

 [image: Pragmatic Bookshelf]

Agile Web Development with Rails 5.1

by Sam Ruby, David Bryant Copeland, with Dave Thomas

Version: P1.0 (November 2017)

Copyright © 2017 The Pragmatic Programmers, LLC.
 This book is licensed to
 the individual who purchased it. We don't copy-protect it
 because that would limit your ability to use it for your
 own purposes. Please don't break this trust—you can use
 this across all of your devices but please do not share this copy
 with other members of your team, with friends, or via
 file sharing services. Thanks.

 Many of the designations used by manufacturers and
 sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book,
 and The Pragmatic Programmers, LLC was aware of a
 trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic
 Starter Kit, The Pragmatic Programmer, Pragmatic
 Programming, Pragmatic Bookshelf and the linking g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this book.
 However, the publisher assumes no responsibility for errors
 or omissions, or for damages that may result from the use
 of information (including program listings) contained
 herein.

About the Pragmatic Bookshelf

 The Pragmatic Bookshelf is an agile publishing company.
 We’re here because we want to improve the lives of developers.
 We do this by creating timely, practical titles, written by programmers for programmers.

 Our Pragmatic courses, workshops, and other products can
 help you and your team create better software and have more
 fun. For more information, as well as the latest Pragmatic
 titles, please visit us at http://pragprog.com.

 Our ebooks do not contain any Digital Restrictions
 Management, and have always been DRM-free. We pioneered the
 beta book concept, where you can purchase and read a book
 while it’s still being written, and provide feedback to the
 author to help make a better book for everyone. Free
 resources for all purchasers include source code downloads
 (if applicable), errata and discussion forums, all
 available on the book's home page at pragprog.com. We’re
 here to make your life easier.

New Book Announcements

 Want to keep up on our latest titles and announcements, and
 occasional special offers? Just create an account on
 pragprog.com (an email address and a password is all it takes)
 and select the checkbox to receive newsletters. You can
 also follow us on twitter as @pragprog.

About Ebook Formats

 If you buy directly from
 pragprog.com, you get
 ebooks in all available formats for one price. You can
 synch your ebooks amongst all your devices (including
 iPhone/iPad, Android, laptops, etc.) via Dropbox.
 You get free updates for the life of the edition. And, of
 course, you can always come back and re-download your books
 when needed. Ebooks bought from the Amazon Kindle store are
 subject to Amazon's polices. Limitations in Amazon's file
 format may cause ebooks to display differently on different
 devices. For more information, please see our FAQ at
 pragprog.com/frequently-asked-questions/ebooks. To learn
 more about this book and access the free resources, go to
 https://pragprog.com/book/rails51, the book's homepage.

 Thanks for your continued support,

 Andy Hunt

 The Pragmatic Programmers

The team that produced this book includes: Andy Hunt (Publisher)Janet Furlow (VP of Operations)Susannah Davidson Pfalzer (Development Editor)Potomac Indexing, LLC (Indexing)Molly McBeath (Copy Editor)Gilson Graphics (Layout)

 For customer support, please contact
 support@pragprog.com.

 For international rights, please contact
 rights@pragprog.com.

Table of Contents
	 Foreword to the Rails 5 Edition
	 Preface to the Rails 5.1 Edition
	 Acknowledgments
	 Introduction	Rails Simply Feels Right
	Rails Is Agile
	Who This Book Is For
	How to Read This Book

	Part I. Getting Started	1. Installing Rails	Installing on Cloud9
	Installing on a Virtual Machine
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux
	Choosing a Rails Version
	Setting Up Your Development Environment
	Rails and Databases

	2. Instant Gratification	Creating a New Application
	Hello, Rails!
	Linking Pages Together
	When Things Go Wrong

	3. The Architecture of Rails Applications	Models, Views, and Controllers
	Rails Model Support
	Action Pack: The View and Controller

	4. Introduction to Ruby	Ruby Is an Object-Oriented Language
	Data Types
	Logic
	Organizing Structures
	Marshaling Objects
	Pulling It All Together
	Ruby Idioms

	Part II. Building an Application	5. The Depot Application	Incremental Development
	What Depot Does
	Let’s Code

	6. Task A: Creating the Application	Iteration A1: Creating the Product Maintenance Application
	Iteration A2: Making Prettier Listings

	7. Task B: Validation and Unit Testing	Iteration B1: Validating!
	Iteration B2: Unit Testing of Models

	8. Task C: Catalog Display	Iteration C1: Creating the Catalog Listing
	Iteration C2: Adding a Page Layout
	Iteration C3: Using a Helper to Format the Price
	Iteration C4: Functional Testing of Controllers
	Iteration C5: Caching of Partial Results

	9. Task D: Cart Creation	Iteration D1: Finding a Cart
	Iteration D2: Connecting Products to Carts
	Iteration D3: Adding a Button

	10. Task E: A Smarter Cart	Iteration E1: Creating a Smarter Cart
	Iteration E2: Handling Errors
	Iteration E3: Finishing the Cart

	11. Task F: Add a Dash of Ajax	Iteration F1: Moving the Cart
	Iteration F2: Creating an Ajax-Based Cart
	Iteration F3: Highlighting Changes
	Iteration F4: Hiding an Empty Cart with a Custom Helper
	Iteration F5: Broadcasting Updates with Action Cable

	12. Task G: Check Out!	Iteration G1: Capturing an Order
	Iteration G2: Atom Feeds

	13. Task H: Entering Additional
Payment Details	Iteration H1: Adding Fields Dynamically to a Form
	Iteration H2: Testing Our JavaScript Functionality

	14. Task I: Processing Emails and Payments Efficiently	Iteration I1: Sending Confirmation Emails
	Iteration I2: Connecting to a Slow Payment Processor with Active Job

	15. Task J: Logging In	Iteration J1: Adding Users
	Iteration J2: Authenticating Users
	Iteration J3: Limiting Access
	Iteration J4: Adding a Sidebar, More Administration

	16. Task K: Internationalization	Iteration K1: Selecting the Locale
	Iteration K2: Translating the Storefront
	Iteration K3: Translating Checkout
	Iteration K4: Adding a Locale Switcher

	17. Task L: Deployment and Production	Iteration L1: Deploying with Phusion Passenger and MySQL
	Iteration L2: Deploying Remotely with Capistrano
	Iteration L3: Checking Up on a Deployed Application
	Iteration L4: Deploying with Fewer Steps on Heroku

	18. Depot Retrospective	Rails Concepts
	Documenting What We’ve Done

	Part III. Rails in Depth	19. Finding Your Way Around Rails	Where Things Go
	Naming Conventions

	20. Active Record	Defining Your Data
	Locating and Traversing Records
	Creating, Reading, Updating, and Deleting (CRUD)
	Participating in the Monitoring Process
	Transactions

	21. Action Dispatch and Action Controller	Dispatching Requests to Controllers
	Processing of Requests
	Objects and Operations That Span Requests

	22. Action View	Using Templates
	Generating Forms
	Processing Forms
	Uploading Files to Rails Applications
	Using Helpers
	Reducing Maintenance with Layouts and Partials

	23. Migrations	Creating and Running Migrations
	Anatomy of a Migration
	Managing Tables
	Advanced Migrations
	When Migrations Go Bad
	Schema Manipulation Outside Migrations

	24. Customizing and Extending Rails	Testing with RSpec
	Creating HTML Templates with Slim
	Serving CSS via Webpack
	Customizing Rails in Other Ways
	Where to Go from Here

	 Bibliography

Copyright © 2017, The Pragmatic Bookshelf.

 Early praise for Agile Web Development with Rails 5.1

			The best book to get started in the Rails world. A comprehensive, coherent, and concise overview of the Ruby on Rails framework. It treats learning in a gradual way, creating an application from scratch using the latest technologies.
	

	→ 	Luis Miguel Cabezas Granado
	
	Ruby on Rails and PHP developer at Junta de Extremadura (Spain) and PHP book writer at Anaya Multimedia,

			I liked how the book guided me through each step of the tasks. This book gives a thorough introduction to Rails, and I’d suggest it to anyone who wants to start development with Rails.
	

	→ 	Gábor László Hajba
	
	Software Developer, EBCONT Enterprise Technologies

			The book was really pleasant to read; I liked how it creates a foundational understanding of Rails with a realistic scenario and then builds upon it for the more advanced topics.
	

	→ 	Alessandro Bahgat
	
	Software Engineer, Google

Foreword to the Rails 5 Edition

 You’ve made a great decision to learn Ruby on Rails. The language,
 framework, and community have never been in better shape, and the community has never been easier to join
 than it is today. The early days of the frontier are gone, and while some
 of the cowboy excitement went with it, what we have instead is a
 sophisticated, modern, and functional state.

 The spoils of such progress will hopefully become apparent as you work your
 way through this book. Ruby on Rails takes care of an inordinate amount of
 what most developers need most of the time. In the world of web development,
 that’s an awful lot! An overwhelming lot at times.

 But don’t be intimidated. You don’t need to understand every fine point and
 every minutia before you can begin to make progress. Ruby on Rails has been
 designed to flatten the learning curve as much as possible while at the same
 time encouraging you to level up over time.

 Becoming an expert in full-stack web development won’t happen overnight.
 Even Ruby on Rails can’t replace the inherent depth of knowledge required to
 understand every facet, from HTTP to databases to JavaScript to
 object-oriented best practices to testing methodologies. One day you’ll be
 able to converse fluently about all that, but don’t worry or expect
 that to be “twenty-one days from now” (or whatever snake-oil sales speak some
 publishers might try to push on you).

 The journey from here to there is half the fun. You’ve arrived in a
 community that cares an extraordinary amount about the craft of writing
 great software for the web. This might seem a little strange at first: is
 it really possible to care that much whether an if-statement is at the
 beginning of a conditional or if it’s an unless-statement at the end? Yes,
 yes it is. Helping more programmers develop an eye for such details is a
 big part of our mission here.

 Because Ruby on Rails isn’t just about getting stuff done quickly. That’s
 part of it, but it’s the lesser one. The greater appeal is in making
 software for the web fun, rewarding, and inspiring. To make learning all
 the nooks and crannies of our crazy craft an adventure.

 Every new version of Rails expands the scope of what we try to tackle
 together. This is unapologetically not a minimalist framework. And Rails
 5 is no different. With this major new version we’ve opened the door to
 a major new domain: the real-time web. You’re in for a real treat here as
 well.

 But let’s not get ahead of ourselves. You have much to learn, and I can’t
 wait to see what you do with it. I’ve been programming in Ruby and working
 on Rails for the past thirteen years. It never ceases to inspire and motivate me
 to see new developers discover our wonderful language and framework for
 the first time. In some ways, I’m even jealous.

 Welcome to Ruby on Rails!

David Heinemeier Hansson

Copyright © 2017, The Pragmatic Bookshelf.

Preface to the Rails 5.1 Edition

 Rails 1.0 was released in December 2005. In the years since, it has
 gone from a relatively unknown leading-edge tool to a successful and
 stable foundation with a large set of associated libraries that others benchmark
 themselves against.

 The book you’re about to read was there from the start, and it has
 evolved with Rails. It began as a full reference to a small framework when
 online documentation was scarce and inconsistent. It’s now an introduction to the
 entire Rails ecosystem—one that leaves you with many pointers to more
 information that you can explore based on your needs and desires.

 This book didn’t just evolve along with Rails: Rails evolved with
 it.
 The content in this book has been developed in
 consultation with the Rails core team. Not only is the code you’ll see in this book
 tested against each release of Rails, but the converse is also
 true: Rails itself is tested against the code in this book and won’t be
 released until those tests pass.

 So read this book with confidence that the scenarios not only work but
 also describe how the Rails developers themselves feel about how best to use Rails.
 We hope you get as much pleasure out of reading this book as we had in
 developing it.

 This book covers Rails 5.1.1. While some of the commands you’ll be using are new, the underlying development model remains the same. Even when new major features are added, such as direct support for Webpack, the changes are evolutionary, not revolutionary.

 Rails 5.1 introduced two major new features and a lot of small improvements. Before Rails 5.1, using modern JavaScript and front-end tools like Webpack, PostCSS, or React was difficult. These tools were designed very differently from the way Rails manages front-end assets. Rails 5.1 brings Webpacker, a preset configuration for Webpack, which allows simple integration between Rails and the entire JavaScript ecosystem. This was no small feat, yet for you as a developer it’s nothing more than a few new command-line invocations away.

 Rails 5.1 also provides direct support for something every Rails developer has been doing for years: executing system tests in a real live web browser. When you use a lot of JavaScript, it’s hard to test your app without running it in a browser, and Rails now provides a definitive way to do that, fully integrated with the rest of Rails’ awesome testing support.

 We’ve also added some coverage of Active Job, Rails’ built-in background job queueing library, as well as an update on how you can change or extend Rails. Here you’ll learn how to use RSpec as an alternative to Rails’ testing library and Slim as an alternative to ERB for writing HTML templates. You’ll also learn how to use cssnext for translating CSS that’s not supported by browsers to CSS that is.
 Rails is accurately described as “opinionated software,” but it’s much more malleable to differing opinions than it might seem. As Rails’ creator David Heinemeier Hansson says, Rails should “push up a big tent.”[1]

Footnotes

	[1]
	
http://rubyonrails.org/doctrine/#big-tent

Copyright © 2017, The Pragmatic Bookshelf.

Acknowledgments

 Rails is constantly evolving and, as it has, so has
 this book. Parts of the Depot application were rewritten several
 times, and all of the text and code was updated. The
 avoidance of features as they become deprecated
 has repeatedly changed the structure of the book, as what was once hot
 became just lukewarm.

 So, this book would not exist without a massive amount of assistance
 from the Ruby and Rails communities. We had
 many helpful reviewers of drafts of this edition:

	Alessandro Bahgat	Nigel Lowry	Nick Watts
	Jacob Chae	Peter Perlepes	Luis Miguel Cabezas Granado
	Gábor László Hajba	Craig Russell

 Of course, none of this would exist without the developers contributing to Ruby on Rails every day. In particular, the Rails core team has been incredibly helpful, answering questions, checking out code fragments, and fixing bugs—even to the point where part of the release process includes verifying that new releases of Rails don’t break the examples provided in this book.

Sam Ruby and David Bryant Copeland

Copyright © 2017, The Pragmatic Bookshelf.

Introduction

 Ruby on Rails is a framework that makes it easier
 to develop, deploy, and maintain web applications. During the
 12+ years since its initial release, Rails went from being an
 unknown toy to a worldwide phenomenon. More importantly, it has become the framework of choice for
 the implementation of a wide range of
 applications.

 Why is that?

Rails Simply Feels Right

 A large number of developers were
 frustrated with the technologies they were using to create web
 applications. It didn’t seem to matter whether they used
 Java, PHP, or .NET—there was a growing sense that their jobs were
 just too damn hard. And then, suddenly, along came Rails, and
 Rails was easier.

 But easy on its own doesn’t cut it. We’re talking about
 professional developers writing real-world websites. They wanted
 to feel that the applications they were developing would stand the
 test of time—that they were designed and implemented using
 modern, professional techniques. So, these developers dug into
 Rails and discovered it wasn’t just a tool for hacking out sites.

 For example, all Rails applications are implemented
 using the Model-View-Controller (MVC) architecture.
 MVC is not a new concept for web development—the earliest Java-based web frameworks (like Struts) base their design on it.
 But Rails takes MVC further: when you develop in Rails,
 you start with a working application,
 each piece of code has its place, and all the pieces of your
 application interact in a standard way.

 Professional programmers write tests. And again, Rails
 delivers. All Rails applications have testing support baked right
 in. As you add functionality to the code, Rails automatically
 creates test stubs for that functionality. The framework makes it
 easy to test applications, and, as a result, Rails applications tend
 to get tested.

 Rails applications are written in
 Ruby, a modern, object-oriented
 language. Ruby is concise without being unintelligibly
 terse. You can express ideas naturally and cleanly in Ruby
 code. This leads to programs that are easy to write and (just as
 important) easy to read months later.

 Rails takes Ruby to the limit, extending it in novel ways that
 make our programming lives easier. Using Rails makes our programs shorter
 and more readable. It also allows us to perform tasks that would
 normally be done in external configuration files inside the
 codebase instead. This makes it far easier to see what’s
 happening. The following code defines the model class for a
 project. Don’t worry about the details for now. Instead,
 think about how much information is being expressed in a few lines
 of code:

	​ 	​class​ Project < ApplicationRecord
	​ 	 belongs_to ​:portfolio​
	​ 	
	​ 	 has_one ​:project_manager​
	​ 	 has_many ​:milestones​
	​ 	 has_many ​:deliverables​, ​through: ​milestones
	​ 	
	​ 	 validates ​:name​, ​:description​, ​presence: ​​true​
	​ 	 validates ​:non_disclosure_agreement​, ​acceptance: ​​true​
	​ 	 validates ​:short_name​, ​uniqueness: ​​true​
	​ 	​end​

 A major philosophical underpinning of Rails that keeps code short and readable is the DRY principle, which stands for Don’t Repeat Yourself (see The Pragmatic Programmer [HT99]).
 Every piece of knowledge in a system should be
 expressed in one place. Rails uses the power of Ruby to bring
 that to life. You’ll find little duplication in a Rails
 application; you say what you need to say in one place—a place
 often suggested by the conventions of the MVC architecture—and
 then move on. For programmers used to other web frameworks, where
 a simple change to the database schema could involve a dozen
 or more code changes, this was a revelation—and it still is.

 From that principle, Rails is founded on the Rails Doctrine,[2] which is a set of nine pillars that explain why Rails works the way it does and how you can be most successful in using it. Not every pillar is relevant when just starting out with Rails, but one pillar in particular is most important: convention over configuration.

 Convention over configuration means that Rails has
 sensible defaults for just about every aspect of knitting together
 your application. Follow the conventions, and you can write a
 Rails application using less code than a typical JavaScript
 application uses in JSON configuration. If you need to override the
 conventions, Rails makes that easy, too.

 Developers coming to Rails find something else, too. Rails doesn’t
 merely play catch-up with the de facto web
 standards: it helps define them. And Rails makes it easy for developers to
 integrate features such as Ajax, modern JavaScript frameworks, RESTful interfaces, and WebSockets into their
 code because support is built in. (And if you’re not familiar with any of these terms,
 never fear—you’ll learn what they mean as you proceed through the book).

 Rails was extracted from a real-world, commercial
 application. It turns out
 that the best way to create a framework is to find the central
 themes in a specific application and then package them in a
 generic foundation of code. When you’re developing your Rails
 application, you’re starting with half of a really good
 application already in place.

 But there’s something else to Rails—something that’s hard to
 describe. Somehow, it feels right. Of course, you’ll have to
 take our word for that until you write some Rails applications for
 yourself (which should be in the next forty-five minutes or so…).
 That’s what this book is all about.

Rails Is Agile

 The title of this book is Agile Web Development with
 Rails 5.1. You may be surprised to discover that we don’t
 have explicit sections on applying agile practices X, Y, and Z
 to Rails coding.

 In fact, you won’t find mention of many agile
 practices, such as Scrum or Extreme Programming, at all.

 Over the years since Rails was introduced, the term agile has
 gone from being relatively unknown, to being overhyped, to being
 treated as a formal set of practices, to receiving a well-deserved amount
 of pushback against formal practices that were never meant to be
 treated as gospel, to a return back to the original principles.

 But it’s more than that.

 The reason is both simple and subtle. Agility is part of the
 fabric of Rails.

 Let’s look at the values expressed in the Agile
 Manifesto (Dave Thomas was one
 of the seventeen authors of this document) as a set of four preferences:[3]
	Individuals and interactions over processes and tools
	Working software over comprehensive documentation

	Customer collaboration over contract negotiation
	Responding to change over following a plan

 Rails is all about individuals and interactions. It involves no
 heavy toolsets, no complex configurations, and no elaborate
 processes, just small groups of developers, their
 favorite editors, and chunks of Ruby code. This leads to
 transparency; what the developers do is reflected immediately
 in what the customer sees. It’s an intrinsically interactive
 process.

 The Rails development process isn’t driven by documents. You
 won’t find 500-page specifications at the heart of a Rails
 project. Instead, you’ll find a group of users and developers
 jointly exploring their need and the possible ways of answering
 that need. You’ll find solutions that change as both the
 developers and the users become more experienced with the problems
 they’re trying to solve. You’ll find a framework that delivers
 working software early in the development cycle. This software
 might be rough around the edges, but it lets the users start to
 get a glimpse of what you’ll be delivering.

 In this way, Rails encourages customer
 collaboration. When customers see how
 quickly a Rails project can respond to change, they start to
 trust that the team can deliver what’s required, not just what’s
 been requested. Confrontations are replaced by “What if?”
 sessions.

 The agile way of working that Rails encourages is
 tied to the idea of being able to respond to
 change. The strong, almost obsessive, way that Rails honors the
 DRY principle means that changes to Rails applications
 impact a lot less code than the same changes would in other
 frameworks. And since Rails applications are written in Ruby,
 where concepts can be expressed accurately and concisely,
 changes tend to be localized and easy to write. The deep
 emphasis on both unit and system testing, along with support
 for test fixtures and stubs during testing, gives developers the
 safety net they need when making those changes. With a good set
 of tests in place, changes are less nerve-racking.

 Rather than constantly trying to link Rails processes to agile
 principles, we’ve decided to let the framework speak for itself. As you
 read through the tutorial chapters, try to imagine yourself developing
 web applications this way, working alongside your customers and jointly
 determining priorities and solutions to problems. Then, as you read the
 more advanced concepts that follow in Part III, see how the
 underlying structure of Rails can enable you to meet your customers’
 needs faster and with less ceremony.

 One last point about agility and Rails—although it’s probably
 unprofessional to mention this—think how much fun the coding
 will be!

Who This Book Is For

 This book is for programmers looking to build and deploy web-based applications. This
 includes application programmers who are new to Rails (and perhaps even
 new to Ruby) as well as those who are familiar with the basics but want a more
 in-depth understanding of Rails.

 We presume some familiarity with HTML, Cascading Style Sheets (CSS), and
 JavaScript—in other words, the ability to view source on web pages.
 You needn’t be an expert on these subjects; the most you’ll
 be expected to do is copy and paste material from the book, all of
 which can be downloaded.

 The focus of this book is
 on the features and choices made by the Rails core team. More
 specifically, this book is for users of the Rails
 framework—people who tend to be more concerned about what Rails does,
 as opposed to how it does it or how to change Rails to suit their needs.
 Examples of topics not covered in this book include the following:

	

 Introduced in Rails 4,
 Turbolinks
 is a way to load pages more quickly by just loading markup.[4] If you want to know more about how
 Rails makes your pages load faster, follow that link. But
 should you instead be content with the knowledge that Rails makes pages
 load fast and not need to know more, that’s OK too.

	

 Rails itself is highly hackable and extensible, but this book doesn’t
 cover the concept of how to create your own Rails engine.[5] If that topic is of interest to you,
 we highly recommend Crafting
 Rails 4 Applications [Val13] as a follow-on to this book.

	

 The Rails team has chosen not to include plenty of features—such as user authentication—in
 the Rails framework itself. That doesn’t mean that these features
 aren’t important, but it generally does mean that no single solution is the obvious default for Rails users.

How to Read This Book

 The first part of this book makes sure you’re ready. By the time
 you’re done with it, you’ll have been introduced to Ruby (the
 language), you’ll have been exposed to an overview of Rails, you’ll have
 Ruby and Rails installed, and you’ll have verified the installation with
 a simple example.

 The next part takes you through the
 concepts behind Rails via an extended example: we build a
 simple online store. It doesn’t take you one by one through each
 component of Rails (such as “here’s a chapter on models, here’s a chapter on
 views,” and so forth). These components are designed to work together,
 and each chapter in this section tackles a specific set of
 related tasks that involve a number of these components working
 together.

 Most folks
 seem to enjoy building the application along with the book. If
 you don’t want to do all that typing, you can cheat and download
 the source code (a compressed tar archive or a zip
 file).[6]

 Be careful if you ever choose to copy files directly from the download
 into your application: if the timestamps on the files are old, the server won’t know that it needs to pick
 up these changes. You can update
 the timestamps using the touch command on either
 Mac OS X or Linux, or you can edit the file and save it. Alternatively,
 you can restart your Rails server.

 Part 3, ​Rails in Depth​, surveys the entire Rails ecosystem.
 This starts with the functions and facilities of Rails that you’ll now
 be familiar with. It then covers a number of key dependencies that the
 Rails framework makes use of that contribute directly to the overall
 functionality that the Rails framework delivers. Finally, we
 survey a number of popular plugins that augment the Rails framework
 and make Rails an open ecosystem rather than merely a framework.

 Along the way, you’ll see various conventions we’ve adopted:

	Live code
	

	 Most of the code snippets we show come from full-length,
	 running examples that you can download.
	

 To help you find
	 your way, if a code listing can be found in the download,
	 you’ll see a bar before the snippet (like the one
	 here):
	
rails51/demo1/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController
	»	 ​def​ hello
	»	 ​end​
	​ 	
	​ 	 ​def​ goodbye
	​ 	 ​end​
	​ 	​end​

	 The bar contains the path to the code within the download. If
	 you’re reading the ebook version of this book and your ebook
	 viewer supports hyperlinks, you can click the bar and the
	 code should appear in a browser window. Some browsers
	 may mistakenly try to interpret some of the HTML
	 templates as HTML. If this happens, view the source of the
	 page to see the real source code.
	

 And in some cases involving the modification of an existing file where
 the lines to be changed may not be immediately obvious, you’ll
 also see some helpful little triangles to the left of the lines that
 you’ll need to change. Two such lines are indicated in the previous code.

	David says
	

	
	 Every now and then you’ll come across a “David
	 says” sidebar. Here’s where David Heinemeier
	 Hansson gives you the real scoop on some particular aspect
	 of Rails—rationales, tricks, recommendations, and
	 more. Because he’s the fellow who invented Rails, these are
	 the sections to read if you want to become a Rails pro.
	

	Joe asks
	

	 Joe, the mythical developer, sometimes pops up to ask
	 questions about stuff we talk about in the text. We answer
	 these questions as we go along.
	

 This book isn’t meant to be a reference manual for Rails. Our
 experience is that reference manuals aren’t the way most people learn.
 Instead, we show most of
 the modules and many of their methods, either by example or
 narratively in the text, in the context of how these components are used
 and how they fit together.

 Nor do we have hundreds of pages of
 API listings. There’s a good reason for this: you get that
 documentation whenever you install Rails, and it’s guaranteed to
 be more up-to-date than the material in this book. If you
 install Rails using RubyGems
 (which we recommend), start the gem documentation server
 (using the gem server command), and
 you can access all the Rails APIs by pointing your browser
 at http://localhost:8808.

 In addition, you’ll see that Rails helps you by producing responses
 that clearly identify any error found, as well as traces that tell you
 not only the point at which the error was found but also how you got
 there. You’ll see an example ​here​. If you need additional information,
 peek ahead to ​Iteration E2: Handling Errors​, to see how to insert logging statements.

 If you get really stuck, plenty of online resources can
 help. In addition to the code listings mentioned, you can find
 more resources on the Pragmatic Bookshelf site page for this
 book, including links to the book forum and errata.[7]
 The resources listed on these pages are shared resources.
 Feel free to post not only questions and problems to the forum
 but also any suggestions and answers you may have to questions that
 others have posted.

Let’s get started! The first steps are to install Ruby and Rails and
 to verify the installation with a simple demonstration.

Footnotes

	[2]
	
http://rubyonrails.org/doctrine/

	[3]
	
http://agilemanifesto.org/

	[4]
	
https://github.com/turbolinks/turbolinks/blob/master/README.md

	[5]
	
http://guides.rubyonrails.org/engines.html

	[6]
	

	 http://pragprog.com/titles/rails51/source_code
	 	

	[7]
	
https://pragprog.com/book/rails51

Copyright © 2017, The Pragmatic Bookshelf.

Part 1
Getting Started

We cover:
	Installing Ruby, RubyGems, SQLite 3, and Rails
	Development environments and tools

 Chapter
 1
Installing Rails

 In Part I of this book, we’ll introduce you to both the Ruby language
 and the Rails framework. But we can’t get anywhere until you’ve
 installed both and verified that they’re operating correctly.

 To get Rails running on your system, you need the following:

	

	
	 A Ruby interpreter. Rails is written in Ruby, and you’ll be
	 writing your applications in Ruby too. Rails 5.1
	 recommends Ruby version 2.4 but will run on Ruby version 2.3 and 2.2. It won’t work on prior versions of Ruby.
	

	

	
	 Ruby on Rails. This book was written using Rails version
	 5.1 (specifically, Rails 5.1.3).
	

	

	
	 A JavaScript interpreter. Both Microsoft Windows and Mac OS X
 have JavaScript interpreters built in, and Rails will use the version
 already on your system. On other operating systems, you may need to
 install a JavaScript interpreter separately.
	

	

	
	 Some libraries, depending on the operating system.
	

	

		
	 A database. We’re using both SQLite 3 and MySQL 5.5 in this book.
	

 To be able to run and debug some of the more advanced JavaScript
 portions of this book, you will need two additional things:
 Yarn, which is a package manager for JavaScript, and
 ChromeDriver, which is a tool for automated testing of
 web applications.

 For a development machine, that’s about all you’ll need (apart
 from an editor, and we’ll talk about editors
 separately). However, if you’re going to deploy your
 application, you’ll also need to install a production web server
 (as a minimum) along with some support code to let Rails run
 efficiently. We devote a whole chapter to this, starting
 in Chapter 17, ​Task L: Deployment and Production​, so we won’t talk about it
 more here.

 These aren’t the only choices available to you. You can place your
 development environment in a virtual machine or have it hosted in
 the cloud. The cloud is an excellent choice if you’re impatient and
 have a high-speed Internet connection, as you’ll be up and running in
 minutes. A virtual machine takes more disk space but is
 excellent for learning purposes, as nothing you’ll do will affect the
 other uses you have for your desktop or laptop machine and vice versa.

 So how do you get all this installed? It depends on your choice of
 development environment.

	

Installing on Cloud9

 Cloud9 provides
 you with a free development environment with everything you need
 preinstalled.[8] To sign up, all you need is an email address or a GitHub
 account (see the following screenshot).

[image: images/c9signup.png]

 Next, you need to create a workspace. Be sure to click the
 Ruby template, as shown in the following screenshot.

[image: images/c9wscreate.png]

 Cloud9 helpfully creates an initial Rails project for you. On the
 left is a list of files and folders. If you click a file, you
 see its contents in the pane at the top right. At the bottom is a
 window where you can enter commands.

 Once you familiarize yourself with the IDE, start over by removing these
 files, because we’ll be taking you through the steps to create a project.
 Do this by entering the command rm -rf *, as shown in the screenshot.
 Don’t be afraid as you are entering this command in the web browser
 window. This will only delete files in the cloud; nothing on your machine
 will be touched.

[image: images/c9ide.png]

 Next, you need to install the version of Rails that we’ll
 use to develop our application:

	​ 	​$ ​​sudo​​ ​​gem​​ ​​install​​ ​​rails​​ ​​--version=5.1.3​​ ​​--no-ri​​ ​​--no-rdoc​

 Finally, install Yarn and ChromeDriver, and ensure that ChromeDriver
 is in your path:

	​ 	​$ ​​sudo​​ ​​apt​​ ​​install​​ ​​yarn​​ ​​chromium-chromedriver​
	​ 	​$ ​​sudo​​ ​​ln​​ ​​-s​​ ​​/usr/lib/chromium-browser/chromedriver​​ ​​/usr/local/bin​

 More information on how to run Rails on Cloud9 can be found
 on the community.c9.io website.[9] Follow that link to check for any
 recent updates. At the time of this writing, you need to be aware of only two
 things.

 First, the command to start the Rails server needs two
 additional parameters. So if at any point in the book you’re told
 to run bin/rails server, run bin/rails server -b $IP -p
 $PORT instead.

 Second, should you want to use MySQL (as we do in ​Using MySQL for the Database​), you’ll need to specify the
 username, password and host to be used
 to connect to the database server.

 For many people, these two small accommodations are well worth
 the benefits of writing software in the cloud.

 At this point, you’re ready to go. Skip to
 ​Choosing a Rails Version​, to ensure that
 the version of Rails you have installed matches the version described in
 this edition. See you there.

Installing on a Virtual Machine

 The Rails team helpfully provides a virtual machine definition
 for Ruby on Rails development.[10] If you have both Git and
 Vagrant installed, you can be up and running with the three
 commands listed on that page (and repeated below).

	​ 	​$ ​​git​​ ​​clone​​ ​​https://github.com/rails/rails-dev-box.git​
	​ 	​$ ​​cd​​ ​​rails-dev-box​
	​ 	​$ ​​vagrant​​ ​​up​

 If you don’t have Git installed, you can download rails-dev-box as a zip
 file by clicking the link at the top right of the page.

 Fedora users may need to install libvirt.[11]

 The important thing to note is that the rails-dev-box directory will be
 shared with the virtual machine, where it’ll be mounted as
 /vagrant. Run the following commands to see this
 in action:

	​ 	​$ ​​vagrant​​ ​​ssh​
	​ 	​vagrant@rails-dev-box:~$ ​​ls​​ ​​/vagrant​
	​ 	bootstrap.sh MIT-LICENSE README.md Vagrantfile

 Edit files using your favorite text editor and see them change on the
 virtual machine. Once you’re comfortable with this, you have one last
 step before you’re ready to go—installing Rails itself:

	​ 	​$ ​​sudo​​ ​​gem​​ ​​install​​ ​​rails​​ ​​--version=5.1.3​​ ​​--no-ri​​ ​​--no-rdoc​

 Finally, install Yarn and ChromeDriver, and ensure that ChromeDriver
 is in your path:

	​ 	​$ ​​sudo​​ ​​apt​​ ​​install​​ ​​yarn​​ ​​chromedriver​
	​ 	​$ ​​sudo​​ ​​ln​​ ​​-s​​ ​​/usr/lib/chromium-browser/chromedriver​​ ​​/usr/local/bin​

 You’re ready to go! Skip to
 ​Choosing a Rails Version​, to ensure that
 the version of Rails you have installed matches the version described in
 this edition. See you there.

Vagrant on Windows

 If you’re not familiar with command windows and text editors, skip
 ahead to the next section. Once you complete that section, you can
 either continue with the version of Ruby on your machine or with the
 Rails Dev Box.

 Although Vagrant will normally download and install Oracle’s VirtualBox
 for you, this process might not work, and you’ll need to download it separately.[12]

 Next, Windows might not recognize Oracle’s signature as valid. If you
 downloaded VirtualBox from the virtualbox.org site, you can proceed anyway by
 clicking View Downloads, right-clicking the name of the download,
 and selecting “Run anyway.” If Windows stops this from proceeding,
 click “More info” and click “Run anyway” once again. These steps are
 generally not recommended for downloading from disreputable sites, so
 be sure that you’re downloading from virtualbox.org.

 Once the installation wizard starts, read and accept the license terms
 and default options and proceed (see the following screenshot).

[image: images/windows-virtualbox.png]

Installing on Windows

 First, you need to install Ruby using the
 RubyInstaller for Windows package.[13]
 At the time of this writing, the latest version of Ruby available
 via RubyInstaller is Ruby 2.3.3. While Rails recommends Ruby version
 2.4, this version will work with Rails 5.

 Installing Ruby takes a few steps: first you need to install the base
 language and then the development kit.

	

 Base installation is a snap. After you click Save/Download, click Run and
 then click OK. Select “I accept the License” (after reading it carefully,
 of course) and then click Next. Select “Add Ruby executables to your PATH,”
 click Install (see the following screenshot), and then click Finish.

[image: images/windows-ruby233.png]

 Download and extract the development kit for Ruby 2.0 and
 higher. Override the extraction destination with
 C:\ruby\devkit, as in the following screenshot.

[image: images/windows-devkit-extract.png]

 Once that completes, find Start Command Prompt with Ruby in your
 Start menu (see the following screenshot), and launch this program.

[image: images/windows-start-ruby.png]

 Within that window, enter the following commands:

	
	​ 	> cd \ruby\devkit
	​ 	> ruby dk.rb init
	​ 	> ruby dk.rb install

 Next, install Node.js.[14]
 The LTS version is recommended for most users.
 After you click Save/Download, click Run and then click Next. Again, read and
 then accept the terms in the license agreement, click Next three
 more times, and then click Install. If you’re prompted to do so, click Yes
 to allow the program to be installed on your computer. Finally, click
 Finish.

 This next step is optional but highly recommended:
 install Git.[15]
 Git is widely used in the Ruby and Rails ecosystem, and the more familiar you are with it, the easier it will be interact with some of the more advanced tools and techniques. It’s also a really great version control system!
 After you click Save/Download, click Run. If you’re prompted to do so, click
 Yes to allow the program to be installed on your computer.
 Click Next, read the license agreement, click Next four more times,
 select Use Git from the Windows Command Prompt (see the following screenshot), and then click
 Next five more times. Click Finish, and then review and close the
 Release Notes window.

[image: images/windows-git.png]

 Next, install Yarn.[16]
 The Installer version is recommended for most users.
 After you click Save/Download, click Run and then click Next. Again, read and
 then accept the terms in the license agreement, click Next two
 more times, and then click Install. If you’re prompted to do so, click Yes
 to allow the program to be installed on your computer. Finally, click
 Finish.

 Lastly, install
 ChromeDriver.[17]
 To do that, click on the latest release (currently ChromeDriver 2.29) and then click
 on the win32.zip version of the file. After it finishes downloading,
 click Open and then right-click on “chromedriver” and select Copy. Next
 double-click “This PC” in the leftmost column of the window,
 double-click C:\, double-click Windows, and then anywhere within
 this window right-click and select Paste. Click Continue.

 Finally, open a command window by returning to your Windows Start screen,
 typing the word command, and selecting Command Prompt. From here, first
 enter these commands, as shown in the following screenshot, to verify that Ruby, Node, and Git were installed correctly:

	​ 	> ruby -v
	​ 	> node -v
	​ 	> git --version

[image: images/windows-cmd.png]

 Next, configure Git, adjusting the user.name and user.email as appropriate:

	​ 	> git config --global user.name "John Doe"
	​ 	> git config --global user.email johndoe@example.com

 Finally, install Rails itself with the following command:

	​ 	> gem install rails --version=5.1.3 --no-ri --no-rdoc

 This will take a while. Once it completes, skip to
 ​Choosing a Rails Version​, to ensure that
 the version of Rails you have installed matches the version described in
 this edition. See you there.

Installing on Mac OS X

 Since Mac OS X ships with Ruby 2.0.0, you need to download a newer version
 of Ruby that works with Rails 5. The easiest way to do
 this is to use Homebrew.

 Before you start, go to your Utilities folder and drag the
 Terminal application onto your dock. You’ll be using this during the
 installation and then frequently as a Rails developer. Open the
 terminal and run the following command:

	​ 	> ruby -e "$(curl -fsSL \
	​ 	 https://raw.githubusercontent.com/Homebrew/install/master/install)"

 When it asks you to install the Xcode command line tools, say yes.

 Next, you have a choice. You can let Homebrew update your version
 of Ruby to the latest (currently Ruby 2.4.1). Or you can install
 rbenv and install a parallel version of Ruby alongside the system
 version of Ruby.

 Upgrading your version of Ruby is the most straightforward path and can be
 done with a single command:

	​ 	​$ ​​brew​​ ​​install​​ ​​ruby​

 Alternatively, you can install rbenv and use it to install Ruby 2.4.1:

	​ 	​$ ​​brew​​ ​​install​​ ​​rbenv​​ ​​ruby-build​
	​ 	​$ ​​echo​​ ​​'eval "$(rbenv init -)"'​​ ​​>>​​ ​​~/.bash_profile​
	​ 	​$ ​​source​​ ​​~/.bash_profile​
	​ 	
	​ 	​$ ​​rbenv​​ ​​install​​ ​​2.4.1​
	​ 	​$ ​​rbenv​​ ​​global​​ ​​2.4.1​

 If you had previously installed ruby-build and it can’t find the
 definition for Ruby 2.4.1, you might need to reinstall ruby-build
 and try again:

	​ 	​$ ​​brew​​ ​​reinstall​​ ​​--HEAD​​ ​​ruby-build​
	​ 	​$ ​​rbenv​​ ​​install​​ ​​2.4.1​
	​ 	​$ ​​rbenv​​ ​​global​​ ​​2.4.1​

 These are the two most popular routes for Mac developers. RVM and chruby are two other alternatives.[18][19]

 Whichever path you take, run the following command to see which
 version of Ruby you’re working with:

	​ 	​$ ​​ruby​​ ​​-v​

 You should see the following type of result:

	​ 	ruby 2.4.1p111 (2017-03-22 revision 58053) [x86_64-darwin16]

 Next, run this command to update Rails to the version used by this book:

	​ 	​$ ​​gem​​ ​​install​​ ​​rails​​ ​​--version=5.1.3​​ ​​--no-ri​​ ​​--no-rdoc​

 Finally, install Yarn and ChromeDriver:

	​ 	​$ ​​brew​​ ​​install​​ ​​yarn​
	​ 	​$ ​​brew​​ ​​install​​ ​​chromedriver​

 OK, you OS X users are done. You can skip forward to join the Cloud,
 Vagrant, and Windows users in ​Choosing a Rails Version​. See you there.

Installing on Linux

 Start with your platform’s native package-management system, be it
 apt,
 dpkg,
 portage,
 rpm,
 rug,
 synaptic,
 up2date, or
 yum.

 The first step is to install the necessary dependencies. The following
 instructions are for Ubuntu 16.04 (Xenial Xerus); if you’re
 on a different operating system, you may need to
 adjust both the command and the package names.

Run this command:
	​ 	​$ ​​sudo​​ ​​apt​​ ​​install​​ ​​apache2​​ ​​curl​​ ​​git​​ ​​libmysqlclient-dev​​ ​​mysql-server​

 Note that you may need to run sudo apt-get update to refresh your list of available packages.
 Next, you’ll need to install Node, which requires a couple of steps:

	​ 	​$ ​​curl​​ ​​-sL​​ ​​https://deb.nodesource.com/setup_8.x​​ ​​|​​ ​​sudo​​ ​​-E​​ ​​bash​​ ​​-​
	​ 	​$ ​​sudo​​ ​​apt-get​​ ​​install​​ ​​-y​​ ​​nodejs​

 You’ll be prompted for a root password for your MySQL server. If you
 leave it blank, you’ll be prompted multiple times. If you specify a
 password, you need to use that password when you create a database
 in Iteration K1.

 Next, you need to install both Ruby and Rails:

	​ 	​$ ​​sudo​​ ​​apt​​ ​​install​​ ​​ruby2.3​​ ​​ruby2.3-dev​
	​ 	​$ ​​sudo​​ ​​gem​​ ​​install​​ ​​rails​​ ​​--version=5.1.3​​ ​​--no-ri​​ ​​--no-rdoc​

 If this works for you, you’re done with the necessary installation
 steps and can proceed to ​Choosing a Rails Version​.

 Many people prefer instead to have a separate installation of Ruby
 on their machine dedicated to support their application, and therefore
 they choose to download and build Ruby.
 The easiest way we’ve found to do this is
 to use RVM. Installing RVM is described on the RVM site.[20] An overview of the steps is included here.

 First, install RVM:

	​ 	​$ ​​curl​​ ​​-L​​ ​​https://get.rvm.io​​ ​​|​​ ​​bash​​ ​​-s​​ ​​stable​

 Next, select the “Run command as login shell” check box in the
 Gnome Terminal Profile Preference. Refer to the Integrating RVM
 with gnome-terminal page for instructions.[21]

 Exit your command window or Terminal application and open a new one.
 This causes your .bash_login to be reloaded.

 Execute the following command, which installs the
 prerequisites for your specific operating system:

	​ 	​$ ​​rvm​​ ​​requirements​​ ​​--autolibs=enable​

 Once this is complete, you
 can proceed to install the Ruby interpreter:

	​ 	​$ ​​rvm​​ ​​install​​ ​​2.4.1​

 This step will take a while as it downloads, configures, and
 compiles the necessary executables. Once it completes, use
 that environment and install rails:

	​ 	​$ ​​rvm​​ ​​use​​ ​​2.4.1​
	​ 	​$ ​​gem​​ ​​install​​ ​​rails​​ ​​--version=5.1.3​​ ​​--no-ri​​ ​​--no-rdoc​

 With the exception of the rvm use statement, each of the previous
 instructions needs to be done only once. The rvm use statement
 must be repeated each time you open a shell window. The
 use keyword is optional, so you can abbreviate this to rvm
 2.4.1. You can also choose to make it the default Ruby interpreter
 for new Terminal sessions with the following command:

	​ 	​$ ​​rvm​​ ​​--default​​ ​​2.4.1​

 You can verify successful installation by using the following command:

	​ 	​$ ​​rails​​ ​​-v​

 Finally, install Yarn and ChromeDriver,[22][23] and ensure that ChromeDriver
 is in your path:

	​ 	​$ ​​curl​​ ​​-sS​​ ​​https://dl.yarnpkg.com/debian/pubkey.gpg​​ ​​|​​ ​​\​
	​ 	​ ​​sudo​​ ​​apt-key​​ ​​add​​ ​​-​
	​ 	​$ ​​echo​​ ​​"deb https://dl.yarnpkg.com/debian/ stable main"​​ ​​|​​ ​​\​
	​ 	​ ​​sudo​​ ​​tee​​ ​​/etc/apt/sources.list.d/yarn.list​
	​ 	​$ ​​sudo​​ ​​apt​​ ​​update​
	​ 	​$ ​​sudo​​ ​​apt​​ ​​install​​ ​​yarn​​ ​​chromium-chromedriver​
	​ 	​$ ​​sudo​​ ​​ln​​ ​​-s​​ ​​/usr/lib/chromium-browser/chromedriver​​ ​​/usr/local/bin​

 If you have trouble, try the suggestions listed under the
 Troubleshooting Your Install heading on the RVM
 site.[24]

 At this point, we’ve covered Windows, Mac OS X, and Linux. Instructions
 after this point are common to all three operating systems.

Choosing a Rails Version

 The previous instructions helped you install the version of
 Rails used by the examples in this book. But occasionally you might not
 want to run that version. For example, a newer version
 with some fixes or new features might become available. Or perhaps you’re developing on one
 machine but intending to deploy on another machine that contains a
 version of Rails that you don’t have any control over.

 If either of these situations applies to you, you need to be aware of a
 few things. For starters, you can use the gem command to find out all the versions
 of Rails you have installed:

	​ 	​$ ​​gem​​ ​​list​​ ​​--local​​ ​​rails​

 You can also verify which version of Rails you’re running as the
 default by using the
 rails --version command. It should return
 5.1.3.

 If it doesn’t, insert the version of Rails surrounded by underscores
 before the first parameter of any rails
 command. Here’s an example:

	​ 	​$ ​​rails​​ ​​_5.1.3_​​ ​​--version​

 This is particularly handy when you create a new application, because
 once you create an application with a specific version of Rails, it’ll
 continue to use that version of Rails—even if newer versions are
 installed on the system—until you decide it’s time to
 upgrade.
 To upgrade, simply update the version number in the
 Gemfile that’s in the root directory of your
 application and run bundle install.

Setting Up Your Development Environment

 The day-to-day business of writing Rails programs is pretty
 straightforward. Everyone works differently; here’s how we
 work.

The Command Line

	
	We do a lot of work at the command line. Although
	an increasing number of GUI tools help generate and
	manage a Rails application, we find the command line is still
	the most powerful place to be. It’s worth spending a little
	while getting familiar with the command line on your operating
	system. Find out how to use it to edit commands that you’re
	typing, how to search for and edit previous commands, and how
	to complete the names of files and commands as you
	type.

	
	
	So-called tab completion is standard on Unix shells such as Bash and
	Zsh. It allows you to type the first few characters of a
	filename, hit Tab, and have the
	shell look for and complete the name based on matching
	files.

Version Control

	We keep all our work in a version control system (currently
	Git). We make a point of
	checking a new Rails project into Git when we create it and committing
	changes once we’ve passed the tests. We normally commit to the
	repository many times an hour.

 If you’re not familiar with Git, don’t worry,
 because this book will introduce you to the few commands that you’ll
 need to follow along with the application being developed. If
 you ever need it, extensive documentation is available
 online.[25]

	

	If you’re working on a Rails project with other people,
	consider setting up a continuous integration (CI) system. When
	anyone checks in changes, the CI system will check out a fresh
 copy of the application and run all the tests. It’s a common
	way to ensure that accidental breakages get immediate
	attention. You can also set up your CI system so that your
	customers can use it to play with the bleeding-edge version of
	your application. This kind of transparency is a great way to
	ensure that your project isn’t going off the tracks.

Editors

	We write our Rails programs using a programmer’s editor. We’ve
	found over the years that different editors work best with
	different languages and environments. For example, Dave originally
	wrote this chapter using Emacs because he thinks that
	its Filladapt mode is unsurpassed
	when it comes to neatly formatting XML as he types. Sam updated the
 chapter	using Vim. But many think that neither Emacs nor Vim is
	ideal for Rails development. Although the choice of
	editor is a personal one, here are some suggestions for
	features to look for in a Rails editor:

	

	
	
	 Support for syntax highlighting of Ruby and HTML—ideally,
	 support for erb files (a
	 Rails file format that embeds Ruby snippets within HTML).
	

	

	
	
	
	 Support for automatic indentation and reindentation of Ruby
	 source. This is more than an aesthetic feature: having an
	 editor indent your program as you type is the best way to
	 spot bad nesting in your code. Being able to reindent
	 is important when you refactor your code and move
	 stuff. (TextMate’s ability to reindent when it pastes code
	 from the clipboard is convenient.)
	

	

	
	 Support for insertion of common Ruby and Rails
	 constructs. You’ll be writing lots of short methods, and if
	 the IDE creates method skeletons with a keystroke or two,
	 you can concentrate on the interesting stuff inside.
	

	

	
	 Good file navigation. As you’ll see, Rails applications are
	 spread across many files; for example,
		a newly created Rails application enters the world
		containing forty-six files spread across thirty-four
		directories. That’s before you’ve written a
		thing.
	

	 You need an environment that helps you
	 navigate quickly among these. You’ll add a line to a
	 controller to load a value, switch to the view to add a
	 line to display it, and then switch to the test to verify you
	 did it all right. Something like Notepad, where you
	 traverse a File Open dialog box to select each file to edit,
	 won’t cut it. We prefer a combination of a
	 tree view of files in a sidebar, a small set of keystrokes
	 that help us find a file (or files) in a directory tree
	 by name, and some built-in smarts that know how to
	 navigate (say) between a controller action and the
	 corresponding view.
	

	

	
	 Name completion. Names in Rails tend to be long. A nice
	 editor will let you type the first few characters and then
	 suggest possible completions to you at the touch of a key.
	

	We hesitate to recommend specific editors, because we’ve used
	only a few in earnest and we’ll undoubtedly leave someone’s
	favorite editor off the list. Nevertheless, to help you get
	started with something other than Notepad, here are some
	suggestions:

	

	
	 Atom is a modern, full-featured, highly customizable cross-platform text editor.[26]
	

	

	
	
	 TextMate is the favorite of many programmers who prefer to do their
development on Mac OS X, including David
Heinemeier Hansson.[27]

	

	

	
 Sublime Text
 is a cross-platform alternative that some see as the de facto successor
 to TextMate.[28]
	

	

	 jEdit is a
	 fully featured editor with support for Ruby.[29] It has
	 extensive plugin support.
	

	

	
	 Komodo is
	 ActiveState’s IDE for
	 dynamic languages, including Ruby.[30]
	

	

	
	 RubyMine is
 a commercial IDE for Ruby and is available for free to qualified
 educational and open source projects.[31] It runs on Windows, Mac OS X,
 and Linux.
	

	

	
	 NetBeans Ruby and Rails plugin is
 an open source plugin for the popular NetBeans IDE.[32]
	

Where's My IDE?

 If you’re coming to Ruby and Rails from languages such as C# and
 Java, you may be wondering about IDEs. After all, we all know
 that it’s impossible to code modern applications without at
 least 100 MB of IDE supporting our every keystroke. For you
 enlightened ones, here’s the point in the book where we
 recommend you sit down—ideally, propped up on each side by a
 pile of framework references and 1,000-page Made Easy books.

 It may surprise you to know that most Rails developers don’t use
 fully fledged IDEs for Ruby or Rails (although some of the
 environments come close). Indeed,
 many Rails developers use plain old editors. And it turns out that
 this isn’t as much of a problem as you might think. With other, less
 expressive languages, programmers rely on IDEs to do much of the
 grunt work for them, because IDEs do code generation, assist with
 navigation, and compile incrementally to give early warning of
 errors.

 With Ruby, however, much of this support isn’t necessary.
 Editors such as TextMate and BBEdit give you 90
 percent of what you’d get from an IDE but are far lighter weight.
 About the only useful IDE facility that’s missing is
 refactoring support.

	Ask experienced developers who use your kind of operating
	system which editor they use. Spend a week or so trying
	alternatives before settling in.

The Desktop

	We’re not going to tell you how to organize your desktop while
	working with Rails, but we will describe what we do.

	Most of the time, we’re writing code, running tests, and poking
	at an application in a browser. So, our main development desktop
	has an editor window and a browser window permanently open. We
	also want to keep an eye on the logging that’s generated by the
	application, so we keep a terminal window open. In it, we
	use tail -f to scroll the contents
	of the log file as it’s updated. We normally run
	this window with a small font so it takes up less
 space. If we see something interesting flash by, we increase the font size
 to investigate.

	We also need access to the Rails API documentation, which we
	view in a browser. In the Introduction, we talked about using
	the gem server command to run a local web server containing the Rails
	documentation. This is convenient, but it unfortunately splits
	the Rails documentation across a number of separate
	documentation trees. If you’re online, you can
	 see a consolidated view of all the Rails documentation in one
	place.[33]

Rails and Databases

 The examples in this book were written using SQLite 3
 (version 3.7.4 or thereabouts). If you want to follow along
 with our code, it’s probably simplest if you use SQLite 3 as well. If
 you decide to use something else, it won’t be a major
 problem. You may have to make minor adjustments to any explicit
 SQL in our code, but Rails pretty much eliminates
 database-specific SQL from applications.

 If you want to connect to a
 database other than SQLite 3, Rails also works with DB2, MySQL, Oracle Database, Postgres,
 Firebird, and SQL Server. For all but
 SQLite 3, you’ll need to install a
 database driver—a library that Rails can use to connect to and
 use with your database engine. This
 section contains links to instructions to get that done.

 The database drivers are all written in C and are primarily
 distributed in source form. If you don’t want to bother building
 a driver from source, take a careful look at the driver’s website. Many times you’ll find that the author also distributes
 binary versions.

 If you can’t find a binary version or if you’d rather build
 from source anyway, you need a development environment on
 your machine to build the library. For Windows, you need a copy of Visual C++. For Linux, you need gcc and
 friends (but these will likely already be installed).

 On OS X, you need to install the developer
 tools (they come with the operating system but aren’t installed
 by default). You also need to install your
 database driver into the correct version of Ruby.
 If you installed your own copy
 of Ruby, bypassing the built-in one, it’s important to have this version of Ruby first in your path when building
 and installing the database driver. You can use the
 which ruby command to make sure
 you’re not running Ruby from /usr/bin.

 The following are the available database adapters and
 the links to their respective home
 pages:

	
	 DB2

		
	 https://rubygems.org/gems/ibm_db/

	Firebird
	https://rubygems.org/gems/fireruby

	MySQL
	https://rubygems.org/gems/mysql2

	Oracle Database
	https://rubygems.org/gems/activerecord-oracle_enhanced-adapter

	Postgres
	https://rubygems.org/gems/pg

	SQL Server
	https://github.com/rails-sqlserver

	SQLite
	https://github.com/luislavena/sqlite3-ruby

 MySQL and
 SQLite
 adapters are also available for download as RubyGems
 (mysql2 and sqlite3,
 respectively).

What We Just Did
	
We installed (or upgraded) the Ruby language.

	
We installed (or upgraded) the Rails framework.

	
We installed a JavaScript package manager named Yarn.

	
We installed a tool that provides support for automated testing of web applications named ChromeDriver.

	
We selected an editor.

	
We installed (or upgraded) the SQLite 3 database.

 Now that we have Rails installed, let’s use it. It’s time to move on to the next chapter,
 where you’ll create your first application.

Footnotes

	[8]
	
https://c9.io/

	[9]
	
https://community.c9.io/t/running-a-rails-app/1615

	[10]
	
https://github.com/rails/rails-dev-box#requirements

	[11]
	
https://developer.fedoraproject.org/tools/vagrant/vagrant-libvirt.html

	[12]
	
https://www.virtualbox.org/wiki/Downloads

	[13]
	
http://rubyinstaller.org/downloads

	[14]
	
http://nodejs.org/download/

	[15]
	
http://git-scm.com/download

	[16]
	
https://yarnpkg.com/en/docs/install#windows-tab

	[17]
	
https://sites.google.com/a/chromium.org/chromedriver/downloads

	[18]
	
https://rvm.io/rvm/install

	[19]
	
https://github.com/postmodern/chruby#readme

	[20]
	
https://rvm.io/rvm/install

	[21]
	
https://rvm.io/integration/gnome-terminal/

	[22]
	
https://yarnpkg.com/lang/en/docs/install/#linux-tab

	[23]
	
https://sites.google.com/a/chromium.org/chromedriver/

	[24]
	
https://rvm.io/rvm/install

	[25]
	
https://git-scm.com/book/en/v2

	[26]
	
https://atom.io

	[27]
	
http://macromates.com/

	[28]
	
http://www.sublimetext.com/

	[29]
	
http://www.jedit.org/

	[30]
	
http://www.activestate.com/komodo-ide

	[31]
	
http://www.jetbrains.com/ruby/features/index.html

	[32]
	
http://plugins.netbeans.org/plugin/38549

	[33]
	
http://api.rubyonrails.org/

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Creating a new application
	Starting the server
	Accessing the server from a browser
	Producing dynamic content
	Adding hypertext links
	Passing data from the controller to the view
	Basic error recovery and debugging

 Chapter
 2
Instant Gratification

 Let’s write a simple application to verify that we have Rails snugly
 installed on our machines. Along the way, you’ll get a peek at
 the way Rails applications work.

Creating a New Application

 When you install the Rails framework, you also get a new
 command-line
 tool, rails,
 that’s used to construct each new Rails application you
 write.

 Why do we need a tool to do this? Why can’t we just hack away
 in our favorite editor and create the source for our application
 from scratch? Well, we could just hack. After all, a Rails
 application is just Ruby source code. But Rails also does a lot
 of magic behind the curtain to get our applications to work with
 a minimum of explicit configuration. To get this magic to work,
 Rails needs to find all the various components of your
 application. As you’ll see later (in ​Where Things Go​), this means we need to
 create a specific directory
 structure, slotting the code we write into the appropriate
 places. The rails command
 creates this directory structure for us and populates it with
 some standard Rails code.

 To create your first Rails application, pop open a shell window,
 and navigate to a place in your filesystem where you want to
 create your application’s directory structure. In our example,
 we’ll be creating our projects in a directory
 called work. In that directory, use
 the rails command to create an
 application called demo. Be slightly
 careful here—if you have an existing directory
 called demo, you’ll be asked if you want to
 overwrite any existing files.
 (Note: if you want to specify which Rails version to use, as described
 in ​Choosing a Rails Version​, now is the time to do
 so.)

	​ 	​rubys>​​ ​​cd​​ ​​work​
	​ 	​work>​​ ​​rails​​ ​​new​​ ​​demo​
	​ 	create
	​ 	create README.md
	​ 	create Rakefile
	​ 	create config.ru
	​ 	 : : :
	​ 	remove config/initializers/cors.rb
	​ 	remove config/initializers/new_framework_defaults_5_1.rb
	​ 	 run bundle install
	​ 	Fetching gem metadata from https://rubygems.org/...........
	​ 	 : : :
	​ 	Bundle complete! 16 Gemfile dependencies, 70 gems now installed.
	​ 	Use `bundle show [gemname]` to see where a bundled gem is installed.
	​ 	 run bundle exec spring binstub --all
	​ 	* bin/rake: spring inserted
	​ 	* bin/rails: spring inserted
	​ 	​work>​

 The command has created a directory
 named demo. Pop down into that directory and
 list its contents (using ls on a Unix
 box or using dir on Windows). You should
 see a bunch of files and subdirectories:

	​ 	​work>​​ ​​cd​​ ​​demo​
	​ 	​demo>​​ ​​ls​​ ​​-p​
	​ 	Gemfile app/ db/ public/
	​ 	Gemfile.lock bin/ lib/ test/
	​ 	README.md config/ log/ tmp/
	​ 	Rakefile config.ru package.json vendor/

 All these directories (and the files they contain) can be
 intimidating to start with, but you can ignore most of them for now. In
 this chapter, we’ll only use two of them directly:
 the bin directory, where we’ll find the Rails
 executables; and
 the app directory, where we’ll write our application.

 Examine your installation using the following command:

	​ 	​demo>​​ ​​bin/rails​​ ​​about​

 Windows users need to prefix the command with
 ruby and use a backslash:

	​ 	​demo>​​ ​​ruby​​ ​​bin\rails​​ ​​about​

 If you get a Rails version other than
 5.1.3, reread ​Choosing a Rails Version​.

 This command also detects common installation errors. For example,
 if it can’t find a JavaScript runtime, it provides you with
 a link to available runtimes.

 As you can see from the bin/ prefix, this is running the
 rails
 command from the bin directory. This command
 is a wrapper, or binstub, for the Rails executable. It serves two
 purposes: it ensures that you’re running with the correct
 version of every dependency, and it speeds up the startup
 times of Rails commands by preloading your application.

 If you see a bunch of messages concerning
 already initialized constants or a possible conflict with an extension,
 consider deleting the demo directory, creating a
 separate RVM gemset,[34] and starting over. If that doesn’t work, use
 bundle exec[35] to run rails commands:

	​ 	​demo>​​ ​​bundle​​ ​​exec​​ ​​rails​​ ​​about​

 Once you get bin/rails about working, you have
 everything you need to start
 a stand-alone web server that can run our newly
 created Rails application.
 So, without further ado, let’s start our demo
 application:

	​ 	​demo>​​ ​​bin/rails​​ ​​server​
	​ 	=> Booting Puma
	​ 	=> Rails 5.1.3 application starting in development on http://localhost:3000
	​ 	=> Run `rails server -h` for more startup options
	​ 	Puma starting in single mode...
	​ 	* Version 3.9.1 (ruby 2.4.1-p111), codename: Private Caller
	​ 	* Min threads: 5, max threads: 5
	​ 	* Environment: development
	​ 	* Listening on tcp://localhost:3000
	​ 	Use Ctrl-C to stop

 As the
 second line of the startup tracing indicates, we started a web
 server on port 3000.
 The localhost part of the address
 means that the Puma web server will only accept requests that
 originate from your machine.
 We can access the application by pointing a browser
 at the URL http://localhost:3000. The result is shown in the screenshot.

[image: images/demo_startscreen.png]

 If you look at the window where you started the server, you can see
 tracing showing that you started the application. We’re going to
 leave the server running in this console window. Later, as we
 write application code and run it via our browser, we’ll be able
 to use this console window to trace the incoming requests. When
 the time comes to shut down your application, you can press
 Ctrl-C in this window to stop the server. (Don’t do that
 yet—we’ll be using this particular application in a minute.)

 If you want to enable this server to be accessed by other machines
 on your network, you can specify 0.0.0.0 as the host to bind
 to:

	​ 	​demo>​​ ​​bin/rails​​ ​​server​​ ​​-b​​ ​​0.0.0.0​

 At this point, we have a new application running, but it has
 none of our code in it. Let’s rectify this situation.

Hello, Rails!

 We can’t help it—we just have to write a Hello,
 World! program to try a new system. Let’s
 start by creating a simple application that sends our cheery greeting to
 a browser. After we get that
 working, we’ll embellish it with the current time and links.

 As you’ll explore further in Chapter 3, ​The Architecture of Rails Applications​, Rails is a
 Model-View-Controller (MVC) framework. Rails accepts
 incoming requests from a browser, decodes the request to find a
 controller, and calls an action method in that controller. The
 controller then invokes a particular view to display the results
 to the user. The good news is that Rails takes care of most of
 the internal plumbing that links all these actions. To write our
 Hello, World! application, we need code for
 a controller and a view, and we need a route to connect the two. We
 don’t need code for a model, because we’re not dealing with any data.
 Let’s start with the controller.

 In the same way that we used
 the rails command to create a new
 Rails application, we can also use a generator script to create
 a new controller for our project. This command is
 rails generate.
 So, to create a controller called say, we make sure we’re in
 the demo directory and run the command,
 passing in the name of the controller we want to
 create and the names of the actions we intend for this controller to
 support:

	​ 	​demo>​​ ​​bin/rails​​ ​​generate​​ ​​controller​​ ​​Say​​ ​​hello​​ ​​goodbye​
	​ 	create app/controllers/say_controller.rb
	​ 	 route get 'say/goodbye'
	​ 	 route get 'say/hello'
	​ 	invoke erb
	​ 	create app/views/say
	​ 	create app/views/say/hello.html.erb
	​ 	create app/views/say/goodbye.html.erb
	​ 	invoke test_unit
	​ 	create test/controllers/say_controller_test.rb
	​ 	invoke helper
	​ 	create app/helpers/say_helper.rb
	​ 	invoke test_unit
	​ 	invoke assets
	​ 	invoke coffee
	​ 	create app/assets/javascripts/say.coffee
	​ 	invoke scss
	​ 	create app/assets/stylesheets/say.scss

 The rails generate command logs the files and directories it
 examines, noting when it adds new Ruby scripts or directories to our
 application. For now, we’re interested in one of these scripts and (in
 a minute) the html.erb files.

 The first source file we’ll be looking at is the controller. You can find
 it in the app/controllers/say_controller.rb file.
 Let’s take a look at it:

rails51/demo1/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController
	»	 ​def​ hello
	»	 ​end​
	​ 	
	​ 	 ​def​ goodbye
	​ 	 ​end​
	​ 	​end​

 Pretty minimal, eh? SayController is a
 class that inherits
 from ApplicationController, so
 it automatically gets all the default controller behavior.
 What does this code have to do? For
 now, it does nothing—we simply have empty action
 methods named hello and goodbye.
 To understand why these methods are named this way,
 you need to look at the way Rails handles requests.

Rails and Request URLs

 Like any other web application, a Rails application appears to
 its users to be associated with a URL. When you point your
 browser at that URL, you’re talking to the application code,
 which generates a response to you.

 Let’s try it now. Navigate to the URL
 http://localhost:3000/say/hello in a browser.
 You’ll see something that looks like the following screenshot.

[image: images/demo2_2_hello_missing.png]
Our First Action

 At this point, we can see not only that we’ve connected the URL to
 our controller but also that Rails is pointing the way to our next
 step—namely, to tell Rails what to display. That’s where views come in.
 Remember when we ran the script to create the new controller? That
 command added several files and a new directory to our application. That
 directory contains the template files for the controller’s views.
 In our case, we created a controller named say, so the views
 will be in the app/views/say directory.

 By default, Rails looks for templates in a file with the same
 name as the action it’s handling. In our case, that means we
 need to replace a file called
 hello.html.erb in the
 app/views/say directory. (Why
 html.erb?
 We’ll explain in a minute.) For now, let’s put some basic
 HTML in there:

rails51/demo1/app/views/say/hello.html.erb
	​ 	<h1>Hello from Rails!</h1>

 Save the hello.html.erb file, and refresh
 your browser window. You should see it display our friendly
 greeting, as in the following screenshot.

[image: images/demo2_3_hello_works.png]

 In total, we’ve looked at two files in our Rails application tree.
 We looked at the controller, and we modified a
 template to display a page in the browser. These files live in
 standard locations in the Rails hierarchy: controllers go into
 app/controllers, and views go into subdirectories
 of app/views. You can see this structure in the following diagram.

[image: images/demo_files.png]
Making It Dynamic

 So far, our Rails application is pretty boring—it just
 displays a static page. To make it more dynamic, let’s have it
 show the current time each time it displays the page.

 To do this, we need to change the template file in
 the view—it now needs to include the time as a string. That
 raises two questions. First, how do we add dynamic content to
 a template? Second, where do we get the time
 from?

Dynamic Content

 You can create dynamic templates in
 Rails in many ways.
 The most common way, which we’ll use here, is to embed Ruby code in the
 template. That’s the template
 file is named hello.html.erb;
 the html.erb suffix tells Rails
 to expand the content in the file using a system called ERB.

 ERB is a filter, installed as
 part of the Rails installation, that takes an
 erb file and outputs a transformed
 version. The output file is often HTML in Rails, but it can be
 anything. Normal content is passed through without being changed.
 However, content
 between <%= and %> is interpreted as
 Ruby code and
 executed.
 The result of that execution is converted into a string, and
 that value is substituted in the file in place of
 the <%=…%> sequence. For
 example, change hello.html.erb to display
 the current time:

rails51/demo2/app/views/say/hello.html.erb
	​ 	<h1>Hello from Rails!</h1>
	»	<p>
	»	 It is now ​<%=​ Time.now ​%>​
	»	</p>

 When we refresh our browser window, we see the time
 displayed using Ruby’s standard format, as shown in the following screenshot.
[image: images/demo2_4_hello_time.png]

 Notice that the time displayed
 updates each time the browser window is refreshed. It looks as if we’re
 really generating dynamic content.

Making Development Easier

 You might have noticed something about the development we’ve
 been doing so far. As we’ve been adding code to our
 application, we haven’t had to restart the running
 application.
 It’s been happily chugging away in the background. And yet
 each change we make is available whenever we access the
 application through a browser. What gives?

 It turns out that the Rails dispatcher is
 pretty clever. In development mode (as opposed to testing or
 production), it automatically reloads application source
 files when a new request comes along. That way, when we edit our application, the
 dispatcher makes sure it’s running the most recent
 changes. This is great for development.

 However, this flexibility comes at a cost: it causes a
 short pause after you enter a URL before the application
 responds. That’s caused by the dispatcher reloading stuff.
 For development it’s a price worth paying, but in production
 it would be unacceptable. For this reason, this feature is disabled
 for production deployment. See Chapter 17, ​Task L: Deployment and Production​.

Adding the Time

 Our original problem was to display the time to users of our
 application. We now know how to make our application display
 dynamic data. The second issue we have to address is working
 out where to get the time from.

 We’ve shown that the approach of embedding a call to
 Ruby’s Time.now method in
 our hello.html.erb
 template works.
 Each time they access this page, users will see
 the current time substituted into the body of the
 response. And for our trivial application, that might be
 good enough. In general, though, we probably want to do
 something slightly different. We’ll move the determination
 of the time to be displayed into the controller and leave
 the view with the job of displaying it. We’ll change our
 action method in the controller to set the time value into
 an instance variable
 called @time:

rails51/demo3/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController
	​ 	 ​def​ hello
	»	 @time = Time.now
	​ 	 ​end​
	​ 	
	​ 	 ​def​ goodbye
	​ 	 ​end​
	​ 	​end​

 In the html.erb template, we’ll
 use this instance variable to substitute the time into the
 output:

rails51/demo3/app/views/say/hello.html.erb
	​ 	<h1>Hello from Rails!</h1>
	​ 	<p>
	»	 It is now ​<%=​ @time ​%>​
	​ 	</p>

 When we refresh our browser window, we again see the
 current time, showing that the communication between the controller
 and the view was successful.

 Why did we go to the extra trouble of setting the time to be
 displayed in the controller and then using it in the view?
 Good question. In this application, it doesn’t make much difference,
 but by putting the logic in the controller instead, we buy
 ourselves some benefits. For example, we may want to extend
 our application in the future to support users in many
 countries. In that case, we’d want to localize the display of
 the time, choosing a time appropriate to the user’s time zone. That would
 require a fair amount of application-level code, and it would
 probably not be appropriate to embed it at the view
 level. By setting the time to display in the controller, we
 make our application more flexible: we can change the
 time zone in the controller without having to update any view that
 uses that time object. The time is data, and it should
 be supplied to the view by the controller. We’ll see a lot more of
 this when we introduce models into the equation.

The Story So Far

 Let’s briefly review how our current application works.

	

 The user navigates to our application. In our case, we
 do that using a local URL such
 as http://localhost:3000/say/hello.

	

 Rails then matches the route pattern, which it previously
 split into two parts and analyzed.
 The say part is taken to be the name of a controller,
 so Rails creates a new instance of the Ruby SayController class (which it finds in
 app/controllers/say_controller.rb).

	

 The next part of the pattern, hello, identifies an
 action. Rails invokes a method of that name in the
 controller. This action method creates a
 new Time object holding the
 current time and tucks it away in
 the @time instance
 variable.

	

 Rails looks for a template to display the result. It
 searches the
 app/views directory
 for a subdirectory with the same name as the controller
 (say) and in that subdirectory for a
 file named after the action
 (hello.html.erb).

	

 Rails processes this file through the ERB templating system,
 executing any embedded Ruby and substituting in values set up by
 the controller.

	

 The result is returned to the browser, and Rails
 finishes processing this request.

 This isn’t the whole story. Rails gives you lots of
 opportunities to override this basic workflow (and we’ll be
 taking advantage of them shortly). As it stands, our story
 illustrates convention over
 configuration,
 one of the fundamental parts of the philosophy of Rails. Rails
 applications are typically written using little or no external
 configuration. That’s because Rails
 provides convenient defaults, and because you apply certain conventions to how a URL is constructed, which file a controller definition is
 placed in, or which class name and method names are used. Things knit themselves together in a natural way.

Linking Pages Together

 It’s a rare web application that has just one page. Let’s see
 how we can add another stunning example of web design to
 our Hello, World!
 application.

 Normally, each page in our application will
 correspond to a separate view. While we’ll also use a
 new action method to handle the new page, we’ll
 use the same controller for both actions. This
 needn’t be the case, but we have no compelling reason to use a
 new controller right now.

 We already defined a goodbye action for this controller, so all that
 remains is to update the scaffolding
 that was generated in the
 app/views/say directory. This time
 the file we’ll be updating is
 called goodbye.html.erb, because by default
 templates are named after their associated actions:

rails51/demo4/app/views/say/goodbye.html.erb
	​ 	<h1>Goodbye!</h1>
	​ 	<p>
	​ 	 It was nice having you here.
	​ 	</p>

 Fire up your trusty browser again, but this time point to our
 new view using the
 URL http://localhost:3000/say/goodbye. You should
 see something like this screenshot.

[image: images/demo4_1_goodbye.png]

 Now we need to link the two screens. We’ll put a link
 on the hello screen that takes us to the goodbye screen, and
 vice versa. In a real application, we might want to
 make these proper buttons, but for now we’ll use
 hyperlinks.

 We already know that Rails uses a convention to parse the URL
 into a target controller and an action within that
 controller. So, a simple approach would be to adopt this URL
 convention for our links.

The
 hello.html.erb file would contain the following:

	​ 	...
	​ 	<p>
	​ 	 Say Goodbye!
	​ 	</p>
	​ 	...

 And the goodbye.html.erb file would point the
 other way:

	​ 	...
	​ 	<p>
	​ 	 Say Hello!
	​ 	</p>
	​ 	...

 This approach would certainly work, but it’s a bit fragile. If we
 were to move our application to a different place on the
 web server, the URLs would no longer be valid. It also encodes
 assumptions about the Rails URL format into our code; it’s possible a future version of Rails could change that format.

 Fortunately, these aren’t risks we have to take. Rails comes
 with a bunch of helper methods that can be used in
 view templates. Here, we’ll use the link_to helper method, which creates a
 hyperlink to an action.
 (The link_to method can do a lot
 more than this, but let’s take it gently for now.)
 Using link_to,
 hello.html.erb becomes the following:

rails51/demo5/app/views/say/hello.html.erb
	​ 	<h1>Hello from Rails!</h1>
	​ 	<p>
	​ 	 It is now ​<%=​ @time ​%>​
	​ 	</p>
	»	<p>
	»	 Time to say
	»	 ​<%=​ link_to ​"Goodbye"​, say_goodbye_path ​%>​!
	»	</p>

 There’s a link_to call within an
 ERB <%=…%> sequence. This
 creates a link to a URL that will invoke
 the goodbye action. The first parameter
 in the call to link_to is the text to
 be displayed in the hyperlink, and the next parameter tells
 Rails to generate the link to the goodbye
 action.

 Let’s stop for a minute to consider how we generated the link. We wrote this:

	​ 	link_to ​"Goodbye"​, say_goodbye_path

 First, link_to is a method call. (In Rails, we call
 methods that make it easier to write
 templates helpers.) If you come from
 a language such as Java, you might be surprised that Ruby
 doesn’t insist on parentheses around method parameters. You can
 always add them if you like.

 say_goodbye_path is a precomputed value that Rails makes
 available to application views. It evaluates to the
 /say/goodbye path. Over time, you’ll see that Rails provides
 the ability to name all the routes that you use in your
 application.

 Let’s get back to the application. If we point our browser at our
 hello page, it now contains the link to the goodbye page, as
 shown in the following screenshot.

[image: images/demo5_1_goodbye_link.png]

 We can make the corresponding change
 in goodbye.html.erb, linking it back to the
 initial hello page:

rails51/demo5/app/views/say/goodbye.html.erb
	​ 	<h1>Goodbye!</h1>
	​ 	<p>
	​ 	 It was nice having you here.
	​ 	</p>
	»	<p>
	»	 Say ​<%=​ link_to ​"Hello"​, say_hello_path ​%>​ again.
	»	</p>

 So far, we’ve just done things that should work, and—unsurprisingly—they’ve worked. But the true test of the developer friendliness
 of a framework is how it responds when things go wrong. As we’ve not
 invested much time into this code yet, now is a perfect time to try
 to break things.

When Things Go Wrong

 Let’s start by introducing a typo in the source code—one that perhaps
 is introduced by a misfiring autocorrect function in your
 favorite editor:

rails51/demo5/app/controllers/say_controller.rb
	​ 	​class​ SayController < ApplicationController
	​ 	 ​def​ hello
	»	 @time = Time.know
	​ 	 ​end​
	​ 	
	​ 	 ​def​ goodbye
	​ 	 ​end​
	​ 	​end​

 Refresh the following page in your browser:
 http://localhost:3000/say/hello. You should
 see something like the following screenshot.

[image: images/demo5_2_typo.png]

 For security reasons, the web console is configured to only be shown when
 accessed from the same machine as the web server is running on. If you
 are running on a different machine (as you would be should you be running
 on c9), you will need to adjust the configuration to see this. For
 example, to enable the web console to be seen by all, add the following
 to config/environments/development.rb and restart
 your server:

	​ 	config.web_console.whitelisted_ips = ​%w(0.0.0.0/0 ::/0)​

 What you see is that Ruby tells you about the error (“undefined
 method ‘know’”), and Rails shows you the extracted source
 where the code can be found (Rails.root), the stack
 traceback, and request parameters (at the moment, None). It also provides
 the ability to toggle the display of session and environment
 dumps.

 If you’re running Ruby 2.3.0 or later, you’ll even see a suggestion:
 “Did you mean? now.” What a nice touch.

 At the bottom of the window you see an area consisting
 of white text on a black background, looking much like a command-line prompt. This is the Rails web console. You can use it to
 try out suggestions and evaluate expressions. Let’s try it out, as shown in the following screenshot.

[image: images/demo_time_now.png]

 All in all, helpful stuff.

 We’ve broken the code. Now, let’s break the other thing we’ve used
 so far: the URL. Visit the following page in your browser:
 http://localhost:3000/say/hullo. You should
 see something like the screenshot.

[image: images/demo5_2_route_typo.png]

 This is similar to what we saw before, but in place of source code
 we see a list of possible routes, how they can be accessed, and the
 controller action they’re associated with. We’ll explain this later
 in detail, but for now look at the Path Match input
 field. If you enter a partial URL in there, you can see a list of
 routes that match. That’s not needed right now, as we have only two
 routes, but can be helpful later when we have many.

 At this point, we’ve completed our toy application and in the process
 verified that our installation of Rails is functioning properly and
 provides helpful information when things go wrong.
 After a brief recap, it’s now time to move on to building a real
 application.

What We Just Did

 We constructed a toy application that showed you the following:

	

 How to create a new Rails application and how to create a
 new controller in that application

	

 How to create dynamic content in the controller and display
 it via the view template

	

 How to link pages together

	

 How to debug problems in the code or the URL

 This is a great foundation, and it didn’t take much time or
 effort. This experience will continue as we move on to the next
 chapter and build a much bigger application.

Playtime

 Here’s some stuff to try on your own:

	
 Experiment with the following expressions:
 	Addition: <%= 1+2 %>
	Concatenation: <%= "cow" + "boy" %>
	Time in one hour: <%= 1.hour.from_now.localtime %>

	
 A call to the following Ruby method returns a list of all
 the files in the current directory:
 	​ 	@files = Dir.glob(​'*'​)

 Use it to set an instance variable in a controller action,
 and then write the corresponding template that displays
 the filenames in a list on the browser.

 Hint: you can iterate over a
 collection using something like this:

	​ 	​<%​ @files.each ​do​ |file| ​%>​
	​ 	 file name is: ​<%=​ file ​%>​
	​ 	​<%​ ​end​ ​%>​

 You might want to use a for the list.

Cleaning Up

 Maybe you’ve been following along and writing the code in this
 chapter. If so, chances are that the application is still
 running on your computer. When we start coding our next
 application in Chapter 6, ​Task A: Creating the Application​, we’ll get a conflict the first
 time we run it because it’ll also try to use the
 computer’s port 3000 to talk with the browser. Now is a
 good time to stop the current application by pressing
 Ctrl-C in the window you used to start it. Microsoft Windows users
 may need to press Ctrl-Pause/​Break instead.

 Now let’s move on to an overview of Rails.

Footnotes

	[34]
	
https://rvm.io/gemsets/basics/

	[35]
	
http://gembundler.com/v1.3/bundle_exec.html

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Models
	Views
	Controllers

 Chapter
 3
The Architecture of Rails Applications

 One of the interesting features of Rails is that it imposes some
 fairly serious constraints on how you structure your web
 applications. Surprisingly, these constraints make it easier to
 create applications—a lot easier. Let’s see why.

Models, Views, and Controllers

 Back in 1979, Trygve Reenskaug came up
 with a new architecture for developing interactive
 applications. In his design, applications were broken into three
 types of components: models, views, and controllers.

 The model
 is responsible for maintaining the state
 of the application. Sometimes this state is transient, lasting
 for just a couple of interactions with the user. Sometimes the
 state is permanent and is stored outside the application,
 often in a database.

 A model is more than data; it enforces all the business
 rules that apply to that data. For example,
 if a discount shouldn’t be applied to orders of less than $20,
 the model enforces the constraint. This makes sense; by
 putting the implementation of these business rules in the model,
 we make sure that nothing else in the application can make our
 data invalid. The model acts as both a gatekeeper and a data
 store.

 The view
 is responsible for generating a user interface, normally based
 on data in the model. For example, an online store has a
 list of products to be displayed on a catalog screen. This list
 is accessible via the model, but it’s a view that
 formats the list for the end
 user. Although the view might present the user with various ways
 of inputting data, the view itself never handles incoming
 data. The view’s work is done once the data is displayed. There
 may well be many views that access the same model data, often
 for different purposes. The online store has a view
 that displays product information on a catalog page, and another
 set of views used by administrators to add and edit products.

 Controllers
 orchestrate the application. Controllers receive events from the
 outside world (normally, user input), interact with the model, and
 display an appropriate view to the user.

 This triumvirate—the model, view, and controller—together form an
 architecture known as MVC.
 To learn how the three concepts fit
 together, see the following figure.

[image: images/basic_mvc.png]

 The MVC architecture was originally intended for conventional GUI
 applications, where developers found that the separation of concerns led to
 far less coupling, which in turn made the code easier to write and maintain.
 Each concept or action was expressed in a single, well-known place.
 Using MVC was like constructing a skyscraper with the girders already in
 place—it was a lot easier to hang the rest of the pieces with a
 structure already there. During the development of our application, we’ll make heavy use of Rails’s ability to generate
 scaffolding for our application.

 Ruby on Rails is an MVC framework, too. Rails enforces a
 structure for your application: you develop models, views,
 and controllers as separate chunks of functionality, and it knits
 them together as your program executes. One of the joys of
 Rails is that this knitting process is based on the use of
 intelligent defaults so
 that you typically don’t need to write any external
 configuration metadata to make it all work. This is an example
 of the Rails philosophy of favoring convention over
 configuration.

 In a Rails application,
 an incoming request is first sent to a router, which works out
 where in the application the request should be sent and how the
 request should be parsed. Ultimately, this phase
 identifies a particular method (called
 an action in Rails parlance)
 somewhere in the controller code. The action might look at data in the
 request, it might interact with the model, and it might
 cause other actions to be invoked. Eventually the action
 prepares information for the view, which renders something to the
 user.

 Rails handles an incoming request as shown in the following figure. In
 this example, the application has
 previously displayed a product catalog page, and the user has
 just clicked the Add to Cart button next
 to one of the products. This button posts
 to http://localhost:3000/line_items?product_id=2,
 where line_items is a resource in the application and
 2 is the internal ID for the selected product.
[image: images/rails_mvc.png]

 The routing component receives the incoming
 request and immediately picks it apart. The request contains a path
 (/line_items?product_id=2) and a method (this button does a
 POST operation; other common methods are GET, PUT, PATCH, and DELETE).
 In this simple case, Rails takes the first part of the
 path, line_items,
 as the name of the controller and the product_id as the ID of
 a product. By convention, POST methods are associated with
 create actions. As a result of all
 this analysis, the router knows it has to invoke
 the create method in the
 LineItemsController controller class (we’ll
 talk about naming conventions in ​Naming Conventions​).

 The create method handles
 user requests. In this case, it finds the current user’s
 shopping cart (which is an object managed by the model). It also
 asks the model to find the information for product 2. It then
 tells the shopping cart to add that product to itself. (See how
 the model is being used to keep track of all the business data?
 The controller tells it what to do, and the model
 knows how to do it.)

 Now that the cart includes the new product, we can show it to
 the user. The controller invokes the view code, but before it does, it
 arranges things so that the view has access to the cart object from the
 model.
 In Rails, this invocation is often implicit; again,
 conventions help link a particular view with a given action.

 That’s all there is to an MVC web application. By following a
 set of conventions and partitioning your functionality
 appropriately, you’ll discover that your code becomes easier to
 work with and your application becomes easier to extend and
 maintain. That seems like a good trade.

 If MVC is simply a question of partitioning your code a
 particular way, you might be wondering why you need a framework
 such as Ruby on Rails. The answer is straightforward:
 Rails handles all of the low-level housekeeping for you—all
 those messy details that take so long to handle by
 yourself—and lets you concentrate on your
 application’s core functionality. Let’s see how.

Rails Model Support

 In general, we want our web applications to keep their
 information in a relational database. Order-entry systems will
 store orders, line items, and customer details in database
 tables. Even applications that normally use unstructured text,
 such as weblogs and news sites, often use databases as their
 back-end data store.

 Although it might not be immediately apparent from the database
 queries you’ve seen so far, relational databases are
 designed around mathematical set theory. This
 is good from a conceptual point of view, but it makes it difficult
 to combine relational databases with object-oriented (OO) programming
 languages. Objects are all about data and operations, and
 databases are all about sets of values. Operations that are easy
 to express in relational terms are sometimes difficult to code
 in an OO system. The reverse is also true.

 Over time, folks have worked out ways of reconciling the
 relational and OO views of their corporate data. Let’s look at
 the way that Rails chooses to map relational data onto objects.

Object-Relational Mapping

 Object-relational mapping (ORM) libraries map database tables to classes. If a
 database has a table called orders, our
 program will have a class named Order.
	Rows in this table correspond to objects of the class—a
 particular order is represented as an object of the
 Order class. Within that object,
 attributes are used to get and set the individual
 columns. Our Order object has methods
 to get and set the amount, the sales tax, and so on.

 In addition, the Rails classes that wrap our database tables
 provide a set of class-level methods that perform table-level
 operations. For example, we might need to find the order with
 a particular ID. This is implemented as a class method that returns the
 corresponding Order object. In Ruby
 code, that might look like this:

	​ 	order = Order.find(1)
	​ 	puts ​"Customer ​​#{​order.customer_id​}​​, amount=$​​#{​order.amount​}​​"​

 Sometimes these class-level methods return collections
 of objects:

	​ 	Order.where(​name: ​​'dave'​).each ​do​ |order|
	​ 	 puts order.amount
	​ 	​end​

 Finally, the objects corresponding to individual rows in a
 table have methods that operate on that row. Probably the
 most widely used is save, the
 operation that saves the row to the database:

	​ 	Order.where(​name: ​​'dave'​).each ​do​ |order|
	​ 	 order.pay_type = ​"Purchase order"​
	​ 	 order.save
	​ 	​end​

 So, an ORM layer maps tables to classes, rows to objects, and
 columns to attributes of those objects. Class methods are used
 to perform table-level operations, and instance methods
 perform operations on the individual rows.

 In a typical ORM library, you supply configuration data to
 specify the mappings between entities in the database and
 entities in the program. Programmers using these ORM tools
 often find themselves creating and maintaining a boatload of
 XML configuration
 files.

Active Record

	Active Record is the ORM
	layer supplied with Rails. It closely follows the standard ORM
	model: tables map to classes, rows to objects, and columns to
	object attributes. It differs from most other ORM libraries in
	the way it’s configured. By relying on convention and
	starting with sensible defaults, Active Record minimizes the
	amount of configuration that developers perform.

To show this, here’s a program
	that uses Active Record to wrap
	our orders table:

	​ 	require ​'active_record'​
	​ 	
	​ 	​class​ Order < ApplicationRecord
	​ 	​end​
	​ 	
	​ 	order = Order.find(1)
	​ 	order.pay_type = ​"Purchase order"​
	​ 	order.save

	This code uses the new Order class to
	fetch the order with an id of 1 and modify the
	pay_type. (For now, we’ve omitted the code that creates a database
	connection.) Active Record relieves us of the hassles
	of dealing with the underlying database, leaving us free to
	work on business logic.

	But Active Record does more than that. As you’ll see when we
	develop our shopping cart application, starting
	in Chapter 5, ​The Depot Application​, Active Record integrates
	seamlessly with the rest of the Rails framework. If a web form
	sends the application data related to a business object,
	Active Record can extract it into our model. Active Record
	supports sophisticated validation of model data, and if the
	form data fails validations, the Rails views can extract and
	format errors.

	Active Record is the solid model foundation of the Rails MVC
	architecture.

Action Pack: The View and Controller

 When you think about it, the view and controller parts of MVC
 are pretty intimate. The controller supplies data to the view,
 and the controller receives events from the pages generated by
 the views. Because of these interactions, support for views and
 controllers in Rails is bundled into a single
 component, Action Pack.

 Don’t be fooled into thinking that your application’s view code
 and controller code will be jumbled up because Action Pack
 is a single component. Quite the contrary; Rails gives you the
 separation you need to write web applications with clearly
 demarcated code for control and presentation logic.

View Support

	In Rails, the view is responsible for creating all or
	part of a response to be displayed in a browser, to be processed by an
 application, or to be sent as an email.

	At its simplest, a view is a chunk of HTML code
	that displays some fixed text. More typically, you’ll want to
	include dynamic content created by the action method in the
	controller.

 In Rails, dynamic content is generated by templates,
 which come in three flavors. The most common templating scheme,
 called Embedded Ruby (ERB), embeds snippets of Ruby
 code within a view document, in many ways similar to the way it’s
 done in other web frameworks, such as PHP or JavaServer Pages (JSP).
 Although this approach is flexible, some are concerned that it
 violates the spirit of MVC. By embedding code in the view, we risk
 adding logic that should be in the model or the controller. As with
 everything, while judicious use in moderation is healthy, overuse can
 become a problem. Maintaining a clean separation of concerns is part
 of the developer’s job.

 You can also use ERB to construct
	JavaScript fragments on the server that are then
	executed on the browser. This is great for creating dynamic
	Ajax interfaces. We talk about these starting
	in ​Iteration F2: Creating an Ajax-Based Cart​.

 Rails also provides libraries to construct XML or JSON documents using Ruby code. The structure of the generated XML or JSON automatically follows the structure of the code.

And the Controller!

	The Rails controller is the logical center of your
	application. It coordinates the interaction among the user,
	the views, and the model.
	However, Rails handles most of this interaction behind the
	scenes; the code you write concentrates on application-level
	functionality. This makes Rails controller code remarkably
	easy to develop and maintain.

	The controller is also home to a number of important
	ancillary services:

	

	
	
	 It’s responsible for routing external requests to
	 internal actions. It handles people-friendly URLs
	 extremely well.
	

	

	
	 It manages caching, which can give applications
	 orders-of-magnitude performance boosts.
	

	

	
	 It manages helper modules, which extend the capabilities
	 of the view templates without bulking up their code.
	

	

	
	
	 It manages sessions, giving users the impression of
	 ongoing interaction with our applications.
	

We’ve already seen and modified a controller in ​Hello, Rails!​ and we will be seeing and modifying a number
 of controllers in the development of a sample application, starting
 with the products controller in ​Iteration C1: Creating the Catalog Listing​.

 There’s a lot to Rails. But before going any further, let’s have a brief
 refresher​—and for some of you, a brief introduction—to the Ruby
 language.

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Objects: names and methods
	Data: strings, arrays, hashes, and regular expressions
	Control: if, while, blocks, iterators, and exceptions
	Building blocks: classes and modules
	YAML and marshaling
	Common idioms that you’ll see used in this book

 Chapter
 4
Introduction to Ruby

 Many people who are new to Rails are also new to Ruby. If you’re
 familiar with a language such as Java, JavaScript, PHP, Perl, or Python, you’ll find Ruby pretty easy to pick up.

 This chapter isn’t a complete introduction to Ruby. It doesn’t cover
 topics such as precedence rules (as in most other programming languages,
 1+2*3==7 in Ruby). It’s only meant to explain enough Ruby that the
 examples in the book make sense.

 This chapter draws heavily from material in Programming Ruby [FH13]. If you think you need
 more background on the Ruby language (and at the risk of being grossly
 self-serving), we’d like to suggest that the best way to learn Ruby and
 the best reference for Ruby’s classes, modules, and libraries is
 Programming Ruby [FH13] (also known as
 the PickAxe book). Welcome to the Ruby community!

Ruby Is an Object-Oriented Language

 Everything you manipulate in Ruby is an object, and the results
 of those manipulations are themselves
 objects.

 When you write object-oriented code, you’re
 normally looking to model concepts from the real world. Typically, during
 this modeling process you discover categories of things that need to
 be represented. In an online store, the concept of a line item could be
 such a category. In Ruby, you’d define a
 class to represent each of these
 categories. You then use this class as a
 kind of factory that generates objects—instances
 of that class. An object is a combination of state (for example, the
 quantity and the product ID) and methods that use that state (perhaps a
 method to calculate the line item’s total cost). We’ll show how to
 create classes in ​Classes​.

 You create objects by calling
 a constructor, a special method associated with a class. The
 standard constructor is called new.
 Given a class called LineItem, you could
 create line item objects as follows:

	​ 	line_item_one = LineItem.new
	​ 	line_item_one.quantity = 1
	​ 	line_item_one.sku = ​"AUTO_B_00"​

 You invoke methods by sending a message to an object. The
 message contains the method’s name, along with any parameters
 the method may need.
 When an object receives a
 message, it looks into its own class for a corresponding
 method.
 Let’s look at some method calls:

	​ 	​"dave"​.length
	​ 	line_item_one.quantity()
	​ 	cart.add_line_item(next_purchase)
	​ 	submit_tag ​"Add to Cart"​

 Parentheses are generally optional in method calls.
 In Rails applications, you’ll find that most method calls
 involved in larger expressions have parentheses, while
 those that look more like commands or declarations tend not to
 have them.

 Methods have names, as do many other constructs in Ruby. Names in Ruby
 have special rules—rules that you may not have seen if you come to Ruby
 from another language.

Ruby Names

 Local variables,
 method parameters, and method names should all start with a
 lowercase letter or with an
 underscore: order, line_item,
 and xr2000 are all valid. Instance
 variables begin
 with an at (@) sign—for example, @quantity
 and @product_id. The Ruby convention is
 to use underscores to separate words in a multiword method or
 variable name (so line_item is
 preferable to lineItem).

 Class names, module names, and constants must start with an
 uppercase
 letter. By
 convention they use capitalization, rather than underscores, to
 distinguish the start of words within the name. Class names look
 like Object, PurchaseOrder,
 and LineItem.

 Rails uses
 symbols to identify things. In particular, it
 uses them as keys when naming method parameters and looking things up in
 hashes. Here’s an example:

	​ 	redirect_to ​:action​ => ​"edit"​, ​:id​ => params[​:id​]

 As you can see, a symbol looks like a variable name, but it’s prefixed
 with a colon. Examples of symbols include
 :action, :line_items,
 and :id. You can think of symbols as string
 literals magically made into constants. Alternatively, you can
 consider the colon to mean thing named, so
 :id is the thing named
 id.

 Now that we’ve used a few methods, let’s move on to how they’re
 defined.

Methods

 Let’s write a method that returns a cheery,
 personalized greeting. We’ll invoke that method a couple of
 times:

	​ 	​def​ say_goodnight(name)
	​ 	 result = ​'Good night, '​ + name
	​ 	 ​return​ result
	​ 	​end​
	​ 	
	​ 	​# Time for bed...​
	​ 	puts say_goodnight(​'Mary-Ellen'​) ​# => 'Goodnight, Mary-Ellen'​
	​ 	puts say_goodnight(​'John-Boy'​) ​# => 'Goodnight, John-Boy'​

 Having defined the method, we call it twice. In both cases, we
 pass the result to the puts method,
 which outputs to the console its argument followed by a newline
 (moving on to the next line of output).

 You don’t need a semicolon at the end of a statement as long as
 you put each statement on a separate line. Ruby comments start with
 a # character and run to the end of the
 line. Indentation isn’t significant (but two-character
 indentation is the de facto Ruby standard).

 Ruby doesn’t use braces to
 delimit the bodies of compound statements and definitions (such
 as methods and classes). Instead, you simply finish the body
 with the end keyword.
 The return keyword is optional, and if it’s not present, the
 results of the last expression evaluated are returned.

Data Types

 While everything in Ruby is an object, some of the data types in Ruby
 have special syntax support, in particular for defining literal values.
 In the preceding examples, we used some simple strings and even string
 concatenation.

Strings

 The previous example also showed some Ruby string objects. One way to
 create a string object is to use string
 literals, which are sequences of characters between single or double
 quotation marks. The difference between the two forms is the
 amount of processing Ruby does on the string while constructing
 the literal. In the single-quoted case, Ruby does very
 little. With only a few exceptions, what you type into the
 single-quoted string literal becomes the string’s value.

 With double-quotes, Ruby does more work. It looks
 for substitutions—sequences that start
 with a backslash character—and replaces them with a binary
 value. The most common of these is \n,
 which is replaced with a newline character. When you write a
 string containing a newline to the console,
 the \n forces a line break.

 Then, Ruby performs expression
 interpolation in double-quoted strings. In the
 string, the
 sequence #{expression}
 is replaced by the value of expression. We could
 use this to rewrite our previous method:

	​ 	​def​ say_goodnight(name)
	​ 	 ​"Good night, ​​#{​name.capitalize​}​​"​
	​ 	​end​
	​ 	puts say_goodnight(​'pa'​)

 When Ruby constructs this string object, it looks at the current
 value of name and substitutes it
 into the string. Arbitrarily complex expressions are allowed in
 the #{…} construct. Here we
 invoked the capitalize method, defined
 for all strings, to output our parameter with a leading
 uppercase letter.

 Strings are a fairly primitive data type that contain an ordered
 collection of bytes or characters. Ruby also provides means for
 defining collections of arbitrary objects via arrays and hashes.

Arrays and Hashes

 Ruby’s arrays and hashes are indexed collections. Both store collections of objects, accessible using
 a key. With arrays, the key is an integer, whereas hashes
 support any object as a key. Both arrays and hashes grow as
 needed to hold new elements. It’s more efficient to access
 array elements, but hashes provide more flexibility. Any
 particular array or hash can hold objects of differing types;
 you can have an array containing an integer, a string, and a
 floating-point number, for example.

 You can create and initialize a new array object by using an
 array literal—a
 set of elements between square
 brackets. Given an array object, you can access individual elements by
 supplying an index between square brackets, as the next example shows.
 Ruby array indices start at zero:

	​ 	a = [1, ​'cat'​, 3.14] ​# array with three elements​
	​ 	a[0] ​# access the first element (1)​
	​ 	a[2] = ​nil​ ​# set the third element​
	​ 	 ​# array now [1, 'cat', nil]​

 You may have noticed that we used the special
 value nil in this example. In
 many languages, the concept of nil
 (or null) means no object. In Ruby,
 that’s not the case; nil is an object, like any other, that happens to represent nothing.

 The << method is often used with arrays. It
 appends a single value to its receiver:

	​ 	ages = []
	​ 	​for​ person ​in​ @people
	​ 	 ages << person.age
	​ 	​end​

 Ruby has a shortcut for creating an array of words:

	​ 	a = [​'ant'​, ​'bee'​, ​'cat'​, ​'dog'​, ​'elk'​]
	​ 	​# this is the same:​
	​ 	a = ​%w{ ant bee cat dog elk }​

 Ruby hashes are
 similar to arrays. A hash
 literal uses braces rather than square brackets. The literal
 must supply two objects for every entry: one for the key, the
 other for the value. For example, you may want to map musical
 instruments to their orchestral sections:

	​ 	inst_section = {
	​ 	 ​:cello​ => ​'string'​,
	​ 	 ​:clarinet​ => ​'woodwind'​,
	​ 	 ​:drum​ => ​'percussion'​,
	​ 	 ​:oboe​ => ​'woodwind'​,
	​ 	 ​:trumpet​ => ​'brass'​,
	​ 	 ​:violin​ => ​'string'​
	​ 	}

 The thing to the left of the => is the key, and that on the
 right is the corresponding value. Keys in a particular hash
 must be unique; if you have two entries for :drum, the last
 one will win. The keys and values in a hash can be arbitrary
 objects: you can have hashes in which the values are
 arrays, other hashes, and so on. In Rails, hashes typically use symbols
 as keys. Many Rails hashes have been subtly modified so that you can use
 either a string or a symbol interchangeably as a key when inserting and
 looking up values.

 The use of symbols as hash keys is so commonplace that Ruby
 has a special syntax for it, saving both keystrokes and
 eyestrain:

	​ 	inst_section = {
	​ 	 ​cello: ​​'string'​,
	​ 	 ​clarinet: ​​'woodwind'​,
	​ 	 ​drum: ​​'percussion'​,
	​ 	 ​oboe: ​​'woodwind'​,
	​ 	 ​trumpet: ​​'brass'​,
	​ 	 ​violin: ​​'string'​
	​ 	}

 Doesn’t that look much better?

 Feel free to use whichever syntax you like. You can even intermix
 usages in a single expression. Obviously, you’ll need to use the
 arrow syntax whenever the key is not a symbol.

 One other thing to watch out for: if the value is a
 symbol, you’ll need to have at least one space between the colons
 or else you’ll get a syntax error:

	​ 	inst_section = {
	​ 	 ​cello: :string​,
	​ 	 ​clarinet: :woodwind​,
	​ 	 ​drum: :percussion​,
	​ 	 ​oboe: :woodwind​,
	​ 	 ​trumpet: :brass​,
	​ 	 ​violin: :string​
	​ 	}

 Hashes are indexed using the same square bracket notation as arrays:

	​ 	inst_section[​:oboe​] ​#=> 'woodwind'​
	​ 	inst_section[​:cello​] ​#=> 'string'​
	​ 	inst_section[​:bassoon​] ​#=> nil​

 As the preceding example shows, a hash
 returns nil when indexed by a key it
 doesn’t contain. Normally this is convenient,
 because nil means false when used in conditional
 expressions.

	You can pass hashes as parameters on method calls. Ruby allows you to
	omit the braces, but only if the hash is the last parameter of the
	call. Rails makes extensive use of this feature. The following code
	fragment shows a two-element hash being passed to the
	redirect_to method. Note that this is the same syntax
	that Ruby 2.0.0 and above use for keyword arguments, but it works with
	Ruby 1.9.3:

	​ 	redirect_to ​action: ​​'show'​, ​id: ​product.id

One more data type is worth mentioning: the regular
 expression.

Regular Expressions

 A regular expression lets you
 specify a pattern of characters to be
 matched in a string. In Ruby, you typically create a regular
 expression by
 writing /pattern/
 or %r{pattern}.

 For example, we can use the regular
 expression /Perl|Python/ to write a pattern that matches a string
 containing the text Perl or the
 text Python.

 The forward slashes delimit the pattern, which consists of the
 two things we’re matching, separated by a vertical bar
 (|). The bar character means
 either the thing on the left or the thing on the
 right—in this case, either Perl
 or Python. You can use parentheses within
 patterns, just as you can
 in arithmetic expressions, so we could also write this pattern
 as /P(erl|ython)/. Programs typically use the =~ match operator
 to test strings against regular expressions:

	​ 	​if​ line =~ ​/P(erl|ython)/​
	​ 	 puts ​"There seems to be another scripting language here"​
	​ 	​end​

 You can specify repetition within
 patterns. /ab+c/ matches a string
 containing an a followed by one or
 more bs, followed by a c. Change the
 plus to an asterisk, and /ab*c/ creates
 a regular expression that matches one a, zero or
 more bs, and one c.

 Backward slashes start special sequences; most notably, \d
 matches any digit, \s matches any whitespace character, and
 \w matches any alphanumeric (word) character,

 \A matches the start of the string and \Z matches
 the end of the string. A backslash before a wildcard character,
 for example \., causes the character to be matched as is.

 Ruby’s regular expressions are a deep and complex subject; this
 section barely skims the surface. See
 the PickAxe book for a
 full discussion.

This book will make only light use of regular expressions.

With that brief introduction to data, let’s move on to logic.

Logic

 Method calls are statements. Ruby also provides a number of ways to make
 decisions that affect the repetition and order in which methods are
 invoked.

Control Structures

 Ruby has all the usual control structures, such
 as if
 statements and while loops. Java, C,
 and Perl programmers may well get caught by the lack of braces
 around the bodies of these statements. Instead, Ruby uses the
 end keyword to signify the end of a
 body:

	​ 	​if​ count > 10
	​ 	 puts ​"Try again"​
	​ 	​elsif​ tries == 3
	​ 	 puts ​"You lose"​
	​ 	​else​
	​ 	 puts ​"Enter a number"​
	​ 	​end​

 Similarly, while statements are
 terminated with end:

	​ 	​while​ weight < 100 and num_pallets <= 30
	​ 	 pallet = next_pallet()
	​ 	 weight += pallet.weight
	​ 	 num_pallets += 1
	​ 	​end​

 Ruby also contains variants of these statements. unless is like
 if, except that it checks for the condition to not
 be true. Similarly, until is like while, except that the
 loop continues until the condition evaluates to be true.

 Ruby statement modifiers are a useful
 shortcut if the body of an if, unless,
 while, or until statement is a single
 expression. Simply write the expression, followed
 by the modifier keyword and the condition:

	​ 	puts ​"Danger, Will Robinson"​ ​if​ radiation > 3000
	​ 	distance = distance * 1.2 ​while​ distance < 100

Although if statements are fairly common in Ruby applications,
 newcomers to the Ruby language are often surprised to find that looping
 constructs are rarely used. Blocks and iterators often take their
 place.
Blocks and Iterators

 Code
 blocks are
 chunks of code between braces or
 between do…end.
 A common convention is that people use braces for single-line
 blocks
 and do/end for
 multiline blocks:

	​ 	{ puts ​"Hello"​ } ​# this is a block​
	​ 	
	​ 	​do​ ​###​
	​ 	 club.enroll(person) ​# and so is this​
	​ 	 person.socialize ​#​
	​ 	​end​ ​###​

 To pass a block to a method, place the block
 after the parameters (if any) to the method. In other words,
 put the start of the block at the end of the source line
 containing the method call. For example, in the following code,
 the block containing puts "Hi" is
 associated with the call to the
 greet method:

	​ 	greet { puts ​"Hi"​ }

 If a method call has parameters, they appear before the block:

	​ 	verbose_greet(​"Dave"​, ​"loyal customer"​) { puts ​"Hi"​ }

 A method can invoke an associated block one or more times by using
 the Ruby yield statement.
 You can think
 of yield as being something like a
 method call that calls out to the block associated with the
 method containing the yield. You can
 pass values to the block by giving parameters
 to yield. Within the block, you list
 the names of the arguments to receive these parameters between
 vertical bars (|).

 Code blocks appear throughout Ruby applications. Often they’re
 used in conjunction with iterators—methods that return
 successive elements from some kind of collection, such as an
 array:

	​ 	animals = ​%w(ant bee cat dog elk)​ ​# create an array​
	​ 	animals.each {|animal| puts animal } ​# iterate over the contents​

 Each integer N implements a times
 method, which invokes an associated block N times:

	​ 	3.times { print ​"Ho! "​ } ​#=> Ho! Ho! Ho!​

 The & prefix operator allows a method to capture a
 passed block as a named parameter:

	​ 	​def​ wrap &b
	​ 	 print ​"Santa says: "​
	​ 	 3.times(&b)
	​ 	 print ​"​​\n​​"​
	​ 	​end​
	​ 	wrap { print ​"Ho! "​ }

 Within a block, or a method, control is sequential except when
 an exception occurs.

Exceptions

 Exceptions
 are objects of the Exception class or its
 subclasses. The raise method causes an
 exception to be raised. This interrupts the normal flow through
 the code. Instead, Ruby searches back through the call stack for
 code that says it can handle this exception.

 Both methods and blocks of code
 wrapped
 between begin and end
 keywords intercept certain classes of exceptions
 using rescue clauses:

	​ 	​begin​
	​ 	 content = load_blog_data(file_name)
	​ 	​rescue​ BlogDataNotFound
	​ 	 STDERR.puts ​"File ​​#{​file_name​}​​ not found"​
	​ 	​rescue​ BlogDataFormatError
	​ 	 STDERR.puts ​"Invalid blog data in ​​#{​file_name​}​​"​
	​ 	​rescue​ Exception => exc
	​ 	 STDERR.puts ​"General error loading ​​#{​file_name​}​​: ​​#{​exc.message​}​​"​
	​ 	​end​

rescue clauses can be directly placed on the outermost level
 of a method definition without needing to enclose the contents in a
 begin/end block.

That concludes our brief introduction to control flow, and at this
 point you have the basic building blocks for creating larger
 structures.

Organizing Structures

 Ruby has two basic concepts for organizing methods:
 classes and modules. We cover each in turn.

Classes

 Here’s a Ruby class definition:

	​1: 	​class​ Order < ApplicationRecord
	​- 	 has_many ​:line_items​
	​- 	 ​def​ self.find_all_unpaid
	​- 	 self.where(​'paid = 0'​)
	​5: 	 ​end​
	​- 	 ​def​ total
	​- 	 sum = 0
	​- 	 line_items.each {|li| sum += li.total}
	​- 	 sum
	​10: 	 ​end​
	​- 	​end​

 Class definitions start with the class keyword,
 followed by the class name (which must start with an uppercase letter).
 This Order class is defined to be a
 subclass of the ApplicationRecord class.

 Rails makes heavy use of class-level declarations. Here,
 has_many is a
 method that’s defined by Active Record. It’s called as the
 Order class is being defined. Normally these
 kinds of methods make assertions about the class, so in this book we
 call them declarations.

 Within a class body, you can define class methods and instance
 methods. Prefixing a method name
 with self. (as we do
 on line 3) makes it a class method; it can
 be called on the class generally. In this case, we can make the
 following call anywhere in our application:

	​ 	to_collect = Order.find_all_unpaid

 Objects of a class hold their state in instance
	variables. These variables, whose names all start
 with @, are available to all the
 instance methods of a class. Each object gets its own set of
 instance variables.

 Instance variables aren’t directly accessible outside the
 class. To make them available, write methods that return their
 values:

	​ 	​class​ Greeter
	​ 	 ​def​ initialize(name)
	​ 	 @name = name
	​ 	 ​end​
	​ 	
	​ 	 ​def​ name
	​ 	 @name
	​ 	 ​end​
	​ 	
	​ 	 ​def​ name=(new_name)
	​ 	 @name = new_name
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	g = Greeter.new(​"Barney"​)
	​ 	g.name ​# => Barney​
	​ 	g.name = ​"Betty"​
	​ 	g.name ​# => Betty​

 Ruby provides convenience methods that write these accessor
 methods for you (which is great news for folks tired of writing
 all those getters and setters):

	​ 	​class​ Greeter
	​ 	 ​attr_accessor​ ​:name​ ​# create reader and writer methods​
	​ 	 ​attr_reader​ ​:greeting​ ​# create reader only​
	​ 	 ​attr_writer​ ​:age​ ​# create writer only​
	​ 	​end​

	A class’s instance methods are public by default; anyone can
	call them. You’ll probably want to override this for methods
	that are intended to be used only by other instance methods:

	​ 	​class​ MyClass
	​ 	 ​def​ m1 ​# this method is public​
	​ 	 ​end​
	​ 	 ​protected​
	​ 	 ​def​ m2 ​# this method is protected​
	​ 	 ​end​
	​ 	 ​private​
	​ 	 ​def​ m3 ​# this method is private​
	​ 	 ​end​
	​ 	​end​

	The private directive is the
	strictest; private methods can be called only from within the
	same instance. Protected methods can be called both in the same
	instance and by other instances of the same class and its
	subclasses.

 Classes aren’t the only organizing structure in Ruby. The other
 organizing structure is a module.

Modules

 Modules are
 similar to classes in that they hold a collection of methods,
 constants, and other module and class definitions. Unlike with
 classes, you can’t create objects based on modules.

 Modules serve two purposes. First, they act as a namespace, letting you
 define methods whose names won’t clash with those defined elsewhere.
 Second, they allow you to share functionality among classes. If a
 class mixes in a module, that
 module’s methods become available as if they had been defined
 in the class. Multiple classes can mix in the same module, sharing the
 module’s functionality without using inheritance. You can also mix
 multiple modules into a single class.

 Helper methods are an example of where Rails uses
 modules.
 Rails automatically mixes these helper modules into the
 appropriate view templates. For example, if you wanted to write
 a helper method that’s callable from views invoked by the
 store controller, you could define the following module in the
 store_helper.rb file in
 the app/helpers directory:

	​ 	​module​ StoreHelper
	​ 	 ​def​ capitalize_words(string)
	​ 	 string.split(​' '​).map {|word| word.capitalize}.join(​' '​)
	​ 	 ​end​
	​ 	​end​

 One module that’s part of the standard library of Ruby
 deserves special mention, given its usage in Rails: YAML.

YAML

 YAML[36] is a recursive acronym that stands for YAML Ain’t Markup
 Language. In the context of Rails, YAML is used as a convenient way to
 define the configuration of things such as databases, test data, and
 translations. Here’s an example:

	​ 	development:
	​ 	 adapter: sqlite3
	​ 	 database: db/development.sqlite3
	​ 	 pool: 5
	​ 	 timeout: 5000

 In YAML, indentation is important, so this defines development
 as having a set of four key-value pairs, separated by colons.
 While YAML is one way to represent data, particularly when interacting
 with humans, Ruby provides a more general way for representing data for
 use by applications.

Marshaling Objects

 Ruby can take an object and convert it into a stream
 of bytes that can be stored outside the application. This
 process is called marshaling. This saved
 object can later be read by another instance of the application
 (or by a totally separate application), and a copy of the
 originally saved object can be reconstituted.

 Two potential issues arise when you use marshaling. First,
 some objects can’t be dumped. If the objects to be dumped
 include bindings, procedure or method objects, instances of
 the IO class, or singleton objects—or if you
 try to dump anonymous classes or modules—a TypeError will be raised.

 Second, when you load a marshaled object, Ruby needs to know the
 definition of the class of that object (and of all the objects
 it contains).

 Rails uses marshaling to store session
 data. If you rely on Rails
 to dynamically load classes, it’s possible that a particular
 class may not have been defined at the point it reconstitutes
 session data. For that reason, use
 the model declaration in your
 controller to list all models that are marshaled. This
 preemptively loads the necessary classes to make marshaling
 work.

 Now that you have the Ruby basics down, let’s give what we learned a
 whirl with a slightly larger, annotated example that pulls together a
 number of concepts. We’ll follow that with a walk-through of special
 features that will help you with your Rails coding.

Pulling It All Together

 Let’s look at an example of how Rails applies a number of Ruby features
 together to make the code you need to maintain more declarative. You’ll
 see this example again in ​Generating the Scaffold​.
 For now, we’ll focus on the Ruby-language aspects of the example:

	​ 	​class​ CreateProducts < ActiveRecord::Migration[5.1]
	​ 	 ​def​ change
	​ 	 create_table ​:products​ ​do​ |t|
	​ 	 t.string ​:title​
	​ 	 t.text ​:description​
	​ 	 t.string ​:image_url​
	»	 t.decimal ​:price​, ​precision: ​8, ​scale: ​2
	​ 	
	​ 	 t.timestamps
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 Even if you didn’t know any Ruby, you’d probably be able to
 decipher that this code creates a table named
 products. The fields defined when this
 table is created include title, description, image_url,
 and price, as well as a few timestamps (we’ll describe these
 in Chapter 23, ​Migrations​).

 Now let’s look at the same example from a Ruby perspective. We define a class
 named CreateProducts, which inherits
 from the versioned[37] Migration class from the
 ActiveRecord module, specifying
 that compatibility with Rails 5.1 is desired. We define one method, named change.
 This method calls the create_table method (defined
 in ActiveRecord::Migration), passing it the name
 of the table in the form of a symbol.

 The call to create_table also passes a block
 that is to be evaluated before the table is created. This block, when
 called, is passed an object named t, which is used to
 accumulate a list of fields. Rails defines a number of methods on this
 object—methods named after common data types.
 These methods, when called, simply add a field definition to the
 ever-accumulating set of names.

 The definition of decimal also accepts a number of optional parameters,
 expressed as a hash.

 To someone new to Ruby, this is a lot of heavy machinery thrown at
 solving such a simple problem. To someone familiar with Ruby, none of
 this machinery is particularly heavy. In any case, Rails makes
 extensive use of the facilities provided by Ruby to make defining
 operations (for example, migration tasks) as simple and as declarative
 as possible. Even small features of the language, such as optional
 parentheses and braces, contribute to the overall readability and ease
 of authoring.

 Finally, a number of small features—or, rather, idiomatic
 combinations of features—are often not immediately obvious to
 people new to the Ruby language. We close this chapter with them.

Ruby Idioms

 A number of individual Ruby features can be combined in interesting
 ways, and the meaning of such
 idiomatic usage is often
 not immediately obvious to people new to the language.
 We use these common Ruby idioms in this book:

	Methods such
	as empty!
	 and empty?
	

	
	
	
	
	
	
	
	
	 Ruby method names can end with an exclamation mark (a bang
	 method) or a question mark (a predicate method). Bang
	 methods normally do something destructive to the receiver. Predicate methods
	 return true
	 or false, depending on some condition.
	

	a || b
	

	
	
	
	 The expression a || b
	 evaluates a. If it isn’t false
	 or nil, then evaluation stops, and the
	 expression returns a. Otherwise,
	 the statement returns b. This is a
	 common way of returning a default value if the first value
	 hasn’t been set.
	

	a ||= b
	

	
	
	 The assignment statement
	 supports a set of
	 shortcuts: a op= b
	 is the same
	 as a = a op b. This
	 works for most operators:
	
	​ 	count += 1 ​# same as count = count + 1​
	​ 	price *= discount ​# price = price * discount​
	​ 	count ||= 0 ​# count = count || 0​

	 So, count ||= 0
	 gives count the value 0
	 if count is nil or false.
	

	obj = self.new
	

	
	
	
	
	 Sometimes a class method needs to create an instance of
	 that class:
	
	​ 	​class​ Person < ApplicationRecord
	​ 	 ​def​ self.for_dave
	​ 	 Person.new(​name: ​​'Dave'​)
	​ 	 ​end​
	​ 	​end​

	 This works fine, returning a
	 new Person object. But later, someone might subclass our class:
	
	​ 	​class​ Employee < Person
	​ 	 ​# ..​
	​ 	​end​
	​ 	
	​ 	dave = Employee.for_dave ​# returns a Person​

	 The for_dave method was
	 hardwired to return a Person
	 object, so that’s what’s returned
	 by Employee.for_dave.
	 Using self.new instead returns a
	 new object of the receiver’s
	 class, Employee.
	

	lambda
	

	
	
	
	
	
 The lambda operator converts a block into an object of type
 Proc. An alternative syntax, introduced in Ruby
 1.9, is ->.
 As a matter of style, the Rails team prefers
 the latter syntax. You can see example usages of this operator
 in ​Scopes​:

	require File.expand_path(’../../config/environment’, __FILE__)
	

	
	
	
	 Ruby’s require method loads an external source file into our
	 application. This is used to include library code and
	 classes that our application relies on. In normal use, Ruby
	 finds these files by searching in a list of directories,
	 the LOAD_PATH.
	

	 Sometimes we need to be specific about which file to
	 include. We can do that by
	 giving require a full filesystem
	 path. The problem is, we don’t know what that path will
	 be—our users could install our code anywhere.
	

	
	
	 Wherever our application ends up getting installed, the
	 relative path between the file doing the requiring and the
	 target file will be the same. Knowing this, we can
	 construct the absolute path to the target by using
 the File.expand_path method, passing
 in the relative path to the target file, as well as the
	 absolute path to the file doing the requiring (available in
	 the special __FILE__ variable).
	

 In addition, the web has many good resources that show Ruby idioms and Ruby gotchas. Here are a few of them:

	http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
	http://en.wikipedia.org/wiki/Ruby_programming_language
	http://www.zenspider.com/Languages/Ruby/QuickRef.html

 By this point, you have a firm foundation to build on.
 You’ve installed Rails, verified that you have things working with a
 simple application, read a brief description of what Rails is, and
 reviewed (or for some of you, learned for the first time) the basics of
 the Ruby language. Now it’s time to put this knowledge in place to
 build a larger application.

Footnotes

	[36]
	
http://www.yaml.org/

	[37]
	
http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html

Copyright © 2017, The Pragmatic Bookshelf.

Part 2
Building an Application

We cover:
	Incremental development
	Use cases, page flow, and data
	Priorities

 Chapter
 5
The Depot Application

 We could mess around all day hacking together simple test
 applications, but that won’t help us pay the bills. So, let’s sink
 our teeth into something meatier. Let’s create a web-based
 shopping cart application called Depot.

 Does the world need another shopping cart application? Nope, but
 that hasn’t stopped hundreds of developers from writing one. Why
 should we be different?

 More seriously, it turns out that our shopping cart will
 illustrate many of the features of Rails development. You’ll see
 how to create maintenance pages, link database tables,
 handle sessions, create forms, and wrangle modern JavaScript. Over the next twelve chapters,
 we’ll also touch on peripheral topics such as unit and system testing,
 security, and page layout.

Incremental Development

 We’ll be developing this application
 incrementally. We won’t
 attempt to specify everything before we start coding. Instead,
 we’ll work out enough of a specification to let us start and then
 immediately create some functionality. We’ll try ideas,
 gather feedback, and continue with another cycle of
 minidesign and development.

 This style of coding isn’t always applicable. It requires close
 cooperation with the application’s users, because we want to
 gather feedback as we go along. We might make mistakes, or the
 client might ask for one thing at first and later want
 something different. It doesn’t matter what the reason is. The
 earlier we discover we’ve made a mistake, the less expensive it’ll be to fix that mistake. All in all, with this style of
 development, there’s a lot of change as we go along.

 Because of this, we need to use a toolset that doesn’t penalize
 us for changing our minds. If we decide we need to add a new
 column to a database table or change the navigation among
 pages, we need to be able to get in there and do it without a
 bunch of coding or configuration hassle. As you’ll see, Ruby on
 Rails shines when it comes to dealing with change. It’s an
 ideal agile programming environment.

 Along the way, we’ll be building and maintaining a corpus of tests.
 These tests will ensure that the application is always doing what we
 intend to do. Not only does Rails enable the creation of such tests, but
 it even provides you with an initial set of tests each time you
 define a new controller.

 On with the application.

What Depot Does

 Let’s start by jotting down an outline specification for the
 Depot application. We’ll look at the high-level use cases and
 sketch out the flow through the web pages. We’ll also try
 working out what data the application needs (acknowledging that
 our initial guesses will likely be wrong).

Use Cases

	A use case is simply a statement about how some
	entity uses a system. Consultants invent these kinds of
	phrases to label things we’ve known all along. (It’s a
	perversion of business life that fancy words always cost more
	than plain ones, even though the plain ones are more valuable.)

	Depot’s use cases are simple (some would say tragically
	so). We start off by identifying two different roles or actors:
	the buyer and the seller.

	The buyer uses Depot to browse the products we have to sell,
	select some to purchase, and supply the information needed to
	create an order.

	The seller uses Depot to maintain a list of products to sell,
	to determine the orders that are awaiting shipment, and to
	mark orders as shipped. (The seller also uses Depot to make
	scads of money and retire to a tropical island, but that’s
	the subject of another book.)

	For now, that’s all the detail we need. We could
	go into excruciating detail about what it means to
	maintain products and what constitutes an order
	ready to ship, but why bother? If some details
	aren’t obvious, we’ll discover them soon enough as
	we reveal successive iterations of our work to the customer.

	Speaking of getting feedback, let’s get some
	right now. Let’s make sure our initial (admittedly sketchy)
	use cases are on the mark by asking our users.
	Assuming the use cases pass muster, let’s work out how the
	application will work from the perspectives of its various users.

Page Flow

	We always like to have an idea of the main pages in our
	applications and to understand roughly how users navigate
	among them. This early in the development,
	these page flows are likely to be incomplete, but they still
	help us focus on what needs doing and know how actions are
	sequenced.

	Some folks like to use
 Photoshop, Word, or (shudder) HTML to mock up web application page flows. We like using a pencil and paper. It’s quicker, and the customer gets to play too,
	grabbing the pencil and scribbling alterations right on the
	paper.

 The first sketch of the buyer flow is shown in the following figure.
[image: images/buyer_flow.png]

It’s
 pretty traditional. The buyer sees a catalog
	page, from which he selects one product at a time. Each
	product selected gets added to the cart, and the cart is
	displayed after each selection. The buyer can continue
	shopping using the catalog pages or check out and buy
	the contents of the cart. During checkout, we capture contact
	and payment details and then display a receipt page. We don’t
	yet know how we’re going to handle payment, so those details
	are fairly vague in the flow.

	The seller flow, shown in the next figure,
 is also fairly basic. After logging in, the seller sees a
	menu letting her create or view a product or ship existing
	orders. When viewing a product, the seller can optionally edit
	the product information or delete the product entirely.

[image: images/seller_flow.png]

	The shipping option is simplistic. It displays each
	order that hasn’t yet been shipped, one order per page. The
	seller can choose to skip to the next or can ship the order,
	using the information from the page as appropriate.

	The shipping function is clearly not going to survive long in
	the real world, but shipping is also one of those areas where
	reality is often stranger than you might think. Overspecify
	it up front, and we’re likely to get it wrong.
	For now, let’s leave it as it is,
	confident that we can change it as the user gains experience
	using our application.

Data

	Finally, we need to think about the data we’re going to be
	working with.

	Notice that we’re not using words such as schema
	or classes here. We’re also not talking about
	databases, tables, keys, and the like. We’re talking
	about data. At this stage in the development, we don’t know
	if we’ll even be using a database.

	Based on the use cases and the flows, it seems likely that
	we’ll be working with the data shown in the figure.
	Again, using pencil and paper seems a
	whole lot easier than some fancy tool, but use whatever works
	for you.
	
[image: images/initial_data.png]

	Working on the data diagram raised a couple of questions. As
	the user buys items, we’ll need somewhere to keep the list of
	products they bought, so we added a cart. But apart from its
	use as a transient place to keep this product list, the cart
	seems to be something of a ghost—we couldn’t find anything
	meaningful to store in it. To reflect this uncertainty, we put
	a question mark inside the cart’s box in the diagram. We’re assuming this uncertainty will get
	resolved as we implement Depot.

	Coming up with the high-level data also raised the question
	of what information should go into an order. Again, we chose
	to leave this fairly open for now. We’ll refine this further
	as we start showing our early iterations to the customer.

General Recovery Advice

 Everything in this book has been tested. If you follow along with this
 scenario precisely, using the recommended version of Rails and
 SQLite 3 on Linux, Mac OS X, or Windows, everything should work as
 described. However, deviations from this path can occur. Typos happen
 to the best of us, and not only are side explorations possible, but
 they’re positively encouraged. Be aware that this might lead you to
 strange places. Don’t be afraid: specific recovery
 actions for common problems appear in the specific sections where such
 problems often occur. A few additional general suggestions are included
 here.

 You should only ever need to restart the server in the few places where
 doing so is noted in the book. But if you ever get truly stumped,
 restarting the server might be worth trying.

 A “magic” command worth knowing, explained in detail in Part III,
 is bin/rails db:migrate:redo. It’ll undo and reapply the last
 migration.

 If your server won’t accept some input on a form, refresh the form on
 your browser and resubmit it.

	Finally, you might have noticed that we’ve duplicated the
	product’s price in the line item data. Here we’re breaking the
	“initially, keep it simple” rule slightly, but it’s a
	transgression based on experience. If the price of a product
	changes, that price change shouldn’t be reflected in the
	line item price of currently open orders, so each line item
	needs to reflect the price of the product at the time the order
	was made.

	Again, at this point we’ll double-check with the customer that
	we’re still on the right track. (The customer was most likely
	sitting in the room with us while we drew these three
	diagrams.)
	
	
	
	

Let’s Code

 So, after sitting down with the customer and doing some
 preliminary analysis, we’re ready to start using a computer for
 development! We’ll be working from our original three diagrams,
 but the chances are pretty good that we’ll be throwing them
 away fairly quickly—they’ll become outdated as we gather
 feedback. Interestingly, that’s why we didn’t spend too long on
 them; it’s easier to throw something away if you didn’t spend a
 long time creating it.

 In the chapters that follow, we’ll start developing the
 application based on our current understanding. However, before
 we turn that page, we have to answer one more
 question: what should we do first?

 We like to work with the customer so we can jointly agree on
 priorities. In this case, we’d point out to her that it’s hard to
 develop anything else until we have some basic products defined
 in the system, so we suggest spending a couple of hours getting
 the initial version of the product maintenance functionality up
 and running. And, of course, the client would agree.

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Creating a new application
	Configuring the database
	Creating models and controllers
	Adding a stylesheet
	Updating a layout and a view

 Chapter
 6
Task A: Creating the Application

 Our first development task is to create the web interface that
 lets us maintain our product information—create new products,
 edit existing products, delete unwanted ones, and so on. We’ll
 develop this application in small iterations,
 where “small” means measured in minutes.

 Typically, our iterations involve multiple steps, as in iteration C, which
 has steps C1, C2, C3, and so on. In this case, the iteration has two steps. Let’s get started.

Iteration A1: Creating the Product Maintenance Application

 At the heart of the Depot application is a database. Getting this
 installed and configured and tested before proceeding will prevent
 a lot of headaches. If you aren’t sure what you want, take the
 defaults, and it’ll go easily. If you know what you want, Rails
 makes it easy for you to describe your configuration.
Creating a Rails Application

 In ​Creating a New Application​, you saw how to
 create a new Rails application. We’ll
 do the same thing here. Go to a command prompt and
 type rails new followed by
 the name of our project. Here, our project is
 called depot, so make sure you’re not
 inside an existing application directory, and type
 this:

	​ 	​work>​​ ​​rails​​ ​​new​​ ​​depot​

 We see a bunch of output scroll by. When it has finished,
 we find that a new directory, depot, has
 been created. That’s where we’ll be doing our work:

	​ 	​work>​​ ​​cd​​ ​​depot​
	​ 	​depot>​​ ​​ls​​ ​​-p​
	​ 	Gemfile Rakefile config/ lib/ public/ vendor/
	​ 	Gemfile.lock app/ config.ru log/ test/
	​ 	README.md bin/ db/ package.json tmp/

 Of course, Windows users need to use dir /w instead
 of ls -p.

Creating the Database

 For this application, we’ll use the open source SQLite
 database (which you’ll need if you’re following
 along with the code). We’re
 using SQLite version 3 here.

 SQLite 3 is the default database for Rails development and was
 installed along with Rails in Chapter 1, ​Installing Rails​. With SQLite 3, no steps are required to create a database, and we have no special
 user accounts or passwords to deal with. So, now you get to
 experience one of the benefits of going with the flow (or,
 convention over configuration, as the Rails folks say...ad
 nauseam).

 If it’s important to you to use a database server other
 than SQLite 3, the commands to create the database and
 grant permissions will be different. You can find some helpful
 hints in the database configuration section of Configuring Rails Applications in the Ruby on Rails Guides.[38]

Generating the Scaffold

 Back in our initial guess at
 application data , we sketched out
 the basic content of the products table. Now let’s turn that
 into reality. We need to create a database table and a
 Rails model that lets our application use that
 table, a number of views to make up the
 user interface, and a controller to
 orchestrate the application.

 So, let’s create the model, views, controller, and
 migration for our products
 table. With Rails, you can do
 all that with one command by asking Rails to generate a scaffold for a given model. Note that
 on the command line that follows, we use the singular form,
 Product. In Rails, a model is automatically
 mapped to a database table
 whose name is the plural form of the
 model’s class. In our case, we ask for a model called
 Product, so Rails associates it with the
 table called products. (And how will it find
 that table? The
 development entry
 in config/database.yml tells Rails where
 to look for it. For SQLite 3 users, this’ll be a file in the
 db directory.)

 Note that that command is too wide to fit
 comfortably on the page. To enter a command on multiple lines,
 put a backslash as the last character on all but the last
 line, and you’ll be prompted for more input. Windows users need to substitute a caret (^) for the
 backslash at the end
 of the first line and a backslash for the forward slash in
 bin/rails:
	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​scaffold​​ ​​Product​​ ​​\​
	​ 	​ ​​title:string​​ ​​description:text​​ ​​image_url:string​​ ​​price:decimal​
	​ 	 invoke active_record
	​ 	 create db/migrate/20170425000001_create_products.rb
	​ 	 create app/models/product.rb
	​ 	 invoke test_unit
	​ 	 create test/models/product_test.rb
	​ 	 create test/fixtures/products.yml
	​ 	 invoke resource_route
	​ 	 route resources :products
	​ 	 invoke scaffold_controller
	​ 	 create app/controllers/products_controller.rb
	​ 	 invoke erb
	​ 	 create app/views/products
	​ 	 create app/views/products/index.html.erb
	​ 	 create app/views/products/edit.html.erb
	​ 	 create app/views/products/show.html.erb
	​ 	 create app/views/products/new.html.erb
	​ 	 create app/views/products/_form.html.erb
	​ 	 invoke test_unit
	​ 	 create test/controllers/products_controller_test.rb
	​ 	 invoke helper
	​ 	 create app/helpers/products_helper.rb
	​ 	 invoke test_unit
	​ 	 invoke jbuilder
	​ 	 create app/views/products/index.json.jbuilder
	​ 	 create app/views/products/show.json.jbuilder
	​ 	 create app/views/products/_product.json.jbuilder
	​ 	 create test_unit
	​ 	 create test/system/products_test.rb
	​ 	 invoke assets
	​ 	 invoke coffee
	​ 	 create app/assets/javascripts/products.coffee
	​ 	 invoke scss
	​ 	 create app/assets/stylesheets/products.scss
	​ 	 invoke scss
	​ 	 create app/assets/stylesheets/scaffolds.scss

 The generator creates a bunch of files. The one we’re interested in
 first is the
 migration
 one, namely, 20170425000001_create_products.rb.

 A migration represents a change we
 either want to make to a database as a whole or to the data
 contained within the database, and it’s expressed in a source
 file in database-independent terms. These changes can update both
 the database schema and the data in the database
 tables. We apply these migrations to
 update our database, and we can unapply them to roll our database
 back. We have a whole section on migrations starting in Chapter 23, ​Migrations​. For now, we’ll just use them without
 too much more comment.

 The migration has a UTC-based timestamp prefix (20170425000001), a
 name (create_products), and
 a file extension (rb,
 because it’s Ruby code).

 The timestamp prefix that you see will be different. In fact, the
 timestamps used in this book are clearly fictitious. Typically, your
 timestamps won’t be consecutive; instead, they’ll reflect the
 time the migration was created.

Applying the Migration

 Although we’ve already told Rails about the basic data types of each
 property, let’s refine the definition of the price to
 have eight digits of significance and two digits after the decimal
 point:

rails51/depot_a/db/migrate/20170425000001_create_products.rb
	​ 	​class​ CreateProducts < ActiveRecord::Migration[5.1]
	​ 	 ​def​ change
	​ 	 create_table ​:products​ ​do​ |t|
	​ 	 t.string ​:title​
	​ 	 t.text ​:description​
	​ 	 t.string ​:image_url​
	»	 t.decimal ​:price​, ​precision: ​8, ​scale: ​2
	​ 	
	​ 	 t.timestamps
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 Now that we’re done with our changes, we need
 to get Rails to apply this migration to our development
 database. We do this by using
 the bin/rails db:migrate command:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​
	​ 	== 20170425000001 CreateProducts: migrating ==================================
	​ 	-- create_table(:products)
	​ 	​ ->​​ ​​0.0027s​
	​ 	== CreateProducts: migrated (0.0023s) ==

 And that’s it. Rails looks for all the migrations not yet
 applied to the database and applies them. In our case,
 the products table is added to the
 database defined by
 the development section of
 the database.yml file.

 OK, all the groundwork has been done. We set up our Depot
 application as a Rails project. We created the development
 database and configured our application to be able to
 connect to it. We created a products controller and
 a Product model and used a migration to create the
 corresponding products table. And
 a number of views have been created for us. It’s time to
 see all this in action.

Seeing the List of Products

 With three commands, we’ve created an application and
 a database (or a table inside an existing database,
 if you chose something besides SQLite 3).
 Before we worry too much
 about what happened behind the scenes here, let’s
 try our shiny new application.

First, we start a local server, supplied with Rails:

	​ 	​depot>​​ ​​bin/rails​​ ​​server​
	​ 	=> Booting Puma
	​ 	=> Rails 5.1.3 application starting in development on http://localhost:3000
	​ 	=> Run `rails server -h` for more startup options
	​ 	Puma starting in single mode...
	​ 	* Version 3.9.1 (ruby 2.4.1-p111), codename: Private Caller
	​ 	* Min threads: 5, max threads: 5
	​ 	* Environment: development
	​ 	* Listening on tcp://localhost:3000
	​ 	Use Ctrl-C to stop

 As it did with our demo
 application, this command starts a web server on
 our local host, port 3000. If you
 get an error saying Address already in use when you try to
 run the server, that means you already have a Rails
 server running on your machine. If you’ve been following along with
 the examples in the book, that might well be the Hello, World!
 application from Chapter 4. Find its console and kill the server
 using Ctrl-C. If you’re running on Windows, you might see the prompt
 Terminate batch job (Y/N)?. If so, respond with
 y.

 Let’s connect to our application. Remember, the URL we
 give to our browser is http://localhost:3000/products, which has both the port number (3000) and the
 name of the controller in lowercase (products). The application looks like the following screenshot.

[image: images/a_1_products.png]

 That’s pretty boring. It’s showing us an empty list of
 products. Let’s add some. Click the New
 Product link. A form should appear, as shown in the following screenshot.

[image: images/a_2_new_product.png]

 These forms are
 simply HTML templates, like the ones you created in
 ​Hello, Rails!​. In fact, we can modify
 them. Let’s change the number of rows and columns in the Description
 field:

rails51/depot_a/app/views/products/_form.html.erb
	​ 	​<%=​ form_with(​model: ​product, ​local: ​​true​) ​do​ |form| ​%>​
	​ 	 ​<%​ ​if​ product.errors.any? ​%>​
	​ 	 <div id=​"error_explanation"​>
	​ 	 <h2>​<%=​ pluralize(product.errors.count, ​"error"​) ​%>​
	​ 	 prohibited this product from being saved:</h2>
	​ 	
	​ 	
	​ 	 ​<%​ product.errors.full_messages.each ​do​ |message| ​%>​
	​ 	 ​<%=​ message ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 </div>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:title​ ​%>​
	​ 	 ​<%=​ form.text_field ​:title​, ​id: :product_title​ ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:description​ ​%>​
	»	 ​<%=​ form.text_area ​:description​, ​id: :product_description​, ​rows: ​10, ​cols: ​60 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:image_url​ ​%>​
	​ 	 ​<%=​ form.text_field ​:image_url​, ​id: :product_image_url​ ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:price​ ​%>​
	​ 	 ​<%=​ form.text_field ​:price​, ​id: :product_price​ ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"actions"​>
	​ 	 ​<%=​ form.submit ​%>​
	​ 	 </div>
	​ 	​<%​ ​end​ ​%>​

 We’ll explore this more in Chapter 8, ​Task C: Catalog Display​.
 But for now, we’ve adjusted one field to taste, so let’s
 fill it in, as shown in the following screenshot (note the use of HTML tags in the description—--this is intentional and will make more sense later).

[image: images/a_3_new_product_filled_in.png]

 Click the Create button, and you should see that the new product
 was successfully created. If you now click the Back
 link, you should see the new product in the list, as shown in the screenshot.

[image: images/a_4_added_product.png]

 Perhaps it
 isn’t the prettiest interface, but it works, and we can show
 it to our client for approval. She can play with the other
 links (showing details, editing existing products, and so
 on). We explain to her that this is only a first
 step—we know it’s rough, but we wanted to get her feedback
 early. (And four commands probably
 count as early in anyone’s book.)

 At this point, we’ve accomplished a lot with only four commands.
 Before we move on, let’s try one more command:

	​ 	bin/rails test

 Included in the
output should be a line that says
 0 failures, 0 errors. This is for the model and
 controller tests that Rails generates along with the scaffolding.
 They’re minimal at this point, but simply knowing that they’re
 there and that they pass should give you confidence. As you
 proceed through these chapters in Part II, you’re encouraged to
 run this command frequently, because it’ll help you spot and track
 down errors. We’ll cover this more in ​Iteration B2: Unit Testing of Models​.

 Note that if you’ve used a database other than SQLite 3, this step may
 have failed. Check your database.yml file.

Iteration A2: Making Prettier Listings

 Our customer has one more request. (Customers always seem to
 have one more request, don’t they?) The listing of all the products is
 ugly. Can we pretty it up a bit? And, while
 we’re in there, can we also display the product image along
 with the image URL?

 We’re faced with a dilemma here. As developers, we’re trained
 to respond to these kinds of requests with a sharp intake of
 breath, a knowing shake of the head, and a murmured, “You
 want what?” At the same time, we also like to show off a
 bit. In the end, the fact that it’s fun to make these kinds of
 changes using Rails wins out, and we fire up our trusty
 editor.

 Before we get too far, though, it would be nice if we had a
 consistent set of test data to work
 with. We could use our scaffold-generated
 interface and type data in from the browser. However, if we
 did this, future developers working on our codebase would
 have to do the same. And if we were working as part of a team
 on this project, each member of the team would have to enter
 his or her own data. It would be nice if we could load the data
 into our table in a more controlled way. It turns out that we
 can. Rails has the ability to import seed data.

 To start, we simply modify the file in the db
 directory named seeds.rb.

 We then add the code to populate
 the products table. This uses
 the create! method of
 the Product model. The following is an
 extract from that file. Rather than type the file by
 hand, you might want to download the file from the sample code
 available online.[39]

While you’re there, copy the images
 into the app/assets/images directory in your
 application.[40] Be warned: this seeds.rb script
 removes existing data
 from the products table before loading
 the new data. You might not want to run it if you’ve just
 spent several hours typing your own data into your
 application!

rails51/depot_a/db/seeds.rb
	​ 	Product.delete_all
	​ 	# . . .
	​ 	Product.create!(title: 'Seven Mobile Apps in Seven Weeks',
	​ 	 description:
	​ 	 %{<p>
	​ 	 Native Apps, Multiple Platforms
	​ 	 Answer the question “Can we build this for ALL the devices?” with a
	​ 	 resounding YES. This book will help you get there with a real-world
	​ 	 introduction to seven platforms, whether you’re new to mobile or an
	​ 	 experienced developer needing to expand your options. Plus, you’ll find
	​ 	 out which cross-platform solution makes the most sense for your needs.
	​ 	 </p>},
	​ 	 image_url: '7apps.jpg',
	​ 	 price: 26.00)
	​ 	# . . .

 (Note that this code uses %{…}. This is an
 alternative syntax for double-quoted string literals,
 convenient for use with long strings. Note also that because
 it uses the Rails create! method, it’ll
 raise an exception if records can’t be inserted because of validation
 errors.)

 To populate your products table with test data,
 run the following command:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:seed​

Now let’s get the product listing tidied up. This has
 three
 pieces: defining a set of style rules, connecting
 these rules to the page by defining an HTML class
 attribute on the page, and changing the HTML to make styling the page easier.

 We need somewhere to put our style definitions. Rails has a convention for this, and
 the generate scaffold command that we previously issued
 has already laid all of the necessary groundwork. As such, we can
 proceed to fill in the currently empty
 products.scss stylesheet in the
 app/assets/stylesheets directory:

rails51/depot_a/app/assets/stylesheets/products.scss
	​ 	​// Place all the styles related to the Products controller here.​
	​ 	​// They will automatically be included in application.css.​
	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​
	​ 	
	»	.products {
	»	 margin: 0;
	»	 padding: 0.5em;
	»	 a {
	»	 padding: 0.354em 0.5em;
	»	 border-radius: 0.354em;
	»	 }
	»	 table {
	»	 border-collapse: collapse;
	»	 }
	»	 td {
	»	 padding: 0.5em;
	»	 margin: 0;
	»	 }
	»	
	»	 tr.list_line_odd {
	»	 background-color: #effeef;
	»	 }
	»	
	»	 td.image {
	»	 ​// Hide this on mobile devices​
	»	 display: none;
	»	
	»	 ​// Assume anything bigger than 30em​
	»	 ​// is a non-mobile device and can​
	»	 ​// fit the image.​
	»	 ​@media​ (min-width: 30em) {
	»	 display: block;
	»	 img {
	»	 height: 11.3em;
	»	 }
	»	 }
	»	 }
	»	
	»	 td.description {
	»	 h1 {
	»	 font-size: 1.4em;
	»	 }
	»	 }
	»	
	»	 td.actions {
	»	 ul {
	»	 padding: 0;
	»	 list-style: none;
	»	 li {
	»	 padding: 0.5em 0.5em;
	»	 }
	»	 }
	»	 }
	»	
	»	 tfoot {
	»	 td {
	»	 padding: 0.5em 0;
	»	 }
	»	 }
	»	}

 If you choose to download this file, make sure that the timestamp
 on the file is updated. If the timestamp isn’t updated, Rails
 won’t pick up the changes until the server is restarted.
 You can update the timestamp by going into your favorite
 editor and saving the file. On Mac OS X and Linux, you can use the
 touch command.

 Look closely at this stylesheet and you’ll see that CSS rules are
 nested, in that the rule for li is defined
 inside the rule for ul, which is itself inside the rule for td.actions. This tends to make rules less repetitive and therefore easier to read, write, understand, and maintain.

 At this point you’re familiar with files ending with .erb
 being preprocessed for embedded Ruby expressions and statements. If
 you note that this file ends with .scss, you might guess that
 the file is preprocessed as Sassy
 CSS before being served as CSS.[41] And you’d be
 right!

 Again, like ERB, SCSS doesn’t interfere with writing correct
 CSS. What SCSS does is provide additional syntax that makes your
 stylesheets easier to author and easier to maintain.
 All of this is converted for you by SCSS to standard CSS that your
 browser understands. You can find out more about SCSS in
 Pragmatic Guide to Sass 3 [CC16].

 Finally, we need to define the products class used by
 this stylesheet.
 If you look at the html.erb
 files we’ve created so far, you won’t find any reference to
 stylesheets. You won’t even find the
 HTML <head> section where such references would
 normally live. Instead, Rails keeps a separate file that’s
 used to create a standard page environment for the entire application.
 This file, called application.html.erb, is
 a Rails layout and lives in the layouts
 directory:

rails51/depot_a/app/views/layouts/application.html.erb
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	​ 	 <title>Depot</title>
	​ 	 ​<%=​ csrf_meta_tags ​%>​
	​ 	
	​ 	 ​<%=​ stylesheet_link_tag ​'application'​, ​media: ​​'all'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 ​<%=​ javascript_include_tag ​'application'​, ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 </head>
	​ 	
	​ 	 <body>
	​ 	
	»	 <main class=​'​​<%=​ controller.controller_name ​%>​​'​>
	»	 ​<%=​ ​yield​ ​%>​
	»	 </main>
	​ 	
	​ 	 </body>
	​ 	</html>

 You’ll note we’ve wrapped the content in a <main> tag that has a CSS class of the current controller. This means that when we are rendering a product listing, it will have the CSS class products, and when we render an order, it’ll have the class orders. This allows us to target our CSS, because Rails includes all CSS in app/assets/stylesheets on every page, no matter what. If we want to apply a style to, say, a table header only on order pages, we can write .orders th { «css» } and—even though that CSS will be included on non-orders pages—it won’t apply, because the top-level element won’t have the class orders.

 Now that we have all the stylesheets in place, we’ll use a
 table-based template, editing the
 index.html.erb file
 in app/views/products and replacing the
 scaffold-generated view:

rails51/depot_a/app/views/products/index.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h1>Products</h1>
	​ 	
	​ 	<table>
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <td colspan=​"3"​>
	​ 	 ​<%=​ link_to ​'New product'​, new_product_path ​%>​
	​ 	 </td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 <tbody>
	​ 	 ​<%​ @products.each ​do​ |product| ​%>​
	​ 	 <tr class=​"​​<%=​ cycle(​'list_line_odd'​, ​'list_line_even'​) ​%>​​"​>
	​ 	
	​ 	 <td class=​"image"​>
	​ 	 ​<%=​ image_tag(product.image_url, ​class: ​​'list_image'​) ​%>​
	​ 	 </td>
	​ 	
	​ 	 <td class=​"description"​>
	​ 	 <h1>​<%=​ product.title ​%>​</h1>
	​ 	 <p>
	​ 	 ​<%=​ truncate(strip_tags(product.description),
	​ 	 ​length: ​80) ​%>​
	​ 	 </p>
	​ 	 </td>
	​ 	
	​ 	 <td class=​"actions"​>
	​ 	
	​ 	 ​<%=​ link_to ​'Show'​, product ​%>​
	​ 	 ​<%=​ link_to ​'Edit'​, edit_product_path(product) ​%>​
	​ 	
	​ 	 ​<%=​ link_to ​'Destroy'​,
	​ 	 product,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	
	​ 	 </td>
	​ 	 </tr>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 </tbody>
	​ 	</table>

 This template uses a number of built-in Rails
 features:

	

 The rows in the listing have alternating background colors.
 The Rails helper method called does this by setting the CSS
 class of each row to either list_line_even or
 list_line_odd, automatically toggling between the two
 style names on successive lines.

	

 The truncate
 helper is used to display the first eighty characters of the
 description. But before we call truncate, we call
 strip_tags to remove the
 HTML tags from the description.

	

 Look at the link_to ’Destroy’
 line. See how it has the parameter data: { confirm:
 ’Are you sure?’ }. If you click this link,
 Rails arranges for your browser to pop up a dialog box
 asking for confirmation before following the link and
 deleting the product. (Also, see the
 sidebar for an inside scoop on
 this action.)

 We loaded some test data into the database, we rewrote
 the index.html.erb file that displays the
 listing of products, we filled in the
 products.scss stylesheet, and that stylesheet
 was loaded into our page by the
 application.html.erb layout file.
 Now let’s bring up a browser and
 point to http://localhost:3000/products. The resulting product listing might look something like
 the following screenshot.

[image: images/a_5_styled_products.png]

 So we proudly show our customer her new product listing and
 she’s pleased. Now it’s time to create the storefront.

What We Just Did

 In this chapter, we laid the groundwork for our store application:

	
We created a development database.

	
We used a migration to create and modify the schema in our
 development database.

	
We created the products table and used the scaffold
 generator to write an application to maintain it.

	
We updated an application-wide layout as well as a controller-specific
 view to show a list of products.

What we’ve done didn’t require much effort, and it got us up and running
 quickly. Databases are vital to this application but need not be scary. In fact, in many cases we can defer the selection of the
 database and get started using the default that Rails provides.

Getting the model right is more important at this stage. As you’ll
 see, selection of data types doesn’t always fully capture the
 essence of all the properties of the model, even in this
 small application, so that’s what we’ll tackle next.
What's with method: :delete?

 You may have noticed that the scaffold-generated
 Destroy link includes the method: :delete parameter.

 This parameter determines which method is called in the
 ProductsController class and also affects
 which HTTP method is used.

 Browsers use HTTP to talk with servers. HTTP defines a set
 of verbs that browsers can employ and defines when each can
 be used. A regular hyperlink, for example, uses an HTTP GET
 request. A GET request is defined by HTTP as a means of retrieving data
 and therefore isn’t supposed to have any side effects. Using the
 method parameter in this way indicates that an HTTP DELETE
 method should be used for this hyperlink.

 Rails uses this information to determine which action in the
 controller to route this request to.

 Note that when used within a browser, Rails substitutes the HTTP POST
 method for PUT, PATCH, and DELETE methods
 and in the process tacks on an additional parameter so that the
 router can determine the original intent. Either way,
 the request isn’t cached or triggered by web crawlers.

Playtime

 Here’s some stuff to try on your own:

	

 We created tables in our database using a migration. Try examining the tables directly by running bin/rails dbconsole. This will put you directly into the SQLite database that the app uses. Type .help and hit Return to see the commands you can run to examine the database. If you know SQL, you can execute SQL in here as well.

	

 If you’re feeling frisky, you can experiment with
 rolling back the migration. Type the following:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:rollback​

 Your schema will be transported back in time, and
 the products table will be
 gone. Calling bin/rails db:migrate again will
 re-create it. You’ll also want to reload the seed data.
 More information can be found in
 Chapter 23, ​Migrations​.

	

 We mentioned version control in ​Version Control​, and now would be a great
 point at which to save your work. Should you happen to
 choose Git
 (highly recommended, by the way), you need to do a tiny
 bit of configuration first; basically, all
 you need to do is provide your name and email address:

	​ 	​depot>​​ ​​git​​ ​​config​​ ​​--global​​ ​​--add​​ ​​user.name​​ ​​"Sam Ruby"​
	​ 	​depot>​​ ​​git​​ ​​config​​ ​​--global​​ ​​--add​​ ​​user.email​​ ​​rubys@intertwingly.net​

 You can verify the configuration with the following command:

	​ 	​depot>​​ ​​git​​ ​​config​​ ​​--global​​ ​​--list​

 Rails also provides a file named
 .gitignore, which tells Git which files are
 not to be version-controlled:

rails51/depot_a/.gitignore
	​ 	# Ignore bundler config.
	​ 	/.bundle
	​ 	
	​ 	# Ignore the default SQLite database.
	​ 	/db/*.sqlite3
	​ 	/db/*.sqlite3-journal
	​ 	
	​ 	# Ignore all logfiles and tempfiles.
	​ 	/log/*
	​ 	/tmp/*
	​ 	!/log/.keep
	​ 	!/tmp/.keep
	​ 	
	​ 	/node_modules
	​ 	/yarn-error.log
	​ 	
	​ 	.byebug_history

 Note that because this filename begins with a dot, Unix-based
 operating systems won’t show it by default in directory
 listings. Use ls -a to see it.

 At this point, you’re fully configured. The only tasks that
 remain are to add all the files and commit them with a commit message (note that Rails has initialized our repository with git init already):

	​ 	​depot>​​ ​​git​​ ​​add​​ ​​.​
	​ 	​depot>​​ ​​git​​ ​​commit​​ ​​-m​​ ​​"Depot Scaffold"​

 Being fully configured may not seem very exciting, but it does mean
 you’re free to experiment. If you overwrite or
 delete a file that you didn’t mean to, you can always get back to this
 point by issuing a single command:

	​ 	​depot>​​ ​​git​​ ​​checkout​​ ​​.​

Footnotes

	[38]
	
http://guides.rubyonrails.org/configuring.html#configuring-a-database

	[39]
	

 https://media.pragprog.com/titles/rails51/code/rails51/depot_a/db/seeds.rb

	[40]
	

 https://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/assets/images/

	[41]
	
http://sass-lang.com/

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Performing validation and error reporting
	Unit testing

 Chapter
 7
Task B: Validation and Unit Testing

 At this point, we have an initial model for a product, as well as a
 complete maintenance application for this data provided for us by Rails
 scaffolding. In this chapter, we’re going to focus on making the model
 more bulletproof—as in, making sure that errors in the data provided
 never get committed to the database—before we proceed to
 other aspects of the Depot application in subsequent chapters.

Iteration B1: Validating!

 While playing with the results of iteration A1, our client
 noticed something. If she entered an invalid price or forgot
 to set up a product description, the application happily
 accepted the form and added a line to the database. A
 missing description is embarrassing, and a price of $0.00
 costs her actual money, so she asked that we add validation to the
 application. No product should be allowed in the database if
 it has an empty title or description field, an invalid URL for
 the image, or an invalid price.

 So, where do we put the validation?
 The model layer is the gatekeeper between the world of code
 and the database. Nothing to do with our
 application comes out of the database or gets stored into the
 database that doesn’t first go through the model. This makes
 models an ideal place to put validations; it doesn’t matter
 whether the data comes from a form or from some programmatic
 manipulation in our application. If a model checks it before
 writing to the database, the database will be protected
 from bad data.

 Let’s look at the source code of the model class
 (in app/models/product.rb):

	​ 	​class​ Product < ApplicationRecord
	​ 	​end​

 Adding our validation should be fairly clean. Let’s start by
 validating that the text fields all contain something before a
 row is written to the database. We do this by adding some code
 to the existing model:

	​ 	validates ​:title​, ​:description​, ​:image_url​, ​presence: ​​true​

 The validates method is
 the standard Rails validator. It checks one or more model fields
 against one or more conditions.

 presence: true tells the validator to check that each
 of the named fields is present and that its contents aren’t empty. The following screenshot shows what happens if we
 try to submit a new product with none of the fields filled in. Try it by visiting http://localhost:3000/products/new and submitting the form without entering any data. It’s
 pretty impressive: the fields with errors are highlighted, and the
 errors are summarized in a nice list at the top of the form. That’s
 not bad for one line of code. You might also have noticed that after
 editing and saving the product.rb file, you didn’t
 have to restart the application to test your changes. The same
 reloading that caused Rails to notice the earlier change to our schema
 also means it’ll always use the latest version
 of our code.

[image: images/b_1_validation_errors.png]

 We’d also like to validate that the price is a valid, positive number.
 We’ll use the
 delightfully named numericality option to verify that
 the price is a valid number.
 We also pass the rather verbosely named
 :greater_than_or_equal_to option a value of 0.01:

	​ 	validates ​:price​, ​numericality: ​{ ​greater_than_or_equal_to: ​0.01 }

 Now, if we add a product with an invalid price, the
 appropriate message will appear, as shown in
 the following screenshot.

[image: images/b_2_price_validation_errors.png]

 Why test against one cent, rather than zero? Well, it’s
 possible to enter a number such as 0.001 into this
 field. Because the database stores just two digits after
 the decimal point, this would end up being zero in the
 database, even though it would pass the validation if we
 compared against zero. Checking that the number is at least one
 cent ensures that only correct values end up being stored.

 We have two more items to validate. First, we want to make sure that
 each product has a unique title. One more line in
 the Product model will do this. The
 uniqueness validation will perform a check to ensure
 that no other row in the products table
 has the same title as the row we’re about to save:

	​ 	validates ​:title​, ​uniqueness: ​​true​

 Lastly, we need to validate that the URL entered for the image is
 valid. We’ll do this by using the format option, which
 matches a field against a regular expression. For now, let’s just check that the
 URL ends with one of gif,
 jpg, or
 png:

	​ 	validates ​:image_url​, ​allow_blank: ​​true​, ​format: ​{
	​ 	 ​with: ​​%r{​​\.​​(gif|jpg|png)​​\Z​​}i​,
	​ 	 ​message: ​​'must be a URL for GIF, JPG or PNG image.'​
	​ 	}

 The regular expression matches the string against a literal dot,
 followed by one of three choices, followed by the end of the string.
 Be sure to use vertical bars to separate options, and backslashes
 before the dot and the uppercase Z.
 If you need a refresher on regular expression syntax, see
 ​Regular Expressions​.

 Note that we use the allow_blank option to avoid getting
 multiple error messages when the field is blank.

 Later, we’d probably want to change this form to let
 the user select from a list of available images, but we’d
 still want to keep the validation to prevent malicious
 folks from submitting bad data directly.

 So, in a couple of minutes we’ve added validations that check the following:

	The title, description, and image URL fields aren’t
 empty.
	The price is a valid number not less than $0.01.
	The title is unique among all products.
	The image URL looks reasonable.

 Your updated Product model should look like
 this:

rails51/depot_b/app/models/product.rb
	​ 	​class​ Product < ApplicationRecord
	​ 	 validates ​:title​, ​:description​, ​:image_url​, ​presence: ​​true​
	​ 	 validates ​:title​, ​uniqueness: ​​true​
	​ 	 validates ​:image_url​, ​allow_blank: ​​true​, ​format: ​{
	​ 	 ​with: ​​%r{​​\.​​(gif|jpg|png)​​\Z​​}i​,
	​ 	 ​message: ​​'must be a URL for GIF, JPG or PNG image.'​
	​ 	 }
	​ 	 validates ​:price​, ​numericality: ​{ ​greater_than_or_equal_to: ​0.01 }
	​ 	
	​ 	​end​

 Nearing the end of this cycle, we ask our customer to play
 with the application, and she’s a lot happier. It took only a
 few minutes, but the simple act of adding validation has made
 the product maintenance pages seem a lot more solid.

Iteration B2: Unit Testing of Models

 One of the joys of the Rails
 framework is that it has support for testing baked right in from
 the start of every project. As you’ve seen, from the moment you create
 a new application using the rails command, Rails starts generating a test
 infrastructure for
 you. Let’s take a peek inside the models
 subdirectory to see what’s
 already there:

	​ 	​depot>​​ ​​ls​​ ​​test/models​
	​ 	product_test.rb

 product_test.rb is the file that Rails created to
 hold the unit tests for the model we created earlier with the
 generate script. This is a good start, but
 Rails can help us only so much. Let’s see what kind of test goodies Rails generated inside
 test/models/product_test.rb when we generated that
 model:

rails51/depot_a/test/models/product_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ ProductTest < ActiveSupport::TestCase
	​ 	 ​# test "the truth" do​
	​ 	 ​# assert true​
	​ 	 ​# end​
	​ 	​end​

 The generated ProductTest is a subclass of
 ActiveSupport::TestCase[42]. The fact that
 ActiveSupport::TestCase is a subclass of
 the MiniTest::Test
 class tells us that Rails generates tests based on the
 MiniTest[43] framework that comes preinstalled with Ruby. This is
 good news, because it means if we’ve already been testing our
 Ruby programs with MiniTest tests (and why wouldn’t we be?),
 we can build on that knowledge to test Rails
 applications. If you’re new to MiniTest, don’t worry. We’ll
 take it slow.

 Inside this test case, Rails generated a single commented-out
 test called "the truth". The test...do syntax
 may seem surprising at first, but here ActiveSupport::TestCase is
 combining a class method, optional parentheses, and a block to make
 defining a test method the tiniest bit simpler for you. Sometimes it’s
 the little things that make all the difference.

 The assert
 line in this method is a test. It isn’t much of one,
 though—all it does is test that true is
 true. Clearly, this is a placeholder, one that’s intended to be
 replaced by your actual tests.

A Real Unit Test

 Let’s get on to the business of testing validation. First, if we
 create a product with no attributes set, we’ll expect it to be invalid
 and for an error to be associated with each field. We can use
 the model’s errors and
 invalid? methods to see if it validates,
 and we can use the any? method of the error
 list to see if an error is associated with a
 particular attribute.

	Now that we know what to test, we need to
	know how to tell the test framework whether our
	code passes or fails. We do that
	using assertions. An assertion is
	a method call that tells the framework what we expect to be
	true. The simplest assertion is the
	 assert method, which expects its
	argument to be true. If it is, nothing special
	happens. However, if the argument
	to assert is false,
	the assertion fails. The framework will output a message and
	will stop executing the test method containing the failure. In
	our case, we expect that an
	empty Product model won’t pass
	validation, so we can express that expectation by asserting
	that it isn’t valid:

	​ 	assert product.invalid?

 Replace the test the truth with the following code:

rails51/depot_b/test/models/product_test.rb
	​ 	test ​"product attributes must not be empty"​ ​do​
	​ 	 product = Product.new
	​ 	 assert product.invalid?
	​ 	 assert product.errors[​:title​].any?
	​ 	 assert product.errors[​:description​].any?
	​ 	 assert product.errors[​:price​].any?
	​ 	 assert product.errors[​:image_url​].any?
	​ 	​end​

 We can rerun just the unit tests by issuing the rails
 test:models command. When we do so, we
 now see the test execute successfully:

	​ 	​depot>​​ ​​bin/rails​​ ​​test:models​
	​ 	Run options: --seed 63304
	​ 	
	​ 	​# Running:​
	​ 	
	​ 	.
	​ 	
	​ 	Finished in 0.021068s, 47.4654 runs/s, 237.3268 assertions/s.
	​ 	1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

	Sure enough, the validation kicked in, and all our
	assertions passed.

	Clearly, at this point we can dig deeper and exercise
	individual validations. Let’s look at three of the many
	possible tests.

First, we’ll check that the validation of the
	price works the way we expect:

rails51/depot_c/test/models/product_test.rb
	​ 	test ​"product price must be positive"​ ​do​
	​ 	 product = Product.new(​title: ​​"My Book Title"​,
	​ 	 ​description: ​​"yyy"​,
	​ 	 ​image_url: ​​"zzz.jpg"​)
	​ 	 product.price = -1
	​ 	 assert product.invalid?
	​ 	 assert_equal [​"must be greater than or equal to 0.01"​],
	​ 	 product.errors[​:price​]
	​ 	
	​ 	 product.price = 0
	​ 	 assert product.invalid?
	​ 	 assert_equal [​"must be greater than or equal to 0.01"​],
	​ 	 product.errors[​:price​]
	​ 	
	​ 	 product.price = 1
	​ 	 assert product.valid?
	​ 	​end​

	In this code, we create a new product and then try setting its
	price to -1, 0, and +1, validating the product each time. If
	our model is working, the first two should be invalid, and we
	verify that the error message associated with the price
	attribute is what we expect.

 The last price is acceptable, so we assert that the model is now
 valid. (Some folks would put these three tests into three separate
 test methods—that’s perfectly reasonable.)

	Next, we test that we’re validating that the image URL ends with
	one
	of gif, jpg,
	or png:

rails51/depot_c/test/models/product_test.rb
	​ 	​def​ new_product(image_url)
	​ 	 Product.new(​title: ​​"My Book Title"​,
	​ 	 ​description: ​​"yyy"​,
	​ 	 ​price: ​1,
	​ 	 ​image_url: ​image_url)
	​ 	​end​
	​ 	
	​ 	test ​"image url"​ ​do​
	​ 	 ok = ​%w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg​
	​ 	​ http://a.b.c/x/y/z/fred.gif }​
	​ 	 bad = ​%w{ fred.doc fred.gif/more fred.gif.more }​
	​ 	
	​ 	 ok.each ​do​ |image_url|
	​ 	 assert new_product(image_url).valid?,
	​ 	 ​"​​#{​image_url​}​​ shouldn't be invalid"​
	​ 	 ​end​

	​ 	 bad.each ​do​ |image_url|
	​ 	 assert new_product(image_url).invalid?,
	​ 	 ​"​​#{​image_url​}​​ shouldn't be valid"​
	​ 	 ​end​
	​ 	​end​

 Here we’ve mixed things up a bit. Rather than write the nine
 separate tests, we’ve used a couple of loops—one to check the cases
 we expect to pass validation and the second to try cases we expect to
 fail. At the same time, we factored out the common code between the
 two loops.

 You’ll notice that we also added an extra parameter to our
 assert method calls. All of the testing assertions accept an
 optional trailing parameter containing a string. This will be written
 along with the error message if the assertion fails and can be useful
 for diagnosing what went wrong.

	Finally, our model contains a validation that checks that all
	the product titles in the database are unique. To test this
	one, we need to store product data in the
	database.

	One way to do this would be to have a test create a product,
	save it, then create another product with the same title and
	try to save it too. This would clearly work. But a
	much simpler way is to use Rails fixtures.

Test Fixtures

 In the world of testing, a fixture is an
 environment in which you can run a test. If you’re testing a
 circuit board, for example, you might mount it in a test
 fixture that provides it with the power and inputs needed to
 drive the function to be tested.

 In the world of Rails, a test fixture is a
 specification of the initial contents of a model (or models)
 under test. If, for example, we want to ensure that
 our products table starts off with known
 data at the start of every unit test, we can specify those
 contents in a fixture, and Rails takes care of the
 rest.

 You specify fixture data in files in
 the test/fixtures directory. These files
 contain test data in
 YAML
 format.
 Each fixture file contains the data for a single model. The name
 of the fixture file is significant:
 the base name of the file must match the name of a database
 table. Because we need some data for
 a Product model, which is stored in
 the products table, we’ll add it to the
 file called products.yml.

Rails already created this fixture file when we first created the model:

rails51/depot_a/test/fixtures/products.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	​ 	 title: ​MyString​
	​ 	 description: ​MyText​
	​ 	 image_url: ​MyString​
	​ 	 price: ​9.99​
	​ 	
	​ 	two:
	​ 	 title: ​MyString​
	​ 	 description: ​MyText​
	​ 	 image_url: ​MyString​
	​ 	 price: ​9.99​

	The fixture file contains an entry for each row that we want
	to insert into the database. Each row is given a name. In the
	case of the Rails-generated fixture, the rows are
	named one and two. This name
	has no significance as far as the database is concerned—it
	isn’t inserted into the row data. Instead, as you’ll see
	shortly, the name gives us a convenient way to reference test
	data inside our test code. They also are the names used in the
 generated integration tests, so for now, we’ll leave them alone.

[image: David says:]
David says:
Picking Good Fixture Names

 As with the names of variables in general, you want to keep the
 names of fixtures as self-explanatory as
 possible. This increases the
 readability of the tests when you’re asserting that
 product(:valid_order_for_fred) is
 indeed Fred’s valid order. It also makes it a lot easier to remember
 which fixture you’re supposed to test against, without having to look
 up p1 or
 order4. The more fixtures you get, the
 more important it is to pick good fixture names. So, starting early
 keeps you happy later.

 But what do we do with fixtures that can’t easily get a
 self-explanatory name
 like valid_order_for_fred?
 Pick natural names that you have an easier time associating
 to a role. For example, instead of
 using order1,
 use christmas_order. Instead
 of customer1,
 use fred. Once you get into the
 habit of natural names, you’ll soon be weaving a nice little
 story about how fred is paying
 for his christmas_order with
 his invalid_credit_card first,
 then paying with
 his valid_credit_card, and
 finally choosing to ship it all off
 to aunt_mary.

 Association-based stories are key to remembering large
 worlds of fixtures with ease.

	Inside each entry you can see an indented list of name-value pairs.
 As in your config/database.yml,
 you must use spaces, not tabs, at the start of each of the data
 lines, and all the lines for a row must have the same indentation.
 Be careful as you make changes, because you need to
 make sure the names of the columns are correct in each entry; a
 mismatch with the database column names can cause a hard-to-track-down
 exception.

 This data is used in tests. In fact, if you rerun bin/rails test
 now you will see a number of errors, including the following error:

	​ 	Error:
	​ 	ProductsControllerTest#test_should_get_index:
	​ 	ActionView::Template::Error: The asset "MyString" is not present in
	​ 	the asset pipeline.

	The reason for the failure is that we recently added an
	image_tag to the product index page and Rails can’t find an
 image by the name MyString (remember that image_tag is a Rails helper method that produces an HTML element). Let’s correct that error and
	while we are here
 add some more data to the fixture file with something
	we can use to test our Product model:

rails51/depot_c/test/fixtures/products.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	​ 	 title: ​MyString​
	​ 	 description: ​MyText​
	»	 image_url: ​lorem.jpg​
	​ 	 price: ​9.99​
	​ 	
	​ 	two:
	​ 	 title: ​MyString​
	​ 	 description: ​MyText​
	»	 image_url: ​lorem.jpg​
	​ 	 price: ​9.99​
	​ 	
	»	ruby:
	»	 title: ​Programming Ruby 1.9​
	»	 description:
	»	 ​Ruby is the fastest growing and most exciting dynamic​
	»	 ​language out there. If you need to get working programs​
	»	 ​delivered fast, you should add Ruby to your toolbox.​
	»	 price: ​49.50​
	»	 image_url: ​ruby.jpg​

 Note that the images referenced in image_url do need to exist for the tests to succeed. It doesn’t matter what they are as long as they are in app/assets/images when the tests run. You can either create some yourself, or use the ones provided in the downloadable code.

 Now that we have a fixture file, we want Rails to load the
 test data into the products table when we
 run the unit test. And, in fact, Rails is already doing this
 (convention over configuration for the win!), but you can control
 which fixtures to load by specifying the following line
 in test/models/product_test.rb:

	​ 	​class​ ProductTest < ActiveSupport::TestCase
	»	 fixtures ​:products​
	​ 	 ​#...​
	​ 	​end​

 The fixtures
 directive loads the fixture data corresponding to the given
 model name into the corresponding database table before each
 test method in the test case is run. The name of the fixture
 file determines the table that’s loaded, so
 using :products will cause
 the products.yml fixture file to be used.

	Let’s say that again another way. In the case of
	our ProductTest class, adding
	the fixtures directive means that
	the products table will be emptied out
	and then populated with the three rows defined in the fixture
	before each test method is run.

 Note that most of the scaffolding that Rails generates doesn’t contain
 calls to the fixtures method. That’s because the default for
 tests is to load all fixtures before running the test.
 Because that default is generally the one you want, there usually isn’t any
 need to change it. Once again, conventions are used to eliminate the
 need for unnecessary configuration.

	So far, we’ve been doing all our work in the development
	database. Now that we’re running tests, though, Rails needs
	to use a test database.
 If you look in the database.yml file in
 the config directory,
 you’ll notice Rails actually created
 a configuration for three separate databases.

	

 db/development.sqlite3 will be our
 development database. All of our programming work will
 be done here.

	

 db/test.sqlite3 is a test
 database.

	

 db/production.sqlite3 is the
 production database. Our application will use this when
 we put it online.

 Each test method gets a freshly initialized table in the test
 database, loaded from the fixtures we provide. This is automatically
 done by the bin/rails test command but can be done separately
 via bin/rails db:test:prepare.

Using Fixture Data

	 Now that you know how to get fixture data into the database, we
	 need to find ways of using it in our tests.
	

	 Clearly, one way would be to use the finder methods in the
	 model to read the data. However, Rails makes it easier than
	 that. For each fixture it loads into a test, Rails defines a
	 method with the same name as the fixture. You can use this
	 method to access preloaded model objects containing the
	 fixture data: simply pass it the name of the row as defined
	 in the YAML fixture file, and it’ll return a model object
	 containing that row’s data.

In the case of our product data,
	 calling products(:ruby) returns
	 a Product model containing the data
	 we defined in the fixture. Let’s use that to test the
	 validation of unique product titles:
	
rails51/depot_c/test/models/product_test.rb
	​ 	test ​"product is not valid without a unique title"​ ​do​
	​ 	 product = Product.new(​title: ​products(​:ruby​).title,
	​ 	 ​description: ​​"yyy"​,
	​ 	 ​price: ​1,
	​ 	 ​image_url: ​​"fred.gif"​)
	​ 	
	​ 	 assert product.invalid?
	​ 	 assert_equal [​"has already been taken"​], product.errors[​:title​]
	​ 	​end​

	 The test assumes that the database already includes a row
	 for the Ruby book. It gets the title of that existing row
	 using this:
	
	​ 	products(​:ruby​).title

	 It then creates a new Product model,
	 setting its title to that existing title. It asserts that
	 attempting to save this model fails and that
	 the title attribute has the correct error
	 associated with it.
	

	 If you want to avoid using a hardcoded string for the Active
	 Record error, you can compare the response against its
	 built-in error message table:
	
rails51/depot_c/test/models/product_test.rb
	​ 	test ​"product is not valid without a unique title - i18n"​ ​do​
	​ 	 product = Product.new(​title: ​products(​:ruby​).title,
	​ 	 ​description: ​​"yyy"​,
	​ 	 ​price: ​1,
	​ 	 ​image_url: ​​"fred.gif"​)
	​ 	
	​ 	 assert product.invalid?
	​ 	 assert_equal [I18n.translate(​'errors.messages.taken'​)],
	​ 	 product.errors[​:title​]
	​ 	​end​

	 We’ll cover the I18n functions in Chapter 16, ​Task K: Internationalization​.
	

 Before we move on, we once again try our tests:

	​ 	​$ ​​bin/rails​​ ​​test​

 This time we see two remaining failures, both in
 test/controllers/products_controllertest.rb: one in
 should create product and the other in
 should update product.
 Clearly,
 something we did caused something to do with the creation and
 update of products to fail. Since we just added validations on how products are created or updated, it’s likely this is the source of the problem, and our test is out-of-date.

The specifics of the problem might not be obvious from the test failure message, but the failure for “should create product” gives us a clue: “Product.count didn’t change by 1.” Since we just added validations, it seems likely that our attempts to create a product in the test are creating an invalid product, which we can’t save to the database.

 Let’s verify this assumption by adding a call to puts in the controller’s create method:

	​ 	​def​ create
	​ 	 @product = Product.new(product_params)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @product.save
	​ 	 format.html { redirect_to @product,
	​ 	 ​notice: ​​'Product was successfully created.'​ }
	​ 	 format.json { render ​:show​, ​status: :created​,
	​ 	 ​location: ​@product }
	​ 	 ​else​
	»	 puts @product.errors.full_messages
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@product.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 If we rerun just the test for creating a new product, we will see the problem:

	​ 	 > bin/rails test test/controllers/products_controller_test.rb:19
	​ 	​ # Running:​
	​ 	
	​ 	Title has already been taken
	​ 	F
	​ 	
	​ 	Failure:
	​ 	​ProductsControllerTest#​​test_should_create_product​​ ​​[«path​​ ​​to​​ ​​test»]​
	​ 	"Product.count" didn't change by 1.
	​ 	Expected: 3
	​ 	 Actual: 2
	​ 	
	​ 	bin/rails test test/controllers/products_controller_test.rb:18
	​ 	
	​ 	Finished in 0.427810s, 2.3375 runs/s, 2.3375 assertions/s.
	​ 	1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

 Our puts is printing the validation error, which in this case is “Title has already been taken.”
 In other words, we’re trying to create a product whose title already exists. Instead, let’s create a random book title and use that instead of the value coming out of the test fixture. First, we’ll create a random title in the setup block:

rails51/depot_b/test/controllers/products_controller_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ ProductsControllerTest < ActionDispatch::IntegrationTest
	​ 	 setup ​do​
	​ 	 @product = products(​:one​)
	»	 @title = ​"The Great Book ​​#{​rand(1000)​}​​"​
	​ 	
	​ 	 ​end​

 Next, we’ll use that instead of the default @product.title that the Rails generator put into the test. The actual change is highlighted (the use of @title), but the code had to be reformatted to fit the space, so this will look a bit different for you:

rails51/depot_b/test/controllers/products_controller_test.rb
	​ 	test ​"should create product"​ ​do​
	​ 	 assert_difference(​'Product.count'​) ​do​
	​ 	
	​ 	 post products_url, ​params: ​{
	​ 	 ​product: ​{
	​ 	 ​description: ​@product.description,
	​ 	 ​image_url: ​@product.image_url,
	​ 	 ​price: ​@product.price,
	»	 ​title: ​@title,
	​ 	 }
	​ 	 }
	​ 	
	​ 	 ​end​
	​ 	
	​ 	 assert_redirected_to product_url(Product.last)
	​ 	​end​

rails51/depot_b/test/controllers/products_controller_test.rb
	​ 	test ​"should update product"​ ​do​
	​ 	
	​ 	 patch product_url(@product), ​params: ​{
	​ 	 ​product: ​{
	​ 	 ​description: ​@product.description,
	​ 	 ​image_url: ​@product.image_url,
	​ 	 ​price: ​@product.price,
	»	 ​title: ​@title,
	​ 	 }
	​ 	 }
	​ 	
	​ 	 assert_redirected_to product_url(@product)
	​ 	​end​

 After making these changes, we rerun the tests, and they report that
 all is well.

 Now we can feel confident that our validation code not only works
 but will continue to work. Our product now has a model, a set of
 views, a controller, and a set of unit tests. It’ll serve as a
 good foundation on which to build the rest of the application.

What We Just Did

 In about a dozen lines of code, we augmented the generated code
 with validation:

	We ensured that required fields are present.
	We ensured that price fields are numeric and at least
 one cent.
	We ensured that titles are unique.
	We ensured that images match a given format.
	We updated the unit tests that Rails provided, both to conform to
 the constraints we’ve imposed on the model and to verify the new
 code we added.

 We show this to our customer, and although she agrees that this is
 something an administrator could use, she says that it certainly isn’t
 anything that she would feel comfortable turning loose on her customers.
 Clearly, in the next iteration we’re going to have to focus a bit on
 the user interface.

Playtime

	Here’s some stuff to try on your own:

	

 If you’re using Git, now is a good time to commit your work.
 You can first see which files we changed by using the git
 status command:

	​ 	​depot>​​ ​​git​​ ​​status​
	​ 	​# On branch master​
	​ 	​# Changes not staged for commit:​
	​ 	​# (use "git add <file>..." to update what will be committed)​
	​ 	​# (use "git checkout -- <file>..." to discard changes in working directory)​
	​ 	​#​
	​ 	​# modified: app/models/product.rb​
	​ 	​# modified: test/fixtures/products.yml​
	​ 	​# modified: test/controllers/products_controller_test.rb​
	​ 	​# modified: test/models/product_test.rb​
	​ 	​# no changes added to commit (use "git add" and/or "git commit -a")​

 Since we modified only some existing files and didn’t add any new
 ones, you can combine the git add and git commit
 commands and simply issue a single git commit command
 with the -a option:

	​ 	​depot>​​ ​​git​​ ​​commit​​ ​​-a​​ ​​-m​​ ​​'Validation!'​

 With this done, you can play with abandon, secure in the knowledge
 that you can return to this state at any time by using a single git
 checkout . command.

	

 The :length validation option checks the length of a
 model attribute. Add validation to the Product model to check
 that the title is at least ten characters.

	

 Change the error message associated with one of your
 validations.

Footnotes

	[42]
	
http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html

	[43]
	
http://docs.seattlerb.org/minitest/

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Writing our own views
	Using layouts to decorate pages
	Integrating CSS
	Using helpers
	Writing functional tests

 Chapter
 8
Task C: Catalog Display

 All in all, it’s been a successful set of iterations. We gathered the
 initial requirements from our customer, documented a basic flow,
 worked out a first pass at the data we’ll need, and put together
 the management page for the Depot application’s products. It hasn’t even
 taken many lines of code. We even
 have a small but growing test suite.

 Thus emboldened, it’s on to our next task. We chatted about
 priorities with our customer, and she said she’d like to start
 seeing what the application looks like from the buyer’s point of
 view. Our next task is to create a catalog display.

 This also makes a lot of sense from our point of view. Once we
 have the products safely tucked into the database, it should be
 fairly straightforward to display them. It also gives us a basis from which
 to develop the shopping cart portion of the code later.

 We should also be able to draw on the work we just did in the product
 management task. The catalog display is really just a glorified product
 listing.

 Finally, we’ll also need to complement our unit tests
 for the model with some functional tests for the controller.

Iteration C1: Creating the Catalog Listing

 We’ve already created
 the products controller, used by the seller
 to administer the Depot application. Now it’s time to create a
 second controller, one that interacts with the paying
 customers. Let’s call
 it Store:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​controller​​ ​​Store​​ ​​index​
	​ 	 create app/controllers/store_controller.rb
	​ 	 route get 'store/index'
	​ 	 invoke erb
	​ 	 create app/views/store
	​ 	 create app/views/store/index.html.erb
	​ 	 invoke test_unit
	​ 	 create test/controllers/store_controller_test.rb
	​ 	 invoke helper
	​ 	 create app/helpers/store_helper.rb
	​ 	 invoke test_unit
	​ 	 invoke assets
	​ 	 invoke coffee
	​ 	 create app/assets/javascripts/store.coffee
	​ 	 invoke scss
	​ 	 create app/assets/stylesheets/store.scss

 As in the previous chapter, where we used
 the generate utility to create a
 controller and associated scaffolding to administer the products, here
 we’ve asked it to create a controller
 (the StoreController class in the
 store_controller.rb file) containing a
 single action method, index.

 While everything is already set up for this action to be accessed via
 http://localhost:3000/store/index (feel free to try it!),
 we can do better. Let’s simplify things and make this the
 root URL for the website. We do this by editing
 config/routes.rb:

rails51/depot_d/config/routes.rb
	​ 	Rails.application.routes.draw ​do​
	»	 root ​'store#index'​, ​as: ​​'store_index'​
	​ 	
	​ 	 resources ​:products​
	​ 	 ​# For details on the DSL available within this file, see​
	​ 	 ​# http://guides.rubyonrails.org/routing.html​
	​ 	​end​

 We’ve replaced the get ’store/index’ line with a call to
 define a root path, and in the process we added
 an as: ’store_index’ option. The latter tells Rails
 to create store_index_path and store_index_url
 accessor methods, enabling existing code—and tests!—to continue to
 work correctly. Let’s try it. Point a browser at http://localhost:3000/, and
 up pops our web page. See the following screenshot.

[image: images/d_1_new_root.png]

 It might not make us rich, but at least we know everything is
 wired together correctly. It even tells us where to find
 the template file that draws this page.

 Let’s start by displaying a list of all the
 products in our database. We know that eventually we’ll have to
 be more sophisticated, breaking them into categories, but this’ll get us going.

 We need to get the list of products out of the database and make
 it available to the code in the view that’ll display the
 table. This means we have to change
 the index method
 in store_controller.rb. We want to program
 at a decent level of abstraction, so let’s assume we can
 ask the model for a list of the products:

rails51/depot_d/app/controllers/store_controller.rb
	​ 	​class​ StoreController < ApplicationController
	​ 	 ​def​ index
	»	 @products = Product.order(​:title​)
	​ 	 ​end​
	​ 	​end​

 We asked our customer if she
 had a preference regarding the order things should be listed in,
 and we jointly decided to see what happens if we display the
 products in alphabetical order. We do this by adding an
 order(:title) call to the Product model.

 Now we need to write our view template. To do this, edit the
 index.html.erb
 file in app/views/store. (Remember that the path
 name to the view is built from the name of the controller
 [store] and the name of the action
 [index]. The
 html.erb
 part signifies an ERB template that produces an HTML result.)

rails51/depot_d/app/views/store/index.html.erb
	​ 	​<​% if notice %>
	​ 	 <aside id=​"notice"​>​<​%= notice %></aside>
	​ 	​<​% end %>
	​ 	
	​ 	<h1>Your Pragmatic Catalog</h1>
	​ 	
	​ 	<ul class=​"catalog"​>
	​ 	 ​<​% @products.each do |product| %>
	​ 	
	​ 	 ​<​%= image_tag(product.image_url) %>
	​ 	 <h2>​<​%= product.title %></h2>
	​ 	 <p>
	​ 	 ​<​%= sanitize(product.description) %>
	​ 	 </p>
	​ 	 <div class=​"price"​>
	​ 	 ​<​%= product.price %>
	​ 	 </div>
	​ 	
	​ 	 ​<​% end %>
	​ 	

 Note the use of the sanitize method for the description.
 This allows us to safely[44] add HTML stylings to make the descriptions more
 interesting for our customers.

 We also used
 the image_tag helper
 method. This generates an HTML tag using
 its argument as the image source.

 Next we add a stylesheet, making use of the fact that
 in Iteration A2
 we set things up so that pages created by the
 StoreController will define an HTML class by the name of
 store:

rails51/depot_d/app/assets/stylesheets/store.scss
	​ 	​// Place all the styles related to the Store controller here.​
	​ 	​// They will automatically be included in application.css.​
	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​
	​ 	
	​ 	.store {
	​ 	 max-width: 80em;
	​ 	 ul.catalog {
	​ 	 border-top: solid 0.250em;
	​ 	 list-style: none;
	​ 	 padding: 0;
	​ 	 margin: 0;
	​ 	 li {
	​ 	 padding: 1em;
	​ 	 margin: 0;
	​ 	 border-bottom: solid thin #ddd;
	​ 	
	​ 	 ​// This makes sure our has enough height​
	​ 	 ​// to hold the entire image, since it's floated​
	​ 	 ​&​::after {
	​ 	 clear: both;
	​ 	 content: ​" "​;
	​ 	 display: block;
	​ 	 }
	​ 	 img {
	​ 	 float: left;
	​ 	 padding: 1em;
	​ 	 margin-right: 1em;
	​ 	 margin-bottom: 1em;
	​ 	 box-shadow: 0.176em 0.176em 0.354em 0px rgba(0,0,0,0.75);
	​ 	 }
	​ 	 .price {
	​ 	 font-size: 1.414em;
	​ 	 }
	​ 	 }
	​ 	 }
	​ 	}

 A page refresh brings up the display shown in the following screenshot.
 It’s still pretty basic, and it
 seems to be missing something. The customer happens to
 be walking by as we ponder this, and she points out that she’d
 also like to see a decent-looking banner and sidebar on
 public-facing pages.

[image: images/d_2_catalog.png]

 At this point in the real world, we’d probably want to call in
 the design folks. But, Pragmatic Web Designer is off getting inspiration
 on a beach somewhere and won’t be back until later in the year,
 so let’s put a placeholder in for now. It’s time for another
 iteration.

Iteration C2: Adding a Page Layout

 The pages in a typical website often share a similar
 layout; the designer will have created a standard template that’s used
 when content is placed. Our job is to modify this page to add
 decoration to each of the store pages.

 So far, we’ve made only minimal changes to
 application.html.erb—namely, to add a
 class attribute in Iteration
 A2. As this file is
 the layout used for all views for all controllers that don’t
 otherwise provide a layout, we can change the
 look and feel of the entire site by editing one file. This makes us
 feel better about putting a placeholder page layout in for now; we can
 update it when the designer eventually returns from the islands.

 Let’s update this file to define a banner and a sidebar:

rails51/depot_e/app/views/layouts/application.html.erb
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	»	 <title>Pragprog Books Online Store</title>
	​ 	 ​<​%= csrf_meta_tags %>
	​ 	
	​ 	 ​<​%= stylesheet_link_tag 'application', media: 'all',
	​ 	 'data-turbolinks-track': 'reload' %>
	​ 	 ​<​%= javascript_include_tag 'application',
	​ 	 'data-turbolinks-track': 'reload' %>
	​ 	 </head>
	​ 	
	​ 	 <body>
	»	 <header class=​"main"​>
	»	 ​<​%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
	»	 <h1>​<​%= @page_title %></h1>
	»	 </header>
	»	 <section class=​"content"​>
	»	 <nav class=​"side_nav"​>
	»	
	»	 Home
	»	 Questions
	»	 News
	»	 Contact
	»	
	»	 </nav>
	​ 	 <main class=​'<%= controller.controller_name %>'​>
	​ 	 ​<​%= yield %>
	​ 	 </main>
	»	 </section>
	​ 	 </body>
	​ 	</html>

 Apart from the usual HTML gubbins, this layout has three Rails-specific
 items. The Rails stylesheet_link_tag
 helper method generates a
 <link> tag to our application’s stylesheet and
 specifies an option to enable Turbolinks,[45] which transparently works behind the scenes to speed up page
 changes within an application.
 Similarly, the javascript_include_tag method generates a
 <script> to load our application’s scripts.

 Finally,
 the csrf_meta_tags method
 sets up all the behind-the-scenes data needed to
 prevent cross-site request forgery attacks, which will be important once
 we add forms in Chapter 12, ​Task G: Check Out!​.

 Inside the body,
 we set the page heading to the value in
 the @page_title instance variable.

 By default, this is blank, meaning there won’t be an H1 rendered, but any controller that sets the variable @page_title can override this.

 The
 real magic, however, takes place when we invoke
 yield. This causes Rails to
 substitute in the page-specific content—the stuff generated by the
 view invoked by this request. Here, this’ll be the catalog page
 generated by index.html.erb.

 To make this all work, first rename the
 application.css file to
 application.scss. If you didn’t opt to
 try Git as was suggested in ​Playtime​, now is
 a good time to do so. The command to rename a file using Git is git
 mv. Once you’ve renamed this file, either through Git or by using
 the underlying operating system commands, add the
 following lines:

rails51/depot_e/app/assets/stylesheets/application.scss
	​ 	​/*​
	​ 	​ * This is a manifest file that'll be compiled into application.css, which will​
	​ 	​ * include all the files listed below.​
	​ 	​ *​
	​ 	​ * Any CSS and SCSS file within this directory, lib/assets/stylesheets, or any​
	​ 	​ * plugin's vendor/assets/stylesheets directory can be referenced here using a​
	​ 	​ * relative path.​
	​ 	​ *​
	​ 	​ * You're free to add application-wide styles to this file and they'll appear​
	​ 	​ * at the bottom of the compiled file so the styles you add here take​
	​ 	​ * precedence over styles defined in any other CSS/SCSS files in this​
	​ 	​ * directory. Styles in this file should be added after the last require_*​
	​ 	​ * statement. It is generally better to create a new file per style scope.​
	​ 	​ *​
	​ 	​ *= require_tree .​
	​ 	​ *= require_self​
	​ 	​ */​
	​ 	
	​ 	body {
	​ 	 margin: 0;
	​ 	 padding: 0;
	​ 	}
	​ 	header.main {
	​ 	 text-align: center; ​// center on mobile​
	​ 	 ​@media​ (min-width: 30em) {
	​ 	 text-align: left; ​// left align on desktop​
	​ 	 }
	​ 	 background: #282;
	​ 	 margin: 0;
	​ 	 h1 {
	​ 	 display: none;
	​ 	 }
	​ 	}

	​ 	.content {
	​ 	 margin: 0;
	​ 	 padding: 0;
	​ 	
	​ 	 display: flex;
	​ 	 display: -webkit-flex;
	​ 	 flex-direction: column; ​// mobile is horizontally laid out​
	​ 	 -webkit-box-orient: vertical;
	​ 	 -webkit-box-direction: normal;
	​ 	
	​ 	 ​@media​ (min-width: 30em) {
	​ 	 flex-direction: row; ​// desktop is vertically laid out​
	​ 	 -webkit-box-orient: horizontal;
	​ 	 }
	​ 	
	​ 	 nav {
	​ 	 padding-bottom: 1em;
	​ 	 background: #141;
	​ 	 text-align: center; ​// mobile has centered nav​
	​ 	 ​@media​ (min-width: 30em) {
	​ 	 text-align: left; ​// desktop nav is left-aligned​
	​ 	 padding: 1em; ​// and needs more padding​
	​ 	 }
	​ 	 ul {
	​ 	 list-style: none;
	​ 	 margin: 0;
	​ 	 padding: 0;
	​ 	 ​@media​ (min-width: 30em) {
	​ 	 padding-right: 1em; ​// give desktop some extra space​
	​ 	 }
	​ 	 li {
	​ 	 margin: 0;
	​ 	 padding: 0.5em;
	​ 	 text-transform: uppercase;
	​ 	 letter-spacing: 0.354em;
	​ 	 a {
	​ 	 color: #bfb;
	​ 	 text-decoration: none;
	​ 	 }
	​ 	 a:hover {
	​ 	 background: none;
	​ 	 color: white;
	​ 	 }
	​ 	 }
	​ 	 }
	​ 	 }
	​ 	 main {
	​ 	 padding: 0.5em;
	​ 	 }
	​ 	}

 As is explained in the comments, this manifest file will automatically
 include all stylesheets available in this directory and in any
 subdirectory. This is accomplished via the require_tree
 directive.

 We could instead list the
 names of individual stylesheets that we want to be linked in the
 stylesheet_link_tag, but because we’re in
 the layout for the entire application and because this layout is
 already
 set up to load all stylesheets, let’s leave it alone
 for now.

 The page design is fairly minimal, though we’ve added a lot of padding, margins, and other specing directives to ensure a decent layout for the side nav and main content. Some of the sizes we’ve used might seem strange (e.g., 0.354em), but everything should work out. Anytime we need padding, margin, or any other size, we’ll use one of a few hand-picked sizes that ensure our layout is always decent.

 We’re also making heavy use of Sass, which is what the file rename enabled us to do. Sass allows us to nest CSS rules, to constrain where they apply. For example, we’ve specified that the ul inside a nav that’s inside content with the CSS class content has list-style of none. Without Sass, we’d have to write this:

	​ 	.content nav ul {
	​ 	 list-style: none;
	​ 	}

 For any reasonable amount of CSS, this can become hard to maintain and understand. Sass allows nesting like so:

	​ 	.content {
	​ 	 ​nav​ ​{​
	​ 	 ​ul​ ​{​
	​ 	 list-style: none;
	​ 	 }
	​ 	 ​}​
	​ 	​}​

 Sass also allows media queries,[46] which we’re using to account for differences we’d like to see between mobile devices and desktop computers.

 Refresh the page, and the browser window looks something like
 the screenshot. It won’t win any design
 awards, but it’ll show our customer roughly what the final page
 will look like.

[image: images/e_1_catalog_with_nav.png]

 The stylesheet is designed using a mobile-first method, where the default styles are designed to look great on a mobile device. Try shrinking your browser window’s width (or enter its responsive design mode) to see the mobile design. We’ve used media queries to tweak the layout for larger-than-mobile devices.[47] This might feel backward, but it’s likely more and more people will use our site from a mobile device than from a desktop computer. And, most mobile designs work great on desktops, too!

 Looking at this page, we spot a minor problem with how prices are
 displayed. The database stores
 the price as a number, but we’d like to show it as dollars and
 cents. A price of 12.34 should be shown as $12.34, and 13 should
 display as $13.00. We’ll tackle that next.

Iteration C3: Using a Helper to Format the Price

 Ruby provides a sprintf function that can be
 used to format prices. We could place logic that makes use of this
 function directly in the view. For example, we could say
 this:

	​ 	​<​%= sprintf("$%0.02f", product.price) %>

 This would work, but it embeds knowledge of currency formatting
 into the view. If we display prices of
 products in several places and want to internationalize the
 application later, this would be a maintenance problem.

 Instead, let’s use a helper method to format the price as a
 currency. Rails has an appropriate one built in, called number_to_currency.

 Using our helper in the view is just a matter of invoking them as regular methods; in the index template,
 we change this:

	​ 	​<​%= product.price %>

 to the following:

rails51/depot_e/app/views/store/index.html.erb
	​ 	<div class=​"price"​>
	​ 	 ​<%=​ number_to_currency(product.price) ​%>​
	​ 	</div>

 When we refresh, we see a nicely formatted
 price, as in the following screenshot.

[image: images/e_2_prices_fixed.png]

 Although it looks nice enough, we’re starting to get a nagging feeling
 that we really should be running and writing tests for all this new
 functionality, particularly after our experience of adding logic to
 our model.

Iteration C4: Functional Testing of Controllers

 Now for the moment of truth. Before we focus on writing new tests, we
 need to determine if
 we’ve broken anything. Remembering our experience after
 we added validation logic to our model,
 with some trepidation we run our tests again:

	​ 	​depot>​​ ​​bin/rails​​ ​​test​

 This time, all is well. We added a lot, but we didn’t break anything.
 That’s a relief, but our work isn’t done yet; we still need tests
 for what we just added.

 The unit testing of models that we did previously seemed straightforward
 enough. We called a method and compared what it returned against what
 we expected it to return. But now we’re dealing with a server that
 processes requests and a user viewing responses in a browser. What we
 need is functional tests that verify that the model,
 view, and controller work well together. Never
 fear: Rails has you covered.

 First, let’s take a look at what Rails generated for us:

rails51/depot_d/test/controllers/store_controller_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ StoreControllerTest < ActionDispatch::IntegrationTest
	​ 	 test ​"should get index"​ ​do​
	​ 	 get store_index_url
	​ 	 assert_response ​:success​
	​ 	 ​end​
	​ 	
	​ 	​end​

 The should get index test gets the index and asserts that a
 successful response is expected. That certainly seems straightforward
 enough. That’s a reasonable beginning, but we also want to verify that the
 response contains our layout, our product information, and our number
 formatting. Let’s see what that looks like in code:

rails51/depot_e/test/controllers/store_controller_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ StoreControllerTest < ActionDispatch::IntegrationTest
	​ 	 test ​"should get index"​ ​do​
	​ 	 get store_index_url
	​ 	 assert_response ​:success​
	»	 assert_select ​'nav.side_nav a'​, ​minimum: ​4
	»	 assert_select ​'main ul.catalog li'​, 3
	»	 assert_select ​'h2'​, ​'Programming Ruby 1.9'​
	»	 assert_select ​'.price'​, ​/\$[,\d]+\.\d\d/​
	​ 	 ​end​
	​ 	
	​ 	​end​

 The four lines we added take a look into the HTML that’s
 returned, using CSS selector notation. As a refresher, selectors that
 start with a number sign (#) match on id attributes;
 selectors that start with a dot (.) match on class attributes;
 and selectors that contain no prefix match on element names.

 So the first select test looks for an element named a that’s
 contained in a nav element that has the class side_nav.

 This test verifies that
 a minimum of four such elements are present. Pretty powerful stuff,
 assert_select, eh?

 The next three lines verify that all of our products are displayed. The
 first verifies that there are three li elements inside a ul with the class catalog, which is itself inside the main element.
 The next line
 verifies that there’s an h2 element with the title of the Ruby
 book that we’d entered previously. The fourth line verifies that the
 price is formatted correctly. These assertions are based on the
 test data that we put inside our fixtures:

rails51/depot_e/test/fixtures/products.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	​ 	 title: ​MyString​
	​ 	 description: ​MyText​
	​ 	 image_url: ​lorem.jpg​
	​ 	 price: ​9.99​
	​ 	
	​ 	two:
	​ 	 title: ​MyString​
	​ 	 description: ​MyText​
	​ 	 image_url: ​lorem.jpg​
	​ 	 price: ​9.99​
	​ 	
	​ 	ruby:
	​ 	 title: ​Programming Ruby 1.9​
	​ 	 description:
	​ 	 ​Ruby is the fastest growing and most exciting dynamic​
	​ 	 ​language out there. If you need to get working programs​
	​ 	 ​delivered fast, you should add Ruby to your toolbox.​
	​ 	 price: ​49.50​
	​ 	 image_url: ​ruby.jpg​

 Maybe you noticed that the type of test that
 assert_select performs varies based on the type
 of the second parameter. If it’s a number, it’s treated as a
 quantity. If it’s a string, it’s treated as an expected result.
 Another useful type of test is a regular expression, which is what we use in
 our final assertion. We verify that there’s a price that has a value
 that contains a dollar sign followed by any number (but at least one),
 commas, or digits; followed by a decimal point; followed by two digits.

 One final point before we move on: both validation and functional tests
 will test the behavior of controllers only; they won’t retroactively
 affect any objects that already exist in the database or in fixtures. In
 the previous example, two products contain the same title. Such data
 will cause no problems and will go undetected up to the point when such
 records are modified and saved.

 We’ve touched on only a few things that
 assert_select can do. More information can be
 found in the online documentation.[48]

 That’s a lot of verification in a few lines of code. We can see
 that it works by rerunning just the functional tests (after all, that’s
 all we changed):

	​ 	​depot>​​ ​​bin/rails​​ ​​test:controllers​

 Now not only do we have something recognizable as a storefront, but we also have
 tests that ensure that all of the pieces—the model, view, and
 controller—are all working together to produce the desired result.
 Although this sounds like a lot,
 with Rails it wasn’t much at all. In fact, it was mostly
 HTML and CSS and not much in the way of code or
 tests. Before moving on, let’s make sure that it’ll stand up to
 the onslaught of customers we’re expecting.

Iteration C5: Caching of Partial Results

 If everything goes as planned, this page will definitely be a high-traffic area for the site. To respond to requests for this
 page, we’d need to fetch every product from the database
 and render each one. We can do better than that. After all, the
 catalog doesn’t change that often, so there’s no need to start
 from scratch on each request.

 So we can see what we’re doing, we’re first going
 to modify the configuration for the development environment to
 turn on caching. To make this easy, Rails
 provides a handy command to toggle caching on and off in the development
 environment:

	​ 	​depot>​​ ​​bin/rails​​ ​​dev:cache​

 Note that this command will cause your server to automatically restart.

 Next we need to plan our attack. Thinking about it, we only need to
 rerender things if a product changed, and even then we
 need to render only the products that actually changed. So we need
 to make two small changes to our template.

 First, we mark the sections of our template that we need to update if
 any product changes, and then inside that section we mark the subsection
 that we need in order to update any specific product that changed:

rails51/depot_e/app/views/store/index.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h1>Your Pragmatic Catalog</h1>
	​ 	
	​ 	<ul class=​"catalog"​>
	»	 ​<%​ cache @products ​do​ ​%>​
	​ 	 ​<%​ @products.each ​do​ |product| ​%>​
	»	 ​<%​ cache product ​do​ ​%>​
	​ 	
	​ 	 ​<%=​ image_tag(product.image_url) ​%>​
	​ 	 <h2>​<%=​ product.title ​%>​</h2>
	​ 	 <p>
	​ 	 ​<%=​ sanitize(product.description) ​%>​
	​ 	 </p>
	​ 	 <div class=​"price"​>
	​ 	 ​<%=​ number_to_currency(product.price) ​%>​
	​ 	 </div>
	​ 	
	»	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	»	 ​<%​ ​end​ ​%>​
	​ 	

 In addition to bracketing the sections, we identify the data to
 associate with each: the complete set of products for the overall
 store and the individual product we’re rendering with the entry.
 Whenever the specified data changes, the section will be rerendered.

 Bracketed sections can be nested to arbitrary depth, which is why those
 in the Rails community have come to refer to this as “Russian
 doll” caching.[49]

 With this, we’re done! Rails takes care of all of the rest, including
 managing the storage and deciding when to invalidate old entries. If
 you’re interested, you can turn all sorts of knobs and make choices as to which backing store to use for the cache. It’s nothing you
 need to worry about now, but it might be worth bookmarking the overview
 page of Caching with Rails in the Ruby on Rails Guides.[50]

 As far as verifying that this works is concerned,

 you’re going to get some insight into the work the server is doing behind the scenes. Go back to your server window and watch
 what happens when you refresh the page.
 The first time you load the page, you should see some SQL that is loading the products like Product Load (0.2ms) SELECT "products".* FROM "products" ORDER BY "products"."title" ASC. When you refresh the page again, it will still work, but you won’t see that SQL run. You should see some SQL that Rails runs to check if its cache is outdated, like so: SELECT COUNT(*) AS "size", MAX("products"."updated_at") AS timestamp FROM "products".

 If you still aren’t convinced, you can add a configuration option to config/environments/development.rb called enable_fragment_cache_logging, like so:

	​ 	​# Enable/disable caching. By default caching is disabled.​
	​ 	​if​ Rails.root.join(​'tmp/caching-dev.txt'​).exist?
	»	 config.action_controller.enable_fragment_cache_logging = ​true​
	​ 	 config.action_controller.perform_caching = ​true​
	​ 	
	​ 	 config.cache_store = ​:memory_store​

 You’ll need to restart your server for this to take effect, but after doing that, you should see log messages that look like this:

	​ 	Read fragment views/products/1-20170611205537670088/cb43383298…
	​ 	Write fragment views/products/1-20170611205537670088/cb4338329…
	​ 	Read fragment views/products/3-20170611204944061952/cb43383298…
	​ 	Write fragment views/products/3-20170611204944061952/cb4338329…
	​ 	Read fragment views/products/2-20170611204944059695/cb43383298…

 Once you’re satisfied that caching is working, turn caching off in
 development so that further changes to the template will always be
 visible immediately:

	​ 	​depot>​​ ​​bin/rails​​ ​​dev:cache​

 Once again, wait for the server to restart, and verify that changes to
 the template show up as quickly as you save
 them.

What We Just Did

 We’ve put together the basis of the store’s catalog display. The
 steps were as follows:

	

 Create a new controller to handle customer-centric
 interactions.

	

 Implement the default index action.

	

 Add a call to the order method within the
 Store controller to control the order in which
 the items on the website are listed.

	

 Implement a view (a html.erb
 file) and a layout to contain it
 (another html.erb file).

	

 Use a helper to format prices the way we want.

	

 Make use of a CSS stylesheet.

	

 Write functional tests for our controller.

	

 Implement fragment caching for portions of the page.

 It’s time to check it all in and move on to the next task—namely, making
 a shopping cart!

Playtime

 Here’s some stuff to try on your own:

	

 Add a date and time to the sidebar. It doesn’t have to
 update; just show the value at the time the page was
 displayed.

	

 Experiment with setting various number_to_currency helper
 method options, and see the
 effect on your catalog listing.

	

 Write some functional tests for the product management
 application using assert_select. The tests will need to
 be placed into the
 test/controllers/products_controller_test.rb
 file.

	

 A reminder: the end of an iteration is a good time to save
 your work using Git. If you’ve been following along, you have
 the basics you need at this point. You’ll explore more Git functionality in ​Prepping Your Deployment Server​.

Footnotes

	[44]
	
http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

	[45]
	
https://github.com/rails/turbolinks

	[46]
	
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

	[47]
	
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

	[48]
	
https://github.com/rails/rails-dom-testing

	[49]
	
http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works

	[50]
	
http://guides.rubyonrails.org/caching_with_rails.html

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Sessions and session management
	Adding relationships among models
	Adding a button to add a product to a cart

 Chapter
 9
Task D: Cart Creation

 Now that we have the ability to display a catalog containing all
 our wonderful products, it would be nice to be able to sell them.
 Our customer agrees, so we’ve jointly decided to implement the
 shopping cart functionality next. This is going to involve a
 number of new concepts, including sessions, relationships among
 models, and adding a button to the view—so let’s get started.

Iteration D1: Finding a Cart

 As users browse our online catalog, they will (we hope)
 select products to buy. The convention is that each item
 selected will be added to a virtual shopping cart, held in our
 store. At some point, our buyers will have everything they need
 and will proceed to our site’s checkout, where they’ll pay for
 the stuff in their carts.

 This means that our application will need to keep track of all
 the items added to the cart by the buyer. To do that, we’ll keep
 a cart in the database and store its unique
 identifier, cart.id, in the session. Every time a
 request comes in, we can recover that identifier from the session
 and use it to find the cart in the database.

 Let’s go ahead and create a cart:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​scaffold​​ ​​Cart​
	​ 	​ ...​
	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​
	​ 	== CreateCarts: migrating ==
	​ 	-- create_table(:carts)
	​ 	​ ->​​ ​​0.0012s​
	​ 	== CreateCarts: migrated (0.0014s) ===

 Rails makes the current session look like a hash to the controller, so
 we’ll store the ID of the cart in the session by indexing it with the
 :cart_id symbol:

rails51/depot_f/app/controllers/concerns/current_cart.rb
	​ 	​module​ CurrentCart
	​ 	
	​ 	 ​private​
	​ 	
	​ 	 ​def​ set_cart
	​ 	 @cart = Cart.find(session[​:cart_id​])
	​ 	 ​rescue​ ActiveRecord::RecordNotFound
	​ 	 @cart = Cart.create
	​ 	 session[​:cart_id​] = @cart.id
	​ 	 ​end​
	​ 	​end​

 The set_cart method starts by getting the
 :cart_id from the session object and then attempts to
 find a cart corresponding to this ID. If such a cart record isn’t
 found
 (which will happen if the ID is nil or invalid for any
 reason), this method will proceed to create a new
 Cart and then store the ID of the created cart into the
 session.

 Note that we place the set_cart method in
	a CurrentCart module and place that module in a new file
	in the app/controllers/concerns
 directory.[51]
 This treatment allows
 us to share common code (even as little as a single method!)
 among controllers.

 Additionally, we mark the method as
 private,
 which prevents Rails
 from ever making it available as an action on the controller.

Iteration D2: Connecting Products to Carts

 We’re looking at sessions because we need somewhere to keep our
 shopping cart. We’ll cover sessions in more depth in
 ​Rails Sessions​, but for now let’s
 move on to implement the cart.

 Let’s keep things simple. A cart
 contains a set of products. Based on the
 Initial guess at application data
 diagram, combined with a brief
 chat with our customer, we can now generate the Rails models and
 populate the migrations to create the corresponding tables:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​scaffold​​ ​​LineItem​​ ​​product:references​​ ​​cart:belongs_to​
	​ 	​ ...​
	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​
	​ 	== CreateLineItems: migrating ==
	​ 	-- create_table(:line_items)
	​ 	​ ->​​ ​​0.0013s​
	​ 	== CreateLineItems: migrated (0.0014s) =======================================

 The database now has a place to store the references among line
 items, carts, and products. If you look at the generated
 definition of the LineItem class, you can see the
 definitions of these relationships:

rails51/depot_f/app/models/line_item.rb
	​ 	​class​ LineItem < ApplicationRecord
	​ 	 belongs_to ​:product​
	​ 	 belongs_to ​:cart​
	​ 	​end​

 The belongs_to method defines an accessor method—in this case, carts and products—but more importantly it tells Rails that rows in line_items are the children of rows in carts and products.
	No line item can
	exist unless the corresponding cart and product rows
 exist. A great rule of thumb for where to
 put belongs_to declarations is this: if a table has
 any columns whose values consist of ID values for another table (this
 concept is known by database designers as foreign keys), the
 corresponding model should have a belongs_to
	for each.

	What do these various declarations do? Basically, they
	add navigation capabilities to the model objects. Because Rails
	added the belongs_to declaration
	to LineItem, we can now retrieve
	its Product and display the book’s
	title:

	​ 	li = LineItem.find(...)
	​ 	puts ​"This line item is for ​​#{​li.product.title​}​​"​

 To be able to traverse these relationships in both
 directions, we need to add some declarations to our
 model files that specify their
 inverse relations.

 Open the
 cart.rb
 file in app/models, and add a call to has_many:

rails51/depot_f/app/models/cart.rb
	​ 	​class​ Cart < ApplicationRecord
	»	 has_many ​:line_items​, ​dependent: :destroy​
	​ 	​end​

 That has_many :line_items part of the directive is fairly
 self-explanatory: a cart (potentially) has many associated line
 items. These are linked to the cart because each line item contains a
 reference to its cart’s ID. The dependent: :destroy
 part indicates that the existence of line items is
 dependent on the existence of the cart. If we destroy a cart,
 deleting it from the database, we want Rails also to
 destroy any line items that are associated with that cart.

 Now that the Cart is declared to have many
 line items, we can reference them (as a collection) from a cart
 object:

	​ 	cart = Cart.find(...)
	​ 	puts ​"This cart has ​​#{​cart.line_items.count​}​​ line items"​

 Now, for completeness, we should add a has_many directive to
 our Product model. After all, if we have lots of carts, each product
 might have many line items referencing it. This time, we make
 use of validation code to prevent the removal of products that are
 referenced by line items:

rails51/depot_f/app/models/product.rb
	​ 	​class​ Product < ApplicationRecord
	»	 has_many ​:line_items​
	​ 	
	»	 before_destroy ​:ensure_not_referenced_by_any_line_item​
	​ 	
	​ 	 ​#...​
	​ 	
	​ 	
	»	 ​private​
	​ 	
	»	 ​# ensure that there are no line items referencing this product​
	»	 ​def​ ensure_not_referenced_by_any_line_item
	»	 ​unless​ line_items.empty?
	»	 errors.add(​:base​, ​'Line Items present'​)
	»	 ​throw​ ​:abort​
	»	 ​end​
	»	 ​end​
	​ 	​end​

 Here we declare that a product has many line items and define a
 hook method named
 ensure_not_referenced_by_any_line_item.
 A hook method is a method that Rails calls
 automatically at a given point in an object’s life. In this case, the
 method will be called before Rails attempts to destroy a row in the
 database. If the hook method throws :abort, the row isn’t
 destroyed.

 Note that we have direct access to the errors object. This
 is the same place that the validates method stores
 error messages. Errors can be associated with individual attributes,
 but in this case we associate the error with the base object.

 Before moving on, add a test to ensure that a product in a cart can’t be deleted:

rails51/depot_f/test/controllers/products_controller_test.rb
	»	test ​"can't delete product in cart"​ ​do​
	»	 assert_difference(​'Product.count'​, 0) ​do​
	»	 delete product_url(products(​:two​))
	»	 ​end​
	»	
	»	 assert_redirected_to products_url
	»	​end​
	​ 	
	​ 	test ​"should destroy product"​ ​do​
	​ 	 assert_difference(​'Product.count'​, -1) ​do​
	​ 	 delete product_url(@product)
	​ 	 ​end​
	​ 	
	​ 	 assert_redirected_to products_url
	​ 	​end​

 And change the fixture to make sure that product two is in both carts:

rails51/depot_f/test/fixtures/line_items.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	»	 product: ​two​
	​ 	 cart: ​one​
	​ 	
	​ 	two:
	​ 	 product: ​two​
	​ 	 cart: ​two​

	We’ll have more to say about intermodel relationships
	starting in ​Specifying Relationships in Models​.

Iteration D3: Adding a Button

 Now that that’s done, it’s time to add an
 Add to Cart button for each product.

 We don’t need to create a new controller or even a new action.
 Taking a look at the actions provided by the scaffold generator, we
 find index, show,
 new, edit,
 create, update, and
 destroy. The one that matches this operation
 is create. (new may
 sound similar, but its use is to get a form that’s used to solicit
 input for a subsequent create action.)

 Once this decision is made, the rest follows. What are we creating?
 Certainly not a Cart or even a
 Product. What we’re creating is a
 LineItem. Looking at the comment associated with
 the create method in
 app/controllers/line_items_controller.rb, you see
 that this choice also determines the URL to use (/line_items)
 and the HTTP method (POST).

 This choice even suggests the proper UI control to use.
 When we added links before, we used link_to,
 but links default to using HTTP GET. We want to use POST, so we’ll
 add a button this time; this means we’ll be using the
 button_to method.

 We could connect the button to the line item by specifying the URL, but
 again we can let Rails take care of this for us by simply appending
 _path to the controller’s name. In this case, we’ll use
 line_items_path.

 However, there’s a problem with this: how will
 the line_items_path method know which product
 to add to our cart? We’ll need to pass it the ID of the product
 corresponding to the button. All we need to do is
 add the :product_id option to
 the line_items_path call. We can even pass in
 the product instance itself—Rails knows to extract the ID
 from the record in circumstances such as these.

 In all, the one line that we need to add to
 our index.html.erb looks
 like this:

rails51/depot_f/app/views/store/index.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h1>Your Pragmatic Catalog</h1>
	​ 	
	​ 	<ul class=​"catalog"​>
	​ 	 ​<%​ cache @products ​do​ ​%>​
	​ 	 ​<%​ @products.each ​do​ |product| ​%>​
	​ 	 ​<%​ cache product ​do​ ​%>​
	​ 	
	​ 	 ​<%=​ image_tag(product.image_url) ​%>​
	​ 	 <h2>​<%=​ product.title ​%>​</h2>
	​ 	 <p>
	​ 	 ​<%=​ sanitize(product.description) ​%>​
	​ 	 </p>
	​ 	 <div class=​"price"​>
	​ 	 ​<%=​ number_to_currency(product.price) ​%>​
	»	 ​<%=​ button_to ​'Add to Cart'​, line_items_path(​product_id: ​product) ​%>​
	​ 	 </div>
	​ 	
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	

 We also need to deal with two formatting issues. button_to creates an
 HTML <form>, and that form contains an
 HTML <div>. Both of these are normally block
 elements that appear on the next line. We’d like to place
 them next to the price. While we’re fixing this we’d also like the button to look a bit nicer and bigger—there’s nothing like a big juicy button to entice users to click it! We’ll handle both with some CSS in store.scss:

rails51/depot_f/app/assets/stylesheets/store.scss
	​ 	 .price {
	​ 	 font-size: 1.414em;
	​ 	 }
	​ 	
	»	 form, div {
	»	 display: inline;
	»	 }
	»	 input[type=​"submit"​] {
	»	 background-color: #282;
	»	 border-radius: 0.354em;
	»	 border: solid thin #141;
	»	 color: white;
	»	 font-size: 1em;
	»	 padding: 0.354em 1em;
	»	 }
	»	 input[type=​"submit"​]:hover {
	»	 background-color: #141;
	»	 }
	​ 	}

 Now our index page looks like
 the following screenshot. But before we push the
 button, we need to modify the create method in
 the line items controller to expect a product ID as a form parameter.
 Here’s where we start to see how important
 the id field is in our models. Rails
 identifies model objects (and the corresponding database rows)
 by their id fields. If we pass an ID
 to create, we’re uniquely
 identifying the product to add.

[image: images/f_1_added_button.png]

 Why the create method? The default HTTP method
 for a link is a GET, and for a button
 is a POST. Rails uses these conventions to determine which
 method to call. Refer to the comments inside the
 app/controllers/line_items_controller.rb file to see
 other conventions. We’ll be making extensive use of these conventions
 inside the Depot application.

 Now let’s modify the LineItemsController
 to find the shopping cart for the current session
 (creating one if one isn’t there already), add the
 selected product to that cart, and display the cart
 contents.

 We use the CurrentCart concern we implemented in Iteration D1 to find (or create) a
 cart in the session:

rails51/depot_f/app/controllers/line_items_controller.rb
	​ 	​class​ LineItemsController < ApplicationController
	»	 ​include​ CurrentCart
	»	 before_action ​:set_cart​, ​only: ​[​:create​]
	​ 	 before_action ​:set_line_item​, ​only: ​[​:show​, ​:edit​, ​:update​, ​:destroy​]
	​ 	
	​ 	 ​# GET /line_items​
	​ 	 ​#...​
	​ 	​end​

 We include the CurrentCart module and declare
 that the set_cart method is to be involved before the
 create action. We explore action callbacks in depth in
 ​Callbacks​, but for now all you need to know is that
 Rails provides the ability to wire together methods that are to be called
 before, after, or even around controller actions.

 In fact, as you can
 see, the generated controller already uses this facility to set the value
 of the @line_item instance variable before the
 show, edit, update, or
 destroy actions are called.

 Now that we know that the value of @cart is set to
 the value of the current cart,
 all we need to modify is a few lines of code in the
 create method
 in
 app/controllers/line_items_controller.rb.
 to build the line item itself:

rails51/depot_f/app/controllers/line_items_controller.rb
	​ 	 ​def​ create
	»	 product = Product.find(params[​:product_id​])
	»	 @line_item = @cart.line_items.build(​product: ​product)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @line_item.save
	»	 format.html { redirect_to @line_item.cart,
	​ 	 ​notice: ​​'Line item was successfully created.'​ }
	​ 	 format.json { render ​:show​,
	​ 	 ​status: :created​, ​location: ​@line_item }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@line_item.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 We use the
 params object to get the :product_id
 parameter from the request. The params object is important inside Rails
 applications. It holds all of the parameters passed in a browser
 request. We store the result in a local variable because there’s no need to
 make this available to the view.

 We then pass that product we found into
 @cart.line_items.build. This causes a new line item
 relationship to be built between the @cart object and the
 product. You can build the relationship from either end, and
 Rails takes care of establishing the connections on both sides.

 We save the resulting line item into
 an instance variable named @line_item.

 The remainder of this method takes care of handling errors, which we’ll cover in more detail in ​Iteration E2: Handling Errors​ (as well as handling JSON requests, which we don’t need per se, but that were added by the Rails generator).
 But for now, we want
 to modify only one more thing: once the line item is created, we want to
 redirect users to the cart instead of back to the line item.
 Since the line item object knows how to find the cart object, all we
 need to do is add .cart to the method call.

 Confident that the code works as intended, we try the Add to
 Cart buttons in our browser.

And the following screenshot shows what we see.

[image: images/f_2_boring_cart.png]

 This is a bit underwhelming. We have scaffolding for the cart,
 but when we created it we didn’t provide any attributes, so the view doesn’t
 have anything to show. For now, let’s write a
 trivial template (we’ll make it look nicer in a minute). Create or replace the file views/carts/show.html.erb like so:

rails51/depot_f/app/views/carts/show.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h2>Your Pragmatic Cart</h2>
	​ 	
	​ 	 ​<%​ @cart.line_items.each ​do​ |item| ​%>​
	​ 	 ​<%=​ item.product.title ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	

 We also need to improve the visual appeal of the notice. When a user adds an item to their cart, the notice will say something like “Item successfully added to cart”. Rails’ default scaffolding styles will show that text in green, but it looks out of place. Let’s put it in a green box with a bold font. Add this following to app/assets/application.scss:

rails51/depot_f/app/assets/stylesheets/application.scss
	​ 	.notice, #notice {
	​ 	 background: #ffb;
	​ 	 border-radius: 0.5em;
	​ 	 border: solid 0.177em #882;
	​ 	 color: #882;
	​ 	 font-weight: bold;
	​ 	 margin-bottom: 1em;
	​ 	 padding: 1em 1.414em;
	​ 	 text-align: center;
	​ 	}

 So, with everything plumbed together, let’s go back and click the
 Add to Cart button again and see our view
 displayed, as in the next screenshot.

[image: images/f_3_better_cart.png]

 Go back to http://localhost:3000/, the main
 catalog page, and add a different product to the cart. You’ll
 see the original two entries plus our new item in your cart. It
 looks like we have sessions working.

 We changed the function of our controller, so we know that we need
 to update the corresponding functional test.

 For starters, we only need to pass a product ID on the call to
 post. Next, we have to deal with the fact that we’re no longer
 redirecting to the line items page. We’re instead redirecting to the
 cart, where the cart ID is internal state data residing a cookie. Because this
 is an integration test, instead of focusing on how the code is
 implemented, we should focus on what users
 see after following the redirect: a page with a heading
 identifying that they’re looking at a cart, with a list item
 corresponding to the product they added.

 We do this by updating
 test/controllers/line_items_controller_test.rb:

rails51/depot_g/test/controllers/line_items_controller_test.rb
	​ 	 test ​"should create line_item"​ ​do​
	​ 	 assert_difference(​'LineItem.count'​) ​do​
	»	 post line_items_url, ​params: ​{ ​product_id: ​products(​:ruby​).id }
	​ 	 ​end​
	​ 	
	»	 follow_redirect!
	»	
	»	 assert_select ​'h2'​, ​'Your Pragmatic Cart'​
	»	 assert_select ​'li'​, ​'Programming Ruby 1.9'​
	​ 	 ​end​

 We now rerun this set of tests:

	​ 	​depot>​​ ​​bin/rails​​ ​​test​​ ​​test/controllers/line_items_controller_test.rb​

 It’s time to show our
 customer, so we call her over and proudly display our handsome
 new cart. Somewhat to our dismay, she makes
 that tsk-tsk sound that customers make just before
 telling you that you clearly don’t get something.

 Real shopping carts, she explains, don’t show separate lines for
 two of the same product. Instead, they show the product line
 once with a quantity of 2. It looks like we’re lined up for our
 next iteration.

What We Just Did

 It’s been a busy, productive day so far. We added a
 shopping cart to our store, and along the way we dipped our
 toes into some neat Rails features:

	
We created a Cart object in one request and
 successfully located the same cart in subsequent requests by using a session
 object.

	
We added a private method and placed it in a concern,
 making it accessible to all of our controllers.

	
We created relationships between carts and line items and
 relationships between line items and products, and we were able to navigate
 using these relationships.

	
We added a button that causes a product to be posted to a cart,
 causing a new line item to be created.

Playtime

 Here’s some stuff to try on your own:

	

	 Add a new variable to the session to record how many times
	 the user has accessed the store controller’s index
 action. Note that the first time this page is accessed, your count
 won’t be in the session. You can test for this with code like
 this:
	
	​ 	​if​ session[​:counter​].nil?
	​ 	 ...

	 If the session variable isn’t there, you need to
	 initialize it. Then you’ll be able to increment it.
	

	

	
	 Pass this counter to your template, and display it at the
	 top of the catalog page. Hint: the pluralize
	 helper (definition) might
	 be useful for forming the message you display.
	

	

	 Reset the counter to zero whenever the user adds something
	 to the cart.
	

	

	 Change the template to display the counter only if the count is
	 greater than five.

	

Footnotes

	[51]
	
https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Modifying the schema and existing data
	Error diagnosis and handling
	The flash
	Logging

 Chapter
 10
Task E: A Smarter Cart

 Although we have rudimentary cart functionality implemented, we have much to
 do. To start with, we need to recognize when customers add multiples
 of the same item to the cart. Once that’s done, we’ll also have to
 make sure that the cart can handle error cases and communicate
 problems encountered along the way to the customer or system
 administrator, as appropriate.

Iteration E1: Creating a Smarter Cart

 Associating a count with each product in our cart is going to require us
 to modify the line_items table. We’ve used migrations before;
 for example, we used a migration in
 ​Applying the Migration​ to update
 the schema of the database. While that was as part of creating the
 initial scaffolding for a model, the basic approach is the same:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​migration​​ ​​add_quantity_to_line_items​​ ​​quantity:integer​

 Rails can tell from the name of the migration that you’re
 adding columns to the line_items table and can
 pick up the names and data types for each column from the last
 argument. The two patterns that Rails matches on
 are AddXXXToTABLE and RemoveXXXFromTABLE,
 where the value of XXX is ignored; what matters is the list of
 column names and types that appear after the migration name.

 The only thing Rails can’t tell is what a reasonable default is for this
 column. In many cases, a null value would do, but let’s make it
 the value 1 for existing carts by modifying the migration
 before we apply it:

rails51/depot_g/db/migrate/20170425000004_add_quantity_to_line_items.rb
	​ 	​class​ AddQuantityToLineItems < ActiveRecord::Migration[5.1]
	​ 	 ​def​ change
	»	 add_column ​:line_items​, ​:quantity​, ​:integer​, ​default: ​1
	​ 	 ​end​
	​ 	​end​

 Once it’s complete, we run the migration:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​

 Now we need a smart add_product
 method in our
 Cart, one that checks if our list of items
 already includes the product we’re adding; if it does, it bumps the
 quantity, and if it doesn’t, it builds a new
 LineItem:

rails51/depot_g/app/models/cart.rb
	​ 	​def​ add_product(product)
	​ 	 current_item = line_items.find_by(​product_id: ​product.id)
	​ 	 ​if​ current_item
	​ 	 current_item.quantity += 1
	​ 	 ​else​
	​ 	 current_item = line_items.build(​product_id: ​product.id)
	​ 	 ​end​
	​ 	 current_item
	​ 	​end​

 The find_by method is a streamlined version of the
 where method. Instead of returning an array of results,
 it returns either an existing LineItem or nil.

 We also need to modify the line item controller to use this
 method:

rails51/depot_g/app/controllers/line_items_controller.rb
	​ 	 ​def​ create
	​ 	 product = Product.find(params[​:product_id​])
	»	 @line_item = @cart.add_product(product)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @line_item.save
	​ 	 format.html { redirect_to @line_item.cart,
	​ 	 ​notice: ​​'Line item was successfully created.'​ }
	​ 	 format.json { render ​:show​,
	​ 	 ​status: :created​, ​location: ​@line_item }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@line_item.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 We make one last quick change to the show view
 to use this new information:

rails51/depot_g/app/views/carts/show.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h2>Your Pragmatic Cart</h2>
	​ 	
	​ 	 ​<%​ @cart.line_items.each ​do​ |item| ​%>​
	»	 ​<%=​ item.quantity ​%>​ × ​<%=​ item.product.title ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	

 Now that all the pieces are in place, we can go back to
 the store page and click the Add to
 Cart button for a product that’s already in the cart.
 What we’re likely to see
 is a mixture of individual products listed separately and a single
 product listed with a quantity of two. This is because we
 added a quantity of one to existing columns instead of collapsing
 multiple rows when possible. What we need to do next is migrate the
 data.

 We start by creating a migration:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​migration​​ ​​combine_items_in_cart​

 This time, Rails can’t infer what we’re trying to do, so we
 can’t rely on the generated change method.
 What we need to do instead is to replace this method with separate
 up and down methods.
 First, here’s the up method:

rails51/depot_g/db/migrate/20170425000005_combine_items_in_cart.rb
	​ 	​def​ up
	​ 	 ​# replace multiple items for a single product in a cart with a​
	​ 	 ​# single item​
	​ 	 Cart.all.each ​do​ |cart|
	​ 	 ​# count the number of each product in the cart​
	​ 	 sums = cart.line_items.group(​:product_id​).sum(​:quantity​)
	​ 	
	​ 	 sums.each ​do​ |product_id, quantity|
	​ 	 ​if​ quantity > 1
	​ 	 ​# remove individual items​
	​ 	 cart.line_items.where(​product_id: ​product_id).delete_all
	​ 	
	​ 	 ​# replace with a single item​
	​ 	 item = cart.line_items.build(​product_id: ​product_id)
	​ 	 item.quantity = quantity
	​ 	 item.save!
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 This is easily the most extensive code you’ve seen so far. Let’s look at
 it in small pieces:

	

 We start by iterating
 over each cart.

	

 For each cart, we get a sum of the quantity fields for each of the
 line items associated with this cart, grouped by product_id. The
 resulting sums will be a list of ordered pairs of product_ids and
 quantity.

	

 We iterate over these sums, extracting the product_id and
 quantity from each.

	

 In cases where the quantity is greater than one, we delete all
 of the individual line items associated with this cart and this
 product and replace them with a single line item with the correct
 quantity.

 Note how easily and elegantly Rails enables you to express this
 algorithm.

 With this code in place, we apply this migration like any other
 migration:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​

 We can see the results by looking at the cart, shown in the following screenshot.

[image: images/g_1_cart_2_quantities.png]

 Although we have reason to be pleased with ourselves, we’re not done yet.
 An important principle of migrations is that each step needs to be
 reversible, so we implement a down too.
 This method finds line items with a quantity of greater than one;
 adds new line items for this cart and product, each with a quantity of
 one; and, finally, deletes the line item:

rails51/depot_g/db/migrate/20170425000005_combine_items_in_cart.rb
	​ 	​def​ down
	​ 	 ​# split items with quantity>1 into multiple items​
	​ 	 LineItem.where(​"quantity>1"​).each ​do​ |line_item|
	​ 	 ​# add individual items​
	​ 	 line_item.quantity.times ​do​
	​ 	 LineItem.create(
	​ 	 ​cart_id: ​line_item.cart_id,
	​ 	 ​product_id: ​line_item.product_id,
	​ 	 ​quantity: ​1
	​)
	​ 	 ​end​
	​ 	
	​ 	 ​# remove original item​
	​ 	 line_item.destroy
	​ 	 ​end​
	​ 	​end​

 Now, we can just as easily roll back our migration with a
 single command:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:rollback​

 Rails provides a Rake task to allow you to check the status
 of your migrations:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate:status​
	​ 	database: /home/rubys/work/depot/db/development.sqlite3
	​ 	
	​ 	 Status Migration ID Migration Name
	​ 	 --
	​ 	 up 20160407000001 Create products
	​ 	 up 20160407000002 Create carts
	​ 	 up 20160407000003 Create line items
	​ 	 up 20160407000004 Add quantity to line items
	​ 	 down 20160407000005 Combine items in cart

 Now, we can modify and reapply the migration or even delete it
 entirely.

 To inspect the results of the rollback, we have to move the migration file out of the way so Rails doesn’t think it should apply it. You can do that via mv, for example. If you do that, the cart should look like the following screenshot:

[image: images/g_2_cart_2_no_quantities.png]

 Once we move the migration file back and reapply the
 migration (with the bin/rails
 db:migrate command), we have a cart that maintains a count
 for each of the products it holds, and we have a view that displays
 that count.

 Since we changed the output the application produces, we need to update the tests to match. Note that what the user sees isn’t
 the string × but the Unicode character
 ×. If you can’t find a way to enter that character
 using your keyboard and operating system combination, you can use the
 escape sequence \u00D7[52] instead (also note the use of double quotes, as this is needed in Ruby to enter the escape sequence):
	
rails51/depot_h/test/controllers/line_items_controller_test.rb
	​ 	 test ​"should create line_item"​ ​do​
	​ 	 assert_difference(​'LineItem.count'​) ​do​
	​ 	 post line_items_url, ​params: ​{ ​product_id: ​products(​:ruby​).id }
	​ 	 ​end​
	​ 	
	​ 	 follow_redirect!
	​ 	
	​ 	 assert_select ​'h2'​, ​'Your Pragmatic Cart'​
	»	 assert_select ​'li'​, ​"1 ​​\u​​00D7 Programming Ruby 1.9"​
	​ 	 ​end​

 Happy that we have something presentable, we call our customer
 over and show her the result of our morning’s work. She’s
 pleased—she can see the site starting to come
 together. However, she’s also troubled, having just read an
 article in the trade press on the way ecommerce sites are being
 attacked and compromised daily. She read that one kind of attack
 involves feeding requests with bad parameters into web
 applications, hoping to expose bugs and security
 flaws. She noticed that
 the link to the cart looks
 like carts/nnn,
 where nnn is our internal cart ID. Feeling
 malicious, she manually types this request into a browser,
 giving it a cart ID of wibble. She’s not impressed when our
 application displays the page shown in the screenshot.
[image: images/g_3_cart_error.png]

 This seems fairly unprofessional. So, our next iteration will be
 spent making the application more resilient.

Iteration E2: Handling Errors

 It’s apparent from the page shown in the screenshot that our application
 raised an exception at line 67 of the carts controller.
	 Your line number might be different, as we have some
	 book-related formatting stuff in our source files.
 If you go to that line, you’ll find the following code:

	​ 	@cart = Cart.find(params[​:id​])

 If the cart can’t be found, Active Record raises
 a RecordNotFound
 exception, which we clearly need to handle. The question
 arises—how?

 We could silently ignore it. From a security standpoint,
 this is probably the best move, because it gives no information
 to a potential attacker. However, it also means that if we
 ever have a bug in our code that generates bad cart IDs,
 our application will appear to the outside world to be
 unresponsive—no one will know that an error occurred.

	
 Instead, we’ll take two actions when an exception is
 raised. First, we’ll log the fact to an internal log file using the Rails
 logger facility.[53] Second, we’ll redisplay the
 catalog page along with a short message (something along
 the lines of “Invalid cart”) to the user, who can then continue to use
 our site.

	Rails has a convenient way of dealing
	with errors and error reporting. It defines a structure called
	a flash. A flash is a bucket (actually closer to
	a Hash) in which you can store stuff
	as you process a request. The contents of the flash are
	available to the next request in this session before being
	deleted automatically. Typically, the flash is used to collect
	error messages. For
	example, when our show method
	detects that it was passed an invalid
	cart ID, it can store that error
	message in the flash area and redirect to
	the index action to redisplay the
	catalog. The view for the index action can extract the error
	and display it at the top of the catalog page. The flash
	information is accessible within the views via the flash accessor method.

	Why can’t we store the error in any old instance
	variable? Remember that after a redirect is sent by our
	application to the browser, the browser sends a new request
	back to our application. By the time we receive that request,
	our application has moved on; all the instance variables from
	previous requests are long gone. The flash data is stored in
	the session to make it available between requests.

 Armed with this background about flash data, we can create an invalid_cart method to report on the
 problem:

rails51/depot_h/app/controllers/carts_controller.rb
	​ 	​class​ CartsController < ApplicationController
	​ 	 before_action ​:set_cart​, ​only: ​[​:show​, ​:edit​, ​:update​, ​:destroy​]
	»	 rescue_from ActiveRecord::RecordNotFound, ​with: :invalid_cart​
	​ 	 ​# GET /carts​
	​ 	 ​# ...​
	​ 	 ​private​
	​ 	 ​# ...​
	​ 	
	»	 ​def​ invalid_cart
	»	 logger.error ​"Attempt to access invalid cart ​​#{​params[​:id​]​}​​"​
	»	 redirect_to store_index_url, ​notice: ​​'Invalid cart'​
	»	 ​end​
	​ 	​end​

 The rescue_from clause intercepts the exception raised
 by Cart.find. In the handler, we do the following:

	

	
	
	
	 Use the Rails logger to record the error. Every controller
	 has a logger attribute. Here we use it to record a
	 message at the error logging level.
	

	

	
	
	
	
	
	
 Redirect to the catalog display by using the redirect_to method. The
 :notice parameter specifies a message to be stored in the
 flash as a notice. Why redirect rather than display the
 catalog here? If we redirect, the user’s browser will end up
 displaying the store URL, rather than
 http://.../cart/wibble. We expose less of the
 application this way. We also prevent the user from retriggering the
 error by clicking the Reload button.
	

 With this code in place, we can rerun our customer’s problematic
 query by entering the following URL:

	​ 	http://localhost:3000/carts/wibble

 We don’t see a bunch of errors in the browser now. Instead, the
 catalog page is displayed with the error message shown in the following screenshot.

[image: images/g_4_cart_error_fixed.png]

 If we look at the end of the log file
 (development.log in
 the log directory), we see our
 message:

	​ 	Started GET "/carts/wibble" for 127.0.0.1 at 2016-01-29 09:37:39 -0500
	​ 	Processing by CartsController​#show as HTML​
	​ 	 Parameters: {"id"=>"wibble"}
	​ 	 ^[[1m^[[35mCart Load (0.1ms)^[[0m SELECT "carts".* FROM "carts" WHERE
	​ 	"carts"."id" = ? LIMIT 1 [["id", "wibble"]]
	»	Attempt to access invalid cart wibble
	​ 	Redirected to http://localhost:3000/
	​ 	Completed 302 Found in 3ms (ActiveRecord: 0.4ms)

 On Unix machines, we’d probably use a command such
 as tail
 or less

 to view this file. On Windows, you can use your favorite
 editor. It’s often a good idea to keep a window open to show
 new lines as they’re added to this file. In Unix, you’d
 use tail -f. You can
 download a tail command for
 Windows[54] or get a GUI-based tool.[55] Finally,
 some OS X users use Console.app to
 track log files. Just
 say open development.log at the command line.

 This being the Internet, we can’t worry only about our published web forms;
 we have to worry about every possible interface, because malicious crackers
 can get underneath the HTML we provide and attempt to provide additional
 parameters. Invalid carts aren’t our biggest problem here; we also
 want to prevent access to other people’s carts.

 As always, your controllers are your first line of defense. Let’s go
 ahead and remove cart_id from the list of parameters that are
 permitted:

rails51/depot_h/app/controllers/line_items_controller.rb
	​ 	 ​# Never trust parameters from the scary internet, only allow the white​
	​ 	 ​# list through.​
	​ 	 ​def​ line_item_params
	»	 params.require(​:line_item​).permit(​:product_id​)
	​ 	 ​end​

 We can see this in action by rerunning our controller tests:

	​ 	bin/rails test:controllers

 No tests fail, but a peek into our
 log/test.log reveals a thwarted attempt to breach security:

	​ 	LineItemsControllerTest: test_should_update_line_item
	​ 	---
	​ 	 (0.0ms) begin transaction
	​ 	 LineItem Load (0.1ms) SELECT "line_items".* FROM
	​ 	"line_items" WHERE "line_items"."id" = ? LIMIT 1 [["id", 980190962]]
	​ 	Processing by LineItemsController​#update as HTML​
	​ 	 Parameters: {"line_item"=>{"product_id"=>nil}, "id"=>"980190962"}
	​ 	 LineItem Load (0.1ms) SELECT "line_items".* FROM
	​ 	"line_items" WHERE "line_items"."id" = ? LIMIT 1 [["id", "980190962"]]
	»	 Unpermitted parameter: cart_id
	​ 	 (0.0ms) SAVEPOINT active_record_1
	​ 	 (0.1ms) RELEASE SAVEPOINT active_record_1
	​ 	Redirected to http://test.host/line_items/980190962
	​ 	Completed 302 Found in 2ms (ActiveRecord: 0.2ms)
	​ 	 (0.0ms) rollback transaction

 Let’s clean up that test case to make the problem go away:

rails51/depot_h/test/controllers/line_items_controller_test.rb
	​ 	 test ​"should update line_item"​ ​do​
	»	 patch line_item_url(@line_item),
	»	 ​params: ​{ ​line_item: ​{ ​product_id: ​@line_item.product_id } }
	​ 	 assert_redirected_to line_item_url(@line_item)
	​ 	 ​end​

 At this point, we clear the test logs and rerun the tests:

	​ 	bin/rails log:clear LOGS=test
	​ 	bin/rails test:controllers

 A final scan of the logs identifies no further problems.

 It makes good sense to review log files periodically. They hold a lot
 of useful information.

 Sensing the end of an iteration, we call our customer over and
 show her that the error is now properly handled. She’s delighted
 and continues to play with the application. She notices a minor
 problem on our new cart display: there’s no way to empty items
 out of a cart. This minor change will be our next iteration. We
 should make it before heading home.

Iteration E3: Finishing the Cart

 We know by now that to implement the empty-cart function, we have to add a link to the cart and
 modify the destroy method in the
 carts controller to clean up the session.

[image: David says:]
David says:
Battle of the Routes: product_path vs. product_url

 It can seem hard in the beginning to know when to use
 product_path and when to use product_url when you want
 to link or redirect to a given route. In reality, it’s simple.

 When you use product_url, you’ll get the full enchilada with
 protocol and domain name, like http://example.com/products/1.
 That’s the thing to use when you’re doing redirect_to, because the HTTP
 spec requires a fully qualified URL when doing 302 Redirect and friends.
 You also need the full URL if you’re redirecting from one domain to
 another, like product_url(domain: "example2.com", product:
 product).

 The rest of the time, you can happily use product_path. This
 will generate only the /products/1 part, and that’s all you need
 when doing links or pointing forms, like link_to "My lovely
 product", product_path(product).

 The confusing part is that oftentimes the two are interchangeable
 because of lenient browsers. You can do a redirect_to with a
 product_path and it’ll probably work, but it won’t be valid
 according to spec. And you can link_to a product_url, but then
 you’re littering up your HTML with needless characters, which is a bad
 idea too.

 Start with the template and use the
 button_to method to add
 a button:

rails51/depot_h/app/views/carts/show.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h2>Your Pragmatic Cart</h2>
	​ 	
	​ 	 ​<%​ @cart.line_items.each ​do​ |item| ​%>​
	​ 	 ​<%=​ item.quantity ​%>​ × ​<%=​ item.product.title ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	
	»	​<%=​ button_to ​'Empty cart'​, @cart, ​method: :delete​,
	»	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​

 In the controller, let’s modify the destroy
 method to ensure that the user is deleting his or her own cart (think about
 it!) and to remove the cart from the session before
 redirecting to the index page with a notification message:

rails51/depot_h/app/controllers/carts_controller.rb
	​ 	 ​def​ destroy
	»	 @cart.destroy ​if​ @cart.id == session[​:cart_id​]
	»	 session[​:cart_id​] = ​nil​
	​ 	 respond_to ​do​ |format|
	»	 format.html { redirect_to store_index_url,
	»	 ​notice: ​​'Your cart is currently empty'​ }
	​ 	 format.json { head ​:no_content​ }
	​ 	 ​end​
	​ 	 ​end​

 And we update the corresponding test in
 test/controllers/carts_controller_test.rb:

rails51/depot_i/test/controllers/carts_controller_test.rb
	​ 	 test ​"should destroy cart"​ ​do​
	»	 post line_items_url, ​params: ​{ ​product_id: ​products(​:ruby​).id }
	»	 @cart = Cart.find(session[​:cart_id​])
	»	
	​ 	 assert_difference(​'Cart.count'​, -1) ​do​
	​ 	 delete cart_url(@cart)
	​ 	 ​end​
	​ 	
	»	 assert_redirected_to store_index_url
	​ 	 ​end​

 Now when we view our cart and click the “Empty cart”
 button, we are taken back to the catalog page and see the
 message shown in the screenshot.
[image: images/g_5_empty_cart.png]

 We can remove the flash message that’s autogenerated
 when a line item is added:

rails51/depot_i/app/controllers/line_items_controller.rb
	​ 	 ​def​ create
	​ 	 product = Product.find(params[​:product_id​])
	​ 	 @line_item = @cart.add_product(product)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @line_item.save
	»	 format.html { redirect_to @line_item.cart }
	​ 	 format.json { render ​:show​,
	​ 	 ​status: :created​, ​location: ​@line_item }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@line_item.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 Finally, we get around to tidying up the cart
 display.
 The -based approach makes it hard to style. A table-based layout would be easier. Replace app/views/carts/show.html.erb with the following:

rails51/depot_i/app/views/carts/show.html.erb
	​ 	<article>
	​ 	 ​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <h2>Your Cart</h2>
	​ 	 <table>
	​ 	 ​<%​ @cart.line_items.each ​do​ |line_item| ​%>​
	​ 	 <tr>
	​ 	 <td class=​"quantity"​>​<%=​ line_item.quantity ​%>​</td>
	​ 	 <td>​<%=​ line_item.product.title ​%>​</td>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(line_item.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <th colspan=​"2"​>Total:</th>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(@cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 </table>
	​ 	 ​<%=​ button_to ​'Empty cart'​, @cart,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	</article>

 To make this work, we need to add a method to both
 the LineItem and Cart
 models that returns the total price for the individual line item and
 entire cart, respectively. Here is the line item, which involves only
 simple multiplication:

rails51/depot_i/app/models/line_item.rb
	​ 	​def​ total_price
	​ 	 product.price * quantity
	​ 	​end​

 We implement the Cart method using the
 nifty Array::sum
 method to sum the prices of each item in the collection:

rails51/depot_i/app/models/cart.rb
	​ 	​def​ total_price
	​ 	 line_items.to_a.sum { |item| item.total_price }
	​ 	​end​

 With this in place, we’ll style the cart to look a bit nicer. This
 all gets inserted into app/assets/stylesheet/carts.css.

rails51/depot_i/app/assets/stylesheets/carts.scss
	​ 	​// Place all the styles related to the Carts controller here.​
	​ 	​// They will automatically be included in application.css.​
	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​
	​ 	
	​ 	.carts {
	​ 	 table {
	​ 	 border-collapse: collapse;
	​ 	 }
	​ 	 td {
	​ 	 padding: 0.5em;
	​ 	 }
	​ 	 td.quantity {
	​ 	 white-space: nowrap;
	​ 	 }
	​ 	 td​.​quantity::after {
	​ 	 content: ​" ×"​;
	​ 	 }
	​ 	 td.price {
	​ 	 font-weight: bold;
	​ 	 text-align: right;
	​ 	 }
	​ 	 tfoot {
	​ 	 th, td.price {
	​ 	 font-weight: bold;
	​ 	 padding-top: 1em;
	​ 	 }
	​ 	 th {
	​ 	 text-align: right;
	​ 	 }
	​ 	 td.price {
	​ 	 border-top: solid thin;
	​ 	 }
	​ 	 }
	​ 	 input[type=​"submit"​] {
	​ 	 background-color: #881;
	​ 	 border-radius: 0.354em;
	​ 	 border: solid thin #441;
	​ 	 color: white;
	​ 	 font-size: 1em;
	​ 	 padding: 0.354em 1em;
	​ 	 }
	​ 	 input[type=​"submit"​]:hover {
	​ 	 background-color: #992;
	​ 	 }
	​ 	}

 The following screenshot shows a nicer-looking cart.

[image: images/h_1_cart_2_styled.png]

 Finally, we update our test cases to match the current output:

	
	
	
	
rails51/depot_i/test/controllers/line_items_controller_test.rb
	​ 	 test ​"should create line_item"​ ​do​
	​ 	 assert_difference(​'LineItem.count'​) ​do​
	​ 	 post line_items_url, ​params: ​{ ​product_id: ​products(​:ruby​).id }
	​ 	 ​end​
	​ 	
	​ 	 follow_redirect!
	​ 	
	»	 assert_select ​'h2'​, ​'Your Cart'​
	»	 assert_select ​'td'​, ​"Programming Ruby 1.9"​
	​ 	 ​end​

What We Just Did

 Our shopping cart is now something the client is happy with. Along the
 way, we covered the following:

	Adding a column to an existing table, with a default
 value
	Migrating existing data into the new table format
	Providing a flash notice of an error that was detected
	Using the logger to log events
	Removing a parameter from the permitted list
	Deleting a record
	Adjusting the way a table is rendered, using CSS

 But, just as we think we’ve wrapped up this functionality, our
 customer wanders over with a copy of Information
	 Technology and Golf Weekly. Apparently, it has an
 article about the Ajax style of browser interface, where stuff gets
 updated on the fly. Hmmm…let’s look at that tomorrow.

Playtime

 Here’s some stuff to try on your own:

	

 Create a migration that copies the product price into the line
 item, and change the add_product method
 in the Cart model to capture the price
 whenever a new line item is created.
	

	

	 Write unit tests that add both unique products and duplicate
	 products to a cart. Assert how many products should be in the cart
	 in each instance. Note that you’ll need to modify the fixture to
	 refer to products
 and carts by name—for example, product: ruby.
	

	

 Check products and line items for other places where a user-friendly error message would be in order.

	

	 Add the ability to delete individual line items from the cart.
 This will require buttons on each line, and such buttons will need
 to be linked to the destroy action in the
 LineItemsController.

	

	

 We prevented accessing other user’s carts in the LineItemsController, but you can still see other carts by navigating directly to a URL like http://localhost/carts/3. See if you can prevent accessing any cart other than than one currently stored in the session.

Footnotes

	[52]
	
http://www.fileformat.info/info/unicode/char/00d7/index.htm

	[53]
	
http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger

	[54]
	
http://gnuwin32.sourceforge.net/packages/coreutils.htm

	[55]
	
http://tailforwin32.sourceforge.net/

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Using partial templates
	Rendering into the page layout
	Updating pages dynamically with Ajax and CoffeeScript
	Highlighting changes with CSS Animations
	Hiding and revealing DOM elements
	Broadcasting changes with Action Cable
	Testing the Ajax updates

 Chapter
 11
Task F: Add a Dash of Ajax

 Our customer wants us to add Ajax support to the store. But
 what is Ajax?

 Back in the old days (up until 2005 or so), browsers were
 treated as dumb devices. When you wrote a browser-based
 application, you’d send stuff to the browser and then forget
 about that session. At some point, the user would fill in some
 form fields or click a hyperlink, and your application would get
 woken up by an incoming request. It would render a complete page
 back to the user, and the whole tedious process would start
 afresh. That’s exactly how our Depot application behaves so far.

 But it turns out that browsers aren’t really that dumb. (Who knew?) They
 can run code. All modern browsers can
 run JavaScript. And it turns out that the JavaScript in the browser can
 interact behind the scenes with the application on the server, updating
 the stuff the user sees as a result. Jesse James Garrett named this style
 of interaction Ajax (which once stood for
 Asynchronous JavaScript and XML but now just means “making browsers suck
 less”).

 Browsers can do so much more with JavaScript than interact with the server, and we’ll learn about that in ​Iteration H1: Adding Fields Dynamically to a Form​, but we can do a lot for our users by simply adding a bit of Ajax to some of the user interactions in our application. And we can do it with surprisingly little code.

 So, let’s Ajaxify our shopping cart. Rather than having a separate
 shopping cart page, let’s put the current cart display into the
 catalog’s sidebar. Then we’ll use Ajax to update the
 cart in the sidebar without redisplaying the whole page.

 Whenever you work with Ajax, it’s good to start with the non-Ajax
 version of the application and then gradually introduce Ajax
 features. That’s what we’ll do here. For starters, let’s move the
 cart from its own page and put it in the sidebar.

Iteration F1: Moving the Cart

 Currently, our cart is rendered by the show
 action in the CartController and the
 corresponding html.erb
 template. We’d like to move that rendering into
 the sidebar. This means it’ll no longer be in its own page. Instead,
 we’ll render it in the layout that displays the overall catalog. You
 can do that using partial templates.

Partial Templates

	Programming languages let you define methods. A
	method is a chunk of code with a name: invoke the method by
	the name, and the corresponding chunk of code gets run. And, of
	course, you can pass parameters to a method, which lets you
	write a piece of code that can be used in many different
	circumstances.

	Think of Rails partial templates
	(partials for short) like a method for
	views. A partial is simply a chunk of a view in its own
	separate file. You can invoke (aka render) a partial from another
	template or from a controller, and the partial will render
	itself and return the results of that rendering. As
	with methods, you can pass parameters to a partial, so the
	same partial can render different results.

	We’ll use partials twice in this iteration. First let’s look
	at the cart display:

rails51/depot_i/app/views/carts/show.html.erb
	​ 	<article>
	​ 	 ​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <h2>Your Cart</h2>
	​ 	 <table>
	​ 	 ​<%​ @cart.line_items.each ​do​ |line_item| ​%>​
	​ 	 <tr>
	​ 	 <td class=​"quantity"​>​<%=​ line_item.quantity ​%>​</td>
	​ 	 <td>​<%=​ line_item.product.title ​%>​</td>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(line_item.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <th colspan=​"2"​>Total:</th>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(@cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 </table>
	​ 	 ​<%=​ button_to ​'Empty cart'​, @cart,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	</article>

	It creates a list of table rows, one for each item in the
	cart. Whenever you find yourself iterating like this, you
	should stop and ask yourself, is this too much logic in
	a template? It turns out we can abstract away the loop by using
	partials (and, as you’ll see, this also sets the stage for some
 Ajax later). To do
	this, make use of the fact that you can pass a
	collection to the method that renders partial templates, and
	that method will automatically invoke the partial once for
	each item in the collection. Let’s rewrite our cart view to
	use this feature:

rails51/depot_j/app/views/carts/show.html.erb
	​ 	<article>
	​ 	 ​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <h2>Your Cart</h2>
	​ 	 <table>
	​ 	
	»	 ​<%=​ render(@cart.line_items) ​%>​
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <th colspan=​"2"​>Total:</th>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(@cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 </table>
	​ 	 ​<%=​ button_to ​'Empty cart'​, @cart,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	</article>

 That’s a lot simpler. The render method will
 iterate over any collection that’s passed to it. The partial
 template is simply another template file (by default in the
 same directory as the object being rendered and with the name of the
 table as the name). However, to keep the names of partials distinct
 from regular templates, Rails automatically prepends an underscore to
 the partial name when looking for the file. That means we need
 to name our partial _line_item.html.erb and place
 it in the app/views/line_items directory:

rails51/depot_j/app/views/line_items/_line_item.html.erb
	​ 	<tr>
	​ 	 <td class=​"quantity"​>​<%=​ line_item.quantity ​%>​</td>
	​ 	 <td>​<%=​ line_item.product.title ​%>​</td>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(line_item.total_price) ​%>​</td>
	​ 	</tr>

	Something subtle is going on here. Inside the partial
	template, we refer to the current object by using the
	variable name that matches the name of the template. In this case,
 the partial is named line_item, so
 inside the partial we expect to have a variable called
 line_item.

	So now we’ve tidied up the cart display, but that hasn’t moved
	it into the sidebar. To do that, let’s revisit our layout. If
	we had a partial template that could display the cart, we could
 embed a call like this within the sidebar:

	​ 	render(​"cart"​)

	 But how would the partial know where to
	find the cart object? One way is for it to make an
	assumption. In the layout, we have access to
	the @cart instance variable that
	was set by the controller. Turns out that this is also
	available inside partials called from the layout. But
	this is like calling a method and passing it a value
	in a global variable. It works, but it’s ugly coding, and it
	increases coupling (which in turn makes your programs hard to maintain).

 Now that we have a partial for a line item, let’s do the same for the
 cart. First we’ll create the _cart.html.erb
 template. This is basically our
 carts/show.html.erb template but using
 cart instead of
 @cart (Note that
 it’s OK for a partial to invoke other partials).

rails51/depot_j/app/views/carts/_cart.html.erb
	​ 	<article>
	​ 	 ​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <h2>Your Cart</h2>
	​ 	 <table>
	​ 	
	»	 ​<%=​ render(cart.line_items) ​%>​
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <th colspan=​"2"​>Total:</th>
	»	 <td class=​"price"​>​<%=​ number_to_currency(cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 </table>
	»	 ​<%=​ button_to ​'Empty cart'​, cart,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	</article>

 As the Rails mantra goes, don’t repeat yourself (DRY). But we’ve
 just done that. At the moment, the two files are in sync, so there may
 not seem to be much of a problem—but having one set of logic for the
 Ajax calls and another set of logic to handle the case where
 JavaScript is disabled invites problems. Let’s avoid all of that
 and replace the original template with code that causes the
 partial to be rendered:

rails51/depot_k/app/views/carts/show.html.erb
	»	​<%=​ render @cart ​%>​

	Now change the application layout to include this new partial
	in the sidebar:

rails51/depot_k/app/views/layouts/application.html.erb
	​ 	​<!DOCTYPE html>​
	​ 	<html>
	​ 	 <head>
	​ 	 <title>Pragprog Books Online Store</title>
	​ 	 ​<%=​ csrf_meta_tags ​%>​
	​ 	
	​ 	 ​<%=​ stylesheet_link_tag ​'application'​, ​media: ​​'all'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 ​<%=​ javascript_include_tag ​'application'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 </head>
	​ 	
	​ 	 <body>
	​ 	 <header class=​"main"​>
	​ 	 ​<%=​ image_tag ​'logo.svg'​, ​alt: ​​'The Pragmatic Bookshelf'​ ​%>​
	​ 	 <h1>​<%=​ @page_title ​%>​</h1>
	​ 	 </header>
	​ 	 <section class=​"content"​>
	​ 	 <nav class=​"side_nav"​>
	»	 <div id=​"cart"​ class=​"carts"​>
	»	 ​<%=​ render @cart ​%>​
	»	 </div>
	​ 	
	​ 	 Home
	​ 	 Questions
	​ 	 News
	​ 	 Contact
	​ 	
	​ 	 </nav>
	​ 	 <main class=​'​​<%=​ controller.controller_name ​%>​​'​>
	​ 	 ​<%=​ ​yield​ ​%>​
	​ 	 </main>
	​ 	 </section>
	​ 	 </body>
	​ 	</html>

 Note that we’ve given the <article> element that wraps the cart the CSS class carts. This will allow it to pick up the styling we added in ​Iteration E3: Finishing the Cart​.

	Next. we have to make a small change to the store
	controller. We’re invoking the layout while looking at the
	store’s index action, and that action doesn’t
 currently set @cart. That’s a quick change:

rails51/depot_k/app/controllers/store_controller.rb
	​ 	​class​ StoreController < ApplicationController
	»	 ​include​ CurrentCart
	»	 before_action ​:set_cart​
	​ 	 ​def​ index
	​ 	 @products = Product.order(​:title​)
	​ 	 ​end​
	​ 	​end​

 The data for the cart is common no matter where it’s placed in
 the output, but there’s no requirement that the presentation be
 identical independently of where this content is placed. In fact, black
 lettering on a green background is hard to read, so let’s
 provide additional rules for this table when it appears in the
 sidebar:

rails51/depot_k/app/assets/stylesheets/application.scss
	​ 	#cart {
	​ 	 article {
	​ 	 h2 {
	​ 	 margin-top: 0;
	​ 	 }
	​ 	 background: white;
	​ 	 border-radius: 0.5em;
	​ 	 margin: 1em;
	​ 	 padding: 1.414em;
	​ 	 ​@media​ (min-width: 30em) {
	​ 	 margin: 0; ​// desktop doesn't need this margin​
	​ 	 }
	​ 	 }
	​ 	}

	If you display the catalog after adding something to your
	cart, you should see something like
	the screenshot.

[image: images/j_1_side_cart.png]

Let’s just wait for the Webby Award nomination.

Changing the Flow

	Now that we’re displaying the cart in the sidebar, we can
	change the way that the Add to Cart
	button works. Rather than display a separate cart page, all
	it has to do is refresh the main index page.

The change is
 straightforward. At the end of the create action,
	we redirect the browser back to the index:

rails51/depot_k/app/controllers/line_items_controller.rb
	​ 	 ​def​ create
	​ 	 product = Product.find(params[​:product_id​])
	​ 	 @line_item = @cart.add_product(product)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @line_item.save
	»	 format.html { redirect_to store_index_url }
	​ 	 format.json { render ​:show​,
	​ 	 ​status: :created​, ​location: ​@line_item }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@line_item.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 At this point, we rerun our tests and see a number of failures:

	​ 	​$ ​​bin/rails​​ ​​test​
	​ 	Run options: --seed 57801
	​ 	
	​ 	​# Running:​
	​ 	
	​ 	​...​​E​
	​ 	
	​ 	Error:
	​ 	​ProductsControllerTest#​​test_should_show_product:​
	​ 	ActionView::Template::Error: 'nil' is not an ActiveModel-compatible
	​ 	object. It must implement :to_partial_path.
	​ 	app/views/layouts/application.html.erb:21:in
	​ 	`_app_views_layouts_application_html_erb`

 If we try to display the products index by visiting
 http://localhost:3000/products in the browser, we see the
 error shown in the following screenshot.

[image: images/k_1_products_page_broken.png]

 This information is helpful. The message identifies the template
 file that was being processed at the point where the error occurs
 (app/views/layouts/application.html.erb), the line number
 where the error occurred, and an excerpt from the template of lines
 around the error. From this, we see that the expression being
 evaluated at the point of error is @cart.line_items, and the
 message produced is ’nil’ is not an ActiveModel-compatible
 object.

 So, @cart is apparently nil when we display an index
 of our products. That makes sense, because it’s set only in the
 store controller.

 We can even verify this using the web console provided at the bottom
 of the web page. Now that we know what the problem is, the fix is to avoid displaying the cart at all unless the value is set:

rails51/depot_l/app/views/layouts/application.html.erb
	​ 	<nav class=​"side_nav"​>
	»	 ​<%​ ​if​ @cart ​%>​
	»	
	»	 <div id=​"cart"​ class=​"carts"​>
	»	 ​<%=​ render @cart ​%>​
	»	 </div>
	»	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	
	​ 	 Home
	​ 	 Questions
	​ 	 News
	​ 	 Contact
	​ 	
	​ 	</nav>

 With this change in place, our tests now pass once again. Imagine what could have happened. A change in one part of an
 application made to support a new requirement breaks a function
 implemented in another part of the application. If you are
 not careful, this can happen in a small application like Depot. Even
 if you are careful, this will happen in a large application.

 Keeping tests up-to-date is an important part of maintaining your
 application. Rails makes this as easy as possible to do. Agile programmers make
 testing an integral part of their development efforts. Many even go
 so far as to write their tests first, before the first line of code
 is written.

	So, now we have a store with a cart in the sidebar. When we
	click to add an item to the cart, the page is redisplayed with
	an updated cart. However, if our catalog is large, that
	redisplay might take a while. It uses bandwidth, and it uses
	server resources. Fortunately, we can use Ajax to make this
	better.
	
	
	
	
	
	
	
	
	
	
	

Iteration F2: Creating an Ajax-Based Cart

 Ajax lets us write code that runs in the browser and interacts
 with our server-based application. In our case, we’d like to
 make the Add to Cart buttons invoke the
 server create action on the LineItems
 controller in the background. The server
 can then send down just the HTML for the cart, and we can
 replace the cart in the sidebar with the server’s updates.

 Now normally we’d do this by writing JavaScript that runs
 in the browser and by writing server-side code that
 communicates with this JavaScript (possibly using a technology
 such as JavaScript Object Notation [JSON]).
 The good news is that, with
 Rails, all this is hidden from us. We can use Ruby to do everything we need to do (and with a whole lot of support from some Rails helper
 methods).

 The trick when adding Ajax to an application is to take small
 steps. So let’s start with the most basic one. Let’s change
 the catalog page to send an Ajax request to our server
 application and have the application respond with the HTML
 fragment containing the updated cart.

 On the index page, we’re
 using button_to to create the link to
 the create action.

 We want to
 change this to send an Ajax request instead.
 To do this, we
 add
 a remote: true parameter to the call:

rails51/depot_l/app/views/store/index.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h1>Your Pragmatic Catalog</h1>
	​ 	
	​ 	<ul class=​"catalog"​>
	​ 	 ​<%​ cache @products ​do​ ​%>​
	​ 	 ​<%​ @products.each ​do​ |product| ​%>​
	​ 	 ​<%​ cache product ​do​ ​%>​
	​ 	
	​ 	 ​<%=​ image_tag(product.image_url) ​%>​
	​ 	 <h2>​<%=​ product.title ​%>​</h2>
	​ 	 <p>
	​ 	 ​<%=​ sanitize(product.description) ​%>​
	​ 	 </p>
	​ 	 <div class=​"price"​>
	​ 	 ​<%=​ number_to_currency(product.price) ​%>​
	»	 ​<%=​ button_to ​'Add to Cart'​, line_items_path(​product_id: ​product),
	»	 ​remote: ​​true​ ​%>​
	​ 	 </div>
	​ 	
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	

 So far, we’ve arranged for the browser to send an Ajax request
 to our application.
 The next step is to have the application
 return a response. The plan is to create the updated HTML
 fragment that represents the cart and to have the browser stick
 that HTML into the browser’s internal representation of the structure
 and content of the document being displayed—namely, the Document Object
 Model (DOM).
 By manipulating the DOM, we cause the display to change in
 front of the user’s eyes.

 The first change is to stop
 the create action from redirecting to the index
 display if the request is for JavaScript.
 We do this by
 adding a call to respond_to telling
 it that we want to respond with a format of
 js:

rails51/depot_l/app/controllers/line_items_controller.rb
	​ 	 ​def​ create
	​ 	 product = Product.find(params[​:product_id​])
	​ 	 @line_item = @cart.add_product(product)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @line_item.save
	​ 	 format.html { redirect_to store_index_url }
	»	 format.js
	​ 	 format.json { render ​:show​,
	​ 	 ​status: :created​, ​location: ​@line_item }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@line_item.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 This syntax may seem surprising at first, but it’s just a
 method call. The other method calls on format—like html—pass an optional block (blocks are described in ​Blocks and Iterators​). The code you just added doesn’t pass a block, which tells Rails to find a JavaScript template to render the response in app/views/line_items called create.js.erb or create.js.coffee. We’ll cover the respond_to method in greater detail in ​Selecting a Data Representation​.

 Both filenames are treated as a template, executed in Ruby, and sent to the browser as JavaScript for execution. Using js.erb means you want to write a JavaScript template, and js.coffee means you want to write a CoffeeScript template.

 We’ll use CoffeeScript,[56] which is a cleaner, more Ruby-like language that Rails compiles down to JavaScript. We’ll learn a bit more about it later in the chapter, but it’s most common to write client-side code in CoffeeScript, which Rails made the default language in 3.1. Given all this, our template will be in app/views/line_items/create.js.coffee.

rails51/depot_l/app/views/line_items/create.js.coffee
	​ 	cart = document.getElementById(​"cart"​)
	​ 	cart.innerHTML = ​"<%= j render(@cart) %>"​

 This template tells the browser to
 replace the content of the element
 whose id is cart with that HTML. Let’s analyze how it manages to do that.

 The first line of code locates the element that has an id of cart using the built-in JavaScript function getElementById available on the document global variable.[57][58]

 The next line of code renders the HTML into the cart element. This is where we see that this file is a template and not just pure CoffeeScript. This content is formed by a call to the render method on the @cart object. The output of this method is processed by an escape_javascript helper method, using a convenient alias named j, that converts this Ruby string into a format acceptable as input to JavaScript. This is assigned to the cart element’s innerHTML property,[59] which inserts the rendered HTML into the page.

 Note that this script is executed in the browser. The only parts
 executed on the server are the portions within the <%= and
 %> delimiters. The screenshot shows this somewhat circuitous flow.

[image: images/ajax_flow.png]

 Does it work? Well, it’s hard to show in a book, but it sure
 does. Make sure you reload the index page to get
 the remote version of the form. Then click one of the Add to Cart
 buttons. You should see the cart in the sidebar
 update. And you shouldn’t see your browser show any
 indication of reloading the page. You’ve just created an Ajax
 application.

Troubleshooting

 Although Rails makes Ajax straightforward, it can’t make it
	foolproof. And because you’re dealing with the loose
	integration of a number of technologies, it can be hard to
	work out why your Ajax doesn’t work. That’s one of the reasons
	you should always add Ajax functionality one step at a
	time.

	Here are a few hints if your Depot application didn’t show any
 Ajax interactions:

	

	 Does your browser have any special incantation to force it
	 to reload everything on a page? Sometimes browsers hold
	 local cached versions of page assets, and this can mess up
	 testing. Now would be a good time to do a full reload.
	
	

	

	
	 Did you have any errors reported? Look
	 in development.log in
	 the logs directory. Also look in the
 Rails server window, because some errors are reported there.
	

	

	 Still looking at the log file, do you see incoming
	 requests to the create action? If not, it
 means your browser isn’t making Ajax requests.
 Perhaps your browser has JavaScript execution disabled?
	

	

	 Some readers have reported that they had to stop and
	 start their application to get the Ajax-based cart to
	 work.
	

	

	
	
	
	
	 If you’re using Internet Explorer, it may be running in
	 what Microsoft calls “quirks mode,” which
	 is backward-compatible with old Internet Explorer releases but is also
	 broken.

	 Internet Explorer switches into “standards mode,”
	 which works better with the Ajax stuff, if the first line
	 of the downloaded page is an appropriate DOCTYPE
	 header. Our layouts
	 use this:
	
	​ 	​<!DOCTYPE html>​

The Customer Is Never Satisfied

	We’re feeling pretty pleased with ourselves. We changed a
	handful of lines of code, and our boring old Web 1.0
	application now sports Web 2.0 Ajax speed stripes. We
	breathlessly call the client over to come look. Without saying anything, we
	proudly click Add to Cart and look at
	her, eager for the praise we know will come. Instead, she
	looks surprised. “You called me over to show me a bug?” she
	asks. “You click that button, and nothing happens.”

	We patiently explain that, in fact, a lot happened. Just
	look at the cart in the sidebar. See? When we add something,
	the quantity changes from 4 to 5.

	“Oh,” she says, “I didn’t notice that.” And, if she didn’t
	notice the page update, it’s likely that our users won’t
	either. It’s time for some user interface hacking.

Iteration F3: Highlighting Changes

 A common way to highlight changes made to a page via Ajax is
 the (now) infamous Yellow Fade Technique.[60]
 It highlights an element in a browser: by
 default it flashes the background yellow and then gradually
 fades it back to white.

 The user clicks
 the Add to Cart button, and the count
 updates to two as the line flares brighter. It then fades back
 to the background color over a short period of time.

 You can implement this with CSS animations.[61]
 In CSS animations, a class uses the animation attribute to reference a particular animation. The animation itself is defined as a series of keyframes that describe the style of an element at various points in the animation. The animation is executed by the browser when the page loads or when the class is applied to an element. This sounds complicated, but for our case we only need to define the starting and ending states of the element.

 Let’s see the CSS first. We’ll place it inside app/assets/stylesheets/line_items.scss, which was created by the Rails generator you ran back in ​Iteration D2: Connecting Products to Carts​.

rails51/depot_m/app/assets/stylesheets/line_items.scss
	​ 	​// Place all the styles related to the LineItems controller here.​
	​ 	​// They will automatically be included in application.css.​
	​ 	​// You can use Sass (SCSS) here: http://sass-lang.com/​
	»	
	»	​@keyframes​ line-item-highlight {
	»	 0% {
	»	 background: #8f8;
	»	 }
	»	 100% {
	»	 background: none;
	»	 }
	»	}
	»	
	»	.line-item-highlight {
	»	 animation: line-item-highlight 1s;
	»	}

 The @keyframes directive defines an animation, in this case named line-item-highlight. Inside that declaration, we specify what the state of the DOM element should be at various points in the animation. At the start of the animation (0%), the element should have a background color of bright green, which is the highlight color. At the end of the animation (100%), it should have no background color.

 Next we define a CSS class named line-item-highlight that uses the animation attribute. It accepts the name of the animation (which we just defined) and an animation time, which we’ve set at one second (note that you don’t have to name the CSS class the same as the animation, but it can help keep it all straight if you do).

 The last step is to use this class on the recently added item. To do that, our ERB template needs to know which item is the most recently added item. Set that inside LineItemsController:

rails51/depot_m/app/controllers/line_items_controller.rb
	​ 	 ​def​ create
	​ 	 product = Product.find(params[​:product_id​])
	​ 	 @line_item = @cart.add_product(product)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @line_item.save
	​ 	 format.html { redirect_to store_index_url }
	»	 format.js { @current_item = @line_item }
	​ 	 format.json { render ​:show​,
	​ 	 ​status: :created​, ​location: ​@line_item }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@line_item.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 In the _line_item.html.erb partial, we then
 check to see if the item we’re rendering is the one that
 just changed. If so, we give it the animation class we just defined:

rails51/depot_m/app/views/line_items/_line_item.html.erb
	»	​<%​ ​if​ line_item == @current_item ​%>​
	»	<tr class=​"line-item-highlight"​>
	»	​<%​ ​else​ ​%>​
	»	<tr>
	»	​<%​ ​end​ ​%>​
	​ 	 <td class=​"quantity"​>​<%=​ line_item.quantity ​%>​</td>
	​ 	 <td>​<%=​ line_item.product.title ​%>​</td>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(line_item.total_price) ​%>​</td>
	​ 	</tr>

 As a result of these two minor changes,
 the <tr> element of the most recently changed
 item in the cart will be tagged
 with class="line-item-highlight". When the browser receives this rendered HTML and inserts it into the DOM, the browser will see that the most recently added line item has the class line-item-highlight, which will trigger the animation. No JavaScript needed!

 With that change in place, click any Add to Cart button, and you’ll see that the changed item in the
 cart glows a light green before fading back to merge with the
 background.

 We’re not done yet. We haven’t tested any of our Ajax additions,
 such as what happens when we click the Add to
 Cart button. Rails provides the help we need to do that, too.

 We already have a should create line_item test, so let’s
 add another one called should create line_item via ajax:

rails51/depot_m/test/controllers/line_items_controller_test.rb
	​ 	test ​"should create line_item via ajax"​ ​do​
	​ 	 assert_difference(​'LineItem.count'​) ​do​
	​ 	 post line_items_url, ​params: ​{ ​product_id: ​products(​:ruby​).id },
	​ 	 ​xhr: ​​true​
	​ 	 ​end​
	​ 	
	​ 	 assert_response ​:success​
	​ 	 assert_match ​/<tr class=\\"line-item-highlight/​, @response.body
	​ 	​end​

 This test differs in the name of the test, in the manner of invocation
 from the create line item test (xhr :post vs. simply
 post, where xhr stands for the XMLHttpRequest
 mouthful)—and in the expected results. Instead of a redirect, we
 expect a successful response containing a call to replace the HTML for
 the cart…sort of.

 If you insert a call to puts @response.body and rerun your test, you can see how Rails renders the response. It’s JavaScript that contains your code inside a function that gets invoked. In short, this is how we can ask the browser to run JavaScript for us safely, but we need to assert something about the contents of the JavaScript. The simplest way to do that is to look in the response for <tr class="line-item-highlight">. Parsing the JavaScript and introspecting the rendered string is a bit tricky, so this simple assertion will do for now. In ​Iteration H2: Testing Our JavaScript Functionality​, we’ll learn a better way to test JavaScript-enabled features.

Iteration F4: Hiding an Empty Cart with a Custom Helper

 The customer has one last request. Right now, even carts with
 nothing in them are displayed in the sidebar. Can we
 arrange for the cart to appear only when it has some content?
 But of course!

 In fact, we have a number of options. The simplest is probably
 to include the HTML for the cart only if the cart has something
 in it. We could do this totally within
 the _cart partial:

	»	​<​% unless cart.line_items.empty? %>
	​ 	<h2>Your Cart</h2>
	​ 	<table>
	​ 	 ​<​%= render(cart.line_items) %>
	​ 	
	​ 	 <tr class=​"total_line"​>
	​ 	 <td colspan=​"2"​>Total</td>
	​ 	 <td class=​"total_cell"​>​<​%= number_to_currency(cart.total_price) %></td>
	​ 	 </tr>
	​ 	</table>
	​ 	
	​ 	​<​%= button_to 'Empty cart', cart, method: :delete,
	​ 	 confirm: 'Are you sure?' %>
	»	​<​% end %>

 Although this works, the code is a bit odd. Our application layout is rendering a cart partial, which then turns around and avoids rendering anything if the cart is empty. It would be cleaner if the application layout had the logic for rendering the cart only when needed, while the cart partial continues to just render itself when asked. While we could do this with a similar unless statement inside the application layout, let’s create a more generic means of doing this using a helper method.

A helper method is a function available to your views to handle generic view-related logic or code. In ​Iteration C3: Using a Helper to Format the Price​, we used the built-in helper number_to_currency, but you can create your own helpers, too. In fact, it’s a good practice to abstract any complex processing into a custom helper method.

	If you look in the app directory, you’ll find
 eight subdirectories:

	​ 	​depot>​​ ​​ls​​ ​​-p​​ ​​app​
	​ 	assets/ controllers/ jobs/ models/
	​ 	channels/ helpers/ mailers/ views/

	Not surprisingly, our helper methods go in
	the helpers directory.
	If you look in that directory,
	you’ll find it already contains some files:

	​ 	​depot>​​ ​​ls​​ ​​-p​​ ​​app/helpers​
	​ 	application_helper.rb line_items_helper.rb store_helper.rb
	​ 	carts_helper.rb products_helper.rb

 The Rails generators automatically created a helper file for each of
 our controllers (products and store). The rails command itself (the
 one that created the application initially) created the application_helper.rb file. If you like, you can
 organize your methods into controller-specific helpers, but since this
 method will be used in the application layout, let’s put it in the
 application helper.

	Let’s write a helper method
	called render_if. It takes a
	condition and an object to render. If the condition is true, it uses the built-in render method on the object, like so:

rails51/depot_n/app/views/layouts/application.html.erb
	​ 	<nav class=​"side_nav"​>
	​ 	
	​ 	 <div id=​"cart"​ class=​"carts"​>
	​ 	
	»	 ​<%=​ render_if @cart && @cart.line_items.any?, @cart ​%>​
	​ 	 </div>
	​ 	
	​ 	
	​ 	 Home
	​ 	 Questions
	​ 	 News
	​ 	 Contact
	​ 	
	​ 	</nav>

 Since this helper is not specific to any particular controller, we’ll add it to application_helper.rb in the app/helpers directory:

rails51/depot_n/app/helpers/application_helper.rb
	​ 	​module​ ApplicationHelper
	»	 ​def​ render_if(condition, record)
	»	 ​if​ condition
	»	 render record
	»	 ​end​
	»	 ​end​
	​ 	​end​

 This code uses an if to check the condition, calling render if it holds.

 One other thing we need to deal with is the flash message. If you add an item to your cart, then clear your cart, and then add an item, you’ll still see the “Your cart is empty” message, even though your cart has an item in it. By using Ajax to insert the cart into the page, we only redrew part of the screen, so the flash message stays around. If you reload the page, the message goes away, but we can hide it using CoffeeScript.

 Since the code in app/views/line_items/create.js.coffee is executed when an item is added, you can add code there to also hide the flash message. It’s rendered in a <p> tag with the ID notice. Using getElementById, you can locate that element and, if it’s there, set its style’s display property to "none", which is a programmatic way of setting the display CSS property.

rails51/depot_n/app/views/line_items/create.js.coffee
	​ 	cart = document.getElementById(​"cart"​)
	​ 	cart.innerHTML = ​"<%= j render(@cart) %>"​
	​ 	
	»	notice = document.getElementById(​"notice"​)
	»	​if​ notice
	»	 notice.style.display = ​"none"​

 This shows a bit more of CoffeeScript. Note that the if statement doesn’t need parens around the test, doesn’t need braces, and doesn’t even need an ending tag. The indentation alone lets CoffeeScript know what’s inside the if block.

 Now that we’ve added all this Ajax goodness, go ahead and empty your
 cart and add an item.

 So far we’ve focused on being more responsive to changes initiated by the user
 viewing the page. But what about changes made by
 others? It turns out that that’s not as complex as it sounds, thanks to a powerful feature
 of Rails: Action Cable.

Iteration F5: Broadcasting Updates with Action Cable

 Up until now, our users’ web browsers have requested information from our Rails app, either by going directly to a URL or by clicking a link or button. It’s also possible to send information from our Rails app to our users’ browsers without a direct request. The technology that enables this is called Web Sockets.[62] Prior to Rails 5, setting this up was fairly involved, but Rails 5 introduced Action Cable, which simplifies pushing data to all connected browsers.

 We can use Action Cable and Web Sockets to broadcast price updates to the users browsing the catalog. To see why we’d want to,
 bring up the Depot application in two browser windows or tabs. In the
 first window, display the catalog. Then, in the second window, update
 the price of an item. Return to the first window and add that item
 to the cart. At this point, the cart shows the updated price,
 but the catalog shows the original price, as illustrated in the following screenshot.

[image: images/depot_f_change_price.png]

 We discuss this with our customer. She agrees to honor
 the price at the time the item was placed in the cart, but she wants the
 catalog being displayed to be up-to-date. At this point, we’ve reached
 the limits of what Ajax can do for us. So far, the server has only
 responded to requests and has no way to initiate an update.

 In 2011, the Internet Engineering Task Force (IETF) published a
 Standards Track document describing a two-way WebSocket
 protocol.[63] Action Cable provides both a client-side JavaScript
 framework and a server-side Ruby framework that together
 seamlessly integrate the WebSocket protocol into the rest of your Rails
 application. This enables features like real-time updates to be easily
 added to your Rails application in a manner that performs well and is scalable.

 Making use of Action Cable is a three-step process: create a channel,
 broadcast some data, and receive the data.
 And by now, it should be no surprise
 that Rails has a generator that does most of the work (for two out of
 the three steps, anyway):

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​channel​​ ​​products​
	​ 	 create app/channels/products_channel.rb
	​ 	 identical app/assets/javascripts/cable.js
	​ 	 create app/assets/javascripts/channels/products.coffee

 The way to create a channel is by updating the file
 created in the app/channels/ directory:

rails51/depot_o/app/channels/products_channel.rb
	​ 	​class​ ProductsChannel < ApplicationCable::Channel
	​ 	 ​def​ subscribed
	»	 stream_from ​"products"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ unsubscribed
	​ 	 ​# Any cleanup needed when channel is unsubscribed​
	​ 	 ​end​
	​ 	​end​

 What’s important here is the name of the class
 (ProductsChannel) and the name of the stream (products).
 It’s possible for a channel to support multiple streams (for example, a
 chat application can have multiple rooms), but we only need one stream
 for now.

 Channels can have security implications, so by default Rails only allows
 access from the localhost when running in development mode. If you’re
 doing development with multiple machines, you must disable this
 check. Do this by adding the following line to
 config/environments/development.rb:

	​ 	config.action_cable.disable_request_forgery_protection = ​true​

 We’ll be sending only data over this channel, and not processing
 commands, so this is safe to do.

 Next, we’re going to broadcast the entire catalog every time an
 update is made. We could instead choose to send only portions of the catalog, or
 any other data that we might want, but we already have a view for
 the catalog, so we might as well use it:

rails51/depot_o/app/controllers/products_controller.rb
	​ 	 ​def​ update
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @product.update(product_params)
	​ 	 format.html { redirect_to @product,
	​ 	 ​notice: ​​'Product was successfully updated.'​ }
	​ 	 format.json { render ​:show​, ​status: :ok​, ​location: ​@product }
	»	
	»	 @products = Product.all
	»	 ActionCable.server.broadcast ​'products'​,
	»	 ​html: ​render_to_string(​'store/index'​, ​layout: ​​false​)
	​ 	 ​else​
	​ 	 format.html { render ​:edit​ }
	​ 	 format.json { render ​json: ​@product.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 We’re using the existing store/index view, which requires
 a list of products to have been set into the @products instance
 variable. We call render_to_string to render the view
 as a string, passing layout: false, because we want only this view
 and not the entire page. Broadcast messages typically consist of
 Ruby hashes, which are converted to JSON to go across the wire and end
 up as JavaScript objects. In this case, we use html as the
 hash key.

 The final step is to receive the data on the client. This involves
 subscribing to the channel and defining what’ll be done when data is
 received.

 Since this happens in the browser, you’ll need to write some more CoffeeScript. Fortunately, Rails generated an outline of what you need to do in app/assets/javascripts/channels/products.coffee. It generated a class with three methods: connected, disconnected, and received. It’s received that we care about, because that’s called with the data that gets sent down the channel.

 That data has an html attribute that contains the updated HTML. You can then use getElementsByTagName to locate all the main elements on the page. Since our application only has one of these, we can safely grab the first one using [0] and replace its HTML with the received HTML, like so:

rails51/depot_o/app/assets/javascripts/channels/products.coffee
	​ 	App.products = App.cable.subscriptions.create ​"ProductsChannel"​,
	​ 	 connected: ->
	​ 	 ​# Called when the subscription is ready for use on the server​
	​ 	
	​ 	 disconnected: ->
	​ 	 ​# Called when the subscription has been terminated by the server​
	​ 	
	​ 	 received: (data) ->
	»	 document.getElementsByTagName(​"main"​)[0].innerHTML = data.html

 The other two methods, connected and disconnected, are called when the browser connects and disconnects to the channel, and generally you can leave them empty.

 This shows even more of the benefits of CoffeeScript. If you go to the CoffeeScript site,[64] click “Try CoffeeScript,” and paste this code, you can see the equivalent in JavaScript. It’s a bit longer and more verbose. Of course, the other benefit is that Rails generated most of this code for you, and you only had to add one line. A good place to find out more on this subject is CoffeeScript: Accelerated JavaScript Development [Bur15].

 To start the Action Cable process (and to pick up the configuration
 change if that was done), we need to restart the server. The first
 time you visit the Depot page you’ll see additional messages on the
 server window:

	​ 	Started GET "/cable" for ::1 at 2016-03-13 11:02:42 -0400
	​ 	Started GET "/cable/" [WebSocket] for ::1 at 2016-03-13 11:02:42 -0400
	​ 	Successfully upgraded to WebSocket (REQUEST_METHOD: GET,
	​ 	HTTP_CONNECTION: keep-alive, Upgrade, HTTP_UPGRADE: websocket)
	​ 	ProductsChannel is transmitting the subscription confirmation
	​ 	ProductsChannel is streaming from products

 Again, update the price of a book in one browser window and watch
 the catalog update instantly in any other browser window that
 shows the Depot store.

What We Just Did

 In this iteration, we added Ajax support to our cart:

	

	 We moved the shopping cart into the sidebar. We then arranged
	 for the create action to redisplay the catalog
	 page.
	

	

 We used remote: true to invoke the
 LineItemsController.create
 action using Ajax.
	

	

	 We then used an ERB template to create CoffeeScript that’ll
	 execute on the client.
	

	

	 We wrote a helper method that renders the cart only if it has anything in it.
	

	

 We used Action Cable and CoffeeScript to update the catalog display
 whenever a product changes.
	

	

	 We wrote a test that verifies not only the creation of a line item
 but also the content of the response that’s returned from such a
 request.
	

 The key point to take away is the incremental style of Ajax
 development. Start with a conventional application and then add
 Ajax features, one by one. Ajax can be hard to debug; by adding
 it slowly to an application, you make it easier to track down
 what changed if your application stops working. And, as you saw,
 starting with a conventional application makes it easier to
 support both Ajax and non-Ajax behavior in the same codebase.

 Finally, here are a couple of hints. First, if you plan to do a lot of
 Ajax development, you’ll probably need to get familiar with your
 browser’s JavaScript debugging facilities and with its DOM
 inspectors, such as Firefox’s Firebug, Internet Explorer’s Developer
 Tools, Google Chrome’s Developer Tools, Safari’s Web Inspector, or
 Opera’s Dragonfly.

 And, second, the NoScript
 plugin for Firefox makes checking JavaScript/no JavaScript a one-click breeze.
 Others find it useful to run two different browsers when they’re
 developing—with JavaScript enabled in one and disabled in the other.
 Then, as new features are added, poking at it with both browsers will
 ensure that your application works regardless of the state of JavaScript.

Playtime

 Here’s some stuff to try on your own:

	

	 The cart is currently hidden when the user empties it by
	 redrawing the entire catalog. Can you change the
	 application to remove it using an Ajax request, so the page doesn’t reload?
	

	

	
	 Add a button next to each item in the cart. When clicked, it
	 should invoke an action to decrement the quantity of the
	 item, deleting it from the cart when the quantity reaches
	 zero. Get it working without using Ajax first and then
	 add the Ajax goodness.
	

	

	
	 Make images clickable. In response to a click, add the
 associated product to the cart.
	

	

	
	
	
	 When a product changes, highlight the product that changed in response
 to receiving a broadcast message.

	

Footnotes

	[56]
	
http://coffeescript.org

	[57]
	
https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById

	[58]
	
https://developer.mozilla.org/en-US/docs/Web/API/Document

	[59]
	
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

	[60]
	
https://signalvnoise.com/archives/000558.php

	[61]
	
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations

	[62]
	
https://www.w3.org/TR/websockets/

	[63]
	
https://tools.ietf.org/html/rfc6455

	[64]
	
http://coffeescript.org

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Linking tables with foreign keys
	Using belongs_to, has_many, and :through
	Creating forms based on models (form_with)
	Linking forms, models, and views
	Generating a feed using atom_helper on model objects

 Chapter
 12
Task G: Check Out!

 Let’s take stock. So far, we’ve put together a basic product
 administration system, we’ve implemented a catalog, and we have a
 pretty spiffy-looking shopping cart. So, now we need to let the
 buyer actually purchase the contents of that cart. Let’s implement
 the checkout function.

 We’re not going to go overboard here. For now, all we’ll do is
 capture the customer’s contact information and payment details. Using
 these, we’ll construct an order in the database. Along the way,
 we’ll be looking a bit more at models, validation, and form handling.

Iteration G1: Capturing an Order

 An order is a set of line items, along with details of the
 purchase transaction.
 Our cart already contains line_items, so all we need to do is add
 an order_id column to the line_items table and create
 an orders table based on the
 Initial guess at application data
 diagram, combined with a brief
 chat with our customer.

 First we create the order model and update the line_items table:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​scaffold​​ ​​Order​​ ​​name​​ ​​address:text​​ ​​email​​ ​​\​
	​ 	​ ​​pay_type:integer​
	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​migration​​ ​​add_order_to_line_item​​ ​​order:references​

 Note that we didn’t specify any data type for two of the four
 columns. This is because the data type defaults to string.
 This is yet another small way in which Rails makes things easier for
 you in the most common case without making things any more cumbersome
 when you need to specify a data type.

 Note that we defined pay_type as an integer.
 While this is an efficient way to store data that can only store
 discrete values, storing data in this way requires keeping track of
 which values are used for which payment type. Rails can do this for you
 through the use of enum declarations placed in the model
 class. Add this code to app/models/order.rb:

rails51/depot_o/app/models/order.rb
	​ 	​class​ Order < ApplicationRecord
	»	 enum ​pay_type: ​{
	​ 	 ​"Check"​ => 0,
	​ 	 ​"Credit card"​ => 1,
	​ 	 ​"Purchase order"​ => 2
	​ 	 }
	​ 	​end​

 Now that we’ve created the migrations, we can apply them:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​
	​ 	== CreateOrders: migrating =======================================
	​ 	-- create_table(:orders)
	​ 	​ ->​​ ​​0.0014s​
	​ 	== CreateOrders: migrated (0.0015s) ==============================
	​ 	
	​ 	== AddOrderIdToLineItem: migrating ===============================
	​ 	-- add_column(:line_items, :order_id, :integer)
	​ 	​ ->​​ ​​0.0008s​
	​ 	== AddOrderIdToLineItem: migrated (0.0009s) ======================

 Because the database didn’t have entries for these two
 new migrations in the schema_migrations
 table,
 the db:migrate task applied both migrations to the
 database. We could, of course, have applied them separately by running
 the migration task after creating the individual migrations.

[image: Joe asks:]
Joe asks:
Where’s the Credit-Card Processing?

 In the real world, we’d probably want our
 application to handle the commercial side of checkout. We might even
 want to integrate credit-card processing. However, integrating with
 back-end payment-processing systems requires a fair amount of paperwork
 and jumping through hoops. And this would distract from looking
 at Rails, so we’re going to punt on this particular detail for the
 moment.

Creating the Order Capture Form

 Now that we have our tables and our models as we need them, we can
 start the checkout process. First, we need to add a
 Checkout button to the shopping cart. Because it’ll create a new order, we’ll link it back to a new action
 in our order controller:

rails51/depot_o/app/views/carts/_cart.html.erb
	​ 	<article>
	​ 	 ​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <h2>Your Cart</h2>
	​ 	 <table>
	​ 	
	​ 	 ​<%=​ render(cart.line_items) ​%>​
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <th colspan=​"2"​>Total:</th>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 </table>
	​ 	
	»	 <div class=​"actions"​>
	​ 	 ​<%=​ button_to ​'Empty cart'​, cart,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	
	»	 ​<%=​ button_to ​'Checkout'​, new_order_path,
	»	 ​method: :get​,
	»	 ​class: ​​"checkout"​​%>​
	»	 </div>
	​ 	</article>

	The first thing we want to do is check to make sure that there’s
	something in the cart. This requires us to have access to the cart.
 Planning ahead, we’ll also need this when we create an order:

rails51/depot_o/app/controllers/orders_controller.rb
	​ 	​class​ OrdersController < ApplicationController
	»	 ​include​ CurrentCart
	»	 before_action ​:set_cart​, ​only: ​[​:new​, ​:create​]
	»	 before_action ​:ensure_cart_isnt_empty​, ​only: :new​
	​ 	 before_action ​:set_order​, ​only: ​[​:show​, ​:edit​, ​:update​, ​:destroy​]
	​ 	
	​ 	 ​# GET /orders​
	​ 	 ​#...​
	»	
	»	 ​private​
	»	 ​def​ ensure_cart_isnt_empty
	»	 ​if​ @cart.line_items.empty?
	»	 redirect_to store_index_url, ​notice: ​​'Your cart is empty'​
	»	 ​end​
	»	 ​end​
	​ 	​end​

 If nothing is in the cart, we redirect the
	 user back to the storefront, provide a notice of what we did, and return
	 immediately. This prevents people from navigating directly to the
	 checkout option and creating empty orders. Note that we tucked this
 handling of an exception case into a before_action method.
 This enables the main line processing logic to remain clean.

 And we add a test for requires item in cart and modify the existing
 test for should get new to ensure that the cart contains an item:

rails51/depot_o/test/controllers/orders_controller_test.rb
	»	 test ​"requires item in cart"​ ​do​
	»	 get new_order_url
	»	 assert_redirected_to store_index_path
	»	 assert_equal flash[​:notice​], ​'Your cart is empty'​
	»	 ​end​
	​ 	
	​ 	 test ​"should get new"​ ​do​
	»	 post line_items_url, ​params: ​{ ​product_id: ​products(​:ruby​).id }
	»	
	​ 	 get new_order_url
	​ 	 assert_response ​:success​
	​ 	 ​end​

	Now we want the new action to present users with
	a form, prompting them to enter the information in
	the orders table: the user’s name, address,
	email address, and payment type. This means we’ll need to display a Rails template containing a form. The
	input fields on this form will have to link to the
	corresponding attributes in a Rails model object, so we
	need to create an empty model object in the new
	action to give these fields something to work with.

	As always with HTML forms, the trick is
	populating any initial values into the form fields and then
	extracting those values out into our application when the
	user clicks the submit button.

 In the controller, the @order instance
 variable is set to reference a new Order model
 object. This is done because the view populates the form from the data
 in this object. As it stands, that’s not particularly interesting.
 Because it’s a new model object, all the fields will be empty.
 However, consider the general case. Maybe we want to edit an existing
 order. Or maybe the user has tried to enter an order but the data
 has failed validation. In these cases, we want any existing data in
 the model shown to the user when the form is displayed. Passing in the
 empty model object at this stage makes all these cases
 consistent. The view can always assume it has a model object
 available.

	Then, when the user clicks the submit button, we’d like the new
	data from the form to be extracted into a model object back in
	the controller.

	Fortunately, Rails makes this relatively painless. It provides
	us with a bunch of form helper methods. These
	helpers interact with the controller and with the models to
	implement an integrated solution for form handling. Before we
 start on our final form, let’s look at a small example:

	​ 	​<%=​ form_with(​model: ​@order, ​local: ​​true​) ​do​ |form| ​%>​
	​ 	 <p>
	​ 	 ​<%=​ form.label ​:name​, ​"Name:"​ ​%>​
	​ 	 ​<%=​ form.text_field ​:name​, ​size: ​40 ​%>​
	​ 	 </p>
	​ 	​<%​ ​end​ ​%>​

 This code does two powerful things for us. First, the form_with helper on the first line sets up an
 HTML form that knows about Rails routes and models. The first argument, module: @order tells the helper which instance variable to use when naming fields and sending the form data back to the controller (the second argument tells Rails not to post this form via Ajax, which became the default in Rails 5.1).

 The second powerful feature of the code is how it creates the form fields themselves. You can see that form_with sets up a Ruby block environment (that ends on the last line of the listing with the end keyword). Within this block, you can put normal template stuff (such as the <p> tag). But you can also use the block’s parameter (form in this case) to reference a form context. We use this context to add a text field with a label by calling text_field and label, respectively. Because the text field is constructed in the context of form_with, it’s automatically associated with the data in the @order object. This association means that submitting the form will set the right names and values in the data available to the controller, but it will also pre-populate the form fields with any values already existing on the model.

	All these relationships can be confusing. It’s important to
	remember that Rails needs to know both the names and
	the values to use
	for the fields associated with a model. The combination
	of form_with and the various field-level helpers (such
	as text_field) gives it this
	information. You can see this process in the figure.

	Now we can update the template for the form that captures a
	customer’s details for checkout. It’s invoked from
	the new action in the order controller, so the
	template is called new.html.erb, found
 in the app/views/orders directory:

rails51/depot_o/app/views/orders/new.html.erb
	»	<section class=​"depot_form"​>
	»	 <h1>Please Enter Your Details</h1>
	»	 ​<%=​ render ​'form'​, ​order: ​@order ​%>​
	»	</section>

[image: images/form_with.png]

 This template makes use of a partial named _form:

rails51/depot_o/app/views/orders/_form.html.erb
	​ 	​<%=​ form_with(​model: ​order, ​local: ​​true​) ​do​ |form| ​%>​
	​ 	 ​<%​ ​if​ order.errors.any? ​%>​
	​ 	 <div id=​"error_explanation"​>
	​ 	 <h2>​<%=​ pluralize(order.errors.count, ​"error"​) ​%>​
	​ 	 prohibited this order from being saved:</h2>
	​ 	
	​ 	
	​ 	 ​<%​ order.errors.full_messages.each ​do​ |message| ​%>​
	​ 	 ​<%=​ message ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 </div>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:name​ ​%>​
	»	 ​<%=​ form.text_field ​:name​, ​id: :order_name​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:address​ ​%>​
	»	 ​<%=​ form.text_area ​:address​, ​id: :order_address​, ​rows: ​3, ​cols: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:email​ ​%>​
	»	 ​<%=​ form.email_field ​:email​, ​id: :order_email​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:pay_type​ ​%>​
	»	 ​<%=​ form.select ​:pay_type​, Order.pay_types.keys, ​id: :order_pay_type​,
	»	 ​prompt: ​​'Select a payment method'​ ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"actions"​>
	»	 ​<%=​ form.submit ​'Place Order'​ ​%>​
	​ 	 </div>
	​ 	​<%​ ​end​ ​%>​

 Rails has form helpers for all the different HTML-level form
 elements. In the
 previous code, we use text_field, email_field, and
 text_area
 helpers to capture the customer’s name, email, and address.
 We’ll cover form helpers in more depth in ​Generating Forms​.

 The only tricky thing in there is the code associated with the
 selection list.

 We use the keys defined for the pay_type
 enum for the list of available payment options.

 We also pass the :prompt parameter, which adds a dummy
 selection containing the prompt text.

 Let’s also add some CSS to make the form work with our existing design. While we’re doing this, we’ll also add some styling for the error states that Rails renders (which we’ll learn about in a moment). You can add all of this at the end of app/assets/stylesheets/application.scss:

rails51/depot_o/app/assets/stylesheets/application.scss
	​ 	.depot_form {
	​ 	 padding: 0 1em;
	​ 	 h1 {
	​ 	 font-size: 1.99em;
	​ 	 line-height: 1.41em;
	​ 	 margin-bottom: 0.5em;
	​ 	 padding: 0;
	​ 	 }
	​ 	 .field, .actions {
	​ 	 margin-bottom: 0.5em;
	​ 	 padding: 0;
	​ 	 }
	​ 	 .actions {
	​ 	 text-align: right;
	​ 	 padding: 1em 0;
	​ 	 }
	​ 	 input, textarea, select, option {
	​ 	 border: solid thin #888;
	​ 	 box-sizing: border-box;
	​ 	 font-size: 1em;
	​ 	 padding: 0.5em;
	​ 	 width: 100%;
	​ 	 }
	​ 	 label {
	​ 	 padding: 0.5em 0;
	​ 	 }
	​ 	 input[type=​"submit"​] {
	​ 	 background-color: #bfb;
	​ 	 border-radius: 0.354em;
	​ 	 border: solid thin #888;
	​ 	 color: black;
	​ 	 font-size: 1.41em;
	​ 	 font-weight: bold;
	​ 	 padding: 0.354em 1em;
	​ 	 }
	​ 	 input[type=​"submit"​]:hover {
	​ 	 background-color: #9d9;
	​ 	 }
	​ 	 ​// Also, clean up the error styling​
	​ 	 #error_explanation {
	​ 	 background-color: white;
	​ 	 border-radius: 1em;
	​ 	 border: solid thin red;
	​ 	 margin-bottom: 0.5em;
	​ 	 padding: 0.5em;
	​ 	 width: 100%;
	​ 	 h2 {
	​ 	 background: none;
	​ 	 color: red;
	​ 	 font-size: 1.41em;
	​ 	 line-height: 1.41em;
	​ 	 padding: 1em;
	​ 	 }
	​ 	 ul {
	​ 	 margin-top: 0;
	​ 	 li {
	​ 	 color: red;
	​ 	 font-size: 1em;
	​ 	 }
	​ 	 }
	​ 	 }
	​ 	 .field_with_errors {
	​ 	 background: none;
	​ 	 color: red;
	​ 	 width: 100%;
	​ 	 label {
	​ 	 font-weight: bold;
	​ 	 }
	​ 	 label::before {
	​ 	 content: ​"! "​;
	​ 	 }
	​ 	 input,textarea {
	​ 	 background: pink;
	​ 	 }
	​ 	 }
	​ 	}

	We’re ready to play with our form. Add some stuff to your
	cart, then click the Checkout
 button. You should see something like the screenshot.

[image: images/o_1_checkout_form.png]

	Looking good! Before we move on, let’s finish
	the new action by adding some validation. We’ll
	change the Order model to verify that
	the customer enters data for all the input fields. We’ll also validate that the payment type is one of the accepted
 values:
 	
rails51/depot_o/app/models/order.rb
	​ 	​class​ Order < ApplicationRecord
	​ 	 ​# ...​
	»	 validates ​:name​, ​:address​, ​:email​, ​presence: ​​true​
	»	 validates ​:pay_type​, ​inclusion: ​pay_types.keys
	​ 	​end​

	 Some folks might be wondering why we bother to validate
	 the payment type, given that its value comes from a
	 drop-down list that contains only valid values. We do it
	 because an application can’t assume that it’s being fed
	 values from the forms it creates. Nothing is stopping
	 a malicious user from submitting form data directly to the
	 application, bypassing our form. If the user sets an
	 unknown payment type, that user might conceivably get our
	 products for free.
	

 Note that we already loop over the @order.errors at the top
 of the page. This’ll report validation failures.

 Since we modified validation rules, we need to modify our test fixture
 to match:

rails51/depot_o/test/fixtures/orders.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	»	 name: ​Dave Thomas​
	​ 	 address: ​MyText​
	»	 email: ​dave@example.org​
	»	 pay_type: ​Check​
	​ 	
	​ 	two:
	​ 	 name: ​MyString​
	​ 	 address: ​MyText​
	​ 	 email: ​MyString​
	​ 	 pay_type: ​1​

 Furthermore, for an order to be created, a line item needs to be in
 the cart, so we need to modify the line items test fixture too:

rails51/depot_o/test/fixtures/line_items.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	​ 	 product: ​two​
	​ 	 cart: ​one​
	​ 	
	​ 	two:
	»	 product: ​ruby​
	»	 order: ​one​

 Note that if you didn’t choose to do the optional exercises in
 ​Playtime​, you need to
 modify all of the references to products and carts at this time.

 Feel free to make other changes, but only the first is currently used
 in the functional tests. For these tests to pass, we’ll need to
 implement the model.

Capturing the Order Details

	Let’s implement the create action
	in the controller. This method has to do the following:

	
	 Capture the values from the form to populate a
	 new Order model object.
	
	
	 Add the line items from our cart to that order.
	
	
	 Validate and save the order. If this fails, display the
	 appropriate messages, and let the user correct any problems.
	
	
 Once the order is successfully saved, delete the cart, redisplay
 the catalog page, and display a message confirming that the order
 has been placed.
	

	We define the relationships themselves, first from
 the line item to the order:

rails51/depot_o/app/models/line_item.rb
	​ 	​class​ LineItem < ApplicationRecord
	»	 belongs_to ​:order​, ​optional: ​​true​
	»	 belongs_to ​:product​, ​optional: ​​true​
	​ 	 belongs_to ​:cart​

	​ 	 ​def​ total_price
	​ 	 product.price * quantity
	​ 	 ​end​
	​ 	​end​

	 And then we define the relationship from the order to the line item, once again indicating that
 all line items that belong to an order are to be destroyed whenever the
 order is destroyed:

rails51/depot_o/app/models/order.rb
	​ 	​class​ Order < ApplicationRecord
	»	 has_many ​:line_items​, ​dependent: :destroy​
	​ 	 ​# ...​
	​ 	​end​

	The method ends up looking something like this:

rails51/depot_o/app/controllers/orders_controller.rb
	​ 	​def​ create
	​ 	 @order = Order.new(order_params)
	»	 @order.add_line_items_from_cart(@cart)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @order.save
	»	 Cart.destroy(session[​:cart_id​])
	»	 session[​:cart_id​] = ​nil​
	»	 format.html { redirect_to store_index_url, ​notice:​
	»	​ ​​'Thank you for your order.'​ }
	​ 	 format.json { render ​:show​, ​status: :created​,
	​ 	 ​location: ​@order }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@order.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

[image: Joe asks:]
Joe asks:
Aren’t You Creating Duplicate Orders?

 Joe is concerned to see our controller creating
 Order model objects in two actions:
 new and create.
 He’s wondering why this doesn’t lead to duplicate orders in the
 database.

 The answer is that the new
 action creates an Order
 object in memory simply to give the template
 code something to work with. Once the response is sent to the
 browser, that particular object gets abandoned, and it’ll
 eventually be reaped by Ruby’s garbage collector. It never
 gets close to the database.

 The create action also creates
 an Order object, populating it from
 the form fields. This object does get saved in
 the database.
 So, model objects perform two roles: they map data into and
 out of the database, but they’re also regular objects
 that hold business data. They affect the database only when
 you tell them to, typically by
 calling save.

	We start by creating a
	new Order object and initialize it from the form data.
	The next line adds into this order the
	items that are already stored in the cart; we’ll write the
	method to do that in a minute.

	Next, we tell the order object to save itself (and its children, the line items) to
	the database. Along	the way, the order object will perform validation (but we’ll
	get to that in a minute).

 If the save succeeds, we do two
	things. First, we ready ourselves for this customer’s next
	order by deleting the cart from the session. Then, we
 redisplay the catalog, using the redirect_to
 method to display a cheerful message. If, instead, the save fails, we
 redisplay the checkout form with the current cart.

	In the create action, we assumed that the order
	object contains the
	add_line_items_from_cart method,
	so let’s implement that method now:

rails51/depot_p/app/models/order.rb
	​ 	​class​ Order < ApplicationRecord
	​ 	 ​# ...​
	»	 ​def​ add_line_items_from_cart(cart)
	»	 cart.line_items.each ​do​ |item|
	»	 item.cart_id = ​nil​
	»	 line_items << item
	»	 ​end​
	»	 ​end​
	​ 	​end​

 For each item that we transfer from the cart to the order, we need to
 do two things. First we set the cart_id to nil
 to prevent the item from going poof when we destroy the cart.

 Then we add the item itself to the line_items collection for
 the order.
	Notice that we didn’t have to do anything special with the
	various foreign-key fields, such as setting
	the order_id column in the line item
	rows to reference the newly created order row. Rails does that
	knitting for us using the has_many
	and belongs_to declarations we added
	to the Order
	and LineItem models. Appending each new
	line item to the line_items collection
	hands the responsibility for key management over to Rails.

 We also need to modify the test to reflect the new redirect:

rails51/depot_p/test/controllers/orders_controller_test.rb
	​ 	 test ​"should create order"​ ​do​
	​ 	 assert_difference(​'Order.count'​) ​do​
	​ 	 post orders_url, ​params: ​{ ​order: ​{ ​address: ​@order.address,
	​ 	 ​email: ​@order.email, ​name: ​@order.name,
	​ 	 ​pay_type: ​@order.pay_type } }
	​ 	 ​end​
	​ 	
	»	 assert_redirected_to store_index_url
	​ 	 ​end​

	So, as a first test of all of this, click the Place
	Order button on the checkout page without filling
	in any of the form fields. You should see the checkout page
	redisplayed along with error messages complaining about
	the empty fields, as shown in the following screenshot.
	

[image: images/o_2_checkout_errors.png]

 If we fill in data (as shown in the following screenshot) and
	click Place Order, we should be taken back
 to the catalog, as shown in the screenshot.
[image: images/o_3_checkout_form_filled_in.png]
[image: images/o_4_thanks.png]

But did it work? Let’s look in the database, using the Rails command dbconsole, which tells Rails to open an interactive shell to whatever database we have configured.
	​ 	​depot>​​ ​​bin/rails​​ ​​dbconsole​
	​ 	SQLite version 3.8.2
	​ 	Enter ".help" for instructions
	​ 	​sqlite>​​ ​​.mode​​ ​​line​
	​ 	​sqlite>​​ ​​select​​ ​​*​​ ​​from​​ ​​orders;​
	​ 	 id = 1
	​ 	 name = Dave Thomas
	​ 	 address = 123 Main St
	​ 	 email = customer@example.com
	​ 	 pay_type = 0
	​ 	 created_at = 2016-05-29 02:31:04.964785
	​ 	 updated_at = 2016-05-29 02:31:04.964785
	​ 	​sqlite>​​ ​​select​​ ​​*​​ ​​from​​ ​​line_items;​
	​ 	 id = 10
	​ 	 product_id = 2
	​ 	 cart_id =
	​ 	 created_at = 2016-05-29 02:30:26.188914
	​ 	 updated_at = 2016-05-29 02:31:04.966057
	​ 	 quantity = 1
	​ 	 price = 45
	​ 	 order_id = 1
	​ 	​sqlite>​​ ​​.quit​

 Although what you see will differ on details such as version numbers and
 dates (and price will be present only if you completed the
 exercises defined in ​Playtime​),
 you should see a single order and one or more line items that
 match your selections.

 Now that users can check out and purchase products, the customer needs a way to view these orders. Going into the database directly is not acceptable. We also don’t have time to build a full-fledged admin user interface right now, so we’ll take advantage of the various Atom feed readers that exist and have our app export all the orders as an Atom feed, so the customer can quickly see what’s been purchased.

Iteration G2: Atom Feeds

 By using a standard feed format, such as Atom, you can
 immediately take advantage of a wide variety of preexisting
 clients. Because Rails already knows about IDs, dates, and
 links, it can free you from having to worry about these pesky
 details and let you focus on producing a human-readable
 summary. We start by adding a new action to the products controller:

rails51/depot_p/app/controllers/products_controller.rb
	​ 	​def​ who_bought
	​ 	 @product = Product.find(params[​:id​])
	​ 	 @latest_order = @product.orders.order(​:updated_at​).last
	​ 	 ​if​ stale?(@latest_order)
	​ 	 respond_to ​do​ |format|
	​ 	 format.atom
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

[image: Joe asks:]
Joe asks:
Why Atom?

 A number of different feed formats exit—most notably RSS 1.0,
 RSS 2.0, and Atom, standardized in 2000, 2002, and 2005, respectively.
 These three are all widely supported. To aid with the transition, a
 number of sites provide multiple feeds for the same site, but this
 is no longer necessary, increases user confusion, and generally isn’t recommended.

 The Ruby language provides a low-level library that can produce any
 of these formats as well as a number of other less common versions
 of RSS. For best results, stick with one of the three main
 versions.

 The Rails framework is all about picking reasonable defaults, and it
 has chosen Atom as the default for feed formats. It’s specified as
 an Internet standards--track protocol for the Internet community by
 the IETF, and Rails provides a higher-level helper named
 atom_feed that takes care of a number of details based on
 knowledge of Rails naming conventions for things like IDs and dates.

 In addition to fetching the product, we check to see if the request is
 stale. Remember in ​Iteration C5: Caching of Partial Results​ when we cached partial results of
 responses because the catalog display was expected to be a high-traffic
 area? Well, feeds are like that, but with a different usage pattern.
 Instead of a large number of different clients all requesting the same
 page, we have a small number of clients repeatedly requesting the same
 page. You might be familiar with the idea of browser caches; the
 same concept holds true for feed aggregators.

 The way this works is that the responses contain a bit of metadata
 that identifies when the content was last modified and a hashed value
 called an ETag. If a subsequent request provides this
 data back, this gives the server the opportunity to respond
 with an empty response body and an indication that the data hasn’t
 been modified.

 As is usual with Rails, you don’t need to worry about the mechanics.
 You just need to identify the source of the content,
 and Rails does the rest. In this case, we
 use the last order. Inside the if statement, we process the request
 normally.

 By adding format.atom, we cause Rails to look for a template
 named who_bought.atom.builder. Such a template can use
 the generic XML functionality that Builder provides as well as use
 the knowledge of the Atom feed format that the atom_feed
 helper provides:

rails51/depot_p/app/views/products/who_bought.atom.builder
	​ 	atom_feed ​do​ |feed|
	​ 	 feed.title ​"Who bought ​​#{​@product.title​}​​"​
	​ 	
	​ 	 feed.updated @latest_order.try(​:updated_at​)
	​ 	
	​ 	 @product.orders.each ​do​ |order|
	​ 	 feed.entry(order) ​do​ |entry|
	​ 	 entry.title ​"Order ​​#{​order.id​}​​"​
	​ 	 entry.summary ​type: ​​'xhtml'​ ​do​ |xhtml|
	​ 	 xhtml.p ​"Shipped to ​​#{​order.address​}​​"​
	​ 	
	​ 	 xhtml.table ​do​
	​ 	 xhtml.tr ​do​
	​ 	 xhtml.th ​'Product'​
	​ 	 xhtml.th ​'Quantity'​
	​ 	 xhtml.th ​'Total Price'​
	​ 	 ​end​
	​ 	 order.line_items.each ​do​ |item|
	​ 	 xhtml.tr ​do​
	​ 	 xhtml.td item.product.title
	​ 	 xhtml.td item.quantity
	​ 	 xhtml.td number_to_currency item.total_price
	​ 	 ​end​
	​ 	 ​end​
	​ 	 xhtml.tr ​do​
	​ 	 xhtml.th ​'total'​, ​colspan: ​2
	​ 	 xhtml.th number_to_currency \
	​ 	 order.line_items.map(&​:total_price​).sum
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 xhtml.p ​"Paid by ​​#{​order.pay_type​}​​"​
	​ 	 ​end​
	​ 	 entry.author ​do​ |author|
	​ 	 author.name order.name
	​ 	 author.email order.email
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 At the overall feed level, we need to provide only two pieces of
 information: the title and the date of the latest update. If no
 orders exist, the updated_at value is null, and Rails supplies the current time instead.

 Then we iterate over each order associated with this product by calling @product.orders. Products and orders have no direct relationship to each other, though there is an indirect one via line items. A product’s orders would be the orders associated with any of the product’s line items. We could implement that ourselves by creating an orders method, but Rails provides a way to do this for us, since this indirect relationship is a common pattern. The has_many method we used to tell Rails that a product has many line items takes an optional argument named through: that tells Rails to traverse the indirect relationship. In our case, we’ll tell Rails that a product has many orders through its existing line items relationship:

rails51/depot_p/app/models/product.rb
	​ 	​class​ Product < ApplicationRecord
	​ 	 has_many ​:line_items​
	»	 has_many ​:orders​, ​through: :line_items​
	​ 	 ​#...​
	​ 	​end​

 For each order, we provide a title, a summary, and an author. The
 summary can be full XHTML, and we use this to produce a table of
 product titles, quantity ordered, and total prices. We follow this
 table with a paragraph containing the pay_type.

 To make this work, we need to define a route. This action will
 respond to HTTP GET requests and will operate on a member of the
 collection (in other words, on an individual product) as opposed to
 the entire collection (which in this case would mean all
 products):

rails51/depot_p/config/routes.rb
	​ 	Rails.application.routes.draw ​do​
	​ 	 resources ​:orders​
	​ 	 resources ​:line_items​
	​ 	 resources ​:carts​
	​ 	 root ​'store#index'​, ​as: ​​'store_index'​
	​ 	
	»	 resources ​:products​ ​do​
	»	 get ​:who_bought​, ​on: :member​
	»	 ​end​
	​ 	
	​ 	 ​# For details on the DSL available within this file, see​
	​ 	 ​# http://guides.rubyonrails.org/routing.html​
	​ 	​end​

 We can try it for ourselves:

	​ 	​depot>​​ ​​curl​​ ​​--silent​​ ​​http://localhost:3000/products/3/who_bought.atom​
	​ 	<?xml version="1.0" encoding="UTF-8"?>
	​ 	<feed xml:lang="en-US" xmlns="http://www.w3.org/2005/Atom">
	​ 	 <id>tag:localhost,2005:/products/3/who_bought</id>
	​ 	 <link type="text/html" href="http://localhost:3000" rel="alternate"/>
	​ 	 <link type="application/atom+xml"
	​ 	 href="http://localhost:3000/info/who_bought/3.atom" rel="self"/>
	​ 	 <title>Who bought Programming Ruby 1.9</title>
	​ 	 <updated>2016-01-29T02:31:04Z</updated>
	​ 	 <entry>
	​ 	 <id>tag:localhost,2005:Order/1</id>
	​ 	 <published>2016-01-29T02:31:04Z</published>
	​ 	 <updated>2016-01-29T02:31:04Z</updated>
	​ 	 <link rel="alternate" type="text/html" href="http://localhost:3000/orders/1"/>
	​ 	 <title>Order 1</title>
	​ 	 <summary type="xhtml">
	​ 	 <div xmlns="http://www.w3.org/1999/xhtml">
	​ 	 <p>Shipped to 123 Main St</p>
	​ 	
	​ 	 <table>
	​ 	​ ...​
	​ 	 </table>
	​ 	 <p>Paid by check</p>
	​ 	 </div>
	​ 	 </summary>
	​ 	 <author>
	​ 	 <name>Dave Thomas</name>
	​ 	 <email>customer@pragprog.com</email>
	​ 	 </author>
	​ 	 </entry>
	​ 	</feed>

 Looks good. Now we can subscribe to this in our favorite feed reader.

 Best of all, the customer likes it. We’ve implemented product
 maintenance, a basic catalog, and a shopping cart,
 and now we have a simple ordering system. Obviously, we’ll also have to
 write some kind of fulfillment application, but that can wait for a new
 iteration. (And that iteration is one that we’ll skip in this book; it
 doesn’t have much new to say about Rails.)

What We Just Did

 In a fairly short amount of time, we did the following:

	

	 We created a form to capture details for the order and
	 linked it to a new order model.
	

	

	 We added validation and used helper methods to display errors
	 to the user.
	

	

	 We provided a feed so the administrator can monitor incoming orders.
	

Playtime

 Here’s some stuff to try on your own:

	

	 Get HTML- and JSON-formatted views working for
	 who_bought requests. Experiment with including the
 order information in the JSON view by rendering
 @product.to_json(include: :orders).
 Do the same thing
 for XML using ActiveModel::Serializers::Xml.[65]
	

	

	
	 What happens if you click
	 the Checkout button in the sidebar
	 while the checkout screen is already displayed? Can you
	 find a way to disable the button in this circumstance?
	

	

	
	

	 The list of possible payment types is currently stored as
	 a constant in the Order class. Can
	 you move this list into a database table? Can you still
	 make validation work for the field?

	

Footnotes

	[65]
	
https://github.com/rails/activemodel-serializers-xml#readme

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Using Webpacker to manage app-like Javascript
	Setting up a development environment that includes Webpack
	Using React to build a dynamic web form
	Using Capybara and ChromeDriver to test JavaScript-powered features

 Chapter
 13
Task H: Entering Additional
Payment Details

 Our customer is enthusiastic about our progress, but after playing with the new checkout feature for a few minutes, she has a question: how does a user enter payment details? It’s a great question, since there isn’t a way to do that. Making that possible is somewhat tricky, because each payment method requires different details. If users want to pay with a credit card, they need to enter a card number and expiration date. If they want to pay with a check, we’ll need a routing number and an account number. And for purchase orders, we need the purchase order number.

 Although we could put all five fields on the screen at once, the customer immediately balks at the poor user experience that would result. Can we show the appropriate fields, depending on what payment type is chosen? Changing elements of a user interface dynamically is certainly possible with some JavaScript, but it’s quite a bit more complex than the JavaScript we’ve used thus far. Rails calls JavaScript like this app-like JavaScript, and it includes a tool named Webpacker that will help us manage it. Webpacker will handle a lot of complex setup for us so that we can focus most of our efforts on giving our customer—and our users—a great experience checking out. (Refer back to Chapter 1, ​Installing Rails​, for installation instructions for the tools used in this chapter.)

Iteration H1: Adding Fields Dynamically to a Form

 We need a dynamic form that changes what fields are shown based on what pay type the user has selected. While we could cobble something together with jQuery, it would be a bit cleaner if we could use a more modern JavaScript library like React.[66] This will also form a solid base from which we can easily add additional features later.

 Using JavaScript libraries or frameworks can often be difficult, as the configuration burden they bear is far greater than what we’ve seen with Rails. To help us manage this complexity, Rails includes Webpacker, which provides configuration for Webpack.[67] Webpack is a tool to manage the JavaScript files that we write. Note the similar names. Webpacker is a gem that’s part of Rails and sets up Webpack inside our Rails app.

 Managing JavaScript is surprisingly complex. By using Webpack we can easily put our JavaScript into several different files, bring in third-party libraries (like React), and use more advanced features of JavaScript not supported by a browser (such as the ability to define classes). Webpack then compiles all of our JavaScript, along with the third-party libraries we are using, into a pack. Because this isn’t merely sprinkling small bits of JavaScript in our view, Rails refers to this as app-like JavaScript.

 While we could use Webpack directly with Rails, configuring Webpack is extremely difficult. It’s highly customizable and not very opinionated, meaning developers must make many decisions just to get something working. Webpacker essentially is the decisions made by the Rails team and bundled up into a gem. Almost everything Webpacker does is to provide a working configuration for Webpack and React so that we can focus on writing JavaScript instead of configuring tools. But Webpack is the tool that manages our JavaScript day-to-day.

 React is a JavaScript view library designed to quickly create dynamic user interfaces. We’ll use it to create a dynamic payment method details form, and Webpacker will ensure that the configuration and setup for all this is as simple as possible. That said, there’s a bit of setup we need to do.

 First, we’ll configure Webpacker and install React. After that, we’ll replace our existing payment-type drop-down with a React-rendered version, which will demonstrate how all the moving parts fit together. With that in place, we’ll enhance our React-powered payment type selector to show the dynamic form elements we want.

Configuring Webpacker and Installing React

 Webpacker is a separate gem that you must install in addition to Rails. Add it to your Gemfile like so:

	​ 	gem ​'webpacker'​, ​'~> 3.0'​

 Install this with bundle install.

 Next, set up Webpack by running bin/rails webpacker:install.

	​ 	​$ ​​bin/rails​​ ​​webpacker:install​
	​ 	Creating javascript app source directory
	​ 	 create app/javascript
	​ 	 create app/javascript/packs/application.js
	​ 	Copying binstubs
	​ 	 exist bin
	​ 	 create bin/webpack-dev-server
	​ 	 create bin/webpack
	​ 	 identical bin/yarn
	​ 	Copying webpack core config and loaders
	​ 	 create config/webpack
	​ 	 create config/webpack/configuration.js
	​ 	 create config/webpack/development.js
	​ 	 create config/webpack/development.server.js
	​ 	 create config/webpack/development.server.yml
	​ 	 create config/webpack/paths.yml
	​ 	 create config/webpack/production.js
	​ 	 create config/webpack/shared.js
	​ 	 create config/webpack/test.js
	​ 	 create config/webpack/loaders
	​ 	 create config/webpack/loaders/assets.js
	​ 	 create config/webpack/loaders/babel.js
	​ 	 create config/webpack/loaders/coffee.js
	​ 	 create config/webpack/loaders/erb.js
	​ 	 create config/webpack/loaders/sass.js
	​ 	 create .postcssrc.yml
	​ 	 append .gitignore
	​ 	Installing all JavaScript dependencies
	​ 	 run ./bin/yarn add webpack webpack-merge js-yaml…
	​ 	yarn add v0.20.3
	​ 	[1/4] Resolving packages...
	​ 	[2/4] Fetching packages...
	​ 	[3/4] Linking dependencies...
	​ 	[4/4] Building fresh packages...
	​ 	
	​ 	lots of output
	​ 	
	​ 	Done in 24.95s.
	​ 	Installing dev server for live reloading
	​ 	 run ./bin/yarn add --dev webpack-dev-server from "."
	​ 	yarn add v0.20.3
	​ 	[1/4] Resolving packages...
	​ 	[2/4] Fetching packages...
	​ 	[3/4] Linking dependencies...
	​ 	[4/4] Building fresh packages...
	​ 	success Saved lockfile.
	​ 	success Saved 82 new dependencies.
	​ 	
	​ 	lots more output
	​ 	
	​ 	Done in 5.11s.
	​ 	Webpacker successfully installed

 As you can see from the output, this created several configuration files in config/webpack and installed various JavaScript libraries. The libraries that were installed are listed in package.json. package.json is the JavaScript equivalent to our Gemfile—--it lists all the necessary JavaScript libraries for our app to run. The equivalent of Bundler is Yarn.

 Just like bundle install downloads all the gems our app needs, yarn install downloads all the JavaScript libraries we need. As a convenience, the webpacker:install task ran yarn install for us.

 Webpacker can also install and configure some common JavaScript frameworks such as Angular, Vue, or React. We chose React because it’s the simplest overall and is the best fit for solving our problem. To have Webpacker set it all up for us, run the task webpacker:install:react:

	​ 	​$ ​​bin/rails​​ ​​webpacker:install:react​
	​ 	Copying react loader to …config/webpack/loaders
	​ 	 create config/webpack/loaders/react.js
	​ 	Copying .babelrc to app root directory
	​ 	 create .babelrc
	​ 	Copying react example entry file to …app/javascript/packs
	​ 	 create app/javascript/packs/hello_react.jsx
	​ 	Installing all react dependencies
	​ 	 run ./bin/yarn add react react-dom babel-preset-react from "."
	​ 	yarn add v0.20.3
	​ 	[1/4] Resolving packages...
	​ 	[2/4] Fetching packages...
	​ 	[3/4] Linking dependencies...
	​ 	warning "react-dom@15.4.2" has unmet peer dependency "react@^15.4.2".
	​ 	[4/4] Building fresh packages...
	​ 	success Saved lockfile.
	​ 	success Saved 26 new dependencies.
	​ 	
	​ 	lots of output
	​ 	Done in 7.17s.
	​ 	Webpacker now supports react.js

 If you’ve ever tried to set up Webpack and a JavaScript framework like React before, you’ll appreciate how much work Webpacker has just done for us. If you’ve never had the privilege, trust me, this saves a ton of time and aggravation.

 Webpacker also created a rudimentary React component in app/javascript/packs/hello_react.jsx. Don’t worry about what that means for now. We’re going to use this generated code to validate the installation and set up our development environment. This generated code will append the string “Hello React!” to the end of our page, but it’s not activated by default. Let’s find out why, configure it to be included in our views, and set up our development environment to work smoothly with Webpacker.

Updating Our Development Environment for Webpack

 Webpacker includes a helper method called javascript_pack_tag that takes as an argument the name of the file in app/javascript/packs whose JavaScript should be included on the page.

 The reason Rails doesn’t simply include all JavaScript all the time is that you might not want that to happen for performance reasons. Although our payment details code won’t be terribly complex, it’ll still be a chunk of code our users will have to download. Since it won’t be needed anywhere else in our app, we can make the user experience faster and better by only downloading the code when it’s needed.

 Webpacker allows us to have any number of these separately managed packs. We can include any that we like, wherever we like. To see how this works, let’s add a call to javascript_pack_tag to our app/views/orders/new.html.erb page to bring in the sample React component that Webpacker created for us.

rails51/depot_pa/app/views/orders/new.html.erb
	​ 	<section class=​"depot_form"​>
	​ 	 <h1>Please Enter Your Details</h1>
	​ 	 ​<%=​ render ​'form'​, ​order: ​@order ​%>​
	​ 	</section>
	​ 	
	»	​<%=​ javascript_pack_tag(​"hello_react"​) ​%>​

 If you add some items to your cart and navigate to the checkout page, you should see the string “Hello React!” at the bottom of the page, as shown in the screenshot.

[image: images/pa_1_js_fixed.png]

 This validates that all the internals of Webpack are working with the app (which is always a good practice before writing code so we can be sure what might be the cause if something’s wrong). Now we can start building our feature. We need to replace the existing drop-down with one powered by React and our Webpacker-managed JavaScript. Doing that requires a slight diversion to learn about React.

Learning Just Enough React

 We’ve validated our Webpack setup, but we still don’t have the full picture of what is going on. What is a jsx file, and what is the odd syntax inside app/javascript/packs/hello_react.jsx? We can answer these questions by talking about what React is and why we’re using it.

 As mentioned above, React is a view library for JavaScript. Like the erb files we’ve been using, React dynamically renders HTML. Unlike ERB, React does this in the browser, and it is optimized to do it fast. Because the selected pay type will only affect a small part of our page, it will be a much better user experience to have React rerender that part of our page than to have the server rerender the entire thing.

 React is more than just a library with some handy functions we can call. It’s actually a mini-framework that includes extensions to JavaScript to make our work easier—--once we understand how to use those extensions. When we do, our job of creating a dynamic payment details form will result in easy-to-understand code that’s also easy to manage, thanks to Webpacker.

 The core concept in React is components. A component is a view, backed by some sort of state. When the state changes, the view rerenders. The view can behave differently depending on the current state inside the component. For us, we’ll track the currently selected pay type as our state and have our view render different input tags based on that.

 We could certainly accomplish all of this using React’s JavaScript API. The resulting code would be verbose, hard to follow, and hard to maintain. We mentioned React’s extensions to JavaScript, and that extension is JSX.[68] JSX allows you to intermix JavaScript code and HTML-like markup in one file. The result might look a bit odd at first, but it’s quite convenient for implementing components.

 React provides a compiler from JSX to JavaScript, and Webpack can use that compiler as part of its build process. Let’s learn what JSX is actually like and what it can do by replacing our existing pay type drop-down with a React component that behaves the same way.

Creating a React-Powered Drop-Down

 To get a sense of how to work with React and Webpack, we’ll replace the existing pay type drop-down that’s being rendered by Rails with one that’s rendered by React. Doing this requires three steps:

	

 Create a new pack called pay_type that’ll be the root of our implementation.

	

 Create the PayTypeSelector component that we’ll use to replace the existing pay type selector drop-down.

	

 Bring the component into our checkout view using javascript_pack_tag and a piece of markup that React can hook into in order to render the component.

 This won’t change how our application behaves, but it will allow us to see all the moving parts and understand what they do.

Creating a New Pack

 As we mentioned, packs go in app/javascript/packs, so we’ll create our new pack in
 app/javascript/packs/pay_type.jsx. This code is not a React component, but just a few lines of code to bootstrap our React component and get it onto our page.

 The most straightforward way to do that is to locate an element in the DOM and use the React function React.render to render our component into that element. Let’s see the code, and then we’ll go through and explain what’s happening, line by line.

rails51/depot_pb/app/javascript/packs/pay_type.jsx
	​​①​	​import​ React from ​'react'​
	​​②​	​import​ ReactDOM from ​'react-dom'​
	​​③​	​import​ PayTypeSelector from ​'PayTypeSelector'​
	​ 	
	​​④​	document.addEventListener(​'turbolinks:load'​, ​function​() {
	​​⑤​	 ​var​ element = document.getElementById(​"pay-type-component"​);
	​​⑥​	 ReactDOM.render(<PayTypeSelector />, element);
	​ 	});

 If you have not done much JavaScript, or have not kept up with recent advances in the language, much of this file will look alien. Let’s break it down line by line.

	​①​
	

 This is how we get access to the main React library. import is like require in Ruby: it allows us to access code located in other files. Although it’s formally part of the JavaScript standard, browsers don’t support it. Webpack provides an implementation for us when it compiles our code. When it processes this line, it’ll try to find a file named react.js in one of the paths it’s configured to search (we’ll learn more about this in a bit).

	​②​
	

 This brings in the ReactDOM object, which has the render function we need to bootstrap our React component.

	​③​
	

 Here, we’re importing PayTypeSelector, which is the component we’ll make next. When we actually build this component, we’ll explain how Webpack knows where to find the code. The most important thing about this line for now is the name PayTypeSelector, which we’ll reference later in the file.

	​④​
	

 This uses the standard function addEventListener available on document to ensure that the code we’re about to execute only runs after the entire DOM has loaded.[69] Note that we aren’t using the more standard DOMContentLoaded event.

 Due to how Turbolinks works, that event isn’t fired every time our page is reloaded. Turbolinks manages the page-loading events for us and instead fires the turbolinks:load event. If you were to use DOMContentLoaded, then navigate away from the page, and then use the back button, the page would not properly set up React and nothing would work. Using turbolinks:load ensures that React is set up every time the page is rendered.

	​⑤​
	

 This line is also vanilla JavaScript and is locating an element with the ID pay-type-component. We’ll create that element in our Rails view later.

	​⑥​
	

 This is the weirdest line in this file. It doesn’t even look like JavaScript! ReactDOM.render’s job is to replace element with the React component PayTypeSelector. In a JSX file, the way to do that is via this odd HTML-like value <PayTypeSelector />. We’ll see a more involved example of JSX when we build PayTypeSelector, but part of what happens when Webpack compiles a JSX file is to interpret this strange-looking syntax and produce JavaScript that works in our browser. It works because we used PayTypeSelector in the import line above.

 That is a lot of new information for just six lines of code. While it looks a bit weird, it makes some sense, and you’ll get used to it as you work with React more. Now, let’s define PayTypeSelector.

Creating the PayTypeSelector Component

 We talked about what import does, and now we need to know more about how it does it. When Webpack is compiling our files into a bundle our browser can understand, it’s configured with certain paths it will use to locate files we ask to import. The first path is node_modules. This is where Yarn downloaded all of our third-party JavaScript libraries, including React.

 If you look inside node_modules, you’ll see many, many directories, but react and react-dom are among them. Our code doesn’t go in node_modules but instead goes in app/javascript. Webpacker has configured Webpack to also look there for files to import.

 Webpack isn’t just looking for files like app/javascript/PayTypeSelector.jsx. Rails and Webpack both want us to organize our JavaScript into multiple files, so when we ask to import ’PayTypeSelector’, Webpack will load the file app/javascript/PayTypeSelector/index.jsx.

 This might seem odd, but it’s consistent with how third-party JavaScript is bundled, and it also allows us to organize files needed by PayTypeSelector into one location—app/javascript/PayTypeSelector. We’ll do this later when we build our payment details component in full.

 For now, we’ll create the file app/javascript/PayTypeSelector/index.jsx. This file will contain a React component that renders the exact same HTML for the pay type drop-down as our current Rails view.

 A React component doesn’t need much in order to work. It must be a class that extends React.Component and must have a render method that returns markup for the component’s view.

 Of course, regular JavaScript that runs in our browser doesn’t have classes or methods. However, the latest version of the JavaScript specification does support creating classes with methods,[70] just like we do in Ruby. Webpack will gladly translate this code into vanilla JavaScript our browser can execute.

 The syntax for this is demonstrated in app/javascript/PayTypeSelector/index.jsx, which you should create like so:

rails51/depot_pb/app/javascript/PayTypeSelector/index.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ PayTypeSelector ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_pay_type"​>Pay type</label>
	​ 	 <select id=​"pay_type"​ name=​"order[pay_type]"​>
	​ 	 <option value=​""​>Select a payment method</option>
	​ 	 <option value=​"Check"​>Check</option>
	​ 	 <option value=​"Credit card"​>Credit card</option>
	​ 	 <option value=​"Purchase order"​>Purchase order</option>
	​ 	 </select>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ PayTypeSelector

 Inside render we can see a more involved use of the markup-like syntax that JSX allows. It might look like HTML, but it’s not. It’s usually referred to as “JSX” and it has some subtle deviations from HTML.

 First, it must be well-formed XML, meaning that each tag must either have a closing tag (for example foo), or be self-closing (for example <input/>). HTML does not require this, notably for input elements.

 Second, JSX cannot use JavaScript keywords for attributes. You’ll notice we’re using className and htmlFor. In normal HTML, we’d use class and for, but these are reserved words in JavaScript. React’s documentation has more details on the differences between this markup and HTML.[71]

 Also note that we’ve judiciously chosen the name value for select in exactly the same way a Rails form helper would. This allows our controller to find the values, even though they are coming from a React-rendered component and not a Rails-rendered view.

 The last line of the file contains something new: export. This is the other side of import. In Ruby, a file that is required via require is simply executed. Any classes it creates are inserted into the global namespace. In JavaScript, you must explicitly state what you are exporting from your file.

 Although you could export several different classes or functions from a file, in our case, we just need to export one—--PayTypeSelector. The syntax to do that is export default «class».

 Now that we’ve implemented our component and created the glue code in our pack to hook it up, we need to modify our Rails views to use it.

Bringing the PayTypeSelector Component into the Rails View

 Inside app/views/orders/new.html.erb we added javascript_pack_tag("hello_react") in order to validate that Webpacker had installed and configured React and that our development environment was working. Let’s replace that and bring in the pay_type pack we just created.

rails51/depot_pb/app/views/orders/new.html.erb
	​ 	<section class=​"depot_form"​>
	​ 	 <h1>Please Enter Your Details</h1>
	​ 	 ​<%=​ render ​'form'​, ​order: ​@order ​%>​
	​ 	</section>
	​ 	
	»	​<%=​ javascript_pack_tag(​"pay_type"​) ​%>​

 The last thing to do is remove the Rails-rendered pay type drop-down and add in a piece of markup with the ID pay-type-component so that the code inside our pack file can tell React to render there.

rails51/depot_pb/app/views/orders/_form.html.erb
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ form.label ​:email​ ​%>​
	​ 	 ​<%=​ form.email_field ​:email​, ​id: :order_email​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	»	 <div id=​'pay-type-component'​></div>
	​ 	
	​ 	 <div class=​"actions"​>
	​ 	 ​<%=​ form.submit ​'Place Order'​ ​%>​
	​ 	 </div>
	​ 	​<%​ ​end​ ​%>​

 The type of element doesn’t matter, since React will replace it, but a div is semantically appropriate.

 With our new pay type component in place, you should be able to reload the checkout page and see the pay type drop-down exactly as it was. You should also be able to select a pay type, check out, and see the correct data make it into the database.

 We are now ready to build the dynamic form we talked about with the customer. React components render their views based on the state inside a component. This means we need to capture the selected pay type as the component’s state and render different form fields based on that state.

Dynamically Replacing Components Based on User Actions

 To detect events in plain JavaScript, we’d add the onchange attribute to our select element, setting its value to JavaScript code we’d like to execute. This is exactly how it works in React as well, except that we use the attribute onChange (note that capitalized “C”):

	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ PayTypeSelector ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_pay_type"​>Pay type</label>
	​ 	 <select onChange=​{​​this​.onPayTypeSelected​}​ name=​"order[pay_type]"​>
	​ 	 <option value=​""​>Select a payment method</option>
	​ 	 <option value=​"Check"​>Check</option>
	​ 	 <option value=​"Credit card"​>Credit card</option>
	​ 	 <option value=​"Purchase order"​>Purchase order</option>
	​ 	 </select>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}

 Note that we aren’t quoting the value to onChange but instead using curly braces. This is another feature of JSX and is part of making the view dynamic. Curly braces allow us to interpolate JavaScript, much like how #{...} does in Ruby or <%= ... %> does in ERB. React knows to put quotes in the right places when the HTML is rendered.

 We can now define the method onPayTypeSelected like so:

	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ PayTypeSelector ​extends​ React.Component {
	»	 onPayTypeSelected(event) {
	»	 console.log(event.target.value);
	»	 }

 This implementation demonstrates how we can access the user’s selection. The event passed in is a synthetic event,[72] which has a property target that is a DOMEventTarget, which itself has a property value that has the value of the selected payment type.

 If you reload the page in your browser, open the JavaScript console, and select different payment types, you should see messages in the console. The following screenshot shows this after selecting each pay type one at a time.

[image: images/depot_pb_console_log.png]

 What do we do with this new method? If you recall, a React component is a view and state; and when state changes, the view is rerendered by calling the component’s render method. We want the view to be rerendered when the user changes payment types, so we need to get the currently selected payment type into the component’s state.

 We can do this via the method setState provided by our superclass, React.Component:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
	​ 	onPayTypeSelected(event) {
	»	 ​this​.setState({ selectedPayType: event.target.value });
	​ 	}

 Surprisingly this doesn’t work, because this is undefined. It’s tempting to view this in JavaScript the same way you would self in Ruby, because it often refers to the current instance of the class, just as in Ruby. But “often” isn’t “always.”

 Under the covers, JavaScript classes and methods are just functions. When you call a function in JavaScript, it’s possible to control what the value of this is inside that function. When we call a method on an object created from a class, that method is really a function whose value for this is set to the object…except when that method is called from an event handler.

 To understand why this happens is outside the scope of this book, but the short explanation is that because we are passing a function to our event handler, when the event fires, the object that function is a part of—--which we would very much like to be available as this—--is not remembered by JavaScript (this is a complex concept in JavaScript[73]).

 To ensure that this is remembered and thus set to the object, we call bind on the method itself and pass this when this is set to the instance of our class. bind returns a new function where this is always set how we’d expect.

	​ 	​this​.onPayTypeSelected = ​this​.onPayTypeSelected.bind(​this​);

 The only trick is to make sure we execute this code before the event handler fires and at a time when the value of this is correct. JavaScript classes have constructors, just like Ruby classes, and that is the right location to execute this code. We haven’t declared a constructor yet; and as it turns out, React component constructors accept an argument called props that we must pass up to the superclass. We should also initialize our state. This means our constructor will look like so:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
	​ 	​class​ PayTypeSelector ​extends​ React.Component {
	»	 constructor(props) {
	»	 ​super​(props);
	»	 ​this​.onPayTypeSelected = ​this​.onPayTypeSelected.bind(​this​);
	»	 ​this​.state = { selectedPayType: ​null​ };
	»	 }

 Inside render, we can examine the value of state by accessing this.state.selectedPayType, which will be the string from our select control.

 We now want to render a custom component based on the value of this.state.selectedPayType. We can’t easily put control logic inside the JSX, but we can insert a dynamic component by declaring a variable that starts with an uppercase letter. This is another feature of JSX we can use. Our code will look something like this:

	​ 	​let​ PayTypeCustomComponent = ​«​to be determined​»​
	​ 	​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_pay_type"​>Pay type</label>
	​ 	 <select id=​"pay_type"​ onChange=​{​​this​.onPayTypeSelected​}​
	​ 	 name=​"order[pay_type]"​>
	​ 	 <option value=​""​>Select a payment method</option>
	​ 	 <option value=​"Check"​>Check</option>
	​ 	 <option value=​"Credit card"​>Credit card</option>
	​ 	 <option value=​"Purchase order"​>Purchase order</option>
	​ 	 </select>
	​ 	 </div>
	​ 	 <PayTypeCustomComponent />
	​ 	 </div>
	​);

 This means we need to make the components we’ll use for each pay type, along with a blank component for when no pay type is selected. We’ll import those into PayTypeSelector and, based on the value of state, assign them to a local variable named PayTypeCustomComponent.

 First, let’s set up our imports for the files we’ll create in a moment:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	»	​import​ NoPayType from ​'./NoPayType'​;
	»	​import​ CreditCardPayType from ​'./CreditCardPayType'​;
	»	​import​ CheckPayType from ​'./CheckPayType'​;
	»	​import​ PurchaseOrderPayType from ​'./PurchaseOrderPayType'​;

 Note that each file we’re importing is preceded by a dot and a slash (./). This tells Webpack to locate the file in the same directory as the file being processed. Since the file being processed is app/javascript/PayTypeSelector/index.jsx, Webpack will look in app/javascript/PayTypeSelector. Hopefully, you can see the logic of Rails’s convention around using a directory with index.jsx in it. It means that app/javascript/PayTypeSelector will have all the files needed for that component.

 Next, we’ll enhance render with the necessary logic to choose the right component based on the value of this.state.selectedPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
	​ 	render() {
	»	 ​let​ PayTypeCustomComponent = NoPayType;
	»	 ​if​ (​this​.state.selectedPayType == ​"Credit card"​) {
	»	 PayTypeCustomComponent = CreditCardPayType;
	»	 } ​else​ ​if​ (​this​.state.selectedPayType == ​"Check"​) {
	»	 PayTypeCustomComponent = CheckPayType;
	»	 } ​else​ ​if​ (​this​.state.selectedPayType == ​"Purchase order"​) {
	»	 PayTypeCustomComponent = PurchaseOrderPayType;
	»	 }
	​ 	 ​return​ (
	»	 <div>
	»	 <div className=​"field"​>
	»	 <label htmlFor=​"order_pay_type"​>Pay type</label>
	»	 <select id=​"pay_type"​ onChange=​{​​this​.onPayTypeSelected​}​
	»	 name=​"order[pay_type]"​>
	»	 <option value=​""​>Select a payment method</option>
	»	 <option value=​"Check"​>Check</option>
	»	 <option value=​"Credit card"​>Credit card</option>
	»	 <option value=​"Purchase order"​>Purchase order</option>
	»	 </select>
	»	 </div>
	»	 <PayTypeCustomComponent />
	»	 </div>
	​);
	​ 	}

 Note the change in the markup. In addition to adding <PayTypeCustomComponent />, we’ve wrapped the entire thing in a div. React components must have a single, top-level element; and due to the way our CSS works, each line of our form must be inside a div with the CSS class field.

 Now let’s see our components. The first is the simplest, NoPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/NoPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ NoPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (<div></div>);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ NoPayType

 Even though this does nothing, it gives us a clear space to put UI later if we wanted to (for example, a message prompting the user to select a pay type). Next is CheckPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/CheckPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ CheckPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_routing_number"​>Routing #</label>
	​ 	 <input type=​"password"​
	​ 	 name=​"order[routing_number]"​
	​ 	 id=​"order_routing_number"​ />
	​ 	 </div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_account_number"​>Account #</label>
	​ 	 <input type=​"text"​
	​ 	 name=​"order[account_number]"​
	​ 	 id=​"order_account_number"​ />
	​ 	 </div>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ CheckPayType

 Note that we’re self-closing the input elements. This isn’t required in HTML but is in JSX. The CreditCardPayType is similar:

rails51/depot_pc/app/javascript/PayTypeSelector/CreditCardPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ CreditCardPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_credit_card_number"​>CC #</label>
	​ 	 <input type=​"password"​
	​ 	 name=​"order[credit_card_number]"​
	​ 	 id=​"order_credit_card_number"​ />
	​ 	 </div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_expiration_date"​>Expiry</label>
	​ 	 <input type=​"text"​
	​ 	 name=​"order[expiration_date]"​
	​ 	 id=​"order_expiration_date"​
	​ 	 size=​"9"​
	​ 	 placeholder=​"e.g. 03/19"​ />
	​ 	 </div>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ CreditCardPayType

 And finally, the PurchaseOrderPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/PurchaseOrderPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ PurchaseOrderPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_po_number"​>PO #</label>
	​ 	 <input type=​"password"​
	​ 	 name=​"order[po_number]"​
	​ 	 id=​"order_po_number"​ />
	​ 	 </div>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ PurchaseOrderPayType

 Note that we’ve judiciously chosen the fields’ name values to match Rails conventions. When our React components use a name like "order[credit_card_number]", we’ll be able to access that field’s value in Ruby using params[:order][:credit_card_number], as we’ll see later.

 If you reload the page and select different payment types, you’ll see that the form dynamically switches to the right fields for the payment type! See the screenshots.

 For completeness, let’s access these values in the controller. We could add the new parameters to order_params, but let’s make it a bit more explicit by creating a method called pay_type_params that returns only the params relevant to the chosen pay type:

rails51/depot_pc/app/controllers/orders_controller.rb
	​ 	​def​ pay_type_params
	​ 	 ​if​ order_params[​:pay_type​] == ​"Credit Card"​
	​ 	 params.require(​:order​).permit(​:credit_card_number​, ​:expiration_date​)
	​ 	 ​elsif​ order_params[​:pay_type​] == ​"Check"​
	​ 	 params.require(​:order​).permit(​:routing_number​, ​:account_number​)
	​ 	 ​elsif​ order_params[​:pay_type​] == ​"Purchase Order"​
	​ 	 params.require(​:order​).permit(​:po_number​)
	​ 	 ​else​
	​ 	 {}
	​ 	 ​end​
	​ 	​end​

[image: images/depot_pc_check_pay_type.png]
[image: images/depot_pc_credit_card_pay_type.png]
[image: images/depot_pc_purchase_order_pay_type.png]

 We can use these params to submit the payment details to the customer’s back-end payment processing system, which we’ll do in ​Iteration I2: Connecting to a Slow Payment Processor with Active Job​.

Do Not Store or Log Credit Card Numbers

 I know we aren’t actually doing a payments integration, and you should read Take My Money [Rap17] if you want to do it for real. If you decide to do a real integration on your own, you should be very careful to never store credit card numbers in your database, as this creates all sorts of problems for you and your customers.

 More subtly, you should make sure Rails doesn’t log these parameters by adding :credit_card_number to config.filter_parameters in config/application.rb:

rails51/depot_pc/config/application.rb
	​ 	config.filter_parameters += [​:credit_card_number​]

Wrapping Up Webpack and React

 This was quite a journey, and it might’ve felt complex. In a sense, this is expected, because we tried to do something more complex than we have previously done. Webpacker exists exactly to help us with complex interactions like the one we implemented. And if you think a lot of setup was needed to get there, know that without Webpacker it would have been far more difficult and would have required making many more decisions.

 Webpacker is a great demonstration of the best of Rails. It removes uninteresting decisions, such as where files should go, and provides a basic mechanism that just works so we can spend our time on our problem, not on configuration. Even if you didn’t know React before reading this, you now know enough to build some fairly complex features. It’s just a matter of putting code in the right place.

 One thing that we can no longer do is completely test our application. Because we now depend on JavaScript for a piece of functionality, we can’t really test that functionality without executing our application in a web browser. Until Rails 5.1, developers had to configure add-on libraries to be able to do this. As of Rails 5.1, this is baked into the framework and ready for you to use.

Iteration H2: Testing Our JavaScript Functionality

 Now that we have application-level functionality in JavaScript code, we
 are going to need to have tests in place to ensure that the function not
 only works as intended but continues to work as we make changes to the
 application.

 Testing this functionality involves a lot of steps:
 visiting the store, selecting an item, adding that item
 to the card, clicking checkout, filling in a few fields, and selecting a payment
 type. And from a testing perspective, we are going to need both a
 Rails server and a browser.

 To accomplish this, Rails makes use of a version of the popular Google Chrome web browser named ChromeDriver,[74] which has been augmented to include programming interfaces to
 enable automation, and Capybara,[75] which is a tool that drives this automation.

 Tests that pull together a complete and integrated version of the
 software are called system tests, and that is exactly what
 we will be doing: we will be testing a full end-to-end scenario with a
 web browser, web server, our application, and a database.

 We start by describing the actions and checks we want performed as a
 system test:

rails51/depot_q/test/system/orders_test.rb
	​ 	require ​"application_system_test_case"​
	​ 	
	​ 	​class​ OrdersTest < ApplicationSystemTestCase
	»	 test ​"check routing number"​ ​do​
	»	 visit store_index_url
	»	
	»	 first(​'.catalog li'​).click_on ​'Add to Cart'​
	»	
	»	 click_on ​'Checkout'​
	»	
	»	 fill_in ​'order_name'​, ​with: ​​'Dave Thomas'​
	»	 fill_in ​'order_address'​, ​with: ​​'123 Main Street'​
	»	 fill_in ​'order_email'​, ​with: ​​'dave@example.com'​
	»	
	»	 assert_no_selector ​"#order_routing_number"​
	»	
	»	 select ​'Check'​, ​from: ​​'pay_type'​
	»	
	»	 assert_selector ​"#order_routing_number"​
	»	 ​end​
	​ 	​end​

 As you can see, this is pretty straightforward; all it involves is a
 number of discrete steps: visit a URL, find
 the first li inside the .catalog, click_on two buttons
 in a given order, fill_in three fields, assert that a
 given HTML element is not present, select a
 pay type, and finally ensure that the HTML element is now present.

 Capybara makes all of this possible using a compact, readable API that requires very little code. For additional information and more methods, we
 suggest that you familiarize yourself with the domain-specific language (DSL) that Capybara provides.[76]

 Now let’s run the test we just wrote:

	​ 	​$ ​​bin/rails​​ ​​test:system​
	​ 	Run options: --seed 26203
	​ 	
	​ 	​# Running:​
	​ 	
	​ 	Puma starting in single mode...
	​ 	* Version 3.9.1 (ruby 2.4.1-p111), codename: Private Caller
	​ 	* Min threads: 0, max threads: 1
	​ 	* Environment: test
	​ 	* Listening on tcp://0.0.0.0:59360
	​ 	Use Ctrl-C to stop
	​ 	.
	​ 	
	​ 	Finished in 3.846935s, 0.2599 runs/s, 0.5199 assertions/s.
	​ 	
	​ 	1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

 When you run this, you will note a number of things. First a web
 server is started on your behalf, and then a browser is launched
 and the actions you requested are performed. Once
 the test is complete, both are stopped and the results of the test
 are reported back to you. All this based on your instructions as to what actions and tests are to be performed, and expressed clearly and succinctly as a system test.

 Note that system tests tend to take a bit longer to execute than model or
 controller tests and as such are not run as a part of bin/rails
 test.

What We Just Did
	

 We replaced a static form_select field with a dynamic list
 of form fields that change instantly based on user selection.

	

 We used Webpacker to gather up and deliver all of the necessary
 JavaScript dependencies just in time to the browser to make the
 dynamic changes happen.

	

 We used Capybara and ChromeDriver to system-test this functionality.

Playtime

 Here’s some stuff to try on your own:
	

 Check is not the only payment type, and routing number is not
 the only field that is dynamically inserted or deleted based
 on the payment type. Extend the system test to include other
	 choices and other fields.

	

 Add a test to verify that the Add to Cart and Empty Cart buttons
 reveal and hide the cart, respectively.

	

 Add a test of the highlight feature you added in ​Iteration F3: Highlighting Changes​.

Footnotes

	[66]
	
https://facebook.github.io/react/

	[67]
	
https://webpack.js.org

	[68]
	
https://facebook.github.io/react/docs/introducing-jsx.html

	[69]
	
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

	[70]
	
http://www.ecma-international.org/ecma-262/6.0/#sec-class-definitions

	[71]
	
https://facebook.github.io/react/docs/dom-elements.html

	[72]
	
https://facebook.github.io/react/docs/events.html

	[73]
	
https://www.smashingmagazine.com/2014/01/understanding-javascript-function-prototype-bind/

	[74]
	
https://sites.google.com/a/chromium.org/chromedriver/

	[75]
	
https://github.com/teamcapybara/capybara#readme

	[76]
	
https://github.com/teamcapybara/capybara#the-dsl

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Sending email
	Running background code with Active Job
	System testing background jobs and email

 Chapter
 14
Task I: Processing Emails and Payments Efficiently

 At this point, we have a website that responds to requests and provides feeds that allow sales of individual titles to be checked periodically. The customer is happier but still not satisfied. The first bit of feedback is that users aren’t getting confirmation emails of their purchases. The second is around payment processing. The customer has arranged for us to integrate with a payment processor that can handle all forms of payment we want to support, but the processor’s API is very slow. The customer wants to know if that will slow down the site.

 Sending email is a common need for any web application, and Rails has you covered via Action Mailer,[77] which you’ll learn in this chapter. Dealing with the slow payment-processing API requires learning about the library Action Mailer is built on, Active Job.[78] Active Job allows you to run code in a background process so that the user doesn’t have to wait for it to complete. Sending email is slow, which is why Action Mailer uses Active Job to offload the work. This is a common technique you’ll use often when developing web applications. Let’s take it one step at a time and learn how to send email.

Iteration I1: Sending Confirmation Emails

 Sending email in Rails has three basic parts: configuring how
 email is to be sent, determining when to send the email, and specifying
 what you want to say. We’ll cover each of these three in
 turn.

Configuring Email

	Email configuration is part of a Rails application’s
	environment and involves a Depot::Application.configure
 block.
	If you want to use the same configuration for development,
	testing, and production, add the configuration
	to environment.rb in
	the config directory; otherwise, add
	different configurations to the appropriate files in
	the config/environments directory.

 Inside the block, you need to have one or more statements.
	You first have to decide how you want mail
	delivered:

	​ 	config.action_mailer.delivery_method = ​:smtp​

 Alternatives to :smtp include :sendmail and
 :test.

	The :smtp and :sendmail options are used
	when you want Action Mailer to attempt to deliver
	email. You’ll clearly want to use one of these methods in
	production.

 The :test setting is great for unit and functional testing,
 which we’ll make use of in ​Testing Email​. Email won’t be delivered; instead,
 it’ll be appended to an array (accessible via the ActionMailer::Base.deliveries attribute). This is
 the default delivery method in the test environment. Interestingly,
 though, the default in development mode is :smtp. If you want
 Rails to deliver email during the development of your
 application, this is good. If you’d rather disable email delivery in
 development mode, edit the development.rb file in
 the config/environments directory and add the
 following lines:

	​ 	Depot::Application.configure ​do​
	​ 	 config.action_mailer.delivery_method = ​:test​
	​ 	​end​

	The :sendmail setting delegates mail delivery to your
	local system’s sendmail program,
	which is assumed to be
	in /usr/sbin. This delivery mechanism isn’t
	particularly portable,
	because sendmail isn’t always
	installed in this directory for every operating system. It
	also relies on your local sendmail
	supporting the -i
	and -t command options.

	You achieve more portability by leaving this option at its
	default value of :smtp. If you do so, you’ll
	need also to specify some additional configuration to tell
	Action Mailer where to find an SMTP server to handle your
	outgoing email. This can be the machine running your web
	application, or it can be a separate box (perhaps at your ISP
	if you’re running Rails in a noncorporate environment). Your
	system administrator will be able to give you the settings for
	these parameters. You may also be able to determine them from
	your own mail client’s configuration.

 The following are typical settings for Gmail: adapt them as you need.

	​ 	Depot::Application.configure ​do​
	​ 	 config.action_mailer.delivery_method = ​:smtp​
	​ 	
	​ 	 config.action_mailer.smtp_settings = {
	​ 	 ​address: ​​"smtp.gmail.com"​,
	​ 	 ​port: ​587,
	​ 	 ​domain: ​​"domain.of.sender.net"​,
	​ 	 ​authentication: ​​"plain"​,
	​ 	 ​user_name: ​​"dave"​,
	​ 	 ​password: ​​"secret"​,
	​ 	 ​enable_starttls_auto: ​​true​
	​ 	 }
	​ 	​end​

	As with all configuration changes, you’ll need to restart your
	application if you make changes to any of the environment
	files.
	
	
	

Sending Email

	Now that we have everything configured, let’s write some
	code to send emails.

	By now you shouldn’t be surprised that Rails has a generator
	script to create mailers.
	In Rails, a mailer is a class that’s stored in
	the app/mailers directory. It contains one
	or more methods, with each method corresponding to an email
	template. To create the body of the email, these methods in
	turn use views (in the same way that controller actions
	use views to create HTML and XML). So, let’s create a mailer
	for our store application. We’ll use it to send two different
	types of email: one when an order is placed and a second
	when the order ships. The rails generate
	mailer command takes the name of the mailer
	class, along with the names of the email action
	methods:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​mailer​​ ​​Order​​ ​​received​​ ​​shipped​
	​ 	 create app/mailers/order.rb
	​ 	 create app/mailers/order_mailer.rb
	​ 	 invoke erb
	​ 	 create app/views/order_mailer
	​ 	 identical app/views/layouts/mailer.text.erb
	​ 	 identical app/views/layouts/mailer.html.erb
	​ 	 create app/views/order_mailer/received.text.erb
	​ 	 create app/views/order_mailer/received.html.erb
	​ 	 create app/views/order_mailer/shipped.text.erb
	​ 	 create app/views/order_mailer/shipped.html.erb
	​ 	 invoke test_unit
	​ 	 create test/mailers/order_mailer_test.rb
	​ 	 create test/mailers/previews/order_mailer_preview.rb

	Notice that we create
	an OrderMailer class
	in app/mailers and two template files, one
	for each email type,
	in app/views/order.
	(We also create a test file; we’ll look
	into this in ​Testing Email​.)

 Each method in the mailer class is responsible for setting up the
 environment for sending an email. Let’s look at an example
 before going into detail. Here’s the code that was generated for
 our OrderMailer class, with one default changed:

rails51/depot_q/app/mailers/order_mailer.rb
	​ 	​class​ OrderMailer < ApplicationMailer
	»	 default ​from: ​​'Sam Ruby <depot@example.com>'​
	​ 	
	​ 	 ​# Subject can be set in your I18n file at config/locales/en.yml​
	​ 	 ​# with the following lookup:​
	​ 	 ​#​
	​ 	 ​# en.order_mailer.received.subject​
	​ 	 ​#​
	​ 	 ​def​ received
	​ 	 @greeting = ​"Hi"​
	​ 	
	​ 	 mail ​to: ​​"to@example.org"​
	​ 	 ​end​
	​ 	
	​ 	 ​# Subject can be set in your I18n file at config/locales/en.yml​
	​ 	 ​# with the following lookup:​
	​ 	 ​#​
	​ 	 ​# en.order_mailer.shipped.subject​
	​ 	 ​#​
	​ 	 ​def​ shipped
	​ 	 @greeting = ​"Hi"​
	​ 	
	​ 	 mail ​to: ​​"to@example.org"​
	​ 	 ​end​
	​ 	​end​

 If you’re thinking to yourself that this looks like a controller, that’s because it does. It includes one method per action. Instead of
 a call to render, there’s a call to
 mail. This method accepts a number of
 parameters including :to (as shown), :cc,
 :from, and :subject, each of which does pretty much
 what you’d expect it to do. Values that are common to all mail
 calls in the mailer can be set as defaults by simply calling
 default, as is done for :from at the top of this
 class. Feel free to tailor this to your needs.

 The comments in this class also indicate that subject lines are
 already enabled for translation, a subject we’ll cover in Chapter 16, ​Task K: Internationalization​. For now, we’ll simply use the
 :subject parameter.

 As with controllers, templates contain the text to be sent, and
 controllers and mailers can provide values to be inserted into those
 templates via instance variables.

Email Templates

 The generate script created two email templates in
 app/views/order_mailer,
 one for each action in the
 OrderMailer class. These are regular
 erb files. We’ll use them to create
 plain-text emails (you’ll see later how to create HTML email). As
 with the templates we use to create our application’s web pages, the
 files contain a combination of static text and dynamic content. We
 can customize the template in
 received.text.erb; this is the email
 that’s sent to confirm an order:
	
rails51/depot_q/app/views/order_mailer/received.text.erb
	​ 	Dear ​<%=​ @order.name ​%>​
	​ 	
	​ 	Thank you for your recent order from The Pragmatic Store.
	​ 	
	​ 	You ordered the following items:
	​ 	
	​ 	​<%=​ render @order.line_items ​-%>​
	​ 	
	​ 	We'll send you a separate e-mail when your order ships.

	
	
	 The partial template that renders a line item
	 formats a single line with the item quantity and the
	 title. Because we’re in a template, all the regular helper
	 methods, such as truncate, are
	 available:
	
rails51/depot_q/app/views/line_items/_line_item.text.erb
	​ 	​<%=​ sprintf(​"%2d x %s"​,
	​ 	 line_item.quantity,
	​ 	 truncate(line_item.product.title, ​length: ​50)) ​%>​

	
	 We now have to go back and fill in
	 the received method in
	 the OrderMailer class:
	
rails51/depot_qa/app/mailers/order_mailer.rb
	​ 	​def​ received(order)
	​ 	 @order = order
	​ 	
	​ 	 mail ​to: ​order.email, ​subject: ​​'Pragmatic Store Order Confirmation'​
	​ 	​end​

 What we did here is add order as an argument to the method-received call, add code to copy the parameter passed into an
 instance variable, and update the call to
 mail specifying where to send the email and
 what subject line to use.

Generating Emails

	 Now that we have our template set up and our mailer method
	 defined, we can use them in our regular controllers to
	 create and/or send emails. Note that just calling the method we defined isn’t enough; we also need to tell Rails to actually send the email. The reason this doesn’t happen automatically is that Rails can’t be 100% sure if you want to deliver the email right this moment, while the user waits, or later, in a background job.

	

 Generally, you don’t want the user to have to wait for emails to get sent, because this can take a while. Instead, we’ll send it in a background job (which we’ll learn more about later in the chapter) by calling deliver_later (to send the email right now, you’d use deliver_now.[79])

rails51/depot_qa/app/controllers/orders_controller.rb
	​ 	 ​def​ create
	​ 	 @order = Order.new(order_params)
	​ 	 @order.add_line_items_from_cart(@cart)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @order.save
	​ 	 Cart.destroy(session[​:cart_id​])
	​ 	 session[​:cart_id​] = ​nil​
	»	 OrderMailer.received(@order).deliver_later
	​ 	 format.html { redirect_to store_index_url, ​notice:​
	​ 	​ ​​'Thank you for your order.'​ }
	​ 	 format.json { render ​:show​, ​status: :created​,
	​ 	 ​location: ​@order }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@order.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 And we need to update shipped
 as we did for received:

rails51/depot_qa/app/mailers/order_mailer.rb
	​ 	​def​ shipped(order)
	​ 	 @order = order
	​ 	
	​ 	 mail ​to: ​order.email, ​subject: ​​'Pragmatic Store Order Shipped'​
	​ 	​end​

Now, we have enough of the basics in place that you can
 place an order and have a plain email sent to yourself, assuming
 you didn’t disable the sending of email in development mode.
 Let’s spice up the email with a bit of formatting.
Delivering Multiple Content Types

	
	
	 Some people prefer to receive email in plain-text format,
 while others like the look of an HTML email. Rails supports this directly, allowing you to
	 send email messages that contain alternative
	 content formats, allowing users (or their email clients)
	 to decide which they’d prefer to view.
	
[image: Joe asks:]
Joe asks:
Can I Also Receive Email?

 Action Mailer also supports writing Rails applications that handle
 incoming email. Unfortunately, you need to find a way to retrieve
 appropriate emails from your server environment and inject them into
 the application; this requires a bit more
 work.

 The easy part is handling an email within your application. In your
 Action Mailer class, write an instance method called receive that takes a single
 parameter. This parameter will be a Mail::Message
 object corresponding to the incoming email. You can extract fields, the
 body text, and/or attachments and use them in your application.

 All the normal techniques for intercepting incoming email
 end up running a command, passing that command the content of
 the email as standard input. If we make the
 Rails runner script the command that’s
 invoked whenever an email arrives, we can arrange to pass that
 email into our application’s email-handling code. For example,
 using procmail-based interception, we could write a rule that
 looks something like the example that follows. Using the arcane
 syntax of procmail, this rule copies any incoming email whose
 subject line contains Bug Report through
 our runner script:

	​ 	RUBY=/opt/local/bin/ruby
	​ 	TICKET_APP_DIR=/Users/dave/Work/depot
	​ 	HANDLER='IncomingTicketHandler.receive(STDIN.read)'
	​ 	
	​ 	:0 c
	​ 	* ^Subject:.*Bug Report.*
	​ 	| cd $TICKET_APP_DIR && $RUBY bin/rails runner $HANDLER

 The receive
 class method is available to all Action Mailer classes. It takes
 the email text, parses it into a Mail
 object, creates a new instance of the receiver’s class, and
 passes the Mail object to the receive
 instance method in that class.

 In the preceding section, we created a plain-text email. The view
 file for our received action was called
 received.text.erb. This is the standard
 Rails naming convention. We can also create HTML-formatted emails.

	 Let’s try this with the order-shipped notification.
 We don’t need to modify any code—we simply need to
 create a new template:
	
rails51/depot_qa/app/views/order_mailer/shipped.html.erb
	​ 	<h3>Pragmatic Order Shipped</h3>
	​ 	<p>
	​ 	 This is just to let you know that we've shipped your recent order:
	​ 	</p>
	​ 	
	​ 	<table>
	​ 	 <tr><th colspan=​"2"​>Qty</th><th>Description</th></tr>
	​ 	​<%=​ render @order.line_items ​-%>​
	​ 	</table>

	
	 We don’t need to modify the partial, because the existing one will do just fine:
	
rails51/depot_qa/app/views/line_items/_line_item.html.erb
	​ 	​<%​ ​if​ line_item == @current_item ​%>​
	​ 	<tr class=​"line-item-highlight"​>
	​ 	​<%​ ​else​ ​%>​
	​ 	<tr>
	​ 	​<%​ ​end​ ​%>​
	​ 	 <td class=​"quantity"​>​<%=​ line_item.quantity ​%>​</td>
	​ 	 <td>​<%=​ line_item.product.title ​%>​</td>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(line_item.total_price) ​%>​</td>
	​ 	</tr>

 But for email templates, Rails provides a bit more naming magic.
	 If you create multiple templates with the same
	 name but with different content types embedded in their
	 filenames, Rails will send all of them in one email,
	 arranging the content so that the email client can
	 distinguish each.

 This means you’ll want to either update or delete the plain-text template that Rails provided for the shipped notifier.

Testing Email

	When we used the generate script to create our order mailer,
	it automatically constructed a
	corresponding order_test.rb file
	in the application’s test/mailers
	directory. It’s pretty
 straightforward; it simply calls each action and verifies
	selected portions of the email produced. Because we’ve tailored the
	email, let’s update the test case to match:

rails51/depot_qa/test/mailers/order_mailer_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ OrderMailerTest < ActionMailer::TestCase
	​ 	 test ​"received"​ ​do​
	»	 mail = OrderMailer.received(orders(​:one​))
	»	 assert_equal ​"Pragmatic Store Order Confirmation"​, mail.subject
	»	 assert_equal [​"dave@example.org"​], mail.to
	»	 assert_equal [​"depot@example.com"​], mail.from
	»	 assert_match ​/1 x Programming Ruby 1.9/​, mail.body.encoded
	​ 	 ​end​
	​ 	
	​ 	 test ​"shipped"​ ​do​
	»	 mail = OrderMailer.shipped(orders(​:one​))
	»	 assert_equal ​"Pragmatic Store Order Shipped"​, mail.subject
	»	 assert_equal [​"dave@example.org"​], mail.to
	»	 assert_equal [​"depot@example.com"​], mail.from
	»	 assert_match ​/<td[^>]*>1<\/td>\s*<td>Programming Ruby 1.9<\/td>/​,
	»	 mail.body.encoded
	​ 	 ​end​
	​ 	
	​ 	​end​

 The test method instructs the mail class to create (but not to send) an
 email, and we use assertions to verify that the dynamic content is
 what we expect. Note the use of assert_match
 to validate just part of the body content. Your results may differ
 depending on how you tailored the default :from line in your
 OrderMailer.

 Now that we’ve implemented our mailer and tested it, let’s move on to that pesky slow payment processor. To deal with that, we’ll put our API calls into a job that can be run in the background so the user doesn’t have to wait.

Iteration I2: Connecting to a Slow Payment Processor with Active Job

 The code inside the controllers is relatively fast and returns a response to the user quickly. This means we can reliably give users feedback by checking and validating their orders and the users won’t have to wait too long for a response.

 The more we add to the controller, the slower it will become. Slow controllers create several problems. First, the user must wait a long time for a response, even though the processing that’s going on might not be relevant to the user experience. In the previous section, we set up sending email. The user certainly needs to get that email but doesn’t need to wait for Rails to format and send it just to show a confirmation in the browser.

 The second problem caused by slow code is timeouts. A timeout is when Rails, a web server, or a browser decides that a request has taken too long and terminates it. This is jarring to the user and to the code, because it means the code is interrupted at a potentially odd time. What if we’ve recorded the order but haven’t sent the email? The customer won’t get a notification.

 In the common case of sending email, Rails handles sending it in the background. We used deliver_later to trigger sending an email, and Rails executes that code in the background. This means that users don’t have to wait for email to be sent before we render a response. This is a great hidden benefit to Rails’ integrated approach to building a web app.

 Rails achieves this using Active Job, which is a generic framework for running code in the background. We’ll use this framework to connect to the slow payment processor.

 To make this change, you’ll implement the integration with the payment processor as a method inside Order, then have the controller use Active Job to execute that method in a background job. Because the end result will be somewhat complex, you’ll write a system test to ensure everything is working together.

Moving Logic Into the Model

 It’s way outside the scope of this book to integrate with an actual payment processor, so we’ve cooked up a fake one named Pago, along with an implementation, which we’ll see in a bit. First, this is the API it provides and a sketch of how you can use it:

	​ 	payment_result = Pago.make_payment(
	​ 	 ​order_id: ​order.id,
	​ 	 ​payment_method: :check​,
	​ 	 ​payment_details: ​{ ​routing: ​xxx, ​account: ​yyy }
	​)

 The fake implementation does some basic validations of the parameters, prints out the payment details it received, pauses for a few seconds, and returns a structure that responds to succeeded?.

rails51/depot_qb/lib/pago.rb
	​ 	require ​'ostruct'​
	​ 	​class​ Pago
	​ 	 ​def​ self.make_payment(order_id:,
	​ 	 payment_method:,
	​ 	 payment_details:)
	​ 	
	​ 	 ​case​ payment_method
	​ 	 ​when​ ​:check​
	​ 	 Rails.logger.info ​"Processing check: "​ +
	​ 	 payment_details.fetch(​:routing​).to_s + ​"/"​ +
	​ 	 payment_details.fetch(​:account​).to_s
	​ 	 ​when​ ​:credit_card​
	​ 	 Rails.logger.info ​"Processing credit_card: "​ +
	​ 	 payment_details.fetch(​:cc_num​).to_s + ​"/"​ +
	​ 	 payment_details.fetch(​:expiration_month​).to_s + ​"/"​ +
	​ 	 payment_details.fetch(​:expiration_year​).to_s
	​ 	 ​when​ ​:po​
	​ 	 Rails.logger.info ​"Processing purchase order: "​ +
	​ 	 payment_details.fetch(​:po_num​).to_s
	​ 	 ​else​
	​ 	 ​raise​ ​"Unknown payment_method ​​#{​payment_method​}​​"​
	​ 	 ​end​
	​ 	 sleep 3 ​unless​ Rails.env.test?
	​ 	 Rails.logger.info ​"Done Processing Payment"​
	​ 	 OpenStruct.new(​succeeded?: ​​true​)
	​ 	 ​end​
	​ 	​end​

 If you aren’t familiar with OpenStruct, it’s part of Ruby’s standard library and provides a quick-and-dirty way to make an object that responds to the methods given to its constructor.[80] In this case, we can call succeeded? on the return value from make_payment. OpenStruct is handy for creating realistic objects from prototype or faked-out code like Pago.

 With the payment API in hand, you need logic to adapt the payment details that you added in Chapter 13, ​Task H: Entering Additional
Payment Details​, to Pago’s API. You’ll also move the call to OrderMailer into this method, because you don’t want to send the email if there was a problem collecting payment.

 In a Rails app, when a bit of logic becomes more complex than a line or two of code, you want to move that out of the controller and into a model. You’ll create a new method in Order called charge! that will handle all this logic.

 The method will be somewhat long and has to do three things. First, it must adapt pay_type_params (which you created in ​Dynamically Replacing Components Based on User Actions​, but didn’t use) to the parameters that Pago requires. Second, it should make the call to Pago to collect payment. Finally, it must check to see if the payment succeeded and, if so, send the confirmation email. Here’s what the method looks like:

rails51/depot_qb/app/models/order.rb
	​ 	require ​'active_model/serializers/xml'​
	»	require ​'pago'​
	​ 	
	​ 	​class​ Order < ApplicationRecord
	​ 	 ​include​ ActiveModel::Serializers::Xml
	​ 	 enum ​pay_type: ​{
	​ 	 ​"Check"​ => 0,
	​ 	 ​"Credit card"​ => 1,
	​ 	 ​"Purchase order"​ => 2
	​ 	 }
	​ 	 has_many ​:line_items​, ​dependent: :destroy​
	​ 	 ​# ...​
	​ 	 validates ​:name​, ​:address​, ​:email​, ​presence: ​​true​
	​ 	 validates ​:pay_type​, ​inclusion: ​pay_types.keys
	​ 	 ​def​ add_line_items_from_cart(cart)
	​ 	 cart.line_items.each ​do​ |item|
	​ 	 item.cart_id = ​nil​
	​ 	 line_items << item
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	»	 ​def​ charge!(pay_type_params)
	»	 payment_details = {}
	»	 payment_method = ​nil​

	​ 	 ​case​ pay_type
	​ 	 ​when​ ​"Check"​
	​ 	 payment_method = ​:check​
	​ 	 payment_details[​:routing​] = pay_type_params[​:routing_number​]
	​ 	 payment_details[​:account​] = pay_type_params[​:account_number​]
	​ 	 ​when​ ​"Credit card"​
	​ 	 payment_method = ​:credit_card​
	​ 	 month,year = pay_type_params[​:expiration_date​].split(​//​)
	​ 	 payment_details[​:cc_num​] = pay_type_params[​:credit_card_number​]
	​ 	 payment_details[​:expiration_month​] = month
	​ 	 payment_details[​:expiration_year​] = year
	​ 	 ​when​ ​"Purchase order"​
	​ 	 payment_method = ​:po​
	​ 	 payment_details[​:po_num​] = pay_type_params[​:po_number​]
	​ 	 ​end​
	​ 	
	​ 	 payment_result = Pago.make_payment(
	​ 	 ​order_id: ​id,
	​ 	 ​payment_method: ​payment_method,
	​ 	 ​payment_details: ​payment_details
	​)
	​ 	
	​ 	 ​if​ payment_result.succeeded?
	​ 	 OrderMailer.received(self).deliver_later
	​ 	 ​else​
	​ 	 ​raise​ payment_result.error
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 If you weren’t concerned with how slow Pago’s API is, you’d change the code in the create method of OrdersController to call charge!:

	​ 	​if​ @order.save
	​ 	 Cart.destroy(session[​:cart_id​])
	​ 	 session[​:cart_id​] = ​nil​
	»	 @order.charge!(pay_type_params) ​# do not do this​
	​ 	 format.html { redirect_to store_index_url, ​notice:​
	​ 	​ ​​'Thank you for your order.'​ }

 Since you already know the call to Pago will be slow, you want it to happen in a background job, so that users can see the confirmation message in their browser immediately without having to wait for the charge to actually happen. To do this, you must create an Active Job class, implement that class to call charge!, and then add code to the controller to execute this job. The flow looks like the figure.

[image: images/ActiveJobFlowDetail.png]

Creating an Active Job Class

 Rails provides a generator to create a shell of a job class for us. Create the job using it like so:

	​ 	> bin/rails generate job charge_order
	​ 	 invoke test_unit
	​ 	 create test/jobs/charge_order_job_test.rb
	​ 	 create app/jobs/charge_order_job.rb

 The argument charge_order tells Rails that the job’s class name should be ChargeOrderJob.

 You’ve implemented the logic in the charge! method of Order, so what goes in the newly created ChargeOrderJob? The purpose of job classes like ChargeOrderJob is to act as a glue between the controller—--which wants to run some logic later—--and the actual logic in the models.

 Here’s the code that implements this:

rails51/depot_qb/app/jobs/charge_order_job.rb
	​ 	​class​ ChargeOrderJob < ApplicationJob
	​ 	 queue_as ​:default​
	​ 	
	»	 ​def​ perform(order,pay_type_params)
	»	
	»	 order.charge!(pay_type_params)
	​ 	
	​ 	 ​end​
	​ 	​end​

 Next, you need to fire this job in the background from the controller.

Queuing a Background Job

 Because background jobs run in parallel to the code in the controller, the code you write to initiate the background job isn’t the same as calling a method. When you call a method, you expect that method’s code to be executed while you wait. Background jobs are different. They often go to a queue, where they wait to be executed outside the controller. Thus, when we talk about executing code in a background job, we often use the phrase “queue the job.”

 To queue a job using Active Job, use the method perform_later on the job class and pass it the arguments you want to be given to the perform method you implemented above. Here’s where to do that in the controller (note that this replaces the call to OrderMailer, since that’s now part of the charge! method):

rails51/depot_qb/app/controllers/orders_controller.rb
	​ 	 ​def​ create
	​ 	 @order = Order.new(order_params)
	​ 	 @order.add_line_items_from_cart(@cart)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @order.save
	​ 	 Cart.destroy(session[​:cart_id​])
	​ 	 session[​:cart_id​] = ​nil​
	»	 ChargeOrderJob.perform_later(@order,pay_type_params.to_h)
	​ 	 format.html { redirect_to store_index_url, ​notice:​
	​ 	​ ​​'Thank you for your order.'​ }
	​ 	 format.json { render ​:show​, ​status: :created​,
	​ 	 ​location: ​@order }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@order.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 With this in place, you can now add an item to the cart, check out, and see everything working just as we did before, with the addition of seeing the calls to Pago. If you look at the Rails log when you check out, you should see some logging like so (formatted to fit the page):

	​ 	[ActiveJob] Enqueued ChargeOrderJob (Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1)
	​ 	 to Async(default) with arguments:
	​ 	 #<GlobalID:0x007fa294a43ce0 @uri=#<URI::GID gid://depot/Order/9>>,
	​ 	 {"routing_number"=>"23412341234", "account_number"=>"345356345"}
	​ 	[ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
	​ 	 Performing ChargeOrderJob (Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1) from
	​ 	 Async(default) with arguments:
	​ 	 #<GlobalID:0x007fa294a01570 @uri=#<URI::GID gid://depot/Order/9>>,
	​ 	 {"routing_number"=>"23412341234", "account_number"=>"345356345"}
	​ 	[ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
	​ 	 Processing check: 23412341234/345356345

 This shows the guts of how Active Job works and is useful for debugging if things aren’t working right.

 Speaking of debugging and possible failures, this interaction really should have a test.

System Testing the Checkout Flow

 In ​Iteration H2: Testing Our JavaScript Functionality​, you wrote a system test that uses a real browser to simulate user interaction. In order to test the entire flow of checking out, communicating with the payment processor, and sending an email, you’ll expand that test.

 To test the full, end-to-end workflow, including execution of Active Jobs, you want to do the following:

	

 Add a book to the cart.

	

 Fill in the checkout form completely (including selecting a pay type).

	

 Submit the order.

	

 Process all background jobs.

	

 Check that the order was created properly.

	

 Check that email was sent.

 You should already be familiar with how to write most parts of this test. Processing background jobs and checking mail, however, are new. Rails provides helpers for us, so the test will be short and readable when you’re done. One of those helpers is available by mixing in the ActiveJob::TestHelper module:

rails51/depot_qb/test/system/orders_test.rb
	​ 	​class​ OrdersTest < ApplicationSystemTestCase
	»	 ​include​ ActiveJob::TestHelper

 This provides the method perform_enqueued_jobs, which you’ll see in a moment.

 The current test just makes assertions about how the pay type selector changes the DOM. Since you now need to submit the form and assert that an order was created, you need to clear out any orders in the test database that might be hanging around from previous test runs.

rails51/depot_qb/test/system/orders_test.rb
	​ 	test ​"check routing number"​ ​do​
	​ 	
	»	 LineItem.delete_all
	»	 Order.delete_all
	​ 	
	​ 	 visit store_index_url

 Next, you’ll need to fill in the pay type details. Since the test currently selects the Check pay type, you can use fill_in to provide a routing number and an account number:

rails51/depot_qb/test/system/orders_test.rb
	​ 	 assert_selector ​"#order_routing_number"​
	​ 	
	»	 fill_in ​"Routing #"​, ​with: ​​"123456"​
	»	 fill_in ​"Account #"​, ​with: ​​"987654"​

 Next, you need to submit the form. Capybara provides the method click_button that will do that; however it’s important to consider what will happen with the background jobs. In a system test, Rails won’t process the background jobs automatically. This allows you to have the chance to inspect them and make assertions about them.

 Since this test is about the user’s experience end-to-end, you don’t need to look at the jobs that have been queued—instead we need to make sure they are executed. It’s sufficient to assert the results of those jobs having been executed. To that end, the method perform_enqueued_jobs will perform any jobs that get enqueued inside the block of code given to it:

rails51/depot_qb/test/system/orders_test.rb
	»	 perform_enqueued_jobs ​do​
	»	 click_button ​"Place Order"​
	»	 ​end​

 When the “Place Order” button is pressed, the controller executes its code, including queuing a ChargeOrderJob. Because that was initiated inside the block given to perform_enqueued_jobs, Rails will process any and all jobs that get queued.

[image: Joe asks:]
Joe asks:
How Are Background Jobs Run in Development or Production?

 When running the application locally, the background jobs are executed and emails are sent by Rails. By default, Rails uses an in-memory queue to manage the jobs. This is fine for development, but it could be a problem in production. If your app were to crash before all background jobs were processed or before emails were sent, those jobs would be lost and unrecoverable.

 In production, you’d need to use a different back end, as detailed in the Active Job Rails Guide.[81] Sidekiq is a popular open-source back end that works great.[82] Setting it up is a bit tricky, since you must have access to a Redis database to store the waiting jobs.[83] If you are using Postgres for your Active Records, Queue Classic is another option for a back end that doesn’t require Redis—it uses your existing Postgres database.[84]

 Next, check that an order was created in the way you expect by locating the created order and asserting that the values provided in the checkout form were properly saved.

rails51/depot_qb/test/system/orders_test.rb
	»	 orders = Order.all
	»	 assert_equal 1, orders.size
	»	
	»	 order = orders.first
	»	
	»	 assert_equal ​"Dave Thomas"​, order.name
	»	 assert_equal ​"123 Main Street"​, order.address
	»	 assert_equal ​"dave@example.com"​, order.email
	»	 assert_equal ​"Check"​, order.pay_type
	»	 assert_equal 1, order.line_items.size

 Lastly, you need to check that the mail was sent. In the test environment, Rails doesn’t actually deliver mail but instead saves it in an array available via ActionMailer::Base.deliveries. The objects in there respond to various methods that allow you to examine the email:

rails51/depot_qb/test/system/orders_test.rb
	»	 mail = ActionMailer::Base.deliveries.last
	»	 assert_equal [​"dave@example.com"​], mail.to
	»	 assert_equal ​'Sam Ruby <depot@example.com>'​, mail[​:from​].value
	»	 assert_equal ​"Pragmatic Store Order Confirmation"​, mail.subject
	​ 	
	​ 	 ​end​
	​ 	​end​

 Note that if you had not used perform_enqueued_jobs around the call to click_button "Place Order", the test would fail. This is because ChargeOrderJob would not have executed, and therefore it would not have created and sent the email.

 If you run this test via bin/rails test test/system/orders_test.rb, it should pass. You’ve now tested a complex workflow using the browser, background jobs, and email.

What We Just Did

 Without much code and with just a few templates, we’ve managed to
 pull off the following:

	

 We configured our development, test, and production environments for
 our Rails application to enable the sending of outbound emails.

	

 We created and tailored a mailer that can send confirmation emails
 in both plain-text and HTML formats to people who order our
 products.

	

 We used Active Job to execute slow-running code in the background, so the user doesn’t have to wait.

	

 We enhanced a system test to cover the entire end-to-end workflow, including verifying that the background job executed and the email was sent.

Playtime

 Here’s some stuff to try on your own:
	

 Add a ship_date column to the orders table, and send a
 notification when this value is updated by the
 OrdersController.

	

 Update the application to send an email to the system administrator—
 namely, yourself—when an application failure occurs, such as the
 one we handled in ​Iteration E2: Handling Errors​.

	

 Modify Pago to sometimes return a failure (OpenStruct.new(succeeded?: false)), and handle that by sending a different email with the details of the failure.

	

 Add system tests for all of the above.

Footnotes

	[77]
	
http://guides.rubyonrails.org/action_mailer_basics.html

	[78]
	
http://guides.rubyonrails.org/active_job_basics.html

	[79]
	
http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-deliver_now

	[80]
	
https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html

	[81]
	
http://guides.rubyonrails.org/active_job_basics.html#job-execution

	[82]
	
http://sidekiq.org/

	[83]
	
https://redis.io/

	[84]
	
https://github.com/QueueClassic/queue_classic/tree/3-1-stable

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Adding secure passwords to models
	Using more validations
	Adding authentication to a session
	Using rails console
	Using database transactions
	Writing an Active Record hook

 Chapter
 15
Task J: Logging In

 We have a happy customer: in a short time, we’ve jointly put
 together a basic shopping cart that she can start showing to
 her users. She’d like to
 see just one more change. Right now, anyone can access the administrative
 functions. She’d like us to add a basic user administration system
 that would force you to log in to get into the administration
 parts of the site.

 Chatting with our customer, it seems as if we don’t need a
 particularly sophisticated security system for our application. We
 just need to recognize a number of people based on usernames and
 passwords. Once recognized, these folks can use all of the
 administration functions.

Iteration J1: Adding Users

 Let’s start by creating a model and database table to hold our
 administrators’ usernames and passwords. Rather than store passwords in
 plain text, we’ll store a digest hash value of the password.
 By doing so, we ensure that even if our database is compromised,
 the hash won’t reveal the original password, so it can’t be used to log
 in as this user using the forms:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​scaffold​​ ​​User​​ ​​name:string​​ ​​password:digest​

 We declare the password as a digest type, which is another
 one of the nice extra touches that Rails provides.

 Now run the migration as usual:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​

 Next we have to flesh out the user model:

rails51/depot_r/app/models/user.rb
	​ 	​class​ User < ApplicationRecord
	»	 validates ​:name​, ​presence: ​​true​, ​uniqueness: ​​true​
	​ 	 has_secure_password
	​ 	​end​

 We check that the name is present and unique (that is, no two users
 can have the same name in the database).

Then there’s the
 mysterious has_secure_password.

 You know those forms that prompt you to enter a password and
 then make you reenter it in a separate field so they can
 validate that you typed what you thought you typed?
 That’s exactly what has_secure_password does for
 you: it tells Rails to validate that the two passwords match.
 This line was added for you because you specified
 password:digest when you
 generated your scaffold.

 The next step is to uncomment the bcrypt-ruby gem in
 your Gemfile:

rails51/depot_r/Gemfile
	​ 	​# Use ActiveModel has_secure_password​
	»	gem ​'bcrypt'​, ​'~> 3.1.7'​

 Next, you need to install the gem:

	​ 	​depot>​​ ​​bundle​​ ​​install​

 Finally, you need to restart your server.

With this code in place, we have the ability to present both a password
 and a password confirmation field in a form, as well as the ability to
 authenticate a user, given a name and a password.

Administering Our Users

 In addition to the model and table we set up, we already have
 some scaffolding generated to administer the model. Let’s go
 through it and make some tweaks as necessary.

 We start with the controller. It defines the standard methods:
 index, show, new,
 edit, create, update,
 and delete. By default, Rails omits the
 unintelligible password hash from the view. This means
 that in the case of users, there isn’t much to
 show, except a name. So, let’s avoid the redirect to
 showing the user after a create
 operation.
 Instead, let’s redirect to the user’s index and add the username to the
 flash notice:
rails51/depot_r/app/controllers/users_controller.rb
	​ 	 ​def​ create
	​ 	 @user = User.new(user_params)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @user.save
	»	 format.html { redirect_to users_url,
	»	 ​notice: ​​"User ​​#{​@user.name​}​​ was successfully created."​ }
	​ 	 format.json { render ​:show​, ​status: :created​, ​location: ​@user }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@user.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 Let’s do the same for an update operation:
	​ 	 ​def​ update
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @user.update(user_params)
	»	 format.html { redirect_to users_url,
	»	 ​notice: ​​"User ​​#{​@user.name​}​​ was successfully updated."​ }
	​ 	 format.json { render ​:show​, ​status: :ok​, ​location: ​@user }
	​ 	 ​else​
	​ 	 format.html { render ​:edit​ }
	​ 	 format.json { render ​json: ​@user.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 While we are here, let’s also order the users returned in the
 index by name:

	​ 	 ​def​ index
	»	 @users = User.order(​:name​)
	​ 	 ​end​

 Now that the controller changes are done, let’s attend to the view.
 We need to update the form used both to create a new user and
 to update an existing user. Note this form is already set up
 to show the password and password confirmation
 fields.
 To improve the appearance of the page, we add <legend> and
 <fieldset> tags. Next we tweak the labels and the size of
 the fields. Finally, we wrap the output in a <div>
 tag with a class we previously defined in our stylesheet:

rails51/depot_r/app/views/users/_form.html.erb
	»	<div class=​"depot_form"​>
	»	
	​ 	​<%=​ form_with(​model: ​user, ​local: ​​true​) ​do​ |form| ​%>​
	​ 	 ​<%​ ​if​ user.errors.any? ​%>​
	​ 	 <div id=​"error_explanation"​>
	​ 	 <h2>​<%=​ pluralize(user.errors.count, ​"error"​) ​%>​
	​ 	 prohibited this user from being saved:</h2>
	​ 	
	​ 	
	​ 	 ​<%​ user.errors.full_messages.each ​do​ |message| ​%>​
	​ 	 ​<%=​ message ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 </div>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	»	 <h2>Enter User Details</h2>
	»	
	​ 	 <div class=​"field"​>
	»	 ​<%=​ form.label ​:name​, ​'Name:'​ ​%>​
	»	 ​<%=​ form.text_field ​:name​, ​id: :user_name​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	»	 ​<%=​ form.label ​:password​, ​'Password:'​ ​%>​
	»	 ​<%=​ form.password_field ​:password​, ​id: :user_password​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	»	 ​<%=​ form.label ​:password_confirmation​, ​'Confirm:'​ ​%>​
	​ 	
	»	 ​<%=​ form.password_field ​:password_confirmation​,
	»	 ​id: :user_password_confirmation​,
	»	 ​size: ​40 ​%>​
	​ 	
	​ 	 </div>
	​ 	
	​ 	 <div class=​"actions"​>
	​ 	 ​<%=​ form.submit ​%>​
	​ 	 </div>
	​ 	​<%​ ​end​ ​%>​
	»	
	»	</div>

 Let’s try it. Navigate to http://localhost:3000/users/new.
 For a stunning example of page design, see the following screenshot.

[image: images/r_1_new_user.png]

 After Create User is clicked, the index is
 redisplayed with a cheery flash notice. If we look in our
 database, you’ll see that we’ve stored the user details:

	​ 	​depot>​​ ​​sqlite3​​ ​​-line​​ ​​db/development.sqlite3​​ ​​"select * from users"​
	​ 	 id = 1
	​ 	 name = dave
	​ 	password_digest = $2a$10$lki6/oAcOW4AWg4A0e0T8uxtri2Zx5g9taBXrd4mDSDVl3rQRWRNi
	​ 	 created_at = 2016-01-29 14:40:06.230622
	​ 	 updated_at = 2016-01-29 14:40:06.230622

 As we’ve done before, we need to update our tests to reflect the
 validation and redirection changes we’ve made. First we update the
 test for the create method:

rails51/depot_r/test/controllers/users_controller_test.rb
	​ 	 test ​"should create user"​ ​do​
	​ 	 assert_difference(​'User.count'​) ​do​
	»	 post users_url, ​params: ​{ ​user: ​{ ​name: ​​'sam'​,
	»	 ​password: ​​'secret'​, ​password_confirmation: ​​'secret'​ } }
	​ 	 ​end​
	​ 	
	»	 assert_redirected_to users_url
	​ 	 ​end​

 Because the redirect on the update method changed too, the
 update test also needs to change:

	​ 	 test ​"should update user"​ ​do​
	​ 	 patch user_url(@user), ​params: ​{ ​user: ​{ ​name: ​@user.name,
	​ 	 ​password: ​​'secret'​, ​password_confirmation: ​​'secret'​ } }
	»	 assert_redirected_to users_url
	​ 	 ​end​

 We need to update the test fixtures to ensure there are no
 duplicate names:

rails51/depot_r/test/fixtures/users.yml
	​ 	​# Read about fixtures at​
	​ 	​# http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html​
	​ 	
	​ 	one:
	»	 name: ​dave​
	​ 	 password_digest: ​<%= BCrypt::Password.create('secret') %>​
	​ 	
	​ 	two:
	»	 name: ​susannah​
	​ 	 password_digest: ​<%= BCrypt::Password.create('secret') %>​

 Note the use of dynamically computed values in the fixture, specifically
 for the value of password_digest. This code was also
 inserted by the scaffolding command and uses
 the same function that Rails uses to compute the password.[85]

 At this point, we can administer our users; we need to first
 authenticate users and then restrict administrative functions so they’ll be
 accessible only by administrators.

Iteration J2: Authenticating Users

 What does it mean to add login support for administrators of
 our store?

	

	 We need to provide a form that allows them to enter a
	 username and password.
	

	

	 Once they’re logged in, we need to record that fact
	 somehow for the rest of the session (or until they log
	 out).
	

	

	 We need to restrict access to the administrative parts of
	 the application, allowing only people who are logged in to
	 administer the store.
	

 We could put all of the logic into a single controller, but it makes
 more sense to split it into two:
 a session controller to support logging in and out
 and a controller to welcome administrators:

	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​controller​​ ​​Sessions​​ ​​new​​ ​​create​​ ​​destroy​
	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​controller​​ ​​Admin​​ ​​index​

 The SessionsController#create action will need to record
 something in session to say that an
 administrator is logged in. Let’s have it store the ID of
 that person’s User object using the
 key :user_id. The login code looks
 like this:

rails51/depot_r/app/controllers/sessions_controller.rb
	​ 	 ​def​ create
	»	 user = User.find_by(​name: ​params[​:name​])
	»	 ​if​ user.try(​:authenticate​, params[​:password​])
	»	 session[​:user_id​] = user.id
	»	 redirect_to admin_url
	»	 ​else​
	»	 redirect_to login_url, ​alert: ​​"Invalid user/password combination"​
	»	 ​end​
	​ 	 ​end​

 This code makes use of the Rails try method, which
 checks to see if a variable has a value of nil before
 trying to call the method. If you’re using Ruby 2.3, you can use
 the version of this that’s built into the language instead:

	​ 	​if​ user&.authenticate(params[​:password​])

 We’re also doing something else new here: using a form that isn’t
 directly associated with a model object. To see how that works, let’s
 look at the template for the sessions#new action:

rails51/depot_r/app/views/sessions/new.html.erb
	​ 	<section class=​"depot_form"​>
	​ 	 ​<%​ ​if​ flash[​:alert​] ​%>​
	​ 	 <aside class=​"notice"​>​<%=​ flash[​:alert​] ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 ​<%=​ form_tag ​do​ ​%>​
	​ 	 <h2>Please Log In</h2>

	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ label_tag ​:name​, ​'Name:'​ ​%>​
	​ 	 ​<%=​ text_field_tag ​:name​, params[​:name​] ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	​ 	 ​<%=​ label_tag ​:password​, ​'Password:'​ ​%>​
	​ 	 ​<%=​ password_field_tag ​:password​, params[​:password​] ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"actions"​>
	​ 	 ​<%=​ submit_tag ​"Login"​ ​%>​
	​ 	 </div>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	</section>

 This form is different from ones you saw earlier. Rather than
 using form_with, it
 uses form_tag, which simply builds a regular
 HTML <form>. Inside that form, it
 uses text_field_tag
 and password_field_tag, two helpers that
 create HTML <input> tags. Each helper takes two
 parameters. The first is the name to give to the field, and the
 second is the value with which to populate the field. This style
 of form allows us to associate values in the params
 structure directly with form fields—no model object is
 required. In our case, we choose to use the params
 object directly in the form. An alternative would be to have the
 controller set instance variables.

 We also make use of the label_tag helpers to
 create HTML <label> tags. This helper also accepts two
 parameters. The first contains the name of the field, and the second
 contains the label to be displayed.

 See the figure. Note how the value of the form
 field is communicated between the controller and the view via
 the params hash: the view gets the value to display in
 the field from params[:name], and when the user submits
 the form, the new field value is made available to the
 controller the same way.

[image: images/form_flow.png]

 If the user successfully logs in, we store the ID of the user
 record in the session data. We’ll use the presence of that value
 in the session as a flag to indicate that an administrative user is
 logged in.

 As you might expect, the controller actions for logging out are
 much shorter:

rails51/depot_r/app/controllers/sessions_controller.rb
	​ 	 ​def​ destroy
	»	 session[​:user_id​] = ​nil​
	»	 redirect_to store_index_url, ​notice: ​​"Logged out"​
	​ 	 ​end​

 Finally, it’s about time to add the index page—the first screen
 that administrators see when they log in. Let’s make it
 useful. We’ll have it display the total number of orders in our
 store. Create the template in the
 index.html.erb file in the
 app/views/admin directory. (This template
 uses the pluralize helper, which in
 this case generates the order
 or orders string, depending on the cardinality of its first
 parameter.)

rails51/depot_r/app/views/admin/index.html.erb
	​ 	<h1>Welcome</h1>
	​ 	
	​ 	<p>
	​ 	 It's ​<%=​ Time.now ​%>​.
	​ 	 We have ​<%=​ pluralize(@total_orders, ​"order"​) ​%>​.
	​ 	</p>

 The index action sets up the
 count:

rails51/depot_r/app/controllers/admin_controller.rb
	​ 	​class​ AdminController < ApplicationController
	​ 	 ​def​ index
	»	 @total_orders = Order.count
	​ 	 ​end​
	​ 	​end​

 We have one more task to do before we can use this. Whereas previously
 we relied on the scaffolding generator to create our model and routes
 for us, this time we simply generated a controller because there’s no
 database-backed model for this controller. Unfortunately, without the
 scaffolding conventions to guide it, Rails has
 no way of knowing which actions are to respond to GET requests, which
 are to respond to POST requests, and so on, for this controller.
 We need
 to provide this information by editing our
 config/routes.rb file:

rails51/depot_r/config/routes.rb
	​ 	Rails.application.routes.draw ​do​
	»	 get ​'admin'​ => ​'admin#index'​
	​ 	
	»	 controller ​:sessions​ ​do​
	»	 get ​'login'​ => ​:new​
	»	 post ​'login'​ => ​:create​
	»	 delete ​'logout'​ => ​:destroy​
	»	 ​end​
	​ 	
	​ 	 resources ​:users​
	​ 	 resources ​:orders​
	​ 	 resources ​:line_items​
	​ 	 resources ​:carts​
	​ 	 root ​'store#index'​, ​as: ​​'store_index'​
	​ 	
	​ 	 resources ​:products​ ​do​
	​ 	 get ​:who_bought​, ​on: :member​
	​ 	 ​end​
	​ 	
	​ 	 ​# For details on the DSL available within this file, see​
	​ 	 ​# http://guides.rubyonrails.org/routing.html​
	​ 	​end​

 We’ve touched this before, when we added a root statement in
 ​Iteration C1: Creating the Catalog Listing​. What the generate command
 will add to this file are fairly generic get statements for each
 of the actions specified. You can (and should) delete the routes
 provided for sessions/new, sessions/create, and
 sessions/destroy.

 In the case of admin, we’ll shorten the URL that the user has
 to enter (by removing the /index part) and map it to the
 full action. In the case of session actions, we’ll completely change
 the URL (replacing things like session/create with simply
 login) as well as tailor the HTTP action that we’ll match.
 Note that login is mapped to both the new and create actions,
 the difference being whether the request was an HTTP GET or HTTP POST.

 We also make use of a shortcut: wrapping the session route declarations
 in a block and passing it to a controller class
 method. This saves us a bit of typing as well as makes the routes
 easier to read. We’ll describe all you can do in this file in
 ​Dispatching Requests to Controllers​.

 With these routes in place, we can experience the joy of logging in as an
 administrator. See the following screenshot.

[image: images/r_2_login.png]

 We need to replace the functional tests in the session controller to
 match what was implemented. First,
 change the admin controller test to get the admin URL:

rails51/depot_r/test/controllers/admin_controller_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ AdminControllerTest < ActionDispatch::IntegrationTest
	​ 	 test ​"should get index"​ ​do​
	»	 get admin_url
	​ 	 assert_response ​:success​
	​ 	 ​end​
	​ 	
	​ 	​end​

 Then we implement several tests for both successful and failed login
 attempts:

rails51/depot_r/test/controllers/sessions_controller_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ SessionsControllerTest < ActionDispatch::IntegrationTest
	​ 	 test ​"should prompt for login"​ ​do​
	​ 	 get login_url
	​ 	 assert_response ​:success​
	​ 	 ​end​
	​ 	
	​ 	 test ​"should login"​ ​do​
	​ 	 dave = users(​:one​)
	​ 	 post login_url, ​params: ​{ ​name: ​dave.name, ​password: ​​'secret'​ }
	​ 	 assert_redirected_to admin_url
	​ 	 assert_equal dave.id, session[​:user_id​]
	​ 	 ​end​
	​ 	
	​ 	 test ​"should fail login"​ ​do​
	​ 	 dave = users(​:one​)
	​ 	 post login_url, ​params: ​{ ​name: ​dave.name, ​password: ​​'wrong'​ }
	​ 	 assert_redirected_to login_url
	​ 	 ​end​
	​ 	
	​ 	 test ​"should logout"​ ​do​
	​ 	 delete logout_url
	​ 	 assert_redirected_to store_index_url
	​ 	 ​end​
	​ 	
	​ 	​end​

 We show our customer where we are, but she points out that we
 still haven’t controlled access to the administrative pages
 (which was, after all, the point of this exercise).

Iteration J3: Limiting Access

 We want to prevent people without an administrative login from
 accessing our site’s admin pages. It turns out that we can do it with very little code
 using the Rails callback facility.

 Rails callbacks allow you to intercept calls to action methods,
 adding your own processing before they’re invoked, after they
 return, or both. In our case, we’ll use a before
 action callback to intercept all calls to the actions in our admin
 controller.
 The interceptor can
 check session[:user_id]. If it’s set and if it corresponds
 to a user in the database, the application knows an
 administrator is logged in, and the call can proceed. If it’s not
 set, the interceptor can issue a redirect, in this case to our
 login page.

 Where should we put this method? It could sit directly in the
 admin controller, but—for reasons that’ll become apparent
 shortly—let’s put it instead in
 ApplicationController, the parent
 class of all our controllers. This is in the
 application_controller.rb file

 in the app/controllers directory. Note too
 that we chose to restrict access to this method. This prevents it from
 ever being exposed to end users as an action:

rails51/depot_r/app/controllers/application_controller.rb
	​ 	​class​ ApplicationController < ActionController::Base
	»	 before_action ​:authorize​
	​ 	
	​ 	 ​# ...​
	»	
	»	 ​protected​
	»	
	»	 ​def​ authorize
	»	 ​unless​ User.find_by(​id: ​session[​:user_id​])
	»	 redirect_to login_url, ​notice: ​​"Please log in"​
	»	 ​end​
	»	 ​end​
	​ 	​end​

 The before_action line causes the
 authorize method to be invoked before every action
 in our application.

 This is
 going too far. We’ve just limited access to the store itself to
 administrators. That’s not good.

 We could go back and change things so that we mark only those
 methods that specifically need authorization. Such an
 approach, called blacklisting, is prone to errors of
 omission. A much better approach is to whitelist—list
 methods or controllers for which authorization is not
 required. We do this by inserting a
 skip_before_action call within the
 StoreController:

rails51/depot_r/app/controllers/store_controller.rb
	​ 	​class​ StoreController < ApplicationController
	»	 skip_before_action ​:authorize​

 And we do it again for the SessionsController class:

rails51/depot_r/app/controllers/sessions_controller.rb
	​ 	​class​ SessionsController < ApplicationController
	»	 skip_before_action ​:authorize​

 We’re not done yet; we need to allow people to create,
 update, and delete carts:

rails51/depot_r/app/controllers/carts_controller.rb
	​ 	​class​ CartsController < ApplicationController
	»	 skip_before_action ​:authorize​, ​only: ​[​:create​, ​:update​, ​:destroy​]

 And we allow them to create line items:

rails51/depot_r/app/controllers/line_items_controller.rb
	​ 	​class​ LineItemsController < ApplicationController
	»	 skip_before_action ​:authorize​, ​only: :create​

 We also allow them to create orders (which includes access to the new form):

rails51/depot_r/app/controllers/orders_controller.rb
	​ 	​class​ OrdersController < ApplicationController
	»	 skip_before_action ​:authorize​, ​only: ​[​:new​, ​:create​]

 With the authorization logic in place, we can now navigate to
 http://localhost:3000/products. The callback method
 intercepts us on the way to the product listing and shows us the login
 screen instead.

 Unfortunately, this change pretty much invalidates most of our
 functional tests, because most operations will now redirect to the login
 screen instead of doing the function desired. Fortunately, we can
 address this globally by creating a setup
 method in the test_helper. While we’re there, we also define some
 helper methods to login_as and
 logout a user:

rails51/depot_r/test/test_helper.rb
	​ 	​class​ ActionDispatch::IntegrationTest
	​ 	 ​def​ login_as(user)
	​ 	 post login_url, ​params: ​{ ​name: ​user.name, ​password: ​​'secret'​ }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ logout
	​ 	 delete logout_url
	​ 	 ​end​
	​ 	
	​ 	 ​def​ setup
	​ 	 login_as users(​:one​)
	​ 	 ​end​
	​ 	​end​

 Note that the setup method will call
 login_as only if session is defined. This
 prevents the login from being executed in tests that don’t involve
 a controller.

 We show our customer and are rewarded with a big smile and a
 request: could we add a sidebar and put links to the user and
 product administration stuff in it? And while we’re there, could
 we add the ability to list and delete administrative users? You
 betcha!

Iteration J4: Adding a Sidebar, More Administration

 Let’s start with adding links to various administration functions to
 the sidebar in the layout and have them show
 up only if a :user_id is in the session:

rails51/depot_r/app/views/layouts/application.html.erb
	​ 	<html>
	​ 	 <head>
	​ 	 <title>Pragprog Books Online Store</title>
	​ 	 ​<%=​ csrf_meta_tags ​%>​
	​ 	
	​ 	 ​<%=​ stylesheet_link_tag ​'application'​, ​media: ​​'all'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 ​<%=​ javascript_include_tag ​'application'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 </head>
	​ 	
	​ 	 <body>
	​ 	 <header class=​"main"​>
	​ 	 ​<%=​ image_tag ​'logo.svg'​, ​alt: ​​'The Pragmatic Bookshelf'​ ​%>​
	​ 	 <h1>​<%=​ @page_title ​%>​</h1>
	​ 	 </header>
	​ 	 <section class=​"content"​>
	​ 	 <nav class=​"side_nav"​>
	​ 	
	​ 	 <div id=​"cart"​ class=​"carts"​>
	​ 	
	​ 	 ​<%=​ render_if @cart && @cart.line_items.any?, @cart ​%>​
	​ 	 </div>
	​ 	
	​ 	
	​ 	 Home
	​ 	 Questions
	​ 	 News
	​ 	 Contact
	​ 	
	»	
	»	 ​<%​ ​if​ session[​:user_id​] ​%>​
	»	 <nav class=​"logged_in_nav"​>
	»	
	»	 ​<%=​ link_to ​'Orders'​, orders_path ​%>​
	»	 ​<%=​ link_to ​'Products'​, products_path ​%>​
	»	 ​<%=​ link_to ​'Users'​, users_path ​%>​
	»	 ​<%=​ button_to ​'Logout'​, logout_path, ​method: :delete​ ​%>​
	»	
	»	 </nav>
	»	 ​<%​ ​end​ ​%>​
	​ 	 </nav>
	​ 	 <main class=​'​​<%=​ controller.controller_name ​%>​​'​>
	​ 	 ​<%=​ ​yield​ ​%>​
	​ 	 </main>
	​ 	 </section>
	​ 	 </body>
	​ 	</html>

 We should also add some light styling. Let’s add this to the end of app/assets/stylesheets/application.scss:

rails51/depot_r/app/assets/stylesheets/application.scss
	​ 	nav.logged_in_nav {
	​ 	 border-top: solid thin #bfb;
	​ 	 padding: 0.354em 0;
	​ 	 margin-top: 0.354em;
	​ 	 input[type=​"submit"​] {
	​ 	 ​// Make the logout button look like a​
	​ 	 ​// link, so it matches the nav style​
	​ 	 background: none;
	​ 	 border: none;
	​ 	 color: #bfb;
	​ 	 font-size: 1em;
	​ 	 letter-spacing: 0.354em;
	​ 	 margin: 0;
	​ 	 padding: 0;
	​ 	 text-transform: uppercase;
	​ 	 }
	​ 	 input[type=​"submit"​]:hover {
	​ 	 color: white;
	​ 	 }
	​ 	}

	Now it’s all starting to come together. We can log in, and
	by clicking a link in the sidebar, we can see a list of
	users. Let’s see if we can break something.

Would the Last Admin to Leave…

	We bring up the user list screen that looks
	something like the screenshot; then we
	click the Destroy link next to dave to delete
	that user. Sure enough, our user is removed. But to our
	surprise, we’re then presented with the login screen
	instead. We just deleted the only administrative user from the
	system. When the next request came in, the authentication
	failed, so the application refused to let us in. We have to
	log in again before using any administrative functions.
[image: images/r_3_user_list.png]

But
	now we have an embarrassing problem: there are no
	administrative users in the database, so we can’t log in.

	Fortunately, we can quickly add a user to the database from
	the command line. If you invoke the
	 rails console command, Rails invokes
	Ruby’s irb utility, but it does so
	in the context of your Rails application.
	That means you can
	interact with your application’s code by typing Ruby
	statements and looking at the values they return.

We can use
	this to invoke our user model directly, having it add a user
	into the database for us:

	​ 	​depot>​​ ​​bin/rails​​ ​​console​
	​ 	Loading development environment.
	​ 	​>>​​ ​​User.create(name:​​ ​​'dave'​​,​​ ​​password:​​ ​​'secret'​​,​​ ​​password_confirmation:​​ ​​'secret'​​)​
	​ 	=> ​#<User:0x2933060 @attributes={...} ... >​
	​ 	​>>​​ ​​User.count​
	​ 	=> 1

	The >> sequences are prompts. After the first,
	we call the User class to create a new
	user, and after the second, we call it again to show that we do
	indeed have a single user in our database. After each command
	we enter, rails console displays the value returned
	by the code (in the first case, it’s the model object, and in
	the second case, it’s the count).

	Panic over. We can now log back in to the application. But
	how can we stop this from happening again? We have several
	ways. For example, we could write code that prevents you from
	deleting your own user. That doesn’t quite work: in theory, A
	could delete B at just the same time that B deletes
 A. Let’s try a different approach. We’ll
 delete the user inside a database transaction. Transactions provide an
 all-or-nothing proposition, stating that each work unit performed in a
 database must either complete in its entirety or none of them will
 have any effect whatsoever. If no users
 are left after we’ve deleted the user, we’ll roll the transaction back,
 restoring the user we just deleted.

	To do this, we’ll use an Active Record hook method. We’ve
	already seen one of these: the validate hook is called
	by Active Record to validate an object’s state. It turns out
	that Active Record defines sixteen or so hook methods, each called
	at a particular point in an object’s life cycle. We’ll use the

	after_destroy hook, which is called after
	the SQL delete is executed. If a method by this name is
 publicly visible, it’ll conveniently be called
	in the same transaction as the delete—so if it
	raises an exception, the transaction will be rolled back. The
	hook method looks like this:

rails51/depot_t/app/models/user.rb
	​ 	after_destroy ​:ensure_an_admin_remains​
	​ 	
	​ 	​class​ Error < StandardError
	​ 	​end​
	​ 	
	​ 	​private​
	​ 	 ​def​ ensure_an_admin_remains
	​ 	 ​if​ User.count.zero?
	​ 	 ​raise​ Error.new ​"Can't delete last user"​
	​ 	 ​end​
	​ 	 ​end​

	
	
	
	The key concept is the use of an exception to indicate an
	error when the user is deleted. This exception serves two
	purposes. First, because it’s raised inside a transaction, it
	causes an automatic rollback.
	By raising the
	exception if the users table is empty
	after the deletion, we undo the delete and restore that last
	user.

	Second, the exception signals the error back to the
	controller, where we use a rescue_from block to handle
	it and report the error to the user in the
	notice. If you want only to abort the transaction but not otherwise
 signal an exception, raise an
 ActiveRecord::Rollback exception instead, because
 this is the only exception that won’t be passed on by
 ActiveRecord::Base.transaction:

rails51/depot_t/app/controllers/users_controller.rb
	​ 	​def​ destroy
	​ 	 @user.destroy
	​ 	 respond_to ​do​ |format|
	​ 	 format.html { redirect_to users_url,
	​ 	 ​notice: ​​'"User #{@user.name} deleted"'​ }
	​ 	 format.json { head ​:no_content​ }
	​ 	 ​end​
	​ 	​end​
	​ 	
	»	rescue_from ​'User::Error'​ ​do​ |exception|
	»	 redirect_to users_url, ​notice: ​exception.message
	»	​end​

 This code still has a potential timing issue: it’s still possible
 for two administrators each to delete the last two users if their
 timing is right. Fixing this would require more database wizardry than
 we have space for here.

 In fact, the login system described in this chapter is
 rudimentary. Most applications these days use a plugin to do this.

 A number of plugins are available that provide ready-made solutions
 that not only are more comprehensive than the authentication logic
 shown here but generally require less code and effort on your part to
 use.
 Devise[86]
 is a common and popular gem that does this.

What We Just Did

 By the end of this iteration, we’ve done the
 following:

	

	 We used has_secure_password to store an encrypted version
	 of the password into the database.
	

	

	 We controlled access to the administration functions
	 using before action callbacks to invoke
	 an authorize method.
	

	

	 We used rails console
	 to interact directly with a model (and dig us out of a hole
	 after we deleted the last user).
	

	

	 We used a transaction to help prevent deletion of
	 the last user.
	

Playtime

 Here’s some stuff to try on your own:

	

	
	
	
	
	
	
 Modify the user update function to require and validate the current
 password before allowing a user’s password to be changed.
	

	

	 When the system is freshly installed on a new machine,
	 no administrators are defined in the database, and
	 hence no administrator can log on. But, if no
	 administrator can log on, then no one can create an
	 administrative user.

Change the code so that if no
	 administrator is defined in the database, any username
	 works to log on (allowing you to quickly create a real
	 administrator).
	

	

	
	 Experiment
	 with rails console. Try
	 creating products, orders, and line items. Watch for the
	 return value when you save a model object—when validation fails,
	 you’ll see false returned. Find out
	 why by examining the errors:
	
	​ 	​>>​​ ​​prd​​ ​​=​​ ​​Product.new​
	​ 	=> ​#<Product id: nil, title: nil, description: nil, image_url:​
	​ 	nil, created_at: nil, updated_at: nil, price:
	​ 	​#<BigDecimal:246aa1c,'0.0',4(8)>>​
	​ 	​>>​​ ​​prd.save​
	​ 	=> false
	​ 	​>>​​ ​​prd.errors.full_messages​
	​ 	=> ["Image url must be a URL for a GIF, JPG, or PNG image",
	​ 	 "Image url can't be blank", "Price should be at least 0.01",
	​ 	 "Title can't be blank", "Description can't be blank"]

	

 Look up the
 authenticate_or_request_with_http_basic method and
 utilize it in your :authorize callback if the
 request.format is not Mime[:HTML].
 Test that it works by accessing an Atom feed:
	​ 	curl --silent --user dave:secret \
	​ 	 http://localhost:3000/products/2/who_bought.atom

	

 We’ve gotten our tests working by performing a login, but we
 haven’t yet written tests that verify that access to sensitive
 data requires login. Write at least one test that verifies this
 by calling logout and then attempting to fetch or
 update some data that requires authentication.

Footnotes

	[85]
	
https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb

	[86]
	
https://github.com/plataformatec/devise

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Localizing templates
	Database design considerations for I18n

 Chapter
 16
Task K: Internationalization

 Now we have a basic cart working, and our customer starts to
 inquire about languages other than English, noting that her company has
 a big push on for expansion in emerging markets. Unless we can
 present something in a language that visitors to our customer’s website
 will understand, our
 customer will be leaving money on the table. We can’t have that.

 The first problem is that none of us are professional translators. The
 customer reassures us that this isn’t something we need to concern
 ourselves with because that part of the effort will be outsourced. All we
 need to worry about is enabling translation. Furthermore, we
 don’t have to worry about the administration pages yet, because all
 the administrators speak English. What we have to focus on is the store.

 That’s a relief—but still a tall order. We’ll need to
 define a way to enable the user to select a language, we’ll have
 to provide the translations themselves, and we’ll have to
 change the views to use these translations. But we’re up to the
 task, and—armed with a bit of remembered high-school Spanish—we set off to work.

[image: Joe asks:]
Joe asks:
If We Stick to One Language, Do We Need to Read This Chapter?

 The short answer is no. In fact, many Rails applications are for a
 small or homogeneous group and never need translating. That being
 said, pretty much everybody who does find that they need translation
 agrees that it’s best if this is done early. So, unless you’re sure
 that translation won’t ever be needed, it’s our recommendation that
 you at least understand what would be involved so that you can make
 informed decisions.

Iteration K1: Selecting the Locale

 We start by creating a new configuration file that
 encapsulates our knowledge of what locales are available
 and which one is to be used as the default:

rails51/depot_t/config/initializers/i18n.rb
	​ 	​#encoding: utf-8​
	​ 	I18n.default_locale = ​:en​
	​ 	
	​ 	LANGUAGES = [
	​ 	 [​'English'​, ​'en'​],
	​ 	 [​"Español"​.html_safe, ​'es'​]
	​]

 This code is doing two things.

 The first thing it does is use the I18n module
 to set the default locale. I18n is a
 funny name, but it sure beats typing out
 internationalization all the time. Internationalization,
 after all, starts with an i, ends with an n,
 and has eighteen letters in between.

 Then the code defines a list of associations between display names and locale
 names. Unfortunately, all we have available at the moment is a U.S.
 keyboard, and Español has a character that can’t be directly entered via
 our keyboard. Different operating systems have different ways of
 dealing with this, and often the easiest way is to copy and paste the
 correct text from a website. If you do this, make sure your
 editor is configured for UTF-8. Meanwhile, we’ve opted to use the HTML
 equivalent of the n con tilde character in Spanish. If we didn’t do
 anything else, the markup itself would be shown. But by calling
 html_safe, we inform Rails that the string is safe to be
 interpreted as containing HTML.

 For Rails to pick up this configuration change, the server
 needs to be restarted.

 Since each page that’s translated will have an en and an
 es version (for now—more will be added later), it makes sense
 to include this in the URL. Let’s plan to put the locale up front, make
 it optional, and have it default to the current locale, which in turn
 will default to English.

 To implement this cunning plan, let’s start by modifying
 config/routes.rb:

rails51/depot_t/config/routes.rb
	​ 	Rails.application.routes.draw ​do​
	​ 	 get ​'admin'​ => ​'admin#index'​
	​ 	 controller ​:sessions​ ​do​
	​ 	 get ​'login'​ => ​:new​
	​ 	 post ​'login'​ => ​:create​
	​ 	 delete ​'logout'​ => ​:destroy​
	​ 	 ​end​
	​ 	
	​ 	 resources ​:users​
	​ 	 resources ​:products​ ​do​
	​ 	 get ​:who_bought​, ​on: :member​
	​ 	 ​end​
	​ 	
	»	 scope ​'(:locale)'​ ​do​
	​ 	 resources ​:orders​
	​ 	 resources ​:line_items​
	​ 	 resources ​:carts​
	​ 	 root ​'store#index'​, ​as: ​​'store_index'​, ​via: :all​
	»	 ​end​
	​ 	​end​

 We’ve nested our resources and root declarations inside a
 scope declaration for :locale. Furthermore, :locale
 is in parentheses, which is the way to say that it’s optional. Note
 that we didn’t choose to put the administrative and session functions
 inside this scope, because it’s not our intent to translate them at this
 time.

 What this means is that http://localhost:3000/ will use
 the default locale (namely, English) and therefore be routed exactly the
 same as http://localhost:3000/en.
 http://localhost:3000/es will route to the same controller
 and action, but we’ll want this to cause the locale to be set
 differently.

 At this point, we’ve made a lot of changes to
 config.routes, and with the nesting and all the
 optional parts to the path, the gestalt might be hard to visualize.
 Never fear: when running a server in development mode, Rails provides a
 visual aid. All you need to do is navigate to
 http://localhost:3000/rails/info/routes, and you’ll see a
 list of all your routes.

 You can even filter the list, as shown in the screenshot, to
 quickly find the route you’re interested in.

 More information on the fields
 shown in this table can be found in the description of
 rails routes.

[image: images/s_1_routes.png]

 With the routing in place, we’re ready to extract the locale from
 the parameters and make it available to the application.
 To do this, we need to create a before_action callback.
 The logical place to do this is
 in the common base class for all of our controllers, which is
 ApplicationController:

rails51/depot_t/app/controllers/application_controller.rb
	​ 	​class​ ApplicationController < ActionController::Base
	»	 before_action ​:set_i18n_locale_from_params​
	​ 	 ​# ...​
	​ 	 ​protected​
	»	 ​def​ set_i18n_locale_from_params
	»	 ​if​ params[​:locale​]
	»	 ​if​ I18n.available_locales.map(&​:to_s​).include?(params[​:locale​])
	»	 I18n.locale = params[​:locale​]
	»	 ​else​
	»	 flash.now[​:notice​] =
	»	 ​"​​#{​params[​:locale​]​}​​ translation not available"​
	»	 logger.error flash.now[​:notice​]
	»	 ​end​
	»	 ​end​
	»	 ​end​
	​ 	​end​

 This set_i18n_locale_from_params does pretty much what it says:
 it sets the locale from the params, but only if there’s
 a locale in the params; otherwise, it leaves the current locale alone.
 Care is taken to provide a message for both the user and the
 administrator when a failure occurs.

 With this in place, we can see the results in the following screenshot of navigating to http://localhost:3000/en.

[image: images/s_2_en.png]

 At this point, the English version of the page is available both at the
 root of the website and at pages that start with /en.
 If you try another language code, say “es” (or Spanish), you can see that an error message appears saying no translations are available. The screenshot shows what this might look like when navigating to http://localhost:3000/es:

[image: images/s_3_es_error.png]

Iteration K2: Translating the Storefront

 Now it’s time to begin providing
 the translated text. Let’s start with the layout, because it’s
 pretty visible. We replace any text that needs to be translated with
 calls to I18n.translate. Not only is this method conveniently
 aliased as I18n.t, but a helper named
 t is provided.

 The parameter to the translate function is a unique dot-qualified
 name. We can choose any name we like, but if we use the t helper
 function provided, names that start with a dot will first be expanded
 using the name of the template. So, let’s do that:

rails51/depot_t/app/views/layouts/application.html.erb
	​ 	 <nav class=​"side_nav"​>
	​ 	
	​ 	 <div id=​"cart"​ class=​"carts"​>
	​ 	
	​ 	 ​<%=​ render_if @cart && @cart.line_items.any?, @cart ​%>​
	​ 	 </div>
	​ 	
	​ 	
	»	 ​<%=​ t(​'.home'​) ​%>​
	»	 ​<%=​ t(​'.questions'​) ​%>​
	»	 ​<%=​ t(​'.news'​) ​%>​
	»	 ​<%=​ t(​'.contact'​) ​%>​
	​ 	
	​ 	
	​ 	 ​<%​ ​if​ session[​:user_id​] ​%>​
	​ 	 <nav class=​"logged_in_nav"​>
	​ 	
	​ 	 ​<%=​ link_to ​'Orders'​, orders_path ​%>​
	​ 	 ​<%=​ link_to ​'Products'​, products_path ​%>​
	​ 	 ​<%=​ link_to ​'Users'​, users_path ​%>​
	​ 	 ​<%=​ button_to ​'Logout'​, logout_path, ​method: :delete​ ​%>​
	​ 	
	​ 	 </nav>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 </nav>

 Since this view is named layouts/application.html.erb, the
 English mappings will expand to en.layouts.application.
 Here’s the corresponding locale file:

rails51/depot_t/config/locales/en.yml
	​ 	en:
	​ 	
	​ 	 layouts:
	​ 	 application:
	​ 	 title: ​"​​The​ ​Pragmatic​ ​Bookshelf"​
	​ 	 home: ​"​​Home"​
	​ 	 questions: ​"​​Questions"​
	​ 	 news: ​"​​News"​
	​ 	 contact: ​"​​Contact"​

 Here it is in Spanish:

rails51/depot_t/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 layouts:
	​ 	 application:
	​ 	 title: ​"​​Biblioteca​ ​de​ ​Pragmatic"​
	​ 	 home: ​"​​Inicio"​
	​ 	 questions: ​"​​Preguntas"​
	​ 	 news: ​"​​Noticias"​
	​ 	 contact: ​"​​Contacto"​

 The format is YAML, the same as the one
 used to configure the databases. YAML consists of indented names
 and values, where the indentation in this case matches the structure
 that we created in our names.

 To get Rails to recognize new YAML files, the
 server needs to be restarted.

 Navigating to http://localhost:3000/es now will show some translated text, as shown in the screenshot.

[image: images/s_4_es_works.png]

 Next to be updated is the main title as well as the Add to Cart button.
 Both can be found in the store index template:

rails51/depot_s/app/views/store/index.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	»	<h1>​<%=​ t(​'.title_html'​) ​%>​</h1>
	​ 	
	​ 	<ul class=​"catalog"​>
	​ 	 ​<%​ cache @products ​do​ ​%>​
	​ 	 ​<%​ @products.each ​do​ |product| ​%>​
	​ 	 ​<%​ cache product ​do​ ​%>​
	​ 	
	​ 	 ​<%=​ image_tag(product.image_url) ​%>​
	​ 	 <h2>​<%=​ product.title ​%>​</h2>
	​ 	 <p>
	​ 	 ​<%=​ sanitize(product.description) ​%>​
	​ 	 </p>
	​ 	 <div class=​"price"​>
	​ 	 ​<%=​ number_to_currency(product.price) ​%>​
	»	 ​<%=​ button_to t(​'.add_html'​), line_items_path(​product_id: ​product),
	​ 	 ​remote: ​​true​ ​%>​
	​ 	 </div>
	​ 	
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	

 And here’s the corresponding updates to the locales files, first in
 English:

rails51/depot_t/config/locales/en.yml
	​ 	en:
	​ 	
	​ 	 store:
	​ 	 index:
	​ 	 title_html: ​"​​Your​ ​Pragmatic​ ​Catalog"​
	​ 	 add_html: ​"​​Add​ ​to​ ​Cart"​

 And then in Spanish:

rails51/depot_t/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 store:
	​ 	 index:
	​ 	 title_html: ​"​​Su​ ​Catálogo​ ​de​ ​Pragmatic"​
	​ 	 add_html: ​"​​Añadir​ ​al​ ​Carrito"​

 Note that since title_html and add_html end in the
 characters _html, we’re free to use HTML entity names for
 characters that don’t appear on our keyboard. If we didn’t name the
 translation key this way, what you’d end up seeing on the page is
 the markup. This is yet another convention that Rails has adopted to
 make your coding life easier. Rails will also treat names that contain
 html as a component (in other words, the string
 .html.) as HTML key names.

 By refreshing the page in the browser window, we see the results shown in
 the following screenshot.

[image: images/s_5_more_es.png]

 Feeling confident, we move on to the cart partial,
 replacing text that needs translation as well as adding the locale to the
 new_order_path:

rails51/depot_t/app/views/carts/_cart.html.erb
	​ 	<article>
	​ 	 ​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	»	 <h2>​<%=​ t(​'.title'​) ​%>​</h2>
	​ 	 <table>
	​ 	
	​ 	 ​<%=​ render(cart.line_items) ​%>​
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <th colspan=​"2"​>Total:</td>
	​ 	 <td class=​"price"​>​<%=​ number_to_currency(cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 </table>
	​ 	
	​ 	 <div class=​"actions"​>
	»	 ​<%=​ button_to t(​'.empty'​), cart,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	
	»	 ​<%=​ button_to t(​'.checkout'​), new_order_path(​locale: ​I18n.locale),
	​ 	
	​ 	 ​method: :get​,
	​ 	 ​class: ​​"checkout"​​%>​
	​ 	 </div>
	​ 	</article>

 And again, here are the translations:

rails51/depot_t/config/locales/en.yml
	​ 	en:
	​ 	
	​ 	 carts:
	​ 	 cart:
	​ 	 title: ​"​​Your​ ​Cart"​
	​ 	 empty: ​"​​Empty​ ​cart"​
	​ 	 checkout: ​"​​Checkout"​

rails51/depot_t/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 carts:
	​ 	 cart:
	​ 	 title: ​"​​Carrito​ ​de​ ​la​ ​Compra"​
	​ 	 empty: ​"​​Vaciar​ ​Carrito"​
	​ 	 checkout: ​"​​Comprar"​

 Refreshing the page, we see the cart title and buttons have been
 translated, as shown in the screenshot.

[image: images/t_1_cart_translated_currency_in_english.png]

 We need to be careful here. The logic to render the cart is rendered in
 two places: first in the storefront and second in response to
 pushing the Añadir al Carrito (Add to Cart)
 button via Ajax. Sure enough, when we click that button, we see
 the cart rendered in English. To fix this, we need to pass the locale
 on the remote call:

rails51/depot_t/app/views/store/index.html.erb
	​ 	 <div class=​"price"​>
	​ 	 ​<%=​ number_to_currency(product.price) ​%>​
	​ 	 ​<%=​ button_to t(​'.add_html'​),
	»	 line_items_path(​product_id: ​product, ​locale: ​I18n.locale),
	​ 	 ​remote: ​​true​ ​%>​
	​ 	 </div>

 We now
 notice our next problem. Languages are not the only
 thing that varies from locale to locale; currencies do too. And the
 customary way that numbers are presented varies too.

 So first we check with our customer and we verify that we’re not
 worrying about exchange rates at the moment (whew!), because that’ll be
 taken care of by the credit card and/or wire companies, but we do need
 to display the string USD or $US after the value when we’re showing
 the result in Spanish.

 Another variation is the way that numbers themselves are displayed.
 Decimal values are delimited by a comma, and separators for the
 thousands place are indicated by a dot.

 Currency is a lot more complicated than it first appears, and there are a
 lot of decisions to be made.
 Fortunately, Rails knows to look in your translations file for this
 information; all we need to do is supply it. Here it is for en:

rails51/depot_t/config/locales/en.yml
	​ 	en:
	​ 	
	​ 	 number:
	​ 	 currency:
	​ 	 format:
	​ 	 unit: ​"​​$"​
	​ 	 precision: ​2​
	​ 	 separator: ​"​​."​
	​ 	 delimiter: ​"​​,"​
	​ 	 format: ​"​​%u%n"​

 Here it is for es:

rails51/depot_t/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 number:
	​ 	 currency:
	​ 	 format:
	​ 	 unit: ​"​​$US"​
	​ 	 precision: ​2​
	​ 	 separator: ​"​​,"​
	​ 	 delimiter: ​"​​."​
	​ 	 format: ​"​​%n %u"​

 We’ve specified the unit, precision, separator, and delimiter for
 number.currency.format. That much is pretty self-explanatory. The
 format is a bit more involved: %n is a placeholder for the
 number; is a nonbreaking space character,
 preventing this value from being split across multiple lines;
 and %u is a placeholder for the unit. See the following screenshot for the result.

[image: images/t_1_cart_translated.png]

Iteration K3: Translating Checkout

 Now we’re entering the home stretch. The new order page is next:

rails51/depot_t/app/views/orders/new.html.erb
	​ 	<section class=​"depot_form"​>
	»	 <h1>​<%=​ t(​'.legend'​) ​%>​</h1>
	​ 	 ​<%=​ render ​'form'​, ​order: ​@order ​%>​
	​ 	</section>
	​ 	
	​ 	​<%=​ javascript_pack_tag(​"pay_type"​) ​%>​

 Here’s the form that’s used by this page:

rails51/depot_t/app/views/orders/_form.html.erb
	​ 	​<%=​ form_with(​model: ​order, ​local: ​​true​) ​do​ |form| ​%>​
	​ 	 ​<%​ ​if​ order.errors.any? ​%>​
	​ 	 <div id=​"error_explanation"​>
	​ 	 <h2>​<%=​ pluralize(order.errors.count, ​"error"​) ​%>​
	​ 	 prohibited this order from being saved:</h2>
	​ 	
	​ 	
	​ 	 ​<%​ order.errors.full_messages.each ​do​ |message| ​%>​
	​ 	 ​<%=​ message ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 </div>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 <div class=​"field"​>
	»	 ​<%=​ form.label ​:name​, t(​'.name'​) ​%>​
	​ 	 ​<%=​ form.text_field ​:name​, ​id: :order_name​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	»	 ​<%=​ form.label ​:address​, t(​'.address_html'​) ​%>​
	​ 	 ​<%=​ form.text_area ​:address​, ​id: :order_address​, ​rows: ​3, ​cols: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div class=​"field"​>
	»	 ​<%=​ form.label ​:email​, t(​'.email'​) ​%>​
	​ 	 ​<%=​ form.email_field ​:email​, ​id: :order_email​, ​size: ​40 ​%>​
	​ 	 </div>
	​ 	
	​ 	 <div id=​'pay-type-component'​></div>
	​ 	
	​ 	 <div class=​"actions"​>
	»	 ​<%=​ form.submit t(​'.submit'​) ​%>​
	​ 	 </div>
	​ 	​<%​ ​end​ ​%>​

 That covers the form elements that Rails is rendering, but what about the React-rendered payment details we added in ​Iteration H1: Adding Fields Dynamically to a Form​? If you recall, we had to create the HTML form elements inside React components, mimicking what Rails form helpers would do.

 Since React is rendering our payment details components—--not Rails—--we need to make our translations available to React, meaning they must be available in JavaScript. The i18n-js library will do just that.[87]

 This library will make a copy of our translations as a JavaScript object and provide an object called I18n that allows us to access them. Our React components will use that to provide localized strings for the dynamic form we created earlier.

 First, we’ll add it to our Gemfile.

rails51/depot_t/Gemfile
	​ 	gem 'i18n-js'

 Install it with bundle install. Getting i18n-js to work requires a bit of configuration, so let’s do that before we start using it in our React components.

 First, we’ll configure i18n-js to convert our translations. This is done by a middleware that the gem provides.[88] A middleware is a way to add behavior to all requests served by a Rails app by manipulating an internal data structure. In the case of i18n-js, its middleware makes sure that the JavaScript copy of our translations is in sync with those in config/locales.

 We can set this up by adding a line of code to config/application.rb:

rails51/depot_t/config/application.rb
	​ 	config.middleware.use I18n::JS::Middleware

 This requires restarting our server, so if you are currently running it, go ahead and restart it now.

 Next, we need to tell Rails to serve up the translations that i18n-js provides. We also need to make the I18n object available. We can do that by adding two require directives to app/assets/javascripts/application.js. These directives tell Rails to include the referenced JavaScript libraries when serving up pages. Since the JavaScript files that come with i18n-js are inside a gem, we have to do this explicitly.

rails51/depot_t/app/assets/javascripts/application.js
	​ 	​//= require i18n​
	​ 	​//= require i18n/translations​

 The last bit of configuration we need for i18n-js is to tell it what the currently chosen locale is. We can do that by rendering a dynamic script tag in our application layout in app/views/layouts/application.html.erb.

rails51/depot_t/app/views/layouts/application.html.erb
	​ 	​<%=​ javascript_include_tag ​'application'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	»	<script type=​"text/javascript"​>
	»	​ I18n.defaultLocale = "​​<%=​ I18n.default_locale ​%>​​";​
	»	​ I18n.locale = "​​<%=​ I18n.locale ​%>​​"​;
	»	</script>

 Note that we want this tag to appear after the call to javascript_include_tag so that I18n will have been defined.

 With this in place, we need to add calls to I18n.t inside the JSX of our React components. This is straightforward to do using the curly brace syntax we’ve seen before. Let’s start with the main component in app/javascript/PayTypeSelector/index.jsx. Here’s the entire render method, fully localized.

rails51/depot_t/app/javascript/PayTypeSelector/index.jsx
	​ 	render() {
	​ 	 ​let​ PayTypeCustomComponent = NoPayType;
	​ 	 ​if​ (​this​.state.selectedPayType == ​"Credit card"​) {
	​ 	 PayTypeCustomComponent = CreditCardPayType;
	​ 	 } ​else​ ​if​ (​this​.state.selectedPayType == ​"Check"​) {
	​ 	 PayTypeCustomComponent = CheckPayType;
	​ 	 } ​else​ ​if​ (​this​.state.selectedPayType == ​"Purchase order"​) {
	​ 	 PayTypeCustomComponent = PurchaseOrderPayType;
	​ 	 }
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_pay_type"​>
	​ 	 ​{​I18n.t(​"orders.form.pay_type"​)​}​
	​ 	 </label>
	​ 	
	​ 	 <select id=​"pay_type"​ onChange=​{​​this​.onPayTypeSelected​}​
	​ 	 name=​"order[pay_type]"​>
	​ 	 <option value=​""​>
	​ 	 ​{​I18n.t(​"orders.form.pay_prompt_html"​)​}​
	​ 	 </option>
	​ 	
	​ 	 <option value=​"Check"​>
	​ 	 ​{​I18n.t(​"orders.form.pay_types.check"​)​}​
	​ 	 </option>
	​ 	
	​ 	 <option value=​"Credit card"​>
	​ 	 ​{​I18n.t(​"orders.form.pay_types.credit_card"​)​}​
	​ 	 </option>

	​ 	 <option value=​"Purchase order"​>
	​ 	 {I18n.t(​"orders.form.pay_types.purchase_order"​)}
	​ 	 <​/​option>
	​ 	
	​ 	 </select>
	​ 	 <​/​div>
	​ 	 <PayTypeCustomComponent />
	​ 	 </div>
	​);
	​ 	}

 Although I18n.t is similar to Rails’s t, note the subtle difference in the argument to the method. In our Rails view, we can simply use t(".pay_type") which, as we learned in ​Iteration K2: Translating the Storefront​, allows Rails to figure out from the template name where the strings are in the locale YAML files. We can’t take advantage of this with i18n-js, so we must specify the complete path to the translation in the YAML file.

 Next, let’s do this to the three components that make up our payment details view. First up is app/javascript/PayTypeSelector/CheckPayType.jsx:

rails51/depot_t/app/javascript/PayTypeSelector/CheckPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ CheckPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_routing_number"​>
	​ 	 ​{​I18n.t(​"orders.form.check_pay_type.routing_number"​)​}​
	​ 	 </label>
	​ 	
	​ 	 <input type=​"password"​
	​ 	 name=​"order[routing_number]"​
	​ 	 id=​"order_routing_number"​ />
	​ 	 </div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_acount_number"​>
	​ 	 ​{​I18n.t(​"orders.form.check_pay_type.account_number"​)​}​
	​ 	 </label>
	​ 	
	​ 	 <input type=​"text"​
	​ 	 name=​"order[account_number]"​
	​ 	 id=​"order_account_number"​ />
	​ 	 </div>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ CheckPayType

 Now, CreditCardPayType.jsx:

rails51/depot_t/app/javascript/PayTypeSelector/CreditCardPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ CreditCardPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_credit_card_number"​>
	​ 	 ​{​I18n.t(​"orders.form.credit_card_pay_type.cc_number"​)​}​
	​ 	 </label>
	​ 	
	​ 	 <input type=​"password"​
	​ 	 name=​"order[credit_card_number]"​
	​ 	 id=​"order_credit_card_number"​ />
	​ 	 </div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_expiration_date"​>
	​ 	 ​{​I18n.t(​"orders.form.credit_card_pay_type.expiration_date"​)​}​
	​ 	 </label>
	​ 	
	​ 	 <input type=​"text"​
	​ 	 name=​"order[expiration_date]"​
	​ 	 id=​"order_expiration_date"​
	​ 	 size=​"9"​
	​ 	 placeholder=​"e.g. 03/19"​ />
	​ 	 </div>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ CreditCardPayType

 And finally PurchaseOrderPayType.jsx:

rails51/depot_t/app/javascript/PayTypeSelector/PurchaseOrderPayType.jsx
	​ 	​import​ React from ​'react'​
	​ 	
	​ 	​class​ PurchaseOrderPayType ​extends​ React.Component {
	​ 	 render() {
	​ 	 ​return​ (
	​ 	 <div>
	​ 	 <div className=​"field"​>
	​ 	 <label htmlFor=​"order_po_number"​>
	​ 	 ​{​I18n.t(​"orders.form.purchase_order_pay_type.po_number"​)​}​
	​ 	 </label>

	​ 	 <input type=​"password"​
	​ 	 name=​"order[po_number]"​
	​ 	 id=​"order_po_number"​ />
	​ 	 <​/​div>
	​ 	 </div>
	​);
	​ 	 }
	​ 	}
	​ 	​export​ ​default​ PurchaseOrderPayType

 With those done, here are the corresponding locale definitions:

rails51/depot_t/config/locales/en.yml
	​ 	en:
	​ 	
	​ 	 orders:
	​ 	 new:
	​ 	 legend: ​"​​Please​ ​Enter​ ​Your​ ​Details"​
	​ 	 form:
	​ 	 name: ​"​​Name"​
	​ 	 address_html: ​"​​Address"​
	​ 	 email: ​"​​E-mail"​
	​ 	 pay_type: ​"​​Pay​ ​with"​
	​ 	 pay_prompt_html: ​"​​Select​ ​a​ ​payment​ ​method"​
	​ 	 submit: ​"​​Place​ ​Order"​
	​ 	 pay_types:
	​ 	 check: ​"​​Check"​
	​ 	 credit_card: ​"​​Credit​ ​Card"​
	​ 	 purchase_order: ​"​​Purchase​ ​Order"​
	​ 	 check_pay_type:
	​ 	 routing_number: ​"​​Routing​ ​#"​
	​ 	 account_number: ​"​​Account​ ​#"​
	​ 	 credit_card_pay_type:
	​ 	 cc_number: ​"​​CC​ ​#"​
	​ 	 expiration_date: ​"​​Expiry"​
	​ 	 purchase_order_pay_type:
	​ 	 po_number: ​"​​PO​ ​#"​

rails51/depot_t/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 orders:
	​ 	 new:
	​ 	 legend: ​"​​Por​ ​favor,​ ​introduzca​ ​sus​ ​datos"​
	​ 	 form:
	​ 	 name: ​"​​Nombre"​
	​ 	 address_html: ​"​​Dirección"​
	​ 	 email: ​"​​E-mail"​
	​ 	 pay_type: ​"​​Forma​ ​de​ ​pago"​
	​ 	 pay_prompt_html: ​"​​Seleccione​ ​un​ ​método​ ​de​ ​pago"​
	​ 	 submit: ​"​​Realizar​ ​Pedido"​
	​ 	 pay_types:
	​ 	 check: ​"​​Cheque"​
	​ 	 credit_card: ​"​​Tarjeta​ ​de​ ​Crédito"​
	​ 	 purchase_order: ​"​​Orden​ ​de​ ​Compra"​
	​ 	 check_pay_type:
	​ 	 routing_number: ​"​​#​ ​de​ ​Enrutamiento"​
	​ 	 account_number: ​"​​#​ ​de​ ​Cuenta"​
	​ 	 credit_card_pay_type:
	​ 	 cc_number: ​"​​Número"​
	​ 	 expiration_date: ​"​​Expiración"​
	​ 	 purchase_order_pay_type:
	​ 	 po_number: ​"​​Número"​

 See the following screenshot for the completed form.

[image: images/u_1_checkout_translated.png]

 All looks good until we click the Realizar Pedido
 button prematurely and see the results shown in the screenshot.
 The error messages that Active Record produces can also be translated;
 what we need to do is supply the translations:

[image: images/u_2_checkout_errors.png]

rails51/depot_t/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 activerecord:
	​ 	 errors:
	​ 	 messages:
	​ 	 inclusion: ​"​​no​ ​está​ ​incluido​ ​en​ ​la​ ​lista"​
	​ 	 blank: ​"​​no​ ​puede​ ​quedar​ ​en​ ​blanco"​
	​ 	 errors:
	​ 	 template:
	​ 	 body: ​"​​Hay​ ​problemas​ ​con​ ​los​ ​siguientes​ ​campos:"​
	​ 	 header:
	​ 	 one: ​"​​1​ ​error​ ​ha​ ​impedido​ ​que​ ​este​ ​%{model}​ ​se​ ​guarde"​
	​ 	 other: ​"​​%{count}​ ​errores​ ​han​ ​impedido​ ​que​ ​este​ ​%{model}​ ​se​ ​guarde"​

 Although you can create these with many trips to Google Translate, the Rails i18n gem’s GitHub repo
 contains a lot of translations for common strings in many languages.[89]

 Note that messages with counts typically have two forms:
 errors.template.header.one is the message that’s produced when
 there’s one error, and errors.template.header.other is
 produced otherwise. This gives the translators the opportunity to
 provide the correct pluralization of nouns
 and to match verbs with the nouns.

 Since we once again made use of HTML entities, we want these
 error messages to be displayed as is (or in Rails parlance,
 raw).
 We also need to translate the error messages.
 So again we modify the form:

rails51/depot_u/app/views/orders/_form.html.erb
	​ 	​<%=​ form_with(​model: ​order, ​local: ​​true​) ​do​ |form| ​%>​
	​ 	 ​<%​ ​if​ order.errors.any? ​%>​
	​ 	 <div id=​"error_explanation"​>
	»	 <h2>​<%=​raw t(​'errors.template.header'​, ​count: ​@order.errors.count,
	»	 ​model: ​t(​'activerecord.models.order'​)) ​%>​.</h2>
	»	 <p>​<%=​ t(​'errors.template.body'​) ​%>​</p>
	​ 	
	​ 	
	​ 	 ​<%​ order.errors.full_messages.each ​do​ |message| ​%>​
	»	 ​<%=​raw message ​%>​
	​ 	 ​<%​ ​end​ ​%>​
	​ 	
	​ 	 </div>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	​<!-- ... -->​

 Note that we’re passing the count and model name (which is, itself,
 enabled for translation) on the translate call for the error template
 header. With these changes in place, we try again and see improvement, as shown in the
 following screenshot.

[image: images/u_3_checkout_errors_better.png]

 That’s better, but the names of the model and the attributes bleed through the
 interface. This is OK in English, because the names we picked work for
 English. We need to provide translations for each model.
 This, too, goes
 into the YAML file:
rails51/depot_u/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 activerecord:
	​ 	 models:
	​ 	 order: ​"​​pedido"​
	​ 	 attributes:
	​ 	 order:
	​ 	 address: ​"​​Dirección"​
	​ 	 name: ​"​​Nombre"​
	​ 	 email: ​"​​E-mail"​
	​ 	 pay_type: ​"​​Forma​ ​de​ ​pago"​

 Note that there’s no need to provide English equivalents for this, because those
 messages are built into Rails.

 We’re pleased to see the model and attribute names translated in the
 following screenshot; we fill out the form, we submit the order, and
 we get a “Thank you for your order” message.

[image: images/u_4_checkout_errors_fixed.png]

 We need to update the
 flash messages
 and add the locale to the store_index_url:

rails51/depot_u/app/controllers/orders_controller.rb
	​ 	 ​def​ create
	​ 	 @order = Order.new(order_params)
	​ 	 @order.add_line_items_from_cart(@cart)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @order.save
	​ 	 Cart.destroy(session[​:cart_id​])
	​ 	 session[​:cart_id​] = ​nil​
	​ 	 ChargeOrderJob.perform_later(@order,pay_type_params.to_h)
	»	 format.html { redirect_to store_index_url(​locale: ​I18n.locale),
	»	 ​notice: ​I18n.t(​'.thanks'​) }
	​ 	 format.json { render ​:show​, ​status: :created​,
	​ 	 ​location: ​@order }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@order.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 Next, we adjust the test to match:

rails51/depot_u/test/controllers/orders_controller_test.rb
	​ 	 test ​"should create order"​ ​do​
	​ 	 assert_difference(​'Order.count'​) ​do​
	​ 	 post orders_url, ​params: ​{ ​order: ​{ ​address: ​@order.address,
	​ 	 ​email: ​@order.email, ​name: ​@order.name,
	​ 	 ​pay_type: ​@order.pay_type } }
	​ 	 ​end​
	​ 	
	»	 assert_redirected_to store_index_url(​locale: ​​'en'​)
	​ 	 ​end​

 Finally, we provide the translations:

rails51/depot_u/config/locales/en.yml
	​ 	en:
	​ 	
	​ 	 thanks: ​"​​Thank​ ​you​ ​for​ ​your​ ​order"​

rails51/depot_u/config/locales/es.yml
	​ 	es:
	​ 	
	​ 	 thanks: ​"​​Gracias​ ​por​ ​su​ ​pedido"​

 See the cheery message in the next screenshot.

[image: images/u_5_gracias.png]

Iteration K4: Adding a Locale Switcher

 We’ve completed the task, but we need to advertise its
 availability more. We spy some unused area in the
 top-right side of the layout, so we add a form immediately before
 the image_tag:

rails51/depot_u/app/views/layouts/application.html.erb
	​ 	 <header class=​"main"​>
	»	 <aside>
	»	 ​<%=​ form_tag store_index_path, ​class: ​​'locale'​ ​do​ ​%>​
	»	 ​<%=​ select_tag ​'set_locale'​,
	»	 options_for_select(LANGUAGES, I18n.locale.to_s),
	»	 ​onchange: ​​'this.form.submit()'​ ​%>​
	»	 ​<%=​ submit_tag ​'submit'​, ​id: ​​"submit_locale_change"​ ​%>​
	»	 ​<%​ ​end​ ​%>​
	»	 </aside>
	​ 	 ​<%=​ image_tag ​'logo.svg'​, ​alt: ​​'The Pragmatic Bookshelf'​ ​%>​
	​ 	 <h1>​<%=​ @page_title ​%>​</h1>
	​ 	 </header>

 The form_tag specifies the path to the store as the page to be
 redisplayed when the form is submitted. A
 class attribute lets us associate the form with some CSS.

 The select_tag is used to define the input field for this
 form—namely, locale. It’s an options list based on the
 LANGUAGES array we set up in the configuration
 file, with the default being the current locale (also made available via
 the I18n module). We also set up an onchange event handler, which submits this form whenever the value changes. This works only if JavaScript is enabled, but it’s handy.

 This means we don’t need to show the Submit button if JavaScript is enabled. The simplest way to do that is to write some CoffeeScript to hide it. If JavaScript is disabled, the CoffeeScript won’t execute, and the button remains to allow those users to submit the form. We make this happen by adding an id to the submit_tag so we can locate the button and set its style.display to "none", which is the programmatic way of setting the CSS display property to none. We’ll add this code into a new file called app/assets/javascripts/locale_switcher.coffee, which is automatically brought in by Rails and executed on the page:

rails51/depot_u/app/assets/javascripts/locale_switcher.coffee
	​ 	document.addEventListener ​'turbolinks:load'​, ->
	​ 	 document.getElementById(​'submit_locale_change'​).style.display=​'none'​

 Then we add a submit_tag for the cases when JavaScript isn’t
 available. To handle the case in which JavaScript is available and the
 Submit button is unnecessary, we add a tiny bit of JavaScript that
 hides each of the input tags in the locale form, even though we know that
 there’s only one.

 Next, we modify the store controller to redirect to the store path for a
 given locale if the :set_locale form is used:

rails51/depot_u/app/controllers/store_controller.rb
	​ 	 ​def​ index
	»	 ​if​ params[​:set_locale​]
	»	 redirect_to store_index_url(​locale: ​params[​:set_locale​])
	»	 ​else​
	​ 	 @products = Product.order(​:title​)
	»	 ​end​
	​ 	 ​end​

 Finally, we add a bit of CSS:

rails51/depot_u/app/assets/stylesheets/application.scss
	​ 	.locale {
	​ 	 float: right;
	​ 	 margin: 1em;
	​ 	}

 For the actual selector, see the following screenshot. We can
 now switch back and forth between languages with a single mouse click.

 At this point, we can place orders in two languages, and our thoughts
 turn to deployment. But because it’s been a busy day, it’s time to
 put down our tools and relax. We’ll start on deployment in the morning.

[image: images/u_6_locale_switcher.png]
What We Just Did

By the end of this iteration, we’ve done the following:
	

 We set the default locale for our application and provided
 means for the user to select an alternative locale.

	

 We created translation files for text fields, currency
 amounts, errors, and model names.

	

 We altered layouts and views to call out to the
 I18n module by way of the
 t helper to translate textual
 portions of the interface.

Playtime

 Here’s some stuff to try on your own:
	

 Add a locale column to the products database, and adjust the index
 view to select only the products that match the locale. Adjust
 the products view so that you can view, enter, and alter this new
 column. Enter a few products in each locale, and test the
 resulting application.

	

 Determine the current exchange rate between U.S. dollars and euros,
 and localize the currency display to display euros when ES_es is
 selected.

	

 Translate the Order::PAYMENT_TYPES shown in the drop-down.
 You’ll need to keep the option value (which is sent to the
 server) the same. Change only what’s displayed.

Footnotes

	[87]
	
https://github.com/fnando/i18n-js

	[88]
	
http://guides.rubyonrails.org/rails_on_rack.html#configuring-middleware-stack

	[89]
	
https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Running our application in a production web server
	Configuring the database for MySQL
	Using Bundler and Git for version control
	Deploying our application using Capistrano or Heroku

 Chapter
 17
Task L: Deployment and Production

 Deployment is supposed to mark a happy point in the lifetime of
 our application. It’s when we take the code that we’ve so
 carefully crafted and upload it to a server so that other people
 can use it. It’s when the beer, champagne, and hors d’oeuvres are
 supposed to flow. Shortly thereafter, our application will be
 written about in Wired magazine, and we’ll be
 overnight names in the geek community.

 The reality, however, is that it often takes quite a bit of up-front
 planning to pull off a smooth and repeatable deployment of your
 application.

 By the time we’re through with this chapter, our setup will look like
 the following figure.

[image: images/prod_webserver_arch.png]

 At the moment, we’ve been
 doing all of our work on one machine, though user interaction with our
 web server could be done on a separate machine. In the
 figure, the user’s machine is in the center, and the Puma web server
 is on the left. This server makes use of SQLite 3, various gems you have
 installed, and your application code. Your code may or may not have
 also been placed in Git by this point; either way, it will be by the end
 of the chapter, as will be the gems you’re using.

 This Git repository will be replicated on the production server,
 which again could be another machine but need not be. This server will
 be running a combination of Apache httpd and Phusion Passenger. This
 code will access a MySQL database on what may be yet a
 fourth machine.

 That’s a lot of moving parts! To help us keep track of them all,
 we’ll be using Bundler to manage our dependencies, and Capistrano as
 the tool to update the deployment server(s) remotely, safely, and
 repeatably from the comfort of our development machine.

 Instead of doing it all at once, we’ll do it in three iterations.
 Iteration L1 will get the Depot application up and running with Apache,
 MySQL, and Passenger—a truly production-quality web server
 environment.

[image: Joe asks:]
Joe asks:
Can We Deploy to Microsoft Windows?

 Although we can deploy applications to Windows environments, the
 overwhelming amount of Rails tools and shared knowledge assumes a Unix-based
 operating system such as Linux or Mac OS X. One such tool,
 Phusion Passenger, is highly recommended by the Ruby on Rails
 development team and covered in this chapter.

 The techniques described in this chapter can be used by those
 deploying to Linux or Mac OS X.

 We’ll leave Git, Bundler, and Capistrano to a second iteration. These
 tools will enable us to separate our development activities from our
 deployment environment. This means that by the time we’re done, we’ll
 be deploying twice; but that’s only this first time and only to ensure
 that each part is working independently. It also allows us to
 focus on a smaller set of variables at any one time, which will simplify
 the process of untangling any problems that we might encounter.

 In a third iteration, we’ll cover various administrative and cleanup
 tasks. Let’s get started!

Iteration L1: Deploying with Phusion Passenger and MySQL

 So far, as we’ve been developing a Rails application on our
 local machine, we’ve been using Puma
 when we run our server. For the most part, the server used doesn’t matter;
 the rails server command
 sorts out the most appropriate way to get our application
 running in development mode on port 3000, based on the
 contents of our Gemfile. However, a deployed
 Rails application works a bit differently. We can’t just fire
 up a single Rails server process and let it do all the
 work. Well, we could, but it’s far from
 ideal.

The web is an extremely concurrent environment. Production
 web servers such as Apache, nginx, and Lighttpd can work on
 several requests—even tens or hundreds of requests—at the same
 time. A single-process, Ruby-based web server
 can’t possibly keep up, and luckily it doesn’t have to.
 Instead, the way we deploy a Rails application into
 production is to use a front-end server, such as Apache, to
 handle requests from the client. Then, we use the
 HTTP proxying of Passenger to send requests that should be handled
 by Rails to one of any number of back-end application processes.
Configuring a Second Machine

 If you have a second machine you can use, that’s great. If not, you
 can use a virtual machine. Plenty of free software that you can use
 for this purpose is available, such as VirtualBox[90] and Ubuntu.[91] If you go with Ubuntu, we recommend 16.04 LTS.

 Configure this machine using the instructions in Chapter 1, ​Installing Rails​.
 If you like, you can skip the step of installing Rails and instead
 install Bundler:

	​ 	​$ ​​gem​​ ​​install​​ ​​bundler​

 Next, copy your entire directory containing the Depot application
 from your first machine to your second machine. On the second machine,
 change into that directory and use Bundler to install all of your
 application’s dependencies:

	​ 	​$ ​​bundle​​ ​​install​

 Verify that your installation is working using any combination of the
 following commands:

	​ 	​$ ​​rails​​ ​​about​
	​ 	​$ ​​rails​​ ​​test​
	​ 	​$ ​​rails​​ ​​server​

 At this point, you should be able to launch a browser on either machine
 and see your application. Once you’re satisfied that your application
 is running correctly, stop the server.

 These steps of copying directories and starting and stopping servers
 aren’t generally something you want your application developers to be doing,
 and by the time we’re done with this chapter this will all be
 automated. But for now, knowing what the steps are and that the
 intermediate results are correct has established the base upon which we can
 build our deployment.

Installing Passenger

 The next step is to ensure that the Apache web server is installed and
 running on our second machine.
 Linux users should have already installed
 Apache in ​Installing on Linux​.
 For Mac OS X users, it’s already installed with
 the operating system, but you’ll need to enable it. For Mac OS X
 releases prior to 10.8, you can accomplish this by going into
 System Preferences > Sharing and enabling
 Web Sharing.

 Starting with Mac OS X 10.8, this needs to be done via the
 Terminal application:

	​ 	​$ ​​sudo​​ ​​apachectl​​ ​​start​
	​ 	​$ ​​sudo​​ ​​launchctl​​ ​​load​​ ​​-w​​ ​​/System/Library/LaunchDaemons/org.apache.httpd.plist​

 The next step is to install Passenger:

	​ 	​$ ​​gem​​ ​​install​​ ​​passenger​​ ​​--version​​ ​​5.1.3​
	​ 	​$ ​​passenger-install-apache2-module​

 If the necessary dependencies aren’t met, the latter command will
 tell you what you need to do. If this happens,
 follow the provided instructions, and try the Passenger install
 command again. For example, on a Ubuntu 16.04 (Xenial Xerus), you’ll
 find that you need to install
 libcurl4-openssl-dev,
 apache2-prefork-dev,
 libapr1-dev, and libaprutil1-dev.
 Mac OS X users may need to run
 xcode-select --install to (re)install the command-line
 tools.

 Once the dependencies are satisfied, this command causes a number of
 sources to be compiled and the configuration files to be updated.
 During the process, it’ll ask you to update your Apache configuration.
 The first request will be to enable your freshly built module, which involves
 adding lines such as the following to your Apache configuration.
 (Note: Passenger will tell you the exact lines to copy and paste into
 this file, so use those, not these. Also, we’ve had to elide parts of the
 path specification in the LoadModule line to make it fit the
 page. Be sure to use the path specification that Passenger provided
 for you.)

	​ 	PassengerDefaultRuby /usr/bin/passenger_free_ruby
	​ 	LoadModule passenger_module /var/.../passenger-5.1.2/.../mod_passenger.so
	​ 	PassengerRoot /var/lib/gems/2.4.1/gems/passenger-5.1.2
	​ 	PassengerDefaultRuby /usr/bin/ruby2.3

 To find out where your Apache configuration file is, try issuing the
 following command:

	​ 	​$ ​​apachectl​​ ​​-V​​ ​​|​​ ​​grep​​ ​​HTTPD_ROOT​
	​ 	​$ ​​apachectl​​ ​​-V​​ ​​|​​ ​​grep​​ ​​SERVER_CONFIG_FILE​

 On some systems, the command name is apache2ctl; on others,
 it’s httpd. Experiment until you find the correct
 command.

 Instead of modifying this file directly, most modern systems have
 conventions that allow you to maintain your extensions separately.
 On Mac OS X, for example, you may see the following line at the end
 of your httpd.conf file:

	​ 	Include /private/etc/apache2/other/*.conf

 If you see this line in your httpd.conf, you can
 put the lines that Passenger provided into a
 passenger.conf file in that directory. On Ubuntu you
 can put these lines into
 /etc/apache2/conf.d/passenger.

Deploying Our Application Locally

 The next step is to deploy our application. Whereas the previous step
 needs to be done only once per server, this step is actually once per
 application. In your Apache configuration file, substitute your host’s name, your application’s
 directory path, and a secret key
 in the following:

	​ 	<VirtualHost *:80>
	​ 	 ServerName depot.yourhost.com
	​ 	 DocumentRoot /home/rubys/deploy/depot/public/
	​ 	 SetEnv SECRET_KEY_BASE "0123456789abcdef"
	​ 	 <Directory /home/rubys/deploy/depot/public>
	​ 	 AllowOverride all
	​ 	 Options -MultiViews
	​ 	 Require all granted
	​ 	 </Directory>
	​ 	</VirtualHost>

 bin/rails secret can be used to generate a suitable key to be
 used as the secret. This key is used to encrypt cookies that are
 sent to the client. Note that this secret is placed directly on
 the server and isn’t checked into the source-control system, because
 otherwise it wouldn’t be very secret!

 Note that the DocumentRoot is set to the
 public directory in our Rails application and that we
 mark the public directory as readable.

 Again, your Apache installation may have conventions for the best
 place to put these instructions. On Mac OS X, check your
 httpd.conf for the following (possibly commented-out) line:

	​ 	​#Include /private/etc/apache2/extra/httpd-vhosts.conf​

 If this line is present, consider uncommenting the line and replacing
 the dummy-host.example.com with your host.

 On Ubuntu, the convention is to place these lines in a file in the
 /etc/apache2/sites-available directory and then to
 separately enable the site. For example, if you named the file
 depot, the site can be enabled using the
 following command:

	​ 	sudo a2ensite depot

 If you have multiple applications, repeat this VirtualHost
 block once per application, adjusting the ServerName and
 DocumentRoot in each block.
 You’ll also need to verify that the following line is
 present in the configuration files already:

	​ 	NameVirtualHost *:80

 If this line isn’t present, add it before a line that contains the
 text Listen 80.

 The final step is to restart our Apache web server:

	​ 	​$ ​​sudo​​ ​​apachectl​​ ​​restart​

 You now need to configure your client so that it maps the host
 name you chose to the correct machine. This is done in a file named
 /etc/hosts. On Windows machines, this file can
 be found in C:\windows\system32\drivers\etc\. To
 edit this file, you will need to open the file as an administrator.

 A typical /etc/hosts line will look like the
 following:

	​ 	127.0.0.1 depot.yourhost.com

 That’s it! You can now access our application using the host
 (or virtual host) you specified. Unless you used a port number
 other than 80, you no longer need to specify
 a port number on the URL.

 You need to be aware of a few things:

	

 If when restarting your server you see a message that The
 address or port is invalid, this means the
 NameVirtualHost line is already present, perhaps in
 another configuration file in the same directory. If so, remove
 the line you added, because this directive needs to be present
 only once.

	

 If we want to run in an environment other than production,
 we can include a RailsEnv directive in
 each VirtualHost in our Apache configuration:

	​ 	RailsEnv development

	

 We can restart our application without restarting Apache at any
 time by updating or creating a file named
 restart.txt in the tmp directory of
 our application:

	​ 	​$ ​​touch​​ ​​tmp/restart.txt​

	

	 The output of the passenger-install-apache2-module
 command will tell us where we can find additional documentation.

Using MySQL for the Database

 The SQLite website[92] is refreshingly honest when it comes to describing what
 this database is good at and what it’s not good at.
 In particular,
 SQLite isn’t recommended for high-volume, high-concurrency websites
 with large datasets. And, of course, we want our website to be such
 a website.

 Plenty of alternatives to SQLite, both free and commercial, are available.
 We’ll go with MySQL.
 It’s available
 via your native packaging tool in Linux, and an installer is provided
 for OS X on the MySQL website.[93]

Download the Mac OS X version that matches your operating system
 release. If you don’t want to
 sign up, look for the "No thanks, just take me to the
 downloads!" link at the bottom of the page.

 In addition to installing the MySQL database, you’ll also need to
 add the mysql gem to the Gemfile:

rails51/depot_u/Gemfile
	​ 	group ​:production​ ​do​
	​ 	 gem ​'mysql2'​, ​'~> 0.4.0'​
	​ 	​end​

 By putting this gem in the production group, we prevent it from being
 loaded when running in development or test.
 If you like, you can put
 the sqlite3 gem into (separate) development and test
 groups.

 Install the gem using bundle install. You
 may need to locate and install the MySQL database development files
 for your operating system first. On Ubuntu, for example, you
 need to install libmysqlclient-dev.

 You can use the mysql
 command-line client to create your database. Or, if you’re
 more comfortable with tools such
 as phpmyadmin
 or CocoaMySQL, go for
 it:

	​ 	​depot>​​ ​​mysql​​ ​​-u​​ ​​root​
	​ 	​mysql>​​ ​​CREATE​​ ​​DATABASE​​ ​​depot_production​​ ​​DEFAULT​​ ​​CHARACTER​​ ​​SET​​ ​​utf8;​
	​ 	​mysql>​​ ​​GRANT​​ ​​ALL​​ ​​PRIVILEGES​​ ​​ON​​ ​​depot_production.*​
	​ 	​ ->​​ ​​TO​​ ​​'username'​​@​​'localhost'​​ ​​IDENTIFIED​​ ​​BY​​ ​​'password'​​;​
	​ 	​mysql>​​ ​​EXIT;​

 If you picked a different database name, remember it, because
 you’ll need to adjust the configuration file
 to match the name you picked. Let’s look at that configuration
 file now.

 The config/database.yml file contains
 information on database connections. It has
 three sections—one each for the development, test, and
 production databases. The current production section contains the
 following:

	​ 	​production:​
	​ 	​ adapter: ​sqlite3
	​ 	 ​database: ​db/production.sqlite3
	​ 	 ​pool: ​5
	​ 	 ​timeout: ​5000

 Replace that section with the following, changing the username, password, and database fields as necessary:

	​ 	​production:​
	​ 	​ adapter: ​mysql2
	​ 	 ​encoding: ​utf8
	​ 	 ​reconnect: ​​false​
	​ 	 ​database: ​depot_production
	​ 	 ​pool: ​5
	​ 	 ​username: ​username
	​ 	 ​password: ​password
	​ 	 ​host: ​localhost

Loading the Database

 Next, we apply our migrations:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:setup​​ ​​RAILS_ENV=​​"production"​

 One of two things will happen. If all is set up correctly, you’ll see output like the following:

	​ 	-- create_table("carts", {:force=>:cascade})
	​ 	​ ->​​ ​​0.0299s​
	​ 	-- create_table("line_items", {:force=>:cascade})
	​ 	​ ->​​ ​​0.0152s​
	​ 	-- create_table("orders", {:force=>:cascade})
	​ 	​ ->​​ ​​0.0130s​
	​ 	-- create_table("products", {:force=>:cascade})
	​ 	​ ->​​ ​​0.0134s​
	​ 	-- create_table("users", {:force=>:cascade})
	​ 	​ ->​​ ​​0.0137s​
	​ 	-- initialize_schema_migrations_table()
	​ 	​ ->​​ ​​0.0160s​

 If instead you see an error of some sort, don’t panic!
 It’s probably a small configuration issue. Here are some
 things to try:

	

 Check the name you gave for the database in
 the production: section
 of database.yml. It should be the
 same as the name of the database you created
 (using mysqladmin or some
 other database administration tool).

	

 Check that the username and password
 in database.yml match what you used when
 you created the
 database.

	

 Check that your database server is running.

	

 Check that you can connect to it from the command line.
 If you’re using MySQL, run the following command:

	​ 	​depot>​​ ​​mysql​​ ​​depot_production​
	​ 	​mysql>​

	

 If you can connect from the command line, can you
 create a dummy table? (This tests that the database
 user has sufficient access rights to the database.)

	​ 	​mysql>​​ ​​create​​ ​​table​​ ​​dummy(i​​ ​​int);​
	​ 	​mysql>​​ ​​drop​​ ​​table​​ ​​dummy;​

	

 If you can create tables from the command line
 but bin/rails db:migrate fails, double-check
 the database.yml file. If the file includes
 socket: directives, try
 commenting them out by putting a hash character (#) in
 front of each.

	

 If you see an error saying No such file or
 directory… and the filename in the error
 is mysql.sock,
 your Ruby MySQL libraries can’t find your MySQL
 database. This might happen if you installed the
 libraries before you installed the database or if you
 installed the libraries using a binary distribution and
 that distribution made the wrong assumption about the
 location of the MySQL socket file. To fix this, the best
 idea is to reinstall your Ruby MySQL libraries. If this
 isn’t an option, double-check that the socket:
 line in your database.yml file
 contains the correct path to the MySQL socket on your
 system.

	

 If you get the error Mysql not loaded, it means you’re
 running an old version of the Ruby MySQL library. Rails
 needs at least version 2.5.

	

 Some readers also report getting the error message
 Client does not support authentication protocol
 requested by server; consider upgrading MySQL
 client. To resolve this incompatibility between the
 installed version of MySQL and the libraries used to
 access it, follow the instructions at
 http://dev.mysql.com/doc/mysql/en/old-client.html
 and issue a MySQL command such as:

	​ 	​set​ ​password​ ​for​ ​'some_user'​@​'some_host'​= ​OLD_PASSWORD​(​'newpwd'​);

	

 If you’re using MySQL under Cygwin on Windows, you may
 have problems if you specify a host
 of localhost. Try using 127.0.0.1
 instead.

	

 Finally, you might have problems in the format of
 the database.yml file. The YAML
 library that reads this file is strangely sensitive to
 tab characters. If your file contains tab characters,
 you’ll have problems.
 (And you thought you’d chosen Ruby
 over Python because you didn’t like Python’s significant
 whitespace, eh?)

 Rerun the bin/rails db:setup command as many times
 as necessary to correct any configuration issues you
 may have.

 If all this sounds scary, don’t worry. In reality, database
 connections work like a charm most of the time. And once
 you have Rails talking to the database, you don’t have to
 worry about it again.

 At this point, you’re up and running. Nothing looks any different
 when you’re running as a single user. The differences become
 apparent only when you have a large number of concurrent users or a large
 database.

 The next step is to split our development
 from our production machine.

Iteration L2: Deploying Remotely with Capistrano

 If you’re a
 large shop, having a pool of dedicated servers that
 you administer so that you can ensure that they’re running the same
 version of the necessary software is the way to go. For more modest
 needs, a shared server will do, but you’ll have to take additional care
 to deal with the fact that the versions of software installed might not
 always match the version that you have installed on your development
 machine.

 Don’t worry, we’ll talk you through it.

Prepping Your Deployment Server

 Although putting our software under version control is a really,
 really good idea during development, not putting our software under
 version control when it comes to deployment is downright foolhardy—enough so that the software that we’ve selected to manage our
 deployment, Capistrano, all but requires it.

 Plenty of software configuration management (SCM) systems are
 available. Subversion, for example, is a particularly
 good one.
 But if you haven’t yet chosen one, go with Git, which is
 easy to set up and doesn’t require a separate server process.
 The
 examples that follow will be based on Git, but if you picked a
 different SCM system, don’t worry. Capistrano doesn’t much care which
 one you pick, as long as you pick one that it supports (which includes Git, Subversion, and Mercurial).

 The first step is to create an empty repository on a machine
 accessible by your deployment servers. In fact, if you have only one
 deployment server, there’s no reason why it can’t do double duty as
 your Git server. So, log onto that server, and issue the following
 commands:

	​ 	​$ ​​mkdir​​ ​​-p​​ ​​~/git/depot.git​
	​ 	​$ ​​cd​​ ​​~/git/depot.git​
	​ 	​$ ​​git​​ ​​--bare​​ ​​init​

 The next thing to be aware of is that even if the SCM server and our
 web server are the same physical machine, Capistrano will be accessing
 our SCM software as if it were remote. We can make this smoother by
 generating a public key (if you don’t already have one) and then using
 it to give ourselves permission to access our own server:

	​ 	​$ ​​test​​ ​​-e​​ ​​~/.ssh/id_dsa.pub​​ ​​||​​ ​​ssh-keygen​​ ​​-t​​ ​​dsa​
	​ 	​$ ​​cat​​ ​​~/.ssh/id_dsa.pub​​ ​​>>​​ ​​~/.ssh/authorized_keys​

 Test this by sshing into your own server.
 Among other things, this will ensure that your
 known_hosts file is updated.

 While we’re here, we have one last thing to attend to.
 Capistrano will insert a directory named
 current between our application directory name and
 the Rails subdirectories, including the public
 subdirectory. This means you’ll have to adjust the
 DocumentRoot and Directory lines
 in your httpd.conf if you
 control your own server or in a control panel for your shared host:

	​ 	DocumentRoot /home/rubys/deploy/depot/current/public/
	​ 	<Directory /home/rubys/deploy/depot/current/public>

 Restart your Apache server. You’ll see a warning that the
 depot/current/public directory doesn’t exist. That’s fine, because
 we’ll be creating it shortly.

 Finally, ensure that the changes you made to your
 Gemfile and
 config/database.yml are copied from the Depot
 application on your second machine to the Depot application on your
 first machine.

 That’s it for the server! From here on out, you’ll be doing
 everything from your development machine.

Getting an Application Under Control

 The first thing we’re going to do now is update our
 Gemfile to indicate that we’re using Capistrano.
 The capistrano-rails gem is already in the Gemfile, but commented out, so uncomment it and add capistrano-rvm, capistrano-bundler, and capistrano-passenger:

rails51/depot_u/Gemfile
	​ 	​# Use Capistrano for deployment​
	»	gem ​'capistrano-rails'​, ​group: :development​
	»	gem ​'capistrano-rvm'​, ​group: :development​
	»	gem ​'capistrano-bundler'​, ​group: :development​
	»	gem ​'capistrano-passenger'​, ​group: :development​

 We can now install Capistrano using bundle install. We used
 this command in Iteration J1 to
 install the bcrypt-ruby gem.

 If you haven’t put your application under configuration
 control, do so now:

	​ 	​$ ​​cd​​ ​​your_application_directory​
	​ 	​$ ​​git​​ ​​init​
	​ 	​$ ​​git​​ ​​add​​ ​​.​
	​ 	​$ ​​git​​ ​​commit​​ ​​-m​​ ​​"initial commit"​

 This next step is optional but might be a good idea if either you
 don’t have full control of the deployment server or you have many
 deployment servers to manage. We’re going to use a second feature of
 Bundler—namely, the package command. What it does is put the
 version of the software that you’re dependent on into the repository:

	​ 	​$ ​​bundle​​ ​​package​
	​ 	​$ ​​git​​ ​​add​​ ​​Gemfile.lock​​ ​​vendor/cache​
	​ 	​$ ​​git​​ ​​commit​​ ​​-m​​ ​​"bundle gems"​

 From here, push all your code out to the server:

	​ 	​$ ​​git​​ ​​remote​​ ​​add​​ ​​origin​​ ​​ssh://user@host/~/git/depot.git​
	​ 	​$ ​​git​​ ​​push​​ ​​origin​​ ​​master​

 Be sure to substitute user and host with the
 name of your user and host on the remote machine.

 With these few steps, you’ve gained control over what’s being
 deployed. You control what is being committed to your
 local repository. You control when this is being pushed
 out to your server. Next up, you’ll control putting this code into
 production.

Deploying the Application Remotely

 We previously deployed the application locally on a server. Now we’re going to do a second deployment, this time remotely.

 The prep work is done. Our code is now on the SCM
 server where it can be accessed by the app
 server. Again, it matters not whether these two servers are the
 same; what’s important here are the roles that are being
 performed.

 To add the necessary files to the project for Capistrano to do its
 magic, execute the following command:

	​ 	​$ ​​cap​​ ​​install​​ ​​STAGES=production​
	​ 	mkdir -p config/deploy
	​ 	mkdir -p lib/capistrano/tasks
	​ 	create config/deploy.rb
	​ 	create config/deploy/production.rb
	​ 	create Capfile
	​ 	Capified

 From the output, we can see that Capistrano set up three files. The
 last, Capfile, is
 Capistrano’s analog to a Rakefile. You
 need to uncomment a few lines; after you do this, you won’t need to
 touch this file further:

rails51/depot_u/Capfile
	​ 	​# Load DSL and set up stages​
	​ 	require ​"capistrano/setup"​
	​ 	
	​ 	​# Include default deployment tasks​
	​ 	require ​"capistrano/deploy"​
	​ 	
	​ 	​# Load the SCM plugin appropriate to your project:​
	​ 	​#​
	​ 	​# require "capistrano/scm/hg"​
	​ 	​# install_plugin Capistrano::SCM::Hg​
	​ 	​# or​
	​ 	​# require "capistrano/scm/svn"​
	​ 	​# install_plugin Capistrano::SCM::Svn​
	​ 	​# or​
	​ 	require ​"capistrano/scm/git"​
	​ 	install_plugin Capistrano::SCM::Git
	​ 	
	​ 	​# Include tasks from other gems included in your Gemfile​
	​ 	​#​
	​ 	​# For documentation on these, see for example:​
	​ 	​#​
	​ 	​# https://github.com/capistrano/rvm​
	​ 	​# https://github.com/capistrano/rbenv​
	​ 	​# https://github.com/capistrano/chruby​
	​ 	​# https://github.com/capistrano/bundler​
	​ 	​# https://github.com/capistrano/rails​
	​ 	​# https://github.com/capistrano/passenger​
	​ 	​#​
	»	require ​"capistrano/rvm"​
	​ 	​# require "capistrano/rbenv"​
	​ 	​# require "capistrano/chruby"​
	»	require ​"capistrano/bundler"​
	»	require ​"capistrano/rails/assets"​
	»	require ​"capistrano/rails/migrations"​
	»	require ​"capistrano/passenger"​
	​ 	
	​ 	​# Load custom tasks from `lib/capistrano/tasks` if you have any defined​
	​ 	Dir.glob(​"lib/capistrano/tasks/*.rake"​).each { |r| import r }

	Uncomment at most one of rvm, rbenv, or
	chruby, and then uncomment the rest, as we will be using
	Bundler, assets, migrations, and Passenger.

 The first file—namely, config/deploy.rb—contains
 the configuration needed to deploy our application. Capistrano will
 provide us with a minimal version of this file, but the following is
 a somewhat more complete version that you can download and use as a
 starting point:

rails51/depot_u/config/deploy.rb
	​ 	​# be sure to change these values​
	​ 	user = ​'davec'​
	​ 	domain = ​'depot.pragprog.com'​
	​ 	
	​ 	​# adjust if you are using RVM, remove if you are not​
	​ 	set ​:rvm_type​, ​:system​
	​ 	set ​:rvm_ruby_string​, ​'ruby-2.4.1/'​
	​ 	
	​ 	​# file paths​
	​ 	set ​:application​, ​'depot'​
	​ 	set ​:repo_url​, ​"​​#{​user​}​​@​​#{​domain​}​​:git/​​#{​fetch(​:application​)​}​​.git"​
	​ 	set ​:deploy_to​, ​"/home/​​#{​user​}​​/deploy/​​#{​fetch(​:application​)​}​​"​
	​ 	
	​ 	​# distribute your applications across servers (the instructions below put them​
	​ 	​# all on the same server, defined above as 'domain', adjust as necessary)​
	​ 	role ​:app​, domain
	​ 	role ​:web​, domain
	​ 	role ​:db​, domain
	​ 	
	​ 	​# you might need to set this if you aren't seeing password prompts​
	​ 	​# or are seeing errors like 'no tty present and no askpass program specified'​
	​ 	​#​
	​ 	​# set :pty true​
	​ 	
	​ 	​# As Capistrano executes in a non-interactive mode and therefore doesn't cause​
	​ 	​# any of your shell profile scripts to be run, the following might be needed​
	​ 	​# if (for example) you have locally installed gems or applications. Note:​
	​ 	​# this needs to contain the full values for the variables set, not simply​
	​ 	​# the deltas.​
	​ 	​#​
	​ 	​# set :default_environment, {​
	​ 	​# 'PATH' => '<your paths>:/usr/local/bin:/usr/bin:/bin',​
	​ 	​# 'GEM_PATH' => '<your paths>:/usr/lib/ruby/gems/1.8'​
	​ 	​# }​
	​ 	​#​
	​ 	​# See https://rvm.io/deployment/capistrano#environment for more info.​

 We’ll need to edit several properties to match our application. We
 certainly need to change the user, domain,
 and :application. The :repo_url matches where we
 put our Git file earlier. The :deploy_to may need to
 be tweaked to match where we told Apache it could find the
 public directory for the application.
 We’ve also included a few lines to show how to instruct Capistrano
 to make use of RVM.[94]

 If RVM was not installed as root on your deployment machine, change
 the set :rvm_type line to specify :user instead of
 :system. Adjust the
 :rvm_ruby_string to match the version of the Ruby interpreter
 that you have installed and want to use. If you’re not using RVM at all, remove these lines.

	You may also need to configure paths for the default environment if
	some of the needed software is in a non-standard location on your
	machine. At this point, we should be off to the races.

Wash, Rinse, Repeat

 Once we’ve gotten this far, our server is ready to have versions
 of our application deployed to it any time we want. All we
 need to do is check our changes into the repository and then
 deploy. At this point, we have three Capistrano files that haven’t
 been checked in. Although they aren’t needed by the app server, we can
 still use them to test the deployment process:

	​ 	​$ ​​git​​ ​​add​​ ​​.​
	​ 	​$ ​​git​​ ​​commit​​ ​​-m​​ ​​"add cap files"​
	​ 	​$ ​​git​​ ​​push​
	​ 	​$ ​​cap​​ ​​production​​ ​​deploy​

 The first three commands update the SCM server. Once you become
 more familiar with Git, you may want to have finer control over when
 and which files are added, you may want to incrementally commit
 multiple changes before deployment, and so on. It’s only the final
 command that will update our app, web, and database servers.

 If for some reason we need to step back in time and go back to a
 previous version of our application, we can use this:

	​ 	​$ ​​cap​​ ​​production​​ ​​deploy:rollback​

 We now have a fully deployed application and can deploy as needed
 to update the code running on the server. Each time we deploy our
 application, a new version of it is checked out onto the server, some
 symlinks are updated, and the Passenger processes are restarted.

Iteration L3: Checking Up on a Deployed Application

 Once we have our application deployed, we’ll no doubt need to
 check up from time to time on how it’s running. We can do this in two
 primary ways. The first is to monitor the various
 log files output by both our front-end web server and the
 Apache server running our application. The second is to
 connect to our application
 using rails console.
Looking at Log Files

	To get a quick look at what’s happening in our application,
	we can use the tail command to examine
	log files as requests are made against our application.
	The
	most interesting data will usually be in the log files from
	the application itself. Even if Apache is running multiple
 applications, the logged output for each application is placed in
	the production.log
	file for that application.

 	
	Assuming that our application is deployed into the
	location we showed earlier, here’s how we look at our
	running log file:

	​ 	​# On your server​
	​ 	​$ ​​cd​​ ​​/home/rubys/deploy/depot/current​
	​ 	​$ ​​tail​​ ​​-f​​ ​​log/production.log​

	Sometimes, we need lower-level information—what’s going on
	with the data in our application? When this is the case, it’s
	time to break out the most useful live server debugging
	tool.
	

Using Console to Look at a Live Application

	We’ve already created a large amount of functionality in our
	application’s model classes. Of course, we created these to
	be used by our application’s controllers. But we can also
	interact with them directly. The gateway to this world is
	the rails console script.
		We can launch
	it on our server with this:
	​ 	​# On your server​
	​ 	​$ ​​cd​​ ​​/home/rubys/deploy/depot/current/​
	​ 	​$ ​​rails​​ ​​console​​ ​​production​
	​ 	Loading production environment.
	​ 	irb(main):001:0> p = Product.find_by(title: "CoffeeScript")
	​ 	=> ​#<Product:0x24797b4 @attributes={. . .}​
	​ 	irb(main):002:0> p.price = 29.00
	​ 	=> 29.0
	​ 	irb(main):003:0> p.save
	​ 	=> true

	Once we have a console session open, we can poke and prod
	all the various methods on our models. We can create,
	inspect, and delete records. In a way, it’s like having a root
	console to your application.

 Once we put an application into production, we need to take care of a few chores to keep the application
 running smoothly. These chores aren’t automatically taken care
 of for us, but luckily we can automate them.

Dealing with Log Files

 	
	As an application runs, it constantly adds data to its log
	file. Eventually, the log files can grow extremely large. To
	overcome this, most logging solutions
	can roll over log files to create a progressive
	set of log files of increasing age.
	This breaks up our
	log files into manageable chunks that can be archived or
	even deleted after a certain amount of time has passed.

	The Logger class supports
	rollover. We need to specify how many (or how often)
 log files we want and the size of each, using a
 line like one of the following in the file
 config/environments/production.rb:

	​ 	config.logger = Logger.new(config.paths[​'log'​].first, ​'daily'​)

Or perhaps this:
	​ 	require ​'active_support/core_ext/numeric/bytes'​
	​ 	config.logger = Logger.new(config.paths[​'log'​].first, 10, 10.megabytes)

 Note that in this case an explicit require of active_support
 is needed, because this statement is processed early in the initialization
 of your application—before the Active Support libraries have been
 included. In fact, one of the configuration options that
 Rails provides is to not include Active Support libraries at all:

	​ 	config.active_support.bare = ​true​

 Alternatively, we can direct our logs to the system logs for our
 machine:

	​ 	config.logger = SyslogLogger.new

	Find more options at
 http://guides.rubyonrails.org/configuring.html.

Iteration L4: Deploying with Fewer Steps on Heroku

 If you are willing to give up some measure of control, a platform as a service can make deploying much easier. Heroku is a popular service that will deploy and manage your Rails application without requiring almost any of the steps above.

 With Heroku, you do a bit of up-front configuration, then use Git to push your app’s repository to them. That git push triggers Heroku to deploy your app. Heroku connects your app to a database (Postgres in this case) and handles managing logs, running background workers, and everything else you’d need.

 It comes at a price. For free, your app will sleep after inactivity and has a limited pool of requests it can serve per day. To have your app up and running all the time, you have to use a paid plan. But, you don’t have to manage or run any servers or create any scripts for deployment. Let’s see what Heroku is like, which requires creating an app in Heroku, setting up our app to use Postgres, and deploying.

Setting Up the Initial App

 The official Heroku docs for working with Rails should supersede what we’re about to do,[95] but the basic steps for getting a Rails app in Heroku have not changed significantly in many years.

 First, you’ll need to sign up at https://heroku.com for an account. Once you’ve done that, install the Heroku Toolbelt, which is a command-line application that allows you to interact with Heroku. The installation method depends on your operating system.

 For Mac OS, use Homebrew:

	​ 	> brew install heroku

 For recent versions of Heroku, or if you’re using Window’s Bash subsystem, use Snap:

	​ 	> sudo snap install heroku

 For Windows without the Bash subsystem, you’ll need to download an installer linked from the Toolbelt’s install page.[96] This page also covers other versions of Linux.

 With the Toolbelt installed, you should log in on the command line using the account you just created:

	​ 	> heroku login
	​ 	Enter your Heroku credentials:
	​ 	Email: «your email»
	​ 	Password: «your password»

 Next, create your app in Heroku. Heroku will automatically create a unique name and URL for your app when you create it. For getting started, this is the most straightforward thing to do, but you can customize the names and URLs later.

	​ 	> heroku create
	​ 	Creating app... done, free-flying-61534
	​ 	http://free-flying-61534.herokuapp.com/ |
	​ 	 https://git.heroku.com/free-flying-61534.git

 Once you deploy your app, it will be available at http://free-flying-61534.herokuapp.com. The heroku command you ran also created a git remote that lives inside Heroku. This is a remote Git repository that you can push code to, just like pushing code to GitHub or Gitlab. This git remote is how we’ll trigger a deployment, which we’ll see in a moment.

 Next you need to configure your application to use Postgres for its database in production, since that is what Heroku supports.

Using Postgres in Production

 Rails will use Postgres if you add the pg gem to your Gemfile. For now, do this in the production group (and remove any reference to MySQL if you added that previously):

	​ 	group ​:production​ ​do​
	​ 	 gem ​'pg'​
	​ 	​end​

 To install this gem, you will need Postgres installed locally. Postgres’s download page has instructions, which are different depending on your operating system.[97]

 Once you’ve done this, run bundle install to install the pg gem.

 To configure Rails to access Postgres in production, you should remove the entire production: section from config/database.yml. Heroku will set an environment variable named DATABASE_URL with the information needed to connect to the Postgres instance running in Heroku. Rails and Active Record are already configured to use this environment variable.

 Commit the changes you made to your app using Git:

	​ 	> git add .
	​ 	> git commit -m 'configure Heroku deployments'

 Now we’re ready to deploy.

Deploying to Heroku

 As mentioned above, triggering a deploy is a matter of pushing your code to Heroku’s git remote using Git:

	​ 	> git push heroku master
	​ 	remote: Compressing source files... done.
	​ 	remote: Building source:
	​ 	remote:
	​ 	remote: -----> Ruby app detected
	​ 	remote: -----> Compiling Ruby/Rails
	​ 	
	​ 	A lot more output
	​ 	
	​ 	remote: Verifying deploy... done.
	​ 	To https://git.heroku.com/free-flying-61534.git
	​ 	 * [new branch] master -> master

 Your app won’t work yet because the database hasn’t been set up. Heroku allows you to run Rake tasks remotely using the Toolbelt, so the first thing you should do when the deploy completes is to migrate the database:

	​ 	> heroku run bin/rails db:migrate

 You can also use heroku run to run any task, including seeding the database:

	​ 	> heroku run bin/rails db:seed

 At this point, your app is deployed and should be working on Heroku. You can do this without remembering the weird name Heroku assigned via this command:

	​ 	> heroku open

 You can also view the Rails log:

	​ 	> heroku logs --tail
	​ 	
	​ 	Rails log

 And you can interact with the production application via the Rails console like so:

	​ 	> heroku run rails c
	​ 	irb(main):001:0>

 Heroku uses a file named Procfile to know what processes you want to run when you deploy your app. Although Heroku can often guess correctly, based on the source code of your app, it’s a good practice to be explicit. A Procfile is a text file that describes a process per line. The process is defined as a key followed by a colon followed by the command-line invocation you want to run. In Heroku, the web key is required for running web servers, which means our Procfile should look like so:

	​ 	web: bin/rails server

 Commit these changes to Git:

	​ 	> git add Procfile
	​ 	> git commit -m 'configure production Procfile'

 Now deploy the changes:

	​ 	> git push heroku master

 Look at how streamlined that deploy was! We’ve talked about how agile it is to use Rails—this is a pretty agile deployment mechanism.

Moving On to Launch and Beyond

 Once we’ve set up our initial deployment, we’re ready to
 finish the development of our application and launch it into
 production. We’ll likely set up additional deployment servers,
 and the lessons we learn from our first deployment will tell
 us a lot about how we should structure later deployments. For
 example, we’ll likely find that Rails is one of the slower
 components of our system: more of the request time will be
 spent in Rails than in waiting on the database or
 filesystem. This indicates that the way to scale up is to add
 machines to split up the Rails load.

 However, we might find that the bulk of the time a request
 takes is in the database. If this is the case, we’ll want to
 look at how to optimize our database activity. Maybe we’ll
 want to change how we access data. Or maybe we’ll need to
 custom-craft some SQL to replace the default Active Record
 behaviors.

 One thing is for sure: every application will require a
 different set of tweaks over its lifetime. The most important
 activity is to listen to it over time and discover what
 needs to be done. Our job isn’t done when we launch our
 application. It’s actually just starting.

Although our job is just starting when we first deploy our application to
 production, we’ve completed our tour of the Depot application. After we
 recap what we did in this chapter, let’s look back at what we’ve
 accomplished in remarkably few lines of code.

What We Just Did

 We covered a lot of ground in this chapter. We took our code that
 ran locally on our development machine for a single user and placed it
 on a different machine, running a different web server, accessing a
 different database, and possibly even running a different operating
 system.

 To accomplish this, we used a number of products:

	

 We installed and configured Phusion Passenger and Apache httpd, a
 production-quality web server.
	

	

	 We installed and configured MySQL, a production-quality
 database server.
	

	

	 We got our application’s dependencies under control using Bundler
 and Git.
	

	

	 We installed and configured Capistrano, which enables us to
 confidently and repeatably deploy our application.
	

	

 We also used an alternative hosting service, Heroku, to manage our app in a simpler way.

Playtime

 Here’s some stuff to try on your own:

	

 If we have multiple developers collaborating on development, we
 might feel uncomfortable putting the details of the configuration
 of our database (potentially including passwords!) into our
 configuration management system. To address this, copy the
 completed database.yml into the
 shared directory and write a task instructing
 Capistrano to copy this file into your current
 directory each time you deploy.

	

 This chapter has focused on stable, tried-and-true,
 and perhaps somewhat conservative deployment choices, but a lot of innovation
 is going on in this
 area. At the moment, Capistrano and Git appear to be
 virtually uncontested choices. Everything else is up
 for grabs. Here are some things to play with:

	

 Try replacing RVM with rbenv and ruby-build.[98][99]

	

 Try replacing both Phusion Passenger and Apache httpd with
 Unicorn and nginx.[100][101]

 Being agile means more than making the right choices. It requires
 both adaptive planning and rapid and flexible responses
 to change.

Footnotes

	[90]
	
https://www.virtualbox.org/

	[91]
	
http://www.ubuntu.com/download/desktop

	[92]
	
http://www.sqlite.org/whentouse.html

	[93]
	
http://dev.mysql.com/downloads/mysql/

	[94]
	
https://rvm.io/integration/capistrano/

	[95]
	
https://devcenter.heroku.com/articles/getting-started-with-rails5

	[96]
	
https://devcenter.heroku.com/articles/heroku-cli

	[97]
	
https://www.postgresql.org/download/

	[98]
	
https://github.com/sstephenson/rbenv/#readme

	[99]
	
https://github.com/sstephenson/ruby-build#readme

	[100]
	
http://unicorn.bogomips.org/

	[101]
	
http://wiki.nginx.org/Main

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Reviewing Rails concepts: model, view, controller, configuration,
 testing, and deployment
	Documenting what we’ve done

 Chapter
 18
Depot Retrospective

 Congratulations! By making it this far, you’ve obtained a solid
 understanding of the basics of every Rails application. There’s much
 more to learn, which we’ll pick back up again in Part III. For now,
 relax, and let’s recap what you’ve seen in Part II.

Rails Concepts

In Chapter 3, ​The Architecture of Rails Applications​ we introduced models,
 views, and controllers. Now let’s see how we applied each of these
 concepts in the Depot application. Then let’s explore how we used
 configuration, testing, and deployment.
Model

 Models are where all of the persistent data retained by your application
 is managed. In developing the Depot application, we created five
 models: Cart, LineItem,
 Order, Product, and
 User.

 By default, all models have id, created_at, and
 updated_at attributes. To our models, we added attributes of
 type string (examples: title, name),
 integer (quantity), text
 (description, address), and decimal
 (price), as well as foreign keys (product_id,
 cart_id). We even created a virtual attribute
 that’s never stored in the database—namely, a
 password.

 We created has_many and belongs_to relationships that
 we can use to navigate among our model objects, such as from
 Carts to LineItems to
 Products.

 We employed migrations to update the databases, not only to introduce
 new schema information but also to modify existing data. We
 demonstrated that they can be applied in a fully reversible manner.

 The models we created were not merely passive receptacles for our data.
 For starters, they actively validate the data, preventing errors from
 propagating. We created validations for presence, inclusion,
 numericality, range, uniqueness, format, and confirmation (and length
 too, if you completed the exercises). We created custom validations for
 ensuring that deleted products aren’t referenced by any line item. We
 used an Active Record hook to ensure that an administrator always
 remains, and used a transaction to roll back incomplete updates on failure.

 We also created logic to add a product to a cart, add all line items
 from a cart to an order, encrypt and authenticate a password, and
 compute various totals.

 Finally, we created a default sort order for products for display
 purposes.

View

 Views control the way our application presents itself to the external
 world. By default, Rails scaffolding provides edit,
 index, new, and show, as well as a partial
 named form that’s shared between edit and
 new. We modified a number of these, as well as created new
 partials for carts and line items.

 In addition to the model-backed resource views, we created entirely new
 views for admin, sessions, and the store
 itself.

 We updated an overall layout to establish a common look and feel for the
 entire site. We linked in a stylesheet. We made use of templates
 to generate JavaScript that takes advantage of Ajax and
 WebSocket technologies to make our website more interactive.

 We made use of a helper to direct when to hide the cart from the main
 view.

 We localized the customer views for display both in English and in Spanish.

 Although we focused primarily on HTML views, we also created plain-text views
 and Atom views. Not all of the views were designed for browsers: we
 created views for email too, and those views were able to share partials
 for displaying line items.

Controller

 By the time we were done, we created eight controllers: one each for the
 five models and the three additional ones to support the
 views for admin, sessions, and the store
 itself.

 These controllers interacted with the models in a number of ways, from
 finding and fetching data and putting it into instance variables to
 updating models and saving data entered via forms. When done, we either
 redirected to another action or rendered a view. We rendered views in
 HTML, JSON, and Atom.

 We limited the set of permitted parameters on the
 line item controller.

 We created callback actions that were run before selected actions to
 find the cart, set the language, and
 authorize requests. We placed logic common to a number of controllers
 into a concern—namely, the CurrentCart module.

 We managed sessions, keeping track of the logged-in user (for
 administrators) and carts (for customers). We kept track of the current
 locale used for internationalization of our output. We captured errors,
 logged them, and informed the user via notices.

 We employed fragment caching on the storefront and page-level
 caching on the Atom feeds.

 We also sent confirmation emails on receipt of an order.

Configuration

 Conventions keep to a minimum the amount of configuration required
 for a Rails application, but we did do a bit of customization.

 We modified our database configuration to use MySQL in
 production.

 We defined routes for our resources, admin and session controllers,
 and the root of our website—namely, our
 storefront. We defined a who_bought member of our
 products resource to access Atom feeds that contain
 this information.

 We created an initializer for i18n purposes and updated the locales
 information for both English (en) and Spanish (es).

 We created seed data for our database.

 We created a Capistrano script for deployment, including the definition
 of a few custom tasks.

Testing

 We maintained and enhanced tests throughout.

 We employed unit tests to validation methods. We also tested
 increasing the quantity on a given line item.

 Rails provided basic tests for all our scaffolded controllers, which
 we maintained as we made changes. We added tests along the way for
 things such as Ajax and ensuring that a cart has items before we create
 an order.

 We used fixtures to provide test data to fuel our tests.

 We created an integration test to test an end-to-end scenario
 involving a user adding product to a cart, entering an order, and
 receiving a confirmation email.

Deployment

 We deployed our application to a production-quality web server (Apache
 httpd) using a production-quality database server (MySQL). Along the
 way, we installed and configured Phusion Passenger to run our application,
 Bundler to track dependencies, and Git to configuration manage our code.
 Capistrano was employed to orchestrate updating the deployed web server
 in production from our development machine.

 We made use of test and production environments to
 prevent our experimentation during development from affecting
 production. Our development environment made use of the lightweight
 SQLite database server and web server, Puma. Our tests were run in a controlled environment with test data
 provided by fixtures.

Documenting What We’ve Done

 To complete our retrospective,
 let’s see how much code we’ve written.
 There’s a Rails command for that, too:

	​ 	​ depot>​​ ​​bin/rails​​ ​​stats​
	​ 	+----------------------+--------+--------+---------+---------+-----+-------+
	​ 	| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
	​ 	+----------------------+--------+--------+---------+---------+-----+-------+
	​ 	| Controllers | 625 | 382 | 9 | 55 | 6 | 4 |
	​ 	| Helpers | 26 | 24 | 0 | 1 | 0 | 22 |
	​ 	| Jobs | 2 | 2 | 1 | 0 | 0 | 0 |
	​ 	| Models | 137 | 77 | 6 | 7 | 1 | 9 |
	​ 	| Mailers | 33 | 15 | 2 | 2 | 1 | 5 |
	​ 	| Javascripts | 66 | 7 | 0 | 3 | 0 | 0 |
	​ 	| Libraries | 23 | 18 | 0 | 0 | 0 | 0 |
	​ 	| Tasks | 23 | 18 | 0 | 0 | 0 | 0 |
	​ 	| Controller tests | 386 | 274 | 8 | 46 | 5 | 3 |
	​ 	| Helper tests | 0 | 0 | 0 | 0 | 0 | 0 |
	​ 	| Model tests | 130 | 90 | 5 | 9 | 1 | 8 |
	​ 	| Mailer tests | 39 | 26 | 2 | 4 | 2 | 4 |
	​ 	| Integration tests | 219 | 153 | 2 | 10 | 5 | 13 |
	​ 	+----------------------+--------+--------+---------+---------+-----+-------+
	​ 	| Total | 1709 | 1086 | 35 | 137 | 3 | 5 |
	​ 	+----------------------+--------+--------+---------+---------+-----+-------+
	​ 	 Code LOC: 543 Test LOC: 543 Code to Test Ratio: 1:1.0

 Think about it: you’ve accomplished a lot and with not all
 that much code. Furthermore, much of it was generated for you.
 This is the magic of Rails.

Copyright © 2017, The Pragmatic Bookshelf.

Part 3
Rails in Depth

We cover:
	The directory structure of a Rails application
	Naming conventions
	Adding Rake tasks
	Configuration

 Chapter
 19
Finding Your Way Around Rails

 Having survived our Depot project, you are now prepared to
 dig deeper into Rails. For the rest of the book, we’ll go through
 Rails topic by topic (which pretty much means module by module). You
 have seen most of these modules in action before.
 We will cover not only what each module does but
 also how to extend or even replace the module and why you might want to
 do so.

 The chapters in Part III cover all the major subsystems of Rails: Active
 Record, Active Resource, Action Pack (including both Action
 Controller and Action View), and Active Support. This is followed by an
 in-depth look at migrations.

 Then we are going to delve into the interior of Rails and show how the
 components are put together, how they start up, and how they can be
 replaced. Having shown how the parts of Rails can be put together,
 we’ll complete this book with a survey of a number of popular replacement parts,
 many of which can be used outside of Rails.

 We need to set the scene. This chapter covers
 all the high-level stuff you need to know to understand the rest:
 directory structures, configuration, and environments.

Where Things Go

 Rails assumes a certain runtime directory layout and provides
 application and scaffold generators, which will create this
 layout for you.
 For example, if we generate my_app using the command
 rails new my_app, the top-level directory for
 our new application appears as shown in the figure.

[image: images/rails_layout.png]
[image: Joe asks:]
Joe asks:
So, Where’s Rails?

 One of the interesting aspects of Rails is how componentized it
 is. From a developer’s perspective, you spend all your time
 dealing with high-level modules such as Active Record and Action
 View. There is a component called Rails, but it sits below the
 other components, silently orchestrating what they do and making
 them all work together seamlessly. Without the Rails component,
 not much would happen. But at the same time, only a small part
 of this underlying infrastructure is relevant to developers in
 their day-to-day work. We’ll cover the parts
 that are relevant in the rest of this chapter.

 Let’s start with the text
 files in the top of the application directory:

	

 config.ru configures the Rack
 Webserver Interface, either to create Rails Metal applications
 or to use Rack Middlewares in your Rails application. These are discussed
 further in the Rails Guides.[102]

	

 Gemfile
 specifies the dependencies of your Rails application. You have
 already seen this in use when the bcrypt-ruby gem was
 added to the Depot application. Application dependencies also include
 the database, web server, and even scripts used for deployment.

 Technically, this file isn’t used by Rails but rather by your
 application. You can find calls to the Bundler[103] in the config/application.rb and
 config/boot.rb files.

	

 Gemfile.lock
 records the specific versions for each of your Rails application’s
 dependencies. This
 file is maintained by Bundler and should be checked into your
 repository.

	

 Rakefile defines tasks
 to run tests, create documentation, extract the
 current structure of your schema, and
 more. Type rake -T
 at a prompt for the full list. Type
 rake -D task
 to see a more complete description of a specific task.

	

 README contains general information about the Rails
 framework.

 Let’s look at what
 goes into each directory (although not necessarily in
 order).

A Place for Our Application

 Most of our work takes place in the app
 directory. The main code for the application lives below the
 app directory, as shown in the figure.
	We’ll talk more about the structure of
	the app directory as we look at the various Rails
 modules such as Active
	Record, Action Controller, and Action View in more detail
	later in the book.

A Place for Our Tests

 As we have seen in ​Iteration B2: Unit Testing of Models​, ​Iteration C4: Functional Testing of Controllers​, and ​Iteration H2: Testing Our JavaScript Functionality​, Rails has ample provisions for testing
 your application, and the test directory is the home for all
 testing-related activities, including fixtures that define data used by
 our tests.

A Place for Supporting Libraries

 The lib directory holds
 application code that doesn’t fit neatly into a model, view, or
 controller. For example, you may have written a library that creates
 PDF receipts that your store’s customers can download.
	 These receipts are sent directly from the
	controller to the browser (using
	the send_data method). The code that
	creates these PDF receipts will sit naturally in
	the lib directory.

[image: images/app_dir_layout.png]

	The lib directory is also a good place to
	put code that’s shared among models, views, or
	controllers. Maybe you need a library that validates a credit
	card number’s checksum, that performs some financial
	calculation, or that works out the date of Easter. Anything
	that isn’t directly a model, view, or controller should be
	slotted into lib.

	Don’t feel that you have to stick a bunch of files directly
	into the lib directory. Feel
	free to create subdirectories in which you
	group related functionality under lib. For
	example, on the Pragmatic Programmer site, the code that
	generates receipts, customs documentation for shipping, and
	other PDF-formatted documentation is in the
	directory lib/pdf_stuff.

 In previous versions of Rails, the files in the lib directory were
 automatically included in the load path used to resolve
 require
 statements. This is now an option that
 you need to explicitly enable. To do so, place the following in
 config/application.rb:

	​ 	config.autoload_paths += ​%W(​​#{​Rails.root​}​​/lib)​

	Once you have files in the lib directory
 and the lib added to your autoload paths,
	you can use them in the rest of your application. If the files
	contain classes or modules and the files are named using the
	lowercase form of the class or module name, then Rails will
	load the file automatically. For example, we might have a PDF
	receipt writer in the file receipt.rb in
	the directory lib/pdf_stuff. As long as our
	class is named PdfStuff::Receipt, Rails will be able
	to find and load it automatically.

	For those times where a library cannot meet these automatic
	loading conditions, you can use
	Ruby’s require
	mechanism.
 If the file is in
	the lib directory, you can require it
	directly by name. For example, if our Easter calculation
	library is in the file lib/easter.rb, we
	can include it in any model, view, or controller using this:

	​ 	require ​"easter"​

	If the library is in a subdirectory of lib,
	remember to include that directory’s name in
	the require statement. For example, to include a
	shipping calculation for airmail, we might add the following line:

	​ 	require ​"shipping/airmail"​

A Place for Our Rake Tasks

	
	
	
	
	
	 You’ll also find an empty tasks directory
	 under lib. This is where you can write your own Rake
	 tasks, allowing you to add automation to your project. This
	 isn’t a book about Rake, so we won’t elaborate,
	 but here’s a simple example.
	

	
	 Rails provides a Rake task to
	 tell you the latest migration that has been performed. But it may be helpful to see a list of all the
	 migrations that have been performed. We’ll write a Rake task that
	 prints the versions listed in the schema_migration
	 table. These tasks are Ruby code, but they need to be
	 placed into files with the
	 extension rake. We’ll call
	 ours db_schema_migrations.rake:
	
rails51/depot_u/lib/tasks/db_schema_migrations.rake
	​ 	namespace ​:db​ ​do​
	​ 	 desc ​"Prints the migrated versions"​
	​ 	 task ​:schema_migrations​ => ​:environment​ ​do​
	​ 	 puts ActiveRecord::Base.connection.select_values(
	​ 	 ​'select version from schema_migrations order by version'​)
	​ 	 ​end​
	​ 	​end​

	 We can run this from the command line just like any other
	 Rake task:
	
	​ 	​depot>​​ ​​bin/rails​​ ​​db:schema_migrations​
	​ 	(in /Users/rubys/Work/...)
	​ 	20170425000001
	​ 	20170425000002
	​ 	20170425000003
	​ 	20170425000004
	​ 	20170425000005
	​ 	20170425000006
	​ 	20170425000007

	
	
	
	
	 Consult the Rake documentation
	 at https://github.com/ruby/rake#readme for more information
	 on writing Rake tasks.
	
A Place for Our Logs

	As Rails runs, it produces a bunch of useful logging
	information. This is stored (by default) in
	the log directory. Here you’ll find three
	main log files,
	called development.log, test.log,
	and production.log. The logs contain more
 than just trace lines; they also contain timing
	statistics, cache information, and expansions of the database
	statements executed.

	Which file is used depends on the environment in which your
	application is running (and we’ll have more to say about
	environments when we talk about the config
	directory in ​A Place for Configuration​).

A Place for Static Web Pages

 The public directory is the
 external face of your application. The web server takes this directory
 as the base of the application. In here you place static
 (in other words, unchanging) files, generally related to the
 running of the server.

A Place for Script Wrappers

 If you find it
helpful to write scripts that are launched from the command
 line and perform various maintenance tasks for your application, the
 bin directory is the
 place to put wrappers that call those scripts. You can use
 bundle binstubs to populate this directory.

 This directory also holds the Rails script. This is the
 script that is run when you run the rails command from the
 command line. The first argument you pass to that script
 determines the function Rails will perform:

	console
	

	
	 Allows you to interact with your Rails
	 application methods.
	

	dbconsole
	

	
	 Allows you to directly
	 interact with your database via the command line.
	

	destroy
	

	
	 Removes autogenerated files created
	 by generate.
	

	generate
	

	
	 A code generator. Out of the box, it will create
	 controllers, mailers, models, scaffolds, and web services.
	 Run generate with no arguments for usage information
 on a particular generator; here’s an example:
	
	​ 	bin/rails generate migration

	new
	

	
	 Generates Rails application code.
	

	runner
	

	
 Executes a method in your application outside the context of the
 Web. This is the noninteractive equivalent of rails console.
 You could use this to invoke cache expiry methods from a
 cron job or handle incoming email.
	

	server
	

 Runs your Rails application in a self-contained
 web server, using the web server listed in your Gemfile, or WEBrick
 if none is listed. We’ve been using Puma in our Depot
 application during development.
	

A Place for Temporary Files

	It probably isn’t a surprise that Rails keeps its temporary
	files tucked in the tmp
	directory. You’ll find subdirectories for cache contents,
	sessions, and sockets in here. Generally these files are cleaned up automatically by
 Rails, but occasionally if things go wrong, you might need to look in
 here and delete old files.

A Place for Third-Party Code

	The vendor
	directory is where third-party code lives.
	You can install Rails and all of its dependencies into
	the vendor directory, as we saw in ​Getting an Application Under Control​.

	If you want to go back to using the system-wide version of
	gems, you can delete
	the vendor/cache directory.

A Place for Configuration

 The config directory contains files that
 configure Rails. In the process of developing Depot, we configured a
 few routes, configured the database, created an initializer, modified some locales,
 and defined deployment instructions. The rest of the configuration was
 done via Rails conventions.

 Before running your application, Rails loads and executes config/environment.rb and
 config/application.rb.
 The standard environment set up automatically by these files
 includes the following directories (relative to your application’s
 base directory) in your application’s load
	 path:
	
	
	 The app/controllers directory and its
	 subdirectories
	
	
 The app/models directory
	
	
 The vendor directory and the
 lib contained in each
 plugin subdirectory
	
	
	 The directories
	 app,
	 app/helpers,
	 app/mailers, and
	 app/*/concerns
	

	 Each of these directories is added to the load path only if
	 it exists.
	

 In addition, Rails will load a per-environment configuration file.
 This file lives in the
 environments directory and is where you place
 configuration options that vary depending on the environment.

 This is done because Rails recognizes that
	your needs, as a developer, are very different when writing
	code, testing code, and running that code in production. When
	writing code, you want lots of logging, convenient reloading
	of changed source files, in-your-face notification of errors,
	and so on. In testing, you want a system that exists in
	isolation so you can have repeatable results. In production,
	your system should be tuned for performance, and users should
	be kept away from
	errors.

	 The switch that dictates the runtime environment is external
	 to your application. This means that no application code
	 needs to be changed as you move from development through
	 testing to production.
 In Chapter 17, ​Task L: Deployment and Production​, we specified
 the environment on the rake command using a
 RAILS_ENV parameter and to Phusion Passenger using a
 RailsEnv line in our Apache configuration file. When
 starting a server with the bin/rails server
 command, we use the -e
	 option:

	​ 	​depot>​​ ​​bin/rails​​ ​​server​​ ​​-e​​ ​​development​
	​ 	​depot>​​ ​​bin/rails​​ ​​server​​ ​​-e​​ ​​test​
	​ 	​depot>​​ ​​bin/rails​​ ​​server​​ ​​-e​​ ​​production​

	If you have special requirements, such as if you favor having a
 staging environment, you can create your own
	environments. You’ll need to
	add a new section to the database configuration file and a
	new file to the config/environments
	directory.

 What you put into these configuration files is entirely up to you. You
 can find a list of configuration parameters you can set in the
 Configuring Rails Applications guide.[104]

Naming Conventions

 Newcomers to Rails are sometimes puzzled by the way it
 automatically handles the naming of things. They’re surprised
 that they call a model class Person and
 Rails somehow knows to go looking for a database table
 called people. In this section, you’ll learn
 how this implicit naming works.

 The rules here are the default conventions used by Rails. You
 can override all of these conventions using configuration options.

Mixed Case, Underscores, and Plurals

	We often name variables and classes using short phrases. In
	Ruby, the convention is to have variable names where the
	letters are all lowercase and words are separated by
	underscores. Classes and modules are named differently: there
	are no underscores, and each word in the phrase (including the
	first) is capitalized. (We’ll call
	this mixed case, for fairly obvious
	reasons.) These conventions lead to variable
	names such as order_status and class
	names such as LineItem.

	Rails takes this convention and extends it in two ways. First,
	it assumes that database table names, such as variable names, have lowercase letters and
	underscores between the words. Rails also assumes that table
	names are always plural. This leads to table names such
	as orders
	and third_parties.

	On another axis, Rails assumes that files are named using
	lowercase with underscores.

	Rails uses this knowledge of naming conventions to convert
	names automatically. For example, your application might
	contain a model class that handles line items. You’d define
	the class using the Ruby naming convention, calling
	it LineItem. From this name, Rails would
	automatically deduce the following:

	

	 That the corresponding database table will be
	 called line_items. That’s the class
	 name, converted to lowercase, with underscores between
	 the words and pluralized.
	

	

	 Rails would also know to look for the class definition in
	 a file called line_item.rb (in
	 the app/models directory).
	

	Rails controllers have additional naming conventions. If our
	application has a store controller,
	then the following happens:

	

	 Rails assumes the class is
	 called StoreController and that
	 it’s in a file
	 named store_controller.rb in
	 the app/controllers directory.
	

	

	 Rails also looks for a helper module
	 named StoreHelper in the
	 file store_helper.rb located in
	 the app/helpers directory.
	

	

	 It will look for view templates for this controller in the
	 app/views/store directory.
	

	

	 It will by default take the output of these views and wrap
	 them in the layout template contained
	 in the file store.html.erb
	 or store.xml.erb in the
	 directory app/views/layouts.
	

	All these conventions are shown in the following tables.

	Model Naming
	Table	line_items
	File	app/models/line_item.rb
	Class	LineItem

	Controller Naming
	URL	http://../store/list
	File	app/controllers/store_controller.rb
	Class	StoreController
	Method	list
	Layout	app/views/layouts/store.html.erb

	View Naming
	URL	http://../store/list
	File	app/views/store/list.html.erb (or .builder)
	Helper	module StoreHelper
	File	app/helpers/store_helper.rb

	There’s one extra twist. In normal Ruby code you have to use
	the require keyword to include Ruby source files
	before you reference the classes and modules in those
	files. Since Rails knows the relationship between filenames
	and class names, require isn’t normally necessary in
	a Rails application. The first
	time you reference a class or module that isn’t known, Rails
	uses the naming conventions to convert the class name to a
	filename and tries to load that file behind the scenes. The
	net effect is that you can typically reference (say) the name
	of a model class, and that model will be automatically loaded
	into your application.

Grouping Controllers into Modules

	So far, all our controllers have lived in
	the app/controllers directory. It is
	sometimes convenient to add more structure to this
	arrangement. For example, our store might end up with a number
	of controllers performing related but disjoint administration
	functions. Rather than pollute the top-level namespace, we
	might choose to group them into a single admin
	namespace.

[image: David says:]
David says:
Why Plurals for Tables?

 Because it sounds good in conversation. Really. “Select
 a Product from products.” And “Order
 has_many :line_items.”

 The intent is to bridge programming and conversation by
 creating a domain language that can be shared by both. Having
 such a language means cutting down on the mental translation
 that otherwise confuses the discussion of a product
 description with the client when it’s really implemented as
 merchandise body. These communications gaps are
 bound to lead to errors.

 Rails sweetens the deal by giving you most of the
 configuration for free if you follow the standard
 conventions. Developers are thus rewarded for doing the right
 thing, so it’s less about giving up “your ways”
 and more about getting productivity for free.

	Rails does this using a simple naming convention. If an incoming
	request has a controller named
	(say) admin/book,
	Rails will look for the controller
	called book_controller in the
	directory app/controllers/admin. That is,
	the final part of the controller name will always resolve to a
	file
	called name_controller.rb,
	and any leading path information will be used to navigate
	through subdirectories, starting in
	the app/controllers directory.

	Imagine that our program has two such groups of
	controllers
	(say, admin/xxx
	and content/xxx) and
	that both groups define a book controller.
	There’d be a file
	called book_controller.rb in both
	the admin and content
	subdirectories of app/controllers. Both of
	these controller files would define a class
	named BookController. If Rails took no
	further steps, these two classes would clash.

	To deal with this, Rails assumes that controllers in
	subdirectories of the
	directory app/controllers are in Ruby
	modules named after the subdirectory. Thus, the book
	controller in the admin subdirectory would
	be declared like this:

	​ 	​class​ Admin::BookController < ActionController::Base
	​ 	 ​# ...​
	​ 	​end​

	The book controller in the content
	subdirectory would be in the Content
	module:

	​ 	​class​ Content::BookController < ActionController::Base
	​ 	 ​# ...​
	​ 	​end​

	The two controllers are therefore kept separate inside your
	application.

	The templates for these controllers appear in
	subdirectories of app/views. Thus, the view
	template corresponding to this request:

	​ 	http://my.app/admin/book/edit/1234

	will be in this file:

	​ 	app/views/admin/book/edit.html.erb

	You’ll be pleased to know that the controller generator
	understands the concept of controllers in modules and lets
	you create them with commands such as this:

	​ 	​myapp>​​ ​​bin/rails​​ ​​generate​​ ​​controller​​ ​​Admin::Book​​ ​​action1​​ ​​action2​​ ​​...​

What We Just Did

 Everything in Rails has a place, and we systematically explored each of
 those nooks and crannies. In each place, files and the data contained
 in them follow naming conventions, and we covered that too. Along the
 way, we filled in a few missing pieces:

	We added a Rake task to print the migrated versions.
	We showed how to configure each of the Rails
 execution environments.

 Next up are the major subsystems of Rails, starting with the largest,
 Active Record.

Footnotes

	[102]
	
http://guides.rubyonrails.org/rails_on_rack.html

	[103]
	
https://github.com/bundler/bundler

	[104]
	
http://guides.rubyonrails.org/configuring.html

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	The establish_connection method
	Tables, classes, columns, and attributes
	IDs and relationships
	Create, read, update, and delete operations
	Callbacks and transactions

 Chapter
 20
Active Record

 Active Record is the object-relational mapping (ORM)
 layer supplied with Rails. It is the part of Rails that implements your
 application’s model.

 In this chapter, we’ll build on the mapping data to rows and columns
 that we did in Depot. Then we’ll look at using Active Record to manage
 table relationships and in the process cover create, read, update, and
 delete operations (commonly referred to in the industry as CRUD
 methods). Finally, we will dig into the Active Record object life cycle
 (including callbacks and transactions).

Defining Your Data

 In Depot, we defined a number of models, including one for an
 Order. This particular model has a number of
 attributes, such as an email address of type String. In
 addition to the attributes that we defined, Rails provided an attribute
 named id that contains the primary key for the record.
 Rails also provides several additional attributes,
 including attributes that track when each row was last
 updated. Finally, Rails supports relationships between models, such as
 the relationship between orders and line items.

 When you think about it, Rails provides a lot of support for models.
 Let’s examine each in turn.

Organizing Using Tables and Columns

 Each subclass of ApplicationRecord, such as
 our Order class, wraps a separate
 database table. By default, Active Record assumes that the name of the
 table associated with a given class is the plural form of the name of
 that class. If the class name
 contains multiple capitalized words, the table name is assumed to have
 underscores between these words.

	Classname	Table Name
	Order	orders
	TaxAgency	tax_agencies
	Batch	batches
	Diagnosis	diagnoses
	LineItem	line_items
	Person	people
	Datum	data
	Quantity	quantities

 These rules reflect Rails’ philosophy that class names should
 be singular while the names of tables should be plural.

 Although Rails handles most irregular plurals correctly, occasionally you
 may stumble across one that is not handled correctly. If you
 encounter such a case, you can add to Rails’ understanding of the
 idiosyncrasies and inconsistencies of the English language by
 modifying the inflection file provided:

rails51/depot_u/config/initializers/inflections.rb
	​ 	​# Be sure to restart your server when you modify this file.​
	​ 	
	​ 	​# Add new inflection rules using the following format. Inflections​
	​ 	​# are locale specific, and you may define rules for as many different​
	​ 	​# locales as you wish. All of these examples are active by default:​
	​ 	​# ActiveSupport::Inflector.inflections(:en) do |inflect|​
	​ 	​# inflect.plural /^(ox)$/i, '\1en'​
	​ 	​# inflect.singular /^(ox)en/i, '\1'​
	​ 	​# inflect.irregular 'person', 'people'​
	​ 	​# inflect.uncountable %w(fish sheep)​
	​ 	​# end​
	​ 	
	​ 	​# These inflection rules are supported but not enabled by default:​
	​ 	​# ActiveSupport::Inflector.inflections(:en) do |inflect|​
	​ 	​# inflect.acronym 'RESTful'​
	​ 	​# end​
	​ 	
	​ 	ActiveSupport::Inflector.inflections ​do​ |inflect|
	​ 	 inflect.irregular ​'tax'​, ​'taxes'​
	​ 	​end​

 If you have legacy tables you have to deal with or don’t like this
 behavior, you can control the table name associated with a given
 model by setting the table_name for a given class:

	​ 	​class​ Sheep < ApplicationRecord
	​ 	 self.table_name = ​"sheep"​
	​ 	​end​

[image: David says:]
David says:
Where Are Our Attributes?

 The notion of a database administrator (DBA) as a separate
 role from programmer has led some developers to see strict
 boundaries between code and schema. Active Record blurs that
 distinction, and no other place is that more apparent than in
 the lack of explicit attribute definitions in the model.

 But fear not. Practice has shown that it makes little
 difference whether we’re looking at a database schema, a
 separate XML mapping file, or inline attributes in the
 model. The composite view is similar to the separations
 already happening in the Model-View-Controller pattern—just on
 a smaller scale.

 Once the discomfort of treating the table schema as part of
 the model definition has dissipated, you’ll start to realize
 the benefits of keeping DRY. When you need to add an attribute to the
 model, you simply have to create a new migration and reload the
 application.

 Taking the “build” step out of schema evolution
 makes it just as agile as the rest of the code. It becomes
 much easier to start with a small schema and extend and change
 it as needed.

 Instances of Active Record classes correspond to rows in a
 database table.
 These objects have attributes corresponding to the columns in
 the table. You probably noticed that our definition of
 class Order didn’t mention any of the
 columns in the orders table. That’s
 because Active Record determines them dynamically at
 runtime. Active Record reflects on the schema inside the
 database to configure the classes that wrap tables.

 In the Depot application, our orders
 table is defined by the following migration:

rails51/depot_r/db/migrate/20170425000007_create_orders.rb
	​ 	​class​ CreateOrders < ActiveRecord::Migration[5.1]
	​ 	 ​def​ change
	​ 	 create_table ​:orders​ ​do​ |t|
	​ 	 t.string ​:name​
	​ 	 t.text ​:address​
	​ 	 t.string ​:email​
	​ 	 t.integer ​:pay_type​
	​ 	
	​ 	 t.timestamps
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 Let’s use the handy-dandy bin/rails console
 command to play with this model. First, we’ll ask for a list of
 column names:

	​ 	​depot>​​ ​​bin/rails​​ ​​console​
	​ 	Loading development environment (Rails 5.1.3)
	​ 	​>>​​ ​​Order.column_names​
	​ 	=> ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

 Then we’ll ask for the details of
 the pay_type column:

	​ 	​>>​​ ​​Order.columns_hash[​​"pay_type"​​]​
	​ 	=> ​#<ActiveRecord::ConnectionAdapters::SQLite3Column:0x00000003618228​
	​ 	 @name="pay_type", @sql_type="varchar(255)", @null=true, @limit=255,
	​ 	 @precision=nil, @scale=nil, @type=:string, @default=nil,
	​ 	 @primary=false, @coder=nil>

 Notice that Active Record has gleaned a fair amount of
 information about the pay_type
 column. It knows that it’s a string of at most 255 characters,
 it has no default value, it isn’t the primary key, and it may
 contain a null value. Rails obtained this information by asking
 the underlying database the first time we tried to use
 the Order class.

 The attributes of an Active Record instance generally
 correspond to the data in the corresponding row of the
 database table. For example,
 our orders table might contain the
 following data:

	​ 	​depot>​​ ​​sqlite3​​ ​​-line​​ ​​db/development.sqlite3​​ ​​"select * from orders limit 1"​
	​ 	 id = 1
	​ 	 name = Dave Thomas
	​ 	 address = 123 Main St
	​ 	 email = customer@example.com
	​ 	 pay_type = Check
	​ 	created_at = 2016-01-29 14:39:12.375458
	​ 	updated_at = 2016-01-29 14:39:12.375458

 If we fetched this row into an Active Record object, that
 object would have seven attributes. The id attribute
 would be 1 (a Fixnum),
 the name attribute would be the string "Dave
 Thomas", and so on.

 We access these attributes using accessor methods. Rails
 automatically constructs both attribute readers and
 attribute writers when it reflects on the schema:

	​ 	o = Order.find(1)
	​ 	puts o.name ​#=> "Dave Thomas"​
	​ 	o.name = ​"Fred Smith"​ ​# set the name​

 Setting the value of an attribute does not change anything
 in the database—we must save the object for this change
 to become permanent.

 The value returned by the attribute readers is cast by
 Active Record to an appropriate Ruby type if possible (so,
 for example, if the database column is a timestamp,
 a Time object will be returned). If
 we want to get the raw value of an attribute,
 we append _before_type_cast to
 its name, as shown in the following code:

	​ 	product.price_before_type_cast ​#=> 34.95, a float​
	​ 	product.updated_at_before_type_cast ​#=> "2016-02-13 10:13:14"​

 Inside the code of the model, we can use
 the read_attribute
 and write_attribute private methods. These
 take the attribute name as a string parameter.

 We can see the mapping between
 SQL types and their Ruby representation in the following table. Decimal and Boolean columns are slightly tricky.
	SQL Type	Ruby Class
	int, integer	Fixnum
	float, double	Float
	decimal, numeric	BigDecimal
	char, varchar, string	String
	interval, date	Date
	datetime, time	Time
	clob, blob, text	String
	boolean	See text

 Rails maps columns with Decimals with no decimal places to
 Fixnum objects; otherwise, it maps
 them to BigDecimal
 objects, ensuring that no precision is lost.

 In the case of Boolean, a convenience method is provided with
 a question mark appended to the column name:

	​ 	user = User.find_by(​name: ​​"Dave"​)
	​ 	​if​ user.superuser?
	​ 	 grant_privileges
	​ 	​end​

 In addition to the attributes we define, there are a number of
 attributes that either Rails provides automatically or have special
 meaning.

Additional Columns Provided by Active Record

 A number of column names have special significance to
	 Active Record. Here’s a summary:
	
	created_at, created_on, updated_at,
	 updated_on
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	 These are automatically updated with the timestamp of a row’s
	 creation or last update. Make sure the underlying database column is
	 capable of receiving a date, datetime, or string. Rails
	 applications conventionally use the _on suffix
	 for date columns and the _at suffix for columns
	 that include a time.
	

	id
	

	
	
	 This is the default name of a table’s primary key column (in ​Identifying Individual Rows​).
	

	xxx_id
	

	
	
	
	 This is the default name of a foreign key reference to a table named
	 with the plural form
	 of xxx.
	

	xxx_count
	

	
	
	
	 This maintains a counter cache for the child
	 table xxx.
	

 Additional plugins, such as acts_as_list,[105] may define additional columns.

 Both primary keys and foreign keys play a vital role in database
 operations and merit additional discussion.

Locating and Traversing Records

 In the Depot application, LineItems have direct relationships
 to three other models: Cart, Order, and
 Product. Additionally, models can have indirect
 relationships mediated by resource objects. The relationship between
 Orders and Products
 through LineItems is an example of such a
 relationship.

 All of this is made possible through IDs.

Identifying Individual Rows

 Active Record classes correspond to tables in a
 database. Instances of a class correspond to the individual
 rows in a database table. Calling Order.find(1),
 for instance, returns an instance of
 an Order class containing the data in
 the row with the primary key of 1.

 If you’re creating a new schema for a Rails application,
 you’ll probably want to go with the flow and let it add the
 id primary
 key column to all your tables.
 However, if you need to work with an existing
 schema, Active Record gives you a way of overriding the
 default name of the primary key for a table.

 For example, we may be working with an existing legacy schema
 that uses the ISBN as the primary key for
 the books table.

We specify this in our
 Active Record model using something like the
 following:

	​ 	​class​ LegacyBook < ApplicationRecord
	​ 	 self.primary_key = ​"isbn"​
	​ 	​end​

 Normally, Active Record takes care of creating new primary key
 values for records that we create and add to the
 database—they’ll be ascending integers (possibly with some
 gaps in the sequence). However, if we override the primary
 key column’s name, we also take on the responsibility of
 setting the primary key to a unique value before we save a
 new row. Perhaps surprisingly, we still set an attribute
 called id to do this. As far as
 Active Record is concerned, the primary key attribute is
 always set using an attribute
 called id.
 The primary_key= declaration sets
 the name of the column to use in the table. In the following
 code, we use an attribute
 called id even though the primary
 key in the database is isbn:

	​ 	book = LegacyBook.new
	​ 	book.id = ​"0-12345-6789"​
	​ 	book.title = ​"My Great American Novel"​
	​ 	book.save
	​ 	​# ...​
	​ 	book = LegacyBook.find(​"0-12345-6789"​)
	​ 	puts book.title ​# => "My Great American Novel"​
	​ 	p book.attributes ​#=> {"isbn" =>"0-12345-6789",​
	​ 	 ​# "title"=>"My Great American Novel"}​

 Just to make life more confusing, the attributes of the model
 object have the column names isbn
 and title—id
 doesn’t appear. When you need to set the primary key,
 use id. At all other times, use the
 actual column name.

	
	
	
	
	
	
	
	 Model objects also redefine the Ruby id
	 and hash methods to reference the
	 model’s primary key. This means that model objects with
	 valid IDs may be used as hash keys. It also means that
	 unsaved model objects cannot reliably be used as hash keys
	 (because they won’t yet have a valid ID).
	

	
	
	
	 One final note: Rails considers two model objects as equal
	 (using ==) if they are instances of
	 the same class and have the same primary key. This means that unsaved model objects may compare as
	 equal even if they have different attribute data. If you
	 find yourself comparing unsaved model objects (which is not
	 a particularly frequent operation), you might need to
	 override the == method.
	

 As we will see, IDs also play an important role in relationships.

Specifying Relationships in Models

 Active Record supports three types of relationship between
 tables: one-to-one, one-to-many, and many-to-many. You
 indicate these relationships by adding declarations to your models:
 has_one,
 has_many,
 belongs_to, and the wonderfully named
 has_and_belongs_to_many.

One-to-One Relationships

 A one-to-one association (or, more accurately, a
 one-to-zero-or-one relationship) is implemented using a
 foreign key in one row in one table to reference at most a single
 row in another table.
	A one-to-one relationship might exist between
	orders and invoices: for each order there’s at most one
	invoice.
	
	

[image: images/one_to_one.png]

	As the example shows, we declare this in Rails by adding
	a has_one declaration to
	the Order model and by adding
	a belongs_to declaration to
	the Invoice model.

	There’s an important rule illustrated here: the model for
	the table that contains the foreign
	key always has the belongs_to
	declaration.

One-to-Many Relationships

 A one-to-many association allows you to represent a
 collection of objects. For example, an order might have
 any number of associated line items. In the database, all
 the line item rows for a particular order contain a
 foreign key column referring to that
 order.

[image: images/one_to_many.png]

 In Active Record, the parent object (the one that
 logically contains a collection of child objects)
 uses has_many to declare its
 relationship to the child table, and the child table
 uses belongs_to to indicate its
 parent. In our example,
 class LineItem belongs_to
 :order, and the orders
 table has_many :line_items.

	Note that, again, because the line item contains the
	foreign key, it has the belongs_to declaration.

Many-to-Many Relationships

	Finally, we might categorize our products. A product can
	belong to many categories, and each category may contain
	multiple products. This is an example of
	a many-to-many relationship. It’s as if each side
	of the relationship contains a collection of items on the
	other side.

[image: images/many_to_many.png]

	In Rails we can express this by adding
	the has_and_belongs_to_many declaration to both
	models.

 Many-to-many associations are symmetrical—both of the joined
 tables declare their association with each other
 using “habtm.”

 Rails implements many-to-many associations
 using an intermediate join table. This contains foreign key pairs linking the two
 target tables. Active Record assumes that this join table’s
 name is the concatenation of the two target table names in
 alphabetical order. In our example, we joined the
 table categories to the
 table products, so Active Record will
 look for a join table
 named categories_products.

 We can also define join tables directly.
 In the Depot application, we defined a
 LineItems join, which joined
 Products to either
 Carts or Orders.
 Defining it ourselves also gave
 us a place to store an additional attribute, namely, a
 quantity.

 Now that we have covered data definitions,
 the next thing you would naturally
 want to do is access the data contained within the database, so let’s do
 that.

Creating, Reading, Updating, and Deleting (CRUD)

 Names such as SQLite and MySQL emphasize that all access to a database
 is via the Structured Query Language (SQL). In most
 cases, Rails will take care of this for you, but that is completely
 up to you. As you will see, you can provide clauses or even entire
 SQL statements for the database to execute.

 If you are familiar with SQL already, as you read this section take
 note of how Rails provides places for familiar clauses such as
 select, from, where, group by,
 and so on. If you are not already familiar with SQL, one of the
 strengths of Rails is that you can defer knowing more about such
 things until you actually need to access the database at this level.

 In this section, we’ll continue to work with
 the Order model
 from the Depot application for an example. We will be using
 Active Record methods to apply the four basic
 database operations: create, read, update, and
 delete.

Creating New Rows

 Given that Rails represents tables as classes and rows as objects,
 it follows that we create rows in a
 table by creating new objects of the appropriate class. We
 can create new objects representing rows in
 our orders table by
 calling Order.new. We can then
 fill in the values of the attributes (corresponding to
 columns in the database). Finally, we call the
 object’s save method to store the order back
 into the database. Without this call, the order would
 exist only in our local memory.

rails51/e1/ar/new_examples.rb
	​ 	an_order = Order.new
	​ 	an_order.name = ​"Dave Thomas"​
	​ 	an_order.email = ​"dave@example.com"​
	​ 	an_order.address = ​"123 Main St"​
	​ 	an_order.pay_type = ​"check"​
	​ 	an_order.save

 Active Record constructors take an optional block. If
 present, the block is invoked with the newly created order
 as a parameter. This might be useful if you wanted to
 create and save an order without creating a new local
 variable.

rails51/e1/ar/new_examples.rb
	​ 	Order.new ​do​ |o|
	​ 	 o.name = ​"Dave Thomas"​
	​ 	 ​# . . .​
	​ 	 o.save
	​ 	​end​

 Finally, Active Record constructors accept a hash of attribute
 values as an optional parameter. Each entry in this hash
 corresponds to the name and value of an attribute to be set. This
 is useful for doing things like storing values from HTML forms
 into database rows.

rails51/e1/ar/new_examples.rb
	​ 	an_order = Order.new(
	​ 	 ​name: ​​"Dave Thomas"​,
	​ 	 ​email: ​​"dave@example.com"​,
	​ 	 ​address: ​​"123 Main St"​,
	​ 	 ​pay_type: ​​"check"​)
	​ 	an_order.save

 Note that in all of these examples we did not set
 the id attribute of the new
 row. Because we used the Active Record default of an integer
 column for the primary key, Active Record automatically creates a
 unique value and sets the id
 attribute as the row is saved. We can subsequently
 find this value by querying the attribute:

rails51/e1/ar/new_examples.rb
	​ 	an_order = Order.new
	​ 	an_order.name = ​"Dave Thomas"​
	​ 	​# ...​
	​ 	an_order.save
	​ 	puts ​"The ID of this order is ​​#{​an_order.id​}​​"​

 The new constructor creates a
 new Order object in memory; we have
 to remember to save it to the database at some
 point. Active Record has a convenience method, create, that both
 instantiates the model object and stores it into the
 database:

rails51/e1/ar/new_examples.rb
	​ 	an_order = Order.create(
	​ 	 ​name: ​​"Dave Thomas"​,
	​ 	 ​email: ​​"dave@example.com"​,
	​ 	 ​address: ​​"123 Main St"​,
	​ 	 ​pay_type: ​​"check"​)

 You can pass create an array of
 attribute hashes; it’ll create multiple rows in the
 database and return an array of the corresponding model
 objects:

rails51/e1/ar/new_examples.rb
	​ 	orders = Order.create(
	​ 	 [{ ​name: ​​"Dave Thomas"​,
	​ 	 ​email: ​​"dave@example.com"​,
	​ 	 ​address: ​​"123 Main St"​,
	​ 	 ​pay_type: ​​"check"​
	​ 	 },
	​ 	 { ​name: ​​"Andy Hunt"​,
	​ 	 ​email: ​​"andy@example.com"​,
	​ 	 ​address: ​​"456 Gentle Drive"​,
	​ 	 ​pay_type: ​​"po"​
	​ 	 }])

 The real reason
 that new
 and create take a hash of values
 is that you can construct model objects directly from form
 parameters:

	​ 	@order = Order.new(order_params)

 If you think this line looks familiar, it is because you have seen
 it before. It appears in
 orders_controller.rb in the Depot
 application.

Reading Existing Rows

 Reading from a database involves first specifying
 which particular rows of data you are interested
 in—you’ll give Active Record some kind of criteria, and it
 will return objects containing data from the row(s)
 matching the criteria.

The most direct way of finding a row in a table is by
 specifying its primary key. Every model class supports
 the find
 method, which takes one or more primary key values. If
 given just one primary key, it returns an object
 containing data for the corresponding row (or throws
 an ActiveRecord::RecordNotFound exception). If
 given multiple primary key
 values, find returns an array of
 the corresponding objects. Note that in this case
 a RecordNotFound exception is
 raised if any of
 the IDs cannot be found (so if
 the method returns without raising an error, the length of
 the resulting array will be equal to the number
 of IDs passed as parameters).

	​ 	an_order = Order.find(27) ​# find the order with id == 27​
	​ 	
	​ 	​# Get a list of product ids from a form, then​
	​ 	​# find the associated Products​
	​ 	product_list = Product.find(params[​:product_ids​])

[image: David says:]
David says:
To Raise or Not to Raise?

 When you use a finder driven by primary keys, you’re
 looking for a particular record. You expect it to
 exist. A call to Person.find(5)
 is based on our knowledge of
 the people table. We want the row
 with an ID of 5. If this call is unsuccessful—if the
 record with the ID of 5 has been destroyed—we’re in an
 exceptional situation. This mandates the raising of an
 exception, so Rails
 raises RecordNotFound.

 On the other hand, finders that use criteria to search
 are looking for a match.
 So, Person.where(name: ’Dave’).first
 is the equivalent of telling the database (as a black
 box) “Give me the first person row that has the
 name Dave.” This exhibits a distinctly different
 approach to retrieval; we’re not certain up front
 that we’ll get a result. It’s entirely possible the
 result set may be empty. Thus,
 returning nil in the case of
 finders that search for one row and an empty array for
 finders that search for many rows is the natural,
 nonexceptional response.

 Often, though, you need to read in rows based on criteria
 other than their primary key value. Active Record provides
 additional methods enabling you to express more complex queries.

SQL and Active Record

 To illustrate how Active Record works with SQL,
 pass a string to the
 where method
 call
 corresponding to a
 SQL where
 clause. For example, to
 return a list of all orders for Dave with a payment type
 of “po,” we could use this:

	​ 	pos = Order.where(​"name = 'Dave' and pay_type = 'po'"​)

 The result will be an
 ActiveRecord::Relation object containing
 all the matching rows, each neatly wrapped in an
 Order object.

 That’s fine if our condition is predefined, but how do
 we handle it when the name of the customer
 is set externally (perhaps coming from a web form)? One
 way is to substitute the value of that variable into the
 condition string:

	​ 	​# get the name from the form​
	​ 	name = params[​:name​]
	​ 	​# DON'T DO THIS!!!​
	​ 	pos = Order.where(​"name = '​​#{​name​}​​' and pay_type = 'po'"​)

 As the comment suggests, this really isn’t a good idea. Why? It
 leaves the database wide open to something called a
 SQL injection attack, which
 the Ruby on Rails Guides[106] describe in more detail.
 For now, take it as a given that substituting a string from an
 external source into a SQL statement is effectively the same as
 publishing your entire database to the whole online world.

 Instead, the safe way to generate dynamic SQL is to let
 Active Record handle it.
 Doing this allows Active Record to create
 properly escaped SQL, which is immune from SQL injection
 attacks. Let’s see how this works.

 If we pass multiple parameters to a
 where call,
 Rails treats the first parameter as a
 template for the SQL to generate. Within this SQL, we
 can embed placeholders, which will be replaced at
 runtime by the values in the rest of the
 array.

 One way of specifying placeholders is to insert one or
 more question marks in the SQL. The first question mark
 is replaced by the second element of the array, the next
 question mark by the third, and so on. For example, we
 could rewrite the previous query as this:

	​ 	name = params[​:name​]
	​ 	pos = Order.where([​"name = ? and pay_type = 'po'"​, name])

 We can also use named placeholders. We do that by placing placeholders of the
 form :name into the string and by
 providing corresponding values in a hash, where the
 keys correspond to the names in the query:

	​ 	name = params[​:name​]
	​ 	pay_type = params[​:pay_type​]
	​ 	pos = Order.where(​"name = :name and pay_type = :pay_type"​,
	​ 	 ​pay_type: ​pay_type, ​name: ​name)

 We can take this a step
 further. Because params is effectively a
 hash, we can simply pass it all to the condition. If we
 have a form that can be used to enter search criteria,
 we can use the hash of values returned from that form
 directly:

	​ 	pos = Order.where(​"name = :name and pay_type = :pay_type"​,
	​ 	 params[​:order​])

 We can take this even further. If we
 pass just a hash as the condition, Rails generates
 a where clause using the hash keys as
 column names and the hash values as the values to
 match. Thus, we could have written the previous code
 even more succinctly:

	​ 	pos = Order.where(params[​:order​])

 Be careful with this latter form of condition: it
 takes all the key-value pairs in the hash
 you pass in when constructing the condition. An alternative
 would be to specify which parameters to use explicitly:

	​ 	pos = Order.where(​name: ​params[​:name​],
	​ 	 ​pay_type: ​params[​:pay_type​])

 Regardless of which form of placeholder you use,
 Active Record takes great care to quote and escape the
 values being substituted into the SQL. Use these forms
 of dynamic SQL, and Active Record will keep you safe from
 injection attacks.

Using Like Clauses

	
	 We might be tempted to use parameterized like clauses in
	 conditions:
	
	​ 	​# Doesn't work​
	​ 	User.where(​"name like '?%'"​, params[​:name​])

	 Rails doesn’t parse the SQL inside a condition and so
	 doesn’t know that the name is being substituted into a
	 string. As a result, it will go ahead and add extra
	 quotes around the value of the name
	 parameter. The correct way to do this is to construct
	 the full parameter to the like clause and pass
	 that parameter into the
	 condition:
	
	​ 	​# Works​
	​ 	User.where(​"name like ?"​, params[​:name​]+​"%"​)

 Of course, if we do this, we need to consider that characters
 such as percent signs, should they happen to appear in the
 value of the name parameter, will be treated as wildcards.

Subsetting the Records Returned

 Now that we know how to specify conditions, let’s turn
 our attention to the various methods supported
 by ActiveRecord::Relation, starting with
 first and all.

 As you may have guessed, first returns
 the first row in the relation. It returns nil if the
 relation is empty. Similarly, to_a
 returns all the rows as an array.
 ActiveRecord::Relation also supports many
 of the methods of Array objects, such as
 each and map.
 It does so by implicitly calling the all
 first.

	 It’s important to understand that the query is not evaluated
 until one of these methods is used. This enables us to modify
 the query in a number of ways, namely, by calling additional
 methods, prior to making this call. Let’s look at these methods
 now.

order

 SQL doesn’t require rows to be returned in any
 particular order unless we explicitly add
 an order by clause to the
 query. The order
 method lets us specify the criteria we’d normally
 add after the order by
 keywords. For
 example, the following query would return all of Dave’s
 orders, sorted first by payment type and then by
 shipping date (the latter in descending order):

	​ 	orders = Order.where(​name: ​​'Dave'​).
	​ 	 order(​"pay_type, shipped_at DESC"​)

limit

 We can limit the
 number of rows returned by calling the
 limit method. Generally when we use
 the limit method, we’ll probably also want to specify the sort
 order to ensure consistent results. For example, the following
 returns the first ten matching orders:

	​ 	orders = Order.where(​name: ​​'Dave'​).
	​ 	 order(​"pay_type, shipped_at DESC"​).
	​ 	 limit(10)

offset

 The offset
 method goes hand in hand with
 the limit method.
 It allows us to specify the
 offset of the first row in the result set that will be
 returned:

	​ 	​# The view wants to display orders grouped into pages,​
	​ 	​# where each page shows page_size orders at a time.​
	​ 	​# This method returns the orders on page page_num (starting​
	​ 	​# at zero).​
	​ 	​def​ Order.find_on_page(page_num, page_size)
	​ 	 order(​:id​).limit(page_size).offset(page_num*page_size)
	​ 	​end​

	 We can use offset in conjunction
	 with limit to step through the results of a
	 query n rows at a time.
	
select

 By default, ActiveRecord::Relation
 fetches all the columns from the underlying database
 table—it issues a select * from... to the
 database. Override this
 with the select method, which takes a
 string that will appear in place of the * in the
 select statement.

 This method allows us to limit the values returned in
 cases where we need only a subset of the data in a
 table. For example, our table of podcasts might
 contain information on the title, speaker, and date and
 might also contain a large BLOB containing the MP3 of
 the talk. If you just wanted to create a list of
 talks, it would be inefficient to also load the
 sound data for each row. The select
 method lets us choose which columns to load:

	​ 	list = Talk.select(​"title, speaker, recorded_on"​)

joins

 The joins method
 lets us specify a list of additional
 tables to be joined to the default
 table. This parameter
 is inserted into the SQL immediately after the name of
 the model’s table and before any conditions specified by
 the first parameter. The join syntax is
 database-specific. The following code returns a list of
 all line items for the book called Programming
 Ruby:

	​ 	LineItem.select(​'li.quantity'​).
	​ 	 where(​"pr.title = 'Programming Ruby 1.9'"​).
	​ 	 joins(​"as li inner join products as pr on li.product_id = pr.id"​)

readonly

 The readonly method causes
 ActiveRecord::Resource to return Active
 Record objects that cannot be stored back into the
 database.

 If we use the joins or
 select
 method, objects will automatically be
 marked readonly.

group

 The group method adds a group by
 clause to the SQL:

	​ 	summary = LineItem.select(​"sku, sum(amount) as amount"​).
	​ 	 group(​"sku"​)

lock

 The lock method takes an optional
 string as a parameter. If we pass it a string,
 it should be a SQL fragment in our database’s syntax
 that specifies a kind of lock. With MySQL, for
 example, a share mode lock gives us the
 latest data in a row and guarantees that no one else
 can alter that row while we hold the lock. We could
 write code that debits an account only if there are
 sufficient funds using something like the following:

	​ 	Account.transaction ​do​
	​ 	 ac = Account.where(​id: ​id).lock(​"LOCK IN SHARE MODE"​).first
	​ 	 ac.balance -= amount ​if​ ac.balance > amount
	​ 	 ac.save
	​ 	​end​

 If we don’t specify a string value or we give
 lock a value of
 true, the database’s default exclusive
 lock is obtained (normally this will be "for
 update"). We can often eliminate the need for this kind
 of locking using transactions (discussed starting in ​Transactions​).

 Databases do more than simply find and reliably retrieve
 data; they also do a bit of data reduction analysis. Rails
 provides access to these methods too.

Getting Column Statistics

	
	
	
	
	
	
	
	
	
	
	
	 Rails has the ability to perform statistics on the
	 values in a column. For example, given a table of
	 products, we can calculate the following:
	
	​ 	average = Product.average(​:price​) ​# average product price​
	​ 	max = Product.maximum(​:price​)
	​ 	min = Product.minimum(​:price​)
	​ 	total = Product.sum(​:price​)
	​ 	number = Product.count

	
	 These all correspond to aggregate functions in the
	 underlying database, but they work in a
	 database-independent manner.

	 As before, methods can be combined:
	
	​ 	Order.where(​"amount > 20"​).minimum(​:amount​)

	
	 These functions aggregate values. By default, they
	 return a single result, producing, for example, the
	 minimum order amount for orders meeting some
	 condition. However, if you include the group
	 method, the functions instead produce a series of
	 results, one result for each set of records where the
	 grouping expression has the same value. For example, the
	 following calculates the maximum sale amount for each
	 state:
	
	​ 	result = Order.group(​:state​).maximum(​:amount​)
	​ 	puts result ​#=> {"TX"=>12345, "NC"=>3456, ...}​

	
	 This code returns an ordered hash. You index it using
	 the grouping element ("TX", "NC",
	 … in our example). You can also iterate over the
	 entries in order using each.
	 The value of each entry is the value of the
	 aggregation function.
	

	
	
	
	 The order and limit methods come
	 into their own when using groups.

For example, the
	 following returns the three states with the highest
	 orders, sorted by the order amount:
	
	​ 	result = Order.group(​:state​).
	​ 	 order(​"max(amount) desc"​).
	​ 	 limit(3)

	 This code is no longer database independent—in order
	 to sort on the aggregated column, we had to use the
	 SQLite syntax for the aggregation function (max,
	 in this case).
	
Scopes

 As these chains of method calls grow longer, making the chains
 themselves available for reuse becomes a concern. Once again,
 Rails delivers. An Active Record scope can be
 associated with a Proc
 and therefore may have arguments:

	​ 	​class​ Order < ApplicationRecord
	​ 	 scope ​:last_n_days​, ->(days) { where(​'updated < ?'​ , days) }
	​ 	​end​

 Such a named scope would make finding the worth of last week’s
 orders a snap.

	​ 	orders = Order.last_n_days(7)

 Simpler scopes may have no parameters at all:

	​ 	​class​ Order < ApplicationRecord
	​ 	 scope ​:checks​, -> { where(​pay_type: :check​) }
	​ 	​end​

 Scopes can also be combined. Finding the last week’s worth of
 orders that were paid by check is just as straightforward:

	​ 	orders = Order.checks.last_n_days(7)

 In addition to making your application code easier to write and
 easier to read, scopes can make your code more efficient.
 The previous statement, for example, is implemented as a single SQL
 query.

 ActiveRecord::Relation objects
 are equivalent to an anonymous scope:

	​ 	in_house = Order.where(​'email LIKE "%@pragprog.com"'​)

 Of course, relations can also be combined:

	​ 	in_house.checks.last_n_days(7)

	
	
	
 Scopes aren’t limited to where conditions; we can do pretty much
 anything we can do in a method call:
 limit, order, join, and so on. Just be
 aware that Rails doesn’t know how to handle multiple
 order or limit clauses, so be sure to use
 these only once per call chain.

 In nearly every case, the methods we have been describing
 are sufficient. But Rails is not satisfied with only being able
 to handle nearly every case, so for cases that require a human-crafted query, there is an API for that too.

Writing Our Own SQL

 Each of the methods we have been looking at contributes to the
 construction of a full SQL query string. The
 method find_by_sql lets our application
 take full control. It accepts a single parameter
 containing a
 SQL select
 statement (or an array containing SQL and placeholder
 values, as for find) and
 returns an array of model objects (that is potentially empty)
 from the result set. The attributes in these models will
 be set from the columns returned by the query. We’d
 normally use the select *
 form to return all columns for a table, but this isn’t
 required:

rails51/e1/ar/find_examples.rb
	​ 	orders = LineItem.find_by_sql(​"select line_items.* from line_items, orders "​ +
	​ 	 ​" where order_id = orders.id "​ +
	​ 	 ​" and orders.name = 'Dave Thomas' "​)

 Only those attributes returned by a query will be
 available in the resulting model objects. We can
 determine the attributes available in a model object
 using the attributes, attribute_names,
 and attribute_present? methods. The
 first returns a hash of attribute name-value pairs, the
 second returns an array of names, and the third
 returns true if a named attribute
 is available in this model
 object:

rails51/e1/ar/find_examples.rb
	​ 	orders = Order.find_by_sql(​"select name, pay_type from orders"​)
	​ 	first = orders[0]
	​ 	p first.attributes
	​ 	p first.attribute_names
	​ 	p first.attribute_present?(​"address"​)

 This code produces the following:

	​ 	{"name"=>"Dave Thomas", "pay_type"=>"check"}
	​ 	["name", "pay_type"]
	​ 	false

 find_by_sql can also be used to
 create model objects containing derived column data. If
 we use the as xxx SQL syntax
 to give derived columns a name in the result set, this
 name will be used as the name of the attribute:

rails51/e1/ar/find_examples.rb
	​ 	items = LineItem.find_by_sql(​"select *, "​ +
	​ 	 ​" products.price as unit_price, "​ +
	​ 	 ​" quantity*products.price as total_price, "​ +
	​ 	 ​" products.title as title "​ +
	​ 	 ​" from line_items, products "​ +
	​ 	 ​" where line_items.product_id = products.id "​)
	​ 	li = items[0]
	​ 	puts ​"​​#{​li.title​}​​: ​​#{​li.quantity​}​​x​​#{​li.unit_price​}​​ => ​​#{​li.total_price​}​​"​

 As with conditions, we can also pass an array
 to find_by_sql, where the first
 element is a string containing placeholders. The rest of
 the array can be either a hash or a list of values to be
 substituted.

	​ 	Order.find_by_sql([​"select * from orders where amount > ?"​,
	​ 	 params[​:amount​]])

[image: David says:]
David says:
But Isn’t SQL Dirty?

 Ever since developers first wrapped
 relational databases with an object-oriented layer, they’ve
 debated the question of how deep to run the
 abstraction. Some object-relational mappers seek to
 eliminate the use of SQL entirely, hoping for
 object-oriented purity by forcing all queries through
 an OO layer.

 Active Record does not. It was built on the notion that
 SQL is neither dirty nor bad, just verbose in the
 trivial cases. The focus is on removing the need to deal
 with the verbosity in those trivial cases (writing a
 ten-attribute insert by hand
 will leave any programmer tired) but keeping the
 expressiveness around for the hard queries—the type
 SQL was created to deal with elegantly.

 Therefore, you shouldn’t feel guilty when you
 use find_by_sql to handle either
 performance bottlenecks or hard queries. Start out using
 the object-oriented interface for productivity and
 pleasure and then dip beneath the surface for a
 close-to-the-metal experience when you need to do so.

	
	 In the old days of Rails, people frequently resorted to
	 using find_by_sql. Since then,
	 all the options added to the
	 basic find method mean you
	 can avoid resorting to this low-level method.
	
Reloading Data

 In an application where the database is potentially
 being accessed by multiple processes (or by multiple
 applications), there’s always the possibility that a
 fetched model object has become
 stale—someone may have written a more recent copy to
 the database.

 To some extent, this issue is addressed by transactional
 support (which we describe in ​Transactions​). However, there’ll still
 be times where you need to refresh a model object
 manually. Active Record makes this one line of code—call
 its reload method, and the object’s
 attributes will be refreshed from the database:

	​ 	stock = Market.find_by(​ticker: ​​"RUBY"​)
	​ 	​loop​ ​do​
	​ 	 puts ​"Price = ​​#{​stock.price​}​​"​
	​ 	 sleep 60
	​ 	 stock.reload
	​ 	​end​

 In practice, reload is rarely
 used outside the context of unit tests.

Updating Existing Rows

 After such a long discussion of finder methods, you’ll be
 pleased to know that there’s not much to say about
 updating records with Active Record.

 If you have an Active Record object (perhaps representing
 a row from our orders table), you can
 write it to the database by calling its save method. If this
 object had previously been read from the database, this
 save will update the existing row; otherwise, the save will
 insert a new row.

 If an existing row is updated, Active Record will use its
 primary key column to match it with the in-memory object.
 The attributes contained in the Active Record object
 determine the columns that will be updated—a column will
 be updated in the database only if its value has been
 changed. In the following example, all the values in the
 row for order 123 can be updated in the database table:

	​ 	order = Order.find(123)
	​ 	order.name = ​"Fred"​
	​ 	order.save

 However, in the following example, the Active Record object
 contains just the
 attributes id, name,
 and paytype—only these columns
 can be updated when the object is saved. (Note that you
 have to include the id column if
 you intend to save a row fetched
 using find_by_sql.)

	​ 	orders = Order.find_by_sql(​"select id, name, pay_type from orders where id=123"​)
	​ 	first = orders[0]
	​ 	first.name = ​"Wilma"​
	​ 	first.save

 In addition to the save method,
 Active Record lets us change the values of attributes and
 save a model object in a single call to update:

	​ 	order = Order.find(321)
	​ 	order.update(​name: ​​"Barney"​, ​email: ​​"barney@bedrock.com"​)

	 The update method is most
	 commonly used in controller actions where it merges data
	 from a form into an existing database row:
	
	​ 	​def​ save_after_edit
	​ 	 order = Order.find(params[​:id​])
	​ 	 ​if​ order.update(order_params)
	​ 	 redirect_to ​action: :index​
	​ 	 ​else​
	​ 	 render ​action: :edit​
	​ 	 ​end​
	​ 	​end​

 We can combine the functions of reading a row and
 updating it using the class
 methods update
 and update_all. The update
 method takes an id parameter and
 a set of attributes. It fetches the corresponding row,
 updates the given attributes, saves the result to the
 database, and returns the model object.

	​ 	order = Order.update(12, ​name: ​​"Barney"​, ​email: ​​"barney@bedrock.com"​)

 We can pass update an array of
 IDs and an array of attribute value hashes, and it will
 update all the corresponding rows in the database,
 returning an array of model objects.

 Finally, the update_all class
 method allows us to specify
 the set
 and where clauses of the
 SQL update statement. For
 example, the following increases the prices of all
 products with Java in their title by
 10 percent:

	​ 	result = Product.update_all(​"price = 1.1*price"​, ​"title like '%Java%'"​)

 The return value of update_all
 depends on the database adapter; most (but not Oracle) return the
 number of rows that were changed in the database.

save, save!, create, and create!

 It turns out that there are two versions of
 the save and create methods. The
 variants differ in the way they report
 errors.

	

		 save
		 returns true if the record was
		 saved; it returns nil otherwise.
		

	

		
		
		
		 save!
		 returns true if the save succeeded; it raises an exception
		 otherwise.
		

	

		 create
		 returns the Active Record object regardless of
		 whether it was successfully saved. You’ll need to
		 check the object for validation errors if you want
		 to determine whether the data was written.
		

	

		
		 create!
		 returns the Active Record object on success; it raises
		 an exception otherwise.
		

	 Let’s look at this in a bit more detail.
	

 Plain old save
 returns true if the model object is
 valid and can be saved:

	​ 	​if​ order.save
	​ 	 ​# all OK​
	​ 	​else​
	​ 	 ​# validation failed​
	​ 	​end​

 It’s up to us to check on each call
 to save to see that it did what we
 expected. The reason Active Record is so lenient is
 that it assumes save is
 called in the context of a controller’s action method
 and the view code will be presenting any errors
 back to the end user. And for many applications, that’s
 the case.

 However, if we need to save a model object in a context
 where we want to make sure to handle all errors
 programmatically, we should use save!. This method
 raises a RecordInvalid exception if the object could not be
 saved:

	​ 	​begin​
	​ 	 order.save!
	​ 	​rescue​ RecordInvalid => error
	​ 	 ​# validation failed​
	​ 	​end​

Deleting Rows

 Active Record supports two styles of row deletion. First,
 it has two class-level
 methods, delete and delete_all, that operate at the
 database level.
 The delete method takes a single
 ID or an array of IDs and deletes the corresponding row(s)
 in the underlying
 table. delete_all deletes rows
 matching a given condition (or all rows if no condition is
 specified). The return values from both calls depend on
 the adapter but are typically the number of rows
 affected. An exception is not thrown if the row doesn’t
 exist prior to the call.

	​ 	Order.delete(123)
	​ 	User.delete([2,3,4,5])
	​ 	Product.delete_all([​"price > ?"​, @expensive_price])

 The various destroy methods are
 the second form of row deletion provided by
 Active Record. These methods all work via Active Record
 model objects.

 The destroy instance method
 deletes from the database the row corresponding to a
 particular model object. It then freezes the contents of
 that object, preventing future changes to the attributes.

	​ 	order = Order.find_by(​name: ​​"Dave"​)
	​ 	order.destroy
	​ 	​# ... order is now frozen​

 There are two class-level destruction
 methods, destroy (which takes
 an ID or an array
 of IDs) and destroy_all (which
 takes a condition). Both methods read the corresponding rows in
 the database table into model objects and call the
 instance-level destroy method of
 those objects. Neither method returns anything meaningful.

	​ 	Order.destroy_all([​"shipped_at < ?"​, 30.days.ago])

 Why do we need both the delete
 and destroy class methods?
 The delete methods bypass the
 various Active Record callback and validation
 functions, while
 the destroy methods ensure that
 they are all invoked. In general, it is
 better to use the destroy methods
 if you want to ensure that your database is consistent
 according to the business rules defined in your model
 classes.

 We covered validation in Chapter 7, ​Task B: Validation and Unit Testing​. We
 cover callbacks next.

Participating in the Monitoring Process

 Active Record controls the life cycle of model objects—it
 creates them, monitors them as they are modified, saves and
 updates them, and watches sadly as they are
 destroyed. Using callbacks, Active Record lets our code
 participate in this monitoring process. We can write code that
 gets invoked at any significant event in the life of an
 object. With these callbacks we can perform complex
 validation, map column values as they pass in and out of the
 database, and even prevent certain operations from completing.

 Active Record defines sixteen callbacks. Fourteen of these form
 before/after pairs and bracket some operation on an
 Active Record object. For example,
 the before_destroy callback will be
 invoked just before the destroy
 method is called, and after_destroy
 will be invoked after. The two exceptions
 are after_find
 and after_initialize, which have no
 corresponding before_xxx
 callback. (These two callbacks are different in other ways,
 too, as we’ll see later.)

 In the following figure we can see how Rails wraps the
 sixteen paired callbacks around the basic create, update, and
	destroy operations on model objects. Perhaps surprisingly, the
	before and after validation calls are not strictly
	nested.
	
	
	
	
	
	
	
	
	
	

[image: images/ar_callbacks.png]

 The before_validation and after_validation calls
 also accept the on: :create or on: :update parameter,
 which will cause the callback to be called only on the selected
 operation.

	In addition to these sixteen calls, the after_find
	callback is invoked after any find operation,
	and after_initialize is invoked after an Active
	Record model object is created.
	
	

	To have your code execute during a callback, you need to write
	a handler and associate it with the appropriate callback.

	There are two basic ways of implementing callbacks.

	The preferred way to define a callback is to declare
	handlers. A handler can be either a method or a
	block.
	You associate a handler with a particular event
	using class methods named after the event. To associate a
	method, declare it as private or protected, and specify its
	name as a symbol to the handler declaration. To specify a
	block, simply add it after the declaration. This block
	receives the model object as a parameter:

	​ 	​class​ Order < ApplicationRecord
	​ 	 before_validation ​:normalize_credit_card_number​
	​ 	 after_create ​do​ |order|
	​ 	 logger.info ​"Order ​​#{​order.id​}​​ created"​
	​ 	 ​end​
	​ 	 ​protected​
	​ 	 ​def​ normalize_credit_card_number
	​ 	 self.cc_number.gsub!(​/[-\s]/​, ​''​)
	​ 	 ​end​
	​ 	​end​

	You can specify multiple handlers for the same callback. They
	will generally be invoked in the order they are
	specified unless a handler
	thows :abort, in which case the callback chain is
	broken early.

	Alternately, you can define the callback instance methods
	using callback objects, inline methods (using a proc), or inline eval
methods (using a string). See the online documentation for more details.[107]

Grouping Related Callbacks Together

	

 If you have a group of related callbacks, it may be convenient to
 group them into a separate handler class. These handlers can be
	 shared between multiple models. A handler class is simply a
	 class that defines callback methods
	 (before_save, after_create,
	 and so on). Create the
	 source files for these handler classes
	 in app/models.
	

	 In the model object that uses the handler, you create an
	 instance of this handler class and pass that instance to the
	 various callback declarations. A couple of examples will
	 make this clearer.
	

	
	
	 If our application uses credit cards in multiple places, we
	 might want to share
	 our normalize_credit_card_number
	 method across multiple models. To do that, we’d extract the
	 method into its own class and name it after the event we
	 want it to handle. This method will receive a single
	 parameter, the model object that generated the callback:
	
	​ 	​class​ CreditCardCallbacks
	​ 	
	​ 	 ​# Normalize the credit card number​
	​ 	 ​def​ before_validation(model)
	​ 	 model.cc_number.gsub!(​/[-\s]/​, ​''​)
	​ 	 ​end​
	​ 	​end​

	 Now, in our model classes, we can arrange for this shared
	 callback to be invoked:
	
	​ 	​class​ Order < ApplicationRecord
	​ 	 before_validation CreditCardCallbacks.new
	​ 	 ​# ...​
	​ 	​end​
	​ 	
	​ 	​class​ Subscription < ApplicationRecord
	​ 	 before_validation CreditCardCallbacks.new
	​ 	 ​# ...​
	​ 	​end​

	 In this example, the handler class assumes that the credit
	 card number is held in a model attribute
	 named cc_number;
	 both Order
	 and Subscription would have an
	 attribute with that name. But we can generalize the idea,
	 making the handler class less dependent on the
	 implementation details of the classes that use it.
	

	
	
	
	
	
	 For example, we could create a generalized encryption and
	 decryption handler.This could be used to encrypt named
	 fields before they are stored in the database and to
	 decrypt them when the row is read back. You could
	 include it as a callback handler in any model that needed the
	 facility.
	

	
	
	
	 The handler needs to encrypt
	 a given set of attributes in a
	 model just before that model’s data is written to the
	 database. Because our application needs to deal with the
	 plain-text versions of these attributes, it arranges to
	 decrypt them again after the save is complete. It also needs
	 to decrypt the data when a row is read from the database
	 into a model object. These requirements mean we have to
	 handle
	 the before_save, after_save,
	 and after_find events. Because we
	 need to decrypt the database row both after saving and when
	 we find a new row, we can save code by aliasing
	 the after_find method
	 to after_save—the same method
	 will have two names:
	
rails51/e1/ar/encrypter.rb
	​ 	​class​ Encrypter
	​ 	 ​# We're passed a list of attributes that should​
	​ 	 ​# be stored encrypted in the database​
	​ 	 ​def​ initialize(attrs_to_manage)
	​ 	 @attrs_to_manage = attrs_to_manage
	​ 	 ​end​
	​ 	
	​ 	 ​# Before saving or updating, encrypt the fields using the NSA and​
	​ 	 ​# DHS approved Shift Cipher​
	​ 	 ​def​ before_save(model)
	​ 	 @attrs_to_manage.each ​do​ |field|
	​ 	 model[field].tr!(​"a-z"​, ​"b-za"​)
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​# After saving, decrypt them back​
	​ 	 ​def​ after_save(model)
	​ 	 @attrs_to_manage.each ​do​ |field|
	​ 	 model[field].tr!(​"b-za"​, ​"a-z"​)
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​# Do the same after finding an existing record​
	​ 	 ​alias_method​ ​:after_find​, ​:after_save​
	​ 	​end​

	 This example uses trivial
	 encryption—you might want to beef it up before using this
	 class for real.
	

	 We can now arrange for the Encrypter
	 class to be invoked from inside our orders model:
	
	​ 	require ​"encrypter"​
	​ 	​class​ Order < ApplicationRecord
	​ 	 encrypter = Encrypter.new([​:name​, ​:email​])
	​ 	 before_save encrypter
	​ 	 after_save encrypter
	​ 	 after_find encrypter
	​ 	​protected​
	​ 	 ​def​ after_find
	​ 	 ​end​
	​ 	​end​

	 We create a new Encrypter object and
	 hook it up to
	 the events before_save, after_save,
	 and after_find. This way,
	 just before an order is saved,
	 the method before_save in the
	 encrypter will be invoked, and so on.
	

	
	 So, why do we define an
	 empty after_find method? Remember
	 that we said that for performance reasons after_find
	 and after_initialize are treated
	 specially. One of the consequences of this special
	 treatment is that Active Record won’t know to call
	 an after_find handler unless it
	 sees an actual after_find method
	 in the model class. We have to define an empty placeholder
	 to get after_find processing to
	 take place.
	

	 This is all very well, but every model class that wants to
	 use our encryption handler would need to include some eight
	 lines of code, just as we did with
	 our Order class. We can do better
	 than that. We’ll define a helper method that does all the
	 work and make that helper available to all Active Record
	 models. To do that, we’ll add it to
	 the ApplicationRecord
	 class:
	
rails51/e1/ar/encrypter.rb
	​ 	​class​ ApplicationRecord < ActiveRecord::Base
	​ 	 self.abstract_class = ​true​
	​ 	
	​ 	 ​def​ self.encrypt(*attr_names)
	​ 	 encrypter = Encrypter.new(attr_names)
	​ 	
	​ 	 before_save encrypter
	​ 	 after_save encrypter
	​ 	 after_find encrypter
	​ 	
	​ 	 define_method(​:after_find​) { }
	​ 	 ​end​
	​ 	​end​

	 Given this, we can now add encryption to any model class’s
	 attributes using a single call:
	
	​ 	​class​ Order < ApplicationRecord
	​ 	 encrypt(​:name​, ​:email​)
	​ 	​end​

 A small driver program lets us experiment with this:
	
	​ 	o = Order.new
	​ 	o.name = ​"Dave Thomas"​
	​ 	o.address = ​"123 The Street"​
	​ 	o.email = ​"dave@example.com"​
	​ 	o.save
	​ 	puts o.name
	​ 	
	​ 	o = Order.find(o.id)
	​ 	puts o.name

	 On the console, we see our customer’s name (in plain text)
	 in the model object:
	
	​ 	​ar>​​ ​​ruby​​ ​​encrypter.rb​
	​ 	Dave Thomas
	​ 	Dave Thomas

	 In the database, however, the name and email address are
	 obscured by our industrial-strength encryption:
	
	​ 	​depot>​​ ​​sqlite3​​ ​​-line​​ ​​db/development.sqlite3​​ ​​"select * from orders"​
	​ 	 id = 1
	​ 	user_id =
	​ 	 name = Dbwf Tipnbt
	​ 	address = 123 The Street
	​ 	 email = ebwf@fybnqmf.dpn

	 Callbacks are a fine technique, but they can sometimes
	 result in a model class taking on responsibilities that
	 aren’t really related to the nature of the model. For
	 example, in ​Participating in the Monitoring Process​, we
	 created a callback that generated a log message when an
	 order was created. That functionality isn’t really part of
	 the basic Order class—we put it
	 there because that’s where the callback executed.
	

	
 When used in moderation, such an approach doesn’t lead to significant
 problems. If, however, you find yourself repeating code, consider using
 concerns[108] instead.

Transactions

 A database transaction groups a series of changes
 in such a way that either the database applies all of the changes
 or it applies none of the changes. The classic example of the
 need for transactions (and one used in Active Record’s own
 documentation) is transferring money between two bank
 accounts. The basic logic is straightforward:

	​ 	account1.deposit(100)
	​ 	account2.withdraw(100)

 However, we have to be careful. What happens if the deposit
 succeeds but for some reason the withdrawal fails (perhaps
 the customer is overdrawn)? We’ll have added $100 to the
 balance in account1 without a
 corresponding deduction
 from account2. In effect, we’ll
 have created $100 out of thin air.

 Transactions to the rescue. A transaction is something like
 the Three Musketeers with their
 motto “All for one and one for all.” Within the scope of a
 transaction, either every SQL statement succeeds or they all
 have no effect. Putting that another way, if any statement
 fails, the entire transaction has no effect on the
 database.

 In Active Record we use the transaction method to execute a block
 in the context of a particular database transaction. At the
 end of the block, the transaction is
 committed, updating the
 database, unless an exception is raised within
 the block, in which case the database rolls back all of the changes.
 Because transactions exist in
 the context of a database connection, we have to invoke them
 with an Active Record class as a receiver.

Thus, we could
 write this:

	​ 	Account.transaction ​do​
	​ 	 account1.deposit(100)
	​ 	 account2.withdraw(100)
	​ 	​end​

 Let’s experiment with transactions. We’ll start by creating
 a new database table. (Make sure your database supports
 transactions, or this code won’t work for you.)

rails51/e1/ar/transactions.rb
	​ 	create_table ​:accounts​, ​force: ​​true​ ​do​ |t|
	​ 	 t.string ​:number​
	​ 	 t.decimal ​:balance​, ​precision: ​10, ​scale: ​2, ​default: ​0
	​ 	​end​

 Next, we’ll define a rudimentary bank account class.
 This class defines instance methods to deposit money to and
 withdraw money from the account. It also provides some basic
 validation—for this particular type of account, the
 balance can never be negative.

rails51/e1/ar/transactions.rb
	​ 	​class​ Account < ActiveRecord::Base
	​ 	 validates ​:balance​, ​numericality: ​{​greater_than_or_equal_to: ​0}
	​ 	 ​def​ withdraw(amount)
	​ 	 adjust_balance_and_save!(-amount)
	​ 	 ​end​
	​ 	 ​def​ deposit(amount)
	​ 	 adjust_balance_and_save!(amount)
	​ 	 ​end​
	​ 	 ​private​
	​ 	 ​def​ adjust_balance_and_save!(amount)
	​ 	 self.balance += amount
	​ 	 save!
	​ 	 ​end​
	​ 	​end​

 Let’s look at the helper
 method, adjust_balance_and_save!. The
 first line simply updates the balance field. The method then
 calls save! to save the model data. (Remember
 that save!
 raises an exception if the object cannot be saved—we use
 the exception to signal to the transaction that something
 has gone wrong.)

 So, now let’s write the code to transfer money between two
 accounts. It’s pretty straightforward:

rails51/e1/ar/transactions.rb
	​ 	peter = Account.create(​balance: ​100, ​number: ​​"12345"​)
	​ 	paul = Account.create(​balance: ​200, ​number: ​​"54321"​)

	​ 	Account.transaction ​do​
	​ 	 paul.deposit(10)
	​ 	 peter.withdraw(10)
	​ 	​end​

 We check the database, and, sure enough, the money got
 transferred:

	​ 	​depot>​​ ​​sqlite3​​ ​​-line​​ ​​db/development.sqlite3​​ ​​"select * from accounts"​
	​ 	 id = 1
	​ 	 number = 12345
	​ 	balance = 90
	​ 	
	​ 	 id = 2
	​ 	 number = 54321
	​ 	balance = 210

 Now let’s get radical. If we start again but this time try
 to transfer $350, we’ll run Peter into the red, which isn’t
 allowed by the validation rule. Let’s try it:

rails51/e1/ar/transactions.rb
	​ 	peter = Account.create(​balance: ​100, ​number: ​​"12345"​)
	​ 	paul = Account.create(​balance: ​200, ​number: ​​"54321"​)

rails51/e1/ar/transactions.rb
	​ 	Account.transaction ​do​
	​ 	 paul.deposit(350)
	​ 	 peter.withdraw(350)
	​ 	​end​

 When we run this, we get an exception reported on the
 console:

	​ 	​...​​/validations.rb:736:in​​ ​​`save!​​'​​:​​ ​​Validation​​ ​​failed:​​ ​​Balance​​ ​​is​​ ​​negative​
	​ 	from transactions.rb:46:in `adjust_balance_and_save!'
	​ 	 : : :
	​ 	from transactions.rb:80

 Looking in the database, we can see that the data remains
 unchanged:

	​ 	​depot>​​ ​​sqlite3​​ ​​-line​​ ​​db/development.sqlite3​​ ​​"select * from accounts"​
	​ 	 id = 1
	​ 	 number = 12345
	​ 	balance = 100
	​ 	
	​ 	 id = 2
	​ 	 number = 54321
	​ 	balance = 200

 However, there’s a trap waiting for you here. The
 transaction protected the database from becoming
 inconsistent, but what about our model objects? To see what
 happened to them, we have to arrange to intercept the
 exception to allow the program to continue running:

rails51/e1/ar/transactions.rb
	​ 	peter = Account.create(​balance: ​100, ​number: ​​"12345"​)
	​ 	paul = Account.create(​balance: ​200, ​number: ​​"54321"​)

rails51/e1/ar/transactions.rb
	​ 	​begin​
	​ 	 Account.transaction ​do​
	​ 	 paul.deposit(350)
	​ 	 peter.withdraw(350)
	​ 	 ​end​
	​ 	​rescue​
	​ 	 puts ​"Transfer aborted"​
	​ 	​end​
	​ 	
	​ 	puts ​"Paul has ​​#{​paul.balance​}​​"​
	​ 	puts ​"Peter has ​​#{​peter.balance​}​​"​

 What we see is a little surprising:

	​ 	Transfer aborted
	​ 	Paul has 550.0
	​ 	Peter has -250.0

 Although the database was left unscathed, our model objects
 were updated anyway. This is because Active Record wasn’t
 keeping track of the before and after states of the various
 objects—in fact, it couldn’t, because it had no easy way of
 knowing just which models were involved in the
 transactions.

Built-in Transactions

 When we discussed parent and child tables in ​Specifying Relationships in Models​, we said that
 Active Record takes care of saving all the dependent child
 rows when you save a parent row. This takes multiple SQL
 statement executions (one for the parent and one each for
 any changed or new children).

Clearly, this change should
 be atomic, but until now we haven’t been using
 transactions when saving these interrelated objects. Have
 we been negligent?

 Fortunately, no. Active Record is smart enough to wrap all
 the updates and inserts related to a
 particular save (and also the deletes related to
 a destroy) in a transaction;
 either they all succeed or no data is written permanently to
 the database. You need explicit transactions only when you
 manage multiple SQL statements yourself.

 While we have covered the basics,
 transactions are actually very subtle. They
 exhibit the so-called ACID properties: they’re Atomic,
 they ensure Consistency, they work in Isolation, and
 their effects are Durable (they are made permanent when
 the transaction is committed). It’s worth finding a good
 database book and reading up on transactions if you
 plan to take a database application live.

What We Just Did

 We learned
 the relevant data structures and naming conventions for tables,
 classes, columns, attributes, IDs, and relationships.
 We saw how to create, read, update, and delete this data.
 Finally, we now understand how transactions and callbacks can be used
 to prevent inconsistent changes.

 This, coupled with validation as described in Chapter 7, ​Task B: Validation and Unit Testing​, covers all the essentials of Active
 Record that every Rails programmer needs to know. If you have specific
 needs beyond what is covered here, look to the Rails Guides[109] for more information.

 The next major subsystem to cover is Action Pack, which covers both the
 view and controller portions of Rails.

Footnotes

	[105]
	
https://github.com/rails/acts_as_list

	[106]
	
http://guides.rubyonrails.org/security.html#sql-injection

	[107]
	
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks

	[108]
	
http://37signals.com/svn/posts/3372-put-chubby-models-on-a-diet-with-concerns

	[109]
	
http://guides.rubyonrails.org/

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Representational State Transfer (REST)
	Defining how requests are routed to controllers
	Selecting a data representation
	Testing routes
	The controller environment
	Rendering and redirecting
	Sessions, flash, and callbacks

 Chapter
 21
Action Dispatch and Action Controller

 Action Pack lies at the heart of Rails applications. It consists of three
 Ruby modules: ActionDispatch,
 ActionController, and
 ActionView. Action Dispatch routes requests to
 controllers. Action Controller converts requests into responses. Action
 View is used by Action Controller to format those responses.

 As a concrete example, in the Depot application, we routed the root of the
 site (/) to the index method of the
 StoreController. At the completion of that method,
 the template in app/views/store/index.html.erb was
 rendered. Each of these activities was orchestrated by modules in the
 Action Pack component.

 Working together, these three submodules provide support for
 processing incoming requests and generating outgoing responses. In this
 chapter, we’ll look at both Action Dispatch and Action
 Controller. In the next chapter, we will cover Action View.

 When we looked at Active Record, we saw it could be used as a freestanding
 library; we can use Active Record as part of a nonweb Ruby
 application. Action Pack is different. Although it is possible to
 use it directly as a framework, you probably won’t. Instead,
 you’ll take advantage of the tight integration offered by
 Rails. Components such as Action Controller, Action View, and
 Active Record handle the processing of requests, and the Rails
 environment knits them together into a coherent (and easy-to-use)
 whole. For that reason, we’ll describe Action Controller in the
 context of Rails. Let’s start by looking at how Rails applications
 handle requests. We’ll then dive down into the details of routing
 and URL handling. We’ll continue by
 looking at how you write code in a controller. Finally, we will cover
 sessions, flash, and callbacks.

Dispatching Requests to Controllers

At its most basic, a web application accepts an incoming request
 from a browser, processes it, and sends a response.

 The first question that springs to mind is, how does the
 application know what to do with the incoming request?
 A shopping cart application will receive requests to display a
 catalog, add items to a cart, create an order, and so on. How does it
 route these requests to the appropriate code?

 It turns out that Rails provides two ways to define how to
 route a request: a comprehensive way that you will use when you need to
 and a convenient way that you will generally use whenever you can.

 The comprehensive way lets you define
 a direct mapping of URLs to actions based on pattern matching,
 requirements, and conditions. The convenient way lets you
 define routes based on resources, such as the models that you define.
 And because the convenient way is built on the comprehensive way, you can
 freely mix and match the two approaches.

 In both cases, Rails encodes information in the request URL and uses a
 subsystem called Action Dispatch to determine what
 should be done with that request. The actual process is very flexible,
 but at the end of it Rails has determined the name of the
 controller that handles this particular request,
 along with a list of any other request parameters. In the process,
 either one of these additional parameters or the HTTP method itself is
 used to identify the action to be invoked in the
 target controller.

	
	
	 Rails routes support the mapping between URLs and actions based on
	 the contents of the URL and on the HTTP method used to invoke the
	 request. We’ve seen how to do this on a URL-by-URL basis using
	 anonymous or named routes. Rails also supports a higher-level way
	 of creating groups of related routes. To understand the motivation
	 for this, we need to take a little diversion into the world of
	 Representational State Transfer.
	
REST: Representational State Transfer

	 The ideas behind REST were formalized in Chapter 5 of Roy
	 Fielding’s 2000 PhD
	 dissertation.[110] In a REST approach, servers communicate with
	 clients using stateless connections. All the information
	 about the state of the interaction between the two is
	 encoded into the requests and responses between
	 them. Long-term state is kept on the server as a set of
	 identifiable resources. Clients access these
	 resources using a well-defined (and severely constrained)
	 set of resource identifiers (URLs in our context). REST
	 distinguishes the content of resources from the
	 presentation of that content. REST is designed to support
	 highly scalable computing while constraining application
	 architectures to be decoupled by nature.
	

	 There’s a lot of abstract stuff in this description. What does
	 REST mean in practice?
	

	
	
	 First, the formalities of a RESTful approach mean that network
	 designers know when and where they can cache responses to
	 requests. This enables load to be pushed out through the
	 network, increasing performance and resilience while reducing
	 latency.
	

	 Second, the constraints imposed by REST can lead to
	 easier-to-write (and maintain) applications. RESTful
	 applications don’t worry about implementing remotely
	 accessible services. Instead, they provide a regular (and
	 straightforward) interface to a set of resources. Your application
	 implements a way of listing, creating, editing, and
	 deleting each resource, and your clients do the rest.
	

	
	 Let’s make this more concrete. In REST, we use a basic
	 set of verbs to operate on a rich set of nouns. If we’re
	 using HTTP, the verbs correspond to HTTP methods (GET,
	 PUT, PATCH, POST, and DELETE, typically). The nouns are the resources in our
	 application. We name those resources using URLs.
	

	 The Depot application that we produced contained a set of
	 products. There are implicitly two resources here. First,
	 there are the individual products. Each constitutes a
	 resource. There’s also a second resource: the collection
	 of products.
	

	
	 To fetch a list of all the products, we could issue an
	 HTTP GET request against this collection, say on the
	 path /products. To fetch the contents of an
	 individual resource, we have to identify it. The Rails way
	 would be to give its primary key value (that is, its
	 ID). Again we’d issue a GET request, this time against the
	 URL /products/1.
	

	
	 To create a new product in our collection,
	 we use an HTTP POST request directed at
	 the /products path, with the post data
	 containing the product to add. Yes, that’s the same path
	 we used to get a list of products. If you issue a GET to
	 it, it responds with a list, and if you do a POST to it,
	 it adds a new product to the collection.
	

	
	
	
	
 Take this a step further. We’ve
 already seen you can
	 retrieve the content of a product—you just issue a GET request
	 against the path /products/1. To update that
	 product, you’d issue an HTTP PUT request against the same
	 URL. And, to delete it, you could issue an HTTP DELETE
	 request, using the same URL.
	

	 Take this further. Maybe our system also tracks
	 users. Again, we have a set of resources to deal
	 with. REST tells us to use the same set of verbs (GET,
	 POST, PATCH, PUT, and DELETE) against a similar-looking set of
	 URLs (/users, /users/1, and so on).
	

	 Now we see some of the power of the constraints imposed by
	 REST. We’re already familiar with the way Rails
	 constrains us to structure our applications a certain
	 way. Now the REST philosophy tells us to structure the
	 interface to our applications too. Suddenly our world gets
	 a lot simpler.
	

	
	 Rails has direct support for this type of interface;
	 it adds a kind of macro route facility,
	 called resources. Let’s take a look at how the
 config/routes.rb file might have looked back in
 ​Creating a Rails Application​:
	
	​ 	Depot::Application.routes.draw ​do​
	»	 resources ​:products​
	​ 	​end​

	
	
	 The resources line caused seven new routes
	 to be added to our application. Along the
	 way, it assumed that the application will have a
	 controller named ProductsController,
	 containing seven actions with given names.
	

	
	 You can take a look at the routes that were
	 generated for
	 us.
	 We do this by making
	 use of the handy rails routes
 command.
	
	​ 	 Prefix Verb URI Pattern
	​ 	​ Controller#​​Action​
	​ 	 products GET /products(.:format)
	​ 	 {:action=>"index", :controller=>"products"}
	​ 	 POST /products(.:format)
	​ 	 {:action=>"create", :controller=>"products"}
	​ 	 new_product GET /products/new(.:format)
	​ 	 {:action=>"new", :controller=>"products"}
	​ 	edit_product GET /products/:id/edit(.:format)
	​ 	 {:action=>"edit", :controller=>"products"}
	​ 	 product GET /products/:id(.:format)
	​ 	 {:action=>"show", :controller=>"products"}
	​ 	 PATCH /products/:id(.:format)
	​ 	 {:action=>"update", :controller=>"products"}
	​ 	 DELETE /products/:id(.:format)
	​ 	 {:action=>"destroy", :controller=>"products"}

 All the routes defined are spelled out in a columnar format. The
 lines will generally wrap on your screen; in fact, they had to be
 broken into two lines per route to fit on this page. The columns
 are (optional) route name, HTTP method, route path, and (on a
 separate line on this page) route requirements.
	

 Fields in parentheses are optional parts of the path. Field names
 preceded by a colon are for variables into which the matching part of the
 path is placed for later processing by the controller.

	 Now let’s look at the seven controller actions that these
	 routes reference. Although we created our routes to manage
	 the products in our application, let’s broaden this to talk about resources—after all,
	 the same seven methods will be required for all
	 resource-based routes:
	
	index
	

	
		Returns a list of the resources.
	

	create
	

	
		Creates a new resource from the data in the POST
		request, adding it to the collection.
	

	new
	

	
		Constructs a new resource and passes it to the
		client. This resource will not have been saved on the
		server. You can think of the new action as
		creating an empty form for the client to fill in.
	

	show
	

	
		Returns the contents of the resource identified
		by params[:id].
	

	update
	

	
	
		Updates the contents of the resource identified
		by params[:id] with the data associated with
		the request.
	

	edit
	

	
		Returns the contents of the resource identified
		by params[:id] in a form suitable for editing.
	

	destroy
	

	
	
		Destroys the resource identified by params[:id].
	

	 You can see that these seven actions contain the four
	 basic CRUD operations (create, read, update, and
	 delete). They also contain an action to list resources
	 and two auxiliary actions that return new and existing
	 resources in a form suitable for editing on the client.
	

 If for some reason you don’t need or want all seven actions, you
 can limit the actions produced using :only or
 :except options on your resources:

	​ 	resources ​:comments​, ​except: ​[​:update​, ​:destroy​]

	 Several of the routes are named routes
	 enabling you to use
	 helper functions such as products_url and
	 edit_product_url(id:1).

 Note that each route is defined with an optional format specifier.
	 We will cover formats in more detail in
	 ​Selecting a Data Representation​.
	

	 Let’s take a look at the controller code:
	
rails51/depot_a/app/controllers/products_controller.rb
	​ 	​class​ ProductsController < ApplicationController
	​ 	 before_action ​:set_product​, ​only: ​[​:show​, ​:edit​, ​:update​, ​:destroy​]
	​ 	
	​ 	 ​# GET /products​
	​ 	 ​# GET /products.json​
	​ 	 ​def​ index
	​ 	 @products = Product.all
	​ 	 ​end​
	​ 	
	​ 	 ​# GET /products/1​
	​ 	 ​# GET /products/1.json​
	​ 	 ​def​ show
	​ 	 ​end​
	​ 	
	​ 	 ​# GET /products/new​
	​ 	 ​def​ new
	​ 	 @product = Product.new
	​ 	 ​end​
	​ 	
	​ 	 ​# GET /products/1/edit​
	​ 	 ​def​ edit
	​ 	 ​end​
	​ 	
	​ 	 ​# POST /products​
	​ 	 ​# POST /products.json​
	​ 	 ​def​ create
	​ 	 @product = Product.new(product_params)
	​ 	
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @product.save
	​ 	 format.html { redirect_to @product,
	​ 	 ​notice: ​​'Product was successfully created.'​ }
	​ 	 format.json { render ​:show​, ​status: :created​,
	​ 	 ​location: ​@product }
	​ 	 ​else​
	​ 	 format.html { render ​:new​ }
	​ 	 format.json { render ​json: ​@product.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​# PATCH/PUT /products/1​
	​ 	 ​# PATCH/PUT /products/1.json​
	​ 	 ​def​ update
	​ 	 respond_to ​do​ |format|
	​ 	 ​if​ @product.update(product_params)
	​ 	 format.html { redirect_to @product,
	​ 	 ​notice: ​​'Product was successfully updated.'​ }
	​ 	 format.json { render ​:show​, ​status: :ok​, ​location: ​@product }
	​ 	 ​else​
	​ 	 format.html { render ​:edit​ }
	​ 	 format.json { render ​json: ​@product.errors,
	​ 	 ​status: :unprocessable_entity​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​# DELETE /products/1​
	​ 	 ​# DELETE /products/1.json​
	​ 	 ​def​ destroy
	​ 	 @product.destroy
	​ 	 respond_to ​do​ |format|
	​ 	 format.html { redirect_to products_url,
	​ 	 ​notice: ​​'Product was successfully destroyed.'​ }
	​ 	 format.json { head ​:no_content​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​private​
	​ 	 ​# Use callbacks to share common setup or constraints between actions.​
	​ 	 ​def​ set_product
	​ 	 @product = Product.find(params[​:id​])
	​ 	 ​end​
	​ 	
	​ 	 ​# Never trust parameters from the scary internet, only allow the white​
	​ 	 ​# list through.​
	​ 	 ​def​ product_params
	​ 	 params.require(​:product​).permit(​:title​, ​:description​, ​:image_url​, ​:price​)
	​ 	 ​end​
	​ 	​end​

	 Notice how we have one action for each of the RESTful
	 actions. The comment before each shows the format of the
	 URL that invokes it.
	

	
	
	 Notice also that many of the actions contain
	 a respond_to block. As we saw
	 in Chapter 11, ​Task F: Add a Dash of Ajax​, Rails uses this to
	 determine the type of content to send in a response. The
	 scaffold generator automatically creates
	 code that will respond appropriately to requests for HTML
	 or JSON content. We’ll play with that in a little while.
	

	
	
	 The views created by the generator are fairly
	 straightforward. The only tricky thing is the need to use
	 the correct HTTP method to send requests to the
	 server. For example, the view for the index
	 action looks like this:
	
rails51/depot_a/app/views/products/index.html.erb
	​ 	​<%​ ​if​ notice ​%>​
	​ 	 <aside id=​"notice"​>​<%=​ notice ​%>​</aside>
	​ 	​<%​ ​end​ ​%>​
	​ 	
	​ 	<h1>Products</h1>
	​ 	
	​ 	<table>
	​ 	 <tfoot>
	​ 	 <tr>
	​ 	 <td colspan=​"3"​>
	​ 	 ​<%=​ link_to ​'New product'​, new_product_path ​%>​
	​ 	 </td>
	​ 	 </tr>
	​ 	 </tfoot>
	​ 	 <tbody>
	​ 	 ​<%​ @products.each ​do​ |product| ​%>​
	​ 	 <tr class=​"​​<%=​ cycle(​'list_line_odd'​, ​'list_line_even'​) ​%>​​"​>
	​ 	
	​ 	 <td class=​"image"​>
	​ 	 ​<%=​ image_tag(product.image_url, ​class: ​​'list_image'​) ​%>​
	​ 	 </td>
	​ 	
	​ 	 <td class=​"description"​>
	​ 	 <h1>​<%=​ product.title ​%>​</h1>
	​ 	 <p>
	​ 	 ​<%=​ truncate(strip_tags(product.description),
	​ 	 ​length: ​80) ​%>​
	​ 	 </p>
	​ 	 </td>
	​ 	
	​ 	 <td class=​"actions"​>
	​ 	
	​ 	 ​<%=​ link_to ​'Show'​, product ​%>​
	​ 	 ​<%=​ link_to ​'Edit'​, edit_product_path(product) ​%>​
	​ 	
	​ 	 ​<%=​ link_to ​'Destroy'​,
	​ 	 product,
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ } ​%>​
	​ 	
	​ 	
	​ 	 </td>
	​ 	 </tr>
	​ 	 ​<%​ ​end​ ​%>​
	​ 	 </tbody>
	​ 	</table>

	
	
	
	 The links to the actions that edit a product and add a
	 new product should both use regular GET methods, so a
	 standard link_to works fine.
	 However, the request to destroy a product
	 must issue an HTTP DELETE, so the call includes
	 the method: :delete option
	 to link_to.
	
	
Adding Additional Actions

	
	 Rails resources provide you with an initial set of actions, but
 you don’t need to stop there.
	 In ​Iteration G2: Atom Feeds​, we added an
	 interface to allow people to fetch a list of people
 who bought any given product.
	 To do that with Rails, we use an extension to
	 the resources
	 call:
	
	
	​ 	Depot::Application.routes.draw ​do​
	​ 	 resources ​:products​ ​do​
	​ 	 get ​:who_bought​, ​on: :member​
	​ 	 ​end​
	​ 	​end​

	 That syntax is straightforward. It says “We
	 want to add a new action named who_bought, invoked
	 via an HTTP GET. It applies to each member of the
	 collection of products.”
	

	
	
	 Instead of specifying :member, if we instead specified
 :collection, then the route would apply to the collection
 as a whole. This is often used for scoping; for example, you may
 have collections of products on clearance or products that have
 been discontinued.
	
Nested Resources

	
	
	
	 Often our resources themselves contain additional
	 collections of resources. For example, we may want to allow
	 folks to review our products. Each
	 review would be a resource, and collections of review
	 would be associated with each product resource. Rails provides a convenient and intuitive way of declaring
	 the routes for this type of situation:
	
	​ 	resources ​:products​ ​do​
	​ 	 resources ​:reviews​
	​ 	​end​

	 This defines the top-level set of product
	 routes and additionally creates a set of subroutes for
	 reviews. Because the review resources appear inside the
	 products block, a review resource must be
	 qualified by a product resource. This
	 means that the path to a review must always be prefixed
	 by the path to a particular product. To fetch the review
	 with ID 4 for the product with an ID of 99, you’d use a
	 path of /products/99/reviews/4.
	

 The named route for
 /products/:product_id/reviews/:id is
 product_review, not simply review. This
 naming simply reflects the nesting of these resources.

	
	
	 As always, you can see the full set
	 of routes generated by our configuration by using the
	 rails routes command.
	
Routing Concerns

 So far, we have been dealing with a fairly small set of resources. On
 a larger system there may be types of objects for which a
 review may be appropriate or to which a who_bought
 action might reasonably be applied. Instead of repeating these
 instructions for each resource, consider refactoring your routes using
 concerns to capture the common behavior.

	​ 	concern ​:reviewable​ ​do​
	​ 	 resources ​:reviews​
	​ 	​end​
	​ 	
	​ 	resources ​:products​, ​concern: :reviewable​
	​ 	resources ​:users​, ​concern: :reviewable​

 The preceding definition of the products resource is equivalent to
 the one in the previous section.

Shallow Route Nesting

	
	
	
 At times, nested resources can produce cumbersome URLs. A solution
 to this is to use shallow route nesting:

	​ 	resources ​:products​, ​shallow: ​​true​ ​do​
	​ 	 resources ​:reviews​
	​ 	​end​

 This will enable the recognition of the following routes:

	​ 	/products/1 => product_path(1)
	​ 	/products/1/reviews => product_reviews_index_path(1)
	​ 	/reviews/2 => reviews_path(2)

 Try the rails routes command to see the full mapping.

Selecting a Data Representation

	
	 One of the goals of a REST architecture is to decouple
	 data from its representation. If a human uses the URL
	 path /products to fetch products, they
	 should see nicely formatted HTML. If an application asks
	 for the same URL, it could elect to receive the results in
	 a code-friendly format (YAML, JSON, or XML,
	 perhaps).
	

	
	
	

	 We’ve already seen how Rails can use the HTTP Accept header
	 in a respond_to block in the controller. However,
	 it isn’t always easy (and sometimes it’s plain impossible)
	 to set the Accept header. To deal with this, Rails
	 allows you to pass the format of response you’d like as part
	 of the URL. As you have seen, Rails accomplishes
	 this by including a field called :format in your route
	 definitions.
	 To do this, set
	 a :format
	 parameter in your routes to the file extension of the MIME
	 type you’d like returned:
	
	
	​ 	GET ​/products(.:format)​
	​ 	​ {:action=>"index", :controller=>"products"}​

	 Because a full stop (period) is a separator character in
	 route definitions, :format is treated as just
	 another field. Because we give it a nil default
	 value, it’s an optional field.
	

	
	 Having done this, we can use a respond_to
	 block in our controllers to select our response type
	 depending on the requested format:
	
	​ 	​def​ show
	​ 	 respond_to ​do​ |format|
	​ 	 format.html
	​ 	 format.json { render ​json: ​@product.to_json }
	​ 	 ​end​
	​ 	​end​

	
	
	
	 Given this, a request to /store/show/1
	 or /store/show/1.html will return HTML content,
	 while /store/show/1.xml will return XML,
	 and /store/show/1.json will return JSON. You can
	 also pass the format in as an HTTP request parameter:
	
	​ 	GET HTTP://pragprog.com/store/show/123?format=xml

	
	 Although the idea
	 of having a single controller that responds with different
	 content types seems appealing, the reality is tricky. In
	 particular, it turns out that error handling can be
	 tough. Although it’s acceptable on error to redirect a user
	 to a form, showing them a nice flash message, you have to
	 adopt a different strategy when you serve XML. Consider your
	 application architecture carefully before deciding to bundle
	 all your processing into single controllers.
	

 Rails makes it straightforward to develop an application that is based
 on resource-based routing. Many claim it greatly simplifies the
	 coding of their applications. However, it isn’t always appropriate.
	 Don’t feel compelled to use it if you can’t find a way of making it
	 work. And you can always mix and match. Some controllers can be
 resource based, and others can be based on actions. Some controllers
 can even be resource based with a few extra actions.

	

Processing of Requests

 In the previous section, we worked out how Action Dispatch routes
 an incoming request to the appropriate code in your
 application. Now let’s see what happens inside that code.

Action Methods

 When a controller object processes a request, it looks for a
 public instance method with the same name as the incoming
 action. If it finds one, that method is invoked. If it doesn’t find one
 and the controller implements method_missing, that method is called,
 passing in the action name as the first parameter and an empty
 argument list as the second.

 If no method can be called, the
 controller looks for a template named after the current
 controller and action. If found, this template is rendered
 directly. If none of these things happens, an
 AbstractController::ActionNotFound error is generated.

Controller Environment

	The controller sets up the environment for actions (and, by
	extension, for the views that they invoke). Many of these
 methods provide direct access to information contained in the
 URL or request:

	action_name
	

	
	 The name of the action currently being processed.
	
	

	cookies
	

	
	
	 The cookies associated with the request. Setting values
	 into this object stores cookies on the browser when the
	 response is sent. Rails support for sessions is based on cookies.
	 We discuss sessions in ​Rails Sessions​.
	

	headers
	

	
	
	
	
	
	
	 A hash of HTTP headers that will be used in the
	 response. By
	 default, Cache-Control is set
	 to no-cache. You might want to
	 set Content-Type headers for
	 special-purpose applications. Note that you shouldn’t set
	 cookie values in the header directly—use the cookie API
	 to do this.
	
	

	params
	

	 A hash-like object containing request parameters
	 (along with pseudoparameters generated during
	 routing). It’s hash-like because you can index entries
	 using either a symbol or a
	 string—params[:id]
	 and params[’id’] return the same
	 value. Idiomatic Rails applications use the symbol
	 form.
	
	

	request
	

	 The incoming request object. It includes these attributes:
	
	

	
		request_method returns the request
		method, one
		of :delete, :get, :head, :post,
		or :put.
		
	

	

	
		method returns the same value as
 request_method except for :head, which it
 returns as :get because these two are functionally
 equivalent from an application point of view.
	
	

	

	
		
		
		
		
		delete?, get?, head?, post?,
		and put?
		return true
		or false based on the request
		method.
	

	

		xml_http_request? and
		xhr? return true if this
		request was issued by one of the Ajax helpers. Note
		that this parameter is independent of
		the method parameter.
		
		
		
	

	

	
	
		url,
		which returns the full URL used for the request.
		
	

	

	
	
	
	
	
	
		protocol,
		host,
		port,
		path, and
		query_string,
		which return components of the URL used for the request, based
 on the following pattern:
 protocol://host:port/path?query_string.
		
			

		
		
		
	

	

	
		domain,
		which returns the last two components of the domain name of
		the request.
		
	

	

	
		host_with_port,
		which is a host:port string for
		the request.
		
	

	

	
	
		port_string,
 which is a :port string for the request if the port
 is not the default port (80 for HTTP, 443 for HTTPS).

	

	

	 ssl?, which is true
	 if this is an SSL request; in other words, the request
 was made with the HTTPS protocol.
	

	

	
	
		remote_ip, which
		returns the remote IP address as a string. The string may have
		more than one address in it if the client is behind a
		proxy.
		
	

	

	
		env, the environment of the
		request. You can use this to access values set by the
		browser, such as this:
		
	
	​ 	request.env[​'HTTP_ACCEPT_LANGUAGE'​]

	

	 accepts, which is an array with
 Mime::Type objects that represent the
 MIME types in the Accept header.

	

	 format, which is computed
	 based on the value of the Accept header, with
 Mime[:HTML] as a fallback.
	

	

	 content_type, which is the
	 MIME type for the request. This is useful for put and
 post requests.

	

	 headers, which is the
	 complete set of HTTP headers.
	

	

	 body, which is the
	 request body as an I/O stream.
	

	

	 content_length, which is
	 the number of bytes purported to be in the body.
	

	
	
	 Rails leverages a gem named Rack to provide much of this
 functionality. See the documentation of
	 Rack::Request for full details.
	

	response
	

	
	 The response object, filled in during the handling of the
	 request. Normally, this object is managed for you by Rails.
	 As we’ll see when we look at callbacks in ​Callbacks​,
	 we sometimes access the internals for specialized
	 processing.
	

	session
	

	
	
	 A hash-like object representing the current session
	 data. We describe this in ​Rails Sessions​.
	

	In addition, a logger
	is available throughout Action Pack.

Responding to the User

	Part of the controller’s job is to respond to the user. There
	are basically four ways of doing this:

	

	

	 The most common way is to render a template. In terms of
	 the MVC paradigm, the template is the view, taking
	 information provided by the controller and using it to
	 generate a response to the
	 browser.
	

	

	
	
	
	 The controller can return a string directly to the
	 browser without invoking a view. This is fairly rare but
	 can be used to send error notifications.
	

	

 The controller can return nothing to the browser. This is
 sometimes used when responding to an Ajax request. In all cases,
 however, the controller returns a set of HTTP headers, because
 some kind of response is expected.
	

	

	
	 The controller can send other data to the client
	 (something other than HTML). This is typically a download of some
	 kind (perhaps a PDF document or a file’s contents).
	

 A controller always responds to the user exactly one time per request.
 This means you should have just one call to a render, redirect_to, or
 send_xxx method in the
 processing of any request. (A DoubleRenderError
 exception is thrown on the second render.)

	Because the controller must respond exactly once, it checks to
	see whether a response has been generated just before it
	finishes handling a request. If not, the controller looks for
	a template named after the controller and action and
	automatically renders it. This is the
	most common way that rendering takes place. You may have
	noticed that in most of the actions in our shopping cart
	tutorial we never explicitly rendered anything. Instead, our
	action methods set up the context for the view and return. The
	controller notices that no rendering has taken place and
	automatically invokes the appropriate template.

	You can have multiple templates with the same name but with
	different extensions (for example, .html.erb, .xml.builder,
	and .coffee). If you don’t specify an extension in a
	render request, Rails assumes html.erb.

Rendering Templates

	A template is a file that defines the content of
	a response for our application. Rails supports three template
	formats out of the box: erb, which is
	embedded Ruby code (typically with HTML);
	builder, a more programmatic way of
	constructing XML content; and RJS, which
	generates JavaScript. We’ll talk about the contents of these
	files starting in ​Using Templates​.

	By convention, the template for action action of
	controller controller will be in the
	file
 app/views/controller/action.type.xxx
	(where type is the file type, such as html,
 atom, or js; and
 xxx is one
	of erb, builder, coffee or scss).
	The app/views part of the name is the
	default. You can override this for an entire application by
	setting this:

	ActionController.prepend_view_path dir_path

	The render
	method is the heart of all rendering in Rails. It takes a hash
	of options that tell it what to render and how to render
	it.

	It is tempting to write code in our controllers that looks
	like this:

	​ 	​# DO NOT DO THIS​
	​ 	​def​ update
	​ 	 @user = User.find(params[​:id​])
	​ 	 ​if​ @user.update(user_params)
	​ 	 render ​action: ​show
	​ 	 ​end​
	​ 	 render ​template: ​​"fix_user_errors"​
	​ 	​end​

	It seems somehow natural that the act of
	calling render (and redirect_to) should
	somehow terminate the processing of an action. This is not the
	case. The previous code will generate an error
	(because render is called twice) in the case
	where update succeeds.

	Let’s look at the render options used in the controller
	here (we’ll look separately at rendering in the view starting
	in ​Partial-Page Templates​):

	render()
	

	 With no overriding parameter,
	 the render method
	 renders the default template
	 for the current controller and action. The following code
	 will render the
	 template app/views/blog/index.html.erb:
	
	​ 	​class​ BlogController < ApplicationController
	​ 	 ​def​ index
	​ 	 render
	​ 	 ​end​
	​ 	​end​

	 So will the following (as the default behavior of a
	 controller is to call render if
	 the action doesn’t):
	
	​ 	​class​ BlogController < ApplicationController
	​ 	 ​def​ index
	​ 	 ​end​
	​ 	​end​

	 And so will this (because the
	 controller will call a template directly if no action
	 method is defined):
	
	​ 	​class​ BlogController < ApplicationController
	​ 	​end​

	render(text: string)
	

	
	
	
	
	 Sends
	 the given string to the client. No template
	 interpretation or HTML escaping is performed.
	
	​ 	​class​ HappyController < ApplicationController
	​ 	 ​def​ index
	​ 	 render(​text: ​​"Hello there!"​)
	​ 	 ​end​
	​ 	​end​

	render(inline:
	 string, [type:
 "erb"|"builder"|"coffee"|"scss"], [locals: hash])
	

	
	
	
 Interprets string as the source to a
 template of the given type, rendering the results back to the
 client. You can use the :locals hash to set the
 values of local variables in the template.
	

	
	
	 The following code adds method_missing to a controller if
	 the application is running in development mode. If the
	 controller is called with an invalid action, this renders
	 an inline template to display the action’s name and a
	 formatted version of the request parameters:
	
	​ 	​class​ SomeController < ApplicationController
	​ 	
	​ 	 ​if​ RAILS_ENV == ​"development"​
	​ 	 ​def​ method_missing(name, *args)
	​ 	 render(​inline: ​​%{​
	​ 	​ <h2>Unknown action: #{name}</h2>​
	​ 	​ Here are the request parameters:
​
	​ 	​ <%= debug(params) %> }​)
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

	render(action: action_name)
	

	
	
	
	
	 Renders the template for a given action in this
	 controller. Sometimes folks use
	 the :action form
	 of render when they should use
	 redirects. See the discussion starting in ​Redirects​, for why this is a bad idea.
	
	​ 	​def​ display_cart
	​ 	 ​if​ @cart.empty?
	​ 	 render(​action: :index​)
	​ 	 ​else​
	​ 	 ​# ...​
	​ 	 ​end​
	​ 	​end​

	 Note that calling render(:action...) does not
	 call the action method; it simply displays the
	 template. If the template needs instance variables, these
	 must be set up by the method that calls the
 render method.
	

	 Let’s repeat this, because this is a mistake that
	 beginners often make: calling render(:action...)
	 does not invoke the action method. It simply renders that
	 action’s default template.
	

	render(template: name,
 [locals: hash])
	

	
	 Renders a template
	 and arranges for the resulting text to be sent back to the
	 client. The :template value must
	 contain both the controller and action parts of the new
	 name, separated by a forward slash. The following code
	 will render the
	 template app/views/blog/short_list:
	
	​ 	​class​ BlogController < ApplicationController
	​ 	 ​def​ index
	​ 	 render(​template: ​​"blog/short_list"​)
	​ 	 ​end​
	​ 	​end​

	render(file: path)
	

	
	
	
 Renders a view that may be entirely outside of your application (perhaps
 one shared with another Rails application). By default, the file
 is rendered without using the current layout. This can be overridden
 with layout: true.
	

	render(partial:
	 name, …)
	

	
	
	
	 Renders a partial template. We talk about partial
	 templates in depth in ​Partial-Page Templates​.
	

	render(nothing: true)
	

	
	 Returns nothing—sends an empty body to the browser.
	

	render(xml: stuff)
	

	
	
	
	 Renders stuff as text, forcing the content type to
	 be application/xml.
	

	render(json: stuff,
	 [callback: hash])
	

	
	
	
	 Renders stuff as JSON, forcing the content type to
	 be application/json.
	 Specifying :callback will
 cause the result to be wrapped in a call to the named callback
 function.
	

	render(:update) do |page| ... end
	

	
	
	
	
	 Renders the block as an RJS template, passing in the page
	 object.
	
	​ 	render(​:update​) ​do​ |page|
	​ 	 page[​:cart​].replace_html ​partial: ​​'cart'​, ​object: ​@cart
	​ 	 page[​:cart​].visual_effect ​:blind_down​ ​if​ @cart.total_items == 1
	​ 	​end​

	All forms of render take
	optional :status, :layout,
	and :content_type
	parameters. The :status parameter
 provides the value used in
 the status header in the HTTP response. It defaults to
 "200 OK". Do not use render
 with a 3xx status to do redirects; Rails has a
 redirect method for this purpose.

	The :layout parameter determines whether the result of the rendering
	will be wrapped by a layout. (We first came across
	layouts in ​Iteration C2: Adding a Page Layout​. We’ll look
	at them in depth starting in ​Reducing Maintenance with Layouts and Partials​.) If the parameter
	is false, no layout will be
	applied. If set to nil
	or true, a layout will be applied only if
	there is one associated with the current action. If
	the :layout parameter has a string as
	a value, it will be taken as the name of the layout to use
	when rendering. A layout is never applied when
	the :nothing option is in effect.

	The :content_type parameter lets you specify a value
	that will be passed to the browser in
	the Content-Type HTTP header.

	
	Sometimes it is useful to be able to capture what would
	otherwise be sent to the browser in a string. The
 render_to_string
	method takes the same parameters as render
	but returns the result of rendering as a string—the
	rendering is not stored in the response object and so will
	not be sent to the user unless you take some additional
	steps.

	Calling render_to_string does not count as a real
	render. You can invoke the real render method later
	without getting a DoubleRender error.
	
	
	
	
	
	

Sending Files and Other Data

	We’ve looked at rendering templates and sending strings in the
	controller. The third type of response is to send data
	(typically, but not necessarily, file contents) to the
	client.

	​ 	send_data(data, options​…​)

 Sends a data stream to the client. Typically
 the browser will use a combination of the content type and
 the disposition, both set in the options, to determine
 what to do with this data.

	​ 	​def​ sales_graph
	​ 	png_data = Sales.plot_for(Date.today.month)
	​ 	send_data(png_data, ​type: ​​"image/png"​, ​disposition: ​​"inline"​)
	​ 	​end​

 The options are:

	
 :disposition (string)

	

 Suggests to
	 the browser that the file should be displayed inline
	 (option inline) or downloaded and
	 saved (option attachment, the
 default).

	
 :filename string

	

	 A suggestion to the browser of the default filename to use
 when saving this data.

	
 :status (string)

	

	 The status code (defaults to "200
	 OK").

	
 :type (string)

	

	 The content type,
	 defaulting
	 to application/octet-stream.
	
	

	
 :url_based_filename boolean

	

	 If true and :filename is not set, this option prevents
 Rails from providing the basename of the file in the
 Content-Disposition header. Specifying the basename of the file is necessary
 in order to make some browsers handle i18n filenames correctly.
	

 A related method is send_file, which sends the
 contents of a file to the client.

	​ 	send_file(path, options​…​)

 Sends the given file to the client. The method
	 sets
	 the Content-Length, Content-Type, Content-Disposition, and Content-Transfer-Encoding
	 headers.

	
 :buffer_size (number)

	

	 The amount sent to the browser in each write if streaming
	 is enabled (:stream is true).

	
 :disposition (string)

	

	 Suggests to
	 the browser that the file should be displayed inline
	 (option inline) or downloaded and
	 saved (option attachment, the
	 default).

	
 :filename (string)

	

	 A suggestion to
	 the browser of the default filename to use when saving the
	 file. If not set, defaults to the filename part
	 of path.

	
 :status string

	

 The status code (defaults to "200 OK").

	
 :stream (true or false)

	

	 If false, the entire file is read
	 into server memory and sent to the client. Otherwise, the
	 file is read and written to the client
	 in :buffer_size chunks.

	
 :type (string)

	

	 The content type, defaulting
	 to application/octet-stream.

	You can set additional headers for
	either send_ method by using
	the headers attribute in
	the controller:
	

	​ 	​def​ send_secret_file
	​ 	 send_file(​"/files/secret_list"​)
	​ 	 headers[​"Content-Description"​] = ​"Top secret"​
	​ 	​end​

	We show how to upload files starting in ​Uploading Files to Rails Applications​.

Redirects

	An HTTP redirect is sent from a
	server to a client in response to a request. In effect, it
	says, “I’m done processing this request, and you should go here to see
	the results.” The redirect response includes a
	URL that the client should try next
	along with some status information saying whether this
	redirection is permanent (status code 301) or temporary
	(307). Redirects are
	sometimes used when web pages are reorganized; clients
	accessing pages in the old locations will get referred to the
	page’s new home. More commonly, Rails applications use
	redirects to pass the processing of a request off to some
	other action.

	Redirects are handled behind the scenes by web
	browsers. Normally, the only way you’ll know that you’ve been
	redirected is a slight delay and the fact that the URL of the
	page you’re viewing will have changed from the one you
	requested. This last point is important—as far as the
	browser is concerned, a redirect from a server acts pretty
	much the same as having an end user enter the new destination
	URL manually.

	Redirects turn out to be important when writing well-behaved
	web applications.
 Let’s look at a basic blogging application that supports
	comment posting. After a user has posted a comment, our
	application should redisplay the article, presumably with the
	new comment at the end.

It’s tempting to code this using
	logic such as the following:

	​ 	​class​ BlogController
	​ 	 ​def​ display
	​ 	 @article = Article.find(params[​:id​])
	​ 	 ​end​
	​ 	
	​ 	 ​def​ add_comment
	​ 	 @article = Article.find(params[​:id​])
	​ 	 comment = Comment.new(params[​:comment​])
	​ 	 @article.comments << comment
	​ 	 ​if​ @article.save
	​ 	 flash[​:note​] = ​"Thank you for your valuable comment"​
	​ 	 ​else​
	​ 	 flash[​:note​] = ​"We threw your worthless comment away"​
	​ 	 ​end​
	​ 	 ​# DON'T DO THIS​
	​ 	 render(​action: ​​'display'​)
	​ 	 ​end​
	​ 	​end​

	The intent here was clearly to display the article
	after a comment has been posted. To do this, the developer
	ended the add_comment method with a
	call to render(action:'display'). This
	renders the display view, showing the updated article
	to the end user. But think of this from the browser’s point
	of view. It sends a URL ending in blog/add_comment
	and gets back an index listing. As far as the browser is
	concerned, the current URL is still the one that
	ends in blog/add_comment. This means that if the user
	hits Refresh or Reload (perhaps to see whether anyone else has
	posted a comment), the add_comment URL will be sent
	again to the application. The user intended to refresh the
	display, but the application sees a request to add another
	comment. In a blog application, this kind of unintentional
	double entry is inconvenient. In an online store, it can get
	expensive.

	In these circumstances, the correct way to show the added
	comment in the index listing is to redirect the browser to
	the display
	action. We
	do this using the Rails redirect_to method. If the user
	subsequently hits Refresh, it will simply reinvoke
	the display action and not add
	another comment.

	​ 	​def​ add_comment
	​ 	 @article = Article.find(params[​:id​])
	​ 	 comment = Comment.new(params[​:comment​])
	​ 	 @article.comments << comment
	​ 	 ​if​ @article.save
	​ 	 flash[​:note​] = ​"Thank you for your valuable comment"​
	​ 	 ​else​
	​ 	 flash[​:note​] = ​"We threw your worthless comment away"​
	​ 	 ​end​
	»	 redirect_to(​action: ​​'display'​)
	​ 	​end​

 Rails has a lightweight yet powerful redirection mechanism. It can
	redirect to an action in a given controller (passing
	parameters), to a URL (on or off the current server), or to
	the previous page. Let’s look at these three forms in turn:

	redirect_to(action: ..., options…)
	

	
	 Sends a temporary redirection to the browser based
	 on the values in the options hash. The target URL is
	 generated using url_for, so
	 this form of redirect_to has all
	 the smarts of Rails routing code behind it.
	

	redirect_to(path)
	

	
	 Redirects to the given path. If the path does not start
	 with a protocol (such as http://), the protocol
	 and port of the current request will be
	 prepended. This method does not perform any
	 rewriting on the URL, so it should not be used to create
	 paths that are intended to link to actions in the
	 application (unless you generate the path
	 using url_for or a named route URL generator).
	
	​ 	​def​ save
	​ 	 order = Order.new(params[​:order​])
	​ 	 ​if​ order.save
	​ 	 redirect_to ​action: ​​"display"​
	​ 	 ​else​
	​ 	 session[​:error_count​] ||= 0
	​ 	 session[​:error_count​] += 1
	​ 	 ​if​ session[​:error_count​] < 4
	​ 	 self.notice = ​"Please try again"​
	​ 	 ​else​
	​ 	 ​# Give up -- user is clearly struggling​
	​ 	 redirect_to(​"/help/order_entry.html"​)
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

	redirect_to(:back)
	

	
	
	
	 Redirects to the URL given by the HTTP_REFERER
	 header in the current
	 request.
	
	
	​ 	​def​ save_details
	​ 	 ​unless​ params[​:are_you_sure​] == ​'Y'​
	​ 	 redirect_to(​:back​)
	​ 	 ​else​
	​ 	 ​# ...​
	​ 	 ​end​
	​ 	​end​

	By default all redirections are flagged as temporary (they
	will affect only the current request). When redirecting to a
	URL, it’s possible you might want to make the redirection
	permanent. In that case, set the status in the response header
	accordingly:
	

	​ 	headers[​"Status"​] = ​"301 Moved Permanently"​
	​ 	redirect_to(​"http://my.new.home"​)

	Because redirect methods send responses to the browser, the
	same rules apply as for the rendering methods—you can issue
	only one per request.

 So far, we have been looking at requests and responses in isolation.
 Rails also provides a number of mechanisms that span requests.

Objects and Operations That Span Requests

 While the bulk of the state that persists across requests belongs in the
 database and is accessed via Active Record, some other bits of state
 have different life spans and need to be managed differently. In the
 Depot application, while the Cart itself was stored in the database,
 knowledge of which cart is the current cart was managed by sessions.
 Flash notices were used to communicate messages such as “Can’t
 delete the last user” to the next request after a redirect. And
 callbacks were used to extract locale data from the URLs themselves.

 In this section, we will explore each of these mechanisms in turn.

Rails Sessions

	A Rails session is a hash-like structure that persists across
	requests. Unlike raw cookies, sessions can hold any objects
	(as long as those objects can be marshaled),
	which makes them ideal for holding state information in web
	applications. For example,
	in our store application, we used a session to hold the
	shopping cart object between
	requests. The Cart object could be used
	in our application just like any other object. But Rails
	arranged things such that the cart was saved at the end of
	handling each request and, more important, that the correct
	cart for an incoming request was restored when Rails started
	to handle that request. Using sessions, we can pretend that
	our application stays around between requests.

 And that leads to an interesting question: exactly where does this
 data stay around between requests? One choice is for the server
 to send it down to the client as a cookie. This is the default
 for Rails. It places limitations on the size and increases the
 bandwidth but means that there is less for the server to manage
 and clean up. Note that the contents are (by default)
 encrypted, which means that users can neither see nor tamper
 with the contents.

 The other option is to store the data on the server.

 It requires more work to set up and is rarely necessary.

	First, Rails has to keep track of
	sessions. It does this by creating (by default) a 32-hex character key (which means there are 1632 possible combinations). This key is
	called the session ID,
	and it’s effectively random. Rails arranges to store this
	session ID as a cookie (with the
	key _session_id)
	on the user’s browser. Because subsequent requests come into the
	application from this browser, Rails can recover the session
	ID.

	Second, Rails keeps a persistent store of session data on the
	server, indexed by the session ID. When a request comes in,
	Rails looks up the data store using the session ID. The data
	that it finds there is a serialized Ruby object. It
	deserializes this and stores the result in the
	controller’s session attribute, where the data is
	available to our application code.

	The application can add to
	and modify this data to its heart’s content. When it finishes
	processing each request, Rails writes the session data back
	into the data store. There it sits until the next request from
	this browser comes along.

	What should you store in a session? You can store anything you
	want, subject to a few restrictions and
	caveats:

	

	
	 There are some restrictions on what kinds of object you
	 can store in a session. The details depend on the storage
	 mechanism you choose (which we’ll look at shortly). In the
	 general case, objects in a session must be
	 serializable
	 (using Ruby’s Marshal
	 functions). This means, for example, that you cannot store
	 an I/O object in a session.
	

	

	
	 If you store any Rails model objects in a session, you’ll
	 have to add model declarations for
	 them. This causes Rails to preload the model class so
	 that its definition is available when Ruby comes to
	 deserialize it from the session store. If the use of the
	 session is restricted to just one controller, this
	 declaration can go at the top of that controller.
	
	​ 	​class​ BlogController < ApplicationController
	​ 	
	​ 	 model ​:user_preferences​
	​ 	
	​ 	 ​# . . .​

	 However, if the session might get read by another
	 controller (which is likely in any application with
	 multiple controllers), you’ll probably want to add the
	 declaration to
	 application_controller.rb
	 in app/controllers.
	

	

	
	 You probably don’t want to store massive objects in
	 session data—put them in the database, and reference
	 them from the session. This is particularly true for
 cookie-based sessions, where the overall limit is 4KB.
	

	

	 You probably don’t want to store volatile objects in
	 session data. For example, you might want to keep a tally
	 of the number of articles in a blog and store that in the
	 session for performance reasons. But, if you do that, the
	 count won’t get updated if some other user adds an
	 article.
	

	
	 It is tempting to store objects representing the currently
	 logged-in user in session data. This might not be wise if
	 your application needs to be able to invalidate
	 users. Even if a user is disabled in the database, their
	 session data will still reflect a valid status.
	

	 Store volatile data in the database, and
	 reference it from the session instead.
	

	

	 You probably don’t want to store critical information solely
	 in session data. For example, if your application
	 generates an order confirmation number in one request and
	 stores it in session data so that it can be saved to the
	 database when the next request is handled, you risk losing
	 that number if the user deletes the cookie from their
	 browser. Critical information needs to be in the database.
	

	There’s one more caveat, and it’s a big one. If you store an
	object in session data, then the next time you come back to
	that browser, your application will end up retrieving that
	object. However, if in the meantime you’ve updated your
	application, the object in session data may not agree with the
	definition of that object’s class in your application, and the
	application will fail while processing the request. There are
	three options here. One is to store the object in the database
	using conventional models and keep just
	the ID of the row in the
	session. Model objects are far more forgiving of schema
	changes than the Ruby marshaling library. The second option is
	to manually delete all the session data stored on your server
	whenever you change the definition of a class stored in that
	data.

	The third option is slightly more complex. If you add a
	version number to your session keys and change that number
	whenever you update the stored data, you’ll only ever load
	data that corresponds with the current version of the
	application. You can potentially version the classes
	whose objects are stored in the session and use the
	appropriate classes depending on the session keys associated
	with each request. This last idea can be a lot of work, so
	you’ll need to decide whether it’s worth the effort.

	Because the session store is hash-like, you can save multiple
	objects in it, each with its own key.

	There is no need to also disable sessions for particular actions. Because
 sessions are lazily loaded, simply don’t reference a session in any
 action in which you don’t need a session.

Session Storage

	 Rails has a number of options when it comes to storing your
	 session data. Each has good and bad points. We’ll start by
	 listing the options and then compare them at the end.
	

	
	 The session_store attribute
	 of ActionController::Base
	 determines the session storage mechanism—set this attribute
	 to a class that implements the storage strategy. This class
	 must be defined in the ActiveSupport::Cache::Store
	 module. You use
	 symbols to name the session storage strategy; the symbol is
	 converted into a CamelCase class name.
	
	session_store = :cookie_store
	

	
	 This is the default session storage mechanism used by
	 Rails, starting with version 2.0. This
	 format represents objects in their marshaled form, which
	 allows any serializable data to be stored in sessions
 but is limited to 4KB total. This is the option we used in the
 Depot application.

	session_store = :active_record_store
	

	
	
	 You can use the activerecord-session_store
gem[111] to
 store your session data in your application’s
	 database
	 using ActiveRecordStore.
	

	session_store = :drb_store
	

	
	
	
	
	 DRb is a protocol that allows Ruby
	 processes to share objects over a network
	 connection. Using the DRbStore database manager, Rails
	 stores session data on a DRb server (which you manage
	 outside the web application). Multiple instances of your
	 application, potentially running on distributed servers,
	 can access the same DRb store.
	 DRb uses Marshal to serialize
	 objects.
	

	session_store = :mem_cache_store
	

	
	
	 memcached is a
	 freely available,
	 distributed object caching system maintained by
 Dormando.[112] memcached is
	 more complex to use than the other alternatives and is
	 probably interesting only if you are already using it
	 for other reasons at your site.
	

	session_store = :memory_store
	

	
	
	 This option stores the session data locally in the
	 application’s memory. Because no serialization is involved, any
	 object can be stored in an in-memory session. As we’ll
	 see in a minute, this generally is not a good idea for
	 Rails applications.
	

	session_store = :file_store
	

	
	
	 Session data is stored in flat
	 files. It’s pretty much useless
	 for Rails applications, because the contents must be
	 strings. This mechanism supports the additional
	 configuration
	 options :prefix, :suffix,
	 and :tmpdir.
	

Comparing Session Storage Options

	 With all these session options to choose from, which should
	 you use in your application? As always, the answer is
	 “It depends.”
	

	 There are few absolutes when it comes to performance, and
	 everyone’s context is different. Your hardware, network
	 latencies, database choices, and possibly even the weather
	 will impact how all the components of session storage
	 interact. Our best advice is to start with the simplest
	 workable solution and then monitor it. If it starts to slow
	 you down, find out why before jumping out of the frying pan.
	

 If you have a high-volume site, keeping the size of the session data
 small and going with
 cookie_store is the way to go.

 If we rule out memory store as being too simplistic, file store as
 too restrictive, and memcached as overkill, the server-side
 choices boil down to CookieStore, Active Record store, and DRb-based
 storage. Should you need to store more in a session than you can
 with cookies, we recommend you start with an Active Record solution.
 If, as your application grows, you find this becoming a bottleneck,
 you can migrate to a DRb-based solution.

	
Session Expiry and Cleanup

	
	
		

	 One problem with all the server-side session storage solutions is
 that each new session adds something to the session
	 store.
	 This means you’ll eventually need to do some housekeeping or
	 you’ll run out of server resources.
	

	
	
	 There’s another reason to tidy up sessions. Many
	 applications don’t want a session to last forever. Once a
	 user has logged in from a particular browser, the
	 application might want to enforce a rule that the user stays
	 logged in only as long as they are active; when they log
	 out or some fixed time after they last use the application,
	 their session should be terminated.
	

	
	 You can sometimes achieve this effect by expiring the
	 cookie holding the session ID. However, this is open to
	 end-user abuse. Worse, it is hard to synchronize the expiry
	 of a cookie on the browser with the tidying up of the
	 session data on the server.
	

	 We therefore suggest you expire sessions by
	 simply removing their server-side session data. Should a
	 browser request subsequently arrive containing a session ID
	 for data that has been deleted, the application will receive
	 no session data; the session will effectively not be there.
	

	 Implementing this expiration depends on the storage mechanism
	 being used.
	

	
	 For Active Record--based session storage, use
	 the updated_at columns in
	 the sessions table. You can delete all
	 sessions that have not been modified in the last hour
	 (ignoring daylight saving time changes) by having your
	 sweeper task issue SQL such as this:
	
	​ 	​delete​ ​from​ sessions
	​ 	 ​where​ now() - updated_at > 3600;

	
	
	
	 For DRb-based solutions, expiry takes place within the DRb
	 server process. You’ll probably want to record timestamps
	 alongside the entries in the session data hash. You can run
	 a separate thread (or even a separate process) that
	 periodically deletes the entries in this hash.
	

	
	
		
	 In all cases, your application can help this process by
	 calling reset_session to delete
	 sessions when they are no longer needed (for example, when a
	 user logs out).
	
	
	
	
	
Flash: Communicating Between Actions

 When we use redirect_to to transfer
 control to another action, the browser generates a separate
 request to invoke that action. That request will be handled by
 our application in a fresh instance of a controller
 object—instance variables that were set in the original action
 are not available to the code handling the redirected
 action. But sometimes we need to communicate between these two
 instances. We can do this using a facility called
 the flash.

 The flash is a temporary scratchpad for values. It is organized
 like a hash and stored in the session data, so you can store values associated with keys and
 later retrieve them. It has one special property. By default,
 values stored into the flash during the processing of a request
 will be available during the processing of the immediately
 following request. Once that second
 request has been processed, those values are removed from the
 flash.

 Probably the most common use of the flash is to pass error and
 informational strings from one action to the
 next. The intent here is that
 the first action notices some condition, creates a message
 describing that condition, and redirects to a separate action. By
 storing the message in the flash, the second action is able to
 access the message text and use it in a view.
 An example of such usage can be found in
 Iteration E1.

 It is sometimes convenient to use the flash as a way of passing
 messages into a template in the current action. For example,
 our display method might want to output
 a cheery banner if there isn’t another, more pressing note. It
 doesn’t need that message to be passed to the next action—it’s
 for use in the current request only. To do this, it could
 use flash.now, which updates
 the flash but does not add to the session data.

 While flash.now creates a transient
 flash entry, flash.keep does the
 opposite, making entries that are currently in the flash stick
 around for another request cycle. If you pass no parameters
 to flash.keep, then all the flash contents
 are preserved.

 Flashes can store more than just text messages—you can use
 them to pass all kinds of information between actions. Obviously,
 for longer-term information you’d want to use the session
 (probably in conjunction with your database) to store the data,
 but the flash is great if you want to pass parameters from one
 request to the next.

 Because the flash data is stored in the session, all the usual
 rules apply. In particular, every object must be serializable. We
 strongly recommend passing only basic objects like Strings or Hashes in the
 flash.

Callbacks

 Callbacks enable you to write code in your controllers that wrap
 the processing performed by actions—you can write a chunk of
 code once and have it be called before or after any number of
 actions in your controller (or your controller’s
 subclasses). This turns out to be a powerful facility. Using
 callbacks, we can implement authentication
 schemes,
 logging, response
 compression,
 and even response customization.

 Rails supports three types of callbacks: before, after, and
 around. Such callbacks are called just prior to and/or just after the
 execution of actions. Depending on how you define them, they
 either run as methods inside the controller or are passed the
 controller object when they are run. Either way, they get access
 to details of the request and response objects, along with the
 other controller attributes.

Before and After Callbacks

	As their names suggest, before and after callbacks are invoked
	before or after an action. Rails maintains two chains of
	callbacks for each controller. When a controller is about to
	run an action, it executes all the callbacks on the before
	chain. It executes the action before running the callbacks on
	the after chain.

	Callbacks can be passive, monitoring activity performed by a
	controller. They can also take a more active part in request
	handling. If a before action callback
	returns false, then processing of the callback
	chain terminates, and the action is not
	run. A callback may
	also render output or redirect requests, in which case the
	original action never gets invoked.

	We saw an example of using callbacks for authorization in the
	administration part of our store example in ​Iteration J3: Limiting Access​. We defined an authorization
	method that redirected to a login screen if the current
	session didn’t have a logged-in user.
	We then made this method a before action callback for all the actions
	in the administration controller.

	Callback declarations also accept
	blocks and the names of
	classes.
	If a block is specified, it will be called with the current
	controller as a parameter. If a class is given,
	its filter class method
	will be called with the controller as a parameter.

	By default, callbacks apply to all actions in a controller (and
	any subclasses of that controller). You can modify this with
	the :only option, which takes one or
	more actions on which the callback is invoked, and
	the :except option, which lists
	actions to be excluded from callback.

	The before_action and after_action
	declarations append to the controller’s chain of callbacks. Use
	the variants prepend_before_action
 and prepend_after_action to
	put callbacks at the front of the chain.

	
	 After callbacks can be used to modify the outbound response,
	 changing the headers and content if required.
	 Some applications use this technique to perform global
	 replacements in the content generated by the controller’s
	 templates (for example, by substituting a customer’s name for
	 the string <customer/> in the response
	 body). Another use might be compressing the response if the
	 user’s browser supports it.
	

	Around callbacks wrap the execution of actions. You can write an
	around callback in two different styles. In the first, the
	callback is a single chunk of code. That code is called before
	the action is executed. If the callback code
	invokes yield, the action is executed. When the
	action completes, the callback code continues executing.

Thus,
	the code before the yield is like a before action callback,
	and the code after is the after action callback. If
	the callback code never invokes yield, the action is
	not run—this is the same as a before action callback
	return false.

	The benefit of around callbacks is that they can retain context
	across the invocation of the action.

	As well as passing around_action the name of a
	method, you can pass it a block or a filter class.

	If you use a block as a callback, it will be passed two
	parameters: the controller object and a proxy for the
	action. Use call on this second
	parameter to invoke the original action.

	A second form allows you to pass an object as a callback. This
	object should implement a method
	called filter. This method will be passed
	the controller object. It yields to invoke the action.

	Like before and after callbacks, around callbacks
	take :only and :except parameters.

	Around callbacks are (by default) added to the
callback chain
	differently: the first around action callback added executes first.
	Subsequently added around callbacks will be nested within
	existing around callbacks.

Callback Inheritance

	If you subclass a controller containing callbacks,
	the callbacks will be run on the child objects as well as in the
	parent. However, callbacks defined in the children will not run
	in the parent.

	If you don’t want a particular callback to run in a child
	controller, you can override the default processing with
	the skip_before_action and skip_after_action
	declarations. These accept the :only
	and :except parameters.

	You can use skip_action to skip any action callback (before,
	after, and around). However, it works only for callbacks that
	were specified as the (symbol) name of a method.

	We made use of skip_before_action in ​Iteration J3: Limiting Access​.

What We Just Did

 We learned how Action Dispatch and Action Controller cooperate to
 enable our server to respond to requests. The importance of this can’t
 be emphasized enough. In nearly every application, this is the primary
 place where the creativity of your application is expressed. While
 Active Record and Action View are hardly passive, our routes and our
 controllers are where the action is.

 We started this chapter by covering the concept of REST, which was the
 inspiration for the way in which Rails approaches the routing of requests. We
 saw how this provided seven basic actions as a starting point and how
 to add more actions. We also saw how to select a data representation
 (for example, JSON or XML). And we covered how to test routes.

 We then covered the environment that Action Controller provides for your
 actions, as well as the methods it provides for rendering and redirecting.
 Finally, we covered sessions, flash, and callbacks, each of which is
 available for use in your application’s controllers.

 Along the way, we showed how these concepts were used in the
 Depot application. Now that you have seen each in use and have been
 exposed to the theory behind each, how you combine and use these
 concepts is limited only by your own creativity.

 In the next chapter, we will cover the remaining component of Action
 Pack, namely, Action View, which handles the rendering of results.

Footnotes

	[110]
	

		http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
	

	[111]
	
https://github.com/rails/activerecord-session_store#installation

	[112]
	

		 http://memcached.org/
		

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Templates
	Forms including fields and uploading files
	Helpers
	Layouts and partials

 Chapter
 22
Action View

 We’ve seen how the routing component determines which controller
 to use and how the controller chooses an action. We’ve also seen
 how the controller and action between them decide what to render
 to the user. Normally rendering takes place at the end
 of the action, and involves a template. That’s what
 this chapter is all about. Action View encapsulates all the functionality needed to render
 templates, most commonly generating HTML, XML, or JavaScript back
 to the user. As its name
 suggests, Action View is the view part of
 our MVC trilogy.

 In this chapter, we will start with templates, for which Rails provides a
 range of options. We will then cover a number of
 ways in which users provide input: forms, file uploads, and links. We
 will complete this chapter by looking at a number of ways to reduce
 maintenance using helpers, layouts, and partials.

Using Templates

 When you write a view, you’re writing a template: something that
 will get expanded to generate the final result. To understand how
 these templates work, we need to look at three areas:

	Where the templates go
	The environment they run in
	What goes inside them

Where Templates Go

	The render method expects to find
	templates in the
	app/views directory of the current
	application.
	Within
	this directory, the convention is to have a separate
	subdirectory for the views of each
	controller. Our Depot application, for
	instance, includes products and store controllers. As a result,
	our application has templates in app/views/products
	and app/views/store. Each directory
	typically contains templates named after the actions in the
	corresponding controller.

	You can also have templates that aren’t named after
	actions. You render such templates from the controller
	using calls such as these:

	​ 	render(​action: ​​'fake_action_name'​)
	​ 	render(​template: ​​'controller/name'​)
	​ 	render(​file: ​​'dir/template'​)

	The last of these allows you to store templates anywhere on your
	filesystem. This is useful if you want to share
	templates across applications.

The Template Environment

	Templates contain a mixture of fixed text and code. The code
	in the template adds dynamic content to the response. That code runs
	in an environment that gives it access to the information
	set up by the controller:

	

	
	 All instance variables of the controller are also
	 available in the template. This is how actions communicate
	 data to the templates.
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	 The controller
	 object’s flash, headers, logger, params, request, response,
	 and session are available as
	 accessor methods in the view.
	 Apart from the flash, view
	 code probably should not use these directly, because the
	 responsibility for handling them should rest with the
	 controller. However, we do find this useful when
	 debugging. For example, the
	 following html.erb template uses
	 the debug method to display the contents of the
	 session, the details of the parameters, and the current
	 response:
	
	
	
	
	
	
	
	
	​ 	<h4>Session</h4> ​<​%= debug(session) %>
	​ 	<h4>Params</h4> ​<​%= debug(params) %>
	​ 	<h4>Response</h4> ​<​%= debug(response) %>

	

	
	 The current controller object is accessible using the
	 attribute
	 named controller.
	 This allows the template to call any public method in the
	 controller (including the methods
	 in ActionController::Base).
	
	

	

	
	
	 The path to the base directory of the templates is
	 stored in the
	 attribute base_path.
	
	

What Goes in a Template

 Out of the box, Rails supports five types of templates:

	

	
 ERB templates are a mixture of content and embedded Ruby. They are
 typically used to generate HTML pages.
	

	

	
	
	
 Jbuilder[113] templates generate JSON responses.
	

	

	
	
	
 Builder templates use the Builder library[114] to construct XML responses.
	

	

	
	
	

 CoffeeScript or JavaScript templates create JavaScript, which can change
 both the presentation and the behavior
 of your content in the browser.
	

	

	

 SCSS templates create CSS stylesheets to control the
 presentation of your content in the browser.
	

 By far, the one that you will be using the most will be ERB. In fact,
 you made extensive use of ERB templates in developing the Depot
 application.

 So far in this chapter, we have focused on producing output. In Chapter 21, ​Action Dispatch and Action Controller​, we focused on processing input. In a
 well-designed application, these two are not unrelated: the output we
 produce contains forms, links, and buttons that guide the end user to
 producing the next set of inputs. As you might expect by now, Rails
 provides a considerable amount of help in this area too.

Generating Forms

 HTML provides a number of elements, attributes, and attribute values
 that control how input is gathered. You certainly could hand-code your
 form directly into the template, but there really is no need
 to do that.

 In this section, we will cover a number of helpers that Rails
 provides that assist with this process. In ​Using Helpers​, we will show you how you can create your own
 helpers.

 HTML provides a number of ways to collect data in forms.
 A few of the more common
 means are shown in the following screenshot. Note that the form itself is not representative of any sort of
 typical use; in general, you will use only a subset of these methods to
 collect data.

[image: images/form_helpers.png]

 Let’s look at the template that was used to produce that form:

rails51/views/app/views/form/input.html.erb
	​1: 	​<%=​ form_for(​:model​) ​do​ |form| ​%>​
	​- 	<p>
	​- 	 ​<%=​ form.label ​:input​ ​%>​
	​- 	 ​<%=​ form.text_field ​:input​, ​:placeholder​ => ​'Enter text here...'​ ​%>​
	​5: 	</p>
	​- 	
	​- 	<p>
	​- 	 ​<%=​ form.label ​:address​, ​:style​ => ​'float: left'​ ​%>​
	​- 	 ​<%=​ form.text_area ​:address​, ​:rows​ => 3, ​:cols​ => 40 ​%>​
	​10: 	</p>
	​- 	
	​- 	<p>
	​- 	 ​<%=​ form.label ​:color​ ​%>​:
	​- 	 ​<%=​ form.radio_button ​:color​, ​'red'​ ​%>​
	​15: 	 ​<%=​ form.label ​:red​ ​%>​
	​- 	 ​<%=​ form.radio_button ​:color​, ​'yellow'​ ​%>​
	​- 	 ​<%=​ form.label ​:yellow​ ​%>​
	​- 	 ​<%=​ form.radio_button ​:color​, ​'green'​ ​%>​
	​- 	 ​<%=​ form.label ​:green​ ​%>​
	​20: 	</p>
	​- 	
	​- 	<p>
	​- 	 ​<%=​ form.label ​'condiment'​ ​%>​:
	​- 	 ​<%=​ form.check_box ​:ketchup​ ​%>​
	​25: 	 ​<%=​ form.label ​:ketchup​ ​%>​
	​- 	 ​<%=​ form.check_box ​:mustard​ ​%>​
	​- 	 ​<%=​ form.label ​:mustard​ ​%>​
	​- 	 ​<%=​ form.check_box ​:mayonnaise​ ​%>​
	​- 	 ​<%=​ form.label ​:mayonnaise​ ​%>​
	​30: 	</p>
	​- 	
	​- 	<p>
	​- 	 ​<%=​ form.label ​:priority​ ​%>​:
	​- 	 ​<%=​ form.select ​:priority​, (1..10) ​%>​
	​35: 	</p>
	​- 	
	​- 	<p>
	​- 	 ​<%=​ form.label ​:start​ ​%>​:
	​- 	 ​<%=​ form.date_select ​:start​ ​%>​
	​40: 	</p>
	​- 	
	​- 	<p>
	​- 	 ​<%=​ form.label ​:alarm​ ​%>​:
	​- 	 ​<%=​ form.time_select ​:alarm​ ​%>​
	​45: 	</p>
	​- 	​<%​ ​end​ ​%>​

 In that template, you will see a number of labels, such as the one on line
 3. You use labels to associate text
 with an input field for a specified attribute. The text of the label will
 default to the attribute name unless you specify it explicitly.

 You use the text_field and text_area
 helpers (on lines 4 and 9, respectively) to gather single-line
 and multiline input fields. You may specify a placeholder,
 which will be displayed inside the field until the user provides a
 value. Not every browser supports this function, but those that don’t
 simply will display an empty box. Since this will degrade gracefully,
 there is no need for you to design to the least common denominator—make use of this feature, because those who can see it will benefit from it
 immediately.

 Placeholders are one of the many small “fit and finish” features
 provided with HTML5, and once again, Rails is ready even if the browser
 your users have installed is not. You can use the
 search_field,
 telephone_field,
 url_field,
 email_field,
 number_field, and
 range_field helpers to prompt
 for a specific type of input. How the browser will make use of this
 information varies. Some may display the field slightly differently in
 order to more clearly identify its function. Safari on Mac, for
 example, will display search fields with rounded corners and will insert
 a little x for clearing the field once data entry begins. Some
 may provide added validation. For example, Opera will validate URL fields
 prior to submission. The iPad will even adjust the virtual onscreen
 keyboard to provide ready access to characters such as the @
 sign when entering an email address.

 Although the support for these functions varies by browser, those that
 don’t provide extra support for these functions simply display a plain,
 unadorned input box. Once again, nothing is gained by waiting. If you
 have an input field that’s expected to contain an email address, don’t
 simply use text_field—go ahead and start using
 email_field now.

 Lines 14,
 24, and
 34 demonstrate three different ways to
 provide a constrained set of options. Although the display may vary a bit
 from browser to browser, these approaches are all well supported across all
 browsers. The select method is particularly
 flexible—it can be passed an
 Enumeration as shown here, an array of pairs of
 name-value pairs, or a Hash. A number of form options
 helpers[115] are available to produce such lists from various sources,
 including the database.

 Finally, lines 39 and
 44 show prompts for a date and time,
 respectively. As you might expect by now, Rails provides plenty of
 options here too.[116]

 Not shown in this example are hidden_field and
 password_field. A hidden field is not
 displayed at all, but the value is passed back to the server. This may
 be useful as an alternative to storing transient data in sessions,
 enabling data from one request to be passed onto the next. Password
 fields are displayed, but the text entered in them is obscured.

 This is more than an adequate starter set for most needs. Should you
 find that you have additional needs, you are quite likely to find a
 helper or gem is already available for you. A good place to start
 is with the Rails Guides.[117]

 Meanwhile, let’s explore how the data forms submit is
 processed.

Processing Forms

 In the figure we can see how the various
 attributes in the model pass through the controller to the view,
 on to the HTML page, and back again into the model. The model
 object has attributes such
 as name, country,
 and password. The template uses
 helper methods to construct an
 HTML form to let the user edit the data in the model. Note how
 the form fields are
 named. The country attribute, for
 example, maps to an HTML input field with the
 name user[country].

[image: images/mvc_integration_2.png]

 When the user submits the
 form, the raw POST data is sent back
 to our application. Rails extracts the fields from the form and
 constructs the params hash.
 Simple values
 (such as the id field, extracted by routing from the form
 action) are stored directly in the hash. But, if a parameter
 name has brackets in it, Rails assumes that it is part of more
 structured data and constructs a hash to hold the
 values. Inside this hash, the string inside the brackets acts
 as the key. This process can repeat if a parameter name has
 multiple sets of brackets in it.

	Form Parameters
	Params

	id=123
	{ id: "123" }

	user[name]=Dave
	{ user: { name: "Dave" }}

	user[address][city]=Wien
	{ user: { address: { city: "Wien" }}}

 In the final part of the integrated whole, model objects can
 accept new attribute values from
 hashes, which allows us to say this:

	​ 	user.update(user_params)

 Rails integration goes deeper than this. Looking at
 the html.erb file in
 the preceding figure, we can see that the
 template uses a set of helper methods to create the form’s HTML; these are
 methods such as form_with
 and text_field.

 Before moving on, it is worth noting that params may be used
 for more than text. Entire files can be uploaded. We’ll cover
 that next.

Uploading Files to Rails Applications

 Your application may allow users to upload files. For example,
 a bug-reporting system might let users attach log files and
 code samples to a problem ticket, or a blogging application
 could let its users upload a small image to appear next to
 their articles.

 In HTTP, files are uploaded as
 a multipart/form-data POST message. As the name suggests, forms are used to generate
 this type of message.
 Within that form, you’ll use <input> tags with type="file". When rendered by a browser, this
 allows the user to select a file by name. When the form is
 subsequently submitted, the file or files will be sent back
 along with the rest of the form data.

 To illustrate the file upload process, we’ll show some code
 that allows a user to upload an image and display that image
 alongside a comment. To do this, we first need
 a pictures table to store the data:

rails51/e1/views/db/migrate/20170425000004_create_pictures.rb
	​ 	​class​ CreatePictures < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 create_table ​:pictures​ ​do​ |t|
	​ 	 t.string ​:comment​
	​ 	 t.string ​:name​
	​ 	 t.string ​:content_type​
	​ 	 ​# If using MySQL, blobs default to 64k, so we have to give​
	​ 	 ​# an explicit size to extend them​
	​ 	 t.binary ​:data​, ​:limit​ => 1.megabyte
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 We’ll create a somewhat artificial upload controller just to
 demonstrate the process. The get
 action is pretty conventional; it simply creates a new
 picture object and renders a form:

rails51/e1/views/app/controllers/upload_controller.rb
	​ 	​class​ UploadController < ApplicationController
	​ 	 ​def​ get
	​ 	 @picture = Picture.new
	​ 	 ​end​
	​ 	 ​# . . .​
	​ 	 ​private​
	​ 	 ​# Never trust parameters from the scary internet, only allow the white​
	​ 	 ​# list through.​
	​ 	 ​def​ picture_params
	​ 	 params.require(​:picture​).permit(​:comment​, ​:uploaded_picture​)
	​ 	 ​end​
	​ 	​end​

 The get
 template contains the form that uploads the picture (along
 with a comment). Note how we override the encoding type to
 allow data to be sent back with the response:

rails51/e1/views/app/views/upload/get.html.erb
	​ 	​<%=​ form_for(​:picture​,
	​ 	 ​url: ​{​action: ​​'save'​},
	​ 	 ​html: ​{​multipart: ​​true​}) ​do​ |form| ​%>​
	​ 	
	​ 	 Comment: ​<%=​ form.text_field(​"comment"​) ​%>​

	​ 	 Upload your picture: ​<%=​ form.file_field(​"uploaded_picture"​) ​%>​

	​ 	
	​ 	 ​<%=​ submit_tag(​"Upload file"​) ​%>​
	​ 	​<%​ ​end​ ​%>​

 The form has one other subtlety. The picture uploads into
 an attribute called uploaded_picture. However, the
 database table doesn’t contain a column of that name. That
 means that there must be some magic happening in the model:

rails51/e1/views/app/models/picture.rb
	​ 	​class​ Picture < ActiveRecord::Base
	​ 	
	​ 	 validates_format_of ​:content_type​,
	​ 	 ​with: ​​/\Aimage/​,
	​ 	 ​message: ​​"must be a picture"​
	​ 	
	​ 	 ​def​ uploaded_picture=(picture_field)
	​ 	 self.name = base_part_of(picture_field.original_filename)
	​ 	 self.content_type = picture_field.content_type.chomp
	​ 	 self.data = picture_field.read
	​ 	 ​end​
	​ 	
	​ 	 ​def​ base_part_of(file_name)
	​ 	 File.basename(file_name).gsub(​/[^\w._-]/​, ​''​)
	​ 	 ​end​
	​ 	​end​

 We define an accessor
 called uploaded_picture= to
 receive the file uploaded by the form.
 The object
 returned by the form is an interesting hybrid. It is
 file-like, so we can read its contents with
 the read method; that’s how we get
 the image data into the data column. It
 also has the
 attributes content_type and original_filename, which
 let us get at the uploaded file’s metadata. Accessor methods pick
 all this apart, resulting in a single object
 stored as separate attributes in the database.

 Note that we also add a validation to check that the
 content type is of the
 form image/xxx. We don’t want someone
 uploading JavaScript.

 The save action in the controller is
 totally conventional:

rails51/e1/views/app/controllers/upload_controller.rb
	​ 	​def​ save
	​ 	 @picture = Picture.new(picture_params)
	​ 	 ​if​ @picture.save
	​ 	 redirect_to(​action: ​​'show'​, ​id: ​@picture.id)
	​ 	 ​else​
	​ 	 render(​action: :get​)
	​ 	 ​end​
	​ 	​end​

 Now that we have an image in the database, how do we display
 it? One way is to give it its own URL and link to that
 URL from an image tag. For example, we could use a URL such
 as upload/picture/123 to return the image for picture
 123. This would use send_data to return
 the image to the browser. Note how we set the content type and
 filename—this lets browsers interpret the data and supplies a
 default name should the user choose to save the image:

rails51/e1/views/app/controllers/upload_controller.rb
	​ 	​def​ picture
	​ 	 @picture = Picture.find(params[​:id​])
	​ 	 send_data(@picture.data,
	​ 	 ​filename: ​@picture.name,
	​ 	 ​type: ​@picture.content_type,
	​ 	 ​disposition: ​​"inline"​)
	​ 	​end​

 Finally, we can implement the show
 action, which displays the comment and the image. The action
 simply loads the picture model object:

rails51/e1/views/app/controllers/upload_controller.rb
	​ 	​def​ show
	​ 	 @picture = Picture.find(params[​:id​])
	​ 	​end​

 In the template, the image tag links back to the action that
 returns the picture content. In the following screenshot, we can see
				 the get
 and show actions.

[image: images/file_upload.png]
rails51/e1/views/app/views/upload/show.html.erb
	​ 	<h3>​<%=​ @picture.comment ​%>​</h3>
	​ 	
	​ 	<img src=​"​​<%=​ url_for(​:action​ => ​'picture'​, ​:id​ => @picture.id) ​%>​​"​/>

 If you’d like an easier way of dealing with uploading and
 storing images, take a look at thoughtbot’s Paperclip[118] or Rick Olson’s attachment_fu[119] plugins.
 Create a database table that includes a given set of columns
 (documented on Rick’s site), and the plugin will automatically
 manage storing both the uploaded data and the upload’s
 metadata. Unlike our previous approach, it handles storing
 the uploads in either your filesystem or a database table.

 Forms and uploads are just two examples of helpers that Rails provides.
 Next we will show you how you can provide your own helpers and
 introduce you to a number of other helpers that come with Rails.

Using Helpers

 Earlier we said that it’s OK to put code in templates. Now
 we’re going to modify that statement. It’s perfectly acceptable
 to put some code in templates—that’s what makes
 them dynamic. However, it’s poor style to put too much code in
 templates.

 There are three main reasons for this. First, the more code you
 put in the view side of your application, the easier it is to
 let discipline slip and start adding application-level
 functionality to the template code. This is definitely poor
 form; you want to put application stuff in the controller and
 model layers so that it is available everywhere. This will pay
 off when you add new ways of viewing the application.

 The second reason is that html.erb is
 basically HTML. When you edit it, you’re editing an HTML
 file. If you have the luxury of having professional designers
 create your layouts, they’ll want to work with
 HTML. Putting a bunch of Ruby code in there just makes it hard to work with.

 The final reason is that code embedded in views is hard to test,
 whereas code split out into helper modules can be isolated and
 tested as individual units.

 Rails provides a nice compromise in the form of
 helpers. A helper is simply a module containing
 methods that assist a view. Helper methods are
 output-centric. They exist to generate HTML (or XML, or
 JavaScript)—a helper extends the behavior of a
 template.

Your Own Helpers

 By default, each controller gets its own helper module. Additionally,
 there is an application-wide helper named
 application_helper.rb. It won’t
 be surprising to learn that Rails makes certain assumptions to
 help link the helpers into the controller and its
 views. While all view helpers
 are available to all controllers, it often is good practice to
 organize helpers.
 Helpers that are unique to the views associated with
 the ProductController tend to be placed in a
 helper module called ProductHelper in the
 file product_helper.rb in
 the app/helpers directory. You don’t have to
 remember all these details—the rails generate
 controller script creates a stub helper module
 automatically.

 In ​Iteration F4: Hiding an Empty Cart with a Custom Helper​, we created such a helper method
 named hidden_div_if, which enabled us to hide
 the cart under specified conditions. We can use the same technique to
 clean up the application layout a bit. Currently we have the
 following:

	​ 	<h3>​<%=​ @page_title || ​"Pragmatic Store"​ ​%>​</h3>

 Let’s move the code that works out the page title into
 a helper method. Because we’re in the store controller, we edit the
 store_helper.rb file
 in app/helpers:

	​ 	​module​ StoreHelper
	​ 	 ​def​ page_title
	​ 	 @page_title || ​"Pragmatic Store"​
	​ 	 ​end​
	​ 	​end​

 Now the view code simply calls the helper method:

	​ 	<h3>​<%=​ page_title ​%>​</h3>

 (We might want to eliminate even more duplication by moving the
 rendering of the entire title into a separate partial template,
 shared by all the controller’s views, but we don’t talk about
 partial templates until ​Partial-Page Templates​.)

Helpers for Formatting and Linking

 Rails comes with a bunch of built-in helper methods, available
 to all views. Here, we’ll touch on the highlights, but
 you’ll probably want to look at the Action View RDoc for the
 specifics—there’s a lot of functionality in
 there.

 Aside from the general convenience these helpers provide, many of them also handle internationalization and localization. In Chapter 16, ​Task K: Internationalization​, we translated much of the application. Many of the helpers we used handled that for us, such as number_to_currency. It’s always a good practice to use Rails helpers where they are appropriate, even if it seems just as easy to hard-code the output you want.

Formatting Helpers

 One set of helper methods deals with dates,
 numbers, and text:

	
	<%= distance_of_time_in_words(Time.now, Time.local(2016, 12, 25)) %>

	
4 months

	
	<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: false) %>

	
1 minute

	
	<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: true) %>
	
Half a minute

	
	<%= time_ago_in_words(Time.local(2012, 12, 25)) %>

	
7 months

	
	<%= number_to_currency(123.45) %>

	
$123.45

	
	<%= number_to_currency(234.56, unit: "CAN$", precision: 0) %>

	
CAN$235

	
	<%= number_to_human_size(123_456) %>

	
120.6 KB

	
	<%= number_to_percentage(66.66666) %>

	
66.667%

	
	<%= number_to_percentage(66.66666, precision: 1) %>

	
66.7%

	
	<%= number_to_phone(2125551212) %>

	
212-555-1212

	
	<%= number_to_phone(2125551212, area_code: true, delimiter: " ") %>

	
(212) 555 1212

	
	<%= number_with_delimiter(12345678) %>

	
12,345,678

	
	<%= number_with_delimiter(12345678, delimiter: "_") %>

	
12_345_678

	
	<%= number_with_precision(50.0/3, precision: 2) %>

	
16.67

 The debug method dumps out its
 parameter using YAML and escapes the result so it can
 be displayed in an HTML page. This can help when trying to
 look at the values in model objects or request parameters:

 <%= debug(params) %>

	​ 	--- ​!ruby/hash:HashWithIndifferentAccess​
	​ 	name: ​Dave​
	​ 	language: ​Ruby​
	​ 	action: ​objects​
	​ 	controller: ​test​

 Yet another set of helpers deals with text. There are methods to
 truncate strings and highlight words in a string:

	
	<%= simple_format(@trees) %>

	

	
	
	 Formats a string, honoring line and paragraph breaks. You
 could give it the plain text of the Joyce Kilmer poem Trees[120], and it would add
	 the HTML to format it as follows.
	

<p>
	 I think that I shall never see
	
A poem lovely as a tree.</p>

	 <p>A tree whose hungry mouth is prest
	
Against the sweet earth’s flowing breast;
	 </p>

	
	<%= excerpt(@trees, "lovely", 8) %>

	
...A poem lovely as a tre...

	
	<%= highlight(@trees, "tree") %>

	

	
	 I think that I shall never see
	 A poem lovely as a <strong class="highlight">tree.

	 A <strong class="highlight">tree whose hungry mouth is prest
	 Against the sweet earth’s flowing breast;
	

	
	<%= truncate(@trees, length: 20) %>

	

	 I think that I sh...

 There’s a method to pluralize nouns:

	
	<%= pluralize(1, "person") %> but
	 <%= pluralize(2, "person") %>

	
1 person but 2 people

 If you’d like to do what the fancy websites do and
 automatically hyperlink URLs and email addresses, there are
 helpers to do that. There’s another that strips hyperlinks from
 text.

 Back in Iteration A2, we saw how
 the cycle helper can
 be used to return the successive values from a sequence each
 time it’s called, repeating the sequence as necessary. This is
 often used to create alternating styles for the rows in a table
 or list. The current_cycle and
 reset_cycle methods are also available.

 Finally, if you’re writing something like a blog site or you’re
 allowing users to add comments to your store, you could offer
 them the ability to create their text in Markdown
 (BlueCloth)[121]
 or Textile (RedCloth)[122]
 format. These are formatters that take text written in
 human-friendly markup and convert it into HTML.

Linking to Other Pages and Resources

 The ActionView::Helpers::AssetTagHelper
 and ActionView::Helpers::UrlHelper
 modules contain a number of methods that let you reference
 resources external to the current template. Of these, the most
 commonly used is link_to, which creates a hyperlink to another
 action in your application:

	​ 	<​%= link_to "Add Comment", new_comments_path %>​

 The first parameter to link_to is the
 text displayed for the link. The next is a string or hash specifying the
 link’s target.

 An optional third parameter provides HTML attributes for the
 generated link:

	​ 	​<%=​ link_to ​"Delete"​, product_path(@product),
	​ 	 { ​class: ​​"dangerous"​, ​method: ​​'delete'​ }
	​ 	​%>​

 This third parameter also supports two additional options that
 modify the behavior of the link. Each requires JavaScript to be
 enabled in the browser.

 The :method
 option is a hack—it allows you to make the link look to the
 application as if the request were created by a POST, PUT, PATCH, or
 DELETE, rather than the normal GET method. This is done by
 creating a chunk of JavaScript that submits the request when the
 link is clicked—if JavaScript is disabled in the browser, a
 GET will be generated.

 The :data parameter allows you to set custom data attributes.
 The most commonly used one is the :confirm
 option, which takes a short message. If present, an unobtrusive JavaScript
 driver will display the message and get the user’s confirmation
 before the link is followed:

	​ 	​<%=​ link_to ​"Delete"​, product_path(@product),
	​ 	 ​method: :delete​,
	​ 	 ​data: ​{ ​confirm: ​​'Are you sure?'​ }
	​ 	​%>​

 The button_to
 method works the same as link_to but
 generates a button in a self-contained form, rather than a
 straight hyperlink. This is the preferred method of
 linking to actions that have side effects. However, these
 buttons live in their own forms, which imposes a couple of
 restrictions: they cannot appear inline, and they cannot appear
 inside other forms.

 Rails has conditional linking methods that generate hyperlinks
 if some condition is met or just return the link text
 otherwise.
 link_to_if and link_to_unless take a condition parameter,
 followed by the regular parameters to link_to. If the
 condition is true (for link_to_if)
 or false (for link_to_unless), a regular link
 will be created using the remaining parameters. If not, the name
 will be added as plain text (with no hyperlink).

 The link_to_unless_current helper
 creates menus in sidebars where the current page name is shown
 as plain text and the other entries are hyperlinks:

	​ 	
	​ 	​<%​ ​%w{ create list edit save logout }​.each ​do​ |action| ​%>​
	​ 	
	​ 	 ​<%=​ link_to_unless_current(action.capitalize, ​action: ​action) ​%>​
	​ 	
	​ 	​<%​ ​end​ ​%>​
	​ 	

 The link_to_unless_current helper may also be passed
 a block that is evaluated only if the current action is the action
 given, effectively providing an alternative to the link.
 There also is a current_page helper method that simply tests whether
 the current request URI was generated by the given options.

 As
 with url_for, link_to
 and friends also support absolute URLs:

	​ 	​<%=​ link_to(​"Help"​, ​"http://my.site/help/index.html"​) ​%>​

 The image_tag helper
 creates tags. Optional :size parameters (of the
 form widthxheight) or separate
 width and height parameters define the size of the image:

	​ 	​<%=​ image_tag(​"/assets/dave.png"​, ​class: ​​"bevel"​, ​size: ​​"80x120"​) ​%>​
	​ 	​<%=​ image_tag(​"/assets/andy.png"​, ​class: ​​"bevel"​,
	​ 	 ​width: ​​"80"​, ​height: ​​"120"​) ​%>​

 If you don’t give an :alt option, Rails synthesizes one
 for you using the image’s filename.
 If the image path doesn’t start with a / character, Rails
 assumes that it lives under the app/assets/images
 directory.

 You can make images into links by
 combining link_to
 and image_tag:

	​ 	​<%=​ link_to(image_tag(​"delete.png"​, ​size: ​​"50x22"​),
	​ 	 product_path(@product),
	​ 	 ​data: ​{ ​confirm: ​​"Are you sure?"​ },
	​ 	 ​method: :delete​)
	​ 	​%>​

 The mail_to helper
 creates a mailto: hyperlink that, when
 clicked, normally loads the client’s email
 application. It takes an email
 address, the name of the link, and a set of HTML options. Within
 these options, you can also
 use :bcc, :cc, :body,
 and :subject to initialize the
 corresponding email fields. Finally,
 the magic
 option encode: "javascript" uses
 client-side JavaScript to obscure the generated link, making it
 harder for spiders to harvest email addresses from your
 site.
	 Unfortunately, it also means your users won’t see the email link if
	 they have JavaScript disabled in their browsers.

	​ 	​<%=​ mail_to(​"support@pragprog.com"​, ​"Contact Support"​,
	​ 	 ​subject: ​​"Support question from ​​#{​@user.name​}​​"​,
	​ 	 ​encode: ​​"javascript"​) ​%>​

 As a weaker form of obfuscation, you can use
 the :replace_at and :replace_dot options to
 replace the at sign and dots in the displayed name with other
 strings. This is unlikely to fool harvesters.

 The AssetTagHelper module also includes
 helpers that make it easy to link to stylesheets and JavaScript
 code from your pages and to create autodiscovery Atom
 feed links. We created links in the layouts for the
 Depot application using the stylesheet_link_tag and
 javascript_link_tag methods in the head:

rails51/depot_r/app/views/layouts/application.html.erb
	​ 	<html>
	​ 	 <head>
	​ 	 <title>Pragprog Books Online Store</title>
	​ 	 ​<%=​ csrf_meta_tags ​%>​
	​ 	
	​ 	 ​<%=​ stylesheet_link_tag ​'application'​, ​media: ​​'all'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 ​<%=​ javascript_include_tag ​'application'​,
	​ 	 ​'data-turbolinks-track'​: ​'reload'​ ​%>​
	​ 	 </head>

 The javascript_include_tag method takes a
 list of JavaScript filenames (assumed to live in
 assets/javascripts) and creates the HTML to load
 these into a page.

 An RSS or Atom link is a header field that points to a URL in
 our application. When that URL is accessed, the application
 should return the appropriate RSS or Atom XML:

	​ 	<html>
	​ 	 <head>
	​ 	 ​<%=​ auto_discovery_link_tag(​:atom​, products_url(​format: ​​'atom'​)) ​%>​
	​ 	 </head>
	​ 	 . . .

 Finally, the JavaScriptHelper module
 defines a number of helpers for working with JavaScript. These
 create JavaScript snippets that run in the browser to
 generate special effects and to have the page dynamically
 interact with our application.

 By default, image and stylesheet assets are assumed to live in
 the images and stylesheets
 directories relative to the
 application’s assets directory. If the path
 given to an asset tag method starts with a forward slash, then the
 path is assumed to be absolute, and no prefix is
 applied. Sometimes it makes sense to move this static content
 onto a separate box or to different locations on the current
 box. Do this by setting the configuration
 variable asset_host:

	​ 	config.action_controller.asset_host = ​"http://media.my.url/assets"​

 Although this list of helpers may seem to be comprehensive, Rails provides
 many more, new helpers are introduced with each release, and a select
 few are retired or moved off into a plugin where they can be evolved at a
 different pace than Rails.

Reducing Maintenance with Layouts and Partials

 So far in this chapter we’ve looked at templates as isolated
 chunks of code and HTML. But one of the driving ideas behind
 Rails is honoring the DRY principle and eliminating the need for
 duplication. The average website,
 though, has lots of duplication:

	

	 Many pages share the same tops, tails, and sidebars.
	

	

	 Multiple pages may contain the same snippets of rendered
	 HTML (a blog site, for example, may display an article in multiple
 places).
	

	

	 The same functionality may appear in multiple places. Many
	 sites have a standard search component or a polling
	 component that appears in most of the sites’ sidebars.
	

 Rails provides both layouts and partials that
 reduce the need for duplication in these three situations.

Layouts

	Rails allows you to render pages that are nested inside other
	rendered pages. Typically this feature is used to put the
	content from an action within a standard site-wide page frame
	(title, footer, and sidebar). In fact, if you’ve been using
	the generate script to create
	scaffold-based applications, then you’ve been using these
	layouts all along.

	When Rails honors a request to render a template from within a
	controller, it actually renders two templates. Obviously, it
	renders the one you ask for (or the default template named
	after the action if you don’t explicitly render
	anything). But Rails
	also tries to find and render a layout template (we’ll talk
	about how it finds the layout in a second). If it finds the
	layout, it inserts the action-specific output into the HTML
	produced by the layout.

	Let’s look at a layout template:

	​ 	<html>
	​ 	 <head>
	​ 	 <title>Form: ​<%=​ controller.action_name ​%>​</title>
	​ 	 ​<%=​ stylesheet_link_tag ​'scaffold'​ ​%>​
	​ 	 </head>
	​ 	 <body>
	​ 	
	​ 	 ​<%=​ ​yield​ ​:layout​ ​%>​
	​ 	
	​ 	 </body>
	​ 	</html>

	The layout sets out a standard HTML page, with the head and
	body sections. It uses the current action name as the page
	title and includes a CSS file. In the body, there’s a call
	to yield. This is where the magic takes place. When
	the template for the action was rendered, Rails stored its
	content, labeling it :layout. Inside the layout
	template, calling yield retrieves this
	text.
	 In fact, :layout is the default content returned
	 when rendering, so you can write yield instead
	 of yield :layout. We personally prefer the
	 slightly more explicit version.
	

	If the my_action.html.erb
	template contained this:

	​ 	<h1>​<%=​ @msg ​%>​</h1>

 and the controller set @msg to Hello, World!,
 then the browser would see the following HTML:

	​ 	<html>
	​ 	 <head>
	​ 	 <title>Form: my_action</title>
	​ 	 <link href=​"/stylesheets/scaffold.css"​ media=​"screen"​
	​ 	 rel=​"Stylesheet"​ type=​"text/css"​ />
	​ 	 </head>
	​ 	 <body>
	​ 	
	​ 	 <h1>Hello, World!</h1>
	​ 	
	​ 	 </body>
	​ 	</html>

Locating Layout Files

	
	
	
	 As you’ve probably come to expect, Rails does a good job of
	 providing defaults for layout file locations, but you can
	 override the defaults if you need something different.
	

	
	
	
	
	
	 Layouts are controller-specific. If the current request is
	 being handled by a controller called store, Rails will by
	 default look for a layout
	 called store (with the
	 usual html.erb
	 or xml.builder extension) in
	 the app/views/layouts directory. If you
	 create a layout called application in
	 the layouts directory, it will be applied
	 to all controllers that don’t otherwise have a layout
	 defined for them.
	

	 You can override this using
	 the layout declaration inside a
 controller. The most basic invocation is to pass it the name
	 of a layout as a string. The following declaration will make
	 the template in the file standard.html.erb
	 or standard.xml.builder the layout for all
	 actions in the store controller. The layout file will be
	 looked for in the app/views/layouts
	 directory:
	
	​ 	​class​ StoreController < ApplicationController
	​ 	
	​ 	 layout ​"standard"​
	​ 	
	​ 	 ​# ...​
	​ 	​end​

	
	
	
	 You can qualify which actions will have the layout applied
	 to them using the :only
	 and :except
	 qualifiers:
	
	​ 	​class​ StoreController < ApplicationController
	​ 	
	​ 	 layout ​"standard"​, ​except: ​[​:rss​, ​:atom​]
	​ 	
	​ 	 ​# ...​
	​ 	​end​

	 Specifying a layout of nil turns off
	 layouts for a controller.
	

	
	 Sometimes you need to change the appearance of a
	 set of pages at runtime. For example, a blogging site might
	 offer a different-looking side menu if the user is logged
	 in, or a store site might have different-looking pages if
	 the site is down for maintenance. Rails supports this need
	 with dynamic layouts. If the parameter to
	 the layout declaration is a
	 symbol, it’s taken to be the name of a controller instance
	 method that returns the name of the layout to be used:
	
	​ 	​class​ StoreController < ApplicationController
	​ 	
	​ 	 layout ​:determine_layout​
	​ 	 ​# ...​
	​ 	 ​private​
	​ 	
	​ 	 ​def​ determine_layout
	​ 	 ​if​ Store.is_closed?
	​ 	 ​"store_down"​
	​ 	 ​else​
	​ 	 ​"standard"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

	
	
	 Subclasses of a controller use the parent’s layout
	 unless they override it using the layout
	 directive.
	 Finally, individual actions can choose to render using a
	 specific layout (or with no layout at all) by
	 passing render
	 the :layout option:

	
	​ 	​def​ rss
	​ 	 render(​layout: ​​false​) ​# never use a layout​
	​ 	​end​
	​ 	​def​ checkout
	​ 	 render(​layout: ​​"layouts/simple"​)
	​ 	​end​

Passing Data to Layouts

	
	
	 Layouts have access to all the same data that’s available to
	 conventional templates. In addition, any instance variables
	 set in the normal template will be available in the layout
	 (because the regular template is rendered before the layout
	 is invoked). This might be used to parameterize headings or
	 menus in the layout. For example, the layout might
	 contain this:
	
	​ 	<html>
	​ 	 <head>
	​ 	 <title>​<%=​ @title ​%>​</title>
	​ 	 ​<%=​ stylesheet_link_tag ​'scaffold'​ ​%>​
	​ 	 </head>
	​ 	 <body>
	​ 	 <h1>​<%=​ @title ​%>​</h1>
	​ 	 ​<%=​ ​yield​ ​:layout​ ​%>​
	​ 	 </body>
	​ 	</html>

	
	 An individual template could set the title by assigning to
	 the @title variable:
	
	​ 	​<%​ @title = ​"My Wonderful Life"​ ​%>​
	​ 	<p>
	​ 	 Dear Diary:
	​ 	</p>
	​ 	<p>
	​ 	 Yesterday I had pizza for dinner. It was nice.
	​ 	</p>

	 We can take this further. The same mechanism that
	 lets us use yield :layout to embed the rendering
	 of a template into the layout also lets you generate
	 arbitrary content in a template, which can then be embedded
	 into any template.
	

	
	 For example, different templates may need to add their own
	 template-specific items to the standard page sidebar. We’ll
	 use the content_for mechanism in those templates to
	 define content and then use yield in the layout to
	 embed this content into the sidebar.
	

	
	
	 In each regular template, use a content_for
	 to give a name to the content rendered inside a block. This
	 content will be stored inside Rails and will not contribute
	 to the output generated by the template:
	
	​ 	<h1>Regular Template</h1>
	​ 	
	​ 	​<%​ content_for(​:sidebar​) ​do​ ​%>​
	​ 	
	​ 	 this text will be rendered
	​ 	 and saved for later
	​ 	 it may contain ​<%=​ ​"dynamic"​ ​%>​ stuff
	​ 	
	​ 	​<%​ ​end​ ​%>​
	​ 	<p>
	​ 	 Here's the regular stuff that will appear on
	​ 	 the page rendered by this template.
	​ 	</p>

	 Then, in the layout, use yield :sidebar to
	 include this block in the page’s sidebar:
	
	​ 	​<!DOCTYPE >​
	​ 	<html>
	​ 	 <body>
	​ 	 <div class=​"sidebar"​>
	​ 	 <p>
	​ 	 Regular sidebar stuff
	​ 	 </p>
	​ 	 <div class=​"page-specific-sidebar"​>
	»	 ​<​%= yield :sidebar %>
	​ 	 </div>
	​ 	 </div>
	​ 	 </body>
	​ 	</html>

	 This same technique can be used to add page-specific
	 JavaScript functions into the <head> section
	 of a layout, create specialized menu bars, and so on.

	
Partial-Page Templates

	Web applications commonly display information about the same
	application object or objects on multiple pages. A
	shopping cart might display an order line item on the shopping
	cart page and again on the order summary page. A blog
	application might display the contents of an article on the
	main index page and again at the top of a page soliciting
	comments. Typically this would involve
	copying snippets of code between the different template pages.

	Rails, however, eliminates this duplication with
	the partial-page templates (more
	frequently called partials). You can think of a
	partial as a kind of subroutine. You invoke it one or more
	times from within another template, potentially passing it
	objects to render as parameters. When the partial template
	finishes rendering, it returns control to the calling
	template.

	Internally, a partial template looks like any other
	template. Externally, there’s a slight difference. The name of the file
	containing the template code must start with an underscore
	character, differentiating the source of partial templates
	from their more complete brothers and sisters.

	For example, the partial to render a blog entry
	might be stored in the
	file _article.html.erb in the normal views
	directory, app/views/blog:

	​ 	<div class=​"article"​>
	​ 	 <div class=​"articleheader"​>
	​ 	 <h3>​<%=​ article.title ​%>​</h3>
	​ 	 </div>
	​ 	 <div class=​"articlebody"​>
	​ 	 ​<%=​ article.body ​%>​
	​ 	 </div>
	​ 	</div>

	Other templates use the render(partial:) method to
	invoke this:

	​ 	​<%=​ render(​partial: ​​"article"​, ​object: ​@an_article) ​%>​
	​ 	<h3>Add Comment</h3>
	​ 	. . .

	The :partial parameter to render is
	the name of the template to render (but without the leading
	underscore). This name must be both a valid filename and a
	valid Ruby identifier (so a-b
	and 20042501 are not valid names for
	partials). The :object parameter
	identifies an object to be passed into the partial. This object
	will be available within the template via a local variable
	with the same name as the template. In this example,
	the @an_article object will be
	passed to the template, and the template can access it using
	the local variable article.
	That’s why we could write things such
	as article.title in the partial.

	You can set additional local variables in the template by
	passing render
	a :locals parameter. This takes a
	hash where the entries represent the names and values of the
	local variables to set:

	​ 	render(​partial: ​​'article'​,
	​ 	 ​object: ​@an_article,
	​ 	 ​locals: ​{ ​authorized_by: ​session[​:user_name​],
	​ 	 ​from_ip: ​request.remote_ip })

Partials and Collections

	
	
	 Applications commonly need to display collections of
	 formatted entries. A blog might show a series of articles,
	 each with text, author, date, and so on. A store might
	 display entries in a catalog, where each has an image, a
	 description, and a price.
	

	
	 The :collection parameter
	 to render works in conjunction
	 with the :partial
	 parameter. The :partial parameter lets us use a
	 partial to define the format of an individual entry, and
	 the :collection parameter applies
	 this template to each member of the collection.
	

	 To display a
	 list of article model objects using our previously
	 defined _article.html.erb partial, we
	 could write this:
	
	​ 	​<%=​ render(​partial: ​​"article"​, ​collection: ​@article_list) ​%>​

	 Inside the partial, the local
	 variable article will be set to
	 the current article from the collection—the variable is
	 named after the template. In addition, the
	 variable article_counter will have its value set
	 to the index of the current article in the collection.
	

	
	 The
	 optional :spacer_template parameter lets you
	 specify a template that will be rendered between each of the
	 elements in the collection. For example, a view might
	 contain the following:
	
rails51/e1/views/app/views/partial/_list.html.erb
	​ 	​<%=​ render(​partial: ​​"animal"​,
	​ 	 ​collection: ​​%w{ ant bee cat dog elk }​,
	​ 	 ​spacer_template: ​​"spacer"​)
	​ 	​%>​

	 This uses _animal.html.erb to render each
	 animal in the given list,
	 rendering the partial _spacer.html.erb between
	 each. If _animal.html.erb contains this:
	
rails51/e1/views/app/views/partial/_animal.html.erb
	​ 	<p>The animal is ​<%=​ animal ​%>​</p>

	 and _spacer.html.erb contains this:
	
rails51/e1/views/app/views/partial/_spacer.html.erb
	​ 	<hr />

	 your users would see a list of animal names with a line
	 between each.
	
Shared Templates

	
	
	 If the first option or :partial
 parameter to a render call is a String with no slashes, Rails assumes
	 that the target template is in the current controller’s view
	 directory. However, if the name contains one or more /
	 characters, Rails assumes that the part up to the last slash
	 is a directory name and the rest is the template name. The
	 directory is assumed to be
	 under app/views. This makes it easy to
	 share partials and subtemplates across controllers.
	

	
	
	
	 The convention among Rails applications is to store these
	 shared partials in a subdirectory
	 of app/views
	 called shared. Render shared partials
	 using statements such as these:
	
	​ 	​<%=​ render(​"shared/header"​, ​locals: ​{​title: ​@article.title}) ​%>​
	​ 	​<%=​ render(​partial: ​​"shared/post"​, ​object: ​@article) ​%>​
	​ 	. . .

	 In this previous example,
	 the @article object will be
	 assigned to the local
	 variable post within the
	 template.
	
Partials with Layouts

 Partials can be rendered with a layout, and you can apply a layout
 to a block within any template:

	​ 	<​%= render partial: "user", layout: "administrator" %>​
	​ 	
	​ 	​<%=​ render ​layout: ​​"administrator"​ ​do​ ​%>​
	​ 	​ # ...​
	​ 	​<% end %>​

 Partial layouts are to be found directly in the
 app/views directory associated with the
 controller, along with the customary underbar prefix, such as
 app/views/users/_administrator.html.erb.

Partials and Controllers

	
	
	
	 It isn’t just view templates that use partials. Controllers
	 also get in on the act. Partials give controllers the ability to
	 generate fragments from a page using the same partial
	 template as the view. This is particularly important
	 when you are using Ajax support to update just
	 part of a page from the controller—use partials, and you
	 know your formatting for the table row or line item that
	 you’re updating will be compatible with that used to
	 generate its brethren initially.
	

 Taken together, partials and layouts provide an effective way to make
 sure that the user interface portion of your application is
 maintainable. But being maintainable is only part of the story;
 doing so in a way that also performs well is also crucial.

What We Just Did

 Views are the public face of Rails applications, and we have seen that
 Rails delivers extensive support for what you need to build robust and
 maintainable user and application programming interfaces.

 We started with templates, of which Rails provides built-in support for
 four types: ERB, Builder, CoffeeScript, and SCSS. Templates
 make it easy for us to provide HTML, JSON, XML, CSS, and
 JavaScript responses to any request. We will discuss adding
 another option in ​Creating HTML Templates with Slim​.

 We dove into forms, which are the primary means by which users will
 interact with your application. Along the way, we covered uploading
 files.

 We continued with helpers, which enable us to factor out complex
 application logic to allow our views to focus on presentation
 aspects. We explored a number of helpers that Rails provides, ranging
 from basic formatting to hypertext links, which are the final way in
 which users interact with HTML pages.

 We completed our tour of Action View by covering two related ways of
 factoring out large chunks of content for reuse. We use layouts to
 factor out the outermost layers of a view and provide a
 common look and feel. We use partials to factor out common inner
 components, such as a single form or table.

 That covers how a user with a browser will access our Rails application.
 Next up: covering how we define and maintain the schema of the
 database our application will use to store data.

Footnotes

	[113]
	
https://github.com/rails/jbuilder

	[114]
	
http://api.rubyonrails.org/classes/ActionView/Base.html

	[115]
	
http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html

	[116]
	
http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html

	[117]
	
http://guides.rubyonrails.org/form_helpers.html

	[118]
	

	 https://github.com/thoughtbot/paperclip#readme
	

	[119]
	

	 https://github.com/technoweenie/attachment_fu
	

	[120]
	
https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees

	[121]
	
https://github.com/rtomayko/rdiscount

	[122]
	
http://redcloth.org/

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Naming migration files
	Renaming and columns
	Creating and renaming tables
	Defining indices and keys
	Using native SQL

 Chapter
 23
Migrations

 Rails encourages an agile, iterative style of development. We
 don’t expect to get everything right the first time. Instead, we
 write tests and interact with our customers to refine our
 understanding as we go.

 For that to work, we need a supporting set of practices. We write
 tests to help us design our interfaces and to act as a safety net
 when we change things, and we use version control to store our
 application’s source files, allowing us to undo mistakes
 and to monitor what changes day to day.

 But there’s another area of the application that changes, an area
 that we can’t directly manage using version control. The database
 schema in a Rails application constantly evolves as we progress
 through the development: we add a table here, rename a column
 there, and so on. The database changes in step with the
 application’s code.

 With Rails, each of those steps is made possible through the use of a
 migration. You saw this in use throughout the development of
 the Depot application, starting when we created the first
 products table in ​Generating the Scaffold​, and when we performed such tasks as
 adding a quantity to the line_items table in ​Iteration E1: Creating a Smarter Cart​. Now it is time to dig deeper into how
 migrations work and what else you can do with them.

Creating and Running Migrations

 A migration is simply a Ruby source file in your
 application’s db/migrate directory. Each
 migration file’s name starts with a number of digits (typically
 fourteen) and an underscore. Those digits are the key to migrations,
 because
 they define the sequence in which the migrations are
 applied—they are the individual migration’s version number.

 The version number is the Coordinated Universal Time (UTC)
 timestamp at the time the migration was created. These numbers contain
 the four-digit year, followed by two digits each for the month, day, hour,
 minute, and second, all based on the mean solar time at the Royal
 Observatory in Greenwich, London. Because migrations tend to be created
 relatively infrequently and the accuracy is recorded down to the second,
 the chances of any two people getting the same timestamp is vanishingly
 small. And the benefit of having timestamps that can be deterministically
 ordered far outweighs the miniscule risk of this occurring.

 Here’s what the db/migrate directory of our
 Depot application looks like:

	​ 	​depot>​​ ​​ls​​ ​​db/migrate​
	​ 	20170425000001_create_products.rb
	​ 	20170425000002_create_carts.rb
	​ 	20170425000003_create_line_items.rb
	​ 	20170425000004_add_quantity_to_line_items.rb
	​ 	20170425000005_combine_items_in_cart.rb
	​ 	20170425000006_create_orders.rb
	​ 	20170425000007_add_order_id_to_line_item.rb
	​ 	20170425000008_create_users.rb

 Although you could create these migration files by hand, it’s
 easier (and less error prone) to use a generator. As we saw when
 we created the Depot application, there are actually two
 generators that create migration files:

	

	
	 The model generator creates a migration to in turn
	 create the table associated with the model (unless you
	 specify the --skip-migration option). As the
	 example that follows shows, creating a model
	 called discount also creates a migration
	 called yyyyMMddhhmmss_create_discounts.rb:
	
	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​model​​ ​​discount​
	​ 	 invoke active_record
	»	 create db/migrate/20121113133549_create_discounts.rb
	​ 	 create app/models/discount.rb
	​ 	 invoke test_unit
	​ 	 create test/models/discount_test.rb
	​ 	 create test/fixtures/discounts.yml

	

	 You can also generate a migration on its own.
	
	​ 	​depot>​​ ​​bin/rails​​ ​​generate​​ ​​migration​​ ​​add_price_column​
	​ 	 invoke active_record
	»	 create db/migrate/20121113133814_add_price_column.rb

 Later, starting in Anatomy of a Migration,
 we’ll see what goes in the migration files. But for now,
 let’s jump ahead a little in the workflow and see how to run
 migrations.

Running Migrations

	Migrations are run using the db:migrate Rake
	task:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​

	To see what happens next, let’s dive down into the internals
	of Rails.

	The migration code maintains a table
	called schema_migrations inside every Rails
	database. This table
	has just one column, called version,
	and it will have one row per successfully applied migration.

	When you run bin/rails db:migrate, the task first looks
	for the schema_migrations table. If it doesn’t
	yet exist, it will be created.

 The migration code then looks at the migration files in
 db/migrate and skips from consideration any that
 have a version number (the leading digits in the filename) that is
 already in the database. It then proceeds to apply the remainder of
 the migrations, creating a row in the
 schema_migrations table for each.

	If we were to run migrations again at this point, nothing much
	would happen. Each of the version numbers of the migration files would
 match with a row in the database, so
	there would be no migrations to apply.

	However, if we subsequently create a new migration file, it
	will have a version number not in the database. This is true
 even if the version number was before one or more
 of the already applied migrations. This can happen when multiple
 users are using a version control system to store the migration
 files.
	If we then run migrations, this new migration file—and only this
 migration file—will be executed. This may mean that migrations
 are run out of order, so you might want to take care and ensure that
 these migrations are independent. Or you might want to revert your
 database to a previous state and then apply the migrations in
 order.

	You can force the database to a specific version by
	supplying the VERSION= parameter to the rake
	 db:migrate command:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate​​ ​​VERSION=20170425000009​

	If the version you give is greater than any of the migrations
 that have yet to be applied, these
	migrations will be applied.

	If, however, the version number on the command line is less
	than one or more versions listed in the
 schema_migrations
 table, something different
	happens. In these circumstances, Rails looks for the migration
	file whose number matches the database version
	and undoes it.
	It repeats this process
	until there are no more versions listed in the
 schema_migrations table that exceed the number you
	specified on the command line. That is, the
	migrations are unapplied in reverse order to take the schema
	back to the version that you specify.

 You can also redo one or more migrations:

	​ 	​depot>​​ ​​bin/rails​​ ​​db:migrate:redo​​ ​​STEP=3​

 By default, redo will roll back one migration and rerun it. To
 roll back multiple migrations, pass the STEP= parameter.

Anatomy of a Migration

 Migrations are subclasses of the Rails
 class ActiveRecord::Migration. When necessary,
 migrations can contain up and
 down methods:

	​ 	​class​ SomeMeaningfulName < ActiveRecord::Migration
	​ 	 ​def​ up
	​ 	 ​# ...​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ down
	​ 	 ​# ...​
	​ 	 ​end​
	​ 	​end​

 The name of the class, after all uppercase letters are downcased
 and preceded by an underscore, must match the portion of the filename
 after the version number. For example, the previous class could be
 found in a file named
 20170425000017_some_meaningful_name.rb. No two
 migrations can contain classes with the same name.

 The up method is responsible for
 applying the schema changes for this migration, while
 the down method undoes those
 changes. Let’s make this more concrete. Here’s a migration that
 adds an e_mail column to
 the orders
 table:

	​ 	​class​ AddEmailToOrders < ActiveRecord::Migration
	​ 	 ​def​ up
	​ 	 add_column ​:orders​, ​:e_mail​, ​:string​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ down
	​ 	 remove_column ​:orders​, ​:e_mail​
	​ 	 ​end​
	​ 	​end​

 See how the down method undoes the
 effect of the up method?
 You can also see that there is a bit of duplication here. In many
 cases, Rails can detect how to automatically undo a given operation.
 For example, the opposite of add_column is
 clearly remove_column. In such cases, by
 simply renaming up to
 change, you can eliminate the need for a
 down:

	​ 	​class​ AddEmailToOrders < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 add_column ​:orders​, ​:e_mail​, ​:string​
	​ 	 ​end​
	​ 	​end​

 Now isn’t that much cleaner?

Column Types

The third parameter to add_column specifies the type
	 of the database column. In the prior example, we specified
	 that the e_mail column has a type
	 of :string. But what does this mean? Databases
	 typically don’t have column types of :string.

	Remember that Rails tries to make your application independent
	of the underlying database; you could develop using SQLite 3 and
	deploy to Postgres if you wanted, for example. But different databases use
	different names for the types of columns. If you used a SQLite 3
	column type in a migration, that migration might not work if
	applied to a Postgres database. So, Rails migrations insulate
	you from the underlying database type systems by using logical
	types. If we’re migrating a SQLite 3 database,
	the :string type will create a column of
	type varchar(255). On Postgres, the same migration
	adds a column with the type char varying(255).

	 The types supported by migrations
	 are :binary, :boolean, :date,
	 :datetime, :decimal, :float, :integer,
	 :string, :text, :time,
	 and :timestamp.
	 The default
	 mappings of these types for the database adapters in
	 Rails are shown in the following tables:

		db2	mysql	openbase	oracle
	:binary	blob(32768)	blob	object	blob
	:boolean	decimal(1)	tinyint(1)	boolean	number(1)
	:date	date	date	date	date
	:datetime	timestamp	datetime	datetime	date
	:decimal	decimal	decimal	decimal	decimal
	:float	float	float	float	number
	:integer	int	int(11)	integer	number(38)
	:string	varchar(255)
	varchar(255)
	char(4096)
	varchar2(255)

	:text	clob(32768)	text	text	clob
	:time	time	time	time	date
	:timestamp	timestamp	datetime	timestamp	date

		postgresql	sqlite	sqlserver	sybase
	:binary	bytea	blob	image	image
	:boolean	boolean	boolean	bit	bit
	:date	date	date	date	datetime
	:datetime	timestamp	datetime	datetime	datetime
	:decimal	decimal	decimal	decimal	decimal
	:float	float	float	float(8)	float(8)
	:integer	integer	integer	int	int
	:string	(note 1)	varchar(255)	varchar(255)	varchar(255)
	:text	text	text	text	text
	:time	time	datetime	time	time
	:timestamp	timestamp	datetime	datetime	timestamp

 Using these tables, you could work out that a column
	 declared to be :integer in a migration would have
	 the underlying type integer in SQLite 3
	 and number(38) in Oracle.

	 There are three options you can use when defining most
	 columns in a migration; decimal columns take an
	 additional two options. Each of these options is given as
	 a key: value pair. The common options are as follows:

	null: true or false
	

	
	 If false, the underlying
	 column has a not
	 null constraint added (if the database supports
	 it). Note: this is independent of any presence: true
 validation, which may be performed at the model layer.
	

	limit: size
	

	
	
	
	 This sets a limit on the size of the
	 field. This basically
	 appends the string (size)
	 to the database column type definition.
	

	
	 default: value
	
	

	
	
	 This sets the default value for the column. As this is performed
 by the database, you don’t see this in a new model object when you
 initialize it or even when you save it. You have to reload the
	 object from the database to see this value. Note that the
	 default is calculated once, at the point the migration is
	 run, so the following code will set the default column
	 value to the date and time when the migration was
	 run:
	
	​ 	add_column ​:orders​, ​:placed_at​, ​:datetime​, ​default: ​Time.now

	 In addition, decimal columns take the
	 options :precision
	 and :scale. The :precision option
	 specifies the number of significant digits that will be
	 stored, and the :scale option determines where the decimal
	 point will be located in these digits (think of the scale as
	 the number of digits after the decimal point). A decimal
	 number with a precision of 5 and a scale of 0 can store
	 numbers from -99,999 to +99,999. A decimal number with a
	 precision of 5 and a scale of 2 can store the range -999.99
	 to +999.99.

	 The :precision and :scale parameters are
	 optional for decimal columns. However, incompatibilities
	 between different databases lead us to strongly recommend
	 that you include the options for each decimal column.

	 Here are some column definitions using the
	 migration types and options:

	​ 	add_column ​:orders​, ​:attn​, ​:string​, ​limit: ​100
	​ 	add_column ​:orders​, ​:order_type​, ​:integer​
	​ 	add_column ​:orders​, ​:ship_class​, ​:string​, ​null: ​​false​, ​default: ​​'priority'​
	​ 	add_column ​:orders​, ​:amount​, ​:decimal​, ​precision: ​8, ​scale: ​2

Renaming Columns

	 When we refactor our code, we often change our variable names
	 to make them more meaningful. Rails migrations allow us to do
	 this to database column names, too. For example, a week after
	 we first added it, we might decide
	 that e_mail isn’t the best name for
	 the new column. We can create a migration to rename it using
	 the rename_column method:

	​ 	​class​ RenameEmailColumn < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 rename_column ​:orders​, ​:e_mail​, ​:customer_email​
	​ 	 ​end​
	​ 	​end​

 As rename_column is reversible, separate
	 up and down methods
	 are not required in order to use it.

	 Note that the rename doesn’t destroy any existing data
	 associated with the column. Also be aware that renaming is not
	 supported by all the adapters.

Changing Columns

 change_column
	 Use the change_column method to
	 change the type of a column or to alter the options
	 associated with a column. Use it the same way you’d
	 use add_column, but specify the name of an existing
	 column. Let’s say that the order type column is currently an
	 integer, but we need to change it to be a string. We want to
	 keep the existing data, so an order type of 123 will
	 become the string "123". Later, we’ll use
	 noninteger values such as "new"
	 and "existing".

 Changing from an integer column to a string is one line of code:

	​ 	​def​ up
	​ 	 change_column ​:orders​, ​:order_type​, ​:string​
	​ 	​end​

	 However, the opposite transformation is problematic. We might
	 be tempted to write the obvious down
	 migration:

	​ 	​def​ down
	​ 	 change_column ​:orders​, ​:order_type​, ​:integer​
	​ 	​end​

	 But if our application has taken to storing data
	 like "new" in this column,
	 the down method will lose
	 it—"new" can’t be converted to an integer. If
	 that’s acceptable, then the migration is acceptable as it
	 stands. If, however, we want to create a one-way
	 migration—one that cannot be reversed—we’ll want to stop
	 the down migration from being applied.

	 In this case, Rails
	 provides a special exception that we can
	 throw:

	​ 	​class​ ChangeOrderTypeToString < ActiveRecord::Migration
	​ 	 ​def​ up
	​ 	 change_column ​:orders​, ​:order_type​, ​:string​, ​null: ​​false​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ down
	​ 	 ​raise​ ActiveRecord::IrreversibleMigration
	​ 	 ​end​
	​ 	​end​

	 ActiveRecord::IrreversibleMigration is also the name of
	 the exception that Rails will raise if you attempt to
	 call a method that can’t be automatically reversed from within
	 a change method.
	
	
	
	

Managing Tables

 So far we’ve been using migrations to manipulate the columns
 in existing tables. Now let’s look at creating and dropping
 tables:

	​ 	​class​ CreateOrderHistories < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 create_table ​:order_histories​ ​do​ |t|
	​ 	 t.integer ​:order_id​, ​null: ​​false​
	​ 	 t.text ​:notes​
	​ 	
	​ 	 t.timestamps
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

 create_table
 takes the name of a table (remember, table names are plural)
 and a block. (It also takes some optional parameters that we’ll
 look at in a minute.) The block is passed a table definition
 object, which we use to define the columns in the table.

 Generally the call to drop_table is not needed,
 as create_table is reversible.
 drop_table accepts a single parameter, which
 is the name of the table to drop.

 The calls to the various table definition methods should look
 familiar—they’re
 similar to the add_column method we used previously
 except these methods don’t take the name of the table as the first
 parameter, and the name of the method itself is the data type desired.
 This reduces repetition.

 Note that we don’t define the id column
 for our new table. Unless we say otherwise, Rails migrations
 automatically add a primary key
 called id to all tables they create. For
 a deeper discussion of this, see
 ​Primary Keys​.

 The timestamps method creates both the
 created_at and updated_at columns, with the
 correct timestamp data type. Although there is no requirement to
 add these columns to any particular table, this is yet another example
 of Rails making it easy for a common convention to be implemented
 easily and consistently.

Options for Creating Tables

	 You can pass a hash of options as a second parameter
	 to create_table.

	 If you specify force: true, the migration
	 will drop an existing table of the same name before
	 creating the new one. This is a useful option if you want
	 to create a migration that forces a database into a known
	 state, but there’s clearly a potential for data loss.

	 The temporary: true option creates a
	 temporary table—one that goes away when the application
	 disconnects from the database. This is clearly pointless in
	 the context of a migration, but as we will see later, it does
	 have its uses elsewhere.

	 The options: "xxxx" parameter lets you
	 specify options to your underlying database. They are added to the end of
	 the CREATE TABLE statement, right after the closing
	 parenthesis. Although this is rarely necessary with SQLite 3, it
	 may at times be useful with other database servers.
	 For example, some versions of MySQL allow you to
	 specify the initial value of the
	 autoincrementing id column. We can
	 pass this in through a migration as
	 follows:

	​ 	create_table ​:tickets​, ​options: ​​"auto_increment = 10000"​ ​do​ |t|
	​ 	 t.text ​:description​
	​ 	 t.timestamps
	​ 	​end​

	 Behind the scenes, migrations will generate the following
	 DDL from this table description when configured for MySQL:

	​ 	​CREATE​ ​TABLE​ "tickets" (
	​ 	 "id" ​int​(11) ​default​ ​null​ ​auto_increment​ ​primary​ ​key​,
	​ 	 "description" ​text​,
	​ 	 "created_at" ​datetime​,
	​ 	 "updated_at" ​datetime​
	​) ​auto_increment​ = 10000;

	 Be careful when using the :options parameter with
	 MySQL. The Rails MySQL database adapter sets a default option
	 of ENGINE=InnoDB. This overrides any local
	 defaults you have and forces migrations to use the
	 InnoDB storage engine for new tables. Yet, if you
	 override :options, you’ll lose this setting; new
	 tables will be created using whatever database engine is
	 configured as the default for your site. You may want to
	 add an explicit ENGINE=InnoDB to the options
	 string to force the standard behavior in this case.
	 You probably want to keep using InnoDB if you’re using
	 MySQL, because this engine gives you transaction
	 support. You might need this support in your
	 application, and you’ll definitely need it in your tests
	 if you’re using the default of transactional test
	 fixtures.

Renaming Tables

	 If refactoring leads us to rename variables and columns, then
	 it’s probably not a surprise that we sometimes find ourselves
	 renaming tables, too. Migrations support
	 the rename_table method:

	​ 	​class​ RenameOrderHistories < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 rename_table ​:order_histories​, ​:order_notes​
	​ 	 ​end​
	​ 	​end​

	 Rolling back this migration undoes the change by
	 renaming the table back.

Problems with rename_table

	 There’s a subtle problem when we rename tables in
	 migrations.
	

	 For example, let’s assume that in migration 4 we create
	 the order_histories table and populate
	 it with some data:
	
	​ 	​def​ up
	​ 	 create_table ​:order_histories​ ​do​ |t|
	​ 	 t.integer ​:order_id​, ​null: ​​false​
	​ 	 t.text ​:notes​
	​ 	
	​ 	 t.timestamps
	​ 	 ​end​
	​ 	
	​ 	 order = Order.find ​:first​
	​ 	 OrderHistory.create(​order_id: ​order, ​notes: ​​"test"​)
	​ 	​end​

	 Later, in migration 7, we rename the
	 table order_histories
	 to order_notes. At this point we’ll
	 also have renamed the
	 model OrderHistory
	 to OrderNote.
	

	 Now we decide to drop our development database and
	 reapply all migrations. When we do so, the migrations
	 throw an exception in migration 4: our application no
	 longer contains a class
	 called OrderHistory, so the
	 migration fails.
	

	
	 One solution, proposed by Tim Lucas, is to
	 create local, dummy versions of the model classes needed by
	 a migration within the migration. For example, the
	 following version of the fourth migration will work even if
	 the application no longer has
	 an OrderHistory class:
	
	​ 	​class​ CreateOrderHistories < ActiveRecord::Migration
	​ 	
	»	 ​class​ Order < ApplicationRecord::Base; ​end​
	»	 ​class​ OrderHistory < ApplicationRecord::Base; ​end​
	​ 	
	​ 	 ​def​ change
	​ 	 create_table ​:order_histories​ ​do​ |t|
	​ 	 t.integer ​:order_id​, ​null: ​​false​
	​ 	 t.text ​:notes​
	​ 	
	​ 	 t.timestamps
	​ 	 ​end​
	​ 	
	​ 	 order = Order.find ​:first​
	​ 	 OrderHistory.create(​order: ​order_id, ​notes: ​​"test"​)
	​ 	 ​end​
	​ 	​end​

 This works as long as our model classes do not contain any
 additional functionality that would have been used in the
 migration—all we’re creating here is a bare-bones version.

Defining Indices

	 Migrations can (and probably should) define indices for
	 tables. For example, we might notice that once our
	 application has a large number of orders in the database,
	 searching based on the customer’s name takes longer than
	 we’d like. It’s time to add an index using the appropriately
	 named add_index
	 method:

	​ 	​class​ AddCustomerNameIndexToOrders < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 add_index ​:orders​, ​:name​
	​ 	 ​end​
	​ 	​end​

	 If we give add_index the optional
	 parameter unique: true, a unique index will
	 be created, forcing values in the indexed column to be
	 unique.

	 By default the index will be given the
	 name index_table_on_column. We can override this
	 using the name: "somename" option. If we
	 use the :name option when adding an index, we’ll
	 also need to specify it when removing the index.

	 We can create a composite index—an index on
	 multiple columns—by passing an array of column names
	 to add_index.

 Indices are removed using the remove_index
	 method.

Primary Keys

	
	Rails assumes every table has a numeric primary key
	 (normally called id) and ensures
	 the value of this column is unique for each new row added to
	 a table. We’ll rephrase that.

	 Rails doesn’t work too well unless each table has a
 primary key that Rails can manage. By default, Rails will create numeric primary keys, but you can also use other types such as UUIDs, depending on what your actual database provides.
 Rails is less fussy about the name of the column.
	 So, for your average Rails application, our strong advice is
	 to go with the flow and let Rails have
	 its id column.

	 If you decide to be adventurous, you can start by using a
	 different name for the primary key column (but keeping it as
	 an incrementing integer). Do this by specifying
	 a :primary_key option on the create_table
	 call:

	​ 	create_table ​:tickets​, ​primary_key: :number​ ​do​ |t|
	​ 	 t.text ​:description​
	​ 	
	​ 	 t.timestamps
	​ 	​end​

	 This adds the number column to
	 the table and sets it up as the primary key:

	​ 	​$ ​​sqlite3​​ ​​db/development.sqlite3​​ ​​".schema tickets"​
	​ 	CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT
	​ 	NOT NULL, "description" text DEFAULT NULL, "created_at" datetime
	​ 	DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

	 The next step in the adventure might be to create a
	 primary key that isn’t an integer. Here’s a clue that the
	 Rails developers don’t think this is a good idea: migrations
	 don’t let you do this (at least not directly).

Tables with No Primary Key

	
	
	
	
	
	 Sometimes we may need to define a table that has no
	 primary key. The most common case in Rails is for join
	 tables—tables with just two columns where each
	 column is a foreign key to another table. To create a join
	 table using migrations, we have to tell Rails not to
	 automatically add an id column:
	
	​ 	create_table ​:authors_books​, ​id: ​​false​ ​do​ |t|
	​ 	 t.integer ​:author_id​, ​null: ​​false​
	​ 	 t.integer ​:book_id​, ​null: ​​false​
	​ 	​end​

	 In this case, you might want to investigate creating one or
	 more indices on this table to speed navigation between
	 books and authors.
	
	
	
	
	
	

Advanced Migrations

 Most Rails developers use the basic facilities of migrations to
 create and maintain their database schemas. However, every now
 and then it’s useful to push migrations just a bit
 further. This section covers some more advanced migration
 usage.

Using Native SQL

	 Migrations give you a database-independent way of maintaining
	 your application’s schema. However, if migrations don’t
	 contain the methods you need to be able to do what you need
	 to do, you’ll need to drop down to database-specific code. Rails
	 provides two ways to do this. One is with options
	 arguments to methods like add_column.
	 The second is
	 the execute
	 method.

	 When you use options or execute,
	 you might well
	 be tying your migration to a specific database engine, because any SQL
	 you provide in these two locations uses your database’s native syntax.

 An example of where you might need to use raw SQL is if you are creating a custom data type inside your database. Postgres, for example, allows you to specify enumerated types. Enumerated types work just fine with Rails; but to create them in a migration, you have to use SQL and thus execute. Suppose we wanted to create an enumerated type for the various pay types we supported in our checkout form (which we created in Chapter 12, ​Task G: Check Out!​):

	​ 	​class​ AddPayTypes < ActiveRecord::Migrations[5.1]
	​ 	 ​def​ up
	​ 	 execute ​%{​
	​ 	​ CREATE TYPE​
	​ 	​ pay_type​
	​ 	​ AS ENUM (​
	​ 	​ 'check',​
	​ 	​ 'credit card',​
	​ 	​ 'purchase order'​
	​ 	​)​
	​ 	​ }​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ down
	​ 	 execute ​"DROP TYPE pay_type"​
	​ 	 ​end​
	​ 	​end​

 Note that if you need to model your database using execute, you should consider changing your schema dump format from “ruby” to “SQL,” as outlined in the Rails Guide.[123] The schema dump is used during tests to create an empty database with the same schema you are using in production.

Custom Messages and Benchmarks

 Although not exactly an advanced migration, something that is useful to
 do within advanced migrations is to output our own messages and
 benchmarks. We can do this with the
 say_with_time method:

	​ 	​def​ up
	​ 	 say_with_time ​"Updating prices..."​ ​do​
	​ 	 Person.all.each ​do​ |p|
	​ 	 p.update_attribute ​:price​, p.lookup_master_price
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​

 say_with_time prints the string passed
 before the block is executed and prints the benchmark after the block
 completes.

When Migrations Go Bad

 Migrations suffer from one serious problem. The underlying DDL statements that update the database schema are not
 transactional. This isn’t a failing in Rails—most databases just
 don’t support the rolling back of create
	 table, alter table, and other DDL
 statements.

 Let’s look at a migration that tries to add two tables to a
 database:

	​ 	​class​ ExampleMigration < ActiveRecord::Migration
	​ 	 ​def​ change
	​ 	 create_table ​:one​ ​do​ ...
	​ 	 end
	​ 	 create_table ​:two​ ​do​ ...
	​ 	 end
	​ 	 ​end​
	​ 	​end​

 In the normal course of events, the up
 method adds tables, one
 and two, and
 the down method removes them.

 But what happens if there’s a problem creating the second
 table? We’ll end up with a database containing
 table one but not
 table two. We can fix whatever the problem
 is in the migration, but now we can’t apply it—if we try, it
 will fail because table one already
 exists.

 We could try to roll the migration back, but that won’t work.
 Because the original migration failed, the schema version in
 the database wasn’t updated, so Rails won’t try to roll it
 back.

 At this point, you could mess around and manually change the
 schema information and drop table one. But
 it probably isn’t worth it. Our recommendation in these
 circumstances is simply to drop the entire database, re-create
 it, and apply migrations to bring it back up-to-date. You’ll
 have lost nothing, and you’ll know you have a consistent
 schema.

 All this discussion suggests that migrations are dangerous to
 use on production databases. Should you run them? We really can’t say.
 If you have database administrators in your organization, it’ll be
 their call. If it’s up to you, you’ll have to weigh the risks. But, if
 you decide to go for it, you really must back up your database first.
 Then, you can apply the migrations by going to your application’s
 directory on the machine with the database role on your production
 servers and executing this command:

	​ 	​depot>​​ ​​RAILS_ENV=production​​ ​​bin/rails​​ ​​db:migrate​

 This is one of those times where the legal notice at the start of
 this book kicks in. We’re not liable if this deletes your data.

Schema Manipulation Outside Migrations

 All the migration methods described so far in this chapter
 are also available as methods on Active Record connection
 objects and so are accessible within the models, views, and
 controllers of a Rails application.

 For example, you might have discovered that a particular
 long-running report runs a lot faster if
 the orders table has an index on
 the city column. However, that index
 isn’t needed during the day-to-day running of the application,
 and tests have shown that maintaining it slows the application
 appreciably.

 Let’s write a method that creates the index, runs a block of
 code, and then drops the index. This could be a private method
 in the model or could be implemented in a library:

	​ 	​def​ run_with_index(*columns)
	​ 	 connection.add_index(​:orders​, *columns)
	​ 	 ​begin​
	​ 	 ​yield​
	​ 	 ​ensure​
	​ 	 connection.remove_index(​:orders​, *columns)
	​ 	 ​end​
	​ 	​end​

 The statistics-gathering method in the model can use this as
 follows:

	​ 	​def​ get_city_statistics
	​ 	 run_with_index(​:city​) ​do​
	​ 	 ​# .. calculate stats​
	​ 	 ​end​
	​ 	​end​

What We Just Did

 While we had been informally using migrations throughout the development
 of the Depot application and even into deployment, in this chapter we
 saw how migrations are the basis for a principled and disciplined
 approach to configuration management of the schema for your database.

 You learned how to create, rename, and delete columns and tables; to
 manage indices and keys; to apply and back out entire sets of changes;
 and even to mix in your own custom SQL into the mix, all in a completely
 reproducible manner.

 At this point we’ve covered the externals of Rails. The next few chapters
 are going to delve deeper. We are going to show you how to take Rails
 apart and put it back together. The first stop along the way is to show you
 how to use select Rails classes and methods outside the context of a
 web server.

Footnotes

	[123]
	
http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you

Copyright © 2017, The Pragmatic Bookshelf.

We cover:
	Replacing Rails’ testing framework with RSpec
	Using Slim for HTML templates instead of ERB
	Serving CSS with Webpack
	Post-processing CSS with cssnext

 Chapter
 24
Customizing and Extending Rails

 As you’ve come to learn, Rails provides an answer for almost every question you have about building a modern web application. It provides the basics for handling requests, accessing a database, writing user interfaces, and running tests. It does this by having a tightly integrated design, which is often referred to as Rails being “opinionated software.”

 This tight coupling comes at a price. If, for example, the way Rails manages CSS doesn’t meet the needs of your project, you could be in trouble. Or, if you prefer to write your tests in a different way, Rails doesn’t give you a lot of options. Or does it? In past versions of Rails, customizing it was difficult or impossible. In Rails 3, much effort was expended to make Rails more customizable, and by Rails 4, developers had a lot more flexibility to use the tools they prefer or that work the way they want to work. That’s what we’ll explore in this chapter.

 We’ll replace three parts of Rails in this chapter. First, we’ll see how to use RSpec to write our tests instead of Rails’ default testing library. Next, we’ll replace ERB for the alternative templating language Slim. Finally, we’ll see how to manage CSS using Webpack instead of putting it in app/assets/stylesheets. This chapter will demonstrate another benefit to Rails, which is that you don’t have to throw out the parts that work for you to use alternatives that work better. Let’s get started.

Testing with RSpec

 RSpec is an alternative to MiniTest, which Rails uses. It’s different in almost every way, and many developers prefer it. Here’s what one of our existing tests might look like, written in RSpec:

	​ 	RSpec.describe Cart ​do​
	​ 	
	​ 	 let(​:cart​) { Cart.create }
	​ 	 let(​:book_one​) { products(​:ruby​) }
	​ 	 let(​:book_two​) { products(​:two​) }
	​ 	
	​ 	 before ​do​
	​ 	 cart.add_product(book_one).save!
	​ 	 cart.add_product(book_two).save!
	​ 	 ​end​
	​ 	
	​ 	 it ​"can have multiple products added"​ ​do​
	​ 	 expect(cart.line_items.size).to eq(2)
	​ 	 ​end​
	​ 	
	​ 	 it ​"calculates the total price of all products"​ ​do​
	​ 	 expect(cart.total_price).to eq(book_one.price + book_two.price)
	​ 	 ​end​
	​ 	​end​

 It almost looks like a different programming language! Developers that prefer RSpec like that the test reads like English: “Describe Cart, it can have multiple products added, expect cart.line_items.size to eq 2.”

 We’re going to quickly go through how to write tests in RSpec without too much explanation. There’s a great book for that already [MD17], so we’ll learn just enough RSpec to see it working with Rails, which demonstrates Rails’ configurability. Although many developers that use RSpec set it up from the start of a project, you don’t have to. RSpec can be added at any time, and that’s what we’ll do here.

 Add rspec-rails to your Gemfile, putting it in the development and test groups:

	​ 	group ​:development​, ​:test​ ​do​
	​ 	 gem ​'rspec-rails'​
	​ 	​end​

 After you bundle install, a new generator will set up RSpec for you:

	​ 	> bin/rails generate rspec:install
	​ 	 create .rspec
	​ 	 create spec
	​ 	 create spec/spec_helper.rb
	​ 	 create spec/rails_helper.rb

 Verify the configuration is working by running the new task Rspec installed, spec:

	​ 	> bin/rails spec
	​ 	No examples found.
	​ 	
	​ 	
	​ 	Finished in 0.00058 seconds (files took 0.11481 seconds to load)
	​ 	0 examples, 0 failures

 Let’s reimplement the test for Cart as an RSpec test or spec. RSpec includes generators to create starter specs for us, similar to what Rails does with scaffolding. To create a model spec, use the spec:model generator:

	​ 	> bin/rails generate spec:model Cart
	​ 	 create spec/models/cart_spec.rb

 Now, rerun spec and we can see RSpec’s generator has created a pending spec:

	​ 	> bin/rails spec
	​ 	Pending: (Failures listed here are expected and do not affect your suite's status)
	​ 	
	​ 	 1) Cart add some examples to (or delete) spec/models/cart_spec.rb
	​ 	​ # Not yet implemented​
	​ 	​ # ./spec/models/cart_spec.rb:4​
	​ 	
	​ 	
	​ 	Finished in 0.00284 seconds (files took 1.73 seconds to load)
	​ 	1 example, 0 failures, 1 pending

 To reimplement the test for Cart as a spec, let’s first review the existing test:

rails51/depot_u/test/models/cart_test.rb
	​ 	require ​'test_helper'​
	​ 	
	​ 	​class​ CartTest < ActiveSupport::TestCase
	​ 	 ​def​ setup
	​ 	 @cart = Cart.create
	​ 	 @book_one = products(​:ruby​)
	​ 	 @book_two = products(​:two​)
	​ 	 ​end​
	​ 	
	​ 	 test ​"add unique products"​ ​do​
	​ 	 @cart.add_product(@book_one).save!
	​ 	 @cart.add_product(@book_two).save!
	​ 	 assert_equal 2, @cart.line_items.size
	​ 	 assert_equal @book_one.price + @book_two.price, @cart.total_price
	​ 	 ​end​
	​ 	
	​ 	 test ​"add duplicate product"​ ​do​
	​ 	 @cart.add_product(@book_one).save!
	​ 	 @cart.add_product(@book_one).save!
	​ 	 assert_equal 2*@book_one.price, @cart.total_price
	​ 	 assert_equal 1, @cart.line_items.size
	​ 	 assert_equal 2, @cart.line_items[0].quantity
	​ 	 ​end​
	​ 	​end​

 The setup creates a cart and fetches two products from the fixtures. It then tests the add_product in two ways: by adding two distinct products and by adding the same product twice.

 Let’s start with the setup. By default, RSpec is configured to look in spec/fixtures for fixtures. This is correct for a project using RSpec from the start, but for us, the fixtures are in test/fixtures. Change this by editing spec/rails_helper.rb:

rails51/depot_xa/spec/rails_helper.rb
	​ 	RSpec.configure ​do​ |config|
	​ 	 ​# Remove this line if you're not using ActiveRecord or ActiveRecord fixtures​
	»	 config.fixture_path = ​"​​#{​::Rails.root​}​​/test/fixtures"​

 Back to the spec, its setup will need to create a Cart to use in our tests as well as fetch two products from fixtures. By default, fixtures aren’t available in specs, but you can call fixtures to make them available. Here’s what the setup looks like:

rails51/depot_xa/spec/models/cart_spec.rb
	​ 	require ​'rails_helper'​
	​ 	
	​ 	RSpec.describe Cart, ​type: :model​ ​do​
	​ 	
	»	 fixtures ​:products​
	»	 subject(​:cart​) { Cart.new }
	»	
	»	 let(​:book_one​) { products(​:ruby​) }
	»	 let(​:book_two​) { products(​:two​) }

 This definitely doesn’t look like our original test! The call to subject declares the variable cart, which you will use in the tests later. The calls to let declare other variables that can be used in the tests. The reason for two methods that seemingly do the same thing is an RSpec convention. The object that is the focus of the test is declared with subject. Ancillary data needed for the test is declared with let.

 The tests themselves will also look quite different from their equivalents in a standard Rails test. For one thing, they aren’t called tests but rather examples. Furthermore, it’s customary for each example to make only one assertion. The existing test of adding different products makes two assertions, so in the spec, that means two examples.

 Assertions look different in RSpec as well:

	​ 	expect(actual_value).to eq(expected_value)

 Applying this to the two assertions around adding distinct items, we have two examples (we’ll show you where this code goes in a moment):

	​ 	it ​"has two line items"​ ​do​
	​ 	 expect(cart.line_items.size).to eq(2)
	​ 	​end​
	​ 	it ​"has a total price of the two items' price"​ ​do​
	​ 	 expect(cart.total_price).to eq(book_one.price + book_two.price)
	​ 	​end​

 These assertions won’t succeed unless items are added to the cart first. That code could go inside each example, but RSpec allows you to extract duplicate setup code into a block using before:

	​ 	before ​do​
	​ 	 cart.add_product(book_one).save!
	​ 	 cart.add_product(book_two).save!
	​ 	​end​
	​ 	it ​"has two line items"​ ​do​
	​ 	 expect(cart.line_items.size).to eq(2)
	​ 	​end​
	​ 	it ​"has a total price of the two items' price"​ ​do​
	​ 	 expect(cart.total_price).to eq(book_one.price + book_two.price)
	​ 	​end​

 This setup is only relevant to some of the tests of the add_product method, specifically the tests around adding different items. To test adding the same item twice, you’ll need different setups. To make this happen, wrap the above code in a block using context. context takes a string that describes the context we’re creating and acts as a scope for before blocks. It’s also customary to wrap all examples of the behavior of a method inside a block given to describe. Given all that, here’s what the first half of your spec should look like:

rails51/depot_xa/spec/models/cart_spec.rb
	»	describe ​"#add_product"​ ​do​
	»	 context ​"adding unique products"​ ​do​
	»	 before ​do​
	»	 cart.add_product(book_one).save!
	»	 cart.add_product(book_two).save!
	»	 ​end​
	»	
	»	 it ​"has two line items"​ ​do​
	»	 expect(cart.line_items.size).to eq(2)
	»	 ​end​
	»	 it ​"has a total price of the two items' price"​ ​do​
	»	 expect(cart.total_price).to eq(book_one.price + book_two.price)
	»	 ​end​
	»	 ​end​

 Here is the second half of the spec, which tests the behavior of add_product when adding the same item twice:

rails51/depot_xa/spec/models/cart_spec.rb
	»	context ​"adding duplicate products"​ ​do​
	»	 before ​do​
	»	 cart.add_product(book_one).save!
	»	 cart.add_product(book_one).save!
	»	 ​end​
	»	

	»	 it ​"has one line item"​ ​do​
	»	 expect(cart.line_items.size).to eq(1)
	»	 ​end​
	»	 it ​"has a line item with a quantity of 2"​ ​do​
	»	 expect(cart.line_items.first.quantity).to eq(2)
	»	 ​end​
	»	 it ​"has a total price of twice the product's price"​ ​do​
	»	 expect(cart.total_price).to eq(book_one.price * 2)
	»	 ​end​
	»	 ​end​

 Running bin/rails spec, it should pass:

	​ 	> bin/rails spec
	​
	​ 	
	​ 	Finished in 0.11007 seconds (files took 1.72 seconds to load)
	​ 	5 examples, 0 failures

 A lot of code in this file isn’t executing a test, but all the calls to describe, context, and it aren’t for naught. Passing SPEC_OPTS="--format=doc" to the spec task, the test output is formatted like the documentation of the Cart class:

	​ 	> bin/rails spec SPEC_OPTS="--format=doc"
	​ 	
	​ 	Cart
	​ 	​ #add_product​
	​ 	 adding unique products
	​ 	 has two line items
	​ 	 has a total price of the two items' price
	​ 	 adding duplicate products
	​ 	 has one line item
	​ 	 has a line item with a quantity of 2
	​ 	 has a total price of twice the product's price
	​ 	
	​ 	Finished in 0.14865 seconds (files took 1.76 seconds to load)
	​ 	5 examples, 0 failures

 Also note that rspec-rails changes the Rails generators to create empty spec files in spec/ instead of test files in test/. This means that you use all the generators and scaffolding you are used to in your normal workflow without having to worry about the wrong type of test file being created.

 If all of this seems strange to you, you are not alone. It is strange, and the reasons RSpec is designed this way, as well as why you might want to use it, are nuanced and beyond the scope of this book. The main point all this proves is that you can replace a major part of Rails with an alternative and still get all the benefits of the rest of Rails. It’s also worth noting that RSpec is quite popular, and you are very likely to see it in the wild.

 Let’s learn more about Rails’ configurability by replacing another major piece of Rails—ERB templates.

Creating HTML Templates with Slim

 Slim is a templating language that can replace ERB.[124] It is designed to require much less code to achieve the same results, and it does this by using a nested structure instead of HTML tags. Consider this ERB:

	​ 	<h2>​<%=​ t(​'.title'​) ​%>​</h2>
	​ 	<table>
	​ 	 ​<%=​ render(cart.line_items) ​%>​
	​ 	
	​ 	 <tr class=​"total_line"​>
	​ 	 <td colspan=​"2"​>Total</td>
	​ 	 <td class=​"total_cell"​>​<%=​ number_to_currency(cart.total_price) ​%>​</td>
	​ 	 </tr>
	​ 	
	​ 	</table>

 In Slim, this would look like so:

	​ 	h2
	​ 	 = t(​'.title'​)
	​ 	table
	​ 	 = render(cart.line_items)
	​ 	
	​ 	 tr.total_line
	​ 	 td.colspan=2
	​ 	 Total
	​ 	 td.total_cell
	​ 	 = number_to_currency(cart.total_price)

 Slim treats each line as an opening HTML tag, and anything indented under that line will be rendered inside that tag. Helper methods and instance variables can be accessed using =, like so:

	​ 	ul
	​ 	 li = link_to @product.name, product_path(@product)

 To execute logic, such as looping over a collection, use -, like so:

	​ 	ul
	​ 	 - @products.each ​do​ |product|
	​ 	 li
	​ 	 - ​if​ product.available?
	​ 	 = link_to product.name, product_path(product)
	​ 	 - ​else​
	​ 	 = ​"​​#{​product.name​}​​ out of stock"​

 The code after - is executed as Ruby, but note that no end keyword is needed—Slim inserts that for you.

 Slim allows you to specify HTML classes by following a tag with a . and the class name:

	​ 	h1.title This title has the "title" class!

 And, in a final bit of ultracompactness, if you want to create a div with an HTML class on it, you can omit div entirely. This creates a div with the class login-form that contains two text inputs:

	​ 	.login-form
	​ 	 input type=text name=username
	​ 	 input type=password name=password

 Putting all this together, let’s install Slim and reimplement the home page in app/views/store/index.html.erb using it. This will demonstrate how Rails allows us to completely replace its templating engine.

 First, install slim-rails by adding it to the Gemfile:

	​ 	gem ​'slim-rails'​

 After you bundle install, your Rails app will now render files ending in slim as a Slim template. We can see this by removing app/views/store/index.html.erb and creating app/views/stores/index.slim like so:

rails51/depot_xb/app/views/store/index.slim
	​ 	- ​if​ notice
	​ 	 aside#notice = notice
	​ 	
	​ 	h1 = t(​'.title_html'​)
	​ 	
	​ 	ul.catalog
	​ 	 - cache @products ​do​
	​ 	 - @products.each ​do​ |product|
	​ 	 - cache product ​do​
	​ 	 li
	​ 	 = image_tag(product.image_url)
	​ 	 h2 = product.title
	​ 	 p = sanitize(product.description)
	​ 	 .price
	​ 	 = number_to_currency(product.price)
	​ 	 = button_to t(​'.add_html'​),
	​ 	 line_items_path(​product_id: ​product, ​locale: ​I18n.locale),
	​ 	 ​remote: ​​true​

 Restart your server if you have it running, and you should see the home page render the same as before.

 In addition to being able to render Slim, installing slim-rails changes Rails generators to create Slim files instead of ERB, so all of the scaffolding and other generators you’re used to will now produce Slim templates automatically. You can even convert your existing ERB templates to Slim by using the erb2slim command, available by installing the html2slim Ruby gem.[125]

 Let’s learn one more thing about Rails’ configurability by configuring our app to serve CSS from Webpack.

Serving CSS via Webpack

 We’ve been writing CSS in files located in app/assets/stylesheets. Rails will find whatever css files are there, bundle them all up together, and make the combined CSS available to your views. If you want to use modern CSS tools or techniques, such as CSS modules or Post CSS,[126][127] it’s not easy or possible to use them with the CSS that Rails serves up.

 The part of Rails that handles CSS is called Sprockets, and while new gems are always being produced to give Sprockets new abilities, the state of the art in CSS is part of the JavaScript ecosystem and available via Webpack. Prior to Rails 5.1, setting up Webpack was extremely difficult. But as we learned in Chapter 13, ​Task H: Entering Additional
Payment Details​, Rails now includes full support for Webpack, and it turns out that Webpacker has configured Webpack to serve CSS already!

 We’ll modify the app so that Webpack is serving CSS, and we’ll demonstrate the benefit of this by installing cssnext.[128] cssnext allows you to use features of CSS that aren’t supported in the browser by post-processing the CSS you write.

 Webpacker configured Webpack to look for CSS in app/javascript/packs, which is strange, but since it’s the default, let’s go with it. Move app/assets/stylesheets/application.scss into app/javascript/packs. Next, create the directory app/javascript/packs/css, and move all the other scss files from app/assets/javascripts into that directory.

 If you open up app/javascript/packs/application.scss, you should see a large comment at the top of the file. At the end of the comment, there are two directives that look like this:

	​ 	​//= require_tree .​
	​ 	​//= require_self​

 These directives tell Sprockets to include all the scss files in the current directory, which allows us to put CSS in several different files. Webpack doesn’t support these directives, so we’ll need to add some code to application.scss to replicate what they do.

 As mentioned way back in ​Iteration A2: Making Prettier Listings​, our CSS files are actually Sass files, and Sass has the ability to import external files using @import. Unfortunately, we can’t @import all files with one line of code, so you’ll need to add one @import for each file:

rails51/depot_xc/app/javascript/packs/application.scss
	»	​@import​ ​"css/admin.scss"​;
	»	​@import​ ​"css/carts.scss"​;
	»	​@import​ ​"css/line_items.scss"​;
	»	​@import​ ​"css/orders.scss"​;
	»	​@import​ ​"css/products.scss"​;
	»	​@import​ ​"css/scaffolds.scss"​;
	»	​@import​ ​"css/sessions.scss"​;
	»	​@import​ ​"css/store.scss"​;
	»	​@import​ ​"css/users.scss"​;

 Webpack will now serve up CSS, but the application layout needs to be changed to bring it in. Replace the call to stylesheet_link_tag with the Webpacker-provided stylesheet_pack_tag.

rails51/depot_xc/app/views/layouts/application.html.erb
	»	​<%=​ stylesheet_pack_tag ​"application"​ ​%>​

 Restart your server, and the app should appear the same as it did before.

 We can take advantage of this new way of serving CSS by configuring cssnext. cssnext is a plugin to Post CSS, which is a general CSS post-processor. Fortunately for us, Webpacker has already configured it, so we only need to install and configure cssnext.

 To install it, use Yarn to add it to the project:

	​ 	> yarn add postcss-cssnext

 Webpacker created the file .postcssrc.yml to allow configuration of Post CSS. With cssnext installed, all we need to do is add a line to the end of the file indicating we want cssnext to be included when post-processing the CSS:

rails51/depot_xc/.postcssrc.yml
	​ 	plugins:
	​ 	 postcss-smart-import: {}
	​ 	 postcss-cssnext: {}

 To see this in action, let’s use the new CSS function gray,[129] which generates various shades of gray. Few browsers support this, and cssnext will convert any call to gray into something the browser does support. We’ll change the black border at the top of the home page to gray, like so:

rails51/depot_xc/app/javascript/packs/css/store.scss
	​ 	.store {
	​ 	 max-width: 80em;
	​ 	 ul.catalog {
	​ 	
	»	 border-top: solid 0.250em gray(50%);

 Restart your server and reload the page. The border should be gray. To see what happened, open up http://0.0.0.0:8080/packs/application.css in your browser. This will show you the CSS that’s actually being served up. If you scroll down to the CSS from store.scss, you should see that it’s not the same—the gray function is gone, replaced by a call to rgb, which modern browsers do support.

Customizing Rails in Other Ways

 Customizing the edges of Rails, like you did above with CSS, HTML templates, and tests, tends to be more straightforward and more options are out there for you. Customizing Rails’ internals is more difficult. If you want, you can remove Active Record entirely and use libraries like Sequel or ROM,[130][131] but you’d be giving up a lot—Active Record is tightly coupled with many parts of Rails.

 Tight coupling is usually viewed as a problem, but it’s this coupling that allows you to be so productive using Rails. The more you change your Rails app into a loosely coupled assembly of unrelated libraries, the more work you have to do getting the pieces to talk to each other. Finding the right balance is up to you, your team, or your project.

 The Rails ecosystem is also filled with plugins and enhancements to address common needs that aren’t quite common enough to be added to Rails itself. For example, Kaminari provides pagination for when you need to let a user browse hundreds or thousands of records.[132] Ransack and Searchkick provide advanced ways of searching your database with Active Record.[133][134] CarrierWave makes uploading files to your Rails app much more straightforward than hand-rolling it yourself.[135]

 And if you want to analyze and improve the code inside your Rails app, RuboCop can check that you are using a consistent style,[136] while Brakeman can check for common security vulnerabilities.[137]

 These extras are the tip of the iceberg. The community of extensions and plugins for Rails is yet another benefit to building your next web application with Rails.

Where to Go from Here

 Congratulations! We’ve covered a lot of ground together.

 In Part I, you installed Rails, verified the installation using a basic
 application, got exposed to the architecture of Rails, and got acquainted
 (or maybe reacquainted) with the Ruby language.

 In Part II, you iteratively built an application, built up test cases
 along the way, and ultimately deployed it using Capistrano. We designed
 this application to touch on all aspects of Rails that every
 developer needs to be aware of.

 Whereas Parts I and II of this book each served a single purpose, Part III
 served a dual role.

 For some of you, Part III methodically filled in the gaps and covered
 enough for you to get real work done. For others, these will be the first
 steps of a much longer journey.

 For most of you, the real value is a bit of both. A
 firm foundation is required in order for you to be able to explore
 further. And that’s why we started this part with a chapter that not
 only covered the convention and configuration of Rails but also covered the
 generation of documentation.

 Then we proceeded to devote a chapter each to the model, views, and
 controller, which are the backbone of the Rails architecture. We covered
 topics ranging from database relationships to the REST architecture to HTML
 forms and helpers.

 We covered migration as an essential maintenance tool for
 the deployed application’s database.

 Finally, we split Rails apart and explored the concept of gems from a
 number of perspectives, from making use of individual Rails
 components separately to making full use of the foundation upon which
 Rails is built and finally to building and extending the framework to
 suit your needs.

 At this point, you have the necessary context and background to more deeply explore
 whatever areas suit your fancy or are needed to solve that
 vexing problem you face. We recommend you start by visiting the
 Ruby on Rails site and exploring each of the links across the top of that page.[138]
 Some of this will be quick refreshers of materials presented in this book,
 but you will also find plenty of links to current information on how
 report problems, learn more, and keep up-to-date.

 Additionally, please continue to contribute to the forums
 mentioned in the book’s introduction.

 Pragmatic Bookshelf has more books on
 Ruby and Rails subjects. There also are plenty of related categories that go beyond Ruby and Rails, such as
 technical practices; testing, design, and cloud
 computing; and tools, frameworks, and languages. You can
 find these and many other categories at http://www.pragprog.com/.

 We hope you have enjoyed learning about Ruby on Rails as much as we have
 enjoyed writing this book!

Footnotes

	[124]
	
http://slim-lang.com

	[125]
	
https://github.com/slim-template/html2slim

	[126]
	
https://github.com/css-modules/css-modules

	[127]
	
https://github.com/postcss/postcss

	[128]
	
http://cssnext.io/

	[129]
	
http://cssnext.io/features/#gray-function

	[130]
	
http://sequel.jeremyevans.net/

	[131]
	
http://rom-rb.org/

	[132]
	
https://github.com/kaminari/kaminari

	[133]
	
https://github.com/activerecord-hackery/ransack

	[134]
	
https://github.com/ankane/searchkick

	[135]
	
https://github.com/carrierwaveuploader/carrierwave

	[136]
	
https://github.com/bbatsov/rubocop

	[137]
	
https://github.com/presidentbeef/brakeman

	[138]
	
http://rubyonrails.org/

Copyright © 2017, The Pragmatic Bookshelf.

Bibliography

	[Bur15]
	Trevor Burnham. CoffeeScript. The Pragmatic Bookshelf, Raleigh, NC, 2015.
	[CC16]
	Hampton Lintorn Catlin and Michael Lintorn Catlin. Pragmatic Guide to Sass 3. The Pragmatic Bookshelf, Raleigh, NC, 2016.
	[FH13]
	Dave Thomas, with Chad Fowler and Andy Hunt. Programming Ruby 1.9 & 2.0 (4th edition). The Pragmatic Bookshelf, Raleigh, NC, 4th, 2013.
	[HT99]
	Andrew Hunt and David Thomas. The Pragmatic Programmer. The Pragmatic Bookshelf, Raleigh, NC, 1999.
	[MD17]
	Myron Marston and Ian Dees. Effective Testing with RSpec 3. The Pragmatic Bookshelf, Raleigh, NC, 2017.
	[Rap17]
	Noel Rappin. Take My Money. The Pragmatic Bookshelf, Raleigh, NC, 2017.
	[Val13]
	José Valim. Crafting Rails 4 Applications. The Pragmatic Bookshelf, Raleigh, NC, 2013.

Copyright © 2017, The Pragmatic Bookshelf.

Thank you!

 How did you enjoy this book? Please let us know. Take a moment and email us at support@pragprog.com with your feedback. Tell us your story and you could win free ebooks. Please use the subject line “Book Feedback.”

 Ready for your next great Pragmatic Bookshelf book? Come on over to https://pragprog.com and use the coupon code BUYANOTHER2017 to save 30% on your next ebook.

 Void where prohibited, restricted, or otherwise unwelcome. Do not use ebooks near water. If rash persists, see a doctor. Doesn’t apply to The Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf itself. Side effects may include increased knowledge and skill, increased marketability, and deep satisfaction. Increase dosage regularly.

 And thank you for your continued support,

 Andy Hunt, Publisher

[image: images/Coupon.png]

You May Be Interested In…
Select a cover for more information
HTML5 and CSS3 (2nd edition)
[image:]

 HTML5 and CSS3 are more than just buzzwords – they’re the foundation for today’s web applications. This book gets you up to speed on the HTML5 elements and CSS3 features you can use right now in your current projects, with backwards compatible solutions that ensure that you don’t leave users of older browsers behind. This new edition covers even more new features, including CSS animations, IndexedDB, and client-side validations.

Brian P. Hogan
(314 pages) ISBN: 9781937785598 $38

Secure Your Node.js Web Application
[image:]

 Cyber-criminals have your web applications in their crosshairs. They search for and exploit common security mistakes in your web application to steal user data. Learn how you can secure your Node.js applications, database and web server to avoid these security holes. Discover the primary attack vectors against web applications, and implement security best practices and effective countermeasures. Coding securely will make you a stronger web developer and analyst, and you’ll protect your users.

Karl Düüna
(230 pages) ISBN: 9781680500851 $36

A Common-Sense Guide to Data Structures and Algorithms
[image:]

 If you last saw algorithms in a university course or at a job interview, you’re missing out on what they can do for your code. Learn different sorting and searching techniques, and when to use each. Find out how to use recursion effectively. Discover structures for specialized applications, such as trees and graphs. Use Big O notation to decide which algorithms are best for your production environment. Beginners will learn how to use these techniques from the start, and experienced developers will rediscover approaches they may have forgotten.

Jay Wengrow
(218 pages) ISBN: 9781680502442 $45.95

Design It!
[image:]

 Don’t engineer by coincidence—design it like you mean it! Grounded by fundamentals and filled with practical design methods, this is the perfect introduction to software architecture for programmers who are ready to grow their design skills. Ask the right stakeholders the right questions, explore design options, share your design decisions, and facilitate collaborative workshops that are fast, effective, and fun. Become a better programmer, leader, and designer. Use your new skills to lead your team in implementing software with the right capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091 $41.95

Explore It!
[image:]

 Uncover surprises, risks, and potentially serious bugs with exploratory testing. Rather than designing all tests in advance, explorers design and execute small, rapid experiments, using what they learned from the last little experiment to inform the next. Learn essential skills of a master explorer, including how to analyze software to discover key points of vulnerability, how to design experiments on the fly, how to hone your observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024 $29

The Way of the Web Tester
[image:]

 This book is for everyone who needs to test the web. As a tester, you’ll automate your tests. As a developer, you’ll build more robust solutions. And as a team, you’ll gain a vocabulary and a means to coordinate how to write and organize automated tests for the web. Follow the testing pyramid and level up your skills in user interface testing, integration testing, and unit testing. Your new skills will free you up to do other, more important things while letting the computer do the one thing it’s really good at: quickly running thousands of repetitive tasks.

Jonathan Rasmusson
(256 pages) ISBN: 9781680501834 $29

Programming Elixir 1.3
[image:]

 Explore functional programming without the academic overtones (tell me about monads just one more time). Create concurrent applications, but get them right without all the locking and consistency headaches. Meet Elixir, a modern, functional, concurrent language built on the rock-solid Erlang VM. Elixir’s pragmatic syntax and built-in support for metaprogramming will make you productive and keep you interested for the long haul. Maybe the time is right for the Next Big Thing. Maybe it’s Elixir. This book is the introduction to Elixir for experienced programmers, completely updated for Elixir 1.3.

Dave Thomas
(362 pages) ISBN: 9781680502008 $38

Crafting Rails 4 Applications
[image:]

 Get ready to see Rails as you’ve never seen it before. Learn how to extend the framework, change its behavior, and replace whole components to bend it to your will. Eight different test-driven tutorials will help you understand Rails’ inner workings and prepare you to tackle complicated projects with solutions that are well-tested, modular, and easy to maintain.

 This second edition of the bestselling Crafting Rails Applications has been updated to Rails 4 and discusses new topics such as streaming, mountable engines, and thread safety.

José Valim
(208 pages) ISBN: 9781937785550 $36

tmux 2
[image:]

 Your mouse is slowing you down. The time you spend context switching between your editor and your consoles eats away at your productivity. Take control of your environment with tmux, a terminal multiplexer that you can tailor to your workflow. With this updated second edition for tmux 2.3, you’ll customize, script, and leverage tmux’s unique abilities to craft a productive terminal environment that lets you keep your fingers on your keyboard’s home row.

Brian P. Hogan
(102 pages) ISBN: 9781680502213 $21.95

Practical Vim, Second Edition
[image:]

 Vim is a fast and efficient text editor that will make you a faster and more efficient developer. It’s available on almost every OS, and if you master the techniques in this book, you’ll never need another text editor. In more than 120 Vim tips, you’ll quickly learn the editor’s core functionality and tackle your trickiest editing and writing tasks. This beloved bestseller has been revised and updated to Vim 8 and includes three brand-new tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278 $29

Exercises for Programmers
[image:]

 When you write software, you need to be at the top of your game. Great programmers practice to keep their skills sharp. Get sharp and stay sharp with more than fifty practice exercises rooted in real-world scenarios. If you’re a new programmer, these challenges will help you learn what you need to break into the field, and if you’re a seasoned pro, you can use these exercises to learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223 $24

Creating Great Teams
[image:]

 People are happiest and most productive if they can choose what they work on and who they work with. Self-selecting teams give people that choice. Build well-designed and efficient teams to get the most out of your organization, with step-by-step instructions on how to set up teams quickly and efficiently. You’ll create a process that works for you, whether you need to form teams from scratch, improve the design of existing teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole
(102 pages) ISBN: 9781680501285 $17

images/one_to_one.png
—
J———— el
e o

' +
end end

images/ar_callbacks.png
model.save() model.destroy()

new recor isting record

before_valldation before_valldation

validation operations validation operations

after_valldation after_valldation

before_save befora_save

before_create before_update before_destroy
insert operation update operation delete operation
after_create after update after_destroy

after_save after_save

images/_covers/bhwb.jpg

images/form_helpers.png
Input |Enter text here.

Address|

Color: O Red O Yellow O Green
Condiment: O Ketchup O Mustard O Mayonnaise
Priority: (A12)

start: (201312] (Februanyi) (262)

images/one_to_many.png
clmstinetiem < Aciveiecard 3z dass Oder < ActieRard fase
belongs_w arder haz_many e jtoms
+ B

end end

images/many_to_many.png
g) oy mrodocs
i | categoryid

clams Categury < ActweRecard:ase s roduct< Acvefocard ase
has_and_belangs_ta_many praducts has_and_belongs_to_many categoses
B B

- -l

images/u_6_locale_switcher.png
Su Catélogo de Pragmatic

Rails, Angular, Postgres, and Bootstrap

~Powertu, Effctive, and Efficent Full-Stack Web Development As a Rails developer, you care about
user experience and performance, but you aiso want simple and mainainable code. Achieve il
that by embracing th fullstack of web developmen, from styling with Bootstrap, bulding an
interactve user interface with AngularJs, to storing data quickly and relably in PostgreSQL. Take &
holstic view of ullstack development to create usabie, high-performing appications, and fearn to
use these technologies effectively i a Ruby on Ralls environment.

ELINENY Aiadi al Carrito

Ruby Performance Optimization

Why Ruby Is Siow, and How to Fix It You don't have to accept siow Ruby or Ralls performance. In
this comprehensive guide to Ruby optimizaton, you'llearn how o wiite faster Ruby code—but
that's just the beginning. See exactly what males Ruby and Rals code sow, and how to fx . Alex
Dymo will guide you through perilsof memory and CPU optimization, profiing, measuring,
performance testing, Garbage collection, and tuning. You'lfnd tha al those “hard things arent
50 difficlt after I, and your code will un orders of magnitude faster.

PN Adadi al Carrito

Seven Mobile Apps in Seven Weeks

Native Apps, Multple latforms Anser the question *Can we buldthis for ALL the devices?” with
a resounding YES. Ths book wil help you get there with a rea-word ntroduction to seven
platforms, whether you're new to mable o an experienced developer nceding to expand your
options. lus, you'lind out which cross-platfor solution makes the most sense for your needs.

images/prod_webserver_arch.png
~ 0
v 2
Bl
]
2
<a

images/u_4_checkout_errors_fixed.png
Carrito de la Compra

Por favor, introduzca sus datos

1 Seven Mablle Apps n Seven Weeks 26,00 SUS

Totats 28,00 U5 4 errores han impedido que este pedido se guarde.

(EETER ((comorer)

Hay problemas con los siguientes compos:

= Nombre no puede quedar en blanco
ireccién o puede quedar en blanco

mail no puede quedar en blanco

= Forma de pago no esth ncuido en I Ista

I Nombre

1 Direccion

+Eemail

Forma de pago

Seleccione un mitodo de pago 3

(Realizar Pedido)

images/u_5_gracias.png
Thank you for your order

Catalog

Rails, Angular, Postgres, and Bootstrap

~Fowertu, Effective, and Effcent Ful-Stack Web Development As a Rais developer, you care about
user experience and performance, but you aiso want smple and maintainable code. Achieve all
that by embracing the full stk of wab development, from styling with Boatstzap, buldng an
interactive user interface with AngulasS, o storing data quickl and reliably in PoSIOreSQL Take o
olsic view offull-stack development o crate usable, high-performing applicatons, and lean to
use these technologes effectively In a Ruby on Rals environment.

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby or Rais performance. In
this comprehensive guide to Ruby optimization, you'llearn how to wite faster Ruby code—but
that's ust the beginning. See exactly what makes Ruby and Rals code slow, and how to fx . Alex
Dymo il guide you through peris of memry and CPU optimization, profing, measuring,
performance testing, garbage calecion, and tuning. You'l find that all those *hard” things aren't
50 difficult after al, and your code will run orders of magnitude faster.

BRI Add to Cart

Seven Mobile Apps in Seven Weeks

Native Apps, Mltiple Platforms Answer the question *Can we buld this for AL the devices?” with
a resounding YES. This book will help you g there with real-world introduction to seven
plotforms, whethar you're new to mabile o an experienced developer needing to expand your
options. lus, you'lfind ot which cross-platfor solution makes the most sense for your needs.

images/rails_layout.png
Model, view, and controller files go here.

Configuration and database connection parameters.
config.ru - Rack server configuration.

Shared code.

Web-accessible directory. Your application runs from here.
Rakefile - Build script.

README.md - Installation and usage information.

Unit, functional, and integration tests, fixtures, and mocks.

Runtime temporary files.

images/app_dir_layout.png
rais png
ipts/
lappicationjs
[products s cofee
|appication.css

products css.scss
scaffods.css scss

feontrgerss
[appication_controterrt
Jproducts_contollertb

s/
leurrent_cart o

Joppication_neiper>
loroducts_helperb
maiers/

Jnotero

muiy
Joroduct

uis/
lappication nmi et
cts/
index umlect
lwho_bought atom buider
line items/
Jereatejscis
L iine_item.ntml.erd

UBUNTU FONT LICENCE Version 1.0

PREAMBLE
This licence allows the licensed fonts to be used, studied, modified and
redistributed freely. The fonts, including any derivative works, can be
bundled, embedded, and redistributed provided the terms of this licence
are met. The fonts and derivatives, however, cannot be released under
any other licence. The requirement for fonts to remain under this
licence does not require any document created using the fonts or their
derivatives to be published under this licence, as long as the primary
purpose of the document is not to be a vehicle for the distribution of
the fonts.

DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this licence and clearly marked as such. This may
include source files, build scripts and documentation.

"Original Version" refers to the collection of Font Software components
as received under this licence.

"Modified Version" refers to any derivative made by adding to, deleting,
or substituting -- in part or in whole -- any of the components of the
Original Version, by changing formats or by porting the Font Software to
a new environment.

"Copyright Holder(s)" refers to all individuals and companies who have a
copyright ownership of the Font Software.

"Substantially Changed" refers to Modified Versions which can be easily
identified as dissimilar to the Font Software by users of the Font
Software comparing the Original Version with the Modified Version.

To "Propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification and with or without charging
a redistribution fee), making available to the public, and in some
countries other activities as well.

PERMISSION & CONDITIONS
This licence does not grant any rights under trademark law and all such
rights are reserved.

Permission is hereby granted, free of charge, to any person obtaining a
copy of the Font Software, to propagate the Font Software, subject to
the below conditions:

1) Each copy of the Font Software must contain the above copyright
notice and this licence. These can be included either as stand-alone
text files, human-readable headers or in the appropriate machine-
readable metadata fields within text or binary files as long as those
fields can be easily viewed by the user.

2) The font name complies with the following:
(a) The Original Version must retain its name, unmodified.
(b) Modified Versions which are Substantially Changed must be renamed to
avoid use of the name of the Original Version or similar names entirely.
(c) Modified Versions which are not Substantially Changed must be
renamed to both (i) retain the name of the Original Version and (ii) add
additional naming elements to distinguish the Modified Version from the
Original Version. The name of such Modified Versions must be the name of
the Original Version, with "derivative X" where X represents the name of
the new work, appended to that name.

3) The name(s) of the Copyright Holder(s) and any contributor to the
Font Software shall not be used to promote, endorse or advertise any
Modified Version, except (i) as required by this licence, (ii) to
acknowledge the contribution(s) of the Copyright Holder(s) or (iii) with
their explicit written permission.

4) The Font Software, modified or unmodified, in part or in whole, must
be distributed entirely under this licence, and must not be distributed
under any other licence. The requirement for fonts to remain under this
licence does not affect any document created using the Font Software,
except any version of the Font Software extracted from a document
created using the Font Software may only be distributed under this
licence.

TERMINATION
This licence becomes null and void if any of the above conditions are
not met.

DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER
DEALINGS IN THE FONT SOFTWARE.

images/u_2_checkout_errors.png
Carrito de la Compra

Por favor, introduzca sus datos

Rals, Angular, Postgres, and

1 sootstrap

45,0050
_ 4 errores han impedido que este Order se guarde.
Total: 45,00 55

Hay problemas con lo siguientes campos:

+ Name transiaton mising:
s actverecord.errors.models.order.attributes name blonk

+ Address transiaton missing
s.actveracord.errors.models.order.attributes address.bank

+ Emall wansiation missing:
es.actverecord.errors.models.order.attributes.emall biank

+ Pay type transiation missing
es.actverecord.errors.model.order attribute. pay_type.incusion

I Nombre

e

Forma de pago

Seleccions un método de pago

Realizar Pedido)

images/u_3_checkout_errors_better.png
Carrito de la Compra

Ralls, Angular, Postgres, and
Bootstrap

1%

45,00 5Us

Total: 45,00 $US

Por favor, introduzca sus datos

4 errores han impedido que este Order se guarde.

Hay problemas con los siguientes campos:

Name no puede quedar en blanco
Address no puede quedar en blanco
Emall o puede quedar en blanco

+ Pay type no esth ncuido en a sta

I Direccién

Forma de pago

Seieccions un método de pago

(Realizar Pedido)

images/t_1_cart_translated.png
Piigmatic
ookshelf

Carrito de la Compra

Su Catalogo de Pragmatic

Rails, Angular,
1x Ppostgres, and
Bootstrap

45,00 $US

Total: 45,00 $US

INICIO

PREGUNTAS

St

Rails, Angular, Postgres, and Bootstrap

"Powerful, Effective, and Effcient Full-Stack Web Development As a Rails

", you care about user experience and p e, but you
also want simple and maintainable code. Achieve all that by embracing
the full stack of web development, from styling with Bootstrap, building
an interactive user interface with AngularJs, to storing data quickly and
reliably in PostgreSQL. Take a holistic view of full-stack development to
create usable, high-performing applications, and learn to use these
technologies effectively in a Ruby on Rails environment.

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby
or Rails performance. In this comprehensive guide to Ruby optimization,
you'lllearn how to write faster Ruby code—but that's just the beginning.
See exactly what makes Ruby and Rails code slow, and how to fix it. Alex
Dymo wil guide you through perils of memory and CPU optimization,
profiing, measuring, performance testing, garbage collection, and

tuning. You'll ind that allthose “hard” things aren't so dificult after all,
and your code wil run orders of magnitude faster.

EEHEVSY Aiadir al Carrito

Seven Mobile Apps in Seven Weeks

Native Apps, Multple Platforms Answer the question “Can we build this
for ALL the devices?" with a resounding YES. This book will help you get
there with a real-world introduction to seven platforms, whether you're
new to mobile or an experienced developer needing to expand your
options. Plus, you'll find out which cross-platform solution makes the
most sense for your needs.

images/u_1_checkout_translated.png
Prigmatic
Bokshelf

Carrito de la Compra Por favor, introduzca sus datos

1 Rall, Angular, Postgres, and Bootstrap 45,00 $US
222l omore

[]

Direccén

Tor

45,00 3US.

E-mail

Forma de pago

[Seleccione un método de pago]

(Realizar Pedido)

images/_covers/elixir13.jpg

images/s_2_en.png
Pfigmatic
ookshelf

Your Pragmatic Catalog

i

Rails, Angular, Postgres, and Bootstrap

Powertu, Efective, and Effcent Full-Stack Web Development As Ralsdeveloper, you care about
user experence and performance, but you also want simple 3nd maintainable code. Acheve sl
that by embracing the fll stack of web development,from styling wit Bootsrap, bulding an
Interactive user nteface with AngularJ, o stoing Gata uickly and reliably I PostgreSQL. Take o
Rolsic view o ul-stac development t create usable, NGh-perfoming appi<atons, and edrn to
use these technologes effectvely n Ruby on Rals environment

sas.00 ([T

Ruby Performance Optimization

Why Ruby s Siw, and How to i I You donthave o accept s Ruby or Rais performance. In
his comprehensive quide o Ruby optimization, youl lear how t wrie faster Ruby code—but
that's ust the beginning. S exactly what makes Ruby and Ralscode sow, and how t fx . Alex.
ymo wil guide you throush perlsof memry and CPU optimizatio, proflng, measuing,
performance testing, Garbage collection, and tuning, You'lfind tht il thase nard things arent
S0 dficlt afer i, ond yourcode wil o oders of magnitude foster.

Seven Mobile Apps in Seven Weeks

Notive Apps, Maltple ltforms Answer the Question “Can we b tis or ALL the devices?” with
3 resounding YES. This book wil help you gt there with rea-workd intrduction to seven
Bltforms, whethar youre new to moble o an experenced develaper heeding o expond your
options. Fius, youT fnd out which ross-pator sluton makes the most sene fo your needs

ERIXO A to Cart

images/s_3_es_error.png
Pfigmatic
ookshelf

Your Pragmatic Catalog

- Rails, Angular, Postgres, and Bootstrap

Powertu, Efective, and Effcent Full-Stack Web Development As Ralsdeveloper, you care about
ser experience and perormance, but you alo want smple 3nd mointainable code. Achieve sl
tha by embracingthe fll tack of web development, from styling wit Bootsrap, buldng an
Interacive use nteface with AngularJ, o toring Gata Quickly and relably i PustgreSQL Take o
Rolsic view o full-stac development t create usable, hgh-performing 9ppl<atons, and earn o
use thee technologes effctivly In Ruby o Ralls environment

EEER A to Cart
-— Ruby Performance Optimization
Bophormance | Wy Ruby Is Siow, an How o ix It You dont hve to ccept siow Ruby or Rals performance. In

this comprehensive uide o Ruby optimization, youl lear how t wrie faster Ruby code—but
tha's ust the beginning. Seo exacty what makes Ruby and Ralscode slow, and how t fx . Alex
ymo wil guide you throush perlsof memry and CPU optimiztion, profing, measuring,
performance testng, Garbage collection, and turing, You'lfid tht il thase ard” things arent
S0 dficlt afer a1, ond yourcode wil o orders of magnitude foster.

Seven Mobile Apps in Seven Weeks
Hotive Apps, Mltile Pafors Answer the uesion Can we buidthisfo AL the devices?” with
3 resounding YES. This book wil hlpyou get here itha realword nroduction t seven
plator, whether you'e new to mobleor an experienced developer needing 10 xpand your
optons. Fiu, youind out whiehcross-plorm olton makes the s sene or your needs.

ERIXO A to Cart

images/r_3_user_list.png
Prigmatic
ookshelf

images/s_1_routes.png
Paths Matching (locale):

store_index_path Ilocale)(format) storefindex
Paths Containing (locale):

orders_path GET (Hocale)/orders(.format) orderstindex
POST (Hocale)/orders(.format) orderstcreate

new_order_path GET format)

edit_order_path GET 4 idledit(forma)

order_path GET (Hocale)/orders/id(format) orderstshow
PATCH (Hocale)/orders/id(format) orders#update
PUT (Hocale)/orders/id(format) orders#update
DELETE (Hocale)/orders/id(format) orderstdestroy

line_items_path GET (Hocale)fine._tems(-format) line_items#index

POST (Focale)ine_items(.-format) line_items#create

images/t_1_cart_translated_currency_in_english.png
Carrito de la Compra

Ruby pertormance

% optmston

Su Ca

logo de Pragmatic

Y

Rails, Angular, Postgres, and Bootstrap
Powertu, Efctve, and Eficien FullStack Web Development A Rl deveioper, Y cae sbout s exerence
o arformanc, u ou 840 work sl axd momanalcode. Achee 3t b oracn el ack o
e Geveopmen,from syl wi Sccsra, uldng an Iaracive ser eface wih AUArS, o 50100
otk and oy PosyeSQL. Tk 5 Rl v o ol ack sveapman o cte ueai, g
parorming and et e these efecively i Ruy o Rl

Ruby Performance Optimization

Why Ruy 15 Stow, and How to Fc I Yo don't hve o sceptsow Ry o Rl peformance.In this
comprenansive e to Ruby aptinizton youT o haw t W aser RuBY Code- bt ha’s st e

begiving. See xacty wht ke Ruby and Ralls code Sow, nd how o . Al Dymo wil guide you trough
perts of memry and CPU opimzaton, rofing, measuring, parformance testing, arbage clectn, and nig.
You find tht h hos “hard inge rent 50 Gt aer s, and your cade wi un rders o magice (st

PR racir al Cartito

images/s_4_es_works.png
Pfigmatic
ookshelf

Your Pragmatic Catalog

Rails, Angular, Postgres, and Bootstrap

Powert, Efctve, and Eficent Ful-tack Web Development As Raisdevelope, you care about
user exprience and performance, butyou aso want simple and maintainable code. Acheve 3l
that by embracing th fll stac of web development, fom stylng with Boctsizap,buling an
Interactive user nterface with AngulasS, to storing dta quicly and rellably In POStESQL. Toke &
Rolstic view of full-stack development t crote usabie, NGh-perorming appicatons, and earnto
use these technolgies effctively in 3 Ruby on Rals environment.

45,00 sus (TR

Ruby Performance Optimization

Why Ruby Is Siow, and How to i It You donthave to accept skow Ruby or Rlls peformance. In
1hiscomprehensive guide t Ruby aptimization, youl leam how o wrte faster Ruby code—but
that' ue th beginning. See exacty what makes Ruby and Ral code sow, and how to 1 . Alex
Dymo wil guide you through peris of memary and CPU aptimization, rofing, measuring,
performance testing, Garbage calcton, and tuing. You'l find tat i those hard hinge arent
Lo ificut aer al, nd your code wil ron orders o magnitde foster.

Seven Mobile Apps in Seven Weeks

Notive Apps, Multle Pltforms Ansir the question "Can w buld i for ALL the devices?” with
a resouning YES. This baok wil help you Gt there wih real-workd ntroduction to seven
platforms, whether you're new to mobile o an experienced developer needing to expand your
optons. s, oul fnd outwhich cross.lator solution makes the most sense fo your needs.

26,00 sus ([T

images/s_5_more_es.png
Pfigmatic
ookshelf

Su Catélogo de Pragmatic

Rails, Angular, Postgres, and Bootstrap

Powert, Efctve, and Eficent Ful-tack Web Development As Raisdevelope, you care about
user exprience and performance, butyou aso want simple and maintainable code. Acheve 3l
that by embracing th fll stac of web development, fom stylng with Boctsizap,buling an
Interactive user nterface with AngulasS, to storing dta quicly and rellably In POStESQL. Toke &
Rolstic view of full-stack development t crote usabie, NGh-perorming appicatons, and earnto
use these technolgies effctively in 3 Ruby on Rals environment.

45,00 sus (RIS

Ruby Performance Optimization

Why Ruby Is Siow, and How to i It You donthave to accept skow Ruby or Rlls peformance. In
1hiscomprehensive guide t Ruby aptimization, youl leam how o wrte faster Ruby code—but
that' ue th beginning. See exacty what makes Ruby and Ral code sow, and how to 1 . Alex
Dymo wil guide you through peris of memary and CPU aptimization, rofing, measuring,
performance testing, Garbage calcton, and tuing. You'l find tat i those hard hinge arent
Lo ificut aer al, nd your code wil ron orders o magnitde foster.

Seven Mobile Apps in Seven Weeks

Notive Apps, Multle Pltforms Ansir the question "Can w buld i for ALL the devices?” with
a resouning YES. This baok wil help you Gt there wih real-workd ntroduction to seven
platforms, whether you're new to mobile o an experienced developer needing to expand your
optons. s, oul fnd outwhich cross.lator solution makes the most sense fo your needs.

PR A al carrito

images/form_flow.png
<%= form_tag do %>

Name:
<%= text_field_tag :name,

<% end %> 500002

Template

Please Log In

Please Log In

images/r_2_login.png
Welcome

'S 2017-08-12 14:24:39 -0400. We have 2 orders

images/r_1_new_user.png
T
PHgmatic
500

shelf

New User

Enter User Details

I

pasowore
[
Contim

L 1]
(

Create User

Back

images/pa_1_js_fixed.png
‘The
S e

Your Cart

1% Ralls, Angular, Postgres, and Bootstrap $45.00

Please Enter Your Details

Select a payment method

e
Pay type

I]

Place Order

Hello React!

images/depot_pb_console_log.png
Prigmatic
ookshelf

Your Cart Please Enter Your Details

1 Ralls, Angular, Postgres, and Bootstrap $45.00

Name
Total: $45.00]

Adaress

Home

QuesTIoNs

NEWS Email

conTacT]
oy tyve
(Place Order)

o Qe searcn

<) W Eren wamngs s @

Consoloceared a 6:58:08 AM
& Check 3 onvayTypeseiected — indexjex23
& Creditcard 3 onvayTypeseiected — indoxisx23
& purchase order 3 onvayTypessiected — indoxsx23
>

images/o_3_checkout_form_filled_in.png
Prigmatic
okshelf

Your Cart Please Enter Your Det:

1% Ralls, Angular, Postgres, and Bootstrap $45.00

Seringtad, VA 90210

auesTions et
NEws [poesramoicom]
contact

ravope

Check. ¢

Place Order)

images/o_4_thanks.png
Your Pragmatic Catalog

Rails, Angular, Postgres, and
Bootstrap

images/depot_pc_purchase_order_pay_type.png
Pay type
[[Purchase order 4)

PO #

images/ActiveJobFlowDetail.png
OrdersController

call
Order.charge!

ChargeOrderJob

[| @

Order

images/depot_pc_check_pay_type.png
Pay type
| check o)

Routing #

Account #

images/depot_pc_credit_card_pay_type.png
Expiry

‘ 9. 03/19 ‘

images/o_1_checkout_form.png
Your Cart Please Enter Your Details

1 Rails, Angular, Postgres, and Bootstrap _$45.00
— Name

[|

Address

Total: $45.00

Pay type

Select a payment method 5l

Place Order

images/o_2_checkout_errors.png
Vour Cort Please Enter Your Details

4 errors prohibited this order from being saved:

images/_covers/bhtmux2.jpg

images/form_with.png
Order.find(..

@order.name

<%= form with(model: Gorder, local: true) do
<p>
<%= form.label :name, "Namgii¥
<%= form.text_field :name,“size: 40 %>
</p>
<% end %>

- "Pat"

2>

Name:

Pat

images/g_5_empty_cart.png
Your cart is currently empty

Catalog

Rails, Angular, Postgres, and Bootstrap

~Fowertu, Effective, and Effcent Ful-Stack Web Development As a Rais developer, you care about
user experience and performance, but you aiso want smple and maintainable code. Achieve all
that by embracing the full stk of wab development, from styling with Boatstzap, buldng an
interactive user interface with AngulasS, o storing data quickl and reliably in PoSIOreSQL Take o
olsic view offull-stack development o crate usable, high-performing applicatons, and lean to
use these technologes effectively In a Ruby on Rals environment.

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby or Rais performance. In
this comprehensive guide to Ruby optimization, you'llearn how to wite faster Ruby code—but
that's ust the beginning. See exactly what makes Ruby and Rals code slow, and how to fx . Alex
Dymo il guide you through peris of memry and CPU optimization, profing, measuring,
performance testing, garbage calecion, and tuning. You'l find that all those *hard” things aren't
50 difficult after al, and your code will run orders of magnitude faster.

BRI Add to Cart

Seven Mobile Apps in Seven Weeks

Native Apps, Mltiple Platforms Answer the question *Can we buld this for AL the devices?” with
a resounding YES. This book will help you g there with real-world introduction to seven
plotforms, whethar you're new to mabile o an experienced developer needing to expand your
options. lus, you'lfind ot which cross-platfor solution makes the most sense for your needs.

images/h_1_cart_2_styled.png
Your Cart

3 x Rails, Angular, Postgres, and Bootstrap ~ $135.00

4 x Seven Mobile Apps in Seven Weeks $104.00

Total: $239.00

Empty cart

images/apple-logo-black.jpg

images/g_3_cart_error.png
ActiveRecord::RecordNotFound in CartsCol

Couldn't find Cart with 'id'=wibble

Extactod souce (around ino #67)

s callbacks to share comon setup or constratnts between actions.
def set_cort
cart = Cart.findCporans(:14))

Rails. root: /Users/davec/git/awdwr/editiond/work-51/depot

oplcaton Trace| Famovork Tace | Eul Tace
Request
Parametors

CiaroTmne

Toggle session

‘Toggleeny dump

Response

Headers:

images/g_4_cart_error_fixed.png
Catalog

Rails, Angular, Postgres, and Bootstrap

~Fowertu, Effective, and Effcent Ful-Stack Web Development As a Rais developer, you care about
user experience and performance, but you aiso want smple and maintainable code. Achieve all
that by embracing the full stk of wab development, from styling with Boatstzap, buldng an
interactive user interface with AngulasS, o storing data quickl and reliably in PoSIOreSQL Take o
olsic view offull-stack development o crate usable, high-performing applicatons, and lean to
use these technologes effectively In a Ruby on Rals environment.

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby or Rais performance. In
this comprehensive guide to Ruby optimization, you'llearn how to wite faster Ruby code—but
that's ust the beginning. See exactly what makes Ruby and Rals code slow, and how to fx . Alex
Dymo il guide you through peris of memry and CPU optimization, profing, measuring,
performance testing, garbage calecion, and tuning. You'l find that all those *hard” things aren't
50 difficult after al, and your code will run orders of magnitude faster.

BRI Add to Cart

Seven Mobile Apps in Seven Weeks

Native Apps, Mltiple Platforms Answer the question *Can we buld this for AL the devices?” with
a resounding YES. This book will help you g there with real-world introduction to seven
plotforms, whethar you're new to mabile o an experienced developer needing to expand your
options. lus, you'lfind ot which cross-platfor solution makes the most sense for your needs.

images/ajax_flow.png
Your Cart

Ry
1% Perormance $46.00
Optmizaton

Total $46.00

Your Pragmatic Catalog

applcation, and larnt use these technlogies effectvly It & Ruby on Rl

envronment.

$45.00

Rails, Angular, Postgres, and
Bootstrap " Postd

Powert, Effecive, and Ecen Ful-Stack Web
evelopment A o Rs developer,you care about user
experionce and perormance, bt you aso want smiie
¢ moinainabe code. Acheve il hat by embracng
the il stack o web development rom stying W
Bootstrap,buling an ntaractve user Iterface with
Angular), o stoing dta quickly andreadly n
PostgreSQL. Take a ol view of ful-stack
Gevelopment o rests usabie, hgh-performing

class LineItemsController < ApplicationController
def create
[
format.js
i
end
end

create.js.coffee

cart = document.getElementById("cart")
cart. innerHTML 3 render (€cart) 3>"

var cart;
cart = document.getElementByld("cart");
cart.innerHTML = "<article>....</article>";

log

Rails, Angular, Postgres, and
Bootstrap ores:

Powert, Efctive, and EMcent Ful-Stack Web
Development As a Rl developer, you care about user
experience and prformance, but you aiso want simple
0 mainainatie code. Acheve all ht by embracng
the fll stack of web development, rom styllng wih
Bootsrap, bulding a nteracive user Itarface with
Angulars, o storng data quikly and elably I
PostgreSQL. Take a Rolsc view offlstack
Geveopment to creste satle, hgh-perorming

appicaions, and lear to use these techciogies effectivly i & Ruby on R

envronment.

images/depot_f_change_price.png
Your Cart Your Pragmatic Catalog

Rails, Angular, Postgres,

1% and Bootstrap. -} Rails, Angular, Postgres, and Bootstrap

~Powertu, Effective, and Effcient Full-Stack Web Development As a Rals developer, you care.
‘about user experience and performance, but you also want simple and maintainable code.
Achieve al that by the full stack of web from styling with 3
building an interactive user interface with AngularJS, o storing data quickly and relably in
PostgreSQL. Take a halitic view of full-stack development to create usable, high-performing
‘applications, and learn to use these technologies effectively in a Ruby on Rals environment.

HOME

QUESTIONS
Add to Cart

NEW

images/j_1_side_cart.png
Pragmatic
ookshelf

Your Cart

Rails, Angular,

1% Postgres, and
Bootstrap

HOME
QUESTIONS
L

NTACT

$45.00

Total: $45.00

Your Pragmatic Catalog

Rails, Angular, Postgres, and Bootstrap

Powertul, Effective, and Efficient Full-Stack Web Development As a Ralls
developer, you care about user experience and performance, but you also
want simple and maintainable code. Achieve all that by embracing the full
stack of web development, from styling with Bootstrap, building an
interactive user interface with AngularJS, to storing data quickly and
reliably in PostgreSQL. Take a holistic view of full-stack development to
create usable, high-performing applications, and learn to use these
technologles effectively in a Ruby on Rails environment.

$45.00 NLRTNerT

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby
or Rails performance. In this comprehensive guide to Ruby optimization,
you'll learn how to write faster Ruby code—but thats just the beginning.
See exactly what makes Ruby and Ralls code slow, and how to fix it. Alex
Dymo will guide you through perils of memory and CPU optimization,
profiling, measuring, performance testing, garbage collection, and tuning.
You'll find that all those "hard” things aren't so difficult after all, and your
code will run orders of magnitude faster.

$46.00 EENCRGNe:I 4

Seven Mobile Apps in Seven Weeks

Native Apps, Multiple Platforms Answer the question "Can we build this for
ALL the devices?" with a resounding YES. This book will help you get there
with a real-world introduction to seven platforms, whether you're new to
mobile or an experienced developer needing to expand your options. Plus,
You'll find out which cross-platform solution makes the most sense for your
needs.

$26.00 QCRGNe:Id

images/k_1_products_page_broken.png
ArgumentError in Products#index

Showing i ot whero line #28 rasad:

L' 15 not an Activelodel-conpatible object. It must inplement :to_partial_path.
Extracted source (around lne #24):

<t START_HIGHLIGHT —->
<tiv id-"cart” closs-"carts">
e render ecart 1>
</
<1 ENOHIGHLIGHT >
als

Rails.root: /Users/davec/git/andwr/editiond/work-51/depot
Acplcation Trace | Framework Trace | Eul Trace.

o/viens/\ayouts/apalisation.hta)erb:26:1n *_opo viens lavouts. ooolication bt

b_G11371408263257

Torsss s

Request
Parametrs:

Nore

‘Toggle session dump

Toggle env dump

Response

Hoaders:

images/g_2_cart_2_no_quantities.png
Your Pragmatic Cart

1 x Rails, Angular, Postgres, and Bootstrap
1 x Rails, Angular, Postgres, and Bootstrap
1 x Seven Mobile Apps in Seven Weeks
1 x Seven Mobile Apps in Seven Weeks
1 x Seven Mobile Apps in Seven Weeks

images/_covers/jwdsal.jpg
e SR

images/f_3_better_cart.png
Line item was successfully create

our Pragmatic Cart

* Ruby Performance Optimization

images/g_1_cart_2_quantities.png
Your Pragmatic Cart

« 2 x Rails, Angular, Postgres, and Bootstrap
« 3 x Seven Mobile Apps in Seven Weeks

images/_covers/mkdsa.jpg
Design It!

images/d_1_new_root.png
Store#index

Find me in app/views/store/index.html.erb

images/d_2_catalog.png
Your Pragmatic Catalog

Rails, Angular, Postgres, and Bootstrap

~Powertu, Effective, and Eficient Ful-Stack Web Development As a Ralls developer, you care about user

‘experience and performance, but you also want simple and maintainable code. Achieve al that by embracing the

ful stack of web from styling with building an user interface with Anguiar)s,

to storing data quickly and reliably in PostoreSQL. Take a holisic view of full-stack development to create usable,
9 and learn to use these. effectively in @ Ruby on Ralls environment.

45.0

Ruby Performance Optimizal

Why Ruby I Slow, and How to Fix It ou don't have to accept slow Ruby o Rals performance. In this
‘comprehensive guide to Ruby optimization, you'l learn how to write faster Ruby code—but thats ust the
beginning. See exactly what makes Ruby and Rails code slow, and how to fx t. Alex Dymo will guide you
through perlls of memory and CPU optimization, profiing, measuring, performance testing, garbage calection,
and tuning. You'l find that allthose “hard” things aren't 5 dificult after all, and your code wilrun orders of
magnitude faster.

46.0

Seven Mobile Apps in Seven Weeks

Native Apps, Multile Platforms Answer the question “Can we bl this or ALL the devices?” with resounding
VES. Thi boak wil el you g6k there with a resl-worid itroduction {0 seven platforms, whether you now (3
moble or an experitnced develope neading t expand your ptons. Pus, youl i out which eross-patior
Solton makes the most sens fo your necds.

26.0

images/b_1_validation_errors.png
New Product

3 errors prohibited this product from being saved:

= Title can't be blank
= Description can't be blank
= Image url can't be blank

il

images/b_2_price_validation_errors.png
New Product

1 error prohibited this product from being saved:

= Price is not a number

Description

[A true masterwork. Comparable to Kafka at
Ihis funniest, or Marx during his slapstick
lperiod. Move over, Tolstoy, theres a new
[funster in town.

Image url

E

images/f_1_added_button.png
Your Pragma

Catalog

Rails, Angular, Postgres, and Bootstrap

Powertul, Efective, and Effcient Full-Stack Web Development As a Rl developer, you care sbout
user experience and performance, but you aiso want simple and maintainable code. Achieve all
that by embracing th full stk of wab development, from styling with Boatstrap, bulding an
Interactive user nterface with AngularsS, o toring data quickly and rellably in PostgreSQL. Take a
olsic view of fullstack development o create usable, high-performing applications, and lean to
use these technologes effectively In 3 Ruby on Rals environmen.

nll KZEXY Adid to Cart

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby or Rais performance. In
this comprehensiv guide to Ruby optimization, you'l lean how to write faster Ruby code—but
that's ust the beginning. See exactly what makes Ruby and Rals code slow, and how to fx . Alex
Dymo wil guide you through peris of memory and CPU optimization, profing, measuring,
performance testing, garbage calection, and tuning. You'l ind tht all those *hard” things aren't
50 dfficult after al, and your code will run orders of magnitude faster.

Seven Mobile Apps in Seven Weeks

Native Apps, Mltiple Platforms Answar the question *Can we buld thi for AL the devices?” with
2 resounding YES. This ook wil help you get there with a real-word introduction to seven
plotforms, whethar you're new to mabile o an experienced developer needing to expand your
options. lus, you'lfind ot which cross-platfor solution makes the most sense for your needs.

$26.00

images/f_2_boring_cart.png
Line item was successfully created.

Edit | Back

images/e_1_catalog_with_nav.png
The

matic
ookshelf

Your Pragma

Catalog

Rails, Angular, Postgres, and Bootstrap

Powertul, Efective, and Effcient Full-Stack Web Development As a Rl developer, you care sbout
user experience and performance, but you aiso want simple and maintainable code. Achieve all
that by embracing th full stk of wab development, from styling with Boatstrap, bulding an
Interactive user nterface with AngularsS, o toring data quickly and rellably in PostgreSQL. Take a
olsic view of fullstack development o create usable, high-performing applications, and lean to
use these technologes effectively In 3 Ruby on Rals environmen.

45.0

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby or Rais performance. In
this comprehensiv guide to Ruby optimization, you'l lean how to write faster Ruby code—but
that's ust the beginning. See exactly what makes Ruby and Rals code slow, and how to fx . Alex
Dymo wil guide you through peris of memory and CPU optimization, profing, measuring,
performance testing, garbage calection, and tuning. You'l ind tht all those *hard” things aren't
50 dfficult after al, and your code will run orders of magnitude faster.

46.0

Seven Mobile Apps in Seven Weeks

Native Apps, Mltiple Platforms Answar the question *Can we buld thi for AL the devices?” with
a resounding YES. This book will help you g there with real-world introduction to seven
plotforms, whethar you're new to mabile o an experienced developer needing to expand your
options. lus, you'lfind ot which cross-platfor solution makes the most sense for your needs.

26.0

images/e_2_prices_fixed.png
The

matic
ookshelf

Your Pragma

Catalog

Rails, Angular, Postgres, and Bootstrap

Powertul, Efective, and Effcient Full-Stack Web Development As a Rl developer, you care sbout
user experience and performance, but you aiso want simple and maintainable code. Achieve all
that by embracing th full stk of wab development, from styling with Boatstrap, bulding an
Interactive user nterface with AngularsS, o toring data quickly and rellably in PostgreSQL. Take a
olsic view of fullstack development o create usable, high-performing applications, and lean to
use these technologes effectively In 3 Ruby on Rals environmen.

$45.00

Ruby Performance Optimization

Why Ruby Is Slow, and How to Fix It You don't have to accept slow Ruby or Rais performance. In
this comprehensiv guide to Ruby optimization, you'l lean how to write faster Ruby code—but
that's ust the beginning. See exactly what makes Ruby and Rals code slow, and how to fx . Alex
Dymo wil guide you through peris of memory and CPU optimization, profing, measuring,
performance testing, garbage calection, and tuning. You'l ind tht all those *hard” things aren't
50 dfficult after al, and your code will run orders of magnitude faster.

$46.00

Seven Mobile Apps in Seven Weeks

Native Apps, Mltiple Platforms Answar the question *Can we buld thi for AL the devices?” with
a resounding YES. This book will help you g there with real-world introduction to seven
plotforms, whethar you're new to mabile o an experienced developer needing to expand your
options. lus, you'lfind ot which cross-platfor solution makes the most sense for your needs.

$26.00

images/a_5_styled_products.png
Products
=}

Rails, Angular, Postgres, and Bootstrap

Powerful, Effective, and Efficient Full-Stack Web Development As...

Seven Mobile Apps in Seven Weeks

Ruby Performance Optimiza

Why Ruby Is Slow, and How to Fix It You don't have to accept sl...

New product

Native Apps, Multiple Platforms Answer the question “Can we buil..

images/a_3_new_product_filled_in.png
New Product

Description

<p>
Native Apps, Multiple Platforms
Answer the question “Can we build this for ALL the
devices?" with a resounding YES. This book will help you
get there with a real-world introduction to seven
platforms, whether you're new to mobile or an experienced
developer needing to expand your options. Plus, you'll
find out which cross-platform solution makes the most =l
sense for your needs. P

Image url
[7appsipg
Price

29.00

Create Product

]
&
a
A

images/a_4_added_product.png
Products

Title Description Image url Price
<p> Native Apps, Multiple
Platforms Answer the question “Can we

Seven build this for ALL the devices?” with a

Mobile resounding YES. This book will help you get

Apps there with a real-world introduction to seven

in platforms, whether you're new to mobile or an

Seven experienced developer needing to expand your

Weeks options. Plus, you'll find out which cross-
platform solution makes the most sense for your
needs. </p>

7appsjpg 29.0 Show Edit Destroy

New Product

images/rails_mvc.png
©hetp/imyuriine temstproduct d=2
@ Routing finds Lineltama contraller
® Cortrallereteracts with model

8 Controller voles view

[I ——————

images/buyer_flow.png
Chtaoa PAGe

CAeT face

images/basic_mvc.png
® Browser sends mquest
@ Contrallereteracts with model
® Cortrallr invales view

@ View rnders next beowser scren

images/a_1_products.png
Products

Title Description Image url Price

New Product

images/a_2_new_product.png
New Product

Title

—

Description

)

Image url

e —

Price

—

Create Product

(o]

ack

images/seller_flow.png
}oeam

Nowe

Puss‘oord

Edix \msicA\\tg
Scwme Scieen 2S

creee .

SHow PENDZNG ORDELS

Toe Smixh
123 Maiw St

—
1% Boole $-
24 Pevci\ ¥

@il 4+ <<

(For Ao k_’

Shawos
next

images/_covers/mmteams.jpg

images/initial_data.png
foduct:
s Name

- descrighion

« pasyment detmils
-sk:ﬂf:‘pwj Shatvs

. image
< price

Sellec Delmils:

- login name
+ Possword

images/demo_time_now.png
>> Time.now
=> 2017-04-22 22:49:05 -0400

> 1

images/demo5_2_route_typo.png
No route matches [GET] "/say/hullo”
Rotls. root: /Users/dovec/git/ondwr/editiond/work-51/densl
Aopicaton Tace | Eramamok Tace| Eul Taca
Routes
Foutes mtchin ity om op o otom
Helper HITP vers » Controtlersaction

P/

say_nao_patn Ger Iaymoto foma) saymalo

say_goodbyo_pam Ger saygoodoye fomat) saytgoodtye

Request
Paramotes:

Toogosession curo

Response
Hosdors

images/demo5_1_goodbye_link.png
Hello from Rails!

It is now 2017-08-13 11:58:24 -0400
Time to say Goodbye!

images/demo5_2_typo.png
NoMethodError in SayController#hello

undefined method “know' for

ime:Class Did you mean? now

Exvacod seco araundine

)

Ratls.root: Users/davec/gi/ancur/ediiond/mork-SV derol
Aopcaton Trace | ok Trace Eu Taca
e
Request
Parametors:

f——

Tooge e
Response

Hoacors:

images/demo_startscreen.png
mILS

Yay! You're on Rails!

Rails version: 5.1.3

Ruby version: 2.4.1 (x86_64-darwinl6)

images/_covers/kdnodesec.jpg

images/demo2_2_hello_missing.png
Say#hello

Find me in app/views/say/hello.html.erb

images/demo2_4_hello_time.png
Hello from Rails!

It is now 2017-08-13 11:58:13 -0400

images/demo4_1_goodbye.png
Goodbye!

It was nice having you here.

images/demo2_3_hello_works.png
Hello from Rails!

images/demo_files.png
class SayController < ApplicationController
demo/ def hello

end
end

app/
controllers/
L say_controller.rb

<html>
models/ <head>
<title>Hello, Rails!</title>
views/ </head>

L say/ <body>
<h1>Hello from Rails!</h1>

</body>
</html>

L hello.html.erb

images/windows-virtualbox.png
+

il Downloads - Oracke W X

a8

Vitsalbocorg/wiki/Dowrios %*

v - t l B DOWNLOADS
iriuatbox .
Download VirtualBox Vet 014-105127:W e N
e, you wil i kst Vel binres and s sourc codo. | Delte o
VirtualBox binaries Reportthat tis download is unsafe.
By downloading, you agree to the terms and conditions of the respe R anyey.
* Virtualbiox platform packnges. The bisariesar released under | 8

"~ VietualBox 5.0.14 for Windows hosts.
 VirtualBox 5.0.14 for OS X hosts

- VirtualBox 5.0.14 for Solaris hosts ©

+ VirtualBox 5.0.14 Oracle VM VirtualBox Extension Pack
Support for USB 2.0 and USB 3.0 devices, virtualBox RDP and PXE
for an introduction to this Extension Pack. The Ex

Plaase instal the extension pack with the same version as your i
1 you are using 4, please download the oxtensic
if you 3re using . please download the extensic

Eneprise Eluntion
Windovs License vl or 8 doy:

images/c9ide.png
Cloud9 Fie Edt Find Vi

> .o
Cr
>
> public
> st

1 confgr

B Gentie = v

B Gemielo 6o
Rakef

B ReoEmd

B REAOMEdoc

images/windows-devkit-extract.png

images/windows-ruby233.png
8 Setup - Ruby 2.3.3-p222-x64 - X
Installation Destination and Optional Tasks @

‘Setup will install Ruby 2.3.3-p222-x64 into the following folder. Click Install
to continue or click Browse to use a different one.

Please avoid any folder name that contains spaces (e.g. Program Files).

[caRuby23-x64 | [srowse...

[Jinstall Tcl/Tk support
[“] Add Ruby executables to your PATH
[[J Associate .rb and .rbw files with this Ruby installation

TIP: Mouse over the above options for more detailed information.

Required free disk space: ~52.8 MB

images/windows-git.png
Adjusting your PATH environment
How would you like to use Git from the command line?

O Use Git from Git Bash only

This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

(@ Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

O Use Git and optional Unix tools from the Windows Command Prompt
Both Git and the optional Unix tools wil be added to your PATH.
Warning: This will override Windows tools like "find" and "sort". Only
use this option if you understand the implications.

http:{fmsysgit.github.iof

images/windows-start-ruby.png
R vser i ata gacee

[oo
6 oo
2 o
38 e

Mostly Sur

o 2
Strt Commnd romptwih by | 23 22

File Explorer >

8 Settings

& Power

All apps

images/_covers/dnvim2.jpg
Pragtical
Vim

images/windows-cmd.png
Users\rubys>chromedriver -

omeDriver 2.29.461591 (62ebf0987717721601391d75e589dc5¢

images/c9wscreate.png
(9]

Create a new workspace

OJOJOX -}

owner Workspace name
Sam by < [awaws]
Description.
Development Environment or Agile Web Development with als 5]
Hosted workspace Remote SSH Workspace
- g P pubic
Rt OT— L o W—
Clonefom it o Mercuia URL Gpicns)
0.ajpcorg/ace or gt@gthub comaorg/ace gt
Choose atemplate
@ avdes A @ =
cusam s odeis weteor [ary— prven
- C’ ® (-]
ohngo o Wortss by on ..

images/c9signup.png
Clouds

Start Coding In 30 Seconds

Sign up with Github, Bitbucket or Email

©) GitHub B Bitoucket

Pick a username.

Enter your email address

Please describe yourself

[Choose a password
(
(

Tell us how you want to use Cloud9

I'm not a robot

By signing up you agree to our General and Privacy Terms

images/_covers/jvrails2.jpg
Crafting Rails 4
‘Application:

images/cover.jpg
ile\{Veb :
eve ogmen

David Bryant Cdpeland
with Dave Thomas

Foreword by

s David Heinemeier Hansson
A rons s

Edited by Susannah Davidson Pfalzer

images/WigglyRoad.jpg

Copyright 2010,2011 Canonical Ltd.

This Font Software is licensed under the Ubuntu Font Licence, Version
1.0. https://launchpad.net/ubuntu-font-licence

images/_covers/jrtest.jpg

images/h1-underline.gif

images/_covers/ehxta.jpg
Explore Itt

images/_covers/bhh52e.jpg

images/joe.jpg
Y

images/headshots/David.png

images/Coupon.png
SAVE 30%!
é itlﬁelf Use coupon code
BUYANOTHER2017

images/mvc_integration_2.png
myapp_controller.rb.
def edit

end

@user = User. find(parans [:id])

The application receives a request to
edit a user. It reads data into the new
User model object.

The edit.html.erb template is called.
It uses the information in the user
object to generate...

the HTML is sent to the browser.
When the response is received...

.the parameters are extracted into a
nested hash

The save action uses the parameters
to find the user record and update it.

myapp_controller.rb.
def save

user = User. find(parans
if user.update(parans :user])

edit.html.erb.

<% forn_for :user,
url: { action: *save’,
id: guser } do'|f] %
<= fotext field ‘name’ %>
<= fotext_field ‘country' %
<= f.password_field ‘password' %>

< end %

<form actior
<input name:
<input name:

/nyapp/save/1234">

"user[name]"
ser(country

user (password]

@parans = {
id: 1234,

id])

images/file_upload.png
< € | D) localhost:3000/upload/get

Comment: [Joe the Developer

Upload your picture: [Choose File | No file chosen
Upload file

[localhost:3000/upload/show/2 7|

Joe the Developer
(£) [by |\ gickuges /
v

Places Name Size | Modified «

& Music % joepng 2.2kB 21:27)

@ Pictures S
i@ Videos el
@ Downloads

