <- ch}  // Goroutine waiting on channel.        
                             Channel: recv1         
go func() {val := <- ch}  // Another goroutine waiting on channel.
                             Channel: recv2

            We have a channel ch of element type int. We start three goroutines; one sends a message of 100 onto the channel (send100) and the other two goroutines (recv1 and recv2) wait on the channel. send100 is blocked until either of recv1 or recv2 starts listening on the channel to receive the message. If we assume that recv2 receives the message sent on the channel by send100, then recv1 will be waiting until another message is sent on the channel. If the preceding four
               lines are the only communications on the channel, then recv1 will wait until the program ends and then will be abruptly killed off by the Go runtime.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The buffered channel

            
         
         
         
         
            
            
            Consider the case where we are able to send more messages into a channel than the
               goroutines receiving the messages can handle them. If we use unbuffered channels,
               it would significantly slow down the program because we will have to wait for each
               message to be processed before we can put in another message. It would be ideal if
               the channel could store these extra messages or "buffer" the messages. This is exactly
               what a buffered channel does. It maintains a queue of messages which a goroutine will
               consume at its own pace. However, even a buffered channel has a limited capacity;
               we need to define the capacity of the queue at the time of channel creation.
            

            
            So, how do we use a buffered channel? Syntax-wise, it is identical to using an unbuffered
               channel. The behavior of a buffer channel can be explained as follows:
            

            
            
               
               	If a buffered channel is empty: Receiving messages on the channel is blocked until a message is sent across the
                  channel
               

               
               	If a buffered channel is full: Sending messages on the channel is blocked until at least one message is received
                  from the channel, thus making space for the new message to be put on the channel's
                  buffer or queue
               

               
               	If a buffered channel is partially filled, that is, neither full nor empty: Either sending or receiving messages on a channel is unblocked and the communication
                  is instantaneous
               

               
            

            
            

            
            Communication over a buffered channel

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The unidirectional buffer

            
         
         
         
         
            
            
            Messages can be sent and received from a channel. However, when goroutines use channels
               for communication, they are generally going to be for a single purpose: either to
               send or receive from a channel. Go allows us to specify whether a channel being used
               by a goroutine is for sending or receiving messages. It accomplishes this with the
               help of unidirectional channels. Once a channel has been identified as being unidirectional,
               we cannot perform the other operation on them. This means that a unidirectional send
               channel cannot be used to receive messages, and a unidirectional receive channel cannot
               be used to send messages. Any attempts to do so would be caught by the Go compiler
               as compile-time errors.
            

            
            Here is an example of using unidirectional channels correctly:

            // unichans.go 
package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
func recv(ch <-chan int, wg *sync.WaitGroup) { 
    fmt.Println("Receiving", <-ch) 
    wg.Done() 
} 
 
func send(ch chan<- int, wg *sync.WaitGroup) { 
    fmt.Println("Sending...") 
    ch <- 100 
    fmt.Println("Sent") 
    wg.Done() 
} 
 
func main() { 
    var wg sync.WaitGroup 
    wg.Add(2) 
 
    ch := make(chan int) 
    go recv(ch, &wg) 
    go send(ch, &wg) 
 
    wg.Wait() 
} 

            The expected output would be as follows:

            Sending...
Receiving 100     # (or) Sent
Sent              # (or) Receiving 100  

            Now, let's try to send over a receiving channel and see what happens. We will only
               see the changed function in the previous example here:
            

            // unichans2.go 
// ... 
// Changed function 
func recv(ch <-chan int, wg *sync.WaitGroup) { 
    fmt.Println("Receiving", <-ch) 
    fmt.Println("Trying to send") // signalling that we are going to send over channel. 
    ch <- 13                      // Sending over channel 
    wg.Done() 
} 

            Now, if we try to run or build the updated program, we will get the following error:

            $ go run unichans.go 
# command-line-arguments
unichans.go:11: invalid operation: ch <- 13 (send to receive-only type <-chan int)  

            So, how would the program behave if we used a buffered channel? Since there will be
               no blocking on an unfilled channel, the send goroutine sends a message onto the channel and then continues executing. The recv goroutine reads from the channel when it starts executing and then prints it:
            

            // buffchan.go 
package main 
 
import ( 
    "fmt" 
    "sync" 
) 
 
func recv(ch <-chan int, wg *sync.WaitGroup) { 
    fmt.Println("Receiving", <-ch) 
    wg.Done() 
} 
 
func send(ch chan<- int, wg *sync.WaitGroup) { 
    fmt.Println("Sending...") 
    ch <- 100 
    fmt.Println("Sent") 
    wg.Done() 
} 
 
func main() { 
    var wg sync.WaitGroup 
    wg.Add(2) 
 
    // Using a buffered channel. 
    ch := make(chan int, 10) 
    go recv(ch, &wg) 
    go send(ch, &wg) 
 
    wg.Wait() 
} 

            The output would be as follows:

            Sending...
Sent
Receiving 100

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Closing channels

            
         
         
         
         
            
            
            In the previous sections, we have looked at three types of channels and how to create
               them. In this section, let's look at how to close the channels and how this might
               affect sending and receiving on these channels. We close a channel when we no longer
               want to send any messages on the said channel. How a channel behaves after being closed
               is different for each type of channel. Let's dive into them:
            

            
            
               
               	Unbuffered closed channel: Sending messages will cause panic and receiving on it will yield an immediate zero
                  value of the channel's element type.
               

               
               	Buffered closed channel: Sending messages will cause panic but receiving on it will first yield all the values
                  in the channel's queue. Once the queue has been exhausted, then the channel will start
                  yielding zero values of the channel's element type.
               

               
            

            
            The following is a program to elucidate on the two preceding points:

            // closed.go 
package main 
 
import "fmt" 
 
type msg struct { 
    ID    int 
    value string 
} 
 
func handleIntChan(intChan <-chan int, done chan<- int) { 
    // Even though there are only 4 elements being sent via channel, we retrieve 6 values. 
    for i := 0; i < 6; i++ { 
        fmt.Println(<-intChan) 
    } 
    done <- 0 
} 
 
func handleMsgChan(msgChan <-chan msg, done chan<- int) { 
    // We retrieve 6 values of element type struct 'msg'. 
    // Given that there are only 4 values in the buffered channel, 
    // the rest should be zero value of struct 'msg'. 
    for i := 0; i < 6; i++ { 
        fmt.Println(fmt.Sprintf("%#v", <-msgChan)) 
    } 
    done <- 0 
} 
 
func main() { 
    intChan := make(chan int) 
    done := make(chan int) 
 
    go func() { 
        intChan <- 9 
        intChan <- 2 
        intChan <- 3 
        intChan <- 7 
        close(intChan) 
    }() 
    go handleIntChan(intChan, done) 
 
    msgChan := make(chan msg, 5) 
    go func() { 
        for i := 1; i < 5; i++ { 
            msgChan <- msg{ 
                ID:    i, 
                value: fmt.Sprintf("VALUE-%v", i), 
            } 
        } 
        close(msgChan) 
    }() 
    go handleMsgChan(msgChan, done) 
 
    // We wait on the two channel handler goroutines to complete. 
    <-done 
    <-done 
 
    // Since intChan is closed, this will cause a panic to occur. 
    intChan <- 100 
} 

            The following is one possible output of the program:

            9
2
3
7
0
0
main.msg{ID:1, value:"VALUE-1"}
main.msg{ID:2, value:"VALUE-2"}
main.msg{ID:3, value:"VALUE-3"}
main.msg{ID:4, value:"VALUE-4"}
main.msg{ID:0, value:""}
main.msg{ID:0, value:""}
panic: send on closed channel
    
goroutine 1 [running]:
main.main()
          closed.go:58 +0x194
    
    Process finished with exit code 2
  

            Finally, here are some further useful points about closing channels and closed channels:

            
            
               
               	It is not possible to determine if a channel has been closed. The best we can do is
                  check if we were able to successfully retrieve a message from a channel. We know that
                  the default syntax for retrieving on channel is msg := <- ch. However, there is a variant on this retrieval: msg, ok := <-ch. The second parameter tells us if the retrieval was successful. If a channel is closed,
                  ok will be false. This can be used to tell when a channel has been closed.
               

               
               	msg, ok := <-ch is a common pattern when iterating over channels. As a result, Go allows us to range over a channel. When a channel closes, the range loop ends.
               

               
               	Closing a closed channel, nil channel, or a receive-only channel will cause panic.
                  Only a bidirectional channel or send-only channel can be closed.
               

               
               	It is not mandatory to close a channel and irrelevant for the garbage collector (GC). If the GC determines that a channel is unreachable, irrespective of whether it
                  is open or closed, the channel will be garbage collected.
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Multiplexing channels

            
         
         
         
         
            
            
            Multiplexing describes the methodology where we use a single resource to act upon
               multiple signals or actions. This method is used extensively in telecommunications
               and computer networks. We might find ourselves in a situation where we have multiple
               types of tasks that we want to execute. However, they can only be executed in mutual
               exclusion, or they need to work on a shared resource. For this, we make use of a pattern
               in Go known as channels multiplexing. Before we dive into how to actually multiplex
               channels, let's try to implement it on our own.
            

            
            Imagine that we have a set of channels and we want to act on them as soon as data
               is sent over a channel. Here's a naïve approach on how we want to do this:
            

            // naiveMultiplexing.go 
package main 
 
import "fmt" 
 
func main() { 
    channels := [5](chan int){ 
        make(chan int), 
        make(chan int), 
        make(chan int), 
        make(chan int), 
        make(chan int), 
    } 
 
    go func() { 
        // Starting to wait on channels 
        for _, chX := range channels { 
            fmt.Println("Receiving from", <- chX) 
        } 
    }() 
 
    for i := 1; i < 6; i++ { 
        fmt.Println("Sending on channel:", i) 
        channels[i] <- 1 
    } 
} 

            The output of the preceding program is as follows:

            Sending on channel: 1
fatal error: all goroutines are asleep - deadlock!
   
goroutine 1 [chan send]:
main.main()
      /home/entux/Documents/Code/GO-WORKSPACE/src/distributed-go/ch3/naiveSwitch.go:23 +0x2b1
    
goroutine 5 [chan receive]:
main.main.func1(0xc4200160c0, 0xc420016120, 0xc420016180, 0xc4200161e0, 0xc420016240)
      GO-WORKSPACE/src/distributed-go/ch3/naiveSwitch.go:17 +0xba
created by main.main
      GO-WORKSPACE/src/distributed-go/ch3/naiveSwitch.go:19 +0x18b
  

            In the loop within the goroutine, the first channel is never waited upon and this
               causes the deadlock in the goroutine. Multiplexing helps us wait upon multiple channels
               without blocking on any of the channels while acting on a message once it is available
               on a channel.
            

            
            The following are some important points to remember when multiplexing on channels:

            
            
               
               	Syntax:
               

               
            

                  select { 
      case <- ch1: 
        // Statements to execute if ch1 receives a message 
      case val := <- ch2: 
        // Save message received from ch2 into a variable and
        execute statements for ch2 
      }

            
               
               	It is possible that, by the time select is executed, more than one case is ready with a message. In this case, select will not execute all of the cases, but will pick one at random, execute it, and then
                  exit the select statement.
               

               
               	However, the preceding point might be limited if we want to react on messages being
                  sent to all channels in select cases. Then we can put the select statement inside a for loop and it will ensure that all messages will be handled.
               

               
               	Even though the for loop will handle messages sent on all channels, the loop will still be blocked until
                  a message is available on it. There might be scenarios where we do not wish to block
                  the loop iteration and instead do some "default" action. This can be achieved using
                  default case in select statement.
               

               
               	Updated syntax based on the preceding two points is:

               
            

                  for { 
        select { 
            case <- ch1: 
            // Statements to execute if ch1 receives a message 
            case val := <- ch2: 
            // Save message received from ch2 into a variable and
            execute statements for ch2 
            default: 
            // Statements to execute if none of the channels has yet
            received a message. 
        } 
      } 

            
               
               	In the case of buffered channels, the order in which the messages are received is
                  not guaranteed.
               

               
            

            
            The following is the correct way to multiplex on all the required channels without
               being blocked on any and continuing to work on all the messages being sent:
            

            // multiplexing.go 
 
package main 
 
import ( 
    "fmt" 
) 
 
func main() { 
    ch1 := make(chan int) 
    ch2 := make(chan string) 
    ch3 := make(chan int, 3) 
    done := make(chan bool) 
    completed := make(chan bool) 
 
    ch3 <- 1 
    ch3 <- 2 
    ch3 <- 3 
    go func() { 
        for { 
 
            select { 
                case <-ch1: 
                      fmt.Println("Received data from ch1") 
                case val := <-ch2: 
                      fmt.Println(val) 
                case c := <-ch3: 
                      fmt.Println(c) 
                case <-done: 
                      fmt.Println("exiting...") 
                      completed <- true 
                      return 
            } 
        } 
    }() 
 
    ch1 <- 100 
    ch2 <- "ch2 msg" 
    // Uncomment us to avoid leaking the 'select' goroutine! 
    //close(done) 
    //<-completed 
} 

            The following is the output of the preceding program:

            1
Received data from ch1
2
3

            Unfortunately, there is one flaw with the program: it leaks the goroutine handling, select. This is also pointed out in the comment near the end of the main function. This generally happens when we have a goroutine that is running but we
               cannot directly reach it. Even if a goroutine's reference is not stored, the GC will
               not garbage collect it. Thus, we need a mechanism to stop and return from such goroutines.
               In general, this can be achieved by creating a channel specifically for returning
               from the goroutine.
            

            
            In the preceding code, we send the signal via the done channel. The following would be the output if we uncomment the lines and then run
               the program:
            

            1
2
3
Received data from ch1
ch2 msg
exiting...

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we looked at the reason to control parallelism and developed an appreciation
               for the complexity of the task when a shared state is involved. We used the example
               of an overworked cashier as a programming problem to solve and to experiment with
               channels, and further explored different types of channels and the nuances involved
               with using them. For example, we saw that both closed buffered and unbuffered channels
               will cause panic if we try to send messages on them, and receiving messages from them
               leads to different results based on whether the channel is buffered and if the channel
               is empty or full. We also saw how to wait on multiple channels without blocking on
               any with the help of select.
            

            
            In later chapters, from Chapter 5, Introducing Goophr, through to Chapter 8, Deploying Goophr, we will be developing a distributed web application. This requires us to have basic
               knowledge of how to interact with a web server, using the HTTP protocol using tools
               other than a web browser. This knowledge will come in handy not only when interacting
               with our application but also with the standard web as a developer. This will be the
               subject of the next chapter, Chapter 4, The RESTful Web, where we will look at the tools and protocols we will be using to interact with
               our web application.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The RESTful Web

            
         
         
         
         
            
            
            
               
               In the previous chapters, we looked at two of the most important components of Go—goroutines
                  and channels. In the following chapters, we will build a distributed application using
                  Go, and it is very important to understand how to write applications for the internet
                  or, in our case, the web. In this chapter, we shall look at a particular way of building
                  web applications using the REST web protocol. We shall also look at how to interact
                  with a REST-based web application. We shall be covering them in the following manner:
               

               
            

            
            
               
               	A brief look at HTTP and sessions

               
               	Fundamentals to build a REST server

               
               	Design a simple REST server

               
               	Tools to interact with a REST server

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            HTTP and sessions

            
         
         
         
         
            
            
            In this section we will take a brief look at the HTTP protocol and how it has evolved
               over time. Also discuss how servers keep track of user state using HTTP sessions.
               This knowledge will come in handy when we try to understand how REST protocol works.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            A brief history of HTTP

            
         
         
         
         
            
            
            In order to better understand the advantages of the REST protocol, let us take a small
               detour into how the internet was used before the REST web protocol came onto the scene.
               The internet in 1990s was mostly used to store and share documents as marked up documents
               using HTTP (Hypertext Transfer Protocol). For this chapter, HTTP can be summarized as follows:
            

            
            
               
               	HTTP is a network communication protocol that starts with an HTTP request and ends
                  with an HTTP response.
               

               
               	HTTP responses during the early periods consisted of plain text documents, but soon
                  the HTML format gained traction as it allowed for more stylized documents.
               

               
               	Web browsers brought in a new age of internet: merely displaying text documents with
                  different font weights wasn't enough. CSS and JavaScript came to the fore to make
                  these documents customizable and more interactive. All these advancements led to what
                  we now call the web.
               

               
               	One could interact with a web server using a URL and an HTTP method. There are nine
                  HTTP methods, but, for the purpose of this book, we are only interested in five of
                  them:
                  
                  
                     
                     	GET: This is used when sending simple HTTP requests
                     

                     
                     	POST : This is used when we want to include valuable information while sending HTTP requests
                     

                     
                     	 PUT, PATCH, and DELETE: Technically, they are identical to, POST method, although they differ in functionally
                     

                     
                  

                  
               

               
            

            
            We shall revisit these HTTP methods in the next section and explore them in greater
               detail.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            HTTP sessions

            
         
         
         
         
            
            
            The HTTP protocol in itself is stateless; that is, it has no idea of what is accessing
               a web page, who can POST to a page, and so on. For the majority of HTTP servers during
               this period (1990s), they could be thought of as file server; that is, they serve
               static files over the internet. However, the modern web experience is more expansive.
               Consider visiting Gmail or Facebook, and the website knows who we are and we are shown
               customized content that is dynamically generated for us. They maintain the "state"
               of which article we are reading or the mail we are writing. If we were to close the
               browser and return to the website after a while, it can drop us right back to where
               we left off. Given that the HTTP protocol and HTTP servers are stateless, how do these
               websites keep track of all these things and link them back to the correct user? The
               answer is an HTTP session.
            

            
            When we log onto a website from a browser, we provide it with credentials to identify
               ourselves. The server responds back with a response that also consists of a token,
               which will be used to identify us in the near future. The token can be in the form
               of a session ID, cookie, authentication header, and so on. A web server maintains
               a table of such tokens and the corresponding user IDs. After we have logged onto a
               website, the browser always sends the corresponding token in the headers to the server
               with every request. As a result, the web server is able to keep track of each user
               and show correct content to any given user. How does the server do this? It maintains
               all the state information on the server side!
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The REST protocol

            
         
         
         
         
            
            
            Even in the 1990s, the computers and internet technology kept advancing rapidly and
               the web browsers kept evolving simultaneously. This meant that the web servers themselves
               could start offloading some of the work to the web client; that is, the web browser.
               Slowly this began to lead developers to experiment with different software architectures
               for developing web applications. By 2010, the REST protocol became the most prevalent
               way to design a modern web application.
            

            
            REST (Representation State Transfer Protocol) was first described by Roy Fielding in his seminal paper titled, Architectural Styles and the Design of Network-based Software Architectures (https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf). This way of designing a web application has many advantages. It is practical, efficient
               in CPU usage and network load, scales better for increasing internet traffic, and
               so on. The following are some of the properties and benefits of using REST software
               architecture.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The server and client architecture

            
         
         
         
         
            
            
            In the HTTP sessions section, we described a server that was doing most of the work and browser was responsible
               for relaying user inputs to the server, parsing the HTML document returned back from
               the server, and rendering it in the browser for the user. REST allows us to split
               the application into a server and client. A server (backend) is responsible for executing
               business logic, and a client (frontend) is responsible for communicating user interaction
               to the server. It might sound like not much has changed; however, the remaining properties
               of REST architecture will be more apparent.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The standard data format

            
         
         
         
         
            
            
            REST revolves around the communication state and data between the backend and frontend
               using a standard data format. This results in the decoupling of backend and frontend.
               This means that we are no longer bound to using only a web browser to communicate
               with the server, and this in turn means that our servers are now capable of being
               used to interact with web applications, command-line applications, and so on. REST
               allows us to use any type of data format for communication, although JSON format has
               become the lingua franca for communication over REST protocol.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Resources

            
         
         
         
         
            
            
            Since our frontend and backend are separate, we need to communicate the state and
               data between the two. In the frontend, we will need to show all available entities
               for the service we are providing. These entities are called resources.
            

            
            Consider a server that provides us with a REST interface (REST API) that has a list
               of books in our personal library. In this case, list of books are resources and we can request information about each of them from the backend
               at particular endpoints. For our example, the endpoint can be <URL>/api/books. /api prefix is a convention generally used in REST applications to express that we are
               interacting with the backend URLs. The resources can generally be thought of as a
               collection of data, like rows of a database table.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Reusing the HTTP protocol

            
         
         
         
         
            
            
            We defined endpoints in the previous subsection, Resources, but how do we interact with them? REST is built on top of the HTTP protocol and
               it uses HTTP methods, or verbs in the case of REST, to interact with the server. Let's
               take our endpoint from the previous example, /api/books, to understand how it is used.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            GET

            
         
         
         
         
            
            
            REST uses the GET verb to retrieve items of the specific resource type. Given that we have a lot of
               items, it is possible to retrieve a specific resource item and to retrieve all the
               available resource items. Retrieval of a specific resource item is generally done
               by providing the id of the item. The following shows the two forms of GET used for retrieval:
            

            
            
               
               	/api/books: This returns a list of all books in the library
               

               
               	/api/books/<id> : This returns information about a particular book in the library
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            POST

            
         
         
         
         
            
            
            REST uses the POST verb to create a new item of the specific resource type. Resource creation might
               require extra information, which is provided in the body of the POST request. The information being provided as part of the body has to be in the data
               format the REST server can handle. POSTing to /api/books signifies that we want to add a new book to the list of books in our library.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            PUT and PATCH

            
         
         
         
         
            
            
            These take the form /api/books/<id>. These methods are only applicable for an already existing resource. They will update
               a given resource with the data or new state of the resource provided in the request's
               body. PUT expects a resource's new state to be provided in completion, including fields that
               haven't changed. PATCH can be thought of as a more relaxed version of PUT because we do not need to provide the complete new state but only the fields that
               need to be updated.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            DELETE

            
         
         
         
         
            
            
            REST uses the DELETE verb to remove a specific resource item. It takes the form of /api/resource/<id>. It deletes a particular resource based on <id>. REST supports deletion of all items of a given resource type, although this doesn't
               make sense as it is now possible for a user to accidentally delete all items of the
               resource type. For this and many other reasons, no server actually implements this
               feature.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Upgradable components

            
         
         
         
         
            
            
            Consider the case where we need to make changes to the UI and this is not going to
               affect the server logic. If a website was not split according to client and server
               architecture, we would have to upgrade the complete website and this would be quite
               a time-consuming task. Thanks to the split of frontend and backend, we can make changes
               and upgrade only the required system. Thus, we can ensure minimal disruption of service.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Fundamentals of a REST server

            
         
         
         
         
            
            
            Now that we have an understanding of how a REST application should behave, let's build
               one! We shall start out by first building a simple web server, then design the books
               REST server by describing design decisions and API definitions, and finally build
               a REST server based on the design.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            A simple web server

            
         
         
         
         
            
            
            Go provides us with an inbuilt library for building web servers, net/http. For every endpoint we want to create on our server, we have to do two things:
            

            
            
               
               	Create a handler function for the endpoint, which accepts two parameters, one for
                  writing to response and one to handle the incoming Request.
               

               
               	Register the endpoint using net/http.HandleFunc.
               

               
            

            
            The following is a simple web server that accepts all incoming requests, logs them
               on to the console, and then returns a Hello, World! message.
            

            // helloServer.go 
 
package main 
 
import ( 
    "fmt" 
    "log" 
    "net/http" 
) 
 
func helloWorldHandler(w http.ResponseWriter, r *http.Request) { 
    msg := fmt.Sprintf("Received request [%s] for path: [%s]", r.Method, r.URL.Path) 
    log.Println(msg) 
 
    response := fmt.Sprintf("Hello, World! at Path: %s", r.URL.Path) 
    fmt.Fprintf(w, response) 
} 
 
func main() { 
    http.HandleFunc("/", helloWorldHandler) // Catch all Path 
 
    log.Println("Starting server at port :8080...") 
    http.ListenAndServe(":8080", nil) 
} 

            Here are some sample requests and responses when requesting the URL in the browser:

            http://localhost:8080/  --> Hello, World! at Path: / 
http://localhost:8080/asdf  htt--> Hello, World! at Path: /asdf 
http://localhost:8080/some-path/123  --> Hello, World! at Path: /some-path/123 

            And the following is the server output:

            2017/10/03 13:35:46 Starting server at port :8080... 
2017/10/03 13:36:01 Received request [GET] for path: [/] 
2017/10/03 13:37:22 Received request [GET] for path: [/asdf] 
2017/10/03 13:37:40 Received request [GET] for path: [/some-path/123] 

            Notice that even though we have provided multiple paths, they are all defaulting to
               the / path.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Designing a REST API

            
         
         
         
         
            
            
            We have looked at the history behind HTTP and the core concepts behind the REST protocol.
               We built a simple web server to show some of the server-side code needed to build
               a REST server. It is time for us to design and build a REST server using everything
               we have learned so far.
            

            
            We will start by defining the data format for our REST API, and then we will create
               a web server that works as per the REST API specifications we defined.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The data format

            
         
         
         
         
            
            
            In this section, we will describe the format of the book resource, and then we will
               start defining each of the REST API interactions as well as the expected result from
               these interactions.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The book resource

            
         
         
         
         
            
            
            The following is the basic definition of a book resource. It is a JSON array with
               the format "<key>": "<value-type>", though the actual entities used in the application will consist of real values:
            

            { 
    "id": "string", 
    "title": "string", 
    "link": "string" 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            GET /api/books

            
         
         
         
         
            
            
            This REST API call will retrieve a list of all items of the book resource type. The
               response's JSON format in our example consists of an array of the book resource type.
               However, this return format is not the only way to return items. An alternate but
               more popular format consists of a JSON object with key "data" that consists of the
               actual results and any further keys that the server might want to send back in the
               response.
            

            
            Let's now look at the simple format we will be using in our example:

            // Request 
GET "<URL>/api/books/" 

// Response 
[ 
  { 
     "id": "1", 
     "title": "book1", 
     "link": "http://link-to-book-1.com" 
   }, 
   { 
     "id": "2", 
     "title": "book2", 
     "link": "http://link-to-book-2.com" 
   } 
 ] 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            GET /api/books/<id>

            
         
         
         
         
            
            
            This form of the GET call will retrieve a single book resource item based on the <id> provided. In general the response's JSON object will be of the defined resource type,
               though a server might decide to add or remove certain fields based on the service's
               logic. For our API, we will return all the fields defined in our resource type.
            

            
            Let's look at an example when we try to retrieve a book resource with id "1":
            

            // Request 
GET "<URL>/api/books/1" 
 
// Response 
{ 
   "id": "1", 
   "title": "book1", 
   "link": "http://link-to-book-1.com" 
 } 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            POST /api/books

            
         
         
         
         
            
            
            This REST API call will create a new item of book resource type. However, in order
               to create a new item, we would need to provide all the necessary data. It is possible
               to have POST requests that do not require any extra information. But in our case, we need to send
               information such as the title and link to the book as request's payload.
            

            
            In this example, we want to create a book item with the title "book5" and link "http://link-to-book5.com". Note that since our server already has two items of the book resource type, the
               new item is created with id of "3"; this is the implementation as per our server. Other REST servers might behave differently.
            

            // Request 
POST "<URL>/api/books" 
 
// payload 
{ 
   "title": "book5", 
   "link": "http://link-to-book-5.com" 
 } 
 
 // response 
 { 
    "id": "3", 
    "title": "book5", 
    "link": "http://link-to-book-5.com" 
  } 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            PUT /api/books/<id>

            
         
         
         
         
            
            
            We will use PUT in our REST API to update a specific resource type. PUT defined in our API is stringent with accepting the payload without complete data,
               that is, it will reject with incomplete payloads.
            

            
            In this example, we will modify the newly created book "3" and change its link to point at "http://link-to-book-15.com":
            

            // Request 
PUT "<URL>/api/books/3" 

// payload 
{ 
   "title": "book5", 
   "link": "http://link-to-book-15.com" 
 } 
 
 // response 
 { 
    "id": "3", 
    "title": "book5", 
    "link": "http://link-to-book-15.com" 
  }

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            DELETE /api/books/<id>

            
         
         
         
         
            
            
            This is the REST API call used to delete a specific book resource. This kind of request
               doesn't need a body and only requires the book id as part of the URL as shown in the
               next example.
            

            
            In this example, we will delete book 2. Note that we do not return anything in response; other REST servers might return
               the deleted item:
            

              // Request 
  DELETE "<URL>/api/books/2" 
 
  // Response 
  [] 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Unsuccessful requests

            
         
         
         
         
            
            
            It is possible that we could send ill-constructed requests, requests on unavailable
               entities, or bad incomplete payloads. For all such instances, we will send relevant
               HTTP error codes. Depending upon a server's implementation, it is possible to return
               a single error code. Some servers return a standard error code "404" for added security
               to not let malicious users try to find items of resource type they do not own.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Design decisions

            
         
         
         
         
            
            
            We have defined our REST API and next we would like to implement the server. It is
               important to formulate what we want our server to accomplish before writing any code.
               The following are some of the specifications for the server:
            

            
            
               
               	We need to extract <id> for PUT, DELETE, and single resource GET Requests.
               

               
               	We want to log every incoming request similar to the helloWorldHandler.
               

               
               	It would be tedious and bad coding practice to duplicate so much effort. We can make
                  use of closures and function literals to create new functions for us that will combine
                  the tasks from previous two points.
               

               
               	In order to keep the example simple, we shall be using a map[string]bookResource to store the state of all book resources. All operations will be done on this map.
                  In real-world servers, we would generally be using a database to store these resources.
               

               
               	Go server can handle concurrent requests, and this means that we should ensure that
                  the map of book resources is safe from race conditions.
               

               
            

            
            Let's look at what the code might look like based on the design we came up with.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The REST server for books API

            
         
         
         
         
            
            
            We have divided our program as follows:

            $ tree 
. 
├── books-handler 
│   ├── actions.go 
│   ├── common.go 
│   └── handler.go 
└── main.go 
 
1 directory, 5 files 

            Now let's look at the source code of each file.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            main.go

            
         
         
         
         
            
            
            The main.go source file consists of code mostly responsible for assembling and running the web
               server. The logic to actually respond to HTTP requests are distributed across other
               files:
            

            // restServer/main.go 
 
package main 
 
import ( 
    "fmt" 
    "log" 
    "net/http" 
 
    booksHandler "github.com/last-ent/distributed-go/chapter4/books-handler" 
) 
 
func main() { 
    // Get state (map) for books available on REST server. 
    books := booksHandler.GetBooks() 
    log.Println(fmt.Sprintf("%+v", books)) 
  
    actionCh := make(chan booksHandler.Action) 
 
    // Start goroutine responsible for handling interaction with the books map 
    go booksHandler.StartBooksManager(books, actionCh) 
 
    http.HandleFunc("/api/books/", booksHandler.MakeHandler(booksHandler.BookHandler, "/api/books/", actionCh)) 
 
    log.Println("Starting server at port 8080...") 
    http.ListenAndServe(":8080", nil) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            books-handler/common.go

            
         
         
         
         
            
            
            The code in this source file is generic logic, which might be shared across multiple
               requests:
            

            
            It is generally a good practice to identify the logic that is not tied to one particular
               handler and then move it into common.go or similar source files, as this would make them easier to find and reduce duplicated
               code.
            

            // restServer/books-handler/common.go 
 
package booksHandler 
 
import ( 
    "encoding/json" 
    "fmt" 
    "log" 
    "net/http" 
) 
 
// bookResource is used to hold all data needed to represent a Book resource in the books map. 
type bookResource struct { 
    Id    string 'json:"id"' 
    Title string 'json:"title"' 
    Link  string 'json:"link"' 
} 
 
// requestPayload is used to parse request's Payload. We ignore Id field for simplicity. 
type requestPayload struct { 
    Title string 'json:"title"' 
    Link  string 'json:"link"' 
} 
 
// response struct consists of all the information required to create the correct HTTP response. 
type response struct { 
    StatusCode int 
    Books      []bookResource 
} 
 
// Action struct is used to send data to the goroutine managing the state (map) of books. 
// RetChan allows us to send data back to the Handler function so that we can complete the HTTP request. 
type Action struct { 
    Id      string 
    Type    string 
    Payload requestPayload 
    RetChan chan<- response 
} 
 
// GetBooks is used to get the initial state of books represented by a map. 
func GetBooks() map[string]bookResource { 
    books := map[string]bookResource{} 
    for i := 1; i < 6; i++ { 
        id := fmt.Sprintf("%d", i) 
        books[id] = bookResource{ 
            Id:    id, 
            Title: fmt.Sprintf("Book-%s", id), 
            Link:  fmt.Sprintf("http://link-to-book%s.com", id), 
        } 
    } 
    return books 
} 
 
// MakeHandler shows a common pattern used reduce duplicated code. 
func MakeHandler(fn func(http.ResponseWriter, *http.Request, string, string, chan<- Action), 
    endpoint string, actionCh chan<- Action) http.HandlerFunc { 
 
    return func(w http.ResponseWriter, r *http.Request) { 
        path := r.URL.Path 
        method := r.Method 
 
        msg := fmt.Sprintf("Received request [%s] for path: [%s]", method, path) 
        log.Println(msg) 
 
        id := path[len(endpoint):] 
        log.Println("ID is ", id) 
        fn(w, r, id, method, actionCh) 
    } 
} 
 
// writeResponse uses the pattern similar to MakeHandler. 
func writeResponse(w http.ResponseWriter, resp response) { 
    var err error 
    var serializedPayload []byte 
 
    if len(resp.Books) == 1 { 
        serializedPayload, err = json.Marshal(resp.Books[0]) 
    } else { 
        serializedPayload, err = json.Marshal(resp.Books) 
    } 
 
    if err != nil { 
        writeError(w, http.StatusInternalServerError) 
        fmt.Println("Error while serializing payload: ", err) 
    } else { 
        w.Header().Set("Content-Type", "application/json") 
        w.WriteHeader(resp.StatusCode) 
        w.Write(serializedPayload) 
    } 
} 
 
// writeError allows us to return error message in JSON format. 
func writeError(w http.ResponseWriter, statusCode int) { 
    jsonMsg := struct { 
        Msg  string 'json:"msg"' 
        Code int    'json:"code"' 
    }{ 
        Code: statusCode, 
        Msg:  http.StatusText(statusCode), 
    } 
 
    if serializedPayload, err := json.Marshal(jsonMsg); err != nil { 
        http.Error(w, http.StatusText(http.StatusInternalServerError), http.StatusInternalServerError) 
        fmt.Println("Error while serializing payload: ", err) 
    } else { 
        w.Header().Set("Content-Type", "application/json") 
        w.WriteHeader(statusCode) 
        w.Write(serializedPayload) 
    } 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            books-handler/actions.go

            
         
         
         
         
            
            
            This source file consists of functions to handle each of the HTTP request's method
               calls:
            

            // restServer/books-handler/actions.go 
 
package booksHandler 
 
import ( 
    "net/http" 
) 
 
// actOn{GET, POST, DELETE, PUT} functions return Response based on specific Request type. 
 
func actOnGET(books map[string]bookResource, act Action) { 
    // These initialized values cover the case: 
    // Request asked for an id that doesn't exist. 
    status := http.StatusNotFound 
    bookResult := []bookResource{} 
 
    if act.Id == "" { 
 
        // Request asked for all books. 
        status = http.StatusOK 
        for _, book := range books { 
            bookResult = append(bookResult, book) 
        } 
    } else if book, exists := books[act.Id]; exists { 
 
        // Request asked for a specific book and the id exists. 
        status = http.StatusOK 
        bookResult = []bookResource{book} 
    } 
 
    act.RetChan <- response{ 
        StatusCode: status, 
        Books:      bookResult, 
    } 
} 
 
func actOnDELETE(books map[string]bookResource, act Action) { 
    book, exists := books[act.Id] 
    delete(books, act.Id) 
 
    if !exists { 
        book = bookResource{} 
    } 
 
    // Return the deleted book if it exists else return an empty book. 
    act.RetChan <- response{ 
        StatusCode: http.StatusOK, 
        Books:      []bookResource{book}, 
    } 
} 
 
func actOnPUT(books map[string]bookResource, act Action) { 
    // These initialized values cover the case: 
    // Request asked for an id that doesn't exist. 
    status := http.StatusNotFound 
    bookResult := []bookResource{} 
 
    // If the id exists, update its values with the values from the payload. 
    if book, exists := books[act.Id]; exists { 
        book.Link = act.Payload.Link 
        book.Title = act.Payload.Title 
        books[act.Id] = book 
 
        status = http.StatusOK 
        bookResult = []bookResource{books[act.Id]} 
    } 
 
    // Return status and updated resource. 
    act.RetChan <- response{ 
        StatusCode: status, 
        Books:      bookResult, 
    } 
 
} 
 
func actOnPOST(books map[string]bookResource, act Action, newID string) { 
     // Add the new book to 'books'. 
     books[newID] = bookResource{ 
         Id:    newID, 
         Link:  act.Payload.Link, 
         Title: act.Payload.Title, 
    } 
 
    act.RetChan <- response{ 
        StatusCode: http.StatusCreated, 
        Books:      []bookResource{books[newID]}, 
    } 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            books-handler/handler.go

            
         
         
         
         
            
            
            The handler.go source file consists of all logic required to work with and handle book requests.
               Note that apart from consisting the logic for handling HTTP requests, it also deals
               with maintaining the state of books on the server:
            

            // restServer/books-handler/handler.go 
 
package booksHandler 
 
import ( 
    "encoding/json" 
    "fmt" 
    "io/ioutil" 
    "log" 
    "net/http" 
) 
 
// StartBooksManager starts a goroutine that changes the state of books (map). 
// Primary reason to use a goroutine instead of directly manipulating the books map is to ensure 
// that we do not have multiple requests changing books' state simultaneously. 
func StartBooksManager(books map[string]bookResource, actionCh <-chan Action) { 
    newID := len(books) 
    for { 
        select { 
        case act := <-actionCh: 
            switch act.Type { 
            case "GET": 
                actOnGET(books, act) 
            case "POST": 
                newID++ 
                newBookID := fmt.Sprintf("%d", newID) 
                actOnPOST(books, act, newBookID) 
            case "PUT": 
                actOnPUT(books, act) 
            case "DELETE": 
                actOnDELETE(books, act) 
            } 
        }  
    } 
} 
 
/* BookHandler is responsible for ensuring that we process only the valid HTTP Requests. 
 
 * GET -> id: Any 
 
 * POST -> id: No 
 *      -> payload: Required 
 
 * PUT -> id: Any 
 *     -> payload: Required 
 
 * DELETE -> id: Any 
*/ 
func BookHandler(w http.ResponseWriter, r *http.Request, id string, method string, actionCh chan<- Action) { 
 
     // Ensure that id is set only for valid requests 
     isGet := method == "GET"
     idIsSetForPost := method == "POST" && id != ""
     isPutOrPost := method == "PUT" || method == "POST"
     idIsSetForDelPut := (method == "DELETE" || method == "PUT") && id != ""
     if !isGet && !(idIsSetForPost || idIsSetForDelPut || isPutOrPost) {
         writeError(w, http.StatusMethodNotAllowed) 
         return 
     } 
 
     respCh := make(chan response) 
     act := Action{ 
         Id:      id, 
         Type:    method, 
         RetChan: respCh, 
     } 
 
     // PUT & POST require a properly formed JSON payload 
     if isPutOrPost { 
         var reqPayload requestPayload 
         body, _ := ioutil.ReadAll(r.Body) 
         defer r.Body.Close() 
 
         if err := json.Unmarshal(body, &reqPayload); err != nil { 
             writeError(w, http.StatusBadRequest) 
             return 
         } 
 
         act.Payload = reqPayload 
     } 
 
     // We have all the data required to process the Request. 
     // Time to update the state of books. 
     actionCh <- act 
 
     // Wait for respCh to return data after updating the state of books. 
     // For all successful Actions, the HTTP status code will either be 200 or 201. 
     // Any other status code means that there was an issue with the request. 
     var resp response 
     if resp = <-respCh; resp.StatusCode > http.StatusCreated { 
         writeError(w, resp.StatusCode) 
         return 
     } 
 
     // We should only log the delete resource and not send it back to user 
     if method == "DELETE" { 
         log.Println(fmt.Sprintf("Resource ID %s deleted: %+v", id, resp.Books)) 
         resp = response{ 
             StatusCode: http.StatusOK, 
             Books:      []bookResource{}, 
         } 
     } 
 
     writeResponse(w, resp) 
 } 

            Even though we have created a REST server from scratch, this is not a complete REST
               server. To make writing a REST server feasible, a lot of important details have been
               left out. But in reality, we should use one of the existing libraries that will help
               us build a proper REST server.
            

            
            So far so good but how do we interact with a REST server and with the server based
               on the code we have seen so far? Let's look at this in the next section.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            How to make REST calls

            
         
         
         
         
            
            
            Up to this point, we have used the web browser to make HTTP requests. This works for
               a normal HTTP server or to make simple GET Requests to a REST server. However, the browser will not be able to make other type
               of REST calls on our behalf.
            

            
            Most web applications use JavaScript, Ajax, and other frontend technologies to interact
               with a REST server. However, we do not have to create a full-blown web frontend to
               interact with a REST server; we can make use of a few tools and also write programs
               to make REST calls for us.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            cURL

            
         
         
         
         
            
            
            cURL is a free command-line tool used to interact over a computer network. It can
               be used to communicate over multiple protocols including HTTP, HTTPS, FTP, SCP, and
               so on. Let's make REST calls to the server created in the previous section. To improve
               readability, we can make use of the jq library.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            GET

            
         
         
         
         
            
            
            Let's now look at cURL commands to make HTTP requests. Depending on the state of your
               server, the output on making the GET Request might be different:
            

            $ # List all books on server 
$ # Note that we use '-L' flag while using cURL. 
$ # This takes care of any http redirections that might be required. 
$ curl -L localhost:8080/api/books | jq  # GET CALL 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100    46  100    46    0     0   9721      0 --:--:-- --:--:-- --:--:-- 11500 
100   311  100   311    0     0  59589      0 --:--:-- --:--:-- --:--:-- 59589 
[ 
  { 
    "id": "3", 
    "title": "Book-3", 
    "link": "http://link-to-book3.com" 
  }, 
  { 
    "id": "4", 
    "title": "Book-4", 
    "link": "http://link-to-book4.com" 
  }, 
  { 
    "id": "5", 
    "title": "Book-5", 
    "link": "http://link-to-book5.com" 
  }, 
  { 
    "id": "1", 
    "title": "Book-1", 
    "link": "http://link-to-book1.com" 
  }, 
  { 
    "id": "2", 
    "title": "Book-2", 
    "link": "http://link-to-book2.com" 
  } 
] 
 
$ curl localhost:8080/api/books/3 | jq  # GET a single resource. 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100    61  100    61    0     0  13255      0 --:--:-- --:--:-- --:--:-- 15250 
{ 
  "id": "3", 
  "title": "Book-3", 
  "link": "http://link-to-book3.com" 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            DELETE

            
         
         
         
         
            
            
            Assuming that we have a book with the id "2", we can delete it using cURL, as follows:
            

            $ # We can make other method calls by providing -X flag with method name in caps. 
$ curl -LX DELETE localhost:8080/api/books/2 | jq  # DELETE a resource. 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100     2  100     2    0     0    337      0 --:--:-- --:--:-- --:--:--   400 
[] 
$ curl -L localhost:8080/api/books | jq # GET all books after resource deletion. 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100    46  100    46    0     0  21465      0 --:--:-- --:--:-- --:--:-- 46000 
100   249  100   249    0     0  91008      0 --:--:-- --:--:-- --:--:-- 91008 
[ 
  { 
    "id": "5", 
    "title": "Book-5", 
    "link": "http://link-to-book5.com" 
  }, 
  { 
    "id": "1", 
    "title": "Book-1", 
    "link": "http://link-to-book1.com" 
  }, 
  { 
    "id": "3", 
    "title": "Book-3", 
    "link": "http://link-to-book3.com" 
  }, 
  { 
    "id": "4", 
    "title": "Book-4", 
    "link": "http://link-to-book4.com" 
  } 
] 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            PUT

            
         
         
         
         
            
            
            Let's update an existing book resource with the id "4":
            

            $ # We can use -d flag to provide payload in a Request 
$ curl -H "Content-Type: application/json" -LX PUT -d '{"title": "New Book Title", "link": "New Link"}' localhost:8080/api/books/4 | jq 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100   100  100    53  100    47  13289  11785 --:--:-- --:--:-- --:--:-- 17666 
{ 
  "id": "4", 
  "title": "New Book Title", 
  "link": "New Link" 
} 
$ curl -L localhost:8080/api/books | jq # GET all books after updating a resource 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100    46  100    46    0     0   9886      0 --:--:-- --:--:-- --:--:-- 11500 
100   241  100   241    0     0  47024      0 --:--:-- --:--:-- --:--:-- 47024 
[ 
  { 
    "id": "1", 
    "title": "Book-1", 
    "link": "http://link-to-book1.com" 
  }, 
  { 
    "id": "3", 
    "title": "Book-3", 
    "link": "http://link-to-book3.com" 
  }, 
  { 
    "id": "4", 
    "title": "New Book Title", 
    "link": "New Link" 
  }, 
  { 
    "id": "5", 
    "title": "Book-5", 
    "link": "http://link-to-book5.com" 
  } 
] 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            POST

            
         
         
         
         
            
            
            Now that we know how to send payload to a server using cURL, let's create a new book
               resource item:
            

            $ curl -H "Content-Type: application/json" -LX POST -d '{"title":"Ultra New Book", "link": "Ultra New Link"}' localhost:8080/api/books/ | jq # POST ie., create a new resource. 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100   111  100    59  100    52    99k  89655 --:--:-- --:--:-- --:--:-- 59000 
{ 
  "id": "6", 
  "title": "Ultra New Book", 
  "link": "Ultra New Link" 
} 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100    46  100    46    0     0   8234      0 --:--:-- --:--:-- --:--:--  9200 
100   301  100   301    0     0  46414      0 --:--:-- --:--:-- --:--:-- 46414 
[ 
  { 
    "id": "4", 
    "title": "New Book Title", 
    "link": "New Link" 
  }, 
  { 
    "id": "5", 
    "title": "Book-5", 
    "link": "http://link-to-book5.com" 
  }, 
  { 
    "id": "1", 
    "title": "Book-1", 
    "link": "http://link-to-book1.com" 
  }, 
  { 
    "id": "6", 
    "title": "Ultra New Book", 
    "link": "Ultra New Link" 
  }, 
  { 
    "id": "3", 
    "title": "Book-3", 
    "link": "http://link-to-book3.com" 
  } 
] 

            Here are the commands for quick reference:

            
            
               
               	curl -L localhost:8080/api/books | jq # GET CALL

               
               	curl localhost:8080/api/books/3 | jq # GET a single resource.

               
               	curl -LX DELETE localhost:8080/api/books/2 | jq # DELETE a resource.

               
               	curl -H "Content-Type: application/json" -LX PUT -d '{"title": "New Book Title", "link":
                     "New Link"}' localhost:8080/api/books/4 | jq

               
               	curl -H "Content-Type: application/json" -LX POST -d '{"title":"Ultra New Book", "link":
                     "Ultra New Link"}' localhost:8080/api/books/ | jq # POST ie., create a new resource.

               
            

            
            And the following is the server's console output:

            $ go run main.go 
2017/10/09 21:07:50 map[5:{Id:5 Title:Book-5 Link:http://link-to-book5.com} 1:{Id:1 Title:Book-1 Link:http://link-to-book1.com} 2:{Id:2 Title:Book-2 Link:http://link-to-book2.com} 3:{Id:3 Title:Book-3 Link:http://link-to-book3.com} 4:{Id:4 Title:Book-4 Link:http://link-to-book4.com}] 
2017/10/09 21:07:50 Starting server at port 8080... 
2017/10/09 21:07:56 Received request [GET] for path: [/api/books/] 
2017/10/09 21:07:56 ID is 
2017/10/09 21:09:18 Received request [GET] for path: [/api/books/3] 
2017/10/09 21:09:18 ID is  3 
2017/10/09 21:11:38 Received request [DELETE] for path: [/api/books/2] 
2017/10/09 21:11:38 ID is  2 
2017/10/09 21:11:38 Resource ID 2 deleted: [{Id:2 Title:Book-2 Link:http://link-to-book2.com}] 
2017/10/09 21:12:16 Received request [GET] for path: [/api/books/] 
2017/10/09 21:12:16 ID is 
2017/10/09 21:15:22 Received request [PUT] for path: [/api/books/4] 
2017/10/09 21:15:22 ID is  4 
2017/10/09 21:16:01 Received request [GET] for path: [/api/books/] 
2017/10/09 21:16:01 ID is 
2017/10/09 21:17:07 Received request [POST] for path: [/api/books/] 
2017/10/09 21:17:07 ID is 
2017/10/09 21:17:36 Received request [GET] for path: [/api/books/] 
2017/10/09 21:17:36 ID is 

            An important thing to keep in mind is that even though we use redirection flag -L, for POST requests the body will not be sent. We need to make sure that we are sending
               it to finally resolved endpoint.
            

            
            This should give us the basic idea of how to use a REST client.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Postman

            
         
         
         
         
            
            
            Let's now look at a GUI-based tool that can be used to make REST calls called Postman (https://www.getpostman.com/). For the sake of brevity, we shall look at a GET and a POST call.
            

            
            The following screenshot illustrates how to make a GET request using Postman. Note how Postman allows us to view the returned JSON in an
               easy-to-read format:
            

            
            

            
            GET /api/books

            
            The following screenshot shows how to make a POST request. Note that we could easily provide it with a JSON payload:
            

            
            

            
            POST /api/books

            
            Hopefully, the previous sections and these screenshots are sufficient to get an understanding
               of how to use Postman.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            net/http

            
         
         
         
         
            
            
            Let's look at how to send GET and POST from Go programmatically:
            

            package main 
 
import ( 
    "bytes" 
    "encoding/json" 
    "fmt" 
    "io/ioutil" 
    "net/http" 
) 
 
type bookResource struct { 
    Id    string 'json:"id"' 
    Title string 'json:"title"' 
    Link  string 'json:"link"' 
} 
 
func main() { 
    // GET 
    fmt.Println("Making GET call.") 
    // It is possible that we might have error while making an HTTP request 
    // due to too many redirects or HTTP protocol error. We should check for this eventuality. 
    resp, err := http.Get("http://localhost:8080/api/books")
    if err != nil {
        fmt.Println("Error while making GET call.", err) 
        return 
    } 
 
    fmt.Printf("%+v\n\n", resp)
 
    // The response body is a data stream from the server we got the response back from. 
    // This data stream is not in a useable format yet. 
    // We need to read it from the server and convert it into a byte stream. 
    body, _ := ioutil.ReadAll(resp.Body) 
    defer resp.Body.Close() 
 
    var books []bookResource 
    json.Unmarshal(body, &books) 
 
    fmt.Println(books) 
    fmt.Println("\n") 
 
    // POST 
    payload, _ := json.Marshal(bookResource{ 
        Title: "New Book", 
        Link:  "http://new-book.com", 
    }) 
 
    fmt.Println("Making POST call.") 
    resp, err = http.Post( 
        "http://localhost:8080/api/books/", 
        "application/json", 
        bytes.NewBuffer(payload), 
    ) 
    if err != nil { 
        fmt.Println(err) 
    } 
 
    fmt.Printf("%+v\n\n", resp)
 
    body, _ = ioutil.ReadAll(resp.Body) 
    defer resp.Body.Close() 
 
    var book bookResource 
    json.Unmarshal(body, &book) 
 
    fmt.Println(book) 
 
    fmt.Println("\n") 
} 

            The following is the console output from running the program:

            $ go run main.go 
 
Making GET call. 
&{Status:200 OK StatusCode:200 Proto:HTTP/1.1 ProtoMajor:1 ProtoMinor:1 Header:map[Content-Type:[application/json] Date:[Mon, 09 Oct 2017 20:07:43 GMT] Content-Length:[488]] Body:0xc4200f0040 ContentLength:488 TransferEncoding:[] Close:false Uncompressed:false Trailer:map[] Request:0xc42000a900 TLS:<nil>} 
 
[{2 Book-2 http://link-to-book2.com} {3 Book-3 http://link-to-book3.com} {4 Book-4 http://link-to-book4.com} {5 Book-5 http://link-to-book5.com} {6 New Book http://new-book.com} {7 New Book http://new-book.com} {8 New Book http://new-book.com} {1 Book-1 http://link-to-book1.com}] 
 
 
Making POST call. 
&{Status:201 Created StatusCode:201 Proto:HTTP/1.1 ProtoMajor:1 ProtoMinor:1 Header:map[Content-Type:[application/json] Date:[Mon, 09 Oct 2017 20:07:43 GMT] Content-Length:[58]] Body:0xc4200f0140 ContentLength:58 TransferEncoding:[] Close:false Uncompressed:false Trailer:map[] Request:0xc4200fc100 TLS:<nil>} 
 
{9 New Book http://new-book.com} 

            Further details regarding the net/http library can be found at https://golang.org/pkg/net/http/.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we discussed the brief history of HTTP and sessions. Next, we looked
               at the problems REST protocols were designed to solve and how they came into prominence.
               Then, we developed a deep understanding of what a REST protocol is, how to design
               an application based around it, how to build a REST server based on our design, and
               finally we looked at different ways to interact with a REST server using cURL, Postman,
               and Go programs. You're free to use whichever you want to interact with a REST server.
               However, for the remainder of the book, we will see interactions with REST servers
               using cURL.
            

            
            Now that we have discussed all the important topics that are fundamental to develop
               distributed and web-oriented applications. In the next chapter, Chapter 5, Introducing Goophr we can start discussing what a distributed document indexer is on a conceptual level
               and how to design it, plan for data communication, and so on.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Introducing Goophr

            
         
         
         
         
            
            
            
               
               Now that we have a solid understanding about goroutines, channels, REST, and some
                  of the tools for developing Go applications, let's use this knowledge to build a distributed
                  web application. The purpose of this application will be to index and search documents.
                  In this chapter, we will lay down the design of how such an application will be structured,
                  and we will also look at a few remaining topics and tools that we will be using in
                  our project.
               

               
            

            
            This chapter can be broadly classified into two sections:

            
            
               
               	Design overview

               
               	Project structure

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            What is Goophr?

            
         
         
         
         
            
            
            We will build an application to index and search documents. This is a feature that
               we use every time we access the internet using one of the search portals such as Google,
               Bing, or DuckDuckGo. This is also a feature which some sites provide with the help
               of a search engine.
            

            
            We will build a search engine application in the next few chapters by drawing inspiration
               from existing technologies such as Google, the Solr search engine, and goroutines.
               The name of our application is a play on these three technologies.
            

            
            Imagine searching for a phrase on any search portal; on submitting our query we get
               a list of links with snippets of text containing terms from our search phrase. Many
               times the first few links tend to be the relevant web page or document that we were
               looking for. How is it possible to get the list of the most relevant documents? The
               way in which Google or other search engines achieve this is quite complicated; they
               have a large team of Computer Scientists constantly fine-tuning the search engine.
            

            
            We will not be aiming to build anything as complicated as that. By having a humble
               and practical goal, we can create a minimal yet usable search engine. However, first
               let's define the purpose and criteria for our application.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Design overview

            
         
         
         
         
            
            
            Now that we have briefly described the application we want to build and the reason
               for building it, let's look at the list of features we want to implement as part of
               the search engine:
            

            
            
               
               	It should accept links to documents provided in the POST request and download them

               
               	It should process and index the downloaded documents

               
               	It should handle search queries and respond with a list of documents with snippets
                  containing the search terms
               

               
               	The returned list of documents should be in the order of greater occurrence of search
                  terms in the document
               

               
            

            
            Though we listed four functionalities, we can club the application into two main components:

            
            
               
               	Goophr Concierge: This is the component responsible for indexing and returning the list of documents
                  for search queries
               

               
               	Goophr Librarian: This is the component responsible for handling user interaction and interacting
                  with the first component
               

               
            

            
            The two components will run as two REST servers and all interactions will follow the
               REST protocol. So let's define API definitions for our components! In Chapter 4, The RESTful Web, you noticed that the approach we used to define various API endpoints and data definition
               for communicating via REST protocol was pretty verbose and cumbersome. Wouldn't it
               be better if we had a formal way to write API definitions? The good news is that with
               the prevalence of REST protocol, there are many solutions, and one of these solutions
               is the most widely used industry standard—OpenAPI format.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            OpenAPI specification

            
         
         
         
         
            
            
            OpenAPI lets us define RESTful APIs in a standardized manner, and they can be defined
               without being tied down to any particular programming language or framework being
               used. This provides us with a powerful abstraction to define an API that can have
               the initial implementation of the RESTful server in Java or Python; also we can port
               the codebase to Go, with little to no change in the behavior of the service.
            

            
            Let's list the general structure of an OpenAPI specification and use it to redefine
               the Books API described in Chapter 4, The RESTful Web.
            

            
            If we look at the Books API title, we can define the following elements to describe the API:
            

            
            
               
               	The URL to our server

               
               	The basic information about the intent of the API

               
               	The paths available in our API

               
               	The methods available per each of the paths in the API

               
               	The possible description and example payloads for the requests and responses

               
               	The schema of the requests and responses payloads

               
            

            
            With these points in mind, let's look at the OpenAPI specification for Books API:
            

            # openapi/books.yaml

openapi: 3.0.0
servers: 
  - url: /api 
info: 
  title: Books API 
  version: '1.0' 
  description: ; 
    API responsible for adding, reading and updating list of books. 
paths: 
  /books: 
    get: 
      description: | 
        Get list of all books 
      responses: 
        '200': 
          description: | 
            Request successfully returned list of all books 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/response' 
  /books/{id}: 
    get: 
      description: | 
        Get a particular books with ID 'id' 
      responses: 
        '200': 
          description: | 
            Request was successfully completed. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/document' 
      parameters: 
        - in: query 
          name: id 
          schema: 
            type: integer 
          description: Book ID of the book to get. 
    post: 
      description: | 
        Get a particular books with ID 'id' 
      responses: 
        '200': 
          description: | 
            Request was successfully completed. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/payload' 
      requestBody: 
        content: 
          application/json: 
            schema: 
                $ref: '#/components/schemas/document' 
    put: 
      description: | 
        Update the data of a Book with ID 'id' with the payload sent in the request body. 
      responses: 
        '200': 
          description: | 
            Request was successfully completed. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/payload' 
      requestBody: 
        content: 
          application/json: 
            schema: 
                $ref: '#/components/schemas/document' 
    delete: 
      description: | 
        Get a particular books with ID 'id' 
      responses: 
        '200': 
          description: | 
            Request was successfully completed. 
      parameters: 
        - in: query 
          name: id 
          schema: 
            type: integer 
          description: Book ID of the book to get. 
components: 
  schemas: 
    response: 
      type: array 
      items: 
        $ref: '#/components/schemas/document' 
       
    document: 
      type: object 
      required: 
        - title 
        - link 
      properties: 
        id: 
          type: integer 
          description: Book ID 
        title: 
          type: string 
          description: Title of the book 
        link:  
          type: string 
          description: Link to the book 
      
    payload: 
      type: object 
      required: 
        - title 
        - link 
      properties: 
        title: 
          type: string 
          description: Title of the book 
        link:  
          type: string 
          description: Link to the book 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Goophr Concierge API definition

            
         
         
         
         
            
            
            Goophr Concierge is the user-facing component, and it has two responsibilities—to
               index new documents and to return query results. Informally, we can define the API
               as follows:

            
            
               
               	/api/feeder: This is the API endpoint to upload documents by user
                  
                  
                     
                     	The POST request adds new documents if the payload is complete and correct

                     
                  

                  
               

               
               	/api/query: The user searches for phrases or terms that are queried against this API endpoint
                  
                  
                     
                     	The POST request contains payload with search terms, and a list of documents will
                        be returned
                     

                     
                  

                  
               

               
            

            
            This simple API description is for our understanding. Now let's look at how this would
               be formulated using the OpenAPI specification:
            

            # openapi/concierge.yaml

openapi: 3.0.0

servers: 
  - url: /api 
info: 
  title: Goophr Concierge API 
  version: '1.0' 
  description: > 
    API responsible for responding to user input and communicating with Goophr 
    Librarian. 
paths: 
  /feeder: 
    post: 
      description: | 
        Register new document to be indexed. 
      responses: 
        '200': 
          description: | 
            Request was successfully completed. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/response' 
        '400': 
          description: > 
            Request was not processed because payload was incomplete or 
            incorrect. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/response' 
      requestBody: 
        content: 
          application/json: 
            schema: 
              $ref: '#/components/schemas/document' 
        required: true 
  /query: 
    post: 
      description: | 
        Search query 
      responses: 
        '200': 
          description: | 
            Response consists of links to document 
          content: 
            application/json: 
              schema: 
                type: array 
                items: 
                  $ref: '#/components/schemas/document' 
      requestBody: 
        content: 
          application/json: 
            schema: 
              type: array 
              items: 
                type: string 
        required: true 
components: 
  schemas: 
    response: 
      type: object 
      properties: 
        code: 
          type: integer 
          description: Status code to send in response 
        msg: 
          type: string 
          description: Message to send in response 
    document: 
      type: object 
      required: 
        - title 
        - link 
      properties: 
        title: 
          type: string 
          description: Title of the document 
        link: 
          type: string 
          description: Link to the document

            With the help of the API description, the preceding OpenAPI definition should be self-explanatory.
               Details regarding the OpenAPI specification can be found at https://swagger.io/specification/. We can use tools provided by Swagger (https://editor.swagger.io/) to get a better visual representation of our API definition.
            

            
            The following is the screenshot of the Goophr Concierge OpenAPI as viewed in Swagger
               Editor:
            

            
            

            
            Viewing OpenAPI on Swagger Editor

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Goophr Librarian API definition

            
         
         
         
         
            
            
            Goophr Librarian is the actual maintainer of the index for a set of documents, and
               its responsibilities are to add terms to the index and to return query results for
               the search terms based on the terms available in the index.
            

            
            Informally, we can define the API as follows:

            
            
               
               	/api/index: Goophr Concierge calls this API endpoint to add terms to the actual index
                  
                  
                     
                     	The POST request adds terms to index

                     
                  

                  
               

               
               	/api/query: Goophr Concierge calls this endpoint to query search terms submitted by the user
                  
                  
                     
                     	The POST request returns results for search terms

                     
                  

                  
               

               
            

            
            The following is the OpenAPI definition for Goophr Librarian:

            # openapi/librarian.yaml

openapi: 3.0.0
servers: 
  - url: /api 
info: 
  title: Goophr Librarian API 
  version: '1.0' 
  description: | 
    API responsible for indexing & communicating with Goophr Concierge. 
paths: 
  /index: 
    post: 
      description: | 
        Add terms to index. 
      responses: 
        '200': 
          description: | 
            Terms were successfully added to the index. 
        '400': 
          description: > 
            Request was not processed because payload was incomplete or 
            incorrect. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/error' 
      requestBody: 
        content: 
          application/json: 
            schema: 
              $ref: '#/components/schemas/terms' 
        description: | 
          List of terms to be added to the index. 
        required: true 
  /query: 
    post: 
      description: | 
        Search for all terms in the payload. 
      responses: 
        '200': 
          description: | 
            Returns a list of all the terms along with their frequency, 
            documents the terms appear in and link to the said documents. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/results' 
        '400': 
          description: > 
            Request was not processed because payload was incomplete or 
            incorrect. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/error' 
    parameters: [] 
components: 
  schemas: 
    error: 
      type: object 
      properties: 
        msg: 
          type: string 
    term: 
      type: object 
      required: 
        - title 
        - token 
        - doc_id 
        - line_index 
        - token_index 
      properties: 
        title: 
          description: | 
            Title of the document to which the term belongs. 
          type: string 
        token: 
          description: | 
            The term to be added to the index. 
          type: string 
        doc_id: 
          description: | 
            The unique hash for each document. 
          type: string 
        line_index: 
          description: | 
            Line index at which the term occurs in the document. 
          type: integer 
        token_index: 
          description: | 
            Position of the term in the document. 
          type: integer 
    terms: 
      type: object 
      properties: 
        code: 
          type: integer 
        data: 
          type: array 
          items: 
            $ref: '#/components/schemas/term' 
    results: 
      type: object 
      properties: 
        count: 
          type: integer 
        data: 
          type: array 
          items: 
            $ref: '#/components/schemas/result' 
    result: 
      type: object 
      properties: 
        doc_id: 
          type: string 
        score: 
          type: integer

            The two API specifications describe how the two components will interact with each
               other and also the user. However, this is not the complete picture because even though
               we have shown only two API definitions, the actual implementation will have three
               instances of Librarian!
            

            
            The user interacts with Goophr by interacting with Concierge via /api/feeder and /api/query. Concierge can further interact with the three librarian instances via /api/index and /api/query. The figure below shows what the application will look like in broad terms:
            

            
            

            
            The design of the Goophr application

            
            Consider when we need to build a real web application that will be used by multiple
               users; in this case, we'll want to have multiple instances of our services running
               so that they can serve all the users simultaneously. We might also have split our
               application into multiple APIs, and we need to have a good understanding on how to
               design our system to handle such distributed workload. So, in order to understand
               how to deal with such a system, we will work with three instances of Librarian.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Project structure

            
         
         
         
         
            
            
            As per the previous diagram, we have designed our application to consist of one instance
               of Goophr Concierge and three instances of Goophr Librarian. In order to keep our
               code manageable, we will split the source code into two main entities and a docker-compose file at the root level:
            

            
            
               
               	Concierge

               
               	Librarian

               
               	docker-compose.yaml

               
            

            
            In Chapter 1, Developer Environment for Go, we discussed how to create and run docker images. The docker run ... works great for single images, but it might get complicated when we want to create
               a network of docker images that interact with one another. In order to keep the setup
               simple, we will make use of docker-compose (https://docs.docker.com/compose/overview/). In a nutshell, docker-compose requires a YAML (Yet Another Markup Language) file with specifics such as what to name the running docker images, what ports to
               run them on, and which Dockerfile to use to build these docker images.
            

            
            The following is the docker-compose.yaml file we will be using in our project:
            

            version: '3' 
 
services: 
  concierge: 
    build: concierge/. 
    ports: 
      - "6060:9000" 
  a_m_librarian: 
    build: librarian/. 
    ports: 
      - "7070:9000" 
  n_z_librarian: 
      build: librarian/. 
      ports: 
        - "8080:9000" 
  others_librarian: 
      build: librarian/. 
      ports: 
        - "9090:9000"

            Note that a_m_librarian, n_z_librarian, and others_librarian are built from the same docker image defined by librarian/Dockerfile. This makes our life easier than using raw docker commands to start and configure multiple instances.
            

            
            Here is the project structure that we will be starting with:

            $ tree 
. 
├── concierge 
│   ├── api 
│   │   ├── feeder.go 
│   │   └── query.go 
│   ├── common 
│   │   ├── helpers.go 
│   │   └── state.go 
│   ├── Dockerfile 
│   └── main.go 
├── docker-compose.yaml 
└── librarian 
    ├── api 
    │   ├── index.go 
    │   └── query.go 
    ├── common 
    │   ├── helpers.go 
    │   └── state.go 
    ├── Dockerfile 
    └── main.go 

            Even though we have an elaborate structure set up, for now, the only files that have
               any useful code are concierge/main.go, concierge/Dockerfile, librarian/main.go, and librarian/Dockerfile (for convenience, from here on, we will denote the files using shorthand notation
               {concierge,librarian}/{main.go,Dockerfile}. This notation is inspired from Bash.)
            

            
            Let's take a look at main.go and Dockerfile. These two files will be almost identical for both components. For brevity, we will
               show each of the two types of the files once, and show where the differences lie.
            

            
            Let's start with main.go:
            

            // {concierge,librarian}/main.go 
package main 
 
import "fmt" 
 
func main() { 
    fmt.Println("Hello from Concierge!")  // Or, Hello from Librarian! 
} 

            Now let's look at Dockerfile:
            

            # {concierge,librarian}/Dockerfile 
FROM golang:1.9.1 
 
# In case of librarian, '/concierge' will be replaced with '/librarian' 
 
ADD . /go/src/github.com/last-ent/distributed-go/chapter5/goophr/concierge 
 
WORKDIR /go/src/github.com/last-ent/distributed-go/chapter5/goophr/concierge 
 
RUN go install github.com/last-ent/distributed-go/chapter5/goophr/concierge 
 
ENTRYPOINT /go/bin/concierge 
 
EXPOSE 9000 

            If we run the complete codebase, we should see an output similar to the following:

            $ docker-compose up --build
# ...
Creating goophr_a_m_librarian_1 ...                 
Creating goophr_concierge_1 ...                     
Creating goophr_m_z_librarian_1 ...                 
Creating goophr_others_librarian_1 ...              
Creating goophr_a_m_librarian_1                     
Creating goophr_m_z_librarian_1                     
Creating goophr_others_librarian_1                  
Creating goophr_others_librarian_1 ... done         
Attaching to goophr_a_m_librarian_1, goophr_m_z_librarian_1, goophr_concierge_1, goophr_others_librarian_1                                                                                                         
a_m_librarian_1     | Hello from Librarian!         
m_z_librarian_1     | Hello from Librarian!         
others_librarian_1  | Hello from Librarian!         
concierge_1         | Hello from Concierge!         
goophr_a_m_librarian_1 exited with code 0           
goophr_m_z_librarian_1 exited with code 0           
goophr_concierge_1 exited with code 0               
goophr_others_librarian_1 exited with code 0   

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we started by describing the application that we will be building
               in the next three chapters. Then we split the application into two major components—Goophr
               Concierge and Goophr Librarian. Next we looked at the project structure that we will
               be using for our application. We also discussed OpenAPI, the industry standard for
               describing REST APIs, and used it to define our APIs for Concierge and Librarian.
               Finally, we looked at how to run our distributed application using docker-compose.
            

            
            In the next chapter, we will look at Goophr Concierge, which will interact with users
               to upload documents, and respond to the search queries from users.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Goophr Concierge

            
         
         
         
         
            
            
            
               
               In the previous chapter, Chapter 5, Introducing Goophr, we split our application into two components: Concierge and Librarian. In this chapter,
                  we shall look at the design and implementation of Concierge. The following are the
                  major sections in this chapter:
               

               
            

            
            
               
               	A deeper look at document feeder and query handler APIs

               
               	Diagrams explaining the architecture and logical flow of Concierge

               
               	Tests for Concierge

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Revisiting the API definition

            
         
         
         
         
            
            
            Let's have another look at the API definition for Concierge, and discuss what the
               definition conveys regarding the expected behavior by the API and application:
            

            # openapi/concierge.yaml

openapi: 3.0.0
servers: 
  - url: /api 
info: 
  title: Goophr Concierge API 
  version: '1.0' 
  description: > 
    API responsible for responding to user input and communicating with Goophr 
    Librarian. 
paths: 
  /feeder: 
    post: 
      description: | 
        Register new document to be indexed. 
      responses: 
        '200': 
          description: | 
            Request was successfully completed. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/response' 
        '400': 
          description: > 
            Request was not processed because payload was incomplete or incorrect. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/response' 
      requestBody: 
        content: 
          application/json: 
            schema: 
              $ref: '#/components/schemas/document' 
        required: true 
  /query: 
    post: 
      description: | 
        Search query 
      responses: 
        '200': 
          description: | 
            Response consists of links to document 
          content: 
            application/json: 
              schema: 
                type: array 
                items: 
                  $ref: '#/components/schemas/document' 
      requestBody: 
        content: 
          application/json: 
            schema: 
              type: array 
              items: 
                type: string 
        required: true 
components: 
  schemas: 
    response: 
      type: object 
      properties: 
        code: 
          type: integer 
          description: Status code to send in response 
        msg: 
          type: string 
          description: Message to send in response 
    document: 
      type: object 
      required: 
        - title 
        - link 
      properties: 
        title: 
          type: string 
          description: Title of the document 
        link: 
          type: string 
          description: Link to the document 

            Based on the API definition, we can state the following:

            
            
               
               	All communication to and from Concierge is using the JSON format

               
               	Two endpoints for Concierge are /api/feeder and /api/query 
                  
                  
                     
                     	/api/feeder: This uses the POST method to add new documents
                     

                     
                     	/api/query: This uses the POST method to receive search query terms and returns a list of documents related to the
                        search term
                     

                     
                  

                  
               

               
            

            
            Now let's look at each of the endpoints in detail.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Document feeder – the REST API endpoint

            
         
         
         
         
            
            
            The main aim of /api/feeder is to receive documents to be indexed, process them, and forward the processed data
               to Librarian to be added to the index. This means we need to accurately process the
               document. But what do we mean by "processing a document?"
            

            
            It can be defined as the following set of consecutive tasks:

            
            
               
               	We rely on the payload to provide us with a title and link to the document. We download
                  the linked document and use it in our index.
               

               
            

            
            
               
               	The document can be thought of as one big blob of text, and it is possible that we
                  might have multiple documents with the same title. We need to be able to identify
                  each document uniquely and also be able to easily retrieve them.
               

               
            

            
            
               
               	The result of a search query expects the provided words to be present in the document.
                  This means we need to extract all words from a document and also keep track of where
                  a word occurs within a document.
               

               
               	Would it make sense to differentiate between "HELLO", "hello", and "HELLO!!!"? In
                  the context of the text it occurs in, they certainly convey different meanings. However,
                  for the index, it depends on how complex and accurate we want to make our index. For
                  our case, we keep the implementation simple, and thus we normalize the words, that
                  is, we treat all these variations of the word as a single unit/token. Additionally,
                  we do not index pronouns, articles, propositions, and so on.
               

               
            

            
            For a search engine, pronouns, articles, and so on are termed as stop words, and it is common to ignore them in the index. The main reason is that while they
               provide valuable information for the user, they tend to have little to no relevance
               for the index.
            

            
            
               
               	Finally, we would like to add all these tokens to the index maintained by the Librarian.

               
            

            
            In the source code for Concierge, each of the preceding tasks stated is handled by
               certain functions. The following is a list showing associated functions for each of
               the tasks:
            

            
            
               
               	Task 1: api.FeedHandler and api.docProcessor

               
               	Task 2: api.docStore and api.lineStore

               
               	Task 3 and Task 4: api.indexProcessor and common.SimplifyToken

               
               	Task 5: api.indexAdder

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Query handler – the REST API endpoint

            
         
         
         
         
            
            
            Similarly, if we consider the case of handling a search query at /api/query, we should be able to take the search terms from the payload, request results from
               various instances of the Librarian, process them, and then return search results back
               to the user in the descending order of search relevance. However, since we haven't
               implemented the Librarian yet, we shall discuss the implementation of this endpoint
               later in Chapter 8, Deploying Goophr, the distributed search index.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Conventions

            
         
         
         
         
            
            
            The source code for Concierge has a lot of moving parts. Directly jumping into the
               code without any prior understanding might not be the best way to proceed. Instead,
               we shall take the tasks defined in the previous sections and present them as flow
               diagrams. However, first, let's have a brief look at the symbols and naming conventions
               we are using in the diagrams and code.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Code conventions

            
         
         
         
         
            
            
            Following are the entities in Concierge:

            
            
               
               	payload (p): This represents the payload received to add a new document to index.
               

               
               	document (d): This represents all the metadata representing a unique document.
               

               
               	line (l): This represents all the metadata for a single line within a document.
               

               
               	token (t): This represents all the metadata for each token within a document.
               

               
               	Message (xMsg): For a given entity, x, it provides information to identify a unique entity and a callback channel to return
                  the unique entity.
               

               
               	Process Channels (xProcessCh): For a given entity, x, the channel is used by xProcessor goroutine to consume and process the entity.
               

               
               	Stores (or Data Stores): The Concierge is also responsible for storing and maintaining information regarding
                  all the documents and lines in the system.
               

               
               	Store Channels (xStoreCh): For a given entity, x, the channel is used to update the entity's store.
               

               
               	Get Channels (xGetCh or xGetAllCh): These channels are used by stores to provide a mechanism to retrieve an entity
                  using callback channels.
               

               
               	done: This is a special channel that will stop all running goroutines once it is closed.
                  We should be careful to close this channel and not send a message on it, the reason
                  being that sending a message will only signal a single goroutine to stop. Instead,
                  if we were to close the channel, all goroutines listening on the channel will receive
                  message to stop.
               

               
            

            
            Let's look at a few examples so that we have perfect understanding of the conventions:

            
            
               
               	dStoreCh: This is the channel to add new documents to Document Store
               

               
               	dGetCh: This is the channel to get a single document from Document Store
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Diagram conventions

            
         
         
         
         
            
            
            Next, let's look at the symbols we will be using in our diagrams:

            
            

            
            Now, let's proceed to visualize Concierge's logic with help of logical flow diagrams.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Logical flow diagrams

            
         
         
         
         
            
            
            We can split the logic for Concierge into five major chunks. We shall address the
               required logic flow for each of the individual chunks, and then at the end, combine
               them all to get the big picture of what we are trying to achieve.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The doc processor

            
         
         
         
         
            
            
            First and foremost, we want to accept the payload sent to endpoint and start processing
               the document. Let's assume that api.FeedHandler accepts, validates, and sends the payload on pProcessCh:
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The doc store

            
         
         
         
         
            
            
            Let's then consider dStoreCh, which is the channel used for adding and retrieving documents:
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The index processor

            
         
         
         
         
            
            
            Apart from adding to docstore, docProcessor also sends the document to indexProcessor, which is responsible for storing lines in the document and converting lines into
               tokens:
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The line store

            
         
         
         
         
            
            
            indexProcessor splits the document into lines, and lineStore is responsible for storing them and also returning them when queried:
            

            
            

            
            indexProcessor also splits the lines into tokens and adds them to iAddCh channel. indexAdder is responsible for adding these tokens to the index (Librarian).
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The consolidated flow diagram

            
         
         
         
         
            
            
            Now that we have defined each of the individual chunks, you might have noticed that
               they flow into one another and have some components that they share among themselves.
               Let us consolidate all of these flow diagrams now:
            

            
            

            
            This might be a good opportunity to try and build Concierge on your own. However,
               please read the following three design points to have complete knowledge of the system.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Queue workers

            
         
         
         
         
            
            
            In the consolidated flow diagram, you might have noticed that we run four instances
               of docProcessor, indexProcessor, and indexAdder. The reason for this is that the tasks handled by these goroutines are embarrassingly
               parallel, that is, they can be run in parallel without side effects. This allows us
               to parallelize and process the documents at a faster pace.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Single stores

            
         
         
         
         
            
            
            In contrast, we run docStore and lineStore as single instances because we want to a maintain consistent state for these stores.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Buffered channels

            
         
         
         
         
            
            
            For almost all the channels in our code, we will be using buffered channels with a
               capacity of 8. This allows us to avoid blocking the api.FeedHandler endpoint in case docProcessors are busy. Also because of queue workers and single stores, lStoreCh and dStoreCh have a capacity of 16 each.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The Concierge source code

            
         
         
         
         
            
            
            Now that we have discussed the design of Concierge in detail, let us implement Concierge
               based on these design points. We will discuss the implementation of api/query.go and Dockerfile in Chapter 8, Deploying Goophr. Let's look at the project structure & source code:
            

            $ tree 
. 
└── goophr 
    └── concierge 
        ├── api 
        │   ├── feeder.go 
        │   ├── feeder_test.go 
        │   └── query.go 
        ├── common 
        │   ├── helpers.go 
        ├── Dockerfile 
        └── main.go 
 
4 directories, 6 files 

            Now let's look at the source code for each of the files:

            
            main.go:
            

            package main 
 
import ( 
    "net/http" 
 
    "github.com/last-ent/distributed-go/chapter6/goophr/concierge/api" 
    "github.com/last-ent/distributed-go/chapter6/goophr/concierge/common" 
) 
 
func main() { 
    common.Log("Adding API handlers...") 
    http.HandleFunc("/api/feeder", api.FeedHandler) 
 
    common.Log("Starting feeder...") 
    api.StartFeederSystem() 
 
    common.Log("Starting Goophr Concierge server on port :8080...") 
    http.ListenAndServe(":8080", nil) 
} 

            common/helpers.go:
            

            package common 
 
import ( 
    "fmt" 
    "log" 
    "regexp" 
    "strings" 
) 
 
// Log is used for simple logging to console. 
func Log(msg string) { 
    log.Println("INFO - ", msg) 
} 
 
// Warn is used to log warning messages to console. 
func Warn(msg string) { 
    log.Println("---------------------------") 
    log.Println(fmt.Sprintf("WARN: %s", msg)) 
    log.Println("---------------------------") 
} 
 
var punctuations = regexp.MustCompile('^\p{P}+|\p{P}+$') 
 
// List of stop words that we want to ignore in our index. 
var stopWords = []string{ 
    "a", "about", "above", "after", "again", "against", "all", "am", "an", "and", "any", "are", "aren't", "as", "at", 
    "be", "because", "been", "before", "being", "below", "between", "both", "but", "by", "can't", "cannot", "could", 
    "couldn't", "did", "didn't", "do", "does", "doesn't", "doing", "don't", "down", "during", "each", "few", "for", 
    "from", "further", "had", "hadn't", "has", "hasn't", "have", "haven't", "having", "he", "he'd", "he'll", "he's", 
    "her", "here", "here's", "hers", "herself", "him", "himself", "his", "how", "how's", "i", "i'd", "i'll", "i'm", 
    "i've", "if", "in", "into", "is", "isn't", "it", "it's", "its", "itself", "let's", "me", "more", "most", "mustn't", 
    "my", "myself", "no", "nor", "not", "of", "off", "on", "once", "only", "or", "other", "ought", "our", "ours", 
    "ourselves", "out", "over", "own", "same", "shan't", "she", "she'd", "she'll", "she's", "should", "shouldn't", 
    "so", "some", "such", "than", "that", "that's", "the", "their", "theirs", "them", "themselves", "then", "there", 
    "there's", "these", "they", "they'd", "they'll", "they're", "they've", "this", "those", "through", "to", "too", 
    "under", "until", "up", "very", "was", "wasn't", "we", "we'd", "we'll", "we're", "we've", "were", "weren't", "what", 
    "what's", "when", "when's", "where", "where's", "which", "while", "who", "who's", "whom", "why", "why's", "with", 
    "won't", "would", "wouldn't", "you", "you'd", "you'll", "you're", "you've", "your", "yours", "yourself", "yourselves"} 
 
// SimplifyToken is responsible to normalizing a string token and 
// also checks whether the token should be indexed or not. 
func SimplifyToken(token string) (string, bool) { 
    simpleToken := strings.ToLower(punctuations.ReplaceAllString(token, "")) 
 
    for _, stopWord := range stopWords { 
        if stopWord == simpleToken { 
            return "", false 
        } 
    } 
 
    return simpleToken, true 
} 

            api/feeder.go:
            

            package api 
 
import ( 
    "crypto/sha1" 
    "encoding/json" 
    "fmt" 
    "io/ioutil" 
    "net/http" 
    "strings" 
    "time" 
 
    "github.com/last-ent/distributed-go/chapter6/goophr/concierge/common" 
) 
 
type payload struct { 
    URL   string 'json:"url"' 
    Title string 'json:"title"' 
} 
 
type document struct { 
    Doc   string 'json:"-"' 
    Title string 'json:"title"' 
    DocID string 'json:"DocID"'

  
} 
 
type token struct { 
    Line   string 'json:"-"' 
    Token  string 'json:"token"' 
    Title  string 'json:"title"' 
    DocID  string 'json:"doc_id"' 
    LIndex int    'json:"line_index"' 
    Index  int    'json:"token_index"' 
} 
 
type dMsg struct { 
    DocID string 
    Ch    chan document 
} 
 
type lMsg struct { 
    LIndex int 
    DocID  string 
    Ch     chan string 
} 
 
type lMeta struct { 
    LIndex int 
    DocID  string 
    Line   string 
} 
 
type dAllMsg struct { 
    Ch chan []document 
} 
 
// done signals all listening goroutines to stop. 
var done chan bool 
 
// dGetCh is used to retrieve a single document from store. 
var dGetCh chan dMsg 
 
// lGetCh is used to retrieve a single line from store. 
var lGetCh chan lMsg 
 
// lStoreCh is used to put a line into store. 
var lStoreCh chan lMeta 
 
// iAddCh is used to add token to index (Librarian). 
var iAddCh chan token 
 
// dStoreCh is used to put a document into store. 
var dStoreCh chan document 
 
// dProcessCh is used to process a document and convert it to tokens. 
var dProcessCh chan document 
 
// dGetAllCh is used to retrieve all documents in store. 
var dGetAllCh chan dAllMsg 
 
// pProcessCh is used to process the /feeder's payload and start the indexing process. 
var pProcessCh chan payload 
 
// StartFeederSystem initializes all channels and starts all goroutines. 
// We are using a standard function instead of 'init()' 
// because we don't want the channels & goroutines to be initialized during testing. 
// Unless explicitly required by a particular test. 
func StartFeederSystem() { 
    done = make(chan bool) 
 
    dGetCh = make(chan dMsg, 8) 
    dGetAllCh = make(chan dAllMsg) 
 
    iAddCh = make(chan token, 8) 
    pProcessCh = make(chan payload, 8) 
 
    dStoreCh = make(chan document, 8) 
    dProcessCh = make(chan document, 8) 
    lGetCh = make(chan lMsg) 
    lStoreCh = make(chan lMeta, 8) 
 
    for i := 0; i < 4; i++ { 
        go indexAdder(iAddCh, done) 
        go docProcessor(pProcessCh, dStoreCh, dProcessCh, done) 
        go indexProcessor(dProcessCh, lStoreCh, iAddCh, done) 
    } 
 
    go docStore(dStoreCh, dGetCh, dGetAllCh, done) 
    go lineStore(lStoreCh, lGetCh, done) 
} 
 
// indexAdder adds token to index (Librarian). 
func indexAdder(ch chan token, done chan bool) { 
    for { 
        select { 
        case tok := <-ch: 
            fmt.Println("adding to librarian:", tok.Token) 
 
        case <-done: 
            common.Log("Exiting indexAdder.") 
            return 
        } 
    } 
} 
 
// lineStore maintains a catalog of all lines for all documents being indexed. 
func lineStore(ch chan lMeta, callback chan lMsg, done chan bool) { 
    store := map[string]string{} 
    for { 
        select { 
        case line := <-ch: 
            id := fmt.Sprintf("%s-%d", line.DocID, line.LIndex) 
            store[id] = line.Line 
 
        case ch := <-callback: 
            line := "" 
            id := fmt.Sprintf("%s-%d", ch.DocID, ch.LIndex) 
            if l, exists := store[id]; exists { 
                line = l 
            } 
            ch.Ch <- line 
        case <-done: 
            common.Log("Exiting docStore.") 
            return 
        } 
    } 
} 
 
// indexProcessor is responsible for converting a document into tokens for indexing. 
func indexProcessor(ch chan document, lStoreCh chan lMeta, iAddCh chan token, done chan bool) { 
    for { 
        select { 
        case doc := <-ch: 
            docLines := strings.Split(doc.Doc, "\n") 
 
            lin := 0 
            for _, line := range docLines { 
                if strings.TrimSpace(line) == "" { 
                    continue 
                } 
 
                lStoreCh <- lMeta{ 
                    LIndex: lin, 
                    Line:   line, 
                    DocID:  doc.DocID, 
                } 
 
                index := 0 
                words := strings.Fields(line) 
                for _, word := range words { 
                    if tok, valid := common.SimplifyToken(word); valid { 
                        iAddCh <- token{ 
                            Token:  tok, 
                            LIndex: lin, 
                            Line:   line, 
                            Index:  index, 
                            DocID:  doc.DocID, 
                            Title:  doc.Title, 
                        } 
                        index++ 
                    } 
                } 
                lin++ 
            } 
 
        case <-done: 
            common.Log("Exiting indexProcessor.") 
            return 
        } 
    } 
} 
 
// docStore maintains a catalog of all documents being indexed. 
func docStore(add chan document, get chan dMsg, dGetAllCh chan dAllMsg, done chan bool) { 
    store := map[string]document{} 
 
    for { 
        select { 
        case doc := <-add: 
            store[doc.DocID] = doc 
        case m := <-get: 
            m.Ch <- store[m.DocID] 
        case ch := <-dGetAllCh: 
            docs := []document{} 
            for _, doc := range store { 
                docs = append(docs, doc) 
            } 
            ch.Ch <- docs 
        case <-done: 
            common.Log("Exiting docStore.") 
            return 
        } 
    } 
} 
 
// docProcessor processes new document payloads. 
func docProcessor(in chan payload, dStoreCh chan document, dProcessCh chan document, done chan bool) { 
    for { 
        select { 
        case newDoc := <-in: 
            var err error 
            doc := "" 
 
            if doc, err = getFile(newDoc.URL); err != nil { 
                common.Warn(err.Error()) 
                continue 
            } 
 
            titleID := getTitleHash(newDoc.Title) 
            msg := document{ 
                Doc:   doc, 
                DocID: titleID, 
                Title: newDoc.Title, 
            } 
 
            dStoreCh <- msg 
            dProcessCh <- msg 
        case <-done: 
            common.Log("Exiting docProcessor.") 
            return 
        } 
    } 
} 
 
// getTitleHash returns a new hash ID everytime it is called. 
// Based on: https://gobyexample.com/sha1-hashes

  
func getTitleHash(title string) string {

  
    hash := sha1.New() 
    title = strings.ToLower(title) 
 
    str := fmt.Sprintf("%s-%s", time.Now(), title) 
    hash.Write([]byte(str)) 
 
    hByte := hash.Sum(nil) 
 
    return fmt.Sprintf("%x", hByte) 
} 
 
// getFile returns file content after retrieving it from URL. 
func getFile(URL string) (string, error) { 
    var res *http.Response 
    var err error 
 
    if res, err = http.Get(URL); err != nil { 
        errMsg := fmt.Errorf("Unable to retrieve URL: %s.\nError: %s", URL, err) 
 
        return "", errMsg 
 
    } 
    if res.StatusCode > 200 { 
        errMsg := fmt.Errorf("Unable to retrieve URL: %s.\nStatus Code: %d", URL, res.StatusCode) 
 
        return "", errMsg 
    } 
 
    body, err := ioutil.ReadAll(res.Body) 
    defer res.Body.Close() 
 
    if err != nil { 
        errMsg := fmt.Errorf("Error while reading response: URL: %s.\nError: %s", URL, res.StatusCode, err.Error()) 
 
        return "", errMsg 
    } 
 
    return string(body), nil 
} 
 
// FeedHandler start processing the payload which contains the file to index. 
func FeedHandler(w http.ResponseWriter, r *http.Request) { 
    if r.Method == "GET" { 
        ch := make(chan []document) 
        dGetAllCh <- dAllMsg{Ch: ch} 
        docs := <-ch 
        close(ch) 
 
        if serializedPayload, err := json.Marshal(docs); err == nil { 
            w.Write(serializedPayload) 
        } else { 
            common.Warn("Unable to serialize all docs: " + err.Error()) 
            w.WriteHeader(http.StatusInternalServerError) 
            w.Write([]byte('{"code": 500, "msg": "Error occurred while trying to retrieve documents."}')) 
        } 
        return 
    } else if r.Method != "POST" { 
        w.WriteHeader(http.StatusMethodNotAllowed) 
        w.Write([]byte('{"code": 405, "msg": "Method Not Allowed."}')) 
        return 
    } 
 
    decoder := json.NewDecoder(r.Body) 
    defer r.Body.Close() 
 
    var newDoc payload 
    decoder.Decode(&newDoc) 
    pProcessCh <- newDoc 
 
    w.Write([]byte('{"code": 200, "msg": "Request is being processed."}')) 
} 

            api/feeder_test.go:
            

            package api 
 
import ( 
    "fmt" 
    "net/http" 
    "net/http/httptest" 
    "testing" 
) 
 
func TestGetTitleHash(t *testing.T) { 
 
    h1 := getTitleHash("A-Title") 
    h2 := getTitleHash("Diff Title") 
    hDup := getTitleHash("A-Title") 
 
    for _, tc := range []struct { 
        name     string 
        hashes   []string 
        expected bool 
    }{ 
        {"Different Titles", []string{h1, h2}, false}, 
        {"Duplicate Titles", []string{h1, hDup}, false}, 
        {"Same hashes", []string{h2, h2}, true}, 
    } { 
        t.Run(tc.name, func(t *testing.T) { 
            actual := tc.hashes[0] == tc.hashes[1] 
            if actual != tc.expected { 
                t.Error(actual, tc.expected, tc.hashes) 
            } 
        }) 
    } 
} 
 
func TestGetFile(t *testing.T) { 
    doc := "Server returned text!" 
    testServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { 
        w.Write([]byte(doc)) 
    })) 
    defer testServer.Close() 
 
    rDoc, err := getFile(testServer.URL) 
    if err != nil { 
        t.Error("Error while retrieving document", err) 
    } 
    if doc != rDoc { 
        t.Error(doc, "!=", rDoc) 
    } 
} 
 
func TestIndexProcessor(t *testing.T) { 
    ch1 := make(chan document, 1) 
    ch2 := make(chan lMeta, 1) 
    ch3 := make(chan token, 3) 
    done := make(chan bool) 
 
    go indexProcessor(ch1, ch2, ch3, done) 
 
    ch1 <- document{ 
        DocID: "a-hash", 
        Title: "a-title", 
        Doc:   "Golang Programming rocks!", 
    } 
 
    for i, tc := range []string{ 
        "golang", "programming", "rocks", 
    } { 
        t.Run(fmt.Sprintf("Testing if '%s' is returned. at index: %d", tc, i), func(t *testing.T) { 
            tok := <-ch3 
            if tok.Token != tc { 
                t.Error(tok.Token, "!=", tc) 
            } 
            if tok.Index != i { 
                t.Error(tok.Index, "!=", i) 
            } 
        }) 
    } 
    close(done) 
 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Running tests

            
         
         
         
         
            
            
            In api/feeder_test.go, we have three main test case scenarios:
            

            
            
               
               	To test if a unique hash is generated for each new document

               
               	Testing if payload sent to the /api/feeder endpoint returns document content as expected
               

               
               	Test to ensure the indexing of documents is working as expected

               
            

            
            The following is the expected output after running the tests:

                $ go test -v ./...                                                 
    ?       github.com/last-ent/distributed-go/chapter6/goophr/concierge    [no test files]                                                                                      
    === RUN   TestGetTitleHash                 
    === RUN   TestGetTitleHash/Different_Titles                                           
    === RUN   TestGetTitleHash/Duplicate_Titles                                           
    === RUN   TestGetTitleHash/Same_hashes     
    --- PASS: TestGetTitleHash (0.00s)         
        --- PASS: TestGetTitleHash/Different_Titles (0.00s)                               
        --- PASS: TestGetTitleHash/Duplicate_Titles (0.00s)                               
        --- PASS: TestGetTitleHash/Same_hashes (0.00s)                                    
    === RUN   TestGetFile                      
    --- PASS: TestGetFile (0.00s)              
    === RUN   TestIndexProcessor               
    === RUN   TestIndexProcessor/Testing_if_'golang'_is_returned._at_index:_1             
    === RUN   TestIndexProcessor/Testing_if_'programming'_is_returned._at_index:_2        
    === RUN   TestIndexProcessor/Testing_if_'rocks'_is_returned._at_index:_3              
    --- PASS: TestIndexProcessor (0.00s)       
        --- PASS: TestIndexProcessor/Testing_if_'golang'_is_returned._at_index:_1 (0.00s) 
        --- PASS: TestIndexProcessor/Testing_if_'programming'_is_returned._at_index:_2 (0.00s)                                                                                   
        --- PASS: TestIndexProcessor/Testing_if_'rocks'_is_returned._at_index:_3 (0.00s)  
    PASS                                       
    ok      github.com/last-ent/distributed-go/chapter6/goophr/concierge/api        0.004s
    ?       github.com/last-ent/distributed-go/chapter6/goophr/concierge/common     [no test files] 
  

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            The Concierge server

            
         
         
         
         
            
            
            Let's try to post the book, Hackers: Heroes of the Computer Revolution to the Concierge endpoint, /api/feeder. We need to have the Concierge server running in another terminal window:
            

                $ curl -X POST -d '{"title": "Hackers: Heroes of Computer Revolution", "url": "http://www.gutenberg.org/cache/epub/729/pg729.txt"}' http://localhost:8080/api/feeder | jq                                                                       
      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
    100   162  100    51  100   111     51    111  0:00:01 --:--:--  0:00:01 54000
    {
      "code": 200,
      "msg": "Request is being processed."
    }

            Next, let's see what happens on the server:

                $ go run main.go
    2017/11/18 21:05:57 INFO -  Adding API handlers...
    2017/11/18 21:05:57 INFO -  Starting feeder...
    2017/11/18 21:05:57 INFO -  Starting Goophr Concierge server on port :8080...
    // ...
    adding to librarian: gutenberg-tm          
    adding to librarian: including             
    adding to librarian: make                  
    adding to librarian: u.s                   
    adding to librarian: project               
    adding to librarian: gutenberg             
    /...
  

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we took an in-depth look at the feeder component of Concierge. We designed the system and used logical flow diagrams to
               understand how the various parts of the code interact. Next, we tested our code with
               tests and also with a real-world example.
            

            
            In the next chapter, Chapter 7, Goophr Librarian, we will delve into the design and implementation of Goophr Librarian.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Goophr Librarian

            
         
         
         
         
            
            
            In Chapter 6, Goophr Concierge, we built the endpoint responsible for accepting new documents and breaking them
                  down into tokens to be used in the index. However, the current implementation of Concierge's api.indexAdder returns after printing the token to the console. In this chapter, we will implement
                  Goophr Librarian, which can interact with the Concierge to accept tokens and also
                  respond to token search queries.

            
            
               
               In this chapter we will look at following topics:

               
            

            
            
               
               	The standard indexing model

               
               	The inverted indexing model

               
               	The document indexer

               
               	Query resolver APIs

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The standard indexing model

            
         
         
         
         
            
            
            Consider the index in a book. Each book will have its own index, which lists all the
               words in an alphabetical order showing their location within the book. However, if
               we want to keep track of word occurrences in multiple books, checking each book's
               index is quite inefficient. Let's look at an example.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            An example – books with an index of words

            
         
         
         
         
            
            
            Imagine we have three books: Book 1, Book 2, and Book 3, and the following are their respective indexes. The numbers beside each word represent
               which page the word occurs on:
            

            * Book 1 (Index)
  - apple - 4, 10, 20
  - cat - 10, 21, 22
  - zebra - 15, 25, 63
    
* Book 2 (Index)
  - banana - 14, 19, 66
  - cake - 10, 37, 45
  - zebra - 67, 100, 129
    
* Book 3 (Index)
  - apple - 36, 55, 74
  - cake - 1, 9, 77
  - Whale - 11, 59, 79  

            Let's try to find three words from the books' indexes. A naïve approach might be to
               pick each book and scan it until we hit or miss the word:
            

            
            
               
               	apple

               
               	banana

               
               	parrot

               
            

            * Searching for 'apple'
  - Scanning Book 1. Result: Found.
  - Scanning Book 2. Result: Not Found.
  - Scanning Book 3. Result: Found.
    
* Searching for 'banana'
  - Scanning Book 1. Result: Not Found.
  - Scanning Book 2. Result: Found.
  - Scanning Book 3. Result: Not Found.
    
* Searching for 'parrot'
  - Scanning Book 1. Result: Not Found.
  - Scanning Book 2. Result: Not Found.
  - Scanning Book 3. Result: Not Found.  

            In a nutshell, for each of the terms, we iterated through every book index and searched
               for the word. We went through this whole process for every word including parrot, which is not present in any of the books! At first this might seem acceptable, performance-wise,
               but consider when we have over a million books to wade through; we realize that the
               approach would not be practical.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The inverted indexing model

            
         
         
         
         
            
            
            Based on the preceding example, we can state the following:

            
            
               
               	We need to have a quick lookup to determine if a word exists in our index

               
               	For any given word, we need to have an efficient way to list all the books the word
                  might be in
               

               
            

            
            We can achieve these two niceties by using an inverted index. A standard index's mapping
               order is book → word → occurrence (page, line, and so on) as seen in the previous example. If we use an inverted index, the mapping order becomes
               word → book → occurrence (page, line, and so on).
            

            
            This change might not seem to be of great significance; however, it improves the look
               up a lot. Let's look at it with another example.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            An example – the inverted index for words in books

            
         
         
         
         
            
            
            Let's take the data from the same example as before but now classified according to
               an inverted index:
            

            * apple
  - Book 1 - 4, 10, 20
  - Book 3 - 36, 55, 74
    
* banana
  - Book 2 - 14, 19, 66
    
* cake
  - Book 2 - 10, 37, 45
  - Book 3 - 1, 9, 77
    
* cat
  - Book 1 - 10, 21, 22
    
* whale
  - Book 3 - 11, 59, 79
 
* zebra
  - Book 1 - 15, 25, 63
  - Book 2 - 67, 100, 129  

            With this setup, we can efficiently answer following questions:

            
            
               
               	Does a word exist in the index?

               
               	What are all the books a word exists in?

               
               	What pages does a word occur on in a given book?

               
            

            
            Let's again try to find three words from the inverted index:

            
            
               
               	apple

               
               	banana

               
               	parrot

               
            

            * Searching for 'apple'
  - Scanning Inverted Index. Result: Found a list of books.
    
* Searching for 'banana'
  - Scanning Inverted Index. Result: Found a list of books.
    
* Searching for 'parrot'
  - Scanning Inverted Index. Result: Not Found.  

            To summarize, instead of going through each of the books, we do a single look up for
               each of the terms, determine if the term exists, and if it does, return the list of
               books which is our ultimate goal.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Ranking

            
         
         
         
         
            
            
            Ranking and the relevance of search results is an interesting and complex topic. All
               major search engines have a dedicated group of software engineers and computer scientists
               who spend a lot of time and effort to ensure that their algorithms are most accurate.
            

            
            For Goophr, we will simplify the ranking and limit it to the frequency of search terms.
               Higher the search term frequency, higher it ranks in the results.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Revisiting the API definition

            
         
         
         
         
            
            
            Let's review Librarian's API definition:

            openapi: 3.0.0 
servers: 
  - url: /api 
info: 
  title: Goophr Librarian API 
  version: '1.0' 
  description: | 
    API responsible for indexing & communicating with Goophr Concierge. 
paths: 
  /index: 
    post: 
      description: | 
        Add terms to index. 
      responses: 
        '200': 
          description: | 
            Terms were successfully added to the index. 
        '400': 
          description: > 
            Request was not processed because payload was incomplete or 
            incorrect. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/error' 
      requestBody: 
        content: 
          application/json: 
            schema: 
              $ref: '#/components/schemas/terms' 
        description: | 
          List of terms to be added to the index. 
        required: true 
  /query: 
    post: 
      description: | 
        Search for all terms in the payload. 
      responses: 
        '200': 
          description: | 
            Returns a list of all the terms along with their frequency, 
            documents the terms appear in and link to the said documents. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/results' 
        '400': 
          description: > 
            Request was not processed because payload was incomplete or 
            incorrect. 
          content: 
            application/json: 
              schema: 
                $ref: '#/components/schemas/error' 
    parameters: [] 
components: 
  schemas: 
    error: 
      type: object 
      properties: 
        msg: 
          type: string 
    term: 
      type: object 
      required: 
        - title 
        - token 
        - doc_id 
        - line_index 
        - token_index 
      properties: 
        title: 
          description: | 
            Title of the document to which the term belongs. 
          type: string 
        token: 
          description: | 
            The term to be added to the index. 
          type: string 
        doc_id: 
          description: | 
            The unique hash for each document. 
          type: string 
        line_index: 
          description: | 
            Line index at which the term occurs in the document. 
          type: integer 
        token_index: 
          description: | 
            Position of the term in the document. 
          type: integer 
    terms: 
      type: object 
      properties: 
        code: 
          type: integer 
        data: 
          type: array 
          items: 
            $ref: '#/components/schemas/term' 
    results: 
      type: object 
      properties: 
        count: 
          type: integer 
        data: 
          type: array 
          items: 
            $ref: '#/components/schemas/result' 
    result: 
      type: object 
      properties: 
        doc_id: 
          type: string 
        score: 
          type: integer  

            Based on the API definition, we can state the following:

            
            
               
               	All communication is via the JSON format

               
               	The two endpoints for Librarian are: /api/index and /api/query

               
               	/api/index uses the POST method to add new tokens to the reverse index
               

               
               	/api/query uses the POST method to receive search query terms and returns a list of all documents that the
                  index contains
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The document indexer – the REST API endpoint

            
         
         
         
         
            
            
            The main aim of /api/index is to accept tokens from Concierge and add them to the index. So let's look at what
               we mean by "adding them to the index".
            

            
            Document indexing can be defined as the following set of consecutive tasks:

            
            
               
               	We rely on the payload to provide us with all the meta information needed to store
                  the token.
               

               
               	We follow down the inverted index tree, create any node in the path not yet created,
                  and finally add the token details.
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The query resolver – the REST API endpoint

            
         
         
         
         
            
            
            The main aim of /api/query is to find the set of search terms in the inverted index and return a list of document
               IDs in decreasing order of relevance. Let's look at what we mean by "querying search
               terms" and "relevance".
            

            
            Query resolution can be defined as the following set of consecutive tasks:

            
            
               
               	For each of the search terms, we would like to retrieve all available books in inverted
                  index form.
               

               
               	Next, we would like to store the occurrence counts for all the words within each individual
                  book in a simple look up table (map).

               
               	Once we have a map with books and their respective counts, we can convert the look
                  up table into an array of ordered document IDs and their respective scores.
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Code conventions

            
         
         
         
         
            
            
            The code in this chapter is quite straightforward and it follows the same code conventions
               as in Chapter 6, Goophr Concierge. So let's jump right into the code.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Librarian source code

            
         
         
         
         
            
            
            Now that we have discussed the design of Librarian in detail, let's look at the project
               structure and source code:
            

            $ tree               
.                                           
├── api                                     
│   ├── index.go                            
│   └── query.go                            
├── common                                  
│   ├── helpers.go                
├── Dockerfile                              
├── main.go                                  

            Two directories and five files!

            
            Now let's look at the source code for each of the files.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            main.go

            
         
         
         
         
            
            
            The source file is responsible for initializing routes, starting the index system
               and starting the web server:
            

            package main 
 
import ( 
    "net/http" 
 
    "github.com/last-ent/distributed-go/chapter7/goophr/librarian/api" 
    "github.com/last-ent/distributed-go/chapter7/goophr/librarian/common" 
) 
 
func main() { 
    common.Log("Adding API handlers...") 
    http.HandleFunc("/api/index", api.IndexHandler) 
    http.HandleFunc("/api/query", api.QueryHandler) 
 
    common.Log("Starting index...") 
    api.StartIndexSystem() 
 
    common.Log("Starting Goophr Librarian server on port :9090...") 
    http.ListenAndServe(":9090", nil) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            common/helpers.go

            
         
         
         
         
            
            
            The source file consists of code that is speacialized to one handler.

            package common 
 
import ( 
    "fmt" 
    "log" 
) 
 
func Log(msg string) { 
    log.Println("INFO - ", msg) 
} 
 
func Warn(msg string) { 
    log.Println("---------------------------") 
    log.Println(fmt.Sprintf("WARN: %s", msg)) 
    log.Println("---------------------------") 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            api/index.go

            
         
         
         
         
            
            
            Source file containing code to process and add new terms to the index.

            package api 
 
import ( 
    "bytes" 
    "encoding/json" 
    "fmt" 
    "net/http" 
) 
 
// tPayload is used to parse the JSON payload consisting of Token data. 
type tPayload struct { 
    Token  string 'json:"token"' 
    Title  string 'json:"title"' 
    DocID  string 'json:"doc_id"' 
    LIndex int    'json:"line_index"' 
    Index  int    'json:"token_index"' 
} 
 
type tIndex struct { 
    Index  int 
    LIndex int 
} 
 
func (ti *tIndex) String() string { 
    return fmt.Sprintf("i: %d, li: %d", ti.Index, ti.LIndex) 
} 
 
type tIndices []tIndex 
 
// document - key in Indices represent Line Index. 
type document struct { 
    Count   int 
    DocID   string 
    Title   string 
    Indices map[int]tIndices 
} 
 
func (d *document) String() string { 
    str := fmt.Sprintf("%s (%s): %d\n", d.Title, d.DocID, d.Count) 
    var buffer bytes.Buffer 
 
    for lin, tis := range d.Indices { 
        var lBuffer bytes.Buffer 
        for _, ti := range tis { 
            lBuffer.WriteString(fmt.Sprintf("%s ", ti.String())) 
        } 
        buffer.WriteString(fmt.Sprintf("@%d -> %s\n", lin, lBuffer.String())) 
    } 
    return str + buffer.String() 
} 
 
// documentCatalog - key represents DocID. 
type documentCatalog map[string]*document 
 
func (dc *documentCatalog) String() string { 
    return fmt.Sprintf("%#v", dc) 
} 
 
// tCatalog - key in map represents Token. 
type tCatalog map[string]documentCatalog 
 
func (tc *tCatalog) String() string { 
    return fmt.Sprintf("%#v", tc) 
} 
 
type tcCallback struct { 
    Token string 
    Ch    chan tcMsg 
} 
 
type tcMsg struct { 
    Token string 
    DC    documentCatalog 
} 
 
// pProcessCh is used to process /index's payload and start process to add the token to catalog (tCatalog). 
var pProcessCh chan tPayload 
 
// tcGet is used to retrieve a token's catalog (documentCatalog). 
var tcGet chan tcCallback 
 
func StartIndexSystem() { 
    pProcessCh = make(chan tPayload, 100) 
    tcGet = make(chan tcCallback, 20) 
    go tIndexer(pProcessCh, tcGet) 
} 
 
// tIndexer maintains a catalog of all tokens along with where they occur within documents. 
func tIndexer(ch chan tPayload, callback chan tcCallback) { 
    store := tCatalog{} 
    for { 
        select { 
        case msg := <-callback: 
            dc := store[msg.Token] 
            msg.Ch <- tcMsg{ 
                DC:    dc, 
                Token: msg.Token, 
            } 
 
        case pd := <-ch: 
            dc, exists := store[pd.Token] 
            if !exists { 
                dc = documentCatalog{} 
                store[pd.Token] = dc 
            } 
 
            doc, exists := dc[pd.DocID] 
            if !exists { 
                doc = &document{ 
                    DocID:   pd.DocID, 
                    Title:   pd.Title, 
                    Indices: map[int]tIndices{}, 
                } 
                dc[pd.DocID] = doc 
            } 
 
            tin := tIndex{ 
                Index:  pd.Index, 
                LIndex: pd.LIndex, 
            } 
            doc.Indices[tin.LIndex] = append(doc.Indices[tin.LIndex], tin) 
            doc.Count++ 
        } 
    } 
} 
 
func IndexHandler(w http.ResponseWriter, r *http.Request) { 
    if r.Method != "POST" { 
        w.WriteHeader(http.StatusMethodNotAllowed) 
        w.Write([]byte('{"code": 405, "msg": "Method Not Allowed."}')) 
        return 
    } 
 
    decoder := json.NewDecoder(r.Body) 
    defer r.Body.Close() 
 
    var tp tPayload 
    decoder.Decode(&tp)

  
    log.Printf("Token received%#v\n", tp) 
 
    pProcessCh <- tp 
 
    w.Write([]byte('{"code": 200, "msg": "Tokens are being added to index."}')) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            api/query.go

            
         
         
         
         
            
            
            Source file contains code responsible for returning sorted results based on search
               terms.
            

            package api 
 
import ( 
    "encoding/json" 
    "net/http" 
    "sort" 
 
    "github.com/last-ent/distributed-go/chapter7/goophr/librarian/common" 
) 
 
type docResult struct { 
    DocID   string   'json:"doc_id"' 
    Score   int      'json:"doc_score"' 
    Indices tIndices 'json:"token_indices"' 
} 
 
type result struct { 
    Count int         'json:"count"' 
    Data  []docResult 'json:"data"' 
} 
 
// getResults returns unsorted search results & a map of documents containing tokens. 
func getResults(out chan tcMsg, count int) tCatalog { 
    tc := tCatalog{} 
    for i := 0; i < count; i++ { 
        dc := <-out 
        tc[dc.Token] = dc.DC 
    } 
    close(out) 
 
    return tc 
} 
 
func getFScores(docIDScore map[string]int) (map[int][]string, []int) { 
    // fScore maps frequency score to set of documents. 
    fScore := map[int][]string{} 
 
    fSorted := []int{} 
 
    for dID, score := range docIDScore { 
        fs := fScore[score] 
            fScore[score] = []string{} 
        } 
        fScore[score] = append(fs, dID) 
        fSorted = append(fSorted, score) 
    } 
 
    sort.Sort(sort.Reverse(sort.IntSlice(fSorted))) 
 
    return fScore, fSorted 
} 
 
func getDocMaps(tc tCatalog) (map[string]int, map[string]tIndices) { 
    // docIDScore maps DocIDs to occurences of all tokens. 
    // key: DocID. 
    // val: Sum of all occurences of tokens so far. 
    docIDScore := map[string]int{} 
    docIndices := map[string]tIndices{} 
 
    // for each token's catalog 
    for _, dc := range tc { 
        // for each document registered under the token 
        for dID, doc := range dc { 
            // add to docID score 
            var tokIndices tIndices 
            for _, tList := range doc.Indices { 
                tokIndices = append(tokIndices, tList...) 
            } 
            docIDScore[dID] += doc.Count 
 
            dti := docIndices[dID] 
                
            docIndices[dID] = append(dti, tokIndices...) 
        } 
    } 
 
    return docIDScore, docIndices 
} 
 
func sortResults(tc tCatalog) []docResult { 
    docIDScore, docIndices := getDocMaps(tc) 
    fScore, fSorted := getFScores(docIDScore) 
 
    results := []docResult{} 
    addedDocs := map[string]bool{} 
 
    for _, score := range fSorted { 
        for _, docID := range fScore[score] { 
            if _, exists := addedDocs[docID]; exists { 
                continue 
            } 
            results = append(results, docResult{ 
                DocID:   docID, 
                Score:   score, 
                Indices: docIndices[docID], 
            }) 
            addedDocs[docID] = false 
        } 
    } 
    return results 
} 
 
// getSearchResults returns a list of documents. 
// They are listed in descending order of occurences. 
func getSearchResults(sts []string) []docResult { 
 
    callback := make(chan tcMsg) 
 
    for _, st := range sts { 
        go func(term string) { 
            tcGet <- tcCallback{ 
                Token: term, 
                Ch:    callback, 
            } 
        }(st) 
    } 
 
    cts := getResults(callback, len(sts)) 
    results := sortResults(cts) 
    return results 
} 
 
func QueryHandler(w http.ResponseWriter, r *http.Request) { 
    if r.Method != "POST" { 
        w.WriteHeader(http.StatusMethodNotAllowed) 
        w.Write([]byte('{"code": 405, "msg": "Method Not Allowed."}')) 
        return 
    } 
 
    decoder := json.NewDecoder(r.Body) 
    defer r.Body.Close() 
 
    var searchTerms []string 
    decoder.Decode(&searchTerms) 
 
    results := getSearchResults(searchTerms) 
 
    payload := result{ 
        Count: len(results), 
        Data:  results, 
    } 
 
    if serializedPayload, err := json.Marshal(payload); err == nil { 
        w.Header().Add("Content-Type", "application/json") 
        w.Write(serializedPayload) 
    } else { 
        common.Warn("Unable to serialize all docs: " + err.Error()) 
        w.WriteHeader(http.StatusInternalServerError) 
        w.Write([]byte('{"code": 500, "msg": "Error occurred while trying to retrieve documents."}')) 
    } 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Testing Librarian

            
         
         
         
         
            
            
            In order to test whether Librarian works as expected, we need to test two things:

            
            
               
               	Check if /api/index accepts index terms.
               

               
               	Check if /api/query returns the correct results and in the expected order.
               

               
            

            
            We can test point 1 with the help of a separate program/script, feeder.go, and point 2 with simple cURL commands.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Testing feeder.go using /api/index

            
         
         
         
         
            
            
            Here's the feeder.go script to check if /api/index accepts index terms:
            

            package main 
 
import ( 
    "bytes" 
    "encoding/json" 
    "io/ioutil" 
    "log" 
    "net/http" 
) 
 
type tPayload struct { 
    Token  string 'json:"token"' 
    Title  string 'json:"title"' 
    DocID  string 'json:"doc_id"' 
    LIndex int    'json:"line_index"' 
    Index  int    'json:"token_index"' 
} 
 
type msgS struct { 
    Code int    'json:"code"' 
    Msg  string 'json:"msg"' 
} 
 
func main() { 
    // Searching for "apple" should return Book 1 at the top of search results. 
    // Searching for "cake" should return Book 3 at the top. 
    for bookX, terms := range map[string][]string{ 
        "Book 1": []string{"apple", "apple", "cat", "zebra"}, 
        "Book 2": []string{"banana", "cake", "zebra"}, 
        "Book 3": []string{"apple", "cake", "cake", "whale"}, 
    } { 
        for lin, term := range terms { 
            payload, _ := json.Marshal(tPayload{ 
                Token:  term, 
                Title:  bookX + term, 
                DocID:  bookX, 
                LIndex: lin, 
            }) 
            resp, err := http.Post( 
                "http://localhost:9090/api/index", 
                "application/json", 
                bytes.NewBuffer(payload), 
            ) 
            if err != nil { 
                panic(err) 
            } 
            body, _ := ioutil.ReadAll(resp.Body) 
            defer resp.Body.Close() 
 
            var msg msgS 
            json.Unmarshal(body, &msg) 
            log.Println(msg) 
        } 
    } 
} 

            The output from running feeder.go (with Librarian running in other window) is as follows:
            

            $ go run feeder.go   
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}                            
2018/01/04 12:53:31 {200 Tokens are being added to index.}      

            The output from Librarian for the preceding program is as follows:

            $ go run goophr/librarian/main.go                               
2018/01/04 12:53:25 INFO -  Adding API handlers...                                    
2018/01/04 12:53:25 INFO -  Starting index...                                         
2018/01/04 12:53:25 INFO -  Starting Goophr Librarian server on port :9090...         
2018/01/04 12:53:31 Token received api.tPayload{Token:"banana", Title:"Book 2banana", DocID:"Book 2", LIndex:0, Index:0}                                                     
2018/01/04 12:53:31 Token received api.tPayload{Token:"cake", Title:"Book 2cake", DocID:"Book 2", LIndex:1, Index:0}                                                         
2018/01/04 12:53:31 Token received api.tPayload{Token:"zebra", Title:"Book 2zebra", DocID:"Book 2", LIndex:2, Index:0}                                                       
2018/01/04 12:53:31 Token received api.tPayload{Token:"apple", Title:"Book 3apple", DocID:"Book 3", LIndex:0, Index:0}                                                       
2018/01/04 12:53:31 Token received api.tPayload{Token:"cake", Title:"Book 3cake", DocID:"Book 3", LIndex:1, Index:0}                                                         
2018/01/04 12:53:31 Token received api.tPayload{Token:"cake", Title:"Book 3cake", DocID:"Book 3", LIndex:2, Index:0}                                                         
2018/01/04 12:53:31 Token received api.tPayload{Token:"whale", Title:"Book 3whale", DocID:"Book 3", LIndex:3, Index:0}                                                       
2018/01/04 12:53:31 Token received api.tPayload{Token:"apple", Title:"Book 1apple", DocID:"Book 1", LIndex:0, Index:0}                                                       
2018/01/04 12:53:31 Token received api.tPayload{Token:"apple", Title:"Book 1apple", DocID:"Book 1", LIndex:1, Index:0}                                                       
2018/01/04 12:53:31 Token received api.tPayload{Token:"cat", Title:"Book 1cat", DocID:"Book 1", LIndex:2, Index:0}                                                           
2018/01/04 12:53:31 Token received api.tPayload{Token:"zebra", Title:"Book 1zebra", DocID:"Book 1", LIndex:3, Index:0}     

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Testing /api/query

            
         
         
         
         
            
            
            In order to test /api/query we need to maintain the preceding state of the server to make useful queries:
            

            $ # Querying for "apple" 
 
$ curl -LX POST -d '["apple"]' localhost:9090/api/query | jq    
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current        
                                 Dload  Upload   Total   Spent    Left  Speed          
100   202  100   193  100     9    193      9  0:00:01 --:--:--  0:00:01 40400         
{                                           
  "count": 2,                               
  "data": [                                 
    {                                       
      "doc_id": "Book 1",                   
      "doc_score": 2,                       
      "token_indices": [                    
        {                                   
          "Index": 0,                       
          "LIndex": 0                       
        },                                  
        {                                   
          "Index": 0,                       
          "LIndex": 1                       
        }                                   
      ]                                     
    },                                      
    {                                       
      "doc_id": "Book 3",                   
      "doc_score": 1,                       
      "token_indices": [                    
        {                                   
          "Index": 0,                       
          "LIndex": 0                       
        }                                   
      ]                                     
    }                                       
  ]                                         
} 
 
$ # Querying for "cake" 

$ curl -LX POST -d '["cake"]' localhost:9090/api/query | jq                                                                                             
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current        
                                 Dload  Upload   Total   Spent    Left  Speed          
100   201  100   193  100     8    193      8  0:00:01 --:--:--  0:00:01 33500         
{                                           
  "count": 2,                               
  "data": [                                 
    {                                       
      "doc_id": "Book 3",                   
      "doc_score": 2,                       
      "token_indices": [                    
        {                                   
          "Index": 0,                       
          "LIndex": 1                       
        },                                  
        {                                   
          "Index": 0,                       
          "LIndex": 2                       
        }                                   
      ]                                     
    },                                      
    {                                       
      "doc_id": "Book 2",                   
      "doc_score": 1,                       
      "token_indices": [                    
        {                                   
          "Index": 0,                       
          "LIndex": 1                       
        }                                   
      ]                                     
    }                                       
  ]                                         
}                 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we developed an understanding of inverted indices and implemented
               it for Librarian for the efficient storage and lookup of search terms. We also checked
               our implementation with the help of a script, feeder.go, and cURL commands.
            

            
            In the next chapter, Chapter 8, Deploying Goophr, we will rewrite Concierge's api.indexAdder so that it can start sending the tokens to be indexed to Librarian. We will also
               revisit docker-compose.yaml so that we can have the complete application running and use/test it as a distributed
               system.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Deploying Goophr

            
         
         
         
         
            
            
            
               
               In Chapter 6, Goophr Concierge and Chapter 7, Goophr Librarian, we built two components of Goophr: Concierge and Librarian. We took time to understand
                  the rationale behind the design of each of the components and how they are expected
                  to work together.
               

               
               In this chapter, we will conclude building Goophr by achieving the following objectives:

               
            

            
            
               
               	Update concierge/api/query.go so that Concierge can query multiple instances of Librarians for the search terms
               

               
               	Update docker-compose.yaml so that we can run the complete Goophr system with little effort
               

               
               	Test the setup by adding documents to the index and querying the index via the REST
                  API
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Updating Goophr Concierge

            
         
         
         
         
            
            
            In order to make Concierge fully functional as per the design of Goophr, we need to
               do the following:
            

            
            
               
               	Request search results from multiple Librarians

               
               	Rank the combined search results

               
            

            
            Let's discuss these points in detail.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Handle multiple Librarians

            
         
         
         
         
            
            
            The core functionality of Goophr Librarian is to update the index and return relevant
               DocIDs based on the search terms. As we saw while implementing the codebase for Librarian,
               we need to update the index, retrieve relevant DocIDs, and then, based on relevance, sort them before returning query results. Many operations
               are involved and a lot of maps are being used for lookups and updates. These operations
               might seem trivial. However, as the size of the lookup table (map) increases, the
               performance of operations on the lookup table will start to decline. In order to avoid
               such a decline in performance, many approaches can be taken.
            

            
            Our primary goal is to understand distributed systems in the context of Go, and, for
               this reason, we will split Librarian to handle only a certain set of the index. Partitioning
               is one of the standard techniques used in databases, where the database is split into
               multiple partitions. In our case, we  we will have three instances of Librarian running,
               each of which is responsible for handling index for all tokens that are within character
               range, that are assigned to each of the partitions:
            

            
            
               
               	a_m_librarian: Librarian responsible for tokens starting with character "A" to "M"
               

               
               	n_z_librarian: Librarian responsible for tokens starting with character "N" to "Z"
               

               
               	others_librarian: Librarian responsible for tokens starting with numbers
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Aggregated search results

            
         
         
         
         
            
            
            The next step would be to aggregate results of the search terms from the multiple
               instances of Librarian and return them as a payload to the query request. This would
               require us to do the following:
            

            
            
               
               	Get a list of the URLs for all of the Librarians available

               
               	Request search results from all the Librarians when a query is received

               
               	Aggregate search results based on DocID

               
               	Sort the results in descending order of relevance score

               
               	Form and return the JSON payload as per the Swagger API definition

               
            

            
            Now that we understand the rationale behind having multiple instances of Librarian,
               and how we are going to handle queries based on this new configuration, we can apply
               these changes to concierge/api/query.go.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Orchestrating with docker-compose

            
         
         
         
         
            
            
            We have been running the servers for Librarian and Concierge on our system's localhost
               at hardcoded network port values. We haven't faced any issues with it so far. However,
               when we consider that we will be running three instances of Librarian, requiring to
               connect all of them to Concierge and be able to easily start and monitor the servers,
               we realize that there are a lot of moving parts. This can lead to unnecessary errors
               while operating the system. In order to make our life easy, we can rely on docker-compose, which will take care of all this complexity for us. All we have to do is define
               a configuration YAML file called docker-compose.yaml that will provide the following information:
            

            
            
               
               	Identify the services we want to run together

               
               	The location or name of the respective Dockerfile or Docker image for every service
                  defined in the YAML file so that we can build Docker images for all of them and run
                  them as containers
               

               
               	Ports to expose for each of the running containers

               
               	Any further environment variables we might want to inject into our server instances

               
               	Ensure that Concierge's container has access to all other running containers

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Environment variables and API ports

            
         
         
         
         
            
            
            We mentioned that we will specify the port we want each of the containers to run on
               in docker-compose.yaml. However, we also need to update {concierge,librarian}/main.go so that they can start the servers at ports defined by environment variables. We
               will also need to update concierge/query.go so that it can access the Librarian instances on URLs and ports as defined by docker-compose.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The file server

            
         
         
         
         
            
            
            In order to quickly test our setup by loading documents into the indexes, to be able
               to query the system and validate the query results, we will also be including a simple
               HTTP server that serves documents containing a few words.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The Goophr source code

            
         
         
         
         
            
            
            In the previous two chapters, Chapter 6, Goophr Concierge and Chapter 7, Goophr Librarian, we discussed the code for Concierge and Librarian respectively. In order to run
               the complete Goophr application using docker-compose, we will need to merge the codebases of both Librarian and Concierge into a single
               codebase. The codebase will also include docker-compose.yaml and code for the file server.
            

            
            In this chapter, we will not list the code for all the files in Librarian and Concierge
               but only the files with changes. Let's start by looking at the structure of the complete
               project:
            

            $ tree -a
.
ε2;── goophr
    ├── concierge
    │   ├── api
    │   │   ├── feeder.go
    │   │   ├── feeder_test.go
    │   │   └── query.go
    │   ├── common
    │   │   └── helpers.go
    │   ├── Dockerfile
    │   └── main.go
    ├── docker-compose.yaml
    ├── .env
    ├── librarian
    │   ├── api
    │   │   ├── index.go
    │   │   └── query.go
    │   ├── common
    │   │   └── helpers.go
    │   ├── Dockerfile
    │   └── main.go
    └── simple-server
        ├── Dockerfile
        └── main.go
    
8 directories, 15 files

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            librarian/main.go

            
         
         
         
         
            
            
            We want to allow the Librarian to start on a custom port based on the environment
               variable, API_PORT, passed to it:
            

            package main 
 
import ( 
    "fmt" 
    "net/http" 
    "os" 
 
    "github.com/last-ent/distributed-go/chapter8/goophr/librarian/api" 
    "github.com/last-ent/distributed-go/chapter8/goophr/librarian/common" 
) 
 
func main() { 
    common.Log("Adding API handlers...") 
    http.HandleFunc("/api/index", api.IndexHandler) 
    http.HandleFunc("/api/query", api.QueryHandler) 
 
    common.Log("Starting index...") 
    api.StartIndexSystem() 
 
    port := fmt.Sprintf(":%s", os.Getenv("API_PORT")) 
    common.Log(fmt.Sprintf("Starting Goophr Librarian server on port %s...", port)) 
    http.ListenAndServe(port, nil) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            concierge/main.go

            
         
         
         
         
            
            
            Allow Concierge to start on a custom port based on the environment variable, API_PORT, passed to it:
            

            package main 
 
import ( 
    "fmt" 
    "net/http" 
    "os" 
 
    "github.com/last-ent/distributed-go/chapter8/goophr/concierge/api" 
    "github.com/last-ent/distributed-go/chapter8/goophr/concierge/common" 
) 
 
func main() { 
    common.Log("Adding API handlers...") 
    http.HandleFunc("/api/feeder", api.FeedHandler) 
    http.HandleFunc("/api/query", api.QueryHandler) 
 
    common.Log("Starting feeder...") 
    api.StartFeederSystem() 
 
    port := fmt.Sprintf(":%s", os.Getenv("API_PORT")) 
    common.Log(fmt.Sprintf("Starting Goophr Concierge server on port %s...", port)) 
    http.ListenAndServe(port, nil) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            concierge/api/query.go

            
         
         
         
         
            
            
            Query all the available Librarian instances to retrieve search query results, rank
               them in order, and then send back the results:
            

            package api 
 
import ( 
    "bytes" 
    "encoding/json" 
    "fmt" 
    "io" 
    "io/ioutil" 
    "log" 
    "net/http" 
    "os" 
    "sort" 
 
    "github.com/last-ent/distributed-go/chapter8/goophr/concierge/common" 
) 
 
var librarianEndpoints = map[string]string{} 
 
func init() { 
    librarianEndpoints["a-m"] = os.Getenv("LIB_A_M") 
    librarianEndpoints["n-z"] = os.Getenv("LIB_N_Z") 
    librarianEndpoints["*"] = os.Getenv("LIB_OTHERS") 
} 
 
type docs struct { 
    DocID string 'json:"doc_id"' 
    Score int    'json:"doc_score"' 
} 
 
type queryResult struct { 
    Count int    'json:"count"' 
    Data  []docs 'json:"data"' 
} 
 
func queryLibrarian(endpoint string, stBytes io.Reader, ch chan<- queryResult) { 
    resp, err := http.Post( 
        endpoint+"/query", 
        "application/json", 
        stBytes, 
    ) 
    if err != nil { 
        common.Warn(fmt.Sprintf("%s -> %+v", endpoint, err)) 
        ch <- queryResult{} 
        return 
    } 
    body, _ := ioutil.ReadAll(resp.Body) 
    defer resp.Body.Close() 
 
    var qr queryResult 
    json.Unmarshal(body, &qr) 
    log.Println(fmt.Sprintf("%s -> %#v", endpoint, qr)) 
    ch <- qr 
} 
 
func getResultsMap(ch <-chan queryResult) map[string]int { 
    results := []docs{} 
    for range librarianEndpoints { 
        if result := <-ch; result.Count > 0 { 
            results = append(results, result.Data...) 
        } 
    } 
 
    resultsMap := map[string]int{} 
    for _, doc := range results { 
            docID := doc.DocID 
            score := doc.Score 
            if _, exists := resultsMap[docID]; !exists { 
                resultsMap[docID] = 0 
            } 
            resultsMap[docID] = resultsMap[docID] + score 
        } 
 
    return resultsMap 
} 
 
func QueryHandler(w http.ResponseWriter, r *http.Request) { 
    if r.Method != "POST" { 
        w.WriteHeader(http.StatusMethodNotAllowed) 
        w.Write([]byte('{"code": 405, "msg": "Method Not Allowed."}')) 
        return 
    } 
 
    decoder := json.NewDecoder(r.Body) 
    defer r.Body.Close() 
 
    var searchTerms []string 
    if err := decoder.Decode(&searchTerms); err != nil { 
        common.Warn("Unable to parse request." + err.Error()) 
 
        w.WriteHeader(http.StatusBadRequest) 
        w.Write([]byte('{"code": 400, "msg": "Unable to parse payload."}')) 
        return 
    } 
 
    st, err := json.Marshal(searchTerms) 
    if err != nil { 
        panic(err) 
    } 
    stBytes := bytes.NewBuffer(st) 
 
    resultsCh := make(chan queryResult) 
 
    for _, le := range librarianEndpoints { 
        func(endpoint string) { 
            go queryLibrarian(endpoint, stBytes, resultsCh) 
        }(le) 
    } 
 
    resultsMap := getResultsMap(resultsCh) 
    close(resultsCh) 
 
    sortedResults := sortResults(resultsMap) 
 
    payload, _ := json.Marshal(sortedResults) 
    w.Header().Add("Content-Type", "application/json") 
    w.Write(payload) 
 
    fmt.Printf("%#v\n", sortedResults) 
} 
 
func sortResults(rm map[string]int) []document { 
    scoreMap := map[int][]document{} 
    ch := make(chan document) 
    
    for docID, score := range rm { 
        if _, exists := scoreMap[score]; !exists { 
            scoreMap[score] = []document{} 
        } 
 
        dGetCh <- dMsg{ 
            DocID: docID, 
            Ch:    ch, 
        } 
        doc := <-ch 
 
        scoreMap[score] = append(scoreMap[score], doc) 
    } 
 
    close(ch) 
 
    scores := []int{} 
    for score := range scoreMap { 
        scores = append(scores, score) 
    } 
    sort.Sort(sort.Reverse(sort.IntSlice(scores))) 
 
    sortedResults := []document{} 
    for _, score := range scores { 
        resDocs := scoreMap[score] 
        sortedResults = append(sortedResults, resDocs...) 
    } 
    return sortedResults 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            simple-server/Dockerfile

            
         
         
         
         
            
            
            Let's use Dockerfile to create a simple file server:
            

            FROM golang:1.10 
 
ADD . /go/src/littlefs 
 
WORKDIR /go/src/littlefs 
 
RUN go install littlefs 
 
ENTRYPOINT /go/bin/littlefs

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            simple-server/main.go

            
         
         
         
         
            
            
            Let's look at a simple program that returns a set of words as an HTTP response based
               on bookID:
            

            package main 
 
import ( 
    "log" 
    "net/http" 
) 
 
func reqHandler(w http.ResponseWriter, r *http.Request) { 
    books := map[string]string{ 
        "book1": 'apple apple cat zebra', 
        "book2": 'banana cake zebra', 
        "book3": 'apple cake cake whale', 
    } 
 
    bookID := r.URL.Path[1:] 
    book, _ := books[bookID] 
    w.Write([]byte(book)) 
} 
 
func main() { 
 
    log.Println("Starting File Server on Port :9876...") 
    http.HandleFunc("/", reqHandler) 
    http.ListenAndServe(":9876", nil) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            docker-compose.yaml

            
         
         
         
         
            
            
            This file will allow us to build, run, connect and stop our containers from a single
               interface.
            

            version: '3' 
 
services: 
  a_m_librarian: 
    build: librarian/. 
    environment: 
      - API_PORT=${A_M_PORT} 
    ports: 
      - ${A_M_PORT}:${A_M_PORT} 
  n_z_librarian: 
      build: librarian/. 
      environment: 
        - API_PORT=${N_Z_PORT} 
      ports: 
        - ${N_Z_PORT}:${N_Z_PORT} 
  others_librarian: 
      build: librarian/. 
      environment: 
        - API_PORT=${OTHERS_PORT} 
      ports: 
        - ${OTHERS_PORT}:${OTHERS_PORT} 
  concierge: 
    build: concierge/. 
    environment: 
      - API_PORT=${CONCIERGE_PORT} 
      - LIB_A_M=http://a_m_librarian:${A_M_PORT}/api 
      - LIB_N_Z=http://n_z_librarian:${N_Z_PORT}/api 
      - LIB_OTHERS=http://others_librarian:${OTHERS_PORT}/api 
    ports: 
      - ${CONCIERGE_PORT}:${CONCIERGE_PORT} 
    links: 
      - a_m_librarian 
      - n_z_librarian 
      - others_librarian 
      - file_server 
  file_server: 
    build: simple-server/. 
    ports: 
      - ${SERVER_PORT}:${SERVER_PORT} 

            Linked services can be referred to using the service name as the domain name.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            .env

            
         
         
         
         
            
            
            .env is used within docker-compose.yaml to load template variables. It follows the format of <template-variable>=<value>:
            

            CONCIERGE_PORT=9090
A_M_PORT=6060
N_Z_PORT=7070
OTHERS_PORT=8080
SERVER_PORT=9876  

            We can view the docker-compose.yaml with substituted values by running the following command:
            

            $ pwd 
GO-WORKSPACE/src/github.com/last-ent/distributed-go/chapter8/goophr 
$ docker-compose config 
services: 
  a_m_librarian: 
    build: 
      context: /home/entux/Documents/Code/GO-WORKSPACE/src/github.com/last-ent/distributed-go/chapter8/goophr/librarian 
    environment: 
      API_PORT: '6060' 
    ports: 
    - 6060:6060/tcp 
  concierge: 
    build: 
      context: /home/entux/Documents/Code/GO-WORKSPACE/src/github.com/last-ent/distributed-go/chapter8/goophr/concierge 
    environment: 
      API_PORT: '9090' 
      LIB_A_M: http://a_m_librarian:6060/api 
      LIB_N_Z: http://n_z_librarian:7070/api 
      LIB_OTHERS: http://others_librarian:8080/api 
    links: 
    - a_m_librarian 
    - n_z_librarian 
    - others_librarian 
    - file_server 
    ports: 
    - 9090:9090/tcp 
  file_server: 
    build: 
      context: /home/entux/Documents/Code/GO-WORKSPACE/src/github.com/last-ent/distributed-go/chapter8/goophr/simple-server 
    ports: 
    - 9876:9876/tcp 
  n_z_librarian: 
    build: 
      context: /home/entux/Documents/Code/GO-WORKSPACE/src/github.com/last-ent/distributed-go/chapter8/goophr/librarian 
    environment: 
      API_PORT: '7070' 
    ports: 
    - 7070:7070/tcp 
  others_librarian: 
    build: 
      context: /home/entux/Documents/Code/GO-WORKSPACE/src/github.com/last-ent/distributed-go/chapter8/goophr/librarian 
    environment: 
      API_PORT: '8080' 
    ports: 
    - 8080:8080/tcp 
version: '3.0' 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Running Goophr with docker-compose

            
         
         
         
         
            
            
            Now that we have everything in place, let's start the complete application:

            $ docker-compose up --build 
Building a_m_librarian 
... 
Successfully built 31e0b1a7d3fc 
Building n_z_librarian 
... 
Successfully built 31e0b1a7d3fc 
Building others_librarian 
... 
Successfully built 31e0cdb1a7d3fc 
Building file_server 
... 
Successfully built 244831d4b86a 
Building concierge 
... 
Successfully built ba1167718d29 
Starting goophr_a_m_librarian_1 ... 
Starting goophr_file_server_1 ... 
Starting goophr_a_m_librarian_1 
Starting goophr_n_z_librarian_1 ... 
Starting goophr_others_librarian_1 ... 
Starting goophr_file_server_1 
Starting goophr_n_z_librarian_1 
Starting goophr_others_librarian_1 ... done 
Starting goophr_concierge_1 ... 
Starting goophr_concierge_1 ... done 
Attaching to goophr_a_m_librarian_1, goophr_n_z_librarian_1, goophr_file_server_1, goophr_others_librarian_1, goophr_concierge_1 
a_m_librarian_1     | 2018/01/21 19:21:00 INFO -  Adding API handlers... 
a_m_librarian_1     | 2018/01/21 19:21:00 INFO -  Starting index... 
a_m_librarian_1     | 2018/01/21 19:21:00 INFO -  Starting Goophr Librarian server on port :6060... 
n_z_librarian_1     | 2018/01/21 19:21:00 INFO -  Adding API handlers... 
others_librarian_1  | 2018/01/21 19:21:01 INFO -  Adding API handlers... 
others_librarian_1  | 2018/01/21 19:21:01 INFO -  Starting index... 
others_librarian_1  | 2018/01/21 19:21:01 INFO -  Starting Goophr Librarian server on port :8080... 
n_z_librarian_1     | 2018/01/21 19:21:00 INFO -  Starting index... 
n_z_librarian_1     | 2018/01/21 19:21:00 INFO -  Starting Goophr Librarian server on port :7070... 
file_server_1       | 2018/01/21 19:21:01 Starting File Server on Port :9876... 
concierge_1         | 2018/01/21 19:21:02 INFO -  Adding API handlers... 
concierge_1         | 2018/01/21 19:21:02 INFO -  Starting feeder... 
concierge_1         | 2018/01/21 19:21:02 INFO -  Starting Goophr Concierge server on port :9090... 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Adding documents to Goophr

            
         
         
         
         
            
            
            Since we have three documents in our file server, we can add them to Goophr using
               the following curl commands:
            

            $ curl -LX POST -d '{"url":"http://file_server:9876/book1","title":"Book 1"}' localhost:9090/api/feeder | jq  && 
> curl -LX POST -d '{"url":"http://file_server:9876/book2","title":"Book 2"}' localhost:9090/api/feeder | jq  && 
> curl -LX POST -d '{"url":"http://file_server:9876/book3","title":"Book 3"}' localhost:9090/api/feeder | jq 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100   107  100    51  100    56     51     56  0:00:01 --:--:--  0:00:01  104k 
{ 
  "code": 200, 
  "msg": "Request is being processed." 
} 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100   107  100    51  100    56     51     56  0:00:01 --:--:--  0:00:01 21400 
{ 
  "code": 200, 
  "msg": "Request is being processed." 
} 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100   107  100    51  100    56     51     56  0:00:01 --:--:--  0:00:01 21400 
{ 
  "code": 200, 
  "msg": "Request is being processed." 
} 

            The following are the logs for the preceding cURL requests as seen by docker-compose:
            

            n_z_librarian_1     | 2018/01/21 19:29:23 Token received api.tPayload{Token:"zebra", Title:"Book 1", DocID:"6911b2295fd23c77fca7d739c00735b14cf80d3c", LIndex:0, Index:3} 
concierge_1         | adding to librarian: zebra 
concierge_1         | adding to librarian: apple 
concierge_1         | adding to librarian: apple 
concierge_1         | adding to librarian: cat 
concierge_1         | 2018/01/21 19:29:23 INFO -  Request was posted to Librairan. Msg:{"code": 200, "msg": "Tokens are being added to index."} 
... 
concierge_1         | 2018/01/21 19:29:23 INFO -  Request was posted to Librairan. Msg:{"code": 200, "msg": "Tokens are being added to index."} 
a_m_librarian_1     | 2018/01/21 19:29:23 Token received api.tPayload{Token:"apple", Title:"Book 1", DocID:"6911b2295fd23c77fca7d739c00735b14cf80d3c", LIndex:0, Index:0} 
... 
n_z_librarian_1     | 2018/01/21 19:29:23 Token received api.tPayload{Token:"zebra", Title:"Book 2", DocID:"fbf2b6c400680389459dff13283cb01dfe9be7d6", LIndex:0, Index:2} 
concierge_1         | adding to librarian: zebra 
concierge_1         | adding to librarian: banana 
concierge_1         | adding to librarian: cake 
... 
concierge_1         | adding to librarian: whale 
concierge_1         | adding to librarian: apple 
concierge_1         | adding to librarian: cake 
concierge_1         | adding to librarian: cake 
... 
concierge_1         | 2018/01/21 19:29:23 INFO -  Request was posted to Librairan. Msg:{"code": 200, "msg": "Tokens are being added to index."} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Searching for keywords with Goophr

            
         
         
         
         
            
            
            Now that we have the complete application running and some documents in the index,
               let's test it by searching for some of the keywords. The following is the list of
               terms we will be searching for and the expected order:
            

            
            
               
               	"apple" - book1 (score: 2), book 3 (score: 1)
               

               
               	"cake" - book 3 (score: 2), book 2 (score: 1)
               

               
               	"apple", "cake" - book 3 (score 3), book 1 (score: 2), book 2 (score: 1)
               

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Search – "apple"

            
         
         
         
         
            
            
            Let us search for "apple" alone using the cURL command:
            

            $ curl -LX POST -d '["apple"]' localhost:9090/api/query | jq                                                                                             
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current       
                                 Dload  Upload   Total   Spent    Left  Speed         
100   124  100   115  100     9    115      9  0:00:01 --:--:--  0:00:01 41333        
[                                          
  {                                        
    "title": "Book 1",                     
    "url": "http://file_server:9876/book1" 
  },                                       
  {                                        
    "title": "Book 3",                     
    "url": "http://file_server:9876/book3" 
  }                                        
] 
  

            The following are the docker-compose logs when we search for "apple":
            

            concierge_1         | 2018/01/21 20:27:11 http://n_z_librarian:7070/api -> api.queryResult{Count:0, Data:[]api.docs{}}
concierge_1         | 2018/01/21 20:27:11 http://a_m_librarian:6060/api -> api.queryResult{Count:2, Data:[]api.docs{api.docs{DocID:"7bded23abfac73630d247b6ad24370214fe1811c", Score:2}, api.docs{DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", Score:1}}}
concierge_1         | []api.document{api.document{Doc:"apple apple cat zebra", Title:"Book 1", DocID:"7bded23abfac73630d247b6ad24370214fe1811c", URL:"http://file_server:9876/book1"}, api.document{Doc:"apple cake cake whale", Title:"Book 3", DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", URL:"http://file_server:9876/book3"}}
concierge_1         | 2018/01/21 20:27:11 http://others_librarian:8080/api -> api.queryResult{Count:0, Data:[]api.docs{}}
  

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Search – "cake"

            
         
         
         
         
            
            
            Let us search for "cake" alone using the cURL command:
            

            $ curl -LX POST -d '["cake"]' localhost:9090/api/query | jq       
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current       
                                     Dload  Upload   Total   Spent    Left  Speed         
100   123  100   115  100     8    115      8  0:00:01 --:--:--  0:00:01 61500        
[                                          
  {                                        
    "title": "Book 3",                     
    "url": "http://file_server:9876/book3" 
  },                                       
  {                                        
    "title": "Book 2",                     
    "url": "http://file_server:9876/book2" 
  }                                        
]  

            The following are the docker-compose logs when we search for "cake":
            

            concierge_1         | 2018/01/21 20:30:13 http://a_m_librarian:6060/api -> api.queryResult{Count:2, Data:[]api.docs{api.docs{DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", Score:2}, api.docs{DocID:"28582e23c02ed3f14f8b4bdae97f91106273c0fc", Score:1}}}
concierge_1         | 2018/01/21 20:30:13 ---------------------------
concierge_1         | 2018/01/21 20:30:13 WARN: http://others_librarian:8080/api -> Post http://others_librarian:8080/api/query: http: ContentLength=8 with Body length 0
concierge_1         | 2018/01/21 20:30:13 ---------------------------
concierge_1         | 2018/01/21 20:30:13 http://n_z_librarian:7070/api -> api.queryResult{Count:0, Data:[]api.docs{}}
concierge_1         | []api.document{api.document{Doc:"apple cake cake whale", Title:"Book 3", DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", URL:"http://file_server:9876/book3"}, api.document{Doc:"banana cake zebra", Title:"Book 2", DocID:"28582e23c02ed3f14f8b4bdae97f91106273c0fc", URL:"http://file_server:9876/book2"}}
  

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Search – "apple", "cake"

            
         
         
         
         
            
            
            Let us search for "apple" and "cake" together using the cURL command:
            

            $ curl -LX POST -d '["cake", "apple"]' localhost:9090/api/query | jq                                                                                     
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current       
                                 Dload  Upload   Total   Spent    Left  Speed         
100   189  100   172  100    17    172     17  0:00:01 --:--:--  0:00:01 27000        
[                                          
  {                                        
    "title": "Book 3",                     
    "url": "http://file_server:9876/book3" 
  },                                       
  {                                        
    "title": "Book 1",                     
    "url": "http://file_server:9876/book1" 
  },                                       
  {                                        
    "title": "Book 2",                     
    "url": "http://file_server:9876/book2" 
  }                                        
] 

            The following are the docker-compose logs when we search for "apple" and "cake":
            

            concierge_1         | 2018/01/21 20:31:06 http://a_m_librarian:6060/api -> api.queryResult{Count:3, Data:[]api.docs{api.docs{DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", Score:3}, api.docs{DocID:"7bded23abfac73630d247b6ad24370214fe1811c", Score:2}, api.docs{DocID:"28582e23c02ed3f14f8b4bdae97f91106273c0fc", Score:1}}}
concierge_1         | 2018/01/21 20:31:06 http://n_z_librarian:7070/api -> api.queryResult{Count:0, Data:[]api.docs{}}
concierge_1         | 2018/01/21 20:31:06 ---------------------------
concierge_1         | 2018/01/21 20:31:06 WARN: http://others_librarian:8080/api -> Post http://others_librarian:8080/api/query: http: ContentLength=16 with Body length 0
concierge_1         | 2018/01/21 20:31:06 ---------------------------
concierge_1         | []api.document{api.document{Doc:"apple cake cake whale", Title:"Book 3", DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", URL:"http://file_server:9876/book3"}, api.document{Doc:"apple apple cat zebra", Title:"Book 1", DocID:"7bded23abfac73630d247b6ad24370214fe1811c", URL:"http://file_server:9876/book1"}, api.document{Doc:"banana cake zebra", Title:"Book 2", DocID:"28582e23c02ed3f14f8b4bdae97f91106273c0fc", URL:"http://file_server:9876/book2"}}

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Individual logs with docker-compose

            
         
         
         
         
            
            
            We can also view logs of each service separately. The following are the logs for Concierge:

            $ docker-compose logs concierge
Attaching to goophr_concierge_1
concierge_1         | 2018/01/21 19:18:30 INFO -  Adding API handlers...
concierge_1         | 2018/01/21 19:18:30 INFO -  Starting feeder...
concierge_1         | 2018/01/21 19:18:30 INFO -  Starting Goophr Concierge server on port :9090...
concierge_1         | 2018/01/21 19:21:02 INFO -  Adding API handlers...
concierge_1         | 2018/01/21 19:21:02 INFO -  Starting feeder...
concierge_1         | 2018/01/21 19:21:02 INFO -  Starting Goophr Concierge server on port :9090...
concierge_1         | adding to librarian: zebra
concierge_1         | adding to librarian: apple
concierge_1         | adding to librarian: apple
concierge_1         | adding to librarian: cat
concierge_1         | 2018/01/21 19:25:40 INFO -  Request was posted to Librairan. Msg:{"code": 200, "msg": "Tokens are being added to index."}
concierge_1         | 2018/01/21 20:31:06 http://a_m_librarian:6060/api -> api.queryResult{Count:3, Data:[]api.docs{api.docs{DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", Score:3}, api.docs{DocID:"7bded23abfac73630d247b6ad24370214fe1811c", Score:2}, api.docs{DocID:"28582e23c02ed3f14f8b4bdae97f91106273c0fc", Score:1}}}
concierge_1         | 2018/01/21 20:31:06 http://n_z_librarian:7070/api -> api.queryResult{Count:0, Data:[]api.docs{}}
concierge_1         | 2018/01/21 20:31:06 ---------------------------
concierge_1         | 2018/01/21 20:31:06 WARN: http://others_librarian:8080/api -> Post http://others_librarian:8080/api/query: http: ContentLength=16 with Body length 0
concierge_1         | 2018/01/21 20:31:06 ---------------------------
concierge_1         | []api.document{api.document{Doc:"apple cake cake whale", Title:"Book 3", DocID:"3c9c56d31ccd51bc7ac0011020819ef38ccd74a4", URL:"http://file_server:9876/book3"}, api.document{Doc:"apple apple cat zebra", Title:"Book 1", DocID:"7bded23abfac73630d247b6ad24370214fe1811c", URL:"http://file_server:9876/book1"}, api.document{Doc:"banana cake zebra", Title:"Book 2", DocID:"28582e23c02ed3f14f8b4bdae97f91106273c0fc", URL:"http://file_server:9876/book2"}}

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Authorization on a web server

            
         
         
         
         
            
            
            Our search application trusts every incoming request. However, sometimes restricting
               access might be the right way to go. It would be desirable if, for every incoming
               request, we could accept and identify requests from certain users. This can be achieved
               using authorization tokens (auth tokens). An auth token is a secret code/phrase sent in the header for the key, Authorization.
            

            
            Authorization and auth tokens are deep and important topics. It would not be possible
               to cover the complexity of the subject in this section. Instead, we will build a simple
               server that will make use of auth tokens to accept or reject a request. Let us look
               at the source code.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            secure/secure.go

            
         
         
         
         
            
            
            secure.go shows the logic for the simple server. It has been divided into four functions:
            

            
            
               
               	The requestHandler function to respond to incoming HTTP requests.
               

               
               	The isAuthorized function to check if the incoming request is authorized.
               

               
               	The getAuthorizedUser function to check if the token has an associated user. If the token does not have
                  an associated user, then the token is considered to be invalid.
               

               
               	The main function to start the server.
               

               
            

            
            Now let's look at the code:

            // secure/secure.go 
package main 
 
import ( 
    "fmt" 
    "log" 
    "net/http" 
    "strings" 
) 
 
var authTokens = map[string]string{ 
    "AUTH-TOKEN-1": "User 1", 
    "AUTH-TOKEN-2": "User 2", 
} 
 
// getAuthorizedUser tries to retrieve user for the given token. 
func getAuthorizedUser(token string) (string, error) { 
    var err error 
 
    user, valid := authTokens[token] 
    if !valid { 
        err = fmt.Errorf("Auth token '%s' does not exist.", token) 
    } 
 
    return user, err 
} 
 
// isAuthorized checks request to ensure that it has Authorization header 
// with defined value: "Bearer AUTH-TOKEN" 
func isAuthorized(r *http.Request) bool { 
    rawToken := r.Header["Authorization"] 
    if len(rawToken) != 1 { 
        return false 
    } 
 
    authToken := strings.Split(rawToken[0], " ") 
    if !(len(authToken) == 2 && authToken[0] == "Bearer") { 
        return false 
    } 
 
    user, err := getAuthorizedUser(authToken[1]) 
    if err != nil { 
        log.Printf("Error: %s", err) 
        return false 
    } 
 
    log.Printf("Successful request made by '%s'", user) 
    return true 
} 
 
var success = []byte("Received authorized request.") 
var failure = []byte("Received unauthorized request.") 
 
func requestHandler(w http.ResponseWriter, r *http.Request) { 
    if isAuthorized(r) { 
        w.Write(success) 
    } else { 
        w.WriteHeader(http.StatusUnauthorized) 
        w.Write(failure) 
    } 
} 
 
func main() { 
    http.HandleFunc("/", requestHandler) 
    fmt.Println("Starting server @ http://localhost:8080") 
    http.ListenAndServe(":8080", nil) 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            secure/secure_test.go

            
         
         
         
         
            
            
            Next, we will try to test the logic we have written in secure.go using unit tests. A good practice is to test each of the functions for all possible
               cases of success and failure. The test names explain the intent of the test, so let's
               look at the code:
            

            // secure/secure_test.go 
 
package main 
 
import ( 
    "net/http" 
    "net/http/httptest" 
    "testing" 
) 
 
func TestIsAuthorizedSuccess(t *testing.T) { 
    req, err := http.NewRequest("GET", "http://example.com", nil) 
    if err != nil { 
        t.Error("Unable to create request") 
    } 
 
    req.Header["Authorization"] = []string{"Bearer AUTH-TOKEN-1"} 
 
    if isAuthorized(req) { 
        t.Log("Request with correct Auth token was correctly processed.") 
    } else { 
        t.Error("Request with correct Auth token failed.") 
    } 
} 
 
func TestIsAuthorizedFailTokenType(t *testing.T) { 
    req, err := http.NewRequest("GET", "http://example.com", nil) 
    if err != nil { 
        t.Error("Unable to create request") 
    } 
 
    req.Header["Authorization"] = []string{"Token AUTH-TOKEN-1"} 
 
    if isAuthorized(req) { 
        t.Error("Request with incorrect Auth token type was successfully processed.") 
    } else { 
        t.Log("Request with incorrect Auth token type failed as expected.") 
    } 
} 
 
func TestIsAuthorizedFailToken(t *testing.T) { 
    req, err := http.NewRequest("GET", "http://example.com", nil) 
    if err != nil { 
        t.Error("Unable to create request") 
    } 
 
    req.Header["Authorization"] = []string{"Token WRONG-AUTH-TOKEN"} 
 
    if isAuthorized(req) { 
        t.Error("Request with incorrect Auth token was successfully processed.") 
    } else { 
        t.Log("Request with incorrect Auth token failed as expected.") 
    } 
} 
 
func TestRequestHandlerFailToken(t *testing.T) { 
    req, err := http.NewRequest("GET", "http://example.com", nil) 
    if err != nil { 
        t.Error("Unable to create request") 
    } 
 
    req.Header["Authorization"] = []string{"Token WRONG-AUTH-TOKEN"} 
 
    // http.ResponseWriter it is an interface hence we use 
    // httptest.NewRecorder which implements the interface http.ResponseWriter 
    rr := httptest.NewRecorder() 
    requestHandler(rr, req) 
 
    if rr.Code == 401 { 
        t.Log("Request with incorrect Auth token failed as expected.") 
    } else { 
        t.Error("Request with incorrect Auth token was successfully processed.") 
    } 
} 
 
func TestGetAuthorizedUser(t *testing.T) { 
    if user, err := getAuthorizedUser("AUTH-TOKEN-2"); err != nil { 
        t.Errorf("Couldn't find User 2. Error: %s", err) 
    } else if user != "User 2" { 
        t.Errorf("Found incorrect user: %s", user) 
    } else { 
        t.Log("Found User 2.") 
    } 
} 
 
func TestGetAuthorizedUserFail(t *testing.T) { 
    if user, err := getAuthorizedUser("WRONG-AUTH-TOKEN"); err == nil { 
        t.Errorf("Found user for invalid token!. User: %s", user) 
    } else if err.Error() != "Auth token 'WRONG-AUTH-TOKEN' does not exist." { 
        t.Errorf("Error message does not match.") 
    } else { 
        t.Log("Got expected error message for invalid auth token") 
    } 
} 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Test results

            
         
         
         
         
            
            
            Finally, let us run the tests and see if they produce the expected results:

            $ go test -v ./...      
=== RUN   TestIsAuthorizedSuccess           
2018/02/19 00:08:06 Successful request made by 'User 1'                                
--- PASS: TestIsAuthorizedSuccess (0.00s)   
        secure_test.go:18: Request with correct Auth token was correctly processed.    
=== RUN   TestIsAuthorizedFailTokenType     
--- PASS: TestIsAuthorizedFailTokenType (0.00s)                                        
        secure_test.go:35: Request with incorrect Auth token type failed as expected.  
=== RUN   TestIsAuthorizedFailToken         
--- PASS: TestIsAuthorizedFailToken (0.00s)                                            
        secure_test.go:50: Request with incorrect Auth token failed as expected.       
=== RUN   TestRequestHandlerFailToken       
--- PASS: TestRequestHandlerFailToken (0.00s)                                          
        secure_test.go:68: Request with incorrect Auth token failed as expected.       
=== RUN   TestGetAuthorizedUser             
--- PASS: TestGetAuthorizedUser (0.00s)     
        secure_test.go:80: Found User 2.    
=== RUN   TestGetAuthorizedUserFail         
--- PASS: TestGetAuthorizedUserFail (0.00s)                                            
        secure_test.go:90: Got expected error message for invalid auth token           
PASS                  
ok      chapter8/secure     0.003s 

            
            
            
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we started by trying to understand why we need to run multiple instances
                  of Goophr Librarian. Next, we looked at how to implement the updated concierge/api/query.go so that it can work with multiple instances of Librarian. Then we looked into why
                  using docker-compose to orchestrate the application might be a good idea and what may be the various factors
                  to keep in mind to make it work. We also updated the Librarian and Concierge codebase
                  so that they would work seamlessly with docker-compose. Finally, we tested the complete application using a few small documents and reasoning
                  about the expected order of results.

            
            We were able to orchestrate all the servers we needed to run the complete Goophr application
                  on our local machine using docker-compose. However, designing the architecture of a resilient web application to withstand
                  heavy user traffic on the internet can be quite challenging. Chapter 9, Foundations of Web Scale Architecture tries to address this issue by providing some basic knowledge of things to take into
                  consideration while designing for the web.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Foundations of Web Scale Architecture

            
         
         
         
         
            
            
            Chapter 5, Introducing Goophr, Chapter 6, Goophr Concierge, and Chapter 7, Goophr Librarian were about the design and implementation of a distributed search index system, starting
                  from basic concepts to running individual components and verifying that they work
                  as expected. In Chapter 8, Deploying Goophr, we connected the various components with the help of docker-compose so that we could launch and connect all the components in an easy and reliable manner.
                  We have achieved quite a lot in the past four chapters, but you may have noticed that
                  we ran everything on a single machine, most likely our laptop or desktop.


            
            
               
               Ideally, we should next try to prepare our distributed system to work reliably under
                  a heavy user load and expose it over the web for general use. However, the reality
                  is that we will have to make a lot of upgrades to our current system to make it reliable
                  and resilient enough to be able to work under real-world traffic.
               

               
               In this chapter, we are going to look at various factors we should keep in mind while
                  we try to design for the web. We will be looking at:
               

               
            

            
            
               
               	Scaling a web application

               
               	Monolith app versus microservices

               
               	Deployment options

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Scaling a web application

            
         
         
         
         
            
            
            In this chapter, we will not be discussing Goophr but instead a simple web application
               for blogging so that we can concentrate on scaling it for the web. Such an application
               may consist of a single server instance running the database and the blog server.
            

            
            Scaling a web application is an intricate topic, and we will devote a lot of time
               to this very subject. As we shall see throughout this section, there are multiple
               ways to scale a system:
            

            
            
               
               	Scaling the system as a whole

               
               	Splitting up the system and scaling individual components

               
               	Choosing specific solutions to better scale the system

               
            

            
            Let's start with the most basic setup, a single server instance.

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The single server instance

            
         
         
         
         
            
            
            A single server setup will generally consist of:

            
            
               
               	A web server to serve web pages and handle server-side logic

               
               	A database to save all user data (blog posts, user login details, and so on) related
                  to the blog
               

               
            

            
            The following figure shows what such a server would look like:

            
            

            
            The figure shows a simple setup where the user interacts with the blog server, which
               will be interacting with a database internally. This setup of a database and blog
               server on the same instance will be efficient and responsive only up to a certain
               number of users.
            

            
            As the system starts to slow down or storage starts to fill up, we can redeploy our
               application (database and blog server) on to a different server instance with more
               storage, RAM, and CPU power; this is known as vertical scaling. As you may suspect, this can be time consuming and an inconvenient way of upgrading
               your server. Wouldn't it be better if we could stave off this upgrade for as long
               as possible?
            

            
            An important point to think about is that the issue might be due to any combination
               of the following factors:
            

            
            
               
               	Out of memory due to the database or blog server

               
               	Performance degradation due to the web server or database requiring more CPU cycles

               
               	Out of storage space due to the database

               
            

            
            Scaling the complete application for any of the preceding factors isn't an optimal
               way to deal with the issue because we are spending a lot of money where we could have
               solved the issue with far fewer resources! So how should we fashion our system so
               that we can solve the right problem in the right manner?
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Separate layers for the web and database

            
         
         
         
         
            
            
            If we take the three issues stated earlier, we can solve each of them in one or two
               ways. Let's look at them first:
            

            
            Issue #1: Out of memory
            

            
            Solution:
            

            
            
               
               	Due to the database: Increase RAM for the database
               

               
               	Due to the blog server: Increase RAM for the blog server
               

               
            

            
            Issue #2: Performance degradation
            

            
            Solution:
            

            
            
               
               	Due to the database: Increase the CPU power for the database
               

               
               	Due to the blog server: Increase the CPU power for the blog server
               

               
            

            
            Issue #3: Out of storage space
            

            
            Solution:
            

            
            
               
               	Due to the database: Increase the storage space for the database
               

               
            

            
            Using this listing, we can upgrade our system as and when required for a particular
               problem we are facing. However, we first need to correctly identify the component
               that is causing the issue. For this reason, even before we start scaling our application
               vertically, we should separate our database from our web server as shown in this figure:
            

            
            

            
            This new setup with the database and the blog server on separate server instances
               would enable us to monitor which component is having an issue and vertically scale
               only that particular component. We should be able to serve a larger user traffic with
               this new setup.
            

            
            However, as the load on the server increases, we might have other issues on our hands.
               For example, what would happen if our blog server were to become unresponsive? We
               would no longer be able to serve blog posts and no one would be able to post comments
               on said blog posts. This is a situation no one wants to face. Wouldn't it be nice
               if we could keep serving traffic even if the blog server were down?
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Multiple server instances

            
         
         
         
         
            
            
            Serving a large traffic of users with a single server instance for our blog server
               or any application (business logic) server is dangerous because we are essentially
               creating a single point of failure. The most logical and simplest way to avoid such
               a situation is to have duplicate instances of our blog server to handle incoming user
               traffic. This approach of scaling a single server to multiple instances is known as
               horizontal scaling. However, this raises the question: how can we reliably distribute the traffic between
               the various instances of our blog server? For this we use a load balancer.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The load balancer

            
         
         
         
         
            
            
            A load balancer is a type of HTTP server responsible for distributing traffic (routing)
               to various web servers based on the rules defined by the developer. A load balancer,
               in general, is a very fast and specialized application. Trying to implement similar
               logic in a web server might not be optimal because the resources available to your
               web server have to be split between handling requests for your business logic and
               requests that need to be routed. Also, a load balancer provides us with a lot of features
               out of the box such as these:
            

            
            
               
               	Load balancing algorithms: The following are some algorithms for load balancing:
                  
                  
                     
                     	Random: Distribute randomly across the servers.
                     

                     
                     	Round robin: Distribute equally and sequentially across servers.
                     

                     
                     	Asymmetric load: Distribute between servers in certain proportions. For example, for 100 requests,
                        send 80 to Server A and 20 to Server B.
                     

                     
                     	Least connections: Send a new request to the server with the least number of active connections (an
                        asymmetric load can also be integrated with least connections).
                     

                     
                  

                  
               

               
               	Session persistence: Imagine an e-commerce site where a user has added items to his shopping cart and
                  the information about items in the cart is stored on, Server A. However, when the
                  user wants to complete the purchase, the request is sent to a different server, Server
                  B! This would be an issue for the user because all details related to his shopping
                  cart is on Server A. Load balancers have the provision to ensure that such requests
                  are redirected to the relevant server.
               

               
               	HTTP compression: Load balancers also have the provision to compress the outgoing response using gzip so that it has less data to send to the user. This tends to greatly improve the user
                  experience.
               

               
               	HTTP caching: For sites that serve more than REST API content, a lot of files can be cached because
                  they do not change as often and cached content can be delivered much faster.
               

               
            

            
            Depending on which load balancer is being used, they can provide a lot more features
               than the ones stated above. This should give an idea about the capability of a load
               balancer.
            

            
            The following figure shows how a load balancer and multiple servers might work together:

            
            

            
            The user's requests reach the load balancer, which then routes the request to one
               of the many instances of the blog server. However, note that even now we are using
               the same database for read and write operations.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Multi-availability zones

            
         
         
         
         
            
            
            In the previous section, we talked about the single point of failure and why having
               multiple instances of the application server is a good thing. We can extend this concept
               further; what if we have all of our servers in one location and due to some major
               malfunction or outage, all of our servers go down? We will not be able to serve any
               user traffic.
            

            
            We can see that having our servers in one location also creates a single point of
               failure. The solution for this would be to have application server instances available
               in multiple locations. Then the next question would be: how do we decide on the locations
               to deploy our servers? Should we deploy the servers to multiple locations within a
               single country or should we deploy them to multiple countries? We can rephrase the
               question using cloud computing terminology as follows.
            

            
            We need to decide whether we want to deploy our servers to multiple regions or multiple zones, or perhaps a combination of both.
            

            
            One important point to note is that deploying to multiple zones may lead to network
               delay and we may want to deploy to multiple regions first. However, before we deploy
               to multiple regions and zones, we need to make sure of two facts:
            

            
            
               
               	Our website has heavy traffic that our single server setup is no longer able to handle

               
               	We have a significant chunk of users from another country, and it might be a good
                  idea to deploy servers in a zone near them
               

               
            

            
            Once we have given consideration to these factors and decided to deploy to additional
               zones and regions, our blogging system as a whole might look something like this:
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            The database

            
         
         
         
         
            
            
            We have been scaling the application/blog server and seen how to scale the server
               vertically and horizontally, and how to factor multiple zones and regions for high
               availability and performance of the overall system.
            

            
            You may have noticed in all of the previous designs that we still relied on a single
               database instance. By now, you may have realized that having a single instance of
               any service/server can become a single point of failure and may bring the system to
               a complete standstill.
            

            
            The tricky part is that we cannot use the straightforward strategy of running multiple
               database instances as we did for the application server. We were able to use this
               strategy for application server because the application server is responsible for
               business logic and what little state it maintains within itself is temporary, while
               all vital and important information is being pushed to the database which forms the
               single source of truth, and, ironically, the single source of failure. Before we dig
               deeper into the complexity of scaling a database and the challenges that come along
               with it, let us first look at an important topic that needs to be addressed.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            SQL versus NoSQL

            
         
         
         
         
            
            
            For the uninitiated, databases come in two varieties:

            
            
               
               	Relational databases: These use SQL (with minor variations) for querying the database
               

               
               	NoSQL databases: These can store unstructured data and use the database specific query language
               

               
            

            
            Relational databases have been around for a long time now, and a lot of effort has
               been put into optimizing their performance and making them as robust as possible.
               However, the reliability and performance requires us to plan and organize our data
               into well-defined tables and relationships. Our data is bound to the schema of the
               database tables. Anytime we need to add more fields/columns to our table, we will
               have to migrate the table to a new schema, and this would require us to create migration
               scripts that take care of adding the new fields, and also to provide conditions and
               data to fill the newly created fields for the already existing rows in your table.
            

            
            NoSQL databases tend to have a more free-form structure. We need not define schemas
               for our tables since data is stored as a single row/document. We can insert data of
               any schema into a single table and then query it. Given that the data is not confined
               to schema rules, we might end up inserting wrong or ill-formed data into our database.
               This means that we will have to deal with ensuring that we retrieve the correct data
               and also have to take precautions to ensure that data of different schemas do not
               crash the program.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Which type of database should we use?

            
         
         
         
         
            
            
            At first, one might be tempted to go with NoSQL because then we don't need to worry
               about structuring our data and join queries. However, it is important to realize that,
               instead of writing these queries in SQL form, we will instead be retrieving all the
               data into the user space, that is, the program, and then write the manual join queries
               within the program.
            

            
            Instead, if we rely upon relational databases, we can be assured of smaller storage
               space, more efficient join queries, and data with well-defined schemas. All relational
               databases and some of the NoSQL databases provide indexing, which also helps in optimizing
               for faster search queries. However, one major drawback of relational databases with
               using tables and joins is that, as the data grows bigger, it is possible that the
               joins will start getting slower. By this point, you will have a clear idea of which
               parts of your data can take advantage of NoSQL solutions, and you will start maintaining
               your data in a combination of SQL and NoSQL system.
            

            
            In a nutshell, start with relational databases and, once you have a significant amount
               of data in your tables and no further database tuning can be done, then consider moving
               tables that really need the high performance of NoSQL datastores.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Database replication

            
         
         
         
         
            
            
            Now that we have established why we are opting to use a relational database, let us
               move onto the next question: how can we ensure that our database doesn't become a
               single point of failure?
            

            
            Let us first consider what are the consequences if a database fails:

            
            
               
               	We cannot write new data to the database

               
               	We cannot read from the database

               
            

            
            Of the two consequences, the latter is more critical. Consider our blogging application,
               while being able to write new blog posts is important, the vast majority of the users
               on our site will be readers. This is the norm for most everyday user-facing applications.
               Hence, we should try to ensure that we are always able to read data from the database
               even if we are no longer able to write new data to it.
            

            
            Database replication and redundancy try to address these issues and, generally, the
               solutions are included as part of the database or a plugin. In this section, we shall
               discuss three strategies used for database replication:
            

            
            
               
               	Master-replica replication

               
               	Master-master replication

               
               	Failover cluster replication

               
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Master-replica replication

            
         
         
         
         
            
            
            This is the most straightforward method of replication. It can be explained as follows:

            
            
               
               	We take a cluster of databases:

               
            

            
            

            
            Cluster of databases

            
            
               
               	Designate one of them as the master, and the remaining databases as replicas:

               
            

            
            

            
            DB-3 is designated as the master

            
            
               
               	All writes are performed to the master:

               
            

            
            

            
            Three writes are performed on the master

            
            
               
               	All reads are performed from the replicas:

               
            

            
            >

            
            Reads performed from the replicas

            
            
               
               	The master ensures that all the replicas have the latest state which is the state
                  of the master database:
               

               
            

            
            

            
            The master updates all the replicas with the latest update

            
            
               
               	Failure in master database still allows reads from replicant databases but writes
                  are not possible:
               

               
            

            
            

            
            Master failure; no writes, only reads

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Master-master replication

            
         
         
         
         
            
            
            You may have noticed two issues with the master-replica setup:

            
            
               
               	The master is used extensively for database writes, and hence is under constant duress

               
               	The issue of reads has been solved with replicas but the single point of failure for
                  writes is still present
               

               
            

            
            Master-master replication tries to solve these issues by making every database a master.
               It can be explained as follows:
            

            
            
               
               	We take a cluster of databases:

               
            

            
            

            
            Cluster of databases

            
            
               
               	We designate every database as a master:

               
            

            
            

            
            All databases are designated as a master

            
            
               
               	Reads can be performed from any of the masters:

               
            

            
            

            
            Reads performed on masters

            
            
               
               	Writes can be performed to any of the masters:

               
            

            
            

            
            Writes made to DB-1 and DB-3

            
            
               
               	Every master updates every other master with the writes:

               
            

            
            

            
            Database state synchronized across the masters

            
            
               
               	Hence, the state is maintained across all the databases:

               
            

            
            

            
            DB-1 failure, successful reads and writes

            
            It may seem like this strategy works fine, but it has its own limitations and challenges;
               the major one being conflict resolution between writes. Here's a simple example.
            

            
            We have two master-master databases DB-1 and DB-2, and both have the latest state of the database system:
            

            
            

            
            Latest state of DB-1 and DB-2

            
            We have two simultaneous write operations to perform, so we send "Bob" to DB-1 and "Alice" to DB-2.

            
            

            
            Write "Bob" to DB-1 and Write "Alice" to DB-2

            
            Now that both databases have written the data to their tables, they need to update
               the other master with its own latest state:
            

            
            

            
            States before DB synchronization

            
            This will lead to conflict because in both tables, ID# 3 is populated with Bob for DB-1 and Alice for DB-2:
            

            
            

            
            Conflict while updating DB-1 and DB-2 states because ID# 3 is already populated.

            
            In reality, the master-master strategy would have in-built mechanisms to deal with
               these kinds of issues, but they may induce a performance penalty or other challenges.
               This is a complex subject and we have to decide on what trade-offs are worth making
               if we want to use master-master replication.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Failover cluster replication

            
         
         
         
         
            
            
            Master-replica replication allows us to have a simple setup for reads and writes at
               the potential risk of being unable to write to the master database. Master-master
               replication allows us to be able to read and write to the database even if one of
               the masters fail. However, the complexity of maintaining a consistent state across
               all the masters and the possible performance penalty can mean that it is not the ideal
               choice in all circumstances.
            

            
            The failover cluster replication tries to take the middle ground by providing features
               of both replication strategies. It can be explained as follows:
            

            
            
               
               	We take a cluster of databases.

               
               	A database is assigned as the master depending on the master selection strategy used,
                  which can vary from database to database.
               

               
               	The remaining databases are assigned as the replicas.

               
            

            
            
               
               	The master is responsible for updating the replicas with the latest state of the database.

               
               	If the master fails for some reason, a selection is made to assign one of the remaining
                  databases as the new master.
               

               
            

            
            So which replication strategy should we use? It would be best to start with the simplest
               one, that is, the master-replica strategy because this will cover most of initial
               needs with great ease. Let us now see what our application would look like if we used
               the master-replica strategy for database replication:
            

            
            

            
            An application with the master-replica database setup

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Monolith versus microservices

            
         
         
         
         
            
            
            Most of the new projects start out as a single codebase where all the components interact
               with one another via direct function calls. However, as the user traffic and codebase
               increases, we will start facing issues with the codebase. Here are a few possible
               reasons for this:
            

            
            
               
               	Your codebase is growing in size and this means that it will take longer for any new
                  developer to understand the complete system.
               

               
               	Adding a new feature will take longer because we have to make sure that the change
                  doesn't break any of the other components.
               

               
               	Redeploying code for every new feature might become cumbersome because of the following:
                  
                  
                     
                     	Deployment failed and/or

                     
                     	One of the redeployed components had an unexpected bug which crashed the program and/or

                     
                     	The build process may take longer because of a large number of tests

                     
                  

                  
               

               
               	Scaling the complete application to support a CPU intensive component

               
            

            
            Microservices provide a solution to this by splitting up the major components of the
               application into separate smaller applications/services. Does this mean we should
               split our application from the start into microservices so that we don't face this
               issue? That is one possible way of approaching this subject. However, there are certain
               drawbacks to this approach as well:
            

            
            
               
               	Too many moving parts: Dividing each component into its own service means that we will have to monitor
                  and maintain servers for each of them.
               

               
               	Increased complexity: Microservices increase the number of possible reasons for failure. Failures in a
                  monolith may be limited to the server(s) going down or issues with code execution.
                  However, with a microservice we have to:
                  
                  
                     
                     	Identify which component's server(s) went down or

                     
                     	If a component fails, identify the failing component and then further investigate
                        whether the failure was due to:
                        
                        
                           
                           	Faulty code or

                           
                           	Due to failure in one of the dependant components

                           
                        

                        
                     

                     
                  

                  
               

               
            

            
            
               
               	Harder to debug the whole system: The increased complexity described in the preceding points makes it harder to debug
                  the complete system.
               

               
            

            
            Now that we have seen some of the pros and cons of microservices and monolith architecture, which one is better? The answer should be fairly obvious
               by now:
            

            
            
               
               	Small to medium-sized codebases benefit from the simplicity offered by a monolith

               
               	Large codebases benefit from the granular control offered by the microservices architecture

               
            

            
            This means that we should design our monolith codebase with the expectation that it
               might eventually grow to a very large size, and then we will have to refactor it into
               microservices. In order to make the task of refactoring the codebase into microservices
               as effortless as possible, we should identify the possible components as early as
               possible, and implement the interaction between them and the rest of the code using
               the Mediator design pattern.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Mediator design pattern

            
         
         
         
         
            
            
            Mediator acts as an intermediary between components in the code, and this leads to
               very loose coupling between various components. This allows us to make minimal changes
               to the code, as we only need to change the interaction between the mediator and the
               component which is being extracted into its own microservice.
            

            
            Let's look at an example. We have a monolith, which is defined by Codebase A. It consists of five components—Component 1 through Component 5. We realize that Component 1 and Component 2 rely on interacting with Component 5, while Component 2 and Component 3 rely on Component 4. If Component 1 and Component 2 were to directly call Component 5, and similarly Component 2 and Component 4 were to directly call Component 4, then we would create tightly coupled components.
            

            
            If we were to introduce a function that takes input from the calling components and
               calls the necessary component as a proxy, and if all data were passed using well-defined
               structs, then we would have introduced the mediator design pattern. This can be seen
               in the following figure:
            

            
            

            
            Components within a codebase connected via the mediator

            
            Now if a situation arises where we might need to separate one of the components into
               its own separate microservices, we only need to change the implementation of the proxy function. In our example,
               Component 5 is segregated into its own separate microservice, and we have changed the implementation
               of the proxy function mediator 1 to communicate with Component 5 using HTTP and JSON instead of communicating via function calls and structs. This
               is illustrated in the following figure:
            

            
            

            
            Component separated into a microservice and the change in the mediator implementation

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Deployment options

            
         
         
         
         
            
            
            We have looked at various strategies for scaling our application, different types
               of databases, how to structure our code, and finally how to use the mediator pattern to make the transition from monolith to microservices. However, we haven't discussed
               where we would be deploying said web application and databases. Let's take a brief
               look at the deployment landscape.
            

            
            Till the early 2000s, most servers were deployed on hardware owned by the companies
               writing the software. There would be dedicated infrastructure and a team to deal with
               this critical part of software engineering. This was mostly the subject of data centers.

            
            However, in the 2000s, companies began to realize that data centers could be abstracted
               away because most of the developers weren't interested in handling these problems.
               This allowed for cheaper and faster development and deployment of software, especially
               for web applications. Now, instead of buying hardware and space at a data center,
               the developers would be provided with server instances they could access via SSH.
               One of the most prominent companies in this field from the start was Amazon.com, Inc. This allowed them to expand their business beyond e-commerce.
            

            
            These services also gave rise to the question: do developers need to install and maintain
               generic applications such as databases, load balancers, or other such services? The
               reality was that not all developers or companies wanted to be involved with maintaining
               these services. This created demand for ready-to-use application instances that would
               be maintained by the company selling these applications as a service.
            

            
            There are many companies which initially started out as software companies that maintained
               their own data centers—Amazon, Google, and Microsoft to name a few examples—and they now boast a great set of such services for general consumption.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Maintainability of multiple instances

            
         
         
         
         
            
            
            The availability of the mentioned services improve our life significantly yet there
               is a lot of complexity involved with maintaining a plethora of applications running
               across multiple server instances. For example:
            

            
            
               
               	How can we update the server instances without bringing down the whole service? Can
                  this be done with less effort?
               

               
               	Is there a reliable way to scale our application (vertically and horizontally) with
                  ease?
               

               
            

            
            Given that all modern deployments make use of containers, we can make use of container
               orchestration software that helps with the maintainability issues. Kubernetes (https://kubernetes.io/) and Mesos (http://mesos.apache.org/) are examples of two such solutions.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Summary

            
         
         
         
         
            
            
            In this chapter, we took the example of a simple blogging application and showed how
               we can scale it to meet the demands of growing user traffic. We also looked at the
               complexity and strategies involved with scaling databases.
            

            
            We then took a brief look at how to architect our codebase and what the trade-offs
               are that we might need to consider. Finally, we looked at one approach to easily refactor
               our codebase from a monolith into microservices.
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Other Books You May Enjoy

            
         
         
         
         
            
            
            If you enjoyed this book, you may be interested in these other books by Packt:

            
            

            
            Security with Go

               John Daniel Leon
            

            
            ISBN: 978-1-78862-791-7

            
            
               
               	Learn the basic concepts and principles of secure programming

               
               	Write secure Golang programs and applications

               
               	Understand classic patterns of attack

               
               	Write Golang scripts to defend against network-level attacks

               
               	Learn how to use Golang security packages

               
               	Apply and explore cryptographic methods and packages

               
               	Learn the art of defending against brute force attacks

               
               	Secure web and cloud applications

               
            

            
            

            
            

            
            Isomorphic Go

               Kamesh Balasubramanian
            

            
            ISBN: 978-1-78839-418-5

            
            
               
               	Create Go programs inside the web browser using GopherJS

               
               	Render isomorphic templates on both the client side and the server side

               
               	Perform end-to-end application routing for greater search engine discoverability and
                  an enhanced user experience
               

               
               	Implement isomorphic handoff to seamlessly transition state between the web server
                  and the web browser
               

               
               	Build real-time web application functionality with websockets

               
               	Create reusable components (cogs) that are rendered using the virtual DOM

               
               	Deploy an Isomorphic Go application for production use

               
            

            
            

            
            

            
            Go Systems Programming

               Mihalis Tsoukalos
            

            
            ISBN: 978-1-78712-564-3

            
            
               
               	Explore the Go language from the standpoint of a developer conversant with Unix, Linux,
                  and so on
               

               
               	Understand Goroutines, the lightweight threads used for systems and concurrent applications

               
               	Learn how to translate Unix and Linux systems code in C to Golang code

               
               	How to write fast and lightweight server code

               
               	Dive into concurrency with Go

               
               	Write low-level networking code

               
            

            
            

            
            
            
         
         
         
         
      
      
   
      
      
         
         
         
            
            Leave a review - let other readers know what you think

            
         
         
         
         
            
            
            Please share your thoughts on this book with others by leaving a review on the site
               that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's
                  Amazon page. This is vital so that other potential readers can see and use your unbiased opinion
               to make purchasing decisions, we can understand what our customers think about our
               products, and our authors can see your feedback on the title that they have worked
               with Packt to create. It will only take a few minutes of your time, but is valuable
               to other potential customers, our authors, and Packt. Thank you!
            

            
            

            
            
            
         
         
         
         
      
      
   assets/cf3987e3-753d-44d1-844f-a0a4ac2ee2fc.png
WEB
SERVER

~| DATABASE






assets/39c2dd82-bfa7-4a4b-a150-22b179f055fb.png
ID# Name
1 AL
2 Tim

DB-1

Bob

e

ID# Name
1 AL
2 Tim

DB-2






assets/0a855d3a-5d7c-4b76-9f86-d8b145ad2f71.png
! ws1 ‘
\ 2 /< ———>| DATABASE

Cluster of WebServers





assets/8b5f63f8-a3fa-4923-939e-b37b459c3f87.png
Goophr Server

a_m_librarian

/api/feeder
/api/query

/api/feeder n_z_librarian

/api/query

Concierge

others_librarian

@ User

<:> API interactions

Q REST server






assets/5fdef3cb-e16d-4e5c-8e08-ca3fb705debc.png
Idle Machines






assets/c4bbff37-03f6-4395-a197-b2506b88d511.png
P2 = M2

— |
rung curg: G15
LI
G11..G14, L.

G16...G20





assets/b6881d8b-9ad5-4e9d-a89c-7668f2375fd3.png
/ indexProcessor

IStoreCh i

msg: IMeta

= Split each line into tokens IAddCh
& Simply the tokens. msg: token |

dProcessCh

msg: document






assets/cda8ddb8-8758-407a-bf96-0e99ed0d29c0.png
ID# Name
1 AL
2 Tim
3 Bob

DB-1

ID# Name
1 AL
2 Tim
3 Alice

DB-1






assets/d547d370-30c7-4e37-b22a-28b74e49ea40.png
Idle Machines






assets/adc01142-21d5-48a6-8e21-7b4b31c39aab.png
DB-3

DB-1

DB-2





assets/ec564223-6449-4fd9-b4e3-ce86ad1af8bb.png
ID#

Name

AL

ID#

Name

Tim

AL

DB-1

Tim

DB-2






assets/cd911985-d51b-40a7-be08-2cb8302b61b8.png
ID# Name
1 AL
2 Tim
3 Bob

DB-1

ID# 3 Already
exists on DB-2

ID# 3
Name: Bob
ID# 3
Name: Alice
ID# 3 Already

exists on DB-1

ID# Name
1 AL
2 Tim
3 Alice

DB-1






assets/b23d4410-fd76-4101-b6a9-2dca72407769.png
Swagger Editor Filey Edity Switch back to previous editor

/

Search query
1200 :

Response consists of links to document

: array

$ref: '#/components/schemas/document’

array
string
: object
integer
: Status code to send in response
string
: Message to send in response
: object
- title
- link
string
: Title of the document
string

Link to the document

Goophr Concierge API®®™

API responsible for responding to user input and communicating with Goophr Librarian.

Server

default

o

response v {
code
Status code to send in response

Message to send in response






assets/04b29bf9-962f-48f5-86ed-d89509748c73.png
|
|
(m) |
|
|
|

[
DB-3 > READ
(m)

READ






assets/32bcf0f7-1c6d-4c2c-b72a-9ba9e7398520.png
Goroutine that is a data store.
Only a single instance is run because
we want to maintain data consistency.

""" Set of N Goroutines that perform identical task.

They wait on a single queue.
Content of these goroutines describe their execution steps in brief.

Content
A

Go Channel.
:> Most of the channels used in Concierge are buffered channels.

An HTTP Request with multiple branches of execution.
In the current chapter, we show only a single branch of execution.
More will be added in later chapters.

Messages are sent on both channels.

Entities within each such box represent a block of execution.

Done channel.
\ Used in tests to stop a goroutine after it is done executing its code.





assets/5270c9e7-2a17-4ce4-bdd5-4b72eb407085.jpg





assets/3aeaa9a3-9b0c-4c7a-8831-29fc0e08ad24.png
Codebase A (monolith)

Component 4

I
Component !
I
1 \ I [
I |
mediator | data |
fator | S
/ | HTTP/Json |
I |
Component |
2 I
I
\ mediator :
2 I
/ |
I
C t
ompgonen data || struct |
I
I
I
I
I
I

microservice





assets/05818c20-497a-4808-b4cb-a9f2945a25cc.png
DB-4

DB-3





assets/c6fa5f9a-7c70-4dd4-99be-a7baebfe3499.png
App A

App C

App A

VM

App B

App C

Bins/Libs

Bins/Libs

Bins/Libs

Bins/Libs

Bins/Libs

Bins/Libs

Docker

Guest 0S

Guest 0S

Guest 0S

Host 0S

Hypervisor

Infrastructure

Infrastructure






assets/7bd968ae-4269-41c6-98b2-2468d960c2a1.png
Packh






assets/a5f54f92-848d-4ee8-bd6b-bb0d8874a3e0.png
Idle Machines

rung

[LITTT]

G12...G20






assets/9c59ee7d-56b5-4f6c-8e59-629c3aee8e6e.png
dStoreCh

msg: document

/ - docStore \

> Send document from store

to callback channel.

Send all documents in store
to callback channel.

dMsg.Ch

msg: document

dAllMsg.Ch

msg: [Jdocument






assets/593cb8a6-60a3-4f59-8fb0-80b75a33aae0.png
Go Systems
Programming

Master Linux and Unix system level programming

with Go

1]





assets/27d5e056-2609-4609-8d1c-e0c9437d8e90.png
Idle Machines

M1

(Syscall)






assets/9389276b-2d9b-4ead-9efb-8f28f5ffec93.png
Processors Goroutines to run

Machines
M1...Mn

runqueue

[LTTTT]






assets/74eb2b09-6ebf-4c93-9a5b-9db3bd3e2f4b.png
WEB
SERVER

D C—

~
3

DATABASE

o000 | @

User
Database / Web
Interactions

Server
Instance

Web
Server

Database





assets/5509f284-1103-4d8b-a789-3aea941a01f1.png
(m)

DB-2
(m)

WRITE 2

WRITE 1






assets/1a82adfd-2d48-47fe-8d7d-776e1ae5d133.png





assets/f97237e8-3f47-4085-8663-16ca50668ab0.png
DB-3
(m)

DB-1
(m)

DB-2
(m)





assets/a2ca97d8-66c9-4629-b037-cdf38406349c.png
Postman

[ Runner  import Builder

No Environment
localhost8080/api/bo. @

GET localhost:8080/api/books Params Save

Headers (1) Code

Key Value Description BulkEdit  Presets v

ContentType application/json

Body ® Status: 200K Time: 30ms.

Pretty. JSON

1 e,
“Book-4°,
» “Tink": “hetp://Link-to-bookd.con”

2 RO
2% “title™s ‘sook-5",
2 “link": *http: /] ink-to-books. con”






assets/ffbc1129-0b4a-4b21-b1ec-d3ccb95e4879.png





assets/fd0bb311-32cb-47da-9bc6-ada8f6e5b8d9.png
N
\
>-READ 1
READ 2

q
m
[a)

g

=)

&

™M~

o £

a<
- 5
[an) m
[a) [a)

READ 3





assets/a70e7bec-20d6-4dd3-ab8b-66c9d0e2bb27.png
/7 indexAdder ™\

( (x4) \

iAddCh o Add token to Librarian.
msg: token

QO  Stop the goroutine





assets/22171d13-f379-40f2-96ec-59ed174dbc72.png
EXPERT INSIGHT

Security
with Go

Explore the power of Golang to secure
host, web, and cloud services

John Daniel Leon

Packt>





assets/da9c3afd-604b-4b6d-9b7c-af17962b5130.png





assets/0becc75d-9819-4dad-8c6b-8f7993afd2d3.png
EXPERT INSIGHT

Distributed
Computing
with Go

Practical concurrency and parallelism
for Go applications






assets/a96d1b37-ddb5-4eb0-b640-5e525e3e100e.png
Postman

[ Runner  import Builder

No Environment
® | localnost8080/api/bo
POST localhost:8080/apifbooks/ Params save
) Bodye Code
formdata @ xwww-form-urlencoded  ® raw  © binary  jSON (application/json)
Eel g
2 “title": “Book-300°,
3 “ink": “http://Link- to-book3. con”
i
Body @ Stotus: 201 Created  Time: 25ms
Pretty JSON
gl

e,
“title™s “Book-300",
“link™: "http: /] ink-to-book3.con”

H





assets/b380eeef-f090-425c-a3d2-7ed6a47bc54c.png
DB-4

DB-3
(m)





assets/e303137c-a369-4d11-a1da-d0e9c7d00bb3.png
Foreword by:
Mat Ryer
Founder, Machine Box

Isomorphic Go

Learn how to build modern isomorphic web applications
using the Go programming language, GopherJS, and
the Isomorphic Go toolkit

1]






assets/bd4944ec-aba0-413f-a338-a05e46b08a9b.png
Write 1

DB-2
DB-5

DB-3
(m)

DB-1
DB-4

Write 2






assets/66b44862-4bcb-4fcb-a816-4125f4fdf8ca.png
Concurrency Parallelism

Concurrency is about dealing with Parallelism is about doing
lots of things at once lots of things at once





assets/c3be325a-235f-4cb6-9c5e-61393adb9827.png
ch:=make(chan int, 3) (F(Q:Qf) E’—>|ZZ|Z Receive Blocked

W—J

Empty Buffer

o [F—D
} Partially filled

Buffers
NES Y

ch <300 on [ ] Send Blocked

W—J

Buffer is full

co o [F—fzpod]

‘W_J

Partially filled Buffer

« ch ch = nn

Empty Buffer





assets/a5ee380a-1d6f-440e-9360-c2fc668361c2.png
/ docProcessor
( (x4)

pProcessCh

msg: payload

= Download file
= Generate Unique ID
for document
= Send doc:=
4 Doc: downloaded file,
4 DoclD: title’s hash,
@ Title: title of doc,

dStoreCh .

msg: document |
dProcessCh |
msg: document

done
msg: bool

QO  Stop the goroutine






assets/a1445b62-98e8-44cb-b0f0-74679a42fb4a.png
Idle Machines

M1: Waiting on
System Call






assets/4b07728c-7236-4a5f-a59d-89839bd3fbb6.png
Write 1,2,3

Write 1,2,3






assets/1dd32720-e188-44c8-8ee3-6308e598b06d.png
| ) dstorech

docProcessor
x4

pProcessCh

indexAdder

api FeedHandler





assets/142493fb-c42c-4468-994f-7ff76fcd91e4.png
docker build
docker pull

docker run

DOCKER_HOST

Docker daemon

{Container‘s}» ~{ Images |»

@/
(L )—

IBN;






assets/809153a9-efa6-44d3-bdc8-3a91fca7456c.png
’// lineStore \

IStoreCh

-> Add line to store.
msg: IMeta

> Send line from store
to callback channel.

done Q  Stop the goroutine






assets/6dfbc383-b6d5-4444-9e53-e19d58552f2c.png
Write 1

Write 1

Write 2





assets/c78429cb-281f-4406-8e5d-2197b54b4e98.png
\
DB-1 | (failure) !
(m) [
|
|
|

[
DB-3 > READ
(m)

WRITE






assets/805a38af-f4cb-437e-95c5-0aaad75e2466.png
Codebase A (monolith)

Component
1
\ mediator
/ 1
Component
2
\ mediator
/ 2
Component

data

struct

data

struct

Component
5

Component 4






assets/d6b8362d-5400-407c-bfca-f5b4146abd5e.png
Idle Machines

rung

[LTTTT]

(empty)






assets/bb2b613d-0092-4e0d-8936-31fa2d206cf2.png





assets/c8356325-b9ee-4215-9fbc-9bca596afbfa.png
DATABASE





assets/542a9156-003e-4c02-a8be-59d1ebd0b1de.png
READ 1
READ 2

o 0
m m
a a

.

m £

[E

DB-1
DB-4

READ 3





assets/80d861f0-fe3d-48cb-9757-776611b89dd1.jpg
~anMapt





