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Deep learning is one of the most commonly discussed areas in machine learning due to its ability to model complex functions and learn through a variety of data sources and structures, such as cross-sectional data, sequential data, images, text, audio, and video. Also, R is one of the most popular languages used in the data science community. With the growth of deep learning, the relationship between R and deep learning is growing tremendously. Thus, Deep Learning Cookbook in R aims to provide a crash course in building different deep learning models. The application of deep learning is demonstrated through structured, unstructured, image, and audio case studies. The book will also cover transfer learning and how to utilize the power of GPU to enhance the computation efficiency of the deep learning model.



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Getting Started, introduces different packages that are available for building deep learning models, such as TensorFlow, MXNet, and H2O. and how to set them up to be utilized later in the book.

Chapter 2, Deep Learning with R, introduces the basics of neural network and deep learning. This chapter covers multiple recipes for building a neural network models using multiple toolboxes in R.

Chapter 3, Convolution Neural Network, covers recipes on Convolution Neural Networks (CNN) through applications in image processing and classification.

Chapter 4, Data Representation Using Autoencoders, builds the foundation of autoencoder using multiple recipes and also covers the application in data compression and denoising.

Chapter 5, Generative Models in Deep learning, extends the concept of autoencoders to generative models and covers recipes such as Boltzman machines, restricted Boltzman machines (RBMs), and deep belief networks.

Chapter 6, Recurrent Neural Networks, sets up the foundation for building machine learning models on a sequential datasets using multiple recurrent neural networks (RNNs).

Chapter 7, Reinforcement Leaning, provides the fundamentals for building reinforcement learning using Markov Decision Process (MDP) and covers both model-based learning and model-free learning.

Chapter 8, Application of Deep Learning in Text-Mining, provides an end-to-end implementation of the deep learning text mining domain.

Chapter 9, Application of Deep Learning to Signal processing, covers a detailed case study of deep learning in the signal processing domain.

Chapter 10, Transfer Learning, covers recipes for using pretrained models such as VGG16 and Inception and explains how to deploy a deep learning model using GPU.



            

            
        
    
        

                            
                    What you need for this book

                
            
            
                
A lot of inquisitiveness, perseverance, and passion is required to build a strong background in data science. The scope of deep learning is quite broad; thus, the following backgrounds is required to effectively utilize this cookbook:


	Basics of machine learning and data analysis

	Proficiency in R programming

	Basics of Python and Docker



Lastly, you need to appreciate deep learning algorithms and know how they solve complex problems in multiple domains.
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This book is for data science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that address the pain points that crop up while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite useful.
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In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts through the use of the include directive."

A block of code is set as follows:


[default]
 exten => s,1,Dial(Zap/1|30)
 exten => s,2,Voicemail(u100)
 exten => s,102,Voicemail(b100)
 exten => i,1,Voicemail(s0)


When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:


[default]
 exten => s,1,Dial(Zap/1|30)
 exten => s,2,Voicemail(u100)
 exten => s,102,Voicemail(b100)
 exten => i,1,Voicemail(s0)


Any command-line input or output is written as follows:


# cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample   /etc/asterisk/cdr_mysql.conf


New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Feedback from our readers is always welcome. Let us know what you think about this book--what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
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Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:


	Log in or register to our website using your email address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.



You can also download the code files by clicking on the Code Files button on the book's webpage at the Packt Publishing website. This page can be accessed by entering the book's name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/R-Deep-Learning-Cookbook. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!
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We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/RDeepLearningCookbook_ColorImages.pdf.
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Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.
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Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.
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If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.
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In this chapter, we will cover the following topics:


	Installing R with an IDE

	Installing a Jupyter Notebook application

	Starting with the basics of machine learning in R

	Setting up deep learning tools/packages in R

	Installing MXNet in R

	Installing TensorFlow in R

	Installing H2O in R

	Installing all three packages at once using Docker
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This chapter will get you started with deep learning and help you set up your systems to develop deep learning models. The chapter is more focused on giving the audience a heads-up on what is expected from the book and the prerequisites required to go through the book. The current book is intended for students or professionals who want to quickly build a background in the applications of deep learning. The book will be more practical and application-focused using R as a tool to build deep learning models.

For a detailed theory on deep learning, refer to Deep Learning by Goodfellow et al. 2016. For a machine learning background refer Python Machine Learning by S. Raschka, 2015.

We will use the R programming language to demonstrate applications of deep learning. You are expected to have the following prerequisites throughout the book:


	Basic R programming knowledge

	Basic understanding of Linux; we will use the Ubuntu (16.04) operating system

	Basic understanding of machine learning concepts

	For Windows or macOS, a basic understanding of Docker
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Before we begin, let's install an IDE for R. For R the most popular IDEs are Rstudio and Jupyter. Rstudio is dedicated to R whereas Jupyter provide multi-language support including R. Jupyter also provides an interactive environment and allow you to combine code, text, and graphics into a single notebook.
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R supports multiple operating systems such as Windows, macOS X, and Linux. The installation files for R can be downloaded from any one of the mirror sites at Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/. The CRAN is also a major repository for packages in R. The programming language R is available under both 32-bit and 64-bit architectures.
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	Of r-base-dev is also highly recommended as it has many inbuilt functions. It also enables the install.packages() command, which is used to compile and install new R packages directly from the CRAN using the R console. The default R console looks as follows:





Default R console


	For programming purposes, an Integrated Development Environment (IDE) is recommended as it helps enhance productivity. One of the most popular open source IDEs for R is Rstudio. Rstudio also provides you with an Rstudio server, which facilitates a web-based environment to program in R. The interface for the Rstudio IDE is shown in the following screenshot:





Rstudio Integrated Development Environment for R
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Another famous editor these days is the Jupyter Notebook app. This app produces notebook documents that integrate documentation, code, and analysis together. It supports many computational kernels including R. It is a server, client-side, web-based application that can be accessed using a browser.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Jupyter Notebook can be installed using the following steps:


	Jupyter Notebook can be installed using pip:




pip3 install --upgrade pip
pip3 install jupyter



	If you have installed Anaconda, then the default computational kernel installed is Python. To install an R computation kernel in Jupyter within the same environment, type the following command in a terminal:




conda install -c r r-essentials



	To install the R computational kernel in a new environment named new-env within conda, type as follows:




conda create -n new-env -c r r-essentials



	Another way to include the R computational kernel in Jupyter Notebook uses the IRkernel package. To install through this process, start the R IDE. The first step is to install dependencies required for the IRkernal installation:




chooseCRANmirror(ind=55) # choose mirror for installation
install.packages(c('repr', 'IRdisplay', 'crayon', 'pbdZMQ',
'devtools'), dependencies=TRUE)



	Once all the dependencies are installed from CRAN, install the IRkernal package from GitHub:




library(devtools)
library(methods)
options(repos=c(CRAN='https://cran.rstudio.com'))
devtools::install_github('IRkernel/IRkernel')



	Once all the requirements are satisfied, the R computation kernel can be set up in Jupyter Notebook using the following script:




library(IRkernel)
IRkernel::installspec(name = 'ir32', displayname = 'R 3.2')



	Jupyter Notebook can be started by opening a shell/terminal. Run the following command to start the Jupyter Notebook interface in the browser, as shown in the screenshot following this code:




jupyter notebook




Jupyter Notebook with the R computation engine
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R, as with most of the packages utilized in this book, is supported by most operating systems. However, you can make use of Docker or VirtualBox to set up a working environment similar to the one used in this book.

For Docker installation and setup information, refer to https://docs.docker.com/ and select the Docker image appropriate to your operating system. Similarly, VirtualBox binaries can be downloaded and installed at https://www.virtualbox.org/wiki/Downloads.
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Deep learning is a subcategory of machine learning inspired by the structure and functioning of a human brain. In recent times, deep learning has gained a lot of traction primarily because of higher computational power, bigger datasets, and better algorithms with (artificial) intelligent learning abilities and more inquisitiveness for data-driven insights. Before we get into the details of deep learning, let's understand some basic concepts of machine learning that form the basis for most analytical solutions.

Machine learning is an arena of developing algorithms with the ability to mine natural patterns from the data such that better decisions are made using predictive insights. These insights are pertinent across a horizon of real-world applications, from medical diagnosis (using computational biology) to real-time stock trading (using computational finance), from weather forecasting to natural language processing, from predictive maintenance (in automation and manufacturing) to prescriptive recommendations (in e-commerce and e-retail), and so on.

The following figure elucidates two primary techniques of machine learning; namely, supervised learning and unsupervised learning:



Classification of different techniques in machine learning

Supervised learning: Supervised learning is a form of evidence-based learning. The evidence is the known outcome for a given input and is in turn used to train the predictive model. Models are further classified into regression and classification, based on the outcome data type. In the former, the outcome is continuous, and in the latter the outcome is discrete. Stock trading and weather forecasting are some widely used applications of regression models, and span detection, speech recognition, and image classification are some widely used applications of classification models.

Some algorithms for regression are linear regression, Generalized Linear Models (GLM), Support Vector Regression (SVR), neural networks, decision trees, and so on; in classification, we have logistic regression, Support Vector Machines (SVM), Linear discriminant analysis (LDA), Naive Bayes, nearest neighbors, and so on.

Semi-supervised learning: Semi-supervised learning is a class of supervised learning using unsupervised techniques. This technique is very useful in scenarios where the cost of labeling an entire dataset is highly impractical against the cost of acquiring and analyzing unlabeled data.

Unsupervised learning: As the name suggests, learning from data with no outcome (or supervision) is called unsupervised learning. It is a form of inferential learning based on hidden patterns and intrinsic groups in the given data. Its applications include market pattern recognition, genetic clustering, and so on.

Some widely used clustering algorithms are k-means, hierarchical, k-medoids, Fuzzy C-means, hidden markov, neural networks, and many more.
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Let's take a look at linear regression in supervised learning:


	Let's begin with a simple example of linear regression where we need to determine the relationship between men's height (in cms) and weight (in kgs). The following sample data represents the height and weight of 10 random men:




data <- data.frame("height" = c(131, 154, 120, 166, 108, 115,
158, 144, 131, 112), 
"weight" = c(54, 70, 47, 79, 36, 48, 65,
63, 54, 40))



	Now, generate a linear regression model as follows:




lm_model <- lm(weight ~ height, data)



	The following plot shows the relationship between men's height and weight along with the fitted line:




plot(data, col = "red", main = "Relationship between height and
weight",cex = 1.7, pch = 1, xlab = "Height in cms", ylab = "Weight
in kgs")
abline(lm(weight ~ height, data))




Linear relationship between weight and height


	In semi-supervised models, the learning is primarily initiated using labeled data (a smaller quantity in general) and then augmented using unlabeled data (a larger quantity in general).



Let's perform K-means clustering (unsupervised learning) on a widely used dataset, iris.


	This dataset consists of three different species of iris (Setosa, Versicolor, and Virginica) along with their distinct features such as sepal length, sepal width, petal length, and petal width:




data(iris)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa



	The following plots show the variation of features across irises. Petal features show a distinct variation as against sepal features:




library(ggplot2)
library(gridExtra)
plot1 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, color =
Species)) 
  geom_point(size = 2) 
  ggtitle("Variation by Sepal features")
plot2 <- ggplot(iris, aes(Petal.Length, Petal.Width, color =
  Species)) 
   geom_point(size = 2) 
   ggtitle("Variation by Petal features")
grid.arrange(plot1, plot2, ncol=2)




Variation of sepal and petal features by length and width


	As petal features show a good variation across irises, let's perform K-means clustering using the petal length and petal width:




set.seed(1234567)
iris.cluster <- kmeans(iris[, c("Petal.Length","Petal.Width")],
 3, nstart = 10)
iris.cluster$cluster <- as.factor(iris.cluster$cluster)



	The following code snippet shows a cross-tab between clusters and species (irises). We can see that cluster 1 is primarily attributed with setosa, cluster 2 with versicolor, and cluster 3 with virginica:




> table(cluster=iris.cluster$cluster,species= iris$Species)
species
cluster setosa versicolor virginica
1 50 0 0
2 0 48 4
3 0 2 46
        
ggplot(iris, aes(Petal.Length, Petal.Width, color =
iris.cluster$cluster)) + geom_point() + ggtitle("Variation by
Clusters")



	The following plot shows the distribution of clusters:





Variation of irises across three clusters
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Model evaluation is a key step in any machine learning process. It is different for supervised and unsupervised models. In supervised models, predictions play a major role; whereas in unsupervised models, homogeneity within clusters and heterogeneity across clusters play a major role.

Some widely used model evaluation parameters for regression models (including cross validation) are as follows:


	Coefficient of determination

	Root mean squared error

	Mean absolute error

	Akaike or Bayesian information criterion



Some widely used model evaluation parameters for classification models (including cross validation) are as follows:


	Confusion matrix (accuracy, precision, recall, and F1-score)

	Gain or lift charts

	Area under ROC (receiver operating characteristic) curve

	Concordant and discordant ratio



Some of the widely used evaluation parameters of unsupervised models (clustering) are as follows:


	Contingency tables

	Sum of squared errors between clustering objects and cluster centers or centroids

	Silhouette value

	Rand index

	Matching index

	Pairwise and adjusted pairwise precision and recall (primarily used in NLP)



Bias and variance are two key error components of any supervised model; their trade-off plays a vital role in model tuning and selection. Bias is due to incorrect assumptions made by a predictive model while learning outcomes, whereas variance is due to model rigidity toward the training dataset. In other words, higher bias leads to underfitting and higher variance leads to overfitting of models.

In bias, the assumptions are on target functional forms. Hence, this is dominant in parametric models such as linear regression, logistic regression, and linear discriminant analysis as their outcomes are a functional form of input variables.

Variance, on the other hand, shows how susceptible models are to change in datasets. Generally, target functional forms control variance. Hence, this is dominant in non-parametric models such as decision trees, support vector machines, and K-nearest neighbors as their outcomes are not directly a functional form of input variables. In other words, the hyperparameters of non-parametric models can lead to overfitting of predictive models.
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The major deep learning packages are developed in C/C++ for efficiency purposes and wrappers are developed in R to efficiently develop, extend, and execute deep learning models.

A lot of open source deep learning libraries are available. The prominent libraries in this area are as follows:


	Theano

	TensorFlow

	Torch

	Caffe



There are other prominent packages available on the market such as H2O, CNTK (Microsoft Cognitive Toolkit), darch, Mocha, and ConvNetJS. There are a lot of wrappers that are developed around these packages to support the easy development of deep learning models, such as Keras and Lasagne in Python and MXNet, both supporting multiple languages.
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	This chapter will cover the MXNet and TensorFlow packages (developed in C++ and CUDA for a highly optimized performance in GPU).

	Additionally, the h2o package will be used to develop some deep learning models. The h2o package in R is implemented as a REST API, which connects to the H2O server (it runs as Java Virtual Machines (JVM)). We will provide quick setup instructions for these packages in the following sections
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This section will cover the installation of MXNet in R.
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The MXNet package is a lightweight deep learning architecture supporting multiple programming languages such as R, Python, and Julia. From a programming perspective, it is a combination of symbolic and imperative programming with support for CPU and GPU.

The CPU-based MXNet in R can be installed using the prebuilt binary package or the source code where the libraries need to be built. In Windows/mac, prebuilt binary packages can be download and installed directly from the R console. MXNet requires the R version to be 3.2.0 and higher. The installation requires the drat package from CRAN. The drat package helps maintain R repositories and can be installed using the install.packages() command.

To install MXNet on Linux (13.10 or later), the following are some dependencies:


	Git (to get the code from GitHub)

	libatlas-base-dev (to perform linear algebraic operations)

	libopencv-dev (to perform computer vision operations)



To install MXNet with a GPU processor, the following are some dependencies:


	Microsoft Visual Studio 2013

	The NVIDIA CUDA Toolkit

	The MXNet package

	cuDNN (to provide a deep neural network library)



Another quick way to install mxnet with all the dependencies is to use the prebuilt Docker image from the chstone repository. The chstone/mxnet-gpu Docker image will be installed using the following tools:


	MXNet for R and Python

	Ubuntu 16.04

	CUDA (Optional for GPU)

	cuDNN (Optional for GPU)
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	The following R command installs MXNet using prebuilt binary packages, and is hassle-free. The drat package is then used to add the dlmc repository from git followed by the mxnet installation:




install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")


2. The following code helps install MXNet in Ubuntu (V16.04). The first two lines are used to install dependencies and the remaining lines are used to install MXNet, subject to the satisfaction of all the dependencies:


sudo apt-get update
sudo apt-get install -y build-essential git libatlas-base-dev
libopencv-dev
git clone https://github.com/dmlc/mxnet.git ~/mxnet --recursive
cd ~/mxnet
cp make/config.mk .
echo "USE_BLAS=openblas" >>config.mk
make -j$(nproc)


3. If MXNet is to be built for GPU, the following config needs to be updated before the make command:


echo "USE_CUDA=1" >>config.mk
echo "USE_CUDA_PATH=/usr/local/cuda" >>config.mk
echo "USE_CUDNN=1" >>config.mk


A detailed installation of MXNet for other operating systems can be found at http://mxnet.io/get_started/setup.html.

4. The following command is used to install MXNet (GPU-based) using Docker with all the dependencies:


docker pull chstone/mxnet-gpu
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This section will cover another very popular open source machine learning package, TensorFlow, which is very effective in building deep learning models.
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TensorFlow is another open source library developed by the Google Brain Team to build numerical computation models using data flow graphs. The core of TensorFlow was developed in C++ with the wrapper in Python. The tensorflow package in R gives you access to the TensorFlow API composed of Python modules to execute computation models. TensorFlow supports both CPU- and GPU-based computations.

The tensorflow package in R calls the Python tensorflow API for execution, which is essential to install the tensorflow package in both R and Python to make R work. The following are the dependencies for tensorflow:


	Python 2.7 / 3.x

	R (>3.2)

	devtools package in R for installing TensorFlow from GitHub

	TensorFlow in Python

	pip
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	Once all the mentioned dependencies are installed, tensorflow can be installed from devtools directly using the install_github command as follows:




devtools::install_github("rstudio/tensorflow")



	Before loading tensorflow in R, you need to set up the path for Python as the system environment variable. This can be done directly from the R environment, as shown in the following command:




Sys.setenv(TENSORFLOW_PYTHON="/usr/bin/python")
library(tensorflow)


If the Python tensorflow module is not installed, R will give the following error:



Error raised by R if tensorflow in Python is not installed


tensorflow in Python can be installed using pip:


pip install tensorflow # Python 2.7 with no GPU support
pip3 install tensorflow # Python 3.x with no GPU support
pip install tensorflow-gpu # Python 2.7 with GPU support
pip3 install tensorflow-gpu # Python 3.x with GPU support
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TensorFlow follows directed graph philosophy to set up computational models where mathematical operations are represented as nodes with each node supporting multiple input and output while the edges represent the communication of data between nodes. There are also edges known as control dependencies in TensorFlow that do not represent the data flow; rather the provide information related to control dependence such as node for the control dependence must finish processing before the destination node of control dependence starts executing.

An example TensorFlow graph for logistic regression scoring is shown in the following diagram:



TensorFlow graph for logistic regression

The preceding figure illustrates the TensorFlow graph to score logistic regression with optimized weights:



The MatMul node performs matrix multiplication between input feature matrix X and optimized weight β. The constant C is then added to the output from the MatMul node. The output from Add is then transformed using the Sigmoid function to output Pr(y=1|X).
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Get started with TensorFlow in R using resources at https://rstudio.github.io/tensorflow/.
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H2O is another very popular open source library to build machine learning models. It is produced by H2O.ai and supports multiple languages including R and Python. The H2O package is a multipurpose machine learning library developed for a distributed environment to run algorithms on big data.
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To set up H2O, the following systems are required:


	64-bit Java Runtime Environment (version 1.6 or later)

	Minimum 2 GB RAM



H2O from R can be called using the h2o package. The h2o package has the following dependencies:


	RCurl

	rjson

	statmod

	survival

	stats

	tools

	utils

	methods



For machines that do not have curl-config installed, the RCurl dependency installation will fail in R and curl-config needs to be installed outside R.
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	H2O can be installed directly from CRAN with the dependency parameter TRUE to install all CRAN-related h2o dependencies. This command will install all the R dependencies required for the h2o package:




install.packages("h2o", dependencies = T)



	The following command is used to call the h2o package in the current R environment. The first-time execution of the h2o package will automatically download the JAR file before launching H2O, as shown in the following figure:




library(h2o) 
localH2O = h2o.init()




Starting H2O cluster


	The H2O cluster can be accessed using cluster ip and port information. The current H2O cluster is running on localhost at port 54321, as shown in the following screenshot:





H2O cluster running in the browser

Models in H2O can be developed interactively using a browser or scripting from R. H2O modeling is like creating a Jupyter Notebook but you create a flow with different operations such as importing data, splitting data, setting up a model, and scoring.
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Let's build a logistic regression interactively using the H2O browser.


	Start a new flow, as shown in the following screenshot:





Creating a new flow in H2O


	Import a dataset using the Data menu, as shown in the following screenshot:





Importing files to the H2O environment


	The imported file in H2O can be parsed into the hex format (the native file format for H2O) using the Parse these files action, which will appear once the file is imported to the H2O environment:





Parsing the file to the hex format


	The parsed data frame in H2O can be split into training and validation using the Data | Split Frame action, as shown in the following screenshot:





Splitting the dataset into training and validation


	Select the model from the Model menu and set up the model-related parameters. An example for a glm model is seen in the following screenshot:





Building a model in H2O


	The Score | predict action can be used to score another hex data frame in H2O:





Scoring in H2O
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For more complicated scenarios that involve a lot of preprocessing, H2O can be called from R directly. This book will focus more on building models using H2O from R directly. If H2O is set up at a different location instead of localhost, then it can be connected within R by defining the correct ip and port at which the cluster is running:


localH2O = h2o.init(ip = "localhost", port = 54321, nthreads = -1) 


Another critical parameter is the number of threads to be used to build the model; by default, n threads are set to -2, which means that two cores will be used. The value of -1 for n threads will make use of all available cores.

http://docs.h2o.ai/h2o/latest-stable/index.html#gettingstarted is very good using H2O in interactive mode.
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Docker is a software-contained platform that is used to host multiple software or apps side by side in isolated containers to get better computing density. Unlike virtual machines, containers are built only using libraries and the settings required by any software but do not bundle the entire operating system, thus making it lightweight and efficient.
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Setting up all three packages could be quite cumbersome depending on the operating system utilized. The following dockerfile code can be used to set up an environment with tensorflow, mxnet with GPU, and h2o installed with all the dependencies:


FROM chstone/mxnet-gpu:latest
MAINTAINER PKS Prakash <prakash5801>


# Install dependencies
RUN apt-get update && apt-get install -y
 python2.7 
 python-pip 
 python-dev 
 ipython 
 ipython-notebook 
 python-pip 
 default-jre


# Install pip and Jupyter notebook
RUN pip install --upgrade pip && 
 pip install jupyter

# Add R to Jupyter kernel 
RUN Rscript -e "install.packages(c('repr', 'IRdisplay', 'crayon', 'pbdZMQ'), dependencies=TRUE, repos='https://cran.rstudio.com')" && 
 Rscript -e "library(devtools); library(methods); options(repos=c(CRAN='https://cran.rstudio.com')); devtools::install_github('IRkernel/IRkernel')" && 
 Rscript -e "library(IRkernel); IRkernel::installspec(name = 'ir32', displayname = 'R 3.2')" 

# Install H2O
RUN Rscript -e "install.packages('h2o', dependencies=TRUE, repos='http://cran.rstudio.com')"

# Install tensorflow fixing the proxy port
RUN pip install tensorflow-gpu
RUN Rscript -e "library(devtools); devtools::install_github('rstudio/tensorflow')"


The current image is created on top of the chstone/mxnet-gpu Docker image.

The chstone/mxnet-gpu is a docker hub repository at https://hub.docker.com/r/chstone/mxnet-gpu/.
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Docker will all dependencies can be installed using following steps:


	Save the preceding code to a location with a name, say, Dockerfile.

	Using the command line, go to the file location and use the following command and it is also shown in the screenshot after the command:




docker run -t "TagName:FILENAME"




Building the docker image


	Access the image using the docker images command as follows:





View docker images


	Docker images can be executed using the following command:




docker run -it -p 8888:8888 -p 54321:54321 <<IMAGE ID>>




Running a Docker image

Here, the option -i is for interactive mode and -t is to allocate --tty. The option -p is used to forward the port. As we will be running Jupyter on port 8888 and H2O on 54321, we have forwarded both ports to accessible from the local browser.
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More options for Docker can be checked out using docker run --help.



            

            
        
    
        

                            
                    Deep Learning with R

                
            
            
                
This chapter will build a foundation for neural networks followed by deep learning foundation and trends. We will cover the following topics:


	Starting with logistic regression

	Introducing the dataset

	Performing logistic regression using H2O

	Performing logistic regression using TensorFlow

	Visualizing TensorFlow graphs

	Starting with multilayer perceptrons

	Setting up a neural network using H2O

	Tuning hyper-parameters using grid searches in H2O

	Setting up a neural network using MXNet

	Setting up a neural network using TensorFlow
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Before we delve into neural networks and deep learning models, let's take a look at logistic regression, which can be viewed as a single layer neural network. Even the sigmoid function commonly used in logistic regression is used as an activation function in neural networks.
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Logistic regression is a supervised machine learning approach for the classification of dichotomous/ordinal (order discrete) categories.
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Logistic regression serves as a building block for complex neural network models using sigmoid as an activation function. The logistic function (or sigmoid) can be represented as follows:



The preceding sigmoid function forms a continuous curve with a value bound between [0, 1], as illustrated in the following screenshot:



Sigmoid functional form

The formulation of a logistic regression model can be written as follows:



Here, W is the weight associated with features X= [x1, x2, ..., xm] and b is the model intercept, also known as the model bias. The whole objective is to optimize W for a given loss function such as cross entropy. Another view of the logistic regression model to attain Pr(y=1|X) is shown in the following figure:



Logistic regression architecture with the sigmoid activation function
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This recipe shows how to prepare a dataset to be used to demonstrate different models.
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As logistic regression is a linear classifier, it assumes linearity in independent variables and log odds. Thus, in scenarios where independent features are linear-dependent on log odds, the model performs very well. Higher-order features can be included in the model to capture nonlinear behavior. Let's see how to build logistic regression models using major deep learning packages as discussed in the previous chapter. Internet connectivity will be required to download the dataset from the UCI repository.
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In this chapter, the Occupancy Detection dataset from the UC Irivine ML repository is used to build models on logistic regression and neural networks. It is an experimental dataset primarily used for binary classification to determine whether a room is occupied (1) or not occupied (0) based on multivariate predictors as described in the following table. The contributor of the dataset is Luis Candanedo from UMONS.



Download the dataset at https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+.





There are three datasets tobe downloaded; however, we will use datatraining.txt for training/cross validation purposes and datatest.txt for testing purposes.

The dataset has seven attributes (including response occupancy) with 20,560 instances. The following table summarizes the attribute information:




	
Attribute


	Description
	Characteristic



	Date time
	Year-month-day hour:minute:second format
	Date



	Temperature
	In Celsius
	Real



	Relative Humidity
	In %
	Real



	Light
	In Lux
	Real



	CO2
	In ppm
	Real



	Humidity ratio
	Derived quantity from temperature and relative humidity, in kg water-vapor/kg-air
	Real



	Occupancy
	
0 for not occupied;

1 for occupied


	Binary class
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Generalized linear models (GLM) are widely used in both regression- and classification-based predictive analysis. These models optimize using maximum likelihood and scale well with larger datasets. In H2O, GLM has the flexibility to handle both L1 and L2 penalties (including elastic net). It supports Gaussian, Binomial, Poisson, and Gamma distributions of dependent variables. It is efficient in handling categorical variables, computing full regularizations, and performing distributed n-fold cross validations to control for model overfitting. It has a feature to optimize hyperparameters such as elastic net (α) using distributed grid searches along with handling upper and lower bounds for predictor attribute coefficients. It can also handle automatic missing value imputation. It uses the Hogwild method for optimization, a parallel version of stochastic gradient descent.
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The previous chapter provided the details for the installation of H2O in R along with a working example using its web interface. To start modeling, load the h20 package in the R environment:


require(h2o)



Then, initialize a single-node H2O instance using the h2o.init() function on eight cores and instantiate the corresponding client module on the IP address localhost and port number 54321:


localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE,min_mem_size = "20G",nthreads = 8)



The H2O package has dependency on the Java JRE. Thus, it should be pre-installed before executing the initialization command.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

The section will demonstrate steps to build the GLM model using H2O.


	Now, load the occupancy train and test datasets in R:




# Load the occupancy data 
occupancy_train <-read.csv("C:/occupation_detection/datatraining.txt",stringsAsFactors = T)
occupancy_test <- read.csv("C:/occupation_detection/datatest.txt",stringsAsFactors = T)



	The following independent (x) and dependent (y) variables will be used to model GLM:




# Define input (x) and output (y) variables"
x = c("Temperature", "Humidity", "Light", "CO2", "HumidityRatio")
y = "Occupancy"





	Based on the requirement for H2O, convert the dependent variables into factors as follows:




# Convert the outcome variable into factor
occupancy_train$Occupancy <- as.factor(occupancy_train$Occupancy)
occupancy_test$Occupancy <- as.factor(occupancy_test$Occupancy)





	Then, convert the datasets to H2OParsedData objects:




occupancy_train.hex <- as.h2o(x = occupancy_train, destination_frame = "occupancy_train.hex")
occupancy_test.hex <- as.h2o(x = occupancy_test, destination_frame = "occupancy_test.hex")





	Once the data is loaded and converted to H2OParsedData objects, run a GLM model using the h2o.glm function. In the current setup, we intend to train for parameters such as five-fold cross validation, elastic net regularization (α = 5), and optimal regularization strength (with lamda_search = TRUE):




# Train the model
occupancy_train.glm <- h2o.glm(x = x, # Vector of predictor variable names
                               y = y, # Name of response/dependent variable
                               training_frame = occupancy_train.hex, # Training data
                               seed = 1234567,        # Seed for random numbers
                               family = "binomial",   # Outcome variable
                               lambda_search = TRUE,  # Optimum regularisation lambda
                               alpha = 0.5,           # Elastic net regularisation
                               nfolds = 5             # N-fold cross validation
                               )




	In addition to the preceding command, you can also define other parameters to fine-tune the model performance. The following list does not cover all the functional parameters, but covers some based on importance. The complete list of parameters can be found in the documentation of the h2o package.




	

	Specify the strategy of generating cross-validation samples such as random sampling, stratified sampling, modulo sampling, and auto (select) using fold_assignment. The sampling can also be performed on a particular attribute by specifying the column name (fold_column).

	Option to handle skewed outcomes (imbalanced data) by specifying weights to each observation using weights_column or performing over/under sampling using balance_classes.

	Option to handle missing values by mean imputation or observation skip using missing_values_handling.

	Option to restrict the coefficients to be non-negative using non_negative and constrain their values using beta_constraints.

	Option to provide prior probability for y==1(logistic regression) in the case of sampled data if its mean of response does not reflect the reality (prior).

	Specify the variables to be considered for interactions (interactions).









            

            
        
    
        

                            
                    How it works...

                
            
            
                
The performance of the model can be assessed using many metrics such as accuracy, Area under curve (AUC), misclassification error (%), misclassification error count, F1-score, precision, recall, specificity, and so on. However, in this chapter, the assessment of model performance is based on AUC.

The following is the training and cross validation accuracy of the trained model:


# Training accuracy (AUC)
> occupancy_train.glm@model$training_metrics@metrics$AUC
[1] 0.994583

# Cross validation accuracy (AUC)
> occupancy_train.glm@model$cross_validation_metrics@metrics$AUC
[1] 0.9945057



Now, let's assess the performance of the model on test data. The following code helps in predicting the outcome of the test data:


# Predict on test data
yhat <- h2o.predict(occupancy_train.glm, occupancy_test.hex)




Then, evaluate the AUC value based on the actual test outcome as follows:


# Test accuracy (AUC)
> yhat$pmax <- pmax(yhat$p0, yhat$p1, na.rm = TRUE) 
> roc_obj <- pROC::roc(c(as.matrix(occupancy_test.hex$Occupancy)),
                       c(as.matrix(yhat$pmax)))
> auc(roc_obj)
Area under the curve: 0.9915




In H2O, one can also compute variable importance from the GLM model, as shown in the figure following this command:


#compute variable importance and performance
h2o.varimp_plot(occupancy_train.glm, num_of_features = 5)





Variable importance using H2O
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More functional parameters for h2o.glm can be found at https://www.rdocumentation.org/packages/h2o/versions/3.10.3.6/topics/h2o.gbm.
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In this section, we will cover the application of TensorFlow in setting up a logistic regression model. The example will use a similar dataset to that used in the H2O model setup.
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The previous chapter provided details for the installation of TensorFlow. The code for this section is created on Linux but can be run on any operating system. To start modeling, load the tensorflow package in the environment. R loads the default TensorFlow environment variable and also the NumPy library from Python in the np variable:


library("tensorflow") # Load TensorFlow 
np <- import("numpy") # Load numpy library
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The data is imported using a standard function from R, as shown in the following code.


	The data is imported using the read.csv file and transformed into the matrix format followed by selecting the features used to model as defined in xFeatures and yFeatures. The next step in TensorFlow is to set up a graph to run optimization:




# Loading input and test data
xFeatures = c("Temperature", "Humidity", "Light", "CO2", "HumidityRatio")
yFeatures = "Occupancy"
occupancy_train <-as.matrix(read.csv("datatraining.txt",stringsAsFactors = T))
occupancy_test <- as.matrix(read.csv("datatest.txt",stringsAsFactors = T))

# subset features for modeling and transform to numeric values
occupancy_train<-apply(occupancy_train[, c(xFeatures, yFeatures)], 2, FUN=as.numeric) 
occupancy_test<-apply(occupancy_test[, c(xFeatures, yFeatures)], 2, FUN=as.numeric)

# Data dimensions
nFeatures<-length(xFeatures)
nRow<-nrow(occupancy_train)



	Before setting up the graph, let's reset the graph using the following command:




# Reset the graph
tf$reset_default_graph()



	Additionally, let's start an interactive session as it will allow us to execute variables without referring to the session-to-session object:




# Starting session as interactive session
sess<-tf$InteractiveSession()



	Define the logistic regression model in TensorFlow:




# Setting-up Logistic regression graph
x <- tf$constant(unlist(occupancy_train[, xFeatures]), shape=c(nRow, nFeatures), dtype=np$float32) # 
W <- tf$Variable(tf$random_uniform(shape(nFeatures, 1L)))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- tf$matmul(x, W) + b



	The input feature x is defined as a constant as it will be an input to the system. The weight W and bias b are defined as variables that will be optimized during the optimization process. The y is set up as a symbolic representation between x, W, and b. The weight W is set up to initialize random uniform distribution and b is assigned the value zero.

	The next step is to set up the cost function for logistic regression:




# Setting-up cost function and optimizer
y_ <- tf$constant(unlist(occupancy_train[, yFeatures]), dtype="float32", shape=c(nRow, 1L))
cross_entropy<-tf$reduce_mean(tf$nn$sigmoid_cross_entropy_with_logits(labels=y_, logits=y, name="cross_entropy"))
optimizer <- tf$train$GradientDescentOptimizer(0.15)$minimize(cross_entropy)


The variable y_ is the response variable. Logistic regression is set up using cross entropy as the loss function. The loss function is passed to the gradient descent optimizer with a learning rate of 0.15. Before running the optimization, initialize the global variables:


# Start a session
init <- tf$global_variables_initializer()
sess$run(init)



	Execute the gradient descent algorithm for the optimization of weights using cross entropy as the loss function:




# Running optimization 
for (step in 1:5000) {
  sess$run(optimizer)
  if (step %% 20== 0)
    cat(step, "-", sess$run(W), sess$run(b), "==>", sess$run(cross_entropy), "n")
}
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The performance of the model can be evaluated using AUC:


# Performance on Train
library(pROC) 
ypred <- sess$run(tf$nn$sigmoid(tf$matmul(x, W) + b))
roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))


# Performance on test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32)
ypredt <- sess$run(tf$nn$sigmoid(tf$matmul(xt, W) + b))
roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt)).




AUC can be visualized using the plot.auc function from the pROC package, as shown in the screenshot following this command. The performance for training and testing (hold-out) is very similar.


plot.roc(roc_obj, col = "green", lty=2, lwd=2)
plot.roc(roc_objt, add=T, col="red", lty=4, lwd=2)




Performance of logistic regression using TensorFlow
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TensorFlow graphs can be visualized using TensorBoard. It is a service that utilizes TensorFlow event files to visualize TensorFlow models as graphs. Graph model visualization in TensorBoard is also used to debug TensorFlow models.
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TensorBoard can be started using the following command in the terminal:


$ tensorboard --logdir home/log --port 6006 


The following are the major parameters for TensorBoard:


	--logdir : To map to the directory to load TensorFlow events

	--debug: To increase log verbosity

	--host: To define the host to listen to its localhost (127.0.0.1) by default

	--port: To define the port to which TensorBoard will serve



The preceding command will launch the TensorFlow service on localhost at port 6006, as shown in the following screenshot:



TensorBoard

The tabs on the TensorBoard capture relevant data generated during graph execution.
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The section covers how to visualize TensorFlow models and output in TernsorBoard.


	To visualize summaries and graphs, data from TensorFlow can be exported using the FileWriter command from the summary module. A default session graph can be added using the following command:




# Create Writer Obj for log
log_writer = tf$summary$FileWriter('c:/log', sess$graph)


The graph for logistic regression developed using the preceding code is shown in the following screenshot:



Visualization of the logistic regression graph in TensorBoard

Details about symbol descriptions on TensorBoard can be found at https://www.tensorflow.org/get_started/graph_viz.


	Similarly, other variable summaries can be added to the TensorBoard using correct summaries, as shown in the following code:




# Adding histogram summary to weight and bias variable
w_hist = tf$histogram_summary("weights", W)
b_hist = tf$histogram_summary("biases", b)


The summaries can be a very useful way to determine how the model is performing. For example, for the preceding case, the cost function for test and train can be studied to understand optimization performance and convergence.


	Create a cross entropy evaluation for test. An example script to generate the cross entropy cost function for test and train is shown in the following command:




# Set-up cross entropy for test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32)
ypredt <- tf$nn$sigmoid(tf$matmul(xt, W) + b)
yt_ <- tf$constant(unlist(occupancy_test[, yFeatures]), dtype="float32", shape=c(nRowt, 1L))
cross_entropy_tst<-tf$reduce_mean(tf$nn$sigmoid_cross_entropy_with_logits(labels=yt_, logits=ypredt, name="cross_entropy_tst"))


The preceding code is similar to training cross entropy calculations with a different dataset. The effort can be minimized by setting up a function to return tensor objects.


	Add summary variables to be collected:




# Add summary ops to collect data
w_hist = tf$summary$histogram("weights", W)
b_hist = tf$summary$histogram("biases", b)
crossEntropySummary<-tf$summary$scalar("costFunction", cross_entropy)
crossEntropyTstSummary<-tf$summary$scalar("costFunction_test", cross_entropy_tst)


The script defines the summary events to be logged in the file.


	Open the writing object, log_writer. It writes the default graph to the location, c:/log:




# Create Writer Obj for log
log_writer = tf$summary$FileWriter('c:/log', sess$graph)



	Run the optimization and collect the summaries:




for (step in 1:2500) {
  sess$run(optimizer)

  # Evaluate performance on training and test data after 50 Iteration
  if (step %% 50== 0){
   ### Performance on Train
   ypred <- sess$run(tf$nn$sigmoid(tf$matmul(x, W) + b))
   roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))

   ### Performance on Test
   ypredt <- sess$run(tf$nn$sigmoid(tf$matmul(xt, W) + b))
   roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt))
   cat("train AUC: ", auc(roc_obj), " Test AUC: ", auc(roc_objt), "n")

   # Save summary of Bias and weights
   log_writer$add_summary(sess$run(b_hist), global_step=step)
   log_writer$add_summary(sess$run(w_hist), global_step=step)
   log_writer$add_summary(sess$run(crossEntropySummary), global_step=step)
   log_writer$add_summary(sess$run(crossEntropyTstSummary), global_step=step)
} }



	Collect all the summaries to a single tensor using themerge_all command from the summary module:





summary = tf$summary$merge_all() 



	Write the summaries to the log file using the log_writer object:




log_writer = tf$summary$FileWriter('c:/log', sess$graph)
summary_str = sess$run(summary)
log_writer$add_summary(summary_str, step)
log_writer$close()
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The section covers model performance visualization using TensorBoard. The cross entropy for train and test are recorded in the SCALARS tab, as shown in the following screenshot:



Cross entropy for train and test data

The objective function shows similar behaviors for train and test cost function; thus, the model seems to be stable for the given case with convergence attaining around 1,600 iterations.
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This section will focus on extending the logistic regression concept to neural networks.

The neural network, also known as Artificial neural network (ANN), is a computational paradigm that is inspired by the neuronal structure of the biological brain.
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The ANN is a collection of artificial neurons that perform simple operations on the data; the output from this is passed to another neuron. The output generated at each neuron is called its activation function. An example of a multilayer perceptron model can be seen in the following screenshot:



An example of a multilayer neural network

Each link in the preceding figure is associated to weights processed by a neuron. Each neuron can be looked at as a processing unit that takes input processing and the output is passed to the next layer, as shown in the following screenshot:






An example of a neuron getting three inputs and one output

The preceding figure demonstrates three inputs combined at neuron to give an output that may be further passed to another neuron. The processing conducted at the neuron could be a very simple operation such as the input multiplied by weights followed by summation or a transformation operation such as the sigmoid activation function.
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This section covers type activation functions in multilayer perceptrons. Activation is one of the critical component of ANN as it defines the output of that node based on the given input. There are many different activation functions used while building a neural network:


	Sigmoid: The sigmoid activation function is a continuous function also known as a logistic function and has the form, 1/(1+exp(-x)). The sigmoid function has a tendency to zero out the backpropagation terms during training leading to saturation in response. In TensorFlow, the sigmoid activation function is defined using the tf.nn.sigmoid function.

	ReLU: Rectified linear unit (ReLU) is one of the most famous continuous, but not smooth, activation functions used in neural networks to capture non-linearity. The ReLU function is defined as max(0,x). In TensorFlow, the ReLU activation function is defined as tf.nn.relu.

	ReLU6: It caps the ReLU function at 6 and is defined as min(max(0,x), 6), thus the value does not become very small or large. The function is defined in TensorFlow as tf.nn.relu6.

	tanh: Hypertangent is another smooth function used as an activation function in neural networks and is bound [ -1 to 1] and implemented as tf.nn.tanh.

	softplus: It is a continuous version of ReLU, so the differential exists and is defined as log(exp(x)+1). In TensorFlow the softplus is defined as tf.nn.softplus.
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There are three main neural network architectures in neural networks:


	Feedforward ANN: This is a class of neural network models where the flow of information is unidirectional from input to output; thus, the architecture does not form any cycle. An example of a Feedforward network is shown in the following image:





Feedforward architecture of neural networks


	
Feedback ANN: This is also known as the Elman recurrent network and is a class of neural networks where the error at the output node used as feedback to update iteratively to minimize errors. An example of a one layer Feedback neural network architecture is shown in the following image:







xFeedback architecture of neural networks


	
Lateral ANN: This is a class of neural networks between Feedback and Feedforward neural networks with neurons interacting within layers. An example lateral neural network architecture is shown in the following image:







Lateral neural network architecture
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More activation functions supported in TensorFlow can be found at https://www.tensorflow.org/versions/r0.10/api_docs/python/nn/activation_functions_.
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In this section, we will cover the application of H2O in setting up a neural network. The example will use a similar dataset as used in logistic regression.
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We first load all the required packages with the following code:


# Load the required packages
require(h2o)


Then, initialize a single-node H2O instance using the h2o.init() function on eight cores and instantiate the corresponding client module on the IP address localhost and port number 54321:


# Initialize H2O instance (single node)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE,min_mem_size = "20G",nthreads = 8)
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The section shows how to build neural network using H20.


	Load the occupancy train and test datasets in R:




# Load the occupancy data 
occupancy_train <-read.csv("C:/occupation_detection/datatraining.txt",stringsAsFactors = T)
occupancy_test <- read.csv("C:/occupation_detection/datatest.txt",stringsAsFactors = T)



	The following independent (x) and dependent (y) variables will be used to model GLM:




# Define input (x) and output (y) variables
x = c("Temperature", "Humidity", "Light", "CO2", "HumidityRatio")
y = "Occupancy"




	Based on the requirement by H2O, convert dependent variables to factors as follows:




# Convert the outcome variable into factor
occupancy_train$Occupancy <- as.factor(occupancy_train$Occupancy)
occupancy_test$Occupancy <- as.factor(occupancy_test$Occupancy)





	Then convert the datasets to H2OParsedData objects:






# Convert Train and Test datasets into H2O objects
occupancy_train.hex <- as.h2o(x = occupancy_train, destination_frame = "occupancy_train.hex")
occupancy_test.hex <- as.h2o(x = occupancy_test, destination_frame = "occupancy_test.hex")



	Once the data is loaded and converted to H2OParsedData objects, build a multilayer Feedforward neural network using the h2o.deeplearning function. In the current setup, the following parameters are used to build the NN model:




	

	Single hidden layer with five neurons using hidden

	50 iterations using epochs

	Adaptive learning rate (adaptive_rate) instead of a fixed learning rate (rate)

	Rectifier activation function based on ReLU

	Five-fold cross validation using nfold








# H2O based neural network to Train the model 
occupancy.deepmodel <- h2o.deeplearning(x = x, 
                                        y = y, 
                                        training_frame = occupancy_train.hex, 
                                        validation_frame = occupancy_test.hex, 
                                        standardize = F, 
                                        activation = "Rectifier", 
                                        epochs = 50, 
                                        seed = 1234567, 
                                        hidden = 5, 
                                        variable_importances = T,
                                        nfolds = 5,
                                        adpative_rate = TRUE)



	In addition to the command described in the recipe Performing logistic regression using H2O, you can also define other parameters to fine-tune the model performance. The following list does not cover all the functional parameters, but covers some based on importance. The complete list of parameters is available in the documentation of the h2o package.




	

	Option to initialize a model using a pretrained autoencoder model.

	Provision to fine-tune the adaptive learning rate via an option to modify the time decay factor (rho) and smoothing factor (epsilon). In the case of a fixed learning rate (rate), an option to modify the annealing rate (rate_annealing) and decay factor between layers (rate_decay).

	Option to initialize weights and biases along with weight distribution and scaling.

	Stopping criteria based on the error fraction in the case of classification and mean squared errors with regard to regression (classification_stop and regression_stop). An option to also perform early stopping.

	Option to improve distributed model convergence using the elastic averaging method with parameters such as moving rate and regularization strength.
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The performance of the model can be assessed using many metrics such as accuracy, AUC, misclassification error (%), misclassification error count, F1-score, precision, recall, specificity, and so on. However, in this chapter, the assessment of the model performance is based on AUC.

The following is the training and cross validation accuracy for the trained model. The training and cross validation AUC is 0.984 and 0.982 respectively:


# Get the training accuracy (AUC)
> train_performance <- h2o.performance(occupancy.deepmodel,train = T)
> train_performance@metrics$AUC
[1] 0.9848667

# Get the cross-validation accuracy (AUC)
> xval_performance <- h2o.performance(occupancy.deepmodel,xval = T)
> xval_performance@metrics$AUC
[1] 0.9821723


As we have already provided test data in the model (as a validation dataset), the following is its performance. The AUC on the test data is 0.991.


# Get the testing accuracy(AUC)
> test_performance <- h2o.performance(occupancy.deepmodel,valid = T)
> test_performance@metrics$AUC
[1] 0.9905056
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H2O packages also allow you to perform hyper-parameter tuning using grid search (h2o.grid).
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We first load and initialize the H2O package with the following code:


# Load the required packages
require(h2o)

# Initialize H2O instance (single node)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE,min_mem_size = "20G",nthreads = 8)


The occupancy dataset is loaded, converted to hex format, and named occupancy_train.hex.
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The section will focus on optimizing hyper parameters in H2O using grid searches.


	In our case, we will optimize for the activation function, the number of hidden layers (along with the number of neurons in each layer), epochs, and regularization lambda (l1 and l2):




# Perform hyper parameter tuning
activation_opt <- c("Rectifier","RectifierWithDropout", "Maxout","MaxoutWithDropout")
hidden_opt <- list(5, c(5,5))
epoch_opt <- c(10,50,100)
l1_opt <- c(0,1e-3,1e-4)
l2_opt <- c(0,1e-3,1e-4)

hyper_params <- list(activation = activation_opt,
                     hidden = hidden_opt,
                     epochs = epoch_opt,
                     l1 = l1_opt,
                     l2 = l2_opt)



	The following search criteria have been set to perform a grid search. Adding to the following list, one can also specify the type of stopping metric, the minimum tolerance for stopping, and the maximum number of rounds for stopping:




#set search criteria
search_criteria <- list(strategy = "RandomDiscrete", max_models=300)



	Now, let's perform a grid search on the training data as follows:




# Perform grid search on training data
dl_grid <- h2o.grid(x = x,
                    y = y,
                    algorithm = "deeplearning",
                    grid_id = "deep_learn",
                    hyper_params = hyper_params,
                    search_criteria = search_criteria,
                    training_frame = occupancy_train.hex,
                    nfolds = 5)



	Once the grid search is complete (here, there are 216 different models), the best model can be selected based on multiple metrics such as logloss, residual deviance, mean squared error, AUC, accuracy, precision, recall, f1, and so on. In our scenario, let's select the best model with the highest AUC:




#Select best model based on auc
d_grid <- h2o.getGrid("deep_learn",sort_by = "auc", decreasing = T)
best_dl_model <- h2o.getModel(d_grid@model_ids[[1]])
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The following is the performance of the grid-searched model on both the training and cross-validation datasets. We can observe that the AUC has increased by one unit in both training and cross-validation scenarios, after performing a grid search. The training and cross validation AUC after the grid search is 0.996 and 0.997 respectively.


# Performance on Training data after grid search
> train_performance.grid <- h2o.performance(best_dl_model,train = T)
> train_performance.grid@metrics$AUC
[1] 0.9965881

# Performance on Cross validation data after grid search
> xval_performance.grid <- h2o.performance(best_dl_model,xval = T)
> xval_performance.grid@metrics$AUC
[1] 0.9979131


Now, let's assess the performance of the best grid-searched model on the test dataset. We can observe that the AUC has increased by 0.25 units after performing the grid search. The AUC on the test data is 0.993.


# Predict the outcome on test dataset
yhat <- h2o.predict(best_dl_model, occupancy_test.hex) 

# Performance of the best grid-searched model on the Test dataset
> yhat$pmax <- pmax(yhat$p0, yhat$p1, na.rm = TRUE) 
> roc_obj <- pROC::roc(c(as.matrix(occupancy_test.hex$Occupancy)), c(as.matrix(yhat$pmax)))
> pROC::auc(roc_obj)
Area under the curve: 0.9932
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The previous chapter provided the details for the installation of MXNet in R along with a working example using its web interface. To start modeling, load the MXNet package in the R environment.
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Load the required packages:


# Load the required packages
require(mxnet)
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	Load the occupancy train and test datasets in R:




# Load the occupancy data 
occupancy_train <-read.csv("C:/occupation_detection/datatraining.txt",stringsAsFactors = T)
occupancy_test <- read.csv("C:/occupation_detection/datatest.txt",stringsAsFactors = T)




	The following independent (x) and dependent (y) variables will be used to model GLM:




# Define input (x) and output (y) variables
x = c("Temperature", "Humidity", "Light", "CO2", "HumidityRatio")
y = "Occupancy"




	Based on the requirement by MXNet, convert the train and test datasets to a matrix and ensure that the class of the outcome variable is numeric (instead of factor as in the case of H2O):




# convert the train data into matrix
occupancy_train.x <- data.matrix(occupancy_train[,x])
occupancy_train.y <- occupancy_train$Occupancy

# convert the test data into matrix
occupancy_test.x <- data.matrix(occupancy_test[,x])
occupancy_test.y <- occupancy_test$Occupancy



	Now, let's configure a neural network manually. First, configure a symbolic variable with a specific name. Then configure a symbolic fully connected network with five neurons in a single hidden layer followed with the softmax activation function with logit loss (or cross entropy loss). One can also create additional (fully connected) hidden layers with different activation functions.




# Configure Neural Network structure 
smb.data <- mx.symbol.Variable("data")
smb.fc <- mx.symbol.FullyConnected(smb.data, num_hidden=5) 
smb.soft <- mx.symbol.SoftmaxOutput(smb.fc)



	Once the neural network is configured, let's create (or train) the (Feedforward) neural network model using the mx.model.FeedForward.create function. The model is fine-tuned for parameters such as the number of iterations or epochs (100), the metric for evaluation (classification accuracy), the size of each iteration or epoch (100 observations), and the learning rate (0.01):




# Train the network
model.nn <- mx.model.FeedForward.create(symbol = smb.soft,
                                        X = occupancy_train.x,
                                        y = occupancy_train.y,
                                        ctx = mx.cpu(),
                                        num.round = 100,
                                        eval.metric = mx.metric.accuracy,
                                        array.batch.size = 100,
                                        learning.rate = 0.01)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Now, let's assess the performance of the model on train and test datasets. The AUC on the train data is 0.978 and on the test data is 0.982:


# Train accuracy (AUC)
> train_pred <- predict(model.nn,occupancy_train.x)
> train_yhat <- max.col(t(train_pred))-1
> roc_obj <- pROC::roc(c(occupancy_train.y), c(train_yhat))
> pROC::auc(roc_obj)
Area under the curve: 0.9786

#Test accuracy (AUC)
> test_pred <- predict(nnmodel,occupancy_test.x)
> test_yhat <- max.col(t(test_pred))-1
> roc_obj <- pROC::roc(c(occupancy_test.y), c(test_yhat))
> pROC::auc(roc_obj)
Area under the curve: 0.9824




            

            
        
    
        

                            
                    Setting up a neural network using TensorFlow

                
            
            
                
In this section, we will cover an application of TensorFlow in setting up a two-layer neural network model.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
To start modeling, load the tensorflow package in the environment. R loads the default tf environment variable and also the NumPy library from Python in the np variable:


library("tensorflow") # Load Tensorflow 
np <- import("numpy") # Load numpy library




            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	The data is imported using the standard function from R, as shown in the following code. The data is imported using the read.csv file and transformed into the matrix format followed by selecting the features used for the modeling as defined in xFeatures and yFeatures:




# Loading input and test data
xFeatures = c("Temperature", "Humidity", "Light", "CO2", "HumidityRatio")
yFeatures = "Occupancy"
occupancy_train <-as.matrix(read.csv("datatraining.txt",stringsAsFactors = T))
occupancy_test <- as.matrix(read.csv("datatest.txt",stringsAsFactors = T))

# subset features for modeling and transform to numeric values
occupancy_train<-apply(occupancy_train[, c(xFeatures, yFeatures)], 2, FUN=as.numeric) 
occupancy_test<-apply(occupancy_test[, c(xFeatures, yFeatures)], 2, FUN=as.numeric)

# Data dimensions
nFeatures<-length(xFeatures)
nRow<-nrow(occupancy_train)



	Now load both the network and model parameters. The network parameters define the structure of the neural network and the model parameters define its tuning criteria. As stated earlier, the neural network is built using two hidden layers, each with five neurons. The n_input parameter defines the number of independent variables and n_classes defines one fewer than the number of output classes. In cases where the output variable is one-hot encoded (one attribute with yes occupancy and a second attribute with no occupancy), then n_classes will be 2L (equal to the number of one-hot encoded attributes). Among model parameters, the learning rate is 0.001 and the number of epochs (or iterations) for model building is 10000:




# Network Parameters
n_hidden_1 = 5L # 1st layer number of features
n_hidden_2 = 5L # 2nd layer number of features
n_input = 5L    # 5 attributes
n_classes = 1L  # Binary class

# Model Parameters
learning_rate = 0.001
training_epochs = 10000



	The next step in TensorFlow is to set up a graph to run the optimization. Before setting up the graph, let's reset the graph using the following command:




# Reset the graph
tf$reset_default_graph()



	Additionally, let's start an interactive session as it will allow us to execute variables without referring to the session-to-session object:




# Starting session as interactive session
sess<-tf$InteractiveSession()



	The following script defines the graph input (x for independent variables and y for dependent variable). The input feature x is defined as a constant as it will be input to the system. Similarly, the output feature y is also defined as a constant with the float32 type:




# Graph input
x = tf$constant(unlist(occupancy_train[,xFeatures]), shape=c(nRow, n_input), dtype=np$float32)
y = tf$constant(unlist(occupancy_train[,yFeatures]), dtype="float32", shape=c(nRow, 1L))



	Now, let's create a multilayer perceptron with two hidden layers. Both the hidden layers are built using the ReLU activation function and the output layer is built using the linear activation function. The weights and biases are defined as variables that will be optimized during the optimization process. The initial values are randomly selected from a normal distribution. The following script is used to initialize and store a hidden layer's weights and biases along with a mulitilayer perceptron model:





# Initializes and store hidden layer's weight & bias
weights = list(
 "h1" = tf$Variable(tf$random_normal(c(n_input, n_hidden_1))),
 "h2" = tf$Variable(tf$random_normal(c(n_hidden_1, n_hidden_2))),
 "out" = tf$Variable(tf$random_normal(c(n_hidden_2, n_classes)))
)
biases = list(
 "b1" = tf$Variable(tf$random_normal(c(1L,n_hidden_1))),
 "b2" = tf$Variable(tf$random_normal(c(1L,n_hidden_2))),
 "out" = tf$Variable(tf$random_normal(c(1L,n_classes)))
)

# Create model
multilayer_perceptron <- function(x, weights, biases){
 # Hidden layer with RELU activation
 layer_1 = tf$add(tf$matmul(x, weights[["h1"]]), biases[["b1"]])
 layer_1 = tf$nn$relu(layer_1)
 # Hidden layer with RELU activation
 layer_2 = tf$add(tf$matmul(layer_1, weights[["h2"]]), biases[["b2"]])
 layer_2 = tf$nn$relu(layer_2)
 # Output layer with linear activation
 out_layer = tf$matmul(layer_2, weights[["out"]]) + biases[["out"]]
 return(out_layer)
}




	Now, construct the model using the initialized weights and biases:




pred = multilayer_perceptron(x, weights, biases)



	The next step is to define the cost and optimizer functions of the neural network:




# Define cost and optimizer
cost = tf$reduce_mean(tf$nn$sigmoid_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf$train$AdamOptimizer(learning_rate=learning_rate)$minimize(cost)



	The neural network is set up using sigmoid cross entropy as the cost function. The cost function is then passed to a gradient descent optimizer (Adam) with a learning rate of 0.001. Before running the optimization, initialize the global variables as follows:




# Initializing the global variables
init = tf$global_variables_initializer()
sess$run(init)



	Once the global variables are initialized along with the cost and optimizer functions, let's begin training on the train dataset:




# Training cycle
for(epoch in 1:training_epochs){
    sess$run(optimizer)
   if (epoch %% 20== 0)
    cat(epoch, "-", sess$run(cost), "n") 
}




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The performance of the model can be evaluated using AUC:


# Performance on Train
library(pROC) 
ypred <- sess$run(tf$nn$sigmoid(multilayer_perceptron(x, weights, biases)))
roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))

# Performance on Test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32) #
ypredt <- sess$run(tf$nn$sigmoid(multilayer_perceptron(xt, weights, biases)))
roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt))


AUC can be visualized using the plot.auc function from the pROC package, as shown in the image following the next command. The performance of train and test (hold out) is very similar.


plot.roc(roc_obj, col = "green", lty=2, lwd=2)
plot.roc(roc_objt, add=T, col="red", lty=4, lwd=2)




Performance of multilayer perceptron using TensorFlow



            

            
        
    
        

                            
                    There's more...

                
            
            
                
Neural networks are based on the philosophy from the brain; however, the brain consists of around 100 billion neurons with each neuron connected to 10,000 other neurons. Neural networks developed in the early 90s faced a lot of challenges in building deeper neural networks due to computation and algorithmic limitations.

With advances in big data, computational resources (such as GPUs), and better algorithms, the concept of deep learning has emerged and allows us to capture a deeper representation from all kinds of data such as text, image, audio, and so on.





	Trends in Deep Learning: Deep learning is an advance on neural networks, which are very much driven by technology enhancement. The main factors that have impacted the development of deep learning as a dominant area in artificial intelligence are as follows:




	Computational power: The consistency of Moore's law, which states that the acceleration power of hardware will double every two years, helped in training more layers and bigger data within time limitations

	Storage and better compression algorithms: The ability to store big models due to cheaper storage and better compression algorithms have pushed this area with practitioners focusing on capturing real-time data feeds in the form of image, text, audio, and video formats

	Scalability: The ability to scale from a simple computer to a farm or using GPU devices has given a great boost to training deep learning models

	Deep learning architectures: With new architectures such as Convolution Neural network, re-enforcement learning has provided a boost to what we can learn and also helped expedite learning rates

	Cross-platform programming: The ability to program and build models in a cross-platform architecture significantly helped increase the user base and in drastic development in the domain

	Transfer learning: This allows reusing pretrained models and further helps in significantly reducing training times







            

            
        
    
        

                            
                    Convolution Neural Network

                
            
            
                
In this chapter, we will cover the following topics:


	Downloading and configuring an image dataset

	Learning the architecture of a CNN classifier

	Using functions to initialize weights and biases

	Using functions to create a new convolution layer

	Using functions to flatten the densely connected layer

	Defining placeholder variables

	Creating the first convolution layer

	Creating the second convolution layer

	Flattening the second convolution layer

	Creating the first fully connected layer

	Applying dropout to the first fully connected layer

	Creating the second fully connected layer with dropout

	Applying softmax activation to obtain a predicted class

	Defining the cost function used for optimization

	Performing gradient descent cost optimization

	Executing the graph in a TensorFlow session

	Evaluating the performance on test data
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Convolution neural networks (CNN) are a category of deep learning neural networks with a prominent role in building image recognition- and natural language processing-based classification models.

The CNN follows a similar architecture to LeNet, which was primarily designed to recognize characters such as numbers, zip codes, and so on. As against artificial neural networks, CNN have layers of neurons arranged in three-dimensional space (width, depth, and height). Each layer transforms a two-dimensional image into a three-dimensional input volume, which is then transformed into a three-dimensional output volume using neuron activation.

Primarily, CNNs are built using three main types of activation layers: convolution layer ReLU, pooling layer, and fully connected layer. The convolution layer is used to extract features (spatial relationship between pixels) from the input vector (of images) and stores them for further processing after computing a dot product with weights (and biases).

Rectified Linear Unit (ReLU) is then applied after convolution to introduce non-linearity in the operation.

This is an element-wise operation (such as a threshold function, sigmoid, and tanh) applied to each convolved feature map. Then, the pooling layer (operations such as max, mean, and sum) is used to downsize the dimensionality of each feature map ensuring minimum information loss. This operation of spatial size reduction is used to control overfitting and increase the robustness of the network to small distortions or transformations. The output of the pooling layer is then connected to a traditional multilayer perceptron (also called the fully connected layer). This perceptron uses activation functions such as softmax or SVM to build classifier-based CNN models.

The recipes in this chapter will focus on building a convolution neural network for image classification using Tensorflow in R. While the recipes will provide you with an overview of a typical CNN, we encourage you to adapt and modify the parameters according to your needs.



            

            
        
    
        

                            
                    Downloading and configuring an image dataset

                
            
            
                
In this chapter, we will use the CIFAR-10 dataset to build a convolution neural network for image classification. The CIFAR-10 dataset consists of 60,000 32 x 32 color images of 10 classes, with 6,000 images per class. These are further divided into five training batches and one test batch, each with 10,000 images.

The test batch contains exactly 1,000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5,000 images from each class. The ten outcome classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The classes are completely mutually exclusive. In addition, the format of the dataset is as follows:


	The first column: The label with 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck

	The next 1,024 columns: Red pixels in the range of 0 to 255

	The next 1,024 columns: Green pixels in the range of 0 to 255

	The next 1,024 columns: Blue pixels in the range of 0 to 255





            

            
        
    
        

                            
                    Getting ready

                
            
            
                
For this recipe, you will require R with some packages installed such as data.table and imager.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Start R (using Rstudio or Docker) and load the required packages.

	Download the dataset (binary version) from http://www.cs.toronto.edu/~kriz/cifar.html manually or use the following function to download the data in the R environment. The function takes the working directory or the downloaded dataset's location path as an input parameter (data_dir):




# Function to download the binary file
download.cifar.data <- function(data_dir) {
dir.create(data_dir, showWarnings = FALSE)
setwd(data_dir)
if (!file.exists('cifar-10-binary.tar.gz')){
download.file(url='http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz', destfile='cifar-10-binary.tar.gz', method='wget')
untar("cifar-10-binary.tar.gz") # Unzip files
file.remove("cifar-10-binary.tar.gz") # remove zip file
}
setwd("..")
}
# Download the data
download.cifar.data(data_dir="Cifar_10/")



	Once the dataset is downloaded and untarred (or unzipped), read it in the R environment as train and test datasets. The function takes the filenames of the train and test batch datasets (filenames) and the number of images to retrieve per batch file (num.images) as input parameters:




# Function to read cifar data
read.cifar.data <- function(filenames,num.images){
images.rgb <- list()
images.lab <- list()
for (f in 1:length(filenames)) {
to.read <- file(paste("Cifar_10/",filenames[f], sep=""), "rb")
for(i in 1:num.images) {
l <- readBin(to.read, integer(), size=1, n=1, endian="big")
r <- as.integer(readBin(to.read, raw(), size=1, n=1024, endian="big"))
g <- as.integer(readBin(to.read, raw(), size=1, n=1024, endian="big"))
b <- as.integer(readBin(to.read, raw(), size=1, n=1024, endian="big"))
index <- num.images * (f-1) + i
images.rgb[[index]] = data.frame(r, g, b)
images.lab[[index]] = l+1
}
close(to.read)
cat("completed :", filenames[f], "\n")
remove(l,r,g,b,f,i,index, to.read)
}
return(list("images.rgb"=images.rgb,"images.lab"=images.lab))
}
# Train dataset
cifar_train <- read.cifar.data(filenames = c("data_batch_1.bin","data_batch_2.bin","data_batch_3.bin","data_batch_4.bin", "data_batch_5.bin"))
images.rgb.train <- cifar_train$images.rgb
images.lab.train <- cifar_train$images.lab
rm(cifar_train)
# Test dataset
cifar_test <- read.cifar.data(filenames = c("test_batch.bin"))
images.rgb.test <- cifar_test$images.rgb
images.lab.test <- cifar_test$images.lab
rm(cifar_test)



	The outcome of the earlier function is a list of red, green, and blue pixel dataframes for each image along with their labels. Then, flatten the data into a list of two dataframes (one for input and the other for output) using the following function, which takes two parameters--a list of input variables (x_listdata) and a list of output variables (y_listdata):




# Function to flatten the data
flat_data <- function(x_listdata,y_listdata){
# Flatten input x variables
x_listdata <- lapply(x_listdata,function(x){unlist(x)})
x_listdata <- do.call(rbind,x_listdata)
# Flatten outcome y variables
y_listdata <- lapply(y_listdata,function(x){a=c(rep(0,10)); a[x]=1; return(a)})
y_listdata <- do.call(rbind,y_listdata)
# Return flattened x and y variables
return(list("images"=x_listdata, "labels"=y_listdata))
}
# Generate flattened train and test datasets
train_data <- flat_data(x_listdata = images.rgb.train, y_listdata = images.lab.train)
test_data <- flat_data(x_listdata = images.rgb.test, y_listdata = images.lab.test)



	Once the list of input and output train and test dataframes is ready, perform sanity checks by plotting the images along with their labels. The function requires two mandatory parameters (index: image row number and images.rgb: flattened input dataset) and one optional parameter (images.lab: flattened output dataset):




labels <- read.table("Cifar_10/batches.meta.txt")
# function to run sanity check on photos & labels import
drawImage <- function(index, images.rgb, images.lab=NULL) {
require(imager)
# Testing the parsing: Convert each color layer into a matrix,
# combine into an rgb object, and display as a plot
img <- images.rgb[[index]]
img.r.mat <- as.cimg(matrix(img$r, ncol=32, byrow = FALSE))
img.g.mat <- as.cimg(matrix(img$g, ncol=32, byrow = FALSE)
img.b.mat <- as.cimg(matrix(img$b, ncol=32, byrow = FALSE))
img.col.mat <- imappend(list(img.r.mat,img.g.mat,img.b.mat),"c") #Bind the three channels into one image
# Extract the label
if(!is.null(images.lab)){
lab = labels[[1]][images.lab[[index]]]
}
# Plot and output label
plot(img.col.mat,main=paste0(lab,":32x32 size",sep=" "),xaxt="n")
axis(side=1, xaxp=c(10, 50, 4), las=1)
return(list("Image label" =lab,"Image description" =img.col.mat))
}
# Draw a random image along with its label and description from train dataset
drawImage(sample(1:50000, size=1), images.rgb.train, images.lab.train)



	Now transform the input data using the min-max standardization technique. The preProcess function from the package can be used for normalization. The "range" option of the method performs min-max normalization as follows:




# Function to normalize data
Require(caret) 
normalizeObj<-preProcess(train_data$images, method="range") 
train_data$images<-predict(normalizeObj, train_data$images) 
test_data$images <- predict(normalizeObj, test_data$images) 




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Let's take a look at what we did in the earlier recipe. In step 2, we downloaded the CIFAR-10 dataset from the link mentioned in case it is not present in the given link or working directory. In step 3, the unzipped files are loaded in the R environment as train and test datasets. The train dataset has a list of 50,000 images and the test dataset has a list of 10,000 images along with their labels. Then, in step 4, the train and test datasets are flattened into a list of two dataframes: one with input variables (or images) of length 3,072 (1,024 of red, 1,024 of green, and 1,024 of blue) and the other with output variables (or labels) of length 10 (binary for each class). In step 5, we perform sanity checks for the created train and test datasets by generating plots. The following figure shows a set of six train images along with their labels. Finally, in step 6, the input data is transformed using the min-max standardization technique. An example of categories from the CIFAR-10 dataset is shown in the following figure:





            

            
        
    
        

                            
                    See also

                
            
            
                
Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009 (http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf). This is also the reference for this section.



            

            
        
    
        

                            
                    Learning the architecture of a CNN classifier

                
            
            
                
The CNN classifier covered in this chapter has two convolution layers followed by two fully connected layers in the end, in which the last layer acts as a classifier using the softmax activation function.
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The recipe requires the CIFAR-10 dataset. Thus, the CIFAR-10 dataset should be downloaded and loaded into the R environment. Also, images are of size 32 x 32 pixels.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Let's define the configuration of the CNN classifier as follows:


	Each input image (CIFAR-10) is of size 32 x 32 pixels and can be labeled one among 10 classes:




# CIFAR images are 32 x 32 pixels.
img_width  = 32L
img_height = 32L

# Tuple with height and width of images used to reshape arrays.
img_shape = c(img_width, img_height)
# Number of classes, one class for each of 10 images
num_classes = 10L



	The images of the CIFAR-10 dataset have three channels (red, green, and blue):




# Number of color channels for the images: 3 channel for red, blue, green scales.
num_channels = 3L



	The images are stored in one-dimensional arrays of the following length (img_size_flat):




# Images are stored in one-dimensional arrays of length.
img_size_flat = img_width * img_height * num_channels



	In the first convolution layer, the size (width x height) of the convolution filter is 5 x 5 pixels (filter_size1) and the depth (or number) of convolution filter is 64 (num_filters1):




# Convolutional Layer 1.
filter_size1 = 5L
num_filters1 = 64L



	In the second convolution layer, the size and depth of the convolution filter is the same as the first convolution layer:




# Convolutional Layer 2.
filter_size2 = 5L
num_filters2 = 64L



	Similarly, the output of the first fully connected layer is the same as the input of the second fully connected layer:




# Fully-connected layer.
fc_size = 1024L




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The dimensions and characteristics of an input image are shown in steps 1 and 2, respectively. Every input image is further processed in a convolution layer using a set of filters as defined in steps 4 and 5. The first convolution layer results in a set of 64 images (one for each set filter). In addition, the resolution of these images are also reduced to half (because of 2 x 2 max pooling); namely, from 32 x 32 pixels to 16 x 16 pixels.

The second convolution layer will input these 64 images and provide an output of new 64 images with further reduced resolutions. The updated resolution is now 8 x 8 pixels (again due to 2 x 2 max pooling). In the second convolution layer, a total of 64 x 64 = 4,096 filters are created, which are then further convoluted into 64 output images (or channels). Remember that these 64 images of 8 x 8 resolution correspond to a single input image.

Further, these 64 output images of 8 x 8 pixels are flattened into a single vector of length 4,096 (8 x 8 x 64), as defined in step 3, and are used as an input to a fully connected layer of a given set of neurons, as defined in step 6. The vector of 4,096 elements is then fed into the first fully connected layer of 1,024 neurons. The output neurons are again fed into a second fully connected layer of 10 neurons (equal to num_classes). These 10 neurons represent each of the class labels, which are then used to determine the (final) class of the image.

First, the weights of the convolution and fully connected layers are randomly initialized till the classification stage (the end of CNN graph). Here, the classification error is computed based on the true class and the predicted class (also called cross entropy).

Then, the optimizer backpropagates the error through the convolution network using the chain rule of differentiation, post which the weights of the layers (or filters) are updated such that the error is minimized. This entire cycle of one forward and backward propagation is called one iteration. Thousands of such iterations are performed till the classification error is reduced to a sufficiently low value.

Generally, these iterations are performed using a batch of images instead of a single image to increase the efficiency of computation.

The following image represents the convolution network designed in this chapter:





            

            
        
    
        

                            
                    Using functions to initialize weights and biases

                
            
            
                
Weights and biases form an integral part of any deep neural network optimization and here we define a couple of functions to automate these initializations. It is a good practice to initialize weights with small noise to break symmetry and prevent zero gradients. Additionally, a small positive initial bias would avoid inactivated neurons, suitable for ReLU activation neurons.
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Weights and biases are model coefficients which need to be initialized before model compilation. This steps require the shape parameter to be determined based on input dataset.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	The following function is used to return randomly initialized weights:




# Weight Initialization
weight_variable <- function(shape) {
initial <- tf$truncated_normal(shape, stddev=0.1)
tf$Variable(initial)
}



	The following function is used to return constant biases:




bias_variable <- function(shape) {
initial <- tf$constant(0.1, shape=shape)
tf$Variable(initial)
}
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These functions return TensorFlow variables that are later used as part of a Tensorflow graph. The shape is defined as a list of attributes defining a filter in the convolution layer, which is covered in the next recipe. The weights are randomly initialized with a standard deviation equal to 0.1 and biases are initialized with a constant value of 0.1.



            

            
        
    
        

                            
                    Using functions to create a new convolution layer

                
            
            
                
Creating a convolution layer is the primary step in a CNN TensorFlow computational graph. This function is primarily used to define the mathematical formulas in the TensorFlow graph, which is later used in actual computation during optimization.
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The input dataset is defined and loaded. The create_conv_layer function presented in the recipe takes the following five input parameters and needs to be defined while setting-up a convolution layer:


	Input: This is a four-dimensional tensor (or a list) that comprises a number of (input) images, the height of each image (here 32L), the width of each image (here 32L), and the number of channels of each image (here 3L : red, blue, and green).

	Num_input_channels: This is defined as the number of color channels in the case of the first convolution layer or the number of filter channels in the case of subsequent convolution layers.

	Filter_size: This is defined as the width and height of each filter in the convolution layer. Here, the filter is assumed to be a square.

	Num_filters: This is defined as the number of filters in a given convolution layer.

	Use_pooling: This is a binary variable that is used perform 2 x 2 max pooling.





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the following function to create a new convolution layer:




# Create a new convolution layer
create_conv_layer <- function(input,
num_input_channels,
filter_size,
num_filters,
use_pooling=True)
{
# Shape of the filter-weights for the convolution.
shape1 = shape(filter_size, filter_size, num_input_channels, num_filters)
# Create new weights
weights = weight_variable(shape=shape1)
# Create new biases
biases = bias_variable(shape=shape(num_filters))
# Create the TensorFlow operation for convolution.
layer = tf$nn$conv2d(input=input,
filter=weights,
strides=shape(1L, 1L, 1L ,1L),
padding="SAME")
# Add the biases to the results of the convolution.
layer = layer + biases
# Use pooling (binary flag) to reduce the image resolution
if(use_pooling){
layer = tf$nn$max_pool(value=layer,
ksize=shape(1L, 2L, 2L, 1L),
strides=shape(1L, 2L, 2L, 1L),
padding='SAME')
}
# Add non-linearity using Rectified Linear Unit (ReLU).
layer = tf$nn$relu(layer)
# Retrun resulting layer and updated weights
return(list("layer" = layer, "weights" = weights))
}



	Run the following function to generate plots of convolution layers:




drawImage_conv <- function(index, images.bw, images.lab=NULL,par_imgs=8) {
require(imager)
img <- images.bw[index,,,]
n_images <- dim(img)[3]
par(mfrow=c(par_imgs,par_imgs), oma=c(0,0,0,0),
mai=c(0.05,0.05,0.05,0.05),ann=FALSE,ask=FALSE)
for(i in 1:n_images){
img.bwmat <- as.cimg(img[,,i])
# Extract the label
if(!is.null(images.lab)){
lab = labels[[1]][images.lab[[index]]]
}
# Plot and output label
plot(img.bwmat,axes=FALSE,ann=FALSE)
}
par(mfrow=c(1,1))
}



	Run the following function to generate plots of convolution layer weights:




drawImage_conv_weights <- function(weights_conv, par_imgs=8) {
require(imager)
n_images <- dim(weights_conv)[4]
par(mfrow=c(par_imgs,par_imgs), oma=c(0,0,0,0),
mai=c(0.05,0.05,0.05,0.05),ann=FALSE,ask=FALSE)
for(i in 1:n_images){
img.r.mat <- as.cimg(weights_conv[,,1,i])
img.g.mat <- as.cimg(weights_conv[,,2,i])
img.b.mat <- as.cimg(weights_conv[,,3,i])
img.col.mat <- imappend(list(img.r.mat,img.g.mat,img.b.mat),"c") 
#Bind the three channels into one image
# Plot and output label
plot(img.col.mat,axes=FALSE,ann=FALSE)
}
par(mfrow=c(1,1))
}




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The function begins with creating a shape tensor; namely, the list of four integers that are the width of a filter, the height of a filter, the number of input channels, and the number of given filters. Using this shape tensor, initialize a tensor of new weights with the defined shape and create a tensor a new (constant) biases, one for each filter.

Once the necessary weights and biases are initialized, create a TensorFlow operation for convolution using the tf$nn$conv2d function. In our current setup, the strides are set to 1 in all four dimensions and padding is set to SAME. The first and last are set to 1 by default, but the middle two can factor in higher strides. A stride is the number of pixels by which we allow the filter matrix to slide over the input (image) matrix.

A stride of 3 would mean three pixel jumps across the x or y axis for each filter slide. Smaller strides would produce larger feature maps, thereby requiring higher computation for convergence. As the padding is set to SAME, the input (image) matrix is padded with zeros around the border so that we can apply the filter to border elements of the input matrix. Using this feature, we can control the size of the output matrix (or feature maps) to be the same as the input matrix.

On convolution, the bias values are added to each filter channel followed by pooling to prevent overfitting. In the current setup, 2 x 2 max-pooling (using tf$nn$max_pool) is performed to downsize the image resolution. Here, we consider 2 x 2 (ksize)-sized windows and select the largest value in each window. These windows stride by two pixels (strides) either in the x or y direction.

On pooling, we add non-linearity to the layer using the ReLU activation function (tf$nn$relu). In ReLU, each pixel is triggered in the filter and all negative pixel values are replaced with zero using the max(x,0) function, where x is a pixel value. Generally, ReLU activation is performed before pooling. However, as we are using max-pooling, it doesn't necessarily impact the outcome as such because relu(max_pool(x)) is equivalent to max_pool(relu(x)). Thus, by applying ReLU post pooling, we can save a lot of ReLU operations (~75%).

Finally, the function returns a list of convoluted layers and their corresponding weights. The convoluted layer is a four-dimensional tensor with the following attributes:


	Number of (input) images, the same as input

	Height of each image (reduced to half in the case of 2 x 2 max-pooling)

	Width of each image (reduced to half in the case of 2 x 2 max-pooling)

	Number of channels produced, one for each convolution filter





            

            
        
    
        

                            
                    Using functions to create a new convolution layer

                
            
            
                
The four-dimensional outcome of a newly created convolution layer is flattened to a two-dimensional layer such that it can be used as an input to a fully connected multilayered perceptron.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The recipe explains how to flatten a convolution layer before building the deep learning model. The input to the given function ( flatten_conv_layer) is a four-dimensional convolution layer that is defined based on previous layer.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the following function to flatten the convolution layer:




flatten_conv_layer <- function(layer){
# Extract the shape of the input layer
layer_shape = layer$get_shape()
# Calculate the number of features as img_height * img_width * num_channels
num_features = prod(c(layer_shape$as_list()[[2]],layer_shape$as_list()[[3]],layer_shape$as_list()[[4]]))
# Reshape the layer to [num_images, num_features].
layer_flat = tf$reshape(layer, shape(-1, num_features))
# Return both the flattened layer and the number of features.
return(list("layer_flat"=layer_flat, "num_features"=num_features))
}




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The function begins with extracting the shape of the given input layer. As stated in previous recipes, the shape of the input layer comprises four integers: image number, image height, image width, and the number of color channels in the image. The number of features (num_features) is then evaluated using a dot-product of image height, image weight, and number of color channels.

Then, the layer is flattened or reshaped into a two-dimensional tensor (using tf$reshape). The first dimension is set to -1 (which is equal to the total number of images) and the second dimension is the number of features.

Finally, the function returns a list of flattened layers along with the total number of (input) features.



            

            
        
    
        

                            
                    Using functions to flatten the densely connected layer

                
            
            
                
The CNN generally ends with a fully connected multilayered perceptron using softmax activation in the output layer. Here, each neuron in the previous convoluted-flattened layer is connected to every neuron in the next (fully connected) layer.

The key purpose of the fully convoluted layer is to use the features generated in the convolution and pooling stage to classify the given input image into various outcome classes (here, 10L). It also helps in learning the non-linear combinations of these features to define the outcome classes.

In this chapter, we use two fully connected layers for optimization. This function is primarily used to define the mathematical formulas in the TensorFlow graph, which is later used in actual computation during optimization.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The (create_fc_layer) function takes four input parameters, which are as follows:


	Input: This is similar to the input of the new convolution layer function

	Num_inputs: This is the number of input features generated post flattening the convoluted layer

	Num_outputs: This is the number of output neurons fully connected with the input neurons

	Use_relu: This takes the binary flag that is set to FALSE only in the case of the final fully connected layer





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the following function to create a new fully connected layer:




# Create a new fully connected layer
create_fc_layer <- function(input,
num_inputs,
num_outputs,
use_relu=True)
{
# Create new weights and biases.
weights = weight_variable(shape=shape(num_inputs, num_outputs))
biases = bias_variable(shape=shape(num_outputs))
# Perform matrix multiplication of input layer with weights and then add biases
layer = tf$matmul(input, weights) + biases
# Use ReLU?
if(use_relu){
layer = tf$nn$relu(layer)
}
return(layer)
}




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The function begins with initialing new weights and biases. Then, perform matrix multiplication of the input layer with initialized weights and add relevant biases.

If, the fully connected layer is not the final layer of the CNN TensorFlow graph, ReLU non-linear activation can be performed. Finally, the fully connected layer is returned.



            

            
        
    
        

                            
                    Defining placeholder variables

                
            
            
                
In this recipe, let's define the placeholder variables that serve as input to the modules in a TensorFlow computational graph. These are typically multidimensional arrays or matrices in the form of tensors.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The data type of placeholder variables is set to float32 (tf$float32) and the shape is set to a two-dimensional tensor.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create an input placeholder variable:




x = tf$placeholder(tf$float32, shape=shape(NULL, img_size_flat), name='x')


The NULL value in the placeholder allows us to pass non-deterministic arrays size.


	Reshape the input placeholder x into a four-dimensional tensor:




x_image = tf$reshape(x, shape(-1L, img_size, img_size, num_channels))



	Create an output placeholder variable:




y_true = tf$placeholder(tf$float32, shape=shape(NULL, num_classes), name='y_true')



	Get the (true) classes of the output using argmax:




y_true_cls = tf$argmax(y_true, dimension=1L)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In step 1, we define an input placeholder variable. The dimensions of the shape tensor are NULL and img_size_flat. The former is set to hold any number of images (as rows) and the latter defines the length of input features for each image (as columns). In step 2, the input two-dimensional tensor is reshaped into a four-dimensional tensor, which can be served as input convolution layers. The four dimensions are as follows:


	The first defines the number of input images (currently set to -1)

	The second defines the height of each image (equivalent to image size 32L)

	The third defines the width of each image (equivalent to image size, again 32L)

	The fourth defines the number of color channels in each image (here 3L)



In step 3, we define an output placeholder variable to hold true classes or labels of the images in x. The dimensions of the shape tensor are NULL and num_classes. The former is set to hold any number of images (as rows) and the latter defines the true class of each image as a binary vector of length num_classes (as columns). In our scenario, we have 10 classes. In step 4, we compress the two-dimensional output placeholder into a one-dimensional tensor of class numbers ranging from 1 to 10.



            

            
        
    
        

                            
                    Creating the first convolution layer

                
            
            
                
In this recipe, let's create the first convolution layer.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The following are the inputs to the function create_conv_layer defined in the recipe Using functions to create a new convolution layer.


	Input: This is a four-dimensional reshaped input placeholder variable: x_image

	Num_input_channels: This is the number of color channels, namely num_channels

	Filter_size: This is the height and width of the filter layer filter_size1

	Num_filters: This is the depth of the filter layer, namely num_filters1

	Use_pooling: This is the binary flag set to TRUE





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the create_conv_layer function with the preceding input parameters:




# Convolutional Layer 1
conv1 <- create_conv_layer(input=x_image,
num_input_channels=num_channels,
filter_size=filter_size1,
num_filters=num_filters1,
use_pooling=TRUE)



	Extract the layers of the first convolution layer:




layer_conv1 <- conv1$layer
conv1_images <- conv1$layer$eval(feed_dict = dict(x = train_data$images, y_true = train_data$labels))



	Extract the final weights of the first convolution layer:




weights_conv1 <- conv1$weights
weights_conv1 <- weights_conv1$eval(session=sess)



	Generate the first convolution layer plots:




drawImage_conv(sample(1:50000, size=1), images.bw = conv1_images, images.lab=images.lab.train)



	Generate the first convolution layer weight plots:




drawImage_conv_weights(weights_conv1)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In steps 1 and 2, we create a first convolution layer of four-dimensions. The first dimension (?) represents any number of input images, the second and third dimensions represent the height (16 pixels) and width (16 pixels) of each convoluted image, and the fourth dimension represents the number of channels (64) produced--one for each convoluted filter. In steps 3 and 5, we extract the final weights of the convolution layer, as shown in the following screenshot:



In step 4, we plot the output of the first convolution layer, as shown in the following screenshot:





            

            
        
    
        

                            
                    Creating the second convolution layer

                
            
            
                
In this recipe, let's create the second convolution layer.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The following are the inputs to the function create_conv_layer defined in the recipe Using functions to create a new convolution layer.


	Input: This is the four-dimensional output of the first convoluted layer; that is, layer_conv1

	Num_input_channels: This is the number of filters (or depth) in the first convoluted layer, num_filters1

	Filter_size: This is the height and width of the filter layer; namely, filter_size2

	Num_filters: This is the depth of the filter layer, num_filters2

	Use_pooling: This is the binary flag set to TRUE





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the create_conv_layer function with the preceding input parameters:




# Convolutional Layer 2
conv2 <- create_conv_layer(input=layer_conv1,
num_input_channels=num_filters1,
filter_size=filter_size2,
num_filters=num_filters2,
use_pooling=TRUE)



	Extract the layers of the second convolution layer:




layer_conv2 <- conv2$layer
conv2_images <- conv2$layer$eval(feed_dict = dict(x = train_data$images, y_true = train_data$labels))



	Extract the final weights of the second convolution layer:




weights_conv2 <- conv2$weights
weights_conv2 <- weights_conv2$eval(session=sess)



	Generate the second convolution layer plots:




drawImage_conv(sample(1:50000, size=1), images.bw = conv2_images, images.lab=images.lab.train)



	Generate the second convolution layer weight plots:




drawImage_conv_weights(weights_conv2)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In steps 1 and 2, we create a second convolution layer of four dimensions. The first dimension (?) represents any number of input images, the second and third dimensions represent the height (8 pixels) and width (8 pixels) of each convoluted image, and the fourth dimension represents the number of channels (64) produced, one for each convoluted filter.

In steps 3 and 5, we extract the final weights of the convolution layer, as shown in the following screenshot:



In step 4, we plot the output of the second convolution layer, as shown in the following screenshot:





            

            
        
    
        

                            
                    Flattening the second convolution layer

                
            
            
                
In this recipe, let's flatten the second convolution layer that we created.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The following is the input to the function defined in the recipe Creating the second convolution layer, flatten_conv_layer:


	Layer: This is the output of the second convolution layer, layer_conv2





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the flatten_conv_layer function with the preceding input parameter:




flatten_lay <- flatten_conv_layer(layer_conv2)



	Extract the flattened layer:




layer_flat <- flatten_lay$layer_flat



	Extract the number of (input) features generated for each image:




num_features <- flatten_lay$num_features




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Prior to connecting the output of the (second) convolution layer with a fully connected network, in step 1, we reshape the four-dimensional convolution layer into a two-dimensional tensor. The first dimension (?) represents any number of input images (as rows) and the second dimension represents the flattened vector of features generated for each image of length 4,096; that is, 8 x 8 x 64 (as columns). Steps 2 and 3 validate the dimensions of the reshaped layers and input features.



            

            
        
    
        

                            
                    Creating the first fully connected layer

                
            
            
                
In this recipe, let's create the first fully connected layer.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The following are the inputs to the function defined in the recipe Using functions to flatten the densely connected layer, create_fc_layer:


	Input: This is the flattened convolution layer; that is, layer_flat

	Num_inputs: This is the number of features created post flattening, num_features

	Num_outputs: This is the number of fully connected neurons output, fc_size

	Use_relu: This is the binary flag set to TRUE to incorporate non-linearity in the tensor





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the create_fc_layer function with the preceding input parameters:




layer_fc1 = create_fc_layer(input=layer_flat,
num_inputs=num_features,
num_outputs=fc_size,
use_relu=TRUE)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Here, we create a fully connected layer that returns a two-dimensional tensor. The first dimension (?) represents any number of (input) images and the second dimension represents the number of output neurons (here, 1,024).



            

            
        
    
        

                            
                    Applying dropout to the first fully connected layer

                
            
            
                
In this recipe, let's apply dropout to the output of the fully connected layer to reduce the chance of overfitting. The dropout step involves removing some neurons randomly during the learning process.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The dropout is connected to the output of the layer. Thus, model initial structure is set up and loaded. For example, in dropout current layer layer_fc1 is defined, on which dropout is applied.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create a placeholder for dropout that can take probability as an input:




keep_prob <- tf$placeholder(tf$float32)



	Use TensorFlow's dropout function to handle the scaling and masking of neuron outputs:




layer_fc1_drop <- tf$nn$dropout(layer_fc1, keep_prob)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In steps 1 and 2, we can drop (or mask) out the output neurons based on the input probability (or percentage). The dropout is generally allowed during training and can be turned off (by assigning probability as 1 or NULL) during testing.



            

            
        
    
        

                            
                    Creating the second fully connected layer with dropout

                
            
            
                
In this recipe, let's create the second fully connected layer along with dropout.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The following are the inputs to the function defined in the recipe Using functions to flatten the densely connected layer, create_fc_layer:



	Input: This is the output of the first fully connected layer; that is, layer_fc1

	Num_inputs: This is the number of features in the output of the first fully connected layer, fc_size

	Num_outputs: This is the number of the fully connected neurons output (equal to the number of labels, num_classes )

	Use_relu: This is the binary flag set to FALSE







            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the create_fc_layer function with the preceding input parameters:




layer_fc2 = create_fc_layer(input=layer_fc1_drop,
num_inputs=fc_size,
num_outputs=num_classes,
use_relu=FALSE)



	Use TensorFlow's dropout function to handle the scaling and masking of neuron outputs:




layer_fc2_drop <- tf$nn$dropout(layer_fc2, keep_prob)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In step 1, we create a fully connected layer that returns a two-dimensional tensor. The first dimension (?) represents any number of (input) images and the second dimension represents the number of output neurons (here, 10 class labels). In step 2, we provide the option for dropout primarily used during the training of the network.



            

            
        
    
        

                            
                    Applying softmax activation to obtain a predicted class

                
            
            
                
In this recipe, we will normalize the outputs of the second fully connected layer using softmax activation such that each class has a (probability) value restricted between 0 and 1, and all the values across 10 classes add up to 1.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The activation function is applied at the end of the pipeline on predictions generated by the deep learning model. Before executing this step, all steps in the pipeline need to be executed. The recipe requires the TensorFlow library.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run the softmax activation function on the output of the second fully connected layer:




y_pred = tf$nn$softmax(layer_fc2_drop)



	Use the argmax function to determine the class number of the label. It is the index of the class with the largest (probability) value:




y_pred_cls = tf$argmax(y_pred, dimension=1L)




            

            
        
    
        

                            
                    Defining the cost function used for optimization

                
            
            
                
The cost function is primarily used to evaluate the current performance of the model by comparing the true class labels (y_true_cls) with the predicted class labels (y_pred_cls). Based on the current performance, the optimizer then fine-tunes the network parameters, such as weights and biases, to further improve its performance.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The cost function definition is critical as it will decide optimization criteria. The cost function definition will require true classes and predicted classes to do comparison. The objective function used in this recipe is cross entropy, used in multi-classification problems.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Evaluate the current performance of each image using the cross entropy function in TensorFlow. As the cross entropy function in TensorFlow internally applies softmax normalization, we provide the output of the fully connected layer post dropout (layer_fc2_drop) as an input along with true labels (y_true):




cross_entropy = tf$nn$softmax_cross_entropy_with_logits(logits=layer_fc2_drop, labels=y_true)


In the current cost function, softmax activation function is embedded thus the activation function is not required to be defined separately.


	Calculate the average of the cross entropy, which needs to be minimized using an optimizer:




cost = tf$reduce_mean(cross_entropy)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In step 1, we define a cross entropy to evaluate the performance of classification. Based on the exact match between the true and predicted labels, the cross entropy function returns a value that is positive and follows a continuous distribution. As zero cross entropy ensures a full match, optimizers tend to minimize the cross entropy toward the value zero by updating the network parameters such as weights and biases. The cross entropy function returns a value for each individual image that needs to be further compressed into a single scalar value, which can be used in an optimizer. Hence, in step 2, we calculate a simple average of the cross entropy output and store it as cost.



            

            
        
    
        

                            
                    Performing gradient descent cost optimization

                
            
            
                
In this recipe, let's define an optimizer that can minimize the cost. Post optimization, check for CNN performance.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The optimizer definition will require the cost recipe to be defined as it goes as input to the optimizer.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Run an Adam optimizer with the objective of minimizing the cost for a given learning_rate:




optimizer = tf$train$AdamOptimizer(learning_rate=1e-4)$minimize(cost)



	Extract the number of correct_predictions and calculate the mean percentage accuracy:




correct_prediction = tf$equal(y_pred_cls, y_true_cls)
accuracy = tf$reduce_mean(tf$cast(correct_prediction, tf$float32))




            

            
        
    
        

                            
                    Executing the graph in a TensorFlow session

                
            
            
                
Until now, we have only created tensor objects and added them to a TensorFlow graph for later execution. In this recipe, we will learn how to create a TensorFlow session that can be used to execute (or run) the TensorFlow graph.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Before we run the graph, we should have TensorFlow installed and loaded in R. The installation details can be found in Chapter 1, Getting Started.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Load the tensorflow library and import the numpy package:




library(tensorflow)
np <- import("numpy")



	Reset or remove any existing default_graph:




tf$reset_default_graph()



	Start an InteractiveSession:




sess <- tf$InteractiveSession()



	Initialize the global_variables:




sess$run(tf$global_variables_initializer())



	Run iterations to perform optimization (training):




# Train the model
train_batch_size = 128L
for (i in 1:100) {
spls <- sample(1:dim(train_data$images)[1],train_batch_size)
if (i %% 10 == 0) {
train_accuracy <- accuracy$eval(feed_dict = dict(
x = train_data$images[spls,], y_true = train_data$labels[spls,], keep_prob = 1.0))
cat(sprintf("step %d, training accuracy %g\n", i, train_accuracy))
}
optimizer$run(feed_dict = dict(
x = train_data$images[spls,], y_true = train_data$labels[spls,], keep_prob = 0.5))
}



	Evaluate the performance of the trained model on test data:




# Test the model
test_accuracy <- accuracy$eval(feed_dict = dict(
x = test_data$images, y_true = test_data$labels, keep_prob = 1.0))
cat(sprintf("test accuracy %g", test_accuracy))




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Steps 1 through 4 are, in a way, the default way to launch a new TensorFlow session. In step 4, the variables of weights and biases are initialized, which is mandatory before their optimization. Step 5 is primarily to execute the TensorFlow session for optimization. As we have a large number of training images, it becomes highly difficult (computationally) to calculate the optimum gradient taking all the images at once into the optimizer.

Hence, a small random sample of 128 images is selected to train the activation layer (weights and biases) in each iteration. In the current setup, we run 100 iterations and report training accuracy for every tenth iteration.

However, these can be increased based on the cluster configuration or computational power (CPU or GPU) to obtain higher model accuracy. In addition, a 50% dropout rate is used to train the CNN in each iteration. In step 6, we can evaluate the performance of the trained model on a test data of 10,000 images.



            

            
        
    
        

                            
                    Evaluating the performance on test data

                
            
            
                
In this recipe, we will look into the performance of the trained CNN on test images using a confusion matrix and plots.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The prerequisite packages for plots are imager and ggplot2.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Get the actual or true class labels of test images:




test_true_class <- c(unlist(images.lab.test))



	Get the predicted class labels of test images. Remember to add 1 to each class label, as the starting index of TensorFlow (the same as Python) is 0 and that of R is 1:




test_pred_class <- y_pred_cls$eval(feed_dict = dict(
x = test_data$images, y_true = test_data$labels, keep_prob = 1.0))
test_pred_class <- test_pred_class + 1



	Generate the confusion matrix with rows as true labels and columns as predicted labels:




table(actual = test_true_class, predicted = test_pred_class)



	Generate a plot of the confusion matrix:




confusion <- as.data.frame(table(actual = test_true_class, predicted = test_pred_class))
plot <- ggplot(confusion)
plot + geom_tile(aes(x=actual, y=predicted, fill=Freq)) + scale_x_discrete(name="Actual Class") + scale_y_discrete(name="Predicted Class") + scale_fill_gradient(breaks=seq(from=-.5, to=4, by=.2)) + labs(fill="Normalized\nFrequency")



	Run a helper function to plot images:




check.image <- function(images.rgb,index,true_lab, pred_lab) {
require(imager)
# Testing the parsing: Convert each color layer into a matrix,
# combine into an rgb object, and display as a plot
img <- images.rgb[[index]]
img.r.mat <- as.cimg(matrix(img$r, ncol=32, byrow = FALSE))
img.g.mat <- as.cimg(matrix(img$g, ncol=32, byrow = FALSE))
img.b.mat <- as.cimg(matrix(img$b, ncol=32, byrow = FALSE))
img.col.mat <- imappend(list(img.r.mat,img.g.mat,img.b.mat),"c")
# Plot with actual and predicted label
plot(img.col.mat,main=paste0("True: ", true_lab,":: Pred: ",
pred_lab),xaxt="n")
axis(side=1, xaxp=c(10, 50, 4), las=1)
}



	Plot random misclassified test images:




labels <- c("airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck")
# Plot misclassified test images
plot.misclass.images <- function(images.rgb, y_actual, y_predicted,labels){
# Get indices of misclassified
indices <- which(!(y_actual == y_predicted))
id <- sample(indices,1)
# plot the image with true and predicted class
true_lab <- labels[y_actual[id]]
pred_lab <- labels[y_predicted[id]]
check.image(images.rgb,index=id, true_lab=true_lab,pred_lab=pred_lab)
}
plot.misclass.images(images.rgb=images.rgb.test,y_actual=test_true_class,y_predicted=test_pred_class,labels=labels)




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In steps 1 through 3, we extract the true and predicted test class labels and create a confusion matrix. The following image shows the confusion matrix of the current test predictions:



The test accuracy post 700 training iterations is only ~51% and can be further improved by increasing the number of iterations, increasing the batch size, configuring layer parameters such as the number of convolution layers (used 2), types of activation functions (used ReLU), number of fully connected layers (used two), optimization objective function (used accuracy), pooling (used max 2 x 2), dropout probability, and many others.

Step 4 is used to build a facet plot of the test confusion matrix, as shown in the following screenshot:



In step 5, we define a helper function to plot the image along with a header containing both true and predicted classes. The input parameters of the check.image function are (test) flattened input dataset (images.rgb), image number (index), true label (true_lab), and predicted label (pred_lab). Here, the red, green, and blue pixels are initially parsed out, converted into a matrix, appended as a list, and displayed as an image using the plot function.

In step 6, we plot misclassified test images using the helper function of step 5. The input parameters of the plot.misclass.images function are (test) flattened input dataset (images.rgb), a vector of true labels (y_actual), a vector of predicted labels (y_predicted), and a vector of unique ordered character labels (labels). Here, the indices of the misclassified images are obtained and an index is randomly selected to generate the plot. The following screenshot shows a set of six misclassified images with true and predicted labels:
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This chapter will introduce unsupervised applications of deep learning using autoencoders. In this chapter, we will cover the following topics:


	Setting up autoencoders

	Data normalization

	Setting up a regularized autoencoder

	Fine-tuning the parameters of the autoencoder

	Setting up stacked autoencoders

	Setting up denoising autoencoders

	Building and comparing stochastic encoders and decoders

	Learning manifolds from autoencoders

	Evaluating the sparse decomposition





            

            
        
    
        

                            
                    Introduction

                
            
            
                
Neural networks aim to find a non-linear relationship between input X with output y, as y=f(x). An autoencoder is a form of unsupervised neural network which tries to find a relationship between features in space such that h=f(x), which helps us learn the relationship between input space and can be used for data compression, dimensionality reduction, and feature learning.

 

An autoencoder consists of an encoder and decoder. The encoder helps encode the input x in a latent representation y, whereas a decoder converts back the y to x. Both the encoder and decoder possess a similar representation of form.

Here is a representation of a one layer autoencoder:



The coder encodes input X to h under a hidden layer contain, whereas the decoder helps to attain the original data from encoded output h. The matrices We and Wd represent the weights of the encoder and decoder layers, respectively. The function f is the activation function.

An illustration of an autoencoder is shown in the following diagram:



The constraints in the form of nodes allows the autoencoder to discover interesting structures within the data. For example, in the encoder in the preceding diagram, the five-input dataset must pass through three-node compression to get an encoded value h. The Encoded Output layer of an encoder can have a dimensionality that is the same, lower, or higher than the input/output Decoded Output layer. The Encoded Output layer with a fewer number of nodes than the input layer is referred to as an under-complete representation, and can be thought of as data compression transforming data into low-dimensional representation.

An Encoded Output layer with a larger number of input layers is referred to as an over-complete representation and is used in a sparse autoencoder as a regularization strategy. The objective of an autoencoder is to find y, capturing the main factors along the variation of data, which is similar to Principal Component Analysis (PCA), and thus can be used for compression as well.
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There exist a lot of different architectures of autoencoders distinguished by cost functions used to capture data representation. The most basic autoencoder is known as a vanilla autoencoder. It's a two-layer neural network with one hidden layer the same number of nodes at the input and output layers, with an objective to minimize the cost function. The typical choices, but not limited to, for a loss function are mean square error (MSE) for regression and cross entropy for classification. The current approach can be easily extended to multiple layers, also known as multilayer autoencoder.

The number of nodes plays a very critical role in autoencoders. If the number of nodes in the hidden layer is less than the input layer then an autoencoder is known as an under-complete autoencoder. A higher number of nodes in the hidden layer represents an over-complete autoencoder or sparse autoencoder.

The sparse autoencoder aims to impose sparsity in the hidden layer. This sparsity can be achieved by introducing a higher number of nodes than the input in the hidden layer or by introducing a penalty in the loss function that will move the weights for the hidden layer toward zero. Some autoencoders attain the sparsity by manually zeroing out the weight for nodes; these are referred to as K-sparse autoencoders. We will set up an autoencoder on the occupancy dataset discussed in Chapter 1, Getting Started. The hidden layer for the current example can be tweaked around.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Let's use the Occupancy dataset to set up an autoencoder:


	Download the Occupancy dataset as described in Chapter 1, Getting Started

	TensorFlow installation in R and Python





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The current occupancy dataset as described in Chapter 1, Getting Started, is used to demonstrate the autoencoder setup in R using TensorFlow:


	Set up the R TensorFlow environment.

	The load_occupancy_data function can be used to load the data by setting the correct working directory path using setwd:




# Function to load Occupancy data
load_occupancy_data<-function(train){
xFeatures = c("Temperature", "Humidity", "Light", "CO2",
  "HumidityRatio")
yFeatures = "Occupancy"
  if(train){
    occupancy_ds <-  as.matrix(read.csv("datatraining.txt",stringsAsFactors = T))
  } else
  {
    occupancy_ds <- as.matrix(read.csv("datatest.txt",stringsAsFactors = T))
  }
  occupancy_ds<-apply(occupancy_ds[, c(xFeatures, yFeatures)], 2, FUN=as.numeric) 
  return(occupancy_ds)
}



	The train and test occupancy dataset can be loaded to the R environment with the following script:




occupancy_train <-load_occupancy_data(train=T)
occupancy_test <- load_occupancy_data(train = F)
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Data normalization is a critical step in machine learning to bring data to a similar scale. It is also known as feature scaling and is performed as data preprocessing.

The correct normalization is very critical in neural networks, else it will lead to saturation within the hidden layers, which in turn leads to zero gradient and no learning will be possible.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
There are multiple ways to perform normalization:


	Min-max standardization: The min-max retains the original distribution and scales the feature values between [0, 1], with 0 as the minimum value of the feature and 1 as the maximum value. The standardization is performed as follows:





Here, x' is the normalized value of the feature. The method is sensitive to outliers in the dataset.


	Decimal scaling: This form of scaling is used where values of different decimal ranges are present. For example, two features with different bounds can be brought to a similar scale using decimal scaling as follows:



x'=x/10n


	Z-score: This transformation scales the value toward a normal distribution with a zero mean and unit variance. The Z-score is computed as:



Z=(x-µ)/σ

Here, µ is the mean and σ is the standard deviation of the feature. These distributions are very efficient for a dataset with a Gaussian distribution.


All the preceding methods are sensitive to outliers; there are other more robust approaches for normalization that you can explore, such as Median Absolute Deviation (MAD), tanh-estimator, and double sigmoid.





            

            
        
    
        

                            
                    Visualizing dataset distribution

                
            
            
                
Let's look at the distribution of features for the occupation data:


> ggpairs(occupancy_train$data[, occupancy_train$xFeatures])




The figure shows that the features have linear correlations and the distributions are non-normal. The non-normality can be further validated using the Shapiro-Wilk test, using the shapiro.test function from R. Let's use min-max standardization for the occupation data.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Perform the following operation for data normalization:




minmax.normalize<-function(ds, scaler=NULL){
  if(is.null(scaler)){
    for(f in ds$xFeatures){
      scaler[[f]]$minval<-min(ds$data[,f])
      scaler[[f]]$maxval<-max(ds$data[,f])
      ds$data[,f]<-(ds$data[,f]-scaler[[f]]$minval)/(scaler[[f]]$maxval-scaler[[f]]$minval)
    }
    ds$scaler<-scaler
  } else
  {
    for(f in ds$xFeatures){
      ds$data[,f]<-(ds$data[,f]-scaler[[f]]$minval)/(scaler[[f]]$maxval-scaler[[f]]$minval)
    }
  }
  return(ds)
}



	The minmax.normalize function normalizes the data using min-max normalization. When the scaler variable is NULL, it performs normalization using the dataset provided, or normalizes using scaler values. The normalized data pair plot is shown in the following figure:





This figure shows min-max normalization bringing the values within bounds [0, 1] and it does not change the distribution and correlations between features.



            

            
        
    
        

                            
                    How to set up an autoencoder model

                
            
            
                
The next step is to set up the autoencoder model. Let's set up a vanilla autoencoder using TensorFlow:


	Reset the graph and start InteractiveSession:




# Reset the graph and set-up a interactive session
tf$reset_default_graph()
sess<-tf$InteractiveSession()



	Define the input parameter where n and m are the number of samples and features, respectively. To build, network m is used to set up the input parameter:




# Network Parameters
n_hidden_1 = 5 # 1st layer num features
n_input = length(xFeatures) # Number of input features
nRow<-nrow(occupancy_train)


When n_hidden_1 is low, the autoencoder is compressing the data and is referred to as an under-complete autoencoder; whereas, when n_hidden_1 is large, then the autoencoder is sparse and is referred to as an over-complete autoencoder.


	Define graph input parameters that include the input tensor and layer definitions for the encoder and decoder:




# Define input feature
x <- tf$constant(unlist(occupancy_train[, xFeatures]), shape=c(nRow, n_input), dtype=np$float32) 

# Define hidden and bias layer for encoder and decoders
hiddenLayerEncoder<-tf$Variable(tf$random_normal(shape(n_input, n_hidden_1)), dtype=np$float32)
biasEncoder <- tf$Variable(tf$zeros(shape(n_hidden_1)), dtype=np$float32)
hiddenLayerDecoder<-tf$Variable(tf$random_normal(shape(n_hidden_1, n_input)))
biasDecoder <- tf$Variable(tf$zeros(shape(n_input)))


The preceding script designs a single-layer encoder and decoder.


	Define a function to evaluate the response:




auto_encoder<-function(x, hiddenLayerEncoder, biasEncoder){
  x_transform <- tf$nn$sigmoid(tf$add(tf$matmul(x, hiddenLayerEncoder), biasEncoder))
  x_transform
}


The auto_encoder function takes the node bias weights and computes the output. The same function can be used for encoder and decoder by passing respective weights.


	Create encoder and decoder objects by passing symbolic TensorFlow variables:




encoder_obj = auto_encoder(x,hiddenLayerEncoder, biasEncoder)
y_pred = auto_encoder(encoder_obj, hiddenLayerDecoder, biasDecoder)



	The y_pred is the outcome from decoder, which takes the encoder object as input with nodes and bias weights:




Define loss function and optimizer module. 
learning_rate = 0.01
cost = tf$reduce_mean(tf$pow(x - y_pred, 2))
optimizer = tf$train$RMSPropOptimizer(learning_rate)$minimize(cost)


The preceding script defines mean square error as the cost function, and uses RMSPropOptimizer from TensorFlow with 0.1 learning rate for the optimization of weights. The TensorFlow graph for the preceding model is shown in the following diagram:
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The next step is to run optimizer optimization. Executing this process in TensorFlow consists of two steps:


	The first step is parameter initialization of the variables defined in the graph. The initialization is performed by calling the global_variables_initializer function from TensorFlow:




# Initializing the variables
init = tf$global_variables_initializer()
sess$run(init)


Optimization is performed based on optimizing and monitoring the train and test performance:


costconvergence<-NULL
for (step in 1:1000) {
  sess$run(optimizer)
  if (step %% 20==0){
    costconvergence<-rbind(costconvergence, c(step, sess$run(cost), sess$run(costt)))
    cat(step, "-", "Traing Cost ==>", sess$run(cost), "\n")
  }
}



	The cost function from train and test can be observed to understand convergence of the model, as shown in the following figure:




costconvergence<-data.frame(costconvergence)
colnames(costconvergence)<-c("iter", "train", "test")
plot(costconvergence[, "iter"], costconvergence[, "train"], type = "l", col="blue", xlab = "Iteration", ylab = "MSE")
lines(costconvergence[, "iter"], costconvergence[, "test"], col="red")
legend(500,0.25, c("Train","Test"), lty=c(1,1), lwd=c(2.5,2.5),col=c("blue","red"))




This graph shows that the model major convergence is at around 400 iterations; however, it is still converging at a very slow rate even after 1,000 iterations. The model is stable in both the train and holdout test datasets.



            

            
        
    
        

                            
                    Setting up a regularized autoencoder

                
            
            
                
A regularized autoencoder extends the standard autoencoder by adding a regularization parameter to the cost function.
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The regularized autoencoder is an extension of the standard autoencoder. The set-up will require:


	TensorFlow installation in R and Python.

	Implementation of a standard autoencoder.





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The code setup for the autoencoder can directly be converted to a regularized autoencoder by replacing the cost definition with the following lines:


Lambda=0.01
cost = tf$reduce_mean(tf$pow(x - y_pred, 2))
Regularize_weights = tf$nn$l2_loss(weights)
cost = tf$reduce_mean(cost + lambda * Regularize_weights)
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As mentioned earlier, a regularized autoencoder extends the standard autoencoder by adding a regularization parameter to the cost function, shown as follows:



Here, λ is the regularization parameter and i and j are the node indexes with W representing the hidden layer weights for the autoencoder. The regularization autoencoder aims to ensure more robust encoding and prefers a low weight h function. The concept is further utilized to develop a contractive autoencoder, which utilizes the Frobenius norm of the Jacobian matrix on input, represented as follows:



where J(x) is the Jacobian matrix and is evaluated as follows:



For a linear encoder, a contractive encoder and regularized encoder converge to L2 weight decay. The regularization helps in making the autoencoder less sensitive to the input; however, the minimization of the cost function helps the model to capture the variation and remain sensitive to manifolds of high density. These autoencoders are also referred to as contractive autoencoders.



            

            
        
    
        

                            
                    Fine-tuning the parameters of the autoencoder

                
            
            
                
The autoencoder involves a couple of parameters to tune, depending on the type of autoencoder we are working on. The major parameters in an autoencoder include the following:


	Number of nodes in any hidden layer

	Number of hidden layers applicable for deep autoencoders

	Activation unit such as sigmoid, tanh, softmax, and ReLU activation functions

	Regularization parameters or weight decay terms on hidden unit weights

	Fraction of the signal to be corrupted in a denoising autoencoder

	Sparsity parameters in sparse autoencoders that control the expected activation of neurons in hidden layers

	Batch size, if using batch gradient descent learning; learning rate and momentum parameter for stochastic gradient descent

	Maximum iterations to be used for the training

	Weight initialization

	Dropout regularization if dropout is used



These hyperparameters can be trained by setting the problem as a grid search problem. However, each hyperparameter combination requires training the neuron weights for the hidden layer(s), which results in increasing computational complexity with an increase in the number of layers and number of nodes within each layer. To deal with these critical parameters and training issues, stacked autoencoder concepts have been proposed that train each layer separately to get pretrained weights, and then the model is fine-tuned using the obtained weights. This approach tremendously improves the training performance over the conventional mode of training.
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The stacked autoencoder is an approach to train deep networks consisting of multiple layers trained using the greedy approach. An example of a stacked autoencoder is shown in the following diagram:



An example of a stacked autoencoder
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The preceding diagram demonstrates a stacked autoencoder with two layers. A stacked autoencoder can have n layers, where each layer is trained using one layer at a time. For example, the previous layer will be trained as follows:



Training of a stacked autoencoder

The initial pre-training of layer 1 is obtained by training it over the actual input xi . The first step is to optimize the We(1) layer of the encoder with respect to output X. The second step in the preceding example is to optimize the weights We(2) in the second layer, using We(1) as input and output. Once all the layers of We(i) where i=1, 2, ...,n is number of layers are pretrained, model fine-tuning is performed by connecting all the layers together, as shown in step 3 of the preceding diagram. The concept can also be applied to denoising to train multilayer networks, which is known as a stacked denoising autoencoder. The code developed in a denoising autoencoder can be easily tweaked to develop a stacked denoising autoencoder, which is an extension of the stacked autoencoder.

The requirements for this recipe are:


	R should be installed.

	SAENET package, The package can be download from Cran using the command install.packages("SAENET").
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There are other popular libraries in R to develop stacked autoencoders. Let's utilize the SAENET package from R to set up a stacked autoencoder. The SAENET is a stacked autoencoder implementation, using a feedforward neural network using the neuralnet package from CRAN:


	Get the SAENET package from the CRAN repository, if not installed already:




install.packages("SAENET")



	Load all library dependencies:




require(SAENET)



	Load the train and test occupancy dataset using load_occupancy_data:




occupancy_train <-load_occupancy_data(train=T)
occupancy_test <- load_occupancy_data(train = F)



	Normalize the dataset using the minmax.normalize function:




# Normalize dataset
occupancy_train<-minmax.normalize(occupancy_train, scaler = NULL)
occupancy_test<-minmax.normalize(occupancy_test, scaler = occupancy_train$scaler)



	The stacked autoencoder model can be built using the SAENET.train train function from the SAENET package:




# Building Stacked Autoencoder
SAE_obj<-SAENET.train(X.train= subset(occupancy_train$data, select=-c(Occupancy)), n.nodes=c(4, 3, 2), unit.type ="tanh", lambda = 1e-5, beta = 1e-5, rho = 0.01, epsilon = 0.01, max.iterations=1000)


The output of the last node can be extracted using the SAE_obj[[n]]$X.output command.
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Denoising autoencoders are a special kind of autoencoder with a focus on extracting robust features from the input dataset. Denoising autoencoders are similar to the previous model except with a major difference that the data is corrupted before training the network. Different approaches for corruption can be used such as masking, which induces random error into the data.
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Let's use the CIFAR-10 image data to set up a denoising dataset:


	Download the CIFAR-10 dataset using the download_cifar_data function (covered in Chapter 3, Convolution Neural Network)

	TensorFlow installation in R and Python
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We first need to read the dataset.
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	Load the CIFAR dataset using the steps explained in Chapter 3, Convolution Neural Network. The data files data_batch_1 and data_batch_2 are used to train. The data_batch_5 and test_batch files are used for validation and testing, respectively. The data can be flattened using the flat_data function:




train_data <- flat_data(x_listdata = images.rgb.train)
test_data <- flat_data(x_listdata = images.rgb.test)
valid_data <- flat_data(x_listdata = images.rgb.valid)



	The flat_data function flattens the dataset as NCOL = (Height * Width * number of channels), thus the dimension of the dataset is (# of images X NCOL). The images in CIFAR are 32 x 32 with three RGB channels; thus, we obtain 3,072 columns after data flattening:




> dim(train_data$images)
[1] 40000  3072




            

            
        
    
        

                            
                    Corrupting data to train

                
            
            
                

	The next critical function needed to set up a denoising autoencoder is data corruption:




# Add noise using masking or salt & pepper noise method
add_noise<-function(data, frac=0.10, corr_type=c("masking", "saltPepper", "none")){
  if(length(corr_type)>1) corr_type<-corr_type[1] 
  
  # Assign a copy of data
  data_noise = data
  
  # Evaluate chaining parameters for autoencoder
  nROW<-nrow(data)
  nCOL<-ncol(data)
  nMask<-floor(frac*nCOL)
  
  if(corr_type=="masking"){
    for( i in 1:nROW){
      maskCol<-sample(nCOL, nMask)
      data_noise[i,maskCol,,]<-0
    }
  } else if(corr_type=="saltPepper"){
    minval<-min(data[,,1,])
    maxval<-max(data[,,1,])
    for( i in 1:nROW){
      maskCol<-sample(nCOL, nMask)
      randval<-runif(length(maskCol))
      ixmin<-randval<0.5
      ixmax<-randval>=0.5
      if(sum(ixmin)>0) data_noise[i,maskCol[ixmin],,]<-minval
      if(sum(ixmax)>0) data_noise[i,maskCol[ixmax],,]<-maxval
    }
  } else
  {
    data_noise<-data
  }
  return(data_noise)
}



	The CIFAR-10 data can be corrupted using the following script:




# Corrupting input signal
xcorr<-add_noise(train_data$images, frac=0.10, corr_type="masking")



	An example image after corruption is as follows:






	The preceding figure uses the masking approach to add noise. This method adds zero values at random image locations with a defined fraction. Another approach to add noise is by using salt & pepper noise. This method selects random locations in the image and replaces them, adding min or max values to the image using the flip of coin principle. An example of the salt and pepper approach for data corruption is shown in the following figure:





The data corruption helps the autoencoder to learn more robust representation.
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The next step is to set up the autoencoder model:


	First, reset the graph and start an interactive session as follows:




# Reset the graph and set-up an interactive session
tf$reset_default_graph()
sess<-tf$InteractiveSession()



	The next step is to define two placeholders for the input signal and corrupt signal:




# Define Input as Placeholder variables
x = tf$placeholder(tf$float32, shape=shape(NULL, img_size_flat), name='x')
x_corrput<-tf$placeholder(tf$float32, shape=shape(NULL, img_size_flat), name='x_corrput')


The x_corrupt will be used as input in the autoencoder, and x is the actual image that will be used as output.


	Set up a denoising autoencoder function as shown in the following code:




# Setting-up denoising autoencoder
denoisingAutoencoder<-function(x, x_corrput, img_size_flat=3072, hidden_layer=c(1024, 512), out_img_size=256){

  # Building Encoder
  encoder = NULL
  n_input<-img_size_flat
  curentInput<-x_corrput
  layer<-c(hidden_layer, out_img_size)
  for(i in 1:length(layer)){
    n_output<-layer[i]
    W = tf$Variable(tf$random_uniform(shape(n_input, n_output), -1.0 / tf$sqrt(n_input), 1.0 / tf$sqrt(n_input)))
    b = tf$Variable(tf$zeros(shape(n_output)))
    encoder<-c(encoder, W)
    output = tf$nn$tanh(tf$matmul(curentInput, W) + b)
    curentInput = output
    n_input<-n_output
  }
  
  # latent representation
  z = curentInput
  encoder<-rev(encoder)
  layer_rev<-c(rev(hidden_layer), img_size_flat)
  
  # Build the decoder using the same weights
  decoder<-NULL
  for(i in 1:length(layer_rev)){
    n_output<-layer_rev[i]
    W = tf$transpose(encoder[[i]])
    b = tf$Variable(tf$zeros(shape(n_output)))
    output = tf$nn$tanh(tf$matmul(curentInput, W) + b)
    curentInput = output
  }
  
  # now have the reconstruction through the network
  y = curentInput
  
  # cost function measures pixel-wise difference
  cost = tf$sqrt(tf$reduce_mean(tf$square(y - x)))
  return(list("x"=x, "z"=z, "y"=y, "x_corrput"=x_corrput, "cost"=cost))
}





	Create the denoising object:




# Create denoising AE object
dae_obj<-denoisingAutoencoder(x, x_corrput, img_size_flat=3072, hidden_layer=c(1024, 512), out_img_size=256)



	Set the cost function:




# Learning set-up
learning_rate = 0.001
optimizer = tf$train$AdamOptimizer(learning_rate)$minimize(dae_obj$cost)



	Run optimization:




# We create a session to use the graph
sess$run(tf$global_variables_initializer())
for(i in 1:500){
  spls <- sample(1:dim(xcorr)[1],1000L)
  if (i %% 1 == 0) {
    x_corrput_ds<-add_noise(train_data$images[spls, ], frac = 0.3, corr_type = "masking")
    optimizer$run(feed_dict = dict(x=train_data$images[spls, ], x_corrput=x_corrput_ds))
    trainingCost<-dae_obj$cost$eval((feed_dict = dict(x=train_data$images[spls, ], x_corrput=x_corrput_ds)))
    cat("Training Cost - ", trainingCost, "\n")
  }
}




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The autoencoder keeps learning about the function form for the feature to capture the relationship between input and output. An example of how the computer is visualizing the image after 1,000 iterations is shown in the following figure:



After 1,000 iterations, the computer can distinguish between a major part of the object and environment. As we run the algorithm further to fine-tune the weights, the computer keeps learning more features about the object itself, as shown in the following figure:



The preceding graph shows that the model is still learning, but the learning rate has become smaller over the iterations as it starts learning fine features about objects, as shown in the following image. There are instances when the model starts ascending instead of descending, due to batch gradient descent:



Illustration of learning using denoising autoencoder



            

            
        
    
        

                            
                    Building and comparing stochastic encoders and decoders

                
            
            
                
Stochastic encoders fall into the domain of generative modeling, where the objective is to learn join probability P(X) over given data X transformed into another high-dimensional space. For example, we want to learn about images and produce similar, but not exactly the same, images by learning about pixel dependencies and distribution. One of the popular approaches in generative modeling is Variational autoencoder (VAE), which combines deep learning with statistical inference by making a strong distribution assumption on h ~ P(h), such as Gaussian or Bernoulli. For a given weight W, the X can be sampled from the distribution as Pw(X|h). An example of VAE architecture is shown in the following diagram:



The cost function of VAE is based on log likelihood maximization. The cost function consists of reconstruction and regularization error terms:

Cost = Reconstruction Error + Regularization Error

The reconstruction error is how well we could map the outcome with the training data and the regularization error puts a penalty on the distribution formed at the encoder and decoder.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
TensorFlow needs to be installed and loaded in the environment:


require(tensorflow)


Dependencies need to be loaded:


require(imager)
require(caret)


The MNIST dataset needs to be loaded. The dataset is normalized using the following script:


# Normalize Dataset
normalizeObj<-preProcess(trainData, method="range")
trainData<-predict(normalizeObj, trainData)
validData<-predict(normalizeObj, validData)
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	The MNIST dataset is used to demonstrate the concept of sparse decomposition. The MNIST dataset uses handwritten digits. It is downloaded from the tensorflow dataset library. The dataset consists of handwritten images of 28 x 28 pixels. It consists of 55,000 training examples, 10,000 test examples, and 5,000 test examples. The dataset can be downloaded from the tensorflow library using the following script:




library(tensorflow)
datasets <- tf$contrib$learn$datasets
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE) 



	For computational simplicity, the MNIST image size is reduced from 28 x 28 pixels to 16 x 16 pixels using the following function:




# Function to reduce image size
reduceImage<-function(actds, n.pixel.x=16, n.pixel.y=16){
  actImage<-matrix(actds, ncol=28, byrow=FALSE)
  img.col.mat <- imappend(list(as.cimg(actImage)),"c")
  thmb <- resize(img.col.mat, n.pixel.x, n.pixel.y)
  outputImage<-matrix(thmb[,,1,1], nrow = 1, byrow = F)
  return(outputImage)
} 



	The following script can be used to prepare the MNIST training data with a 16 x 16 pixel image:




# Covert train data to 16 x 16  image
trainData<-t(apply(mnist$train$images, 1, FUN=reduceImage))
validData<-t(apply(mnist$test$images, 1, FUN=reduceImage))



	The plot_mnist function can be used to visualize the selected MNIST image:




# Function to plot MNIST dataset
plot_mnist<-function(imageD, pixel.y=16){
  actImage<-matrix(imageD, ncol=pixel.y, byrow=FALSE)
  img.col.mat <- imappend(list(as.cimg(actImage)), "c")
  plot(img.col.mat)
}




            

            
        
    
        

                            
                    Setting up a VAE model

                
            
            
                

	Start a new TensorFlow environment:




tf$reset_default_graph()
sess<-tf$InteractiveSession()



	Define network parameters:




n_input=256
n.hidden.enc.1<-64



	Start a new TensorFlow environment:




tf$reset_default_graph()
sess<-tf$InteractiveSession()



	Define network parameters:




n_input=256
n.hidden.enc.1<-64


The preceding parameter will form a VAE network as follows:




	Define the model initialization function, defining weights and biases at each layer of encoder and decoder:




model_init<-function(n.hidden.enc.1, n.hidden.enc.2, 
                               n.hidden.dec.1,  n.hidden.dec.2, 
                               n_input, n_h)
{ weights<-NULL
 ############################
 # Set-up Encoder
 ############################
 # Initialize Layer 1 of encoder
 weights[["encoder_w"]][["h1"]]=tf$Variable(xavier_init(n_input,
 n.hidden.enc.1))
 weights[["encoder_w"]]
[["h2"]]=tf$Variable(xavier_init(n.hidden.enc.1, n.hidden.enc.2))
  weights[["encoder_w"]][["out_mean"]]=tf$Variable(xavier_init(n.hidden.enc.2, n_h))
  weights[["encoder_w"]][["out_log_sigma"]]=tf$Variable(xavier_init(n.hidden.enc.2, n_h))
  weights[["encoder_b"]][["b1"]]=tf$Variable(tf$zeros(shape(n.hidden.enc.1), dtype=tf$float32))
  weights[["encoder_b"]][["b2"]]=tf$Variable(tf$zeros(shape(n.hidden.enc.2), dtype=tf$float32))
  weights[["encoder_b"]][["out_mean"]]=tf$Variable(tf$zeros(shape(n_h), dtype=tf$float32))
  weights[["encoder_b"]][["out_log_sigma"]]=tf$Variable(tf$zeros(shape(n_h), dtype=tf$float32))
  
 ############################
 # Set-up Decoder
 ############################
 weights[['decoder_w']][["h1"]]=tf$Variable(xavier_init(n_h, n.hidden.dec.1))
 weights[['decoder_w']][["h2"]]=tf$Variable(xavier_init(n.hidden.dec.1, n.hidden.dec.2))
 weights[['decoder_w']][["out_mean"]]=tf$Variable(xavier_init(n.hidden.dec.2, n_input))
 weights[['decoder_w']][["out_log_sigma"]]=tf$Variable(xavier_init(n.hidden.dec.2, n_input))
 weights[['decoder_b']][["b1"]]=tf$Variable(tf$zeros(shape(n.hidden.dec.1), dtype=tf$float32))
 weights[['decoder_b']][["b2"]]=tf$Variable(tf$zeros(shape(n.hidden.dec.2), dtype=tf$float32))
 weights[['decoder_b']][["out_mean"]]=tf$Variable(tf$zeros(shape(n_input), dtype=tf$float32))
 weights[['decoder_b']][["out_log_sigma"]]=tf$Variable(tf$zeros(shape(n_input), dtype=tf$float32))
 return(weights)
} 


The model_init function returns weights, which is a two-dimensional list. The first dimension captures the weight's association and type. For example, it describes if the weights variable is assigned to the encoder or decoder and if it stores the weight of the node or bias. The xavier_init function in model_init is used to assign initial weights for model training:


# Xavier Initialization using Uniform distribution 
xavier_init<-function(n_inputs, n_outputs, constant=1){
  low = -constant*sqrt(6.0/(n_inputs + n_outputs)) 
  high = constant*sqrt(6.0/(n_inputs + n_outputs))
  return(tf$random_uniform(shape(n_inputs, n_outputs), minval=low, maxval=high, dtype=tf$float32))
}



	Set up the encoder evaluation function:




# Encoder update function
vae_encoder<-function(x, weights, biases){
  layer_1 = tf$nn$softplus(tf$add(tf$matmul(x, weights[['h1']]), biases[['b1']])) 
  layer_2 = tf$nn$softplus(tf$add(tf$matmul(layer_1, weights[['h2']]), biases[['b2']])) 
  z_mean = tf$add(tf$matmul(layer_2, weights[['out_mean']]), biases[['out_mean']])
  z_log_sigma_sq = tf$add(tf$matmul(layer_2, weights[['out_log_sigma']]), biases[['out_log_sigma']])
  return (list("z_mean"=z_mean, "z_log_sigma_sq"=z_log_sigma_sq))
} 


The vae_encoder computes the mean and variance to sample the layer, using the weights and bias from the hidden layer.


	Set up the decoder evaluation function:




# Decoder update function
vae_decoder<-function(z, weights, biases){
  layer1<-tf$nn$softplus(tf$add(tf$matmul(z, weights[["h1"]]), biases[["b1"]]))
  layer2<-tf$nn$softplus(tf$add(tf$matmul(layer1, weights[["h2"]]), biases[["b2"]]))
  x_reconstr_mean<-tf$nn$sigmoid(tf$add(tf$matmul(layer2, weights[['out_mean']]), biases[['out_mean']]))
  return(x_reconstr_mean)
} 


The vae_decoder function computes the mean and standard deviation associated with the sampling layer at output and average output.


	Set up the function for reconstruction estimation:




# Parameter evaluation
network_ParEval<-function(x, network_weights, n_h){

  distParameter<-vae_encoder(x, network_weights[["encoder_w"]], network_weights[["encoder_b"]])
  z_mean<-distParameter$z_mean
  z_log_sigma_sq <-distParameter$z_log_sigma_sq
  
  # Draw one sample z from Gaussian distribution
  eps = tf$random_normal(shape(BATCH, n_h), 0, 1, dtype=tf$float32)
  
  # z = mu + sigma*epsilon
  z = tf$add(z_mean, tf$multiply(tf$sqrt(tf$exp(z_log_sigma_sq)), eps))
  
  # Use generator to determine mean of
  # Bernoulli distribution of reconstructed input
  x_reconstr_mean <- vae_decoder(z, network_weights[["decoder_w"]], network_weights[["decoder_b"]])
  return(list("x_reconstr_mean"=x_reconstr_mean, "z_log_sigma_sq"=z_log_sigma_sq, "z_mean"=z_mean))
}



	Define the cost function for optimization:




# VAE cost function
vae_optimizer<-function(x, networkOutput){
  x_reconstr_mean<-networkOutput$x_reconstr_mean
  z_log_sigma_sq<-networkOutput$z_log_sigma_sq
  z_mean<-networkOutput$z_mean
  loss_reconstruction<--1*tf$reduce_sum(x*tf$log(1e-10 + x_reconstr_mean)+
                                       (1-x)*tf$log(1e-10 + 1 - x_reconstr_mean), reduction_indices=shape(1))
  loss_latent<--0.5*tf$reduce_sum(1+z_log_sigma_sq-tf$square(z_mean)-
                                    tf$exp(z_log_sigma_sq), reduction_indices=shape(1))
  cost = tf$reduce_mean(loss_reconstruction + loss_latent)
  return(cost)
}



	Set up the model to train:




# VAE Initialization
x = tf$placeholder(tf$float32, shape=shape(NULL, img_size_flat), name='x')
network_weights<-model_init(n.hidden.enc.1, n.hidden.enc.2, 
                            n.hidden.dec.1,  n.hidden.dec.2, 
                            n_input, n_h)
networkOutput<-network_ParEval(x, network_weights, n_h)
cost=vae_optimizer(x, networkOutput)
optimizer = tf$train$AdamOptimizer(lr)$minimize(cost) 



	Run optimization:




sess$run(tf$global_variables_initializer())
for(i in 1:ITERATION){
  spls <- sample(1:dim(trainData)[1],BATCH)
  out<-optimizer$run(feed_dict = dict(x=trainData[spls,]))
  if (i %% 100 == 0){
  cat("Iteration - ", i, "Training Loss - ",  cost$eval(feed_dict = dict(x=trainData[spls,])), "\n")
  }
}




            

            
        
    
        

                            
                    Output from the VAE autoencoder

                
            
            
                

	The outcome can be generated using the following script:




spls <- sample(1:dim(trainData)[1],BATCH)
networkOutput_run<-sess$run(networkOutput, feed_dict = dict(x=trainData[spls,]))

# Plot reconstructured Image
x_sample<-trainData[spls,]
NROW<-nrow(networkOutput_run$x_reconstr_mean)
n.plot<-5
par(mfrow = c(n.plot, 2), mar = c(0.2, 0.2, 0.2, 0.2), oma = c(3, 3, 3, 3))
pltImages<-sample(1:NROW,n.plot)
for(i in pltImages){
  plot_mnist(x_sample[i,])
  plot_mnist(networkOutput_run$x_reconstr_mean[i,])
}


The outcome obtained after 20,000 iterations from the preceding VAE autoencoder is shown in the following figure:



Additionally, as VAE is a generative model, the outcome is not an exact replica of the input and would vary with runs, as a representative sample is extracted from the estimated distribution.
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Manifold learning is an approach in machine learning that assumes that data lies on a manifold of a much lower dimension. These manifolds can be linear or non-linear. Thus, the area tries to project the data from high-dimension space to a low dimension. For example, principle component analysis (PCA) is an example of linear manifold learning whereas an autoencoder is a non-linear dimensionality reduction (NDR) with the ability to learn non-linear manifolds in low dimensions. A comparison of linear and non-linear manifold learning is shown in the following figure:



As you can see from graph a), the data is residing at a linear manifold, whereas in graph graph b), the data is residing on a second-order non-linear manifold.
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Let's take an output from the stacked autoencoder section and analyze how manifolds look when transferred into a different dimension.
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	Before getting into non-linear manifolds, let's analyze principal component analysis on the occupancy data:




# Setting-up principal component analysis 
pca_obj <- prcomp(occupancy_train$data,
                 center = TRUE,
                 scale. = TRUE)
                 scale. = TRUE)



	The preceding function will transform the data into six orthogonal directions specified as linear combinations of features. The variance explained by each dimension can be viewed using the following script:




plot(pca_obj, type = "l")



	The preceding command will plot the variance across principal components, as shown in the following figure:







	For the occupancy dataset, the first two principal components capture the majority of the variation, and when the principal component is plotted, it shows separation between the positive and negative classes for occupancy, as shown in the following figure:





Output from the first two principal components


	Let's visualize the manifold in a low dimension learned by the autoencoder. Let's use only one dimension to visualize the outcome, as follows:




SAE_obj<-SAENET.train(X.train= subset(occupancy_train$data, select=-c(Occupancy)), n.nodes=c(4, 3, 1), unit.type ="tanh", lambda = 1e-5, beta = 1e-5, rho = 0.01, epsilon = 0.01, max.iterations=1000) 



	The encoder architecture for the preceding script is shown as follows:





The hidden layer outcome with one latent node from the stacked autoencoder is shown as follows:




	The preceding graph shows that occupancy is true at the peaks of the latent variables. However, the peaks are found at different values. Let's increase the latent variables 2, as captured by PCA. The model can be developed and data can be plotted using the following script:




SAE_obj<-SAENET.train(X.train= subset(occupancy_train$data, select=-c(Occupancy)), n.nodes=c(4, 3, 2), unit.type ="tanh", lambda = 1e-5, beta = 1e-5, rho = 0.01, epsilon = 0.01, max.iterations=1000)  

# plotting encoder values
plot(SAE_obj[[3]]$X.output[,1], SAE_obj[[3]]$X.output[,2], col="blue", xlab = "Node 1 of layer 3", ylab = "Node 2 of layer 3")
ix<-occupancy_train$data[,6]==1  
points(SAE_obj[[3]]$X.output[ix,1], SAE_obj[[3]]$X.output[ix,2], col="red")



	The encoded values with two layers are shown in the following diagram:







            

            
        
    
        

                            
                    Evaluating the sparse decomposition

                
            
            
                
The sparse autoencoder is also known as over-complete representation and has a higher number of nodes in the hidden layer. The sparse autoencoders are usually executed with the sparsity parameter (regularization), which acts as a constraint and restricts the node to being active. The sparsity can also be assumed as nodes dropout caused due to sparsity constraints. The loss function for a sparse autoencoder consists of a reconstruction error, a regularization term to contain the weight decay, and KL divergence for sparsity constraint. The following representation gives a very good illustration of what we are talking about:
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	The dataset is loaded and set up.

	Install and load the autoencoder package using the following script:




install.packages("autoencoder")
require(autoencoder)
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	The standard autoencoder code of TensorFlow can easily be extended to the sparse autoencoder module by updating the cost function. This section will introduce the autoencoder package of R, which comes with built-in functionality to run the sparse autoencoder:




### Setting-up parameter
nl<-3 
N.hidden<-100 
unit.type<-"logistic" 
lambda<-0.001 
rho<-0.01 
beta<-6 
max.iterations<-2000 
epsilon<-0.001 

### Running sparse autoencoder
spe_ae_obj <- autoencode(X.train=trainData,  X.test = validData, nl=nl, N.hidden=N.hidden, unit.type=unit.type,lambda=lambda,beta=beta,              epsilon=epsilon,rho=rho,max.iterations=max.iterations, rescale.flag = T)


The major parameters in the autoencode functions are as follows:


	nl: This is the number of layers including the input and output layer (the default is three).

	N.hidden: This is the vector with the number of neurons in each hidden layer.

	unit.type: This is the type of activation function to be used.

	lambda: This is the regularization parameter.

	rho: This is the sparsity parameter.

	beta: This is the penalty for the sparsity term.

	max.iterations: This is the maximum number of iterations.

	epsilon: This is the parameter for weight initialization. The weights are initialized using Gaussian distribution ~N(0, epsilon2).
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The following figure shows the shapes and orientation of digits from MNIST captured by the sparse autoencoder:



Filter generated by the sparse autoencoder to get the digit outcome

The filter learned by the sparse autoencoder can be visualized using the visualize.hidden.units function from the autoencoder package. The package plots the weight of the final layer with respect to the output. In the current scenario, 100 is the number of neurons in the hidden layer and 256 is the number of nodes in the output layer.
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In this chapter, we will cover the following topics:


	Comparing principal component analysis with the Restricted Boltzmann machine

	Setting up a Restricted Boltzmann machine for Bernoulli distribution input

	Training a Restricted Boltzmann machine

	Backward or reconstruction phase of RBM

	Understanding the contrastive divergence of the reconstruction

	Initializing and starting a new TensorFlow session

	Evaluating the output from an RBM

	Setting up a Restricted Boltzmann machine for Collaborative Filtering

	Performing a full run of training an RBM

	Setting up a Deep Belief Network

	Implementing a feed-forward backpropagation Neural Network

	Setting up a Deep Restricted Boltzmann Machine
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In this section, you will learn about two widely recommended dimensionality reduction techniques--Principal component analysis (PCA) and the Restricted Boltzmann machine (RBM). Consider a vector v in n-dimensional space. The dimensionality reduction technique essentially transforms the vector v into a relatively smaller (or sometimes equal) vector v' with m-dimensions (m<n). The transformation can be either linear or nonlinear.

PCA performs a linear transformation on features such that orthogonally adjusted components are generated that are later ordered based on their relative importance of variance capture. These m components can be considered as new input features, and can be defined as follows:

Vector v' = 

Here, w and c correspond to weights (loading) and transformed components, respectively.

Unlike PCA, RBMs (or DBNs/autoencoders) perform non-linear transformations using connections between visible and hidden units, as described in Chapter 4, Data Representation Using Autoencoders. The nonlinearity helps in better understanding the relationship with latent variables. Along with information capture, they also tend to remove noise. RBMs are generally based on stochastic distribution (either Bernoulli or Gaussian).

A large amount of Gibbs sampling is performed to learn and optimize the connection weights between visible and hidden layers. The optimization happens in two passes: a forward pass where hidden layers are sampled using given visible layers and a backward pass where visible layers are resampled using given hidden layers. The optimization is performed to minimize the reconstruction error.

The following image represents a restricted Boltzmann machine:
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For this recipe, you will require R (the rbm and ggplot2 packages) and the MNIST dataset. The MNIST dataset can be downloaded from the TensorFlow dataset library. The dataset consists of handwritten images of 28 x 28 pixels. It has 55,000 training examples and 10,000 test examples. It can be downloaded from the tensorflow library using the following script:


library(tensorflow) 
datasets <- tf$contrib$learn$datasets 
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE)  
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	Extract the train dataset (trainX with all 784 independent variables and trainY with the respective 10 binary outputs):




trainX <- mnist$train$images 
trainY <- mnist$train$labels 



	Run a PCA on the trainX data:




PCA_model <- prcomp(trainX, retx=TRUE) 



	Run an RBM on the trainX data:




RBM_model <- rbm(trainX, retx=TRUE, max_epoch=500,num_hidden =900) 



	Predict on the train data using the generated models. In the case of the RBM model, generate probabilities:




PCA_pred_train <- predict(PCA_model) 
RBM_pred_train <- predict(RBM_model,type='probs') 



	Convert the outcomes into data frames:




PCA_pred_train <- as.data.frame(PCA_pred_train)
 class="MsoSubtleEmphasis">RBM_pred_train <- as.data.frame(as.matrix(RBM_pred_train))
  



	Convert the 10-class binary trainY data frame into a numeric vector:




    trainY_num<- as.numeric(stringi::stri_sub(colnames(as.data.frame(trainY))[max.col(as.data.frame(trainY),ties.method="first")],2))
  



	Plot the components generated using PCA. Here, the x-axis represents component 1 and the y-axis represents component 2. The following image shows the outcome of the PCA model:




ggplot(PCA_pred_train, aes(PC1, PC2))+
  geom_point(aes(colour = trainY))+ 
  theme_bw()+labs()+ 
  theme(plot.title = element_text(hjust = 0.5)) 





	Plot the hidden layers generated using PCA. Here, the x-axis represents hidden 1 and y-axis represents hidden 2. The following image shows the outcome of the RBM model:




ggplot(RBM_pred_train, aes(Hidden_2, Hidden_3))+
  geom_point(aes(colour = trainY))+ 
  theme_bw()+labs()+ 
  theme(plot.title = element_text(hjust = 0.5)) 




The following code and image shows the cumulative variance explained by the principal components:


var_explain <- as.data.frame(PCA_model$sdev^2/sum(PCA_model$sdev^2)) 
var_explain <- cbind(c(1:784),var_explain,cumsum(var_explain[,1])) 
colnames(var_explain) <- c("PcompNo.","Ind_Variance","Cum_Variance") 
plot(var_explain$PcompNo.,var_explain$Cum_Variance, xlim = c(0,100),type='b',pch=16,xlab = "# of Principal Components",ylab = "Cumulative Variance",main = 'PCA - Explained variance') 




The following code and image shows the decrease in the reconstruction training error while generating an RBM using multiple epochs:


plot(RBM_model,xlab = "# of epoch iterations",ylab = "Reconstruction error",main = 'RBM - Reconstruction Error') 






            

            
        
    
        

                            
                    Setting up a Restricted Boltzmann machine for Bernoulli distribution input

                
            
            
                
In this section, let's set up a restricted Boltzmann machine for Bernoulli distributed input data, where each attribute has values ranging from 0 to 1 (equivalent to a probability distribution). The dataset (MNIST) used in this recipe has input data satisfying a Bernoulli distribution.

An RBM comprises of two layers: a visible layer and a hidden layer. The visible layer is an input layer of nodes equal to the number of input attributes. In our case, each image in the MNIST dataset is defined using 784 pixels (28 x 28 size). Hence, our visible layer will have 784 nodes.

On the other hand, the hidden layer is generally user-defined. The hidden layer has a set of binary activated nodes, with each node having a probability of linkage with all other visible nodes. In our case, the hidden layer will have 900 nodes. As an initial step, all the nodes in the visible layer are connected with all the nodes in the hidden layer bidirectionally.

Each connection is defined using a weight, and hence a weight matrix is defined where the rows represent the number of input nodes and the columns represent the number of hidden nodes. In our case, the weight matrix (w) will be a tensor of dimensions 784 x 900.

In addition to weights, all the nodes in each layer are assisted by a bias node. The bias node of the visible layer will have connections with all the visible nodes (that is, the 784 nodes) and is represented with vb, whereas the bias node of the hidden layer will have connections with all the hidden nodes (that is, the 900 nodes) and is represented as vh.

A point to remember with RBMs is that there will be no connections among nodes within each layer. In other words, the connections will be interlayer, but not intralayer.

The following image represents an RBM with the visible layer, hidden layer, and interconnections:
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This section provides the requirements for setting up an RBM.


	TensorFlow in R is installed and set up

	The mnist data is downloaded and loaded for setting up RBM
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This section provides the steps to set up the visible and hidden layers of an RBM using TensorFlow:


	Start a new interactive TensorFlow session:




# Reset the graph 
tf$reset_default_graph() 
# Starting session as interactive session 
sess <- tf$InteractiveSession() 



	Define the model parameters. The num_input parameter defines the number of nodes in the visible layer and num_hidden defines the number of nodes in the hidden layer:




num_input<-784L 
num_hidden<-900L



	Create a placeholder variable for the weight matrix:




W <- tf$placeholder(tf$float32, shape = shape(num_input, num_hidden)) 



	Create placeholder variables of the visible and hidden biases:




vb <- tf$placeholder(tf$float32, shape = shape(num_input)) 
hb <- tf$placeholder(tf$float32, shape = shape(num_hidden)) 
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Every training step of an RBM goes through two phases: the forward phase and the backward phase (or reconstruction phase). The reconstruction of visible units is fine tuned by making several iterations of the forward and backward phases.

Training a forward phase: In the forward phase, the input data is passed from the visible layer to the hidden layer and all the computation occurs within the nodes of the hidden layer. The computation is essentially to take a stochastic decision of each connection from the visible to the hidden layer. In the hidden layer, the input data (X) is multiplied by the weight matrix (W) and added to a hidden bias vector (hb).

The resultant vector of a size equal to the number of hidden nodes is then passed through a sigmoid function to determine each hidden node's output (or activation state). In our case, each input digit will produce a tensor vector of 900 probabilities, and as we have 55,000 input digits, we will have an activation matrix of the size 55,000 x 900. Using the hidden layer's probability distribution matrix, we can generate samples of activation vectors that can be used later to estimate negative phase gradients.
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This section provides the requirements for setting up an RBM.


	TensorFlow in R is installed and set up

	The mnist data is downloaded and loaded for setting up the RBM

	The RBM model is set up as described in the recipe Setting up a Restricted Boltzmann machine for Bernoulli distribution input





            

            
        
    
        

                            
                    Example of a sampling

                
            
            
                
Consider a constant vector s1 equivalent to a tensor vector of probabilities. Then, create a new random uniformly distributed sample s2 using the distribution of the constant vector s1. Then calculate the difference and apply a rectified linear activation function.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section provides the steps to set up the script for running the RBM model using TensorFlow:


X = tf$placeholder(tf$float32, shape=shape(NULL, num_input)) 
prob_h0= tf$nn$sigmoid(tf$matmul(X, W) + hb) 
h0 = tf$nn$relu(tf$sign(prob_h0 - tf$random_uniform(tf$shape(prob_h0))))


Use the following code to execute the graph created in TensorFlow:


sess$run(tf$global_variables_initializer()) 
s1 <- tf$constant(value = c(0.1,0.4,0.7,0.9)) 
cat(sess$run(s1)) 
s2=sess$run(tf$random_uniform(tf$shape(s1))) 
cat(s2) 
cat(sess$run(s1-s2)) 
cat(sess$run(tf$sign(s1 - s2))) 
cat(sess$run(tf$nn$relu(tf$sign(s1 - s2)))) 




            

            
        
    
        

                            
                    Backward or reconstruction phase of RBM

                
            
            
                
In the reconstruction phase, the data from the hidden layer is passed back to the visible layer. The hidden layer vector of probabilities h0 is multiplied by the transpose of the weight matrix W and added to a visible layer bias vb, which is then passed through a sigmoid function to generate a reconstructed input vector prob_v1.

A sample input vector is created using the reconstructed input vector, which is then multiplied by the weight matrix W and added to the hidden bias vector hb to generate an updated hidden vector of probabilities h1.

This is also called Gibbs sampling. In some scenarios, the sample input vector is not generated and the reconstructed input vector prob_v1 is directly used to update the hi





            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for image reconstruction using the input probability vector.


	mnist data is loaded in the environment

	The RBM model is trained using the recipe Training a Restricted Boltzmann machine





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section covers the steps to perform backward reconstruction and evaluation:


	The backward image reconstruction can be performed using the input probability vector with the following script:




prob_v1 = tf$nn$sigmoid(tf$matmul(h0, tf$transpose(W)) + vb)
v1 = tf$nn$relu(tf$sign(prob_v1 - tf$random_uniform(tf$shape(prob_v1))))
h1 = tf$nn$sigmoid(tf$matmul(v1, W) + hb) 



	The evaluation can be performed using a defined metric, such as mean squared error (MSE), which is computed between the actual input data (X) and the reconstructed input data (v1). The MSE is computed after each epoch and the key objective is to minimize the MSE:




err = tf$reduce_mean(tf$square(X - v1)) 




            

            
        
    
        

                            
                    Understanding the contrastive divergence of the reconstruction

                
            
            
                
As an initial start, the objective function can be defined as the minimization of the average negative log-likelihood of reconstructing the visible vector v where P(v) denotes the vector of generated probabilities:





            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for image reconstruction using the input probability vector.


	mnist data is loaded in the environment

	The images are reconstructed using the recipe Backward or reconstruction phase





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This current recipe present the steps for, a contrastive divergence (CD) technique used to speed up the sampling process:


	Compute a positive weight gradient by multiplying (outer product) the input vector X with a sample of the hidden vector h0 from the given probability distribution prob_h0:




w_pos_grad = tf$matmul(tf$transpose(X), h0) 



	Compute a negative weight gradient by multiplying (outer product) the sample of the reconstructed input data v1 with the updated hidden activation vector h1:




w_neg_grad = tf$matmul(tf$transpose(v1), h1) 



	Then, compute the CD matrix by subtracting the negative gradient from the positive gradient and dividing by the size of the input data:




CD = (w_pos_grad - w_neg_grad) / tf$to_float(tf$shape(X)[0])



	Then, update the weight matrix W to update_W using a learning rate (alpha) and the CD matrix:




update_w = W + alpha * CD 



	Additionally, update the visible and hidden bias vectors:




update_vb = vb + alpha * tf$reduce_mean(X - v1) 
update_hb = hb + alpha * tf$reduce_mean(h0 - h1) 




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The objective function can be minimized using stochastic gradient descent by indirectly modifying (and optimizing) the weight matrix. The entire gradient can be further divided into two forms based on the probability density: positive gradient and negative gradient. The positive gradient primarily depends on the input data and the negative gradient depends only on the generated model.

In the positive gradient, the probability toward the reconstructing training data increases, and in the negative gradient, the probability of randomly generated uniform samples by the model decreases.

The CD technique is used to optimize the negative phase. In the CD technique, the weight matrix is adjusted in each iteration of reconstruction. The new weight matrix is generated using the following formula. The learning rate is defined as alpha, in our case:





            

            
        
    
        

                            
                    Initializing and starting a new TensorFlow session

                
            
            
                
A big part of calculating the error metric such as mean square error (MSE) is initialization and starting a new TensorFlow session. Here is how we proceed with it.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for starting a new TensorFlow session used to compute the error metric.


	mnist data is loaded in the environment

	The TensorFlow graph for the RBM is loaded





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section provides the steps for optimizing the error using reconstruction from an RBM:


	Initialize the current and previous vector of biases and matrices of weights:




cur_w = tf$Variable(tf$zeros(shape = shape(num_input, num_hidden), dtype=tf$float32)) 
cur_vb = tf$Variable(tf$zeros(shape = shape(num_input), dtype=tf$float32)) 
cur_hb = tf$Variable(tf$zeros(shape = shape(num_hidden), dtype=tf$float32)) 
prv_w = tf$Variable(tf$random_normal(shape=shape(num_input, num_hidden), stddev=0.01, dtype=tf$float32)) 
prv_vb = tf$Variable(tf$zeros(shape = shape(num_input), dtype=tf$float32)) 
prv_hb = tf$Variable(tf$zeros(shape = shape(num_hidden), dtype=tf$float32)) 



	Start a new TensorFlow session:




sess$run(tf$global_variables_initializer()) 



	Perform a first run with the full input data (trainX) and obtain the first set of weight matrix and bias vectors:




output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(X=trainX, 
                                                                          W = prv_w$eval(), 
                                                                          vb = prv_vb$eval(), 
                                                                          hb = prv_hb$eval())) 
prv_w <- output[[1]]
prv_vb <-output[[2]] 
prv_hb <-output[[3]]



	Let's look at the error of the first run:




sess$run(err, feed_dict=dict(X= trainX, W= prv_w, vb= prv_vb, hb= prv_hb)) 



	The full model for the RBM can be trained using the following script:




epochs=15 
errors <- list() 
weights <- list() 
u=1 
for(ep in 1:epochs){ 
  for(i in seq(0,(dim(trainX)[1]-100),100)){ 
    batchX <- trainX[(i+1):(i+100),] 
    output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(X=batchX, 
                                                                              W = prv_w, 
                                                                              vb = prv_vb, 
                                                                              hb = prv_hb)) 
    prv_w <- output[[1]]  
    prv_vb <- output[[2]] 
    prv_hb <-  output[[3]] 
    if(i%%10000 == 0){ 
      errors[[u]] <- sess$run(err, feed_dict=dict(X= trainX, W= prv_w, vb= prv_vb, hb= prv_hb)) 
      weights[[u]] <- output[[1]] 
      u <- u+1 
     cat(i , " : ") 
    } 
  } 
  cat("epoch :", ep, " : reconstruction error : ", errors[length(errors)][[1]],"\n") 
} 



	Plot reconstruction using mean squared errors:




error_vec <- unlist(errors)
plot(error_vec,xlab="# of batches",ylab="mean squared reconstruction error",main="RBM-Reconstruction MSE plot")




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Here, we will run 15 epochs (or iterations) where, in each epoch, a batchwise (size = 100) optimization is performed. In each batch, the CD is computed and, accordingly, weights and biases are updated. To keep track of the optimization, MSE is calculated after every batch of 10,000 rows.

The following image shows the declining trend of mean squared reconstruction errors computed for 90 batches:





            

            
        
    
        

                            
                    Evaluating the output from an RBM

                
            
            
                
Here, let's plot the weights of the final layer with respect to the output (reconstruction input data). In the current scenario, 900 is the number of nodes in the hidden layer and 784 is the number of nodes in the output (reconstructed) layer.

In the following image, the first 400 nodes in the hidden layer are seen:



Here, each tile represents a vector of connections formed between a hidden node and all the visible layer nodes. In each tile, the black region represents negative weights (weight < 0), the white region represents positive weights (weight > 1), and the grey region represents no connection (weight = 0). The higher the positive value, the greater the chance of activation in hidden nodes, and vice versa. These activations help determine which part of the input image is being determined by a given hidden node.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for running the evaluation recipe:


	mnist data is loaded in the environment

	The RBM model is executed using TensorFlow and the optimal weights are obtained





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This recipe covers the steps for the evaluation of weights obtained from an RBM:


	Run the following code to generate the image of 400 hidden nodes:




uw = t(weights[[length(weights)]])   # Extract the most recent weight matrix 
numXpatches = 20    # Number of images in X-axis (user input) 
numYpatches=20      # Number of images in Y-axis (user input) 
pixels <- list() 
op <- par(no.readonly = TRUE) 
par(mfrow = c(numXpatches,numYpatches), mar = c(0.2, 0.2, 0.2, 0.2), oma = c(3, 3, 3, 3)) 
for (i in 1:(numXpatches*numYpatches)) { 
  denom <- sqrt(sum(uw[i, ]^2)) 
  pixels[[i]] <- matrix(uw[i, ]/denom, nrow = numYpatches, ncol = numXpatches) 
  image(pixels[[i]], axes = F, col = gray((0:32)/32)) 
} 
par(op) 



	Select a sample of four actual input digits from the training data:




sample_image <- trainX[1:4,]



	Then, visualize these sample digits using the following code:




mw=melt(sample_image) 
mw$X3=floor((mw$X2-1)/28)+1 
mw$X2=(mw$X2-1)%%28 + 1; 
mw$X3=29-mw$X3 
ggplot(data=mw)+geom_tile(aes(X2,X3,fill=value))+facet_wrap(~X1,nrow=2)+ 
  scale_fill_continuous(low='black',high='white')+coord_fixed(ratio=1)+ 
  labs(x=NULL,y=NULL,)+ 
  theme(legend.position="none")+ 
  theme(plot.title = element_text(hjust = 0.5)) 



	Now, reconstruct these four sample images using the final weights and biases obtained:




hh0 = tf$nn$sigmoid(tf$matmul(X, W) + hb) 
vv1 = tf$nn$sigmoid(tf$matmul(hh0, tf$transpose(W)) + vb) 
feed = sess$run(hh0, feed_dict=dict( X= sample_image, W= prv_w, hb= prv_hb)) 
rec = sess$run(vv1, feed_dict=dict( hh0= feed, W= prv_w, vb= prv_vb)) 



	Then, visualize the reconstructed sample digits using the following code:




mw=melt(rec) 
mw$X3=floor((mw$X2-1)/28)+1 
mw$X2=(mw$X2-1)%%28 + 1 
mw$X3=29-mw$X3 
ggplot(data=mw)+geom_tile(aes(X2,X3,fill=value))+facet_wrap(~X1,nrow=2)+ 
  scale_fill_continuous(low='black',high='white')+coord_fixed(ratio=1)+ 
  labs(x=NULL,y=NULL,)+ 
  theme(legend.position="none")+ 
  theme(plot.title = element_text(hjust = 0.5)) 




            

            
        
    
        

                            
                    How it works...

                
            
            
                
The following image illustrates a raw image of the four sample digits:



The reconstructed images seemed to have had their noise removed, especially in the case of digits 3 and 6.

The following image illustrates a reconstructed image of the same four digits:





            

            
        
    
        

                            
                    Setting up a Restricted Boltzmann machine for Collaborative Filtering

                
            
            
                
In this recipe, you will learn how to build a collaborative-filtering-based recommendation system using an RBM. Here, for every user, the RBM tries to identify similar users based on their past behavior of rating various items, and then tries to recommend the next best item.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
In this recipe, we will use the movielens dataset from the Grouplens research organization. The datasets (movies.dat and ratings.dat) can be downloaded from the following link. Movies.dat contains information of 3,883 movies and Ratings.dat contains information of 1,000,209 user ratings for these movies. The ratings range from 1 to 5, with 5 being the highest.

http://files.grouplens.org/datasets/movielens/ml-1m.zip



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This recipe covers the steps for setting up collaborative filtering using an RBM.


	Read the movies.dat datasets in R:




txt <- readLines("movies.dat", encoding = "latin1") 
txt_split <- lapply(strsplit(txt, "::"), function(x) as.data.frame(t(x), stringsAsFactors=FALSE)) 
movies_df <- do.call(rbind, txt_split) 
names(movies_df) <- c("MovieID", "Title", "Genres") 
movies_df$MovieID <- as.numeric(movies_df$MovieID) 



	Add a new column (id_order) to the movies dataset, as the current ID column (UserID) cannot be used to index movies because they range from 1 to 3,952:




movies_df$id_order <- 1:nrow(movies_df) 



	Read the ratings.dat dataset in R:




ratings_df <- read.table("ratings.dat", sep=":",header=FALSE,stringsAsFactors = F) 
ratings_df <- ratings_df[,c(1,3,5,7)] 
colnames(ratings_df) <- c("UserID","MovieID","Rating","Timestamp")



	Merge the movies and ratings datasets with all=FALSE:




merged_df <- merge(movies_df, ratings_df, by="MovieID",all=FALSE) 



	Remove the non-required columns:




merged_df[,c("Timestamp","Title","Genres")] <- NULL 



	Convert the ratings to percentages:




merged_df$rating_per <- merged_df$Rating/5 



	Generate a matrix of ratings across all the movies for a sample of 1,000 users:




num_of_users <- 1000 
num_of_movies <- length(unique(movies_df$MovieID)) 
trX <- matrix(0,nrow=num_of_users,ncol=num_of_movies) 
for(i in 1:num_of_users){ 
  merged_df_user <- merged_df[merged_df$UserID %in% i,] 
  trX[i,merged_df_user$id_order] <- merged_df_user$rating_per 
} 



	Look at the distribution of the trX training dataset. It seems to follow a Bernoulli distribution (values in the range of 0 to 1):




summary(trX[1,]); summary(trX[2,]); summary(trX[3,]) 



	Define the input model parameters:




num_hidden = 20 
num_input = nrow(movies_df) 



	Start a new TensorFlow session:




sess$run(tf$global_variables_initializer()) 
output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(v0=trX, 
                                                                          W = prv_w$eval(), 
                                                                          vb = prv_vb$eval(), 
                                                                          hb = prv_hb$eval())) 
prv_w <- output[[1]]  
prv_vb <- output[[2]] 
prv_hb <-  output[[3]] 
sess$run(err_sum, feed_dict=dict(v0=trX, W= prv_w, vb= prv_vb, hb= prv_hb))



	Train the RBM using 500 epoch iterations and a batch size of 100:




epochs= 500 
errors <- list() 
weights <- list() 
 
for(ep in 1:epochs){ 
  for(i in seq(0,(dim(trX)[1]-100),100)){ 
    batchX <- trX[(i+1):(i+100),] 
    output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(v0=batchX, 
                                                                              W = prv_w, 
                                                                              vb = prv_vb, 
                                                                              hb = prv_hb)) 
    prv_w <- output[[1]]  
    prv_vb <- output[[2]] 
    prv_hb <-  output[[3]] 
    if(i%%1000 == 0){ 
      errors <- c(errors,sess$run(err_sum, feed_dict=dict(v0=batchX, W= prv_w, vb= prv_vb, hb= prv_hb))) 
      weights <- c(weights,output[[1]]) 
      cat(i , " : ") 
    } 
  } 
  cat("epoch :", ep, " : reconstruction error : ", errors[length(errors)][[1]],"\n") 
} 



	Plot reconstruction mean squared errors:




error_vec <- unlist(errors) 
plot(error_vec,xlab="# of batches",ylab="mean squared reconstruction error",main="RBM-Reconstruction MSE plot") 




            

            
        
    
        

                            
                    Performing a full run of training an RBM

                
            
            
                
Using the same RBM setup mentioned in the preceding recipe, train the RBM on the user ratings dataset (trX) using 20 hidden nodes. To keep a track of the optimization, the MSE is calculated after every batch of 1,000 rows. The following image shows the declining trend of mean squared reconstruction errors computed for 500 batches (equal to epochs):



Looking into RBM recommendations: Let's now look into the recommendations generated by RBM-based collaborative filtering for a given user ID. Here, we will look into the top-rated genres and top-recommended genres of this user ID, along with the top 10 movie recommendations.

The following image illustrates a list of top-rated genres:



The following image illustrates a list of top-recommended genres:





            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for collaborative filtering the output evaluation:


	TensorFlow in R is installed and set up

	The movies.dat and ratings.dat datasets are loaded in environment

	The recipe Setting up a Restricted Boltzmann machine for Collaborative Filtering has been executed





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This recipe covers the steps for evaluating the output from RBM-based collaborative filtering:


	Select the ratings of a user:




inputUser = as.matrix(t(trX[75,]))
names(inputUser) <- movies_df$id_order



	Remove the movies that were not rated by the user (assuming that they have yet to be seen):




inputUser <- inputUser[inputUser>0]



	Plot the top genres seen by the user:




top_rated_movies <- movies_df[as.numeric(names(inputUser)[order(inputUser,decreasing = TRUE)]),]$Title
top_rated_genres <- movies_df[as.numeric(names(inputUser)[order(inputUser,decreasing = TRUE)]),]$Genres
top_rated_genres <- as.data.frame(top_rated_genres,stringsAsFactors=F)
top_rated_genres$count <- 1
top_rated_genres <- aggregate(count~top_rated_genres,FUN=sum,data=top_rated_genres)
top_rated_genres <- top_rated_genres[with(top_rated_genres, order(-count)), ]
top_rated_genres$top_rated_genres <- factor(top_rated_genres$top_rated_genres, levels = top_rated_genres$top_rated_genres)
ggplot(top_rated_genres[top_rated_genres$count>1,],aes(x=top_rated_genres,y=count))+
geom_bar(stat="identity")+
theme_bw()+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
labs(x="Genres",y="count",)+
theme(plot.title = element_text(hjust = 0.5))



	Reconstruct the input vector to obtain the recommendation percentages for all the genres/movies:




hh0 = tf$nn$sigmoid(tf$matmul(v0, W) + hb)
vv1 = tf$nn$sigmoid(tf$matmul(hh0, tf$transpose(W)) + vb)
feed = sess$run(hh0, feed_dict=dict( v0= inputUser, W= prv_w, hb= prv_hb))
rec = sess$run(vv1, feed_dict=dict( hh0= feed, W= prv_w, vb= prv_vb))
names(rec) <- movies_df$id_order



	Plot the top-recommended genres:




top_recom_genres <- movies_df[as.numeric(names(rec)[order(rec,decreasing = TRUE)]),]$Genres
top_recom_genres <- as.data.frame(top_recom_genres,stringsAsFactors=F)
top_recom_genres$count <- 1
top_recom_genres <- aggregate(count~top_recom_genres,FUN=sum,data=top_recom_genres)
top_recom_genres <- top_recom_genres[with(top_recom_genres, order(-count)), ]
top_recom_genres$top_recom_genres <- factor(top_recom_genres$top_recom_genres, levels = top_recom_genres$top_recom_genres)
ggplot(top_recom_genres[top_recom_genres$count>20,],aes(x=top_recom_genres,y=count))+
geom_bar(stat="identity")+
theme_bw()+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
labs(x="Genres",y="count",)+
theme(plot.title = element_text(hjust = 0.5))



	Find the top 10 recommended movies:




top_recom_movies <- movies_df[as.numeric(names(rec)[order(rec,decreasing = TRUE)]),]$Title[1:10]


The following image shows the top 10 recommended movies:





            

            
        
    
        

                            
                    Setting up a Deep Belief Network

                
            
            
                
Deep belief networks are a type of Deep Neural Network (DNN), and are composed of multiple hidden layers (or latent variables). Here, the connections are present only between the layers and not within the nodes of each layer. The DBN can be trained both as an unsupervised and supervised model.

The unsupervised model is used to reconstruct the input with noise removal and the supervised model (after pretraining) is used to perform classification. As there are no connections within the nodes in each layer, the DBNs can be considered as a set of unsupervised RBMs or autoencoders, where each hidden layer serves as a visible layer to its subsequent connected hidden layer.

This kind of stacked RBM enhances the performance of input reconstruction where CD is applied across all layers, starting from the actual input training layer and finishing at the last hidden (or latent) layer.

DBNs are a type of graphical model that train the stacked RBMs in a greedy manner. Their networks tend to learn the deep hierarchical representation using joint distributions between the input feature vector i and hidden layers h1,2....m:



Here, i = h0 ; P(hk-1|hk) is a conditional distribution of reconstructed visible units on the hidden layers of the RBM at level k; P(hm-1,hm) is the joint distribution of hidden and visible units (reconstructed) at the final RBM layer of the DBN. The following image illustrates a DBN of four hidden layers, where W represents the weight matrix:



DBNs can also be used to enhance the robustness of DNNs. DNNs face an issue of local optimization while implementing backpropagation. This is possible in scenarios where an error surface features numerous troughs, and the gradient descent, due to backpropagation occurs inside a local deep trough (not a global deep trough). DBNs, on the other hand, perform pretraining of the input features, which helps the optimization direct toward the global deepest trough, and then use backpropagation, to perform a gradient descent to gradually minimize the error rate.

Training a stack of three RBMs: In this recipe, we will train a DBN using three stacked RBMs, where the first hidden layer will have 900 nodes, the second hidden layer will have 500 nodes, and the third hidden layer will have 300 nodes.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for TensorFlow.


	The dataset is loaded and set up

	Load the TensorFlow package using the following script:




require(tensorflow)




            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This recipe covers the steps for setting up Deep belief network (DBM):


	Define the number of nodes in each hidden layer as a vector:




RBM_hidden_sizes = c(900, 500 , 300 )



	Generate an RBM function leveraging the codes illustrated in the Setting up a Restricted Boltzmann Machine for Bernoulli distribution input recipe with the following input and output parameters mentioned:





Here is the function for setting up up the RBM:


RBM <- function(input_data, num_input, num_output, epochs = 5, alpha = 0.1, batchsize=100){
# Placeholder variables
vb <- tf$placeholder(tf$float32, shape = shape(num_input))
hb <- tf$placeholder(tf$float32, shape = shape(num_output))
W <- tf$placeholder(tf$float32, shape = shape(num_input, num_output))
# Phase 1 : Forward Phase
X = tf$placeholder(tf$float32, shape=shape(NULL, num_input))
prob_h0= tf$nn$sigmoid(tf$matmul(X, W) + hb) #probabilities of the hidden units
h0 = tf$nn$relu(tf$sign(prob_h0 - tf$random_uniform(tf$shape(prob_h0)))) #sample_h_given_X
# Phase 2 : Backward Phase
prob_v1 = tf$nn$sigmoid(tf$matmul(h0, tf$transpose(W)) + vb)
v1 = tf$nn$relu(tf$sign(prob_v1 - tf$random_uniform(tf$shape(prob_v1))))
h1 = tf$nn$sigmoid(tf$matmul(v1, W) + hb)
# calculate gradients
w_pos_grad = tf$matmul(tf$transpose(X), h0)
w_neg_grad = tf$matmul(tf$transpose(v1), h1)
CD = (w_pos_grad - w_neg_grad) / tf$to_float(tf$shape(X)[0])
update_w = W + alpha * CD
update_vb = vb + alpha * tf$reduce_mean(X - v1)
update_hb = hb + alpha * tf$reduce_mean(h0 - h1)
# Objective function
err = tf$reduce_mean(tf$square(X - v1))
# Initialize variables
cur_w = tf$Variable(tf$zeros(shape = shape(num_input, num_output), dtype=tf$float32))
cur_vb = tf$Variable(tf$zeros(shape = shape(num_input), dtype=tf$float32))
cur_hb = tf$Variable(tf$zeros(shape = shape(num_output), dtype=tf$float32))
prv_w = tf$Variable(tf$random_normal(shape=shape(num_input, num_output), stddev=0.01, dtype=tf$float32))
prv_vb = tf$Variable(tf$zeros(shape = shape(num_input), dtype=tf$float32))
prv_hb = tf$Variable(tf$zeros(shape = shape(num_output), dtype=tf$float32))
# Start tensorflow session
sess$run(tf$global_variables_initializer())
output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(X=input_data,
W = prv_w$eval(),
vb = prv_vb$eval(),
hb = prv_hb$eval()))
prv_w <- output[[1]]
prv_vb <- output[[2]]
prv_hb <- output[[3]]
sess$run(err, feed_dict=dict(X= input_data, W= prv_w, vb= prv_vb, hb= prv_hb))
errors <- weights <- list()
u=1
for(ep in 1:epochs){
for(i in seq(0,(dim(input_data)[1]-batchsize),batchsize)){
batchX <- input_data[(i+1):(i+batchsize),]
output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(X=batchX,
W = prv_w,
vb = prv_vb,
hb = prv_hb))
prv_w <- output[[1]]
prv_vb <- output[[2]]
prv_hb <- output[[3]]
if(i%%10000 == 0){
errors[[u]] <- sess$run(err, feed_dict=dict(X= batchX, W= prv_w, vb= prv_vb, hb= prv_hb))
weights[[u]] <- output[[1]]
u=u+1
cat(i , " : ")
}
}
cat("epoch :", ep, " : reconstruction error : ", errors[length(errors)][[1]],"\n")
}
w <- prv_w
vb <- prv_vb
hb <- prv_hb
# Get the output
input_X = tf$constant(input_data)
ph_w = tf$constant(w)
ph_hb = tf$constant(hb)
out = tf$nn$sigmoid(tf$matmul(input_X, ph_w) + ph_hb)
sess$run(tf$global_variables_initializer())
return(list(output_data = sess$run(out),
error_list=errors,
weight_list=weights,
weight_final=w,
bias_final=hb))
}



	Train the RBM for all three different types of hidden nodes in a sequence. In other words, first train RBM1 with 900 hidden nodes, then use the output of RBM1 as an input for RBM2 with 500 hidden nodes and train RBM2, then use the output of RBM2 as an input for RBM3 with 300 hidden nodes and train RBM3. Store the outputs of all three RBMs as a list, RBM_output:




inpX = trainX
RBM_output <- list()
for(i in 1:length(RBM_hidden_sizes)){
size <- RBM_hidden_sizes[i]
# Train the RBM
RBM_output[[i]] <- RBM(input_data= inpX,
num_input= ncol(trainX),
num_output=size,
epochs = 5,
alpha = 0.1,
batchsize=100)
# Update the input data
inpX <- RBM_output[[i]]$output_data
# Update the input_size
num_input = size
cat("completed size :", size,"\n")
}




	Create a data frame of batch errors across three hidden layers:




error_df <- data.frame("error"=c(unlist(RBM_output[[1]]$error_list),unlist(RBM_output[[2]]$error_list),unlist(RBM_output[[3]]$error_list)),
"batches"=c(rep(seq(1:length(unlist(RBM_output[[1]]$error_list))),times=3)),
"hidden_layer"=c(rep(c(1,2,3),each=length(unlist(RBM_output[[1]]$error_list)))),
stringsAsFactors = FALSE)



	Plot reconstruction mean squared errors:




plot(error ~ batches,
xlab = "# of batches",
ylab = "Reconstruction Error",
pch = c(1, 7, 16)[hidden_layer],
main = "Stacked RBM-Reconstruction MSE plot",
data = error_df)
legend('topright',
c("H1_900","H2_500","H3_300"),
pch = c(1, 7, 16))




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Assessing the performance of training three stacked RBMs: Here, we will run five epochs (or iterations) for each RBM. Each epoch will perform batchwise (size = 100) optimization. In each batch, CD is computed and, accordingly, weights and biases are updated.

To keep a track of optimization, the MSE is calculated after every batch of 10,000 rows. The following image shows the declining trend of mean squared reconstruction errors computed for 30 batches for three RBMs separately:





            

            
        
    
        

                            
                    Implementing a feed-forward backpropagation Neural Network

                
            
            
                
In this recipe, we will implement a willow neural network with backpropagation. The input of the neural network is the outcome of the third (or last) RBM. In other words, the reconstructed raw data (trainX) is actually used to train the neural network as a supervised classifier of (10) digits. The backpropagation technique is used to further fine-tune the performance of classification.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for TensorFlow.


	The dataset is loaded and set up

	The TensorFlow package is set up and loaded





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section covers the steps for setting up a feed-forward backpropagation Neural Network:


	Let's define the input parameters of the neural network as function parameters. The following table describes each parameter:






The neural network function will have a structure as shown in the following script:


NN_train <- function(Xdata,Ydata,Xtestdata,Ytestdata,input_size,
learning_rate=0.1,momentum = 0.1,epochs=10,
batchsize=100,rbm_list,dbn_sizes){
library(stringi)
## insert all the codes mentioned in next 11 points
}



	Initialize a weight and bias list of length 4, with the first being a tensor of random normal distribution (with a standard deviation of 0.01) of dimensions 784 x 900, the second being 900 x 500, the third being 500 x 300, and the fourth being 300 x 10:




weight_list <- list()
bias_list <- list()
# Initialize variables
for(size in c(dbn_sizes,ncol(Ydata))){
#Initialize weights through a random uniform distribution
weight_list <- c(weight_list,tf$random_normal(shape=shape(input_size, size), stddev=0.01, dtype=tf$float32))
#Initialize bias as zeroes
bias_list <- c(bias_list, tf$zeros(shape = shape(size), dtype=tf$float32))
input_size = size
}



	Check whether the outcome of the stacked RBM conforms to the sizes of the hidden layers mentioned in the dbn_sizes parameter:




#Check if expected dbn_sizes are correct
if(length(dbn_sizes)!=length(rbm_list)){
stop("number of hidden dbn_sizes not equal to number of rbm outputs generated")
# check if expected sized are correct
for(i in 1:length(dbn_sizes)){
if(dbn_sizes[i] != dbn_sizes[i])
stop("Number of hidden dbn_sizes do not match")
}
}



	Now, place the weights and biases in suitable positions within weight_list and bias_list:




for(i in 1:length(dbn_sizes)){
weight_list[[i]] <- rbm_list[[i]]$weight_final
bias_list[[i]] <- rbm_list[[i]]$bias_final
}



	Create placeholders for the input and output data:




input <- tf$placeholder(tf$float32, shape = shape(NULL,ncol(Xdata)))
output <- tf$placeholder(tf$float32, shape = shape(NULL,ncol(Ydata)))



	Now, use the weights and biases obtained from the stacked RBM to reconstruct the input data and store each RBM's reconstructed data in the list input_sub:




input_sub <- list()
weight <- list()
bias <- list()
for(i in 1:(length(dbn_sizes)+1)){
weight[[i]] <- tf$cast(tf$Variable(weight_list[[i]]),tf$float32)
bias[[i]] <- tf$cast(tf$Variable(bias_list[[i]]),tf$float32)
}
input_sub[[1]] <- tf$nn$sigmoid(tf$matmul(input, weight[[1]]) + bias[[1]])
for(i in 2:(length(dbn_sizes)+1)){
input_sub[[i]] <- tf$nn$sigmoid(tf$matmul(input_sub[[i-1]], weight[[i]]) + bias[[i]])
}



	Define the cost function--that is, the mean squared error of difference between prediction and actual digits:




cost = tf$reduce_mean(tf$square(input_sub[[length(input_sub)]] - output))



	Implement backpropagation for the purpose of minimizing the cost:




train_op <- tf$train$MomentumOptimizer(learning_rate, momentum)$minimize(cost)



	Generate the prediction results:




predict_op = tf$argmax(input_sub[[length(input_sub)]],axis=tf$cast(1.0,tf$int32))



	Perform iterations of training:




train_accuracy <- c()
test_accuracy <- c()
for(ep in 1:epochs){
for(i in seq(0,(dim(Xdata)[1]-batchsize),batchsize)){
batchX <- Xdata[(i+1):(i+batchsize),]
batchY <- Ydata[(i+1):(i+batchsize),]
#Run the training operation on the input data
sess$run(train_op,feed_dict=dict(input = batchX,
output = batchY))
}
for(j in 1:(length(dbn_sizes)+1)){
# Retrieve weights and biases
weight_list[[j]] <- sess$run(weight[[j]])
bias_list[[j]] <- sess$ run(bias[[j]])
}
train_result <- sess$run(predict_op, feed_dict = dict(input=Xdata, output=Ydata))+1
train_actual <- as.numeric(stringi::stri_sub(colnames(as.data.frame(Ydata))[max.col(as.data.frame(Ydata),ties.method="first")],2))
test_result <- sess$run(predict_op, feed_dict = dict(input=Xtestdata, output=Ytestdata))+1
test_actual <- as.numeric(stringi::stri_sub(colnames(as.data.frame(Ytestdata))[max.col(as.data.frame(Ytestdata),ties.method="first")],2))
train_accuracy <- c(train_accuracy,mean(train_actual==train_result))
test_accuracy <- c(test_accuracy,mean(test_actual==test_result))
cat("epoch:", ep, " Train Accuracy: ",train_accuracy[ep]," Test Accuracy : ",test_accuracy[ep],"\n")
}



	Finally, return a list of four outcomes, which are train accuracy (train_accuracy), test accuracy (test_accuracy), a list of weight matrices generated in each iteration (weight_list), and a list of bias vectors generated in each iteration (bias_list):




return(list(train_accuracy=train_accuracy,
test_accuracy=test_accuracy,
weight_list=weight_list,
bias_list=bias_list))



	Run the iterations for the defined neural network for training:




NN_results <- NN_train(Xdata=trainX,
Ydata=trainY,
Xtestdata=testX,
Ytestdata=testY,
input_size=ncol(trainX),
rbm_list=RBM_output,
dbn_sizes = RBM_hidden_sizes)




	The following code is used to plot the train and test accuracy:




accuracy_df <- data.frame("accuracy"=c(NN_results$train_accuracy,NN_results$test_accuracy),
"epochs"=c(rep(1:10,times=2)),
"datatype"=c(rep(c(1,2),each=10)),
stringsAsFactors = FALSE)
plot(accuracy ~ epochs,
xlab = "# of epochs",
ylab = "Accuracy in %",
pch = c(16, 1)[datatype],
main = "Neural Network - Accuracy in %",
data = accuracy_df)
legend('bottomright',
c("train","test"),
pch = c( 16, 1))




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Assessing the train and test performance of the neural network: The following image shows the increasing trend of train and test accuracy observed while training the neural network:





            

            
        
    
        

                            
                    Setting up a Deep Restricted Boltzmann Machine

                
            
            
                
Unlike DBNs, Deep Restricted Boltzmann Machines (DRBM) are undirected networks of interconnected hidden layers with the capability to learn joint probabilities over these connections. In the current setup, centering is performed where visible and hidden variables are subtracted from offset bias vectors after every iteration. Research has shown that centering optimizes the performance of DRBMs and can reach higher log-likelihood values in comparison with traditional RBMs.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides the requirements for setting up a DRBM:


	The MNIST dataset is loaded and set up

	The tensorflow package is set up and loaded





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section covers detailed the steps for setting up the DRBM model using TensorFlow in R:


	Define the parameters for the DRBM:




learning_rate = 0.005
momentum = 0.005
minbatch_size = 25
hidden_layers = c(400,100)
biases = list(-1,-1)



	Define a sigmoid function using a hyperbolic arc tangent [(log(1+x) -log(1-x))/2]:




arcsigm <- function(x){
return(atanh((2*x)-1)*2)
}



	Define a sigmoid function using only a hyperbolic tangent [(ex-e-x)/(ex+e-x)]:




sigm <- function(x){
return(tanh((x/2)+1)/2)
}



	Define a binarize function to return a matrix of binary values (0,1):




binarize <- function(x){
# truncated rnorm
trnrom <- function(n, mean, sd, minval = -Inf, maxval = Inf){
qnorm(runif(n, pnorm(minval, mean, sd), pnorm(maxval, mean, sd)), mean, sd)
}
return((x > matrix( trnrom(n=nrow(x)*ncol(x),mean=0,sd=1,minval=0,maxval=1), nrow(x), ncol(x)))*1)
}



	Define a re_construct function to return a matrix of pixels:




re_construct <- function(x){
x = x - min(x) + 1e-9
x = x / (max(x) + 1e-9)
return(x*255)
}



	Define a function to perform gibbs activation for a given layer:




gibbs <- function(X,l,initials){
if(l>1){
bu <- (X[l-1][[1]] - matrix(rep(initials$param_O[[l-1]],minbatch_size),minbatch_size,byrow=TRUE)) %*%
initials$param_W[l-1][[1]]
} else {
bu <- 0
}
if((l+1) < length(X)){
td <- (X[l+1][[1]] - matrix(rep(initials$param_O[[l+1]],minbatch_size),minbatch_size,byrow=TRUE))%*%
t(initials$param_W[l][[1]])
} else {
td <- 0
}
X[[l]] <- binarize(sigm(bu+td+matrix(rep(initials$param_B[[l]],minbatch_size),minbatch_size,byrow=TRUE)))
return(X[[l]])
}



	Define a function to perform the reparameterization of bias vectors:




reparamBias <- function(X,l,initials){
if(l>1){
bu <- colMeans((X[[l-1]] - matrix(rep(initials$param_O[[l-1]],minbatch_size),minbatch_size,byrow=TRUE))%*%
initials$param_W[[l-1]])
} else {
bu <- 0
}
if((l+1) < length(X)){
td <- colMeans((X[[l+1]] - matrix(rep(initials$param_O[[l+1]],minbatch_size),minbatch_size,byrow=TRUE))%*%
t(initials$param_W[[l]]))
} else {
td <- 0
}
initials$param_B[[l]] <- (1-momentum)*initials$param_B[[l]] + momentum*(initials$param_B[[l]] + bu + td)
return(initials$param_B[[l]])
}



	Define a function to perform the reparameterization of offset bias vectors:




reparamO <- function(X,l,initials){
initials$param_O[[l]] <- colMeans((1-momentum)*matrix(rep(initials$param_O[[l]],minbatch_size),minbatch_size,byrow=TRUE) + momentum*(X[[l]]))
return(initials$param_O[[l]])
}



	Define a function to initialize weights, biases, offset biases, and input matrices:




DRBM_initialize <- function(layers,bias_list){
# Initialize model parameters and particles
param_W <- list()
for(i in 1:(length(layers)-1)){
param_W[[i]] <- matrix(0L, nrow=layers[i], ncol=layers[i+1])
}
param_B <- list()
for(i in 1:length(layers)){
param_B[[i]] <- matrix(0L, nrow=layers[i], ncol=1) + bias_list[[i]]
}
param_O <- list()
for(i in 1:length(param_B)){
param_O[[i]] <- sigm(param_B[[i]])
}
param_X <- list()
for(i in 1:length(layers)){
param_X[[i]] <- matrix(0L, nrow=minbatch_size, ncol=layers[i]) + matrix(rep(param_O[[i]],minbatch_size),minbatch_size,byrow=TRUE)
}
return(list(param_W=param_W,param_B=param_B,param_O=param_O,param_X=param_X))
}




	Use the MNIST train data (trainX) introduced in the previous recipes. Standardize the trainX data by dividing it by 255:




X <- trainX/255



	Generate the initial weight matrices, bias vectors, offset bias vectors, and input matrices:




layers <- c(784,hidden_layers)
bias_list <- list(arcsigm(pmax(colMeans(X),0.001)),biases[[1]],biases[[2]])
initials <-DRBM_initialize(layers,bias_list)



	Subset a sample (minbatch_size) of the input data X:




batchX <- X[sample(nrow(X))[1:minbatch_size],]



	Perform a set of 1,000 iterations. Within each iteration, update the initial weights and biases 100 times and plot the images of the weight matrices:




for(iter in 1:1000){

# Perform some learnings
for(j in 1:100){
# Initialize a data particle
dat <- list()
dat[[1]] <- binarize(batchX)
for(l in 2:length(initials$param_X)){
dat[[l]] <- initials$param_X[l][[1]]*0 + matrix(rep(initials$param_O[l][[1]],minbatch_size),minbatch_size,byrow=TRUE)
}

# Alternate gibbs sampler on data and free particles
for(l in rep(c(seq(2,length(initials$param_X),2), seq(3,length(initials$param_X),2)),5)){
dat[[l]] <- gibbs(dat,l,initials)
}
for(l in rep(c(seq(2,length(initials$param_X),2), seq(1,length(initials$param_X),2)),1)){
initials$param_X[[l]] <- gibbs(initials$param_X,l,initials)
}

# Parameter update
for(i in 1:length(initials$param_W)){
initials$param_W[[i]] <- initials$param_W[[i]] + (learning_rate*((t(dat[[i]] - matrix(rep(initials$param_O[i][[1]],minbatch_size),minbatch_size,byrow=TRUE)) %*%
(dat[[i+1]] - matrix(rep(initials$param_O[i+1][[1]],minbatch_size),minbatch_size,byrow=TRUE))) -
(t(initials$param_X[[i]] - matrix(rep(initials$param_O[i][[1]],minbatch_size),minbatch_size,byrow=TRUE)) %*%
(initials$param_X[[i+1]] - matrix(rep(initials$param_O[i+1][[1]],minbatch_size),minbatch_size,byrow=TRUE))))/nrow(batchX))
}

for(i in 1:length(initials$param_B)){
initials$param_B[[i]] <- colMeans(matrix(rep(initials$param_B[[i]],minbatch_size),minbatch_size,byrow=TRUE) + (learning_rate*(dat[[i]] - initials$param_X[[i]])))
}

# Reparameterization
for(l in 1:length(initials$param_B)){
initials$param_B[[l]] <- reparamBias(dat,l,initials)
}
for(l in 1:length(initials$param_O)){
initials$param_O[[l]] <- reparamO(dat,l,initials)
}
}

# Generate necessary outputs
cat("Iteration:",iter," ","Mean of W of VL-HL1:",mean(initials$param_W[[1]])," ","Mean of W of HL1-HL2:",mean(initials$param_W[[2]]) ,"\n")
cat("Iteration:",iter," ","SDev of W of VL-HL1:",sd(initials$param_W[[1]])," ","SDev of W of HL1-HL2:",sd(initials$param_W[[2]]) ,"\n")

# Plot weight matrices
W=diag(nrow(initials$param_W[[1]]))
for(l in 1:length(initials$param_W)){
W = W %*% initials$param_W[[l]]
m = dim(W)[2] * 0.05
w1_arr <- matrix(0,28*m,28*m)
i=1
for(k in 1:m){
for(j in 1:28){
vec <- c(W[(28*j-28+1):(28*j),(k*m-m+1):(k*m)])
w1_arr[i,] <- vec
i=i+1
}
}
w1_arr = re_construct(w1_arr)
w1_arr <- floor(w1_arr)
image(w1_arr,axes = TRUE, col = grey(seq(0, 1, length = 256)))
}
}




            

            
        
    
        

                            
                    How it works...

                
            
            
                
As the preceding DRBM is trained using two hidden layers, we generate two weight matrices. The first weight matrix defines the connection between the visible layer and the first hidden layer. The second weight matrix defines the connection between the first and second hidden layer. The following image shows pixel images of the first weight matrices:



The following image shows the second pixel images of the second weight matrix:





            

            
        
    
        

                            
                    Recurrent Neural Networks

                
            
            
                
The current chapter will introduce Recurrent Neural Networks used for the modeling of sequential datasets. In this chapter, we will cover:


	Setting up a basic Recurrent Neural Network

	Setting up a bidirectional RNN model

	Setting up a deep RNN model

	Setting up a Long short-term memory based sequence model





            

            
        
    
        

                            
                    Setting up a basic Recurrent Neural Network

                
            
            
                
Recurrent Neural Networks (RNN) are used for sequential modeling on datasets where high autocorrelation exists among observations. For example, predicting patient journeys using their historical dataset or predicting the next words in given sentences. The main commonality among these problem statements is that input length is not constant and there is a sequential dependence. Standard neural network and deep learning models are constrained by fixed size input and produce a fixed length output. For example, deep learning neural networks built on occupancy datasets have six input features and a binomial outcome.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Generative models in machine learning domains are referred to as models that have an ability to generate observable data values. For example, training a generative model on an images repository to generate new images like it. All generative models aim to compute the joint distribution over given datasets, either implicitly or explicitly:


	Install and set up TensorFlow.

	Load required packages:




library(tensorflow) 




            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The section will provide steps to set-up an RNN model.


	Load the MNIST dataset:




# Load mnist dataset from tensorflow library 
datasets <- tf$contrib$learn$datasets 
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE) 



	Reset the graph and start an interactive session:




# Reset the graph and set-up a interactive session 
tf$reset_default_graph() 
sess<-tf$InteractiveSession() 



	Reduce image size to 16 x 16 pixels using the reduceImage function from Chapter 4, Data Representation using Autoencoders:




# Covert train data to 16 x 16  pixel image 
trainData<-t(apply(mnist$train$images, 1, FUN=reduceImage)) 
validData<-t(apply(mnist$test$images, 1, FUN=reduceImage)) 
 



	Extract labels for the defined train and valid datasets:




labels <- mnist$train$labels 
labels_valid <- mnist$test$labels



	Define model parameters such as size of input pixels (n_input), step size (step_size), number of hidden layers (n.hidden), and number of outcome classes (n.classes):




# Define Model parameter 
n_input<-16 
step_size<-16 
n.hidden<-64 
n.class<-10 



	Define training parameters such as learning rate (lr), number of inputs per batch run (batch), and number of iterations (iteration):




lr<-0.01 
batch<-500 
iteration = 100 



	Define a function rnn that takes in batch input dataset (x), weight matrix (weight), and bias vector (bias); and returns a final outcome predicted vector of a most basic RNN:




# Set up a most basic RNN 
rnn<-function(x, weight, bias){ 
  # Unstack input into step_size 
  x = tf$unstack(x, step_size, 1) 
   
  # Define a most basic RNN  
  rnn_cell = tf$contrib$rnn$BasicRNNCell(n.hidden) 
   
  # create a Recurrent Neural Network 
  cell_output = tf$contrib$rnn$static_rnn(rnn_cell, x, dtype=tf$float32) 
   
  # Linear activation, using rnn inner loop  
  last_vec=tail(cell_output[[1]], n=1)[[1]] 
  return(tf$matmul(last_vec, weights) + bias) 
} 
Define a function eval_func to evaluate mean accuracy using actual (y) and predicted labels (yhat): 
# Function to evaluate mean accuracy 
eval_acc<-function(yhat, y){ 
  # Count correct solution 
  correct_Count = tf$equal(tf$argmax(yhat,1L), tf$argmax(y,1L)) 
   
  # Mean accuracy 
  mean_accuracy = tf$reduce_mean(tf$cast(correct_Count, tf$float32)) 
   
  return(mean_accuracy) 
}



	Define placeholder variables (x and y) and initialize weight matrix and bias vector:




with(tf$name_scope('input'), { 
# Define placeholder for input data 
x = tf$placeholder(tf$float32, shape=shape(NULL, step_size, n_input), name='x') 
y <- tf$placeholder(tf$float32, shape(NULL, n.class), name='y') 
 
# Define Weights and bias 
weights <- tf$Variable(tf$random_normal(shape(n.hidden, n.class))) 
bias <- tf$Variable(tf$random_normal(shape(n.class))) 
}) 



	Generate the predicted labels:




# Evaluate rnn cell output 
yhat = rnn(x, weights, bias) 
Define the loss function and optimizer 
cost = tf$reduce_mean(tf$nn$softmax_cross_entropy_with_logits(logits=yhat, labels=y)) 
optimizer = tf$train$AdamOptimizer(learning_rate=lr)$minimize(cost) 



	Run the optimization post initializing a session using the global variables initializer:




sess$run(tf$global_variables_initializer()) 
for(i in 1:iteration){ 
  spls <- sample(1:dim(trainData)[1],batch) 
  sample_data<-trainData[spls,] 
  sample_y<-labels[spls,] 
   
  # Reshape sample into 16 sequence with each of 16 element 
  sample_data=tf$reshape(sample_data, shape(batch, step_size, n_input)) 
  out<-optimizer$run(feed_dict = dict(x=sample_data$eval(), y=sample_y)) 
   
  if (i %% 1 == 0){ 
    cat("iteration - ", i, "Training Loss - ",  cost$eval(feed_dict = dict(x=sample_data$eval(), y=sample_y)), "\n") 
  } 
} 



	Get the mean accuracy on valid_data:




valid_data=tf$reshape(validData, shape(-1, step_size, n_input)) 
cost$eval(feed_dict=dict(x=valid_data$eval(), y=labels_valid)) 




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Any changes to the structure require model retraining. However, these assumptions may not be valid for a lot of sequential datasets, such as text-based classifications that may have varying input and output. RNN architecture helps to address the issue of variable input length.

The standard architecture for RNN with input and output is shown in the following figure:



Recurrent Neural Network architecture

The RNN architecture can be formulated as follows:



Where  is state at time/index t and  is input at time/index t. The matrix W represents weights to connect hidden nodes and S connects input with the hidden layer. The output node at time/index t is related to state ht as shown as follows:



In the previous Equations layer, weights remain constant across state and time.



            

            
        
    
        

                            
                    Setting up a bidirectional RNN model

                
            
            
                
Recurrent Neural Networks focus on capturing the sequential information at time t by using historical states only. However, bidirectional RNN train the model from both directions using two RNN layers with one moving forwards from start to end and another RNN layer moving backwards from end to start of sequence.

Thus, the model is dependent on historical and future data. The bidirectional RNN models are useful where causal structure exists such as in text and speech. The unfolded structure of bidirectional RNN is shown in the following figure:



Unfolded bidirectional RNN architecture



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Install and set up TensorFlow:


	Load required packages:




library(tensorflow) 



	Load MNIST dataset.

	The image from MNIST dataset is reduced to 16 x 16 pixels and normalized (Details are discussed in the Setting-up RNN model section).





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section covers the steps to set-up a bidirectional RNN model.


	Reset the graph and start an interactive session:




# Reset the graph and set-up a interactive session 
tf$reset_default_graph() 
sess<-tf$InteractiveSession() 
 



	Reduce image size to 16 x 16 pixels using the reduceImage function from Chapter 4, Data Representation using Autoencoders:




# Covert train data to 16 x 16  pixel image 
trainData<-t(apply(mnist$train$images, 1, FUN=reduceImage)) 
validData<-t(apply(mnist$test$images, 1, FUN=reduceImage)) 



	Extract labels for the defined train and valid datasets:




labels <- mnist$train$labels 
labels_valid <- mnist$test$labels 



	Define model parameters such as the size of input pixels (n_input), step size (step_size), number of hidden layers (n.hidden), and number of outcome classes (n.classes):




# Define Model parameter 
n_input<-16 
step_size<-16 
n.hidden<-64 
n.class<-10 



	Define training parameters such as learning rate (lr), number of inputs per batch run (batch), and number of iterations (iteration):




lr<-0.01 
batch<-500 
iteration = 100 



	Define a function to perform bidirectional Recurrent Neural Network:




bidirectionRNN<-function(x, weights, bias){ 
  # Unstack input into step_size 
  x = tf$unstack(x, step_size, 1) 
   
  # Forward lstm cell 
  rnn_cell_forward = tf$contrib$rnn$BasicRNNCell(n.hidden) 
   
  # Backward lstm cell 
  rnn_cell_backward = tf$contrib$rnn$BasicRNNCell(n.hidden) 
   
  # Get lstm cell output 
  cell_output = tf$contrib$rnn$static_bidirectional_rnn(rnn_cell_forward, rnn_cell_backward, x, dtype=tf$float32) 
   
  # Linear activation, using rnn inner loop last output 
  last_vec=tail(cell_output[[1]], n=1)[[1]] 
  return(tf$matmul(last_vec, weights) + bias) 
} 



	Define an eval_func function to evaluate mean accuracy using actual (y) and predicted labels (yhat):




# Function to evaluate mean accuracy 
eval_acc<-function(yhat, y){ 
  # Count correct solution 
  correct_Count = tf$equal(tf$argmax(yhat,1L), tf$argmax(y,1L)) 
   
  # Mean accuracy 
  mean_accuracy = tf$reduce_mean(tf$cast(correct_Count, tf$float32)) 
   
  return(mean_accuracy) 
} 



	Define placeholder variables (x and y) and initialize weight matrix and bias vector:




with(tf$name_scope('input'), { 
# Define placeholder for input data 
x = tf$placeholder(tf$float32, shape=shape(NULL, step_size, n_input), name='x') 
y <- tf$placeholder(tf$float32, shape(NULL, n.class), name='y') 
 
# Define Weights and bias 
weights <- tf$Variable(tf$random_normal(shape(n.hidden, n.class))) 
bias <- tf$Variable(tf$random_normal(shape(n.class))) 
}) 



	Generate the predicted labels:




# Evaluate rnn cell output 
yhat = bidirectionRNN(x, weights, bias) 



	Define the loss function and optimizer:




cost = tf$reduce_mean(tf$nn$softmax_cross_entropy_with_logits(logits=yhat, labels=y)) 
optimizer = tf$train$AdamOptimizer(learning_rate=lr)$minimize(cost) 
 



	Run the optimization post initializing a session using global variables initializer:




sess$run(tf$global_variables_initializer()) 
# Running optimization 
for(i in 1:iteration){ 
  spls <- sample(1:dim(trainData)[1],batch) 
  sample_data<-trainData[spls,] 
  sample_y<-labels[spls,] 
   
  # Reshape sample into 16 sequence with each of 16 element 
  sample_data=tf$reshape(sample_data, shape(batch, step_size, n_input)) 
  out<-optimizer$run(feed_dict = dict(x=sample_data$eval(), y=sample_y)) 
   
  if (i %% 1 == 0){ 
    cat("iteration - ", i, "Training Loss - ",  cost$eval(feed_dict = dict(x=sample_data$eval(), y=sample_y)), "\n") 
  } 
} 



	Get the mean accuracy on valid data:




valid_data=tf$reshape(validData, shape(-1, step_size, n_input)) 
cost$eval(feed_dict=dict(x=valid_data$eval(), y=labels_valid))



	The convergence of cost function for RNN is shown in the following figure:





Bidirectional Recurrent Neural Network convergence plot on MNIST dataset



            

            
        
    
        

                            
                    Setting up a deep RNN model

                
            
            
                
The RNN architecture is composed of input, hidden, and output layers. A RNN network can be made deep by decomposing the hidden layer into multiple groups or by adding computational nodes within RNN architecture such as including model computation such as multilayer perceptron for micro learning. The computational nodes can be added between input-hidden, hidden-hidden, and hidden-output connection. An example of a multilayer deep RNN model is shown in the following figure:



An example of two-layer Deep Recurrent Neural Network architecture



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The RNN models in TensorFlow can easily be extended to Deep RNN models by using MultiRNNCell. The previous rnn function can be replaced with the stacked_rnnfunction to achieve a deep RNN architecture:


	Define the number of layers in the deep RNN architecture:




num_layers <- 3 



	Define a stacked_rnn function to perform multi-hidden layers deep RNN:




stacked_rnn<-function(x, weight, bias){ 
  # Unstack input into step_size 
  x = tf$unstack(x, step_size, 1) 
   
  # Define a most basic RNN  
  network = tf$contrib$rnn$GRUCell(n.hidden) 
  
  # Then, assign stacked RNN cells 
  network = tf$contrib$rnn$MultiRNNCell(lapply(1:num_layers,function(k,network){network},network)) 
   
  # create a Recurrent Neural Network 
  cell_output = tf$contrib$rnn$static_rnn(network, x, dtype=tf$float32) 
   
  # Linear activation, using rnn inner loop  
  last_vec=tail(cell_output[[1]], n=1)[[1]] 
  return(tf$matmul(last_vec, weights) + bias) 
} 




            

            
        
    
        

                            
                    Setting up a Long short-term memory based sequence model

                
            
            
                
In sequence learning the objective is to capture short-term and long-term memory. The short-term memory is captured very well by standard RNN, however, they are not very effective in capturing long-term dependencies as the gradient vanishes (or explodes rarely) within an RNN chain over time.

The gradient vanishes when the weights have small values that on multiplication vanish over time, whereas in contrast, scenarios where weights have large values keep increasing over time and lead to divergence in the learning process. To deal with the issue Long Short Term Memory (LSTM) is proposed.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The RNN models in TensorFlow can easily be extended to LSTM models by using BasicLSTMCell. The previous rnn function can be replaced with the lstm function to achieve an LSTM architecture:


# LSTM implementation 
lstm<-function(x, weight, bias){ 
  # Unstack input into step_size 
  x = tf$unstack(x, step_size, 1) 
   
  # Define a lstm cell 
  lstm_cell = tf$contrib$rnn$BasicLSTMCell(n.hidden, forget_bias=1.0, state_is_tuple=TRUE) 
   
  # Get lstm cell output 
  cell_output = tf$contrib$rnn$static_rnn(lstm_cell, x, dtype=tf$float32) 
   
  # Linear activation, using rnn inner loop last output 
  last_vec=tail(cell_output[[1]], n=1)[[1]] 
  return(tf$matmul(last_vec, weights) + bias) 
} 


For brevity the other parts of the code are not replicated.



            

            
        
    
        

                            
                    How it works...

                
            
            
                
The LSTM has a similar structure to RNN, however, the basic cell is very different as traditional RNN uses single multi-layer perceptron (MLP), whereas a single cell of LSTM includes four input layers interacting with each other. These three layers are:


	forget gate

	input gate

	output gate



The forget gate in LSTM decides which information to throw away and it depends on the last hidden state output ht-1, Xt, which represents input at time t.



Illustration of forget gate

In the earlier figure, Ct represents cell state at time t. The input data is represented by Xt and the hidden state is represented as ht-1. The earlier layer can be formulated as:



The input gate decides update values and decides the candidate values of the memory cell and updates the cell state, as shown in the following figure:



Illustration of input gate


	The input it at time t is updated as:








	
The expected value of current state  and the output from input gate  is used to update the current state  at time t as:







The output gates, as shown in the following figure, compute the output from the LSTM cell based on input Xt , previous layer output ht-1, and current state Ct:



Illustration of output gate

The output based on output gate can be computed as follows:







            

            
        
    
        

                            
                    Reinforcement Learning

                
            
            
                
The current chapter will introduce Reinforcement Learning. We will cover the following topics:


	Setting up a Markov Decision Process

	Performing model-based learning

	Performing model-free learning





            

            
        
    
        

                            
                    Introduction

                
            
            
                
Reinforcement Learning (RL) is an area in machine learning that is inspired by psychology, such as how agents (software programs) can take actions in order to maximize cumulative rewards.

The RL is reward-based learning where the reward comes at the end or is distributed during the learning. For example, in chess, the reward will be assigned to winning or losing the game whereas in games such as tennis, every point won is a reward. Some of the commercial examples of RL are DeepMind from Google uses RL to master parkour. Similarly, Tesla is developing AI-driven technology using RL. An example of reinforcement architecture is shown in the following figure:



Interaction of an agent with environment in Reinforcement Learning

The basic notations for RL are as follows:


	T(s, a, s'): Represents the transition model for reaching state s' when action a is taken at state s

	: Represents a policy which defines what action to take at every possible state 

	R(s): Denotes the reward received by agent at state s



The current chapter will look at how to set up reinforcement models using R. The next sub-section will introduce MDPtoolbox from R.



            

            
        
    
        

                            
                    Setting up a Markov Decision Process

                
            
            
                
The Markov Decision Process (MDP) forms the basis of setting up RL, where the outcome of a decision is semi-controlled; that is, it is partly random and partly controlled (by the decision-maker). An MDP is defined using a set of possible states (S), a set of possible actions (A), a real-values reward function (R), and a set of transition probabilities from one state to another state for a given action (T). In addition, the effects of an action performed on one state depends only on that state and not on its previous states.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
In this section, let us define an agent travelling across a 4 x 4 grid, as shown in following figure:



A sample 4 x 4 grid of 16 states

This grid has 16 states (S1, S2....S16). In each state, the agent can perform four actions (up, right, down, left). However, the agent will be restricted to some actions based on the following constraints:


	The states across the edges shall be restricted to actions which point only toward states in the grid. For example, an agent in S1 is restricted to the right or down action.

	Some state transitions have barriers, marked in red. For example, the agent cannot go down from S2 to S3.



Each state is also assigned to a reward. The objective of the agent is to reach the destination with minimum moves, thereby achieving the maximum reward. Except state S15 with a reward value of 100, all the remaining states have a reward value of -1.

Here, we will use the MDPtoolbox package in R.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section will show you how to set up RL models using MDPtoolbox in R:


	Install and load the required package:




Install.packages("MDPtoolbox") 
library(MDPtoolbox) 



	Define the transition probabilities for action. Here, each row denotes from state and each column denotes to state. As we have 16 states, the transition probability matrix of each action shall be a 16 x 16 matrix, with each row adding upto 1:




up<- matrix(c(1      ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0.7   ,     0.2   ,     0     ,     0     ,     0     ,     0.1   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0.8   ,     0.05  ,     0     ,     0   ,     0.15  ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0.7   ,     0.3   ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0.1   ,     0     ,     0     ,     0     ,     0.7   ,     0.1   ,     0     ,     0     ,     0.1   ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0     ,     0.05  ,     0     ,     0     ,     0.7   ,     0.15   ,     0.1   ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0.05  ,     0     ,     0     ,     0.7   ,     0.15  ,     0.05  ,     0     ,     0     ,     0.05  ,     0     ,   0     ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.7   ,     0.2   ,     0     ,     0     ,     0     ,     0.1   ,   0     ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0.05  ,     0   ,     0     ,     0     ,     0.85  ,     0.05  ,     0     ,     0     ,   0.05  ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0.7   ,     0.2   ,     0.05  ,     0     ,   0     ,     0.05  ,     0     ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.05  ,     0     ,     0     ,     0.7   ,     0.2   ,     0     ,   0     ,     0     ,     0.05  ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0.05  ,     0     ,     0     ,     0     ,     0.9   ,   0     ,     0     ,     0     ,     0.05  , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0.1   ,     0     ,     0     ,     0     ,   0.9   ,     0     ,     0     ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0.1   ,     0     ,     0     ,   0.7   ,     0.2   ,     0     ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0.05  ,     0     ,   0     ,     0.8   ,     0.15  ,     0     , 
               0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0.8   ,     0.2   ), 
nrow=16, ncol=16, byrow=TRUE) 
left<- matrix(c(1    ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0.05      ,     0.9   ,     0     ,     0     ,     0     ,   0.05  ,     0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0.9   ,     0.05  ,     0     ,     0   ,     0.05  ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0.05  ,     0.9   ,     0     ,     0   ,     0     ,     0.05  ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0.8 ,     0     ,     0     ,     0     ,     0.1   ,     0.05   ,     0     ,     0     ,     0.05  ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0.8   ,     0     ,     0     ,     0.05  ,     0.1   ,     0.05  ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0.8   ,     0     ,     0     ,     0.05   ,     0.1   ,     0.05  ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.1   ,     0.8   ,     0     ,     0     ,     0     ,     0.1   ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0.8   ,     0   ,     0     ,     0     ,     0.1   ,     0.05  ,     0     ,     0     ,   0.05  ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0.8   ,     0     ,     0     ,     0.05  ,     0.1   ,     0.05  ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.8   ,     0     ,     0     ,     0.1   ,     0.1   ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0.8   ,     0     ,     0     ,     0     ,     0.2   ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0.8   ,     0     ,     0     ,     0     ,   0.2   ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0.8   ,     0     ,     0     ,   0.05  ,     0.1   ,     0.05  ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0.8   ,     0     ,   0     ,     0.05  ,     0.1   ,     0.05  , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0.8   ,   0     ,     0     ,     0.05  ,     0.15), 
nrow=16, ncol=16, byrow=TRUE) 
down<- matrix(c(0.1  ,     0.8   ,     0     ,     0     ,     0.1   ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0.05      ,     0.9   ,     0     ,     0     ,     0     ,   0.05  ,     0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0.1   ,     0.8   ,     0     ,     0   ,     0.1   ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0.1   ,     0.9   ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0.05      ,     0     ,     0     ,     0     ,     0.15  ,   0.8   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0.2   ,     0.8   ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.2   ,     0.8   ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.1   ,     0.9   ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0.05  ,     0   ,     0     ,     0     ,     0.1   ,     0.8   ,     0     ,     0     ,   0.05  ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0.2   ,     0.8   ,     0     ,   0     ,     0     ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0.05  ,     0.8   ,     0     ,   0     ,     0     ,     0.05  ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0.05  ,     0     ,     0     ,     0     ,     0.9   ,   0     ,     0     ,     0     ,     0.05  , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0.2   ,     0.8   ,     0     ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0.05  ,     0.15  ,     0.8   ,     0     , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0.2   ,     0.8   , 
                 0   ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     1), 
nrow=16, ncol=16, byrow=TRUE) 
right<- matrix(c(0.2 ,     0.1   ,     0     ,     0     ,     0.7   ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                  0.1      ,     0.1   ,     0     ,     0     ,     0     ,   0.8   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0.2   ,     0     ,     0     ,     0   ,     0.8   ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0.1   ,     0.9   ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0.2   ,     0.1   ,     0     ,     0     ,     0.7   ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0.9   ,     0.1   ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0.05   ,     0.1   ,     0     ,     0     ,     0     ,     0.85  ,     0     ,   0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0.1   ,     0.2   ,     0     ,     0     ,     0     ,     0.7   ,   0     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0.2   ,     0     ,     0     ,     0     ,   0.8   ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0.1   ,     0     ,     0     ,   0     ,     0.9   ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0.1   ,     0     ,   0     ,     0     ,     0.9   ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0.2   ,   0     ,     0     ,     0     ,     0.8   , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   1     ,     0     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     1     ,     0     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     1     ,     0     , 
                  0  ,     0     ,     0     ,     0     ,     0     ,     0   ,     0     ,     0     ,     0     ,     0     ,     0     ,     0     ,   0     ,     0     ,     0     ,     1), 
nrow=16, ncol=16, byrow=TRUE) 



	Define a list of transition probability matrices:




TPMs <- list(up=up, left=left, 
down=down, right=right) 



	Define a reward matrix of dimensions: 16 (number of states) x 4 (number of actions):




Rewards<- matrix(c(-1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1,
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              -1, -1, -1, -1, 
              100, 100, 100, 100, 
              -1, -1, -1, -1), 
nrow=16, ncol=4, byrow=TRUE) 



	Test whether the defined TPMs and Rewards satisfy a well-defined MDP. If it returns an empty string, then the MDP is valid:




mdp_check(TPMs, Rewards) 




            

            
        
    
        

                            
                    Performing model-based learning

                
            
            
                
As the name suggests, the learning is augmented using a predefined model. Here, the model is represented in the form of transition probabilities and the key objective is to determine the optimal policy and value functions using these predefined model attributes (that is, TPMs). The policy is defined as a learning mechanism of an agent, traversing across multiple states. In other words, identifying the best action of an agent in a given state, to traverse to a next state, is termed a policy.

The objective of the policy is to maximize the cumulative reward of transitioning from the start state to the destination state, defined as follows, where P(s) is the cumulative policy P from a start state s, and R is the reward of transitioning from state st to state st+1 by performing an action at.



The value function is of two types: the state-value function and the state-action value function. In the state-value function, for a given policy, it is defined as an expected reward to be in a particular state (including start state), whereas in the state-action value function, for a given policy, it is defined as an expected reward to be in a particular state (including the start state) and undertake a particular action.

Now, a policy is said to be optimal provided it returns the maximum expected cumulative reward, and its corresponding states are termed optimal state-value functions or its corresponding states and actions are termed optimal state-action value functions.

In model-based learning, the following iterative steps are performed in order to obtain an optimum policy, as shown in the following figure:



Iterative steps to find an optimum policy

In this section, we shall evaluate the policy using the state-value function. In each iteration, the policies are dynamically evaluated using the Bellman equation, as follows, where Vi denotes the value at iteration i, P denotes an arbitrary policy of a given state s and action a, T denotes the transition probability from state s to state s' due to an action a, R denotes the reward at state s' while traversing from the state s post an action a, and  denotes a discount factor in the range of (0,1). The discount factor ensures higher importance to starting learning steps than later.







            

            
        
    
        

                            
                    How to do it...

                
            
            
                
This section shows you how to set up model-based RL:


	Run the policy iteration using the state-action value function with the discount factor Υ = 0.9:




mdp_policy<- mdp_policy_iteration(P=TPMs, R=Rewards, discount=0.9) 



	Get the best (optimum) policy P* as shown in the following figure. The arrows marked in green show the direction of traversing S1 to S15:




mdp_policy$policy 
names(TPMs)[mdp_policy$policy] 




Optimum policy using model-based iteration with an optimum path from S1 to S15


	Get the optimum value function V* for each state and plot them as shown in the following figure:




mdp_policy$V 
names(mdp_policy$V) <- paste0("S",1:16) 
barplot(mdp_policy$V,col="blue",xlab="states",ylab="Optimal value",main="Value function of the optimal Policy",width=0.5) 




Value functions of the optimal policy



            

            
        
    
        

                            
                    Performing model-free learning

                
            
            
                
Unlike model-based learning, where dynamics of transitions are explicitly provided (as transition probabilities from one state to another state), in model-free learning, the transitions are supposed to be deduced and learned directly from the interaction between states (using actions) rather explicitly provided. Widely used frameworks of mode-free learning are Monte Carlo methods and the Q-learning technique. The former is simple to implement but convergence takes time, whereas the latter is complex to implement but is efficient in convergence due to off-policy learning.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
In this section, we will implement the Q-learning algorithm in R. The simultaneous exploration of the surrounding environment and exploitation of existing knowledge is termed off-policy convergence. For example, an agent in a particular state first explores all the possible actions of transitioning into next states and observes the corresponding rewards, and then exploits current knowledge to update the existing state-action value using the action generating the maximum possible reward.

The Q learning returns a 2D Q-table of the size of the number of states x the number of actions. The values in the Q-table are updated based on the following formula, where Q denotes the value of state s and action a, r' denotes the reward of the next state for a selected action a, Υ denotes the discount factor, and α denotes the learning rate:



The framework for Q-learning is shown in the following figure:



Framework of Q-learning



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The section provide steps for how to set up Q-learning:


	Define 16 states:




states <- c("s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", "s16") 



	Define four actions:




actions<- c("up", "left", "down", "right") 



	Define the transitionStateAction function, which can simulate the transitions from one state s to another state s' using an action a. The function takes in the current state s and selected action a, and it returns the next state s' and corresponding reward r'. In case of constrained action, the next state returned is the current state s and the existing reward r:




transitionStateAction<- function(state, action) { 
  # The default state is the existing state in case of constrained action 
next_state<- state 
if (state == "s1"&& action == "down") next_state<- "s2" 
if (state == "s1"&& action == "right") next_state<- "s5" 
if (state == "s2"&& action == "up") next_state<- "s1" 
if (state == "s2"&& action == "right") next_state<- "s6" 
if (state == "s3"&& action == "right") next_state<- "s7" 
if (state == "s3"&& action == "down") next_state<- "s4" 
if (state == "s4"&& action == "up") next_state<- "s3" 
if (state == "s5"&& action == "right") next_state<- "s9" 
if (state == "s5"&& action == "down") next_state<- "s6" 
if (state == "s5"&& action == "left") next_state<- "s1" 
if (state == "s6"&& action == "up") next_state<- "s5" 
if (state == "s6"&& action == "down") next_state<- "s7" 
if (state == "s6"&& action == "left") next_state<- "s2" 
if (state == "s7"&& action == "up") next_state<- "s6" 
if (state == "s7"&& action == "right") next_state<- "s11" 
if (state == "s7"&& action == "down") next_state<- "s8" 
if (state == "s7"&& action == "left") next_state<- "s3" 
if (state == "s8"&& action == "up") next_state<- "s7" 
if (state == "s8"&& action == "right") next_state<- "s12" 
if (state == "s9"&& action == "right") next_state<- "s13" 
if (state == "s9"&& action == "down") next_state<- "s10" 
if (state == "s9"&& action == "left") next_state<- "s5" 
if (state == "s10"&& action == "up") next_state<- "s9" 
if (state == "s10"&& action == "right") next_state<- "s14" 
if (state == "s10"&& action == "down") next_state<- "s11" 
if (state == "s11"&& action == "up") next_state<- "s10" 
if (state == "s11"&& action == "right") next_state<- "s15" 
if (state == "s11"&& action == "left") next_state<- "s7" 
if (state == "s12"&& action == "right") next_state<- "s16" 
if (state == "s12"&& action == "left") next_state<- "s8" 
if (state == "s13"&& action == "down") next_state<- "s14" 
if (state == "s13"&& action == "left") next_state<- "s9" 
if (state == "s14"&& action == "up") next_state<- "s13" 
if (state == "s14"&& action == "down") next_state<- "s15" 
if (state == "s14"&& action == "left") next_state<- "s10" 
if (state == "s15"&& action == "up") next_state<- "s14" 
if (state == "s15"&& action == "down") next_state<- "s16" 
if (state == "s15"&& action == "left") next_state<- "s11" 
if (state == "s16"&& action == "up") next_state<- "s15" 
if (state == "s16"&& action == "left") next_state<- "s12" 
  # Calculate reward 
if (next_state == "s15") { 
reward<- 100 
  } else { 
reward<- -1 
  } 
 
return(list(state=next_state, reward=reward)) 
} 



	Define a function to perform Q-learning using n iterations:




Qlearning<- function(n, initState, termState, 
epsilon, learning_rate) { 
  # Initialize a Q-matrix of size #states x #actions with zeroes 
Q_mat<- matrix(0, nrow=length(states), ncol=length(actions), 
dimnames=list(states, actions)) 
  # Run n iterations of Q-learning 
for (i in 1:n) { 
Q_mat<- updateIteration(initState, termState, epsilon, learning_rate, Q_mat) 
  } 
return(Q_mat) 
} 
   updateIteration<- function(initState, termState, epsilon, learning_rate, Q_mat) { 
state<- initState # set cursor to initial state 
while (state != termState) { 
    # Select the next action greedily or randomnly 
if (runif(1) >= epsilon) { 
action<- sample(actions, 1) # Select randomnly 
    } else { 
action<- which.max(Q_mat[state, ]) # Select best action 
    } 
    # Extract the next state and its reward 
response<- transitionStateAction(state, action) 
    # Update the corresponding value in Q-matrix (learning) 
Q_mat[state, action] <- Q_mat[state, action] + learning_rate * 
      (response$reward + max(Q_mat[response$state, ]) - Q_mat[state, action]) 
state<- response$state # update with next state 
  } 
return(Q_mat) 
} 



	Set learning parameters such as epsilon and learning_rate:




epsilon<- 0.1 
learning_rate<- 0.9 



	Get the Q-table after 500k iterations:




Q_mat<- Qlearning(500, "s1", "s15", epsilon, learning_rate) 
Q_mat 



	Get the best (optimum) policy P*, as shown in the following figure. The arrows marked in green shows the direction of traversing S1 to S15:




actions[max.col(Q_mat)] 




Optimum policy using model-free iteration with an optimum path from S1 to S15





            

            
        
    
        

                            
                    Application of Deep Learning in Text Mining

                
            
            
                
The current chapter we will cover the following topics:


	Performing preprocessing of textual data and extraction of sentiments

	Analyzing documents using tf-idf

	Performing sentiment prediction using LSTM network

	Application using text2vec examples





            

            
        
    
        

                            
                    Performing preprocessing of textual data and extraction of sentiments

                
            
            
                
In this section, we will use Jane Austen's bestselling novel Pride and Prejudice, published in 1813, for our textual data preprocessing analysis. In R, we will use the tidytext package by Hadley Wickham to perform tokenization, stop word removal, sentiment extraction using predefined sentiment lexicons, term frequency - inverse document frequency (tf-idf) matrix creation, and to understand pairwise correlations among n-grams.

In this section, instead of storing text as a string or a corpus or a document term matrix (DTM), we process them into a tabular format of one token per row.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Here is how we go about preprocessing:


	Load the required packages:




load_packages=c("janeaustenr","tidytext","dplyr","stringr","ggplot2","wordcloud","reshape2","igraph","ggraph","widyr","tidyr") 
lapply(load_packages, require, character.only = TRUE) 



	Load the Pride and Prejudice dataset. The line_num attribute is analogous to the line number printed in the book:




Pride_Prejudice <- data.frame("text" = prideprejudice, 
                              "book" = "Pride and Prejudice", 
                              "line_num" = 1:length(prideprejudice), 
                              stringsAsFactors=F) 



	Now, perform tokenization to restructure the one-string-per-row format to a one-token-per-row format. Here, the token can refer to a single word, a group of characters, co-occurring words (n-grams), sentences, paragraphs, and so on. Currently, we will tokenize sentence into singular words:




Pride_Prejudice <- Pride_Prejudice %>% unnest_tokens(word,text) 



	Then, remove the commonly occurring words such as the, and, for, and so on using the stop words removal corpus:




data(stop_words) 
Pride_Prejudice <- Pride_Prejudice %>% anti_join(stop_words,
by="word") 



	Extract the most common textual words used:




most.common <- Pride_Prejudice %>% dplyr::count(word, sort = TRUE)



	Visualize the top 10 common occurring words, as shown in the following figure:





Top 10 common words


most.common$word  <- factor(most.common$word , levels = most.common$word) 
ggplot(data=most.common[1:10,], aes(x=word, y=n, fill=word)) + 
  geom_bar(colour="black", stat="identity")+ 
  xlab("Common Words") + ylab("N Count")+ 
  ggtitle("Top 10 common words")+ 
  guides(fill=FALSE)+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(text = element_text(size = 10))+ 
  theme(panel.background = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank()) 



	Then, extract sentiments at a higher level (that is positive or negative) using the bing lexicon.




Pride_Prejudice_POS_NEG_sentiment <- Pride_Prejudice %>% inner_join(get_sentiments("bing"), by="word") %>% dplyr::count(book, index = line_num %/% 150, sentiment) %>% spread(sentiment, n, fill = 0) %>% mutate(net_sentiment = positive - negative)



	Visualize the sentiments across small sections (150 words) of text, as shown in the following figure:





Distribution of the number of positive and negative words across sentences of 150 words each


ggplot(Pride_Prejudice_POS_NEG_sentiment, aes(index, net_sentiment))+ 
  geom_col(show.legend = FALSE) + 
  geom_line(aes(y=mean(net_sentiment)),color="blue")+ 
  xlab("Section (150 words each)") + ylab("Values")+ 
  ggtitle("Net Sentiment (POS - NEG) of Pride and Prejudice")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(text = element_text(size = 10))+ 
  theme(panel.background = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank())



	Now extract sentiments at a granular level (namely positive, negative, anger, disgust, surprise, trust, and so on.) using the nrc lexicon:




Pride_Prejudice_GRAN_sentiment <- Pride_Prejudice %>% inner_join(get_sentiments("nrc"), by="word") %>% dplyr::count(book, index = line_num %/% 150, sentiment) %>% spread(sentiment, n, fill = 0)



	Visualize the variation across different sentiments defined, as shown in the following figure:





Variation across different types of sentiments


ggplot(stack(Pride_Prejudice_GRAN_sentiment[,3:12]), aes(x = ind, y = values)) + 
  geom_boxplot()+ 
  xlab("Sentiment types") + ylab("Sections (150 words) of text")+ 
  ggtitle("Variation across different sentiments")+ 
  theme(plot.title = element_text(hjust = 0.5))+ 
  theme(text = element_text(size = 15))+ 
  theme(panel.background = element_blank(), panel.grid.major = element_blank(),panel.grid.minor = element_blank())



	Extract the most occurring positive and negative words based on the bing lexicon, and visualize them as shown in the following figure:





Top 10 positive and negative words in the novel Pride and Prejudice


POS_NEG_word_counts <- Pride_Prejudice %>% inner_join(get_sentiments("bing"), by="word") %>% dplyr::count(word, sentiment, sort = TRUE) %>% ungroup() POS_NEG_word_counts %>% group_by(sentiment) %>% top_n(10) %>% ungroup() %>% mutate(word = reorder(word, n)) %>% ggplot(aes(word, n, fill = sentiment)) + geom_col(show.legend = FALSE) + facet_wrap(~sentiment, scales = "free_y") + ggtitle("Top 10 positive and negative words")+ coord_flip() + theme(plot.title = element_text(hjust = 0.5))+ theme(text = element_text(size = 15))+ labs(y = NULL, x = NULL)+ theme(panel.background = element_blank(),panel.border = element_rect(linetype = "dashed", fill = NA))



	Generate a sentiment word cloud as shown in the following figure:





Word cloud of positive and negative words


Prejudice %>% 
inner_join(get_sentiments("bing"), by = "word") %>% dplyr::count(word, sentiment, sort = TRUE) %>% acast(word ~ sentiment, value.var = "n", fill = 0) %>% comparison.cloud(colors = c("red", "green"), max.words = 100,title.size=2, use.r.layout=TRUE, random.order=TRUE, scale=c(6,0.5)



	Now analyze sentiments across the chapters of the book:




	

	Extract the chapters, and perform tokenization:








austen_books_df <- as.data.frame(austen_books(),stringsAsFactors=F) austen_books_df$book <- as.character(austen_books_df$book) Pride_Prejudice_chapters <- austen_books_df %>% group_by(book) %>% filter(book == "Pride & Prejudice") %>% mutate(chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]", ignore_case = TRUE)))) %>% ungroup() %>% unnest_tokens(word, text)



	

	Extract the set positive and negative words from the bing lexicon:








bingNEG <- get_sentiments("bing") %>%  
  filter(sentiment == "negative")  
bingPOS <- get_sentiments("bing") %>%  
  filter(sentiment == "positive") 



	

	Get the count of words for each chapter:








  wordcounts <- Pride_Prejudice_chapters %>% 
  group_by(book, chapter) %>% 
  dplyr::summarize(words = n()) 



	

	Extract the ratio of positive and negative words:








POS_NEG_chapter_distribution <- merge ( Pride_Prejudice_chapters %>% 
semi_join(bingNEG, by="word") %>% 
group_by(book, chapter) %>% 
dplyr::summarize(neg_words = n()) %>% 
left_join(wordcounts, by = c("book", "chapter")) %>% 
mutate(neg_ratio = round(neg_words*100/words,2)) %>% 
filter(chapter != 0) %>% 
ungroup(), 
Pride_Prejudice_chapters %>% 
semi_join(bingPOS, by="word") %>% 
group_by(book, chapter) %>%            dplyr::summarize(pos_words = n()) %>% 
left_join(wordcounts, by = c("book", "chapter")) %>% 
mutate(pos_ratio = round(pos_words*100/words,2)) %>% 
filter(chapter != 0) %>% 
ungroup() ) 



	

	Generate a sentiment flag for each chapter based on the proportion of positive and negative words:








POS_NEG_chapter_distribution$sentiment_flag <- ifelse(POS_NEG_chapter_distribution$neg_ratio > POS_NEG_chapter_distribution$pos_ratio,"NEG","POS") 
table(POS_NEG_chapter_distribution$sentiment_flag)  




            

            
        
    
        

                            
                    How it works...

                
            
            
                
As mentioned earlier, we have used Jane Austen's famous novel Pride and Prejudice in this section, detailing the steps involved in tidying the data, and extracting sentiments using (publicly) available lexicons.

Steps 1 and 2 show the loading of the required cran packages and the required text. Steps 3 and 4 perform unigram tokenization and stop word removal. Steps 5 and 6 extract and visualize the top 10 most occurring words across all the 62 chapters. Steps 7 to 12 demonstrate high and granular-level sentiments using two widely used lexicons bing and nrc.

Both the lexicons contains a list of widely used English words that are tagged to sentiments. In bing, each word is tagged to one of the high level binary sentiments (positive or negative), and in nrc, each word is tagged to one of the granular-level multiple sentiments (positive, negative, anger, anticipation, joy, fear, disgust, trust, sadness, and surprise).

Each 150-word-long sentence is tagged to a sentiment, and the same has been shown in the figure showing the Distribution of number of positive and negative words across sentences of 150 words each. In step 13, chapter-wise sentiment tagging is performed using maximum occurrence of positive or negative words from the bing lexicon. Out of 62 chapters, 52 have more occurrences of positive lexicons, and 10 have more occurrences of negative lexicons.



            

            
        
    
        

                            
                    Analyzing documents using tf-idf

                
            
            
                
In this section, we will learn how to analyze documents quantitatively. A simple way is to look at the distribution of unigram words across the document and their frequency of occurrence, also termed as term frequency (tf). The words with higher frequency of occurrence generally tend to dominate the document.

However, one would disagree in case of generally occurring words such as the, is, of, and so on. Hence, these are removed by stop word dictionaries. Apart from these stop words, there might be some specific words that are more frequent with less relevance. Such kinds of words are penalized using their inverse document frequency (idf) values. Here, the words with higher frequency of occurrence are penalized.

The statistic tf-idf combines these two quantities (by multiplication) and provides a measure of importance or relevance of each word for a given document across multiple documents (or a corpus).

In this section, we will generate a tf-idf matrix across chapters of the book Pride and Prejudice.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Here is how we go about analyzing documents using tf-idf:


	Extract the text of all 62 chapters in the book Pride and Prejudice. Then, return chapter-wise occurrence of each word. The total words in the book are approx 1.22M.




Pride_Prejudice_chapters <- austen_books_df %>% 
group_by(book) %>% 
filter(book == "Pride & Prejudice") %>% 
mutate(linenumber = row_number(), 
chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]",
                                        ignore_case = TRUE)))) %>% 
ungroup() %>% 
unnest_tokens(word, text) %>% 
count(book, chapter, word, sort = TRUE) %>% 
ungroup() 



	Calculate the rank of words such that the most frequently occurring words have lower ranks. Also, visualize the term frequency by rank, as shown in the following figure:





This figure shows lower ranks for words with higher term-frequency (ratio) value


freq_vs_rank <- Pride_Prejudice_chapters %>%  
mutate(rank = row_number(),  
       term_frequency = n/totalwords) 
freq_vs_rank %>%  
  ggplot(aes(rank, term_frequency)) +  
  geom_line(size = 1.1, alpha = 0.8, show.legend = FALSE) +  
  scale_x_log10() + 
  scale_y_log10()



	Calculate the tf-idf value for each word using the bind_tf-idf function:




Pride_Prejudice_chapters <- Pride_Prejudice_chapters %>% 
bind_tf_idf(word, chapter, n)



	Extract and visualize the top 15 words with higher values of tf-idf, as shown in the following figure:





tf-idf values of top 15 words



Pride_Prejudice_chapters %>% 
  select(-totalwords) %>% 
  arrange(desc(tf_idf)) 
 
Pride_Prejudice_chapters %>% 
  arrange(desc(tf_idf)) %>% 
  mutate(word = factor(word, levels = rev(unique(word)))) %>%  
  group_by(book) %>%  
  top_n(15) %>%  
  ungroup %>% 
  ggplot(aes(word, tf_idf, fill = book)) + 
  geom_col(show.legend = FALSE) + 
  labs(x = NULL, y = "tf-idf") + 
  facet_wrap(~book, ncol = 2, scales = "free") + 
  coord_flip() 




            

            
        
    
        

                            
                    How it works...

                
            
            
                
As mentioned earlier, one can observe that the tf-idf scores of very common words such as the are close to zero and those of fewer occurrence words such as the proper noun Austen is close to one.



            

            
        
    
        

                            
                    Performing sentiment prediction using LSTM network

                
            
            
                
In this section, we will use LSTM networks to perform sentiment analysis. Along with the word itself, the LSTM network also accounts for the sequence using recurrent connections, which makes it more accurate than a traditional feed-forward neural network.

Here, we shall use the movie reviews dataset text2vec from the cran package. This dataset consists of 5,000 IMDb movie reviews, where each review is tagged with a binary sentiment flag (positive or negative).



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Here is how you can proceed with sentiment prediction using LSTM:


	Load the required packages and movie reviews dataset:




load_packages=c("text2vec","tidytext","tensorflow") 
lapply(load_packages, require, character.only = TRUE) 
data("movie_review") 



	Extract the movie reviews and labels as a dataframe and matrix respectively. In movie reviews, add an additional attribute "Sno" denoting the review number. In the labels matrix, add an additional attribute related to negative flag.




reviews <- data.frame("Sno" = 1:nrow(movie_review), 
                         "text"=movie_review$review, 
                         stringsAsFactors=F) 
 
labels <- as.matrix(data.frame("Positive_flag" = movie_review$sentiment,"negative_flag" = (1
                    movie_review$sentiment)))



	Extract all the unique words across the reviews, and get their count of occurrences (n). Also, tag each word with a unique integer (orderNo). Thus, each word is encoded using a unique integer, which shall be later used in the LSTM network.




reviews_sortedWords <- reviews %>% unnest_tokens(word,text) %>% dplyr::count(word, sort = TRUE) 
reviews_sortedWords$orderNo <- 1:nrow(reviews_sortedWords) 
reviews_sortedWords <- as.data.frame(reviews_sortedWords) 



	Now, assign the tagged words back to the reviews based on their occurrences:




reviews_words <- reviews %>% unnest_tokens(word,text) 
reviews_words <- plyr::join(reviews_words,reviews_sortedWords,by="word") 



	Using the outcome of step 4, create a list of reviews with each review transformed into a set of encoded numbers representing those words:




reviews_words_sno <- list() 
for(i in 1:length(reviews$text))
{ 
  reviews_words_sno[[i]] <- c(subset(reviews_words,Sno==i,orderNo)) 
} 



	In order to facilitate equal-length sequences to the LSTM network, let's restrict the review length to 150 words. In other words, reviews longer than 150 words will be truncated to the first 150, whereas shorter reviews will be made 150 words long by prefixing with the required number of zeroes. Thus, we now add in a new word 0.




reviews_words_sno <- lapply(reviews_words_sno,function(x) 
{ 
  x <- x$orderNo 
  if(length(x)>150)
  { 
    return (x[1:150]) 
  } 
  else 
  { 
  return(c(rep(0,150-length(x)),x)) 
  } 
})



	Now split the 5,000 reviews into training and testing reviews using a 70:30 split ratio. Also, bind the list of train and test reviews row wise into a matrix format, with rows representing reviews and columns representing the position of a word:




train_samples <- caret::createDataPartition(c(1:length(labels[1,1])),p = 0.7)$Resample1 
 
train_reviews <- reviews_words_sno[train_samples] 
test_reviews <- reviews_words_sno[-train_samples] 
 
train_reviews <- do.call(rbind,train_reviews) 
test_reviews <- do.call(rbind,test_reviews)  



	Similarly, also split the labels into train and test accordingly:




train_labels <- as.matrix(labels[train_samples,]) 
test_labels <- as.matrix(labels[-train_samples,]) 



	Reset the graph, and start an interactive TensorFlow session:




tf$reset_default_graph() 
sess<-tf$InteractiveSession() 



	Define model parameters such as size of input pixels (n_input), step size (step_size), number of hidden layers (n.hidden), and number of outcome classes (n.classes):




n_input<-15 
step_size<-10 
n.hidden<-2 
n.class<-2 



	Define training parameters such as learning rate (lr), number of inputs per batch run (batch), and number of iterations (iteration):




lr<-0.01 
batch<-200 
iteration = 500



	Based on the RNN and LSTM functions defined in Chapter 6, Recurrent Neural Networks, from the section Run the optimization post initializing a session using global variables initializer.




sess$run(tf$global_variables_initializer()) 
train_error <- c() 
for(i in 1:iteration){ 
  spls <- sample(1:dim(train_reviews)[1],batch) 
  sample_data<-train_reviews[spls,] 
  sample_y<-train_labels[spls,] 
   
  # Reshape sample into 15 sequence with each of 10 elements 
  sample_data=tf$reshape(sample_data, shape(batch, step_size, n_input)) 
  out<-optimizer$run(feed_dict = dict(x=sample_data$eval(session = sess), y=sample_y)) 
   
  if (i %% 1 == 0){ 
    cat("iteration - ", i, "Training Loss - ",  cost$eval(feed_dict = dict(x=sample_data$eval(), y=sample_y)), "\n") 
  } 
  train_error <-  c(train_error,cost$eval(feed_dict = dict(x=sample_data$eval(), y=sample_y))) 
} 



	Plot the reduction in training errors across iterations as shown in the following figure:





Distribution of sentiment prediction error of training dataset


plot(train_error, main="Training sentiment prediction error", xlab="Iterations", ylab = "Train Error")



	Get the error of test data:




test_data=tf$reshape(test_reviews, shape(-1, step_size, n_input)) 
cost$eval(feed_dict=dict(x= test_data$eval(), y=test_labels))




            

            
        
    
        

                            
                    How it works...

                
            
            
                
In steps 1 to 8, the movie reviews dataset is loaded, processed, and transformed into a set of train and test matrices, which can be directly used to train an LSTM network. Steps 9 to 14 are used to run LSTM using TensorFlow, as described in Chapter 6, Recurrent Neural Networks. The figure Distribution of sentiment prediction error of training dataset shows the decline in training errors across 500 iterations.



            

            
        
    
        

                            
                    Application using text2vec examples

                
            
            
                
In this section, we will analyze the performance of logistic regression on various examples of text2vec.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Here is how we apply text2vec:


	Load the required packages and dataset:




library(text2vec) 
library(glmnet) 
data("movie_review") 



	Function to perform Lasso logistic regression, and return the train and test AUC values:




logistic_model <- function(Xtrain,Ytrain,Xtest,Ytest)
{ 
  classifier <- cv.glmnet(x=Xtrain, y=Ytrain, 
  family="binomial", alpha=1, type.measure = "auc", 
  nfolds = 5, maxit = 1000) 
  plot(classifier) 
  vocab_test_pred <- predict(classifier, Xtest, type = "response") 
  return(cat("Train AUC : ", round(max(classifier$cvm), 4), 
  "Test AUC : ",glmnet:::auc(Ytest, vocab_test_pred),"\n")) 
} 



	Split the movies review data into train and test in an 80:20 ratio:




train_samples <- caret::createDataPartition(c(1:length(labels[1,1])),p = 0.8)$Resample1 
train_movie <- movie_review[train_samples,] 
test_movie <- movie_review[-train_samples,] 



	Generate a DTM of all vocabulary words (without any stop word removal), and asses its performance using Lasso logistic regression:




train_tokens <- train_movie$review %>% tolower %>% word_tokenizer 
test_tokens <- test_movie$review %>% tolower %>% word_tokenizer 
 
vocab_train <- create_vocabulary(itoken(train_tokens,ids=train$id,progressbar = FALSE)) 
 
# Create train and test DTMs 
vocab_train_dtm <- create_dtm(it = itoken(train_tokens,ids=train$id,progressbar = FALSE), 
                              vectorizer = vocab_vectorizer(vocab_train)) 
vocab_test_dtm <- create_dtm(it = itoken(test_tokens,ids=test$id,progressbar = FALSE), 
                              vectorizer = vocab_vectorizer(vocab_train)) 
 
dim(vocab_train_dtm) 
dim(vocab_test_dtm) 
 
# Run LASSO (L1 norm) Logistic Regression 
logistic_model(Xtrain = vocab_train_dtm, 
               Ytrain = train_movie$sentiment, 
               Xtest = vocab_test_dtm, 
               Ytest = test_movie$sentiment) 



	Perform pruning using a list of stop words, and then assess the performance using Lasso logistic regression:




data("stop_words") 
vocab_train_prune <- create_vocabulary(itoken(train_tokens,ids=train$id,progressbar = FALSE), 
                                       stopwords = stop_words$word) 
 
vocab_train_prune <- prune_vocabulary(vocab_train_prune,term_count_min = 15, 
                                      doc_proportion_min = 0.0005, 
                                      doc_proportion_max = 0.5) 
 
vocab_train_prune_dtm <- create_dtm(it = itoken(train_tokens,ids=train$id,progressbar = FALSE), 
                              vectorizer = vocab_vectorizer(vocab_train_prune)) 
vocab_test_prune_dtm <- create_dtm(it = itoken(test_tokens,ids=test$id,progressbar = FALSE), 
                             vectorizer = vocab_vectorizer(vocab_train_prune)) 
 
logistic_model(Xtrain = vocab_train_prune_dtm, 
               Ytrain = train_movie$sentiment, 
               Xtest = vocab_test_prune_dtm, 
               Ytest = test_movie$sentiment) 



	Generate a DTM using n-grams (uni and bigram words), and then assess the performance using Lasso logistic regression:




vocab_train_ngrams <- create_vocabulary(itoken(train_tokens,ids=train$id,progressbar = FALSE), 
                                        ngram = c(1L, 2L)) 
 
vocab_train_ngrams <- prune_vocabulary(vocab_train_ngrams,term_count_min = 10, 
                                       doc_proportion_min = 0.0005, 
                                       doc_proportion_max = 0.5) 
 
vocab_train_ngrams_dtm <- create_dtm(it = itoken(train_tokens,ids=train$id,progressbar = FALSE), 
                                    vectorizer = vocab_vectorizer(vocab_train_ngrams)) 
vocab_test_ngrams_dtm <- create_dtm(it = itoken(test_tokens,ids=test$id,progressbar = FALSE), 
                                   vectorizer = vocab_vectorizer(vocab_train_ngrams)) 
 
 
logistic_model(Xtrain = vocab_train_ngrams_dtm, 
               Ytrain = train_movie$sentiment, 
               Xtest = vocab_test_ngrams_dtm, 
               Ytest = test_movie$sentiment) 



	Perform feature hashing, and then asses the performance using Lasso logistic regression:




vocab_train_hashing_dtm <- create_dtm(it = itoken(train_tokens,ids=train$id,progressbar = FALSE), 
                                      vectorizer = hash_vectorizer(hash_size = 2^14, ngram = c(1L, 2L))) 
vocab_test_hashing_dtm <- create_dtm(it = itoken(test_tokens,ids=test$id,progressbar = FALSE), 
                                    vectorizer = hash_vectorizer(hash_size = 2^14, ngram = c(1L, 2L))) 
 
logistic_model(Xtrain = vocab_train_hashing_dtm, 
               Ytrain = train_movie$sentiment, 
               Xtest = vocab_test_hashing_dtm, 
               Ytest = test_movie$sentiment) 



	Using tf-idf transformation on full vocabulary DTM, assess the performance using Lasso logistic regression:




vocab_train_tfidf <- fit_transform(vocab_train_dtm, TfIdf$new()) 
vocab_test_tfidf <- fit_transform(vocab_test_dtm, TfIdf$new()) 

logistic_model(Xtrain = vocab_train_tfidf, 
               Ytrain = train_movie$sentiment, 
               Xtest = vocab_test_tfidf, 
               Ytest = test_movie$sentiment)  




            

            
        
    
        

                            
                    How it works...

                
            
            
                
Steps 1 to 3 loads necessary packages, datasets, and functions required to assess different examples of text2vec. Logistic regression is implemented using the glmnet package with L1 penalty (Lasso regularization). In step 4, a DTM is created using all the vocabulary words present in the train movie reviews, and the test auc value is 0.918. In step 5, the train and test DTMs are pruned using stop words and frequency of occurrence.

The test auc value is observed as 0.916, not much decrease compared to using all the vocabulary words. In step 6, along with single words (or uni-grams), bi-grams are also added to the vocabulary. The test auc value increases to 0.928. Feature hashing is then performed in step 7, and the test auc value is 0.895. Though the auc value reduced, hashing is meant to improve run-time performance of larger datasets. Feature hashing is widely popularized by Yahoo. Finally, in step 8, we perform tf-idf transformation, which returns a test auc value of 0.907.



            

            
        
    
        

                            
                    Application of Deep Learning to Signal processing

                
            
            
                
The current chapter will present a case study of creating new music notes using generative modeling techniques such as RBM. In this chapter, we will cover the following topics:


	Introducing and preprocessing music MIDI files

	Building an RBM model

	Generating new music notes





            

            
        
    
        

                            
                    Introducing and preprocessing music MIDI files

                
            
            
                
In this recipe, we will read a repository of Musical Instrument Digital Interface (MIDI) files and preprocess them into a suitable format for an RBM. MIDI is one of the formats of storing musical notes, which can be converted to other formats such as .wav, .mp3, .mp4, and so on. MIDI file formats store various kinds of events such as Note-on, Note-off, Tempo, Time Signature, End of track, and so on. However, we will primarily be focusing on the type of note--when it was turned on, and when it was turned off.

Each song is encoded into a binary matrix, where rows represent time, and columns represent both turned on and turned off notes. At each time, a note is turned on and the same note is turned off. Suppose that, out of n notes, note i is turned on and turned off at time j, then positions Mji = 1 and Mj(n+i) = 1, and the rest Mj = 0.

All the rows together form a song. Currently, in this chapter, we will be leveraging Python codes to encode MIDI songs into binary matrices, which can later be used in a Restricted Boltzmann Machine (RBM).



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Let's look at the prerequisites to preprocess MIDI files:


	Download the MIDI song repository:



https://github.com/dshieble/Music_RBM/tree/master/Pop_Music_Midi


	Download the Python codes to manipulate MIDI songs:



https://github.com/dshieble/Music_RBM/blob/master/midi_manipulation.py


	Install the "reticulate" package, which provides the R interface to Python:




Install.packages("reticulate") 



	Import Python libraries:




use_condaenv("python27") 
midi <- import_from_path("midi",path="C:/ProgramData/Anaconda2/Lib/site-packages") 
np <- import("numpy") 
msgpack <- import_from_path("msgpack",path="C:/ProgramData/Anaconda2/Lib/site-packages") 
psys <- import("sys") 
tqdm <- import_from_path("tqdm",path="C:/ProgramData/Anaconda2/Lib/site-packages") 
midi_manipulation_updated <- import_from_path("midi_manipulation_updated",path="C:/Music_RBM") 
glob <- import("glob") 




            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Now that we have set up all the essentials, let's look at the function to define MIDI files:


	Define the function to read the MIDI files and encode them into a binary matrix:




get_input_songs <- function(path){ 
  files = glob$glob(paste0(path,"/*mid*")) 
  songs <- list() 
  count <- 1 
  for(f in files){ 
    songs[[count]] <- np$array(midi_manipulation_updated$midiToNoteStateMatrix(f)) 
    count <- count+1 
  } 
  return(songs) 
} 
path <- 'Pop_Music_Midi' 
input_songs <- get_input_songs(path) 
 




            

            
        
    
        

                            
                    Building an RBM model

                
            
            
                
In this recipe, we will build an RBM model as discussed (in detail) in Chapter 5, Generative Models in Deep Learning.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
Let's set up our system for the model:


	In Piano, the lowest note is 24 and the highest is 102; hence, the range of notes is 78. Thus, the number of columns in the encoded matrix is 156 (that is, 78 for note-on and 78 for note-off):




lowest_note = 24L 
highest_note = 102L 
note_range = highest_note-lowest_note 



	We will create notes for 15 number of steps at a time with 2,340 nodes in the input layer and 50 nodes in the hidden layer:




num_timesteps  = 15L 
num_input      = 2L*note_range*num_timesteps 
num_hidden       = 50L 
 



	The learning rate (alpha) is 0.1:




alpha<-0.1 
 




            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Looking into the steps of building an RBM model:


	Define the placeholder variables:




vb <- tf$placeholder(tf$float32, shape = shape(num_input)) 
hb <- tf$placeholder(tf$float32, shape = shape(num_hidden)) 
W <- tf$placeholder(tf$float32, shape = shape(num_input, num_hidden)) 



	Define a forward pass:




X = tf$placeholder(tf$float32, shape=shape(NULL, num_input)) 
prob_h0= tf$nn$sigmoid(tf$matmul(X, W) + hb)   
h0 = tf$nn$relu(tf$sign(prob_h0 - tf$random_uniform(tf$shape(prob_h0)))) 



	Then, define a backward pass:




prob_v1 = tf$matmul(h0, tf$transpose(W)) + vb 
v1 = prob_v1 + tf$random_normal(tf$shape(prob_v1), mean=0.0, stddev=1.0, dtype=tf$float32) 
h1 = tf$nn$sigmoid(tf$matmul(v1, W) + hb)     



	Calculate positive and negative gradients accordingly:




w_pos_grad = tf$matmul(tf$transpose(X), h0) 
w_neg_grad = tf$matmul(tf$transpose(v1), h1) 
CD = (w_pos_grad - w_neg_grad) / tf$to_float(tf$shape(X)[0]) 
update_w = W + alpha * CD 
update_vb = vb + alpha * tf$reduce_mean(X - v1) 
update_hb = hb + alpha * tf$reduce_mean(h0 - h1) 



	Define the objective function:




err = tf$reduce_mean(tf$square(X - v1)) 



	Initialize the current and previous variables:




cur_w = tf$Variable(tf$zeros(shape = shape(num_input, num_hidden), dtype=tf$float32)) 
cur_vb = tf$Variable(tf$zeros(shape = shape(num_input), dtype=tf$float32)) 
cur_hb = tf$Variable(tf$zeros(shape = shape(num_hidden), dtype=tf$float32)) 
prv_w = tf$Variable(tf$random_normal(shape=shape(num_input, num_hidden), stddev=0.01, dtype=tf$float32)) 
prv_vb = tf$Variable(tf$zeros(shape = shape(num_input), dtype=tf$float32)) 
prv_hb = tf$Variable(tf$zeros(shape = shape(num_hidden), dtype=tf$float32)) 



	Start a TensorFlow session:




sess$run(tf$global_variables_initializer()) 
song = np$array(trainX) 
song = song[1:(np$floor(dim(song)[1]/num_timesteps)*num_timesteps),] 
song = np$reshape(song, newshape=shape(dim(song)[1]/num_timesteps, dim(song)[2]*num_timesteps)) 
output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(X=song, 
                                                                          W = prv_w$eval(), 
                                                                          vb = prv_vb$eval(), 
                                                                          hb = prv_hb$eval())) 
prv_w <- output[[1]]  
prv_vb <- output[[2]] 
prv_hb <-  output[[3]] 
sess$run(err, feed_dict=dict(X= song, W= prv_w, vb= prv_vb, hb= prv_hb)) 



	Run 200 training epochs:




epochs=200 
errors <- list() 
weights <- list() 
u=1 
for(ep in 1:epochs){ 
  for(i in seq(0,(dim(song)[1]-100),100)){ 
    batchX <- song[(i+1):(i+100),] 
    output <- sess$run(list(update_w, update_vb, update_hb), feed_dict = dict(X=batchX, 
                                                                              W = prv_w, 
                                                                              vb = prv_vb, 
                                                                              hb = prv_hb)) 
    prv_w <- output[[1]]  
    prv_vb <- output[[2]] 
    prv_hb <-  output[[3]] 
    if(i%%500 == 0){ 
      errors[[u]] <- sess$run(err, feed_dict=dict(X= song, W= prv_w, vb= prv_vb, hb= prv_hb)) 
      weights[[u]] <- output[[1]] 
      u <- u+1 
      cat(i , " : ") 
    } 
  } 
  cat("epoch :", ep, " : reconstruction error : ", errors[length(errors)][[1]],"\n") 
} 




            

            
        
    
        

                            
                    Generating new music notes

                
            
            
                
In this recipe, we will generate new sample music notes. New musical notes can be generated by altering parameter num_timesteps. However, one should keep in mind to increase the timesteps, as it can become computationally inefficient to handle increased dimensionality of vectors in the current setup of RBM. These RBMs can be made efficient in learning by creating their stacks (namely Deep Belief Networks). Readers can leverage the DBN codes of Chapter 5, Generative Models in Deep Learning, to generate new musical notes.



            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Create new sample music:




hh0 = tf$nn$sigmoid(tf$matmul(X, W) + hb) 
vv1 = tf$nn$sigmoid(tf$matmul(hh0, tf$transpose(W)) + vb) 
feed = sess$run(hh0, feed_dict=dict( X= sample_image, W= prv_w, hb= prv_hb)) 
rec = sess$run(vv1, feed_dict=dict( hh0= feed, W= prv_w, vb= prv_vb)) 
S = np$reshape(rec[1,],newshape=shape(num_timesteps,2*note_range)) 



	Regenerate the MIDI file:




midi_manipulation$noteStateMatrixToMidi(S, name=paste0("generated_chord_1")) 
generated_chord_1 
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In this chapter, we will discuss the concept of Transfer Learning. The following are the topics that will be covered:


	Illustrating the use of a pretrained model

	Setting up the Transfer Learning model

	Building an image classification model

	Training a deep learning model on a GPU

	Comparing performance using CPU and GPU
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A lot of development has happened within the deep learning domain in recent years, to enhance algorithmic efficacy and computational efficiency across different domains such as text, images, audio, and video. However, when it comes to training on new datasets, machine learning usually rebuilds the model from scratch, as is done in traditional data science problem solving. This becomes challenging when a new big dataset need to be trained as it will require very high computation power a lot of and time to reach the desired model efficacy.

Transfer Learning is a mechanism to learn new scenarios from existing models. This approach is very useful to train on big datasets, not necessarily from a similar domain or problem statement. For example, researchers have shown examples of Transfer Learning where they have trained Transfer Learning for completely different problem scenarios, such as when a model built using classifications of cat and dog is used for classifying objects such as aeroplane vs automobile.

In terms of analogy, it's more about passing the learned relationship to new architecture in order to fine-tune weights. An example of how Transfer Learning is used is shown in the following figure:



Illustration of Transfer Learning flow

The figure shows the steps of Transfer Learning, where the weights/architectures from a predeveloped deep learning model are reused to predict a new problem statement. Transfer Learning helps provide a good starting point for deep learning architectures. There are different open source projects going on in different domains, which facilitate Transfer Learning, for example, ImageNet (http://image-net.org/index) is an open source project for image classification where a lot of different architectures such as Alexnet, VGG16, and VGG19 have been developed. Similarly, in text mining, there is a Word2Vec representation of Google News trained using three billion running words.

Details on word2vec can be found at https://code.google.com/archive/p/word2vec/.



            

            
        
    
        

                            
                    Illustrating the use of a pretrained model

                
            
            
                
The current recipe will cover the set-up for using a pretrained model. We will use TensorFlow to demonstrate the recipe. The current recipe will use VGG16 architecture built using the ImageNet as dataset. The ImageNet is an open source image repository of images used for building image recognition algorithms. The database has more than 10 millions tagged images and more than 1 million images have bounding box to capture objects.

Lot of different deep learning architectures are developed using ImageNet dataset. Once of the popular one is VGG networks are convolution neural networks proposed by Zisserman and Simonyan (2014) and trained over ImageNet data with 1,000 classes. The current recipe will consider VGG16 variant of VGG architecture which is known for it's simplicity. The network uses input of 224 x 224 RGB image. The network utilizes 13 convolution layers with different width x height x depth. The maximum pooling layer is used to reduce volume size. The network uses 5 maxpooling layer. The output from convolution layer is passed through 3 fully connected layer. Outcome from fully connected layer go through softmax function to evaluate probability of 1000 classes.

The detailed architecture of VGG16 is shown in the following figure:



VGG16 architecture



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The section covers required to use VGG16 pretrained model for classification.


	Download VGG16 weights from http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz. The file can be downloaded using the following script:




require(RCurl) 
URL <- 'http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz' 
download.file(URL,destfile="vgg_16_2016_08_28.tar.gz",method="libcurl") 



	Install TensorFlow in Python.

	Install R and the tensorflow package in R.

	Download a sample image from http://image-net.org/download-imageurls.





            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The current section provides steps to use pretrained models:


	Load tensorflow in R:




require(tensorflow) 
 



	Assign the slim library from TensorFlow:




slimobj = tf$contrib$slim 


The slim library in TensorFlow is used to maintain complex neural network models in terms of definition, training, and evaluation.


	Reset graph in TensorFlow:




tf$reset_default_graph() 
 



	Define input images:




# Resizing the images 
input.img= tf$placeholder(tf$float32, shape(NULL, NULL, NULL, 3)) 
scaled.img = tf$image$resize_images(input.img, shape(224,224))



	Redefine the VGG16 network:




# Define VGG16 network 
library(magrittr) 
VGG16.model<-function(slim, input.image){ 
  vgg16.network = slim$conv2d(input.image, 64, shape(3,3), scope='vgg_16/conv1/conv1_1') %>%  
    slim$conv2d(64, shape(3,3), scope='vgg_16/conv1/conv1_2')  %>% 
    slim$max_pool2d( shape(2, 2), scope='vgg_16/pool1')  %>% 
     
    slim$conv2d(128, shape(3,3), scope='vgg_16/conv2/conv2_1')  %>% 
    slim$conv2d(128, shape(3,3), scope='vgg_16/conv2/conv2_2')  %>% 
    slim$max_pool2d( shape(2, 2), scope='vgg_16/pool2')  %>% 
     
    slim$conv2d(256, shape(3,3), scope='vgg_16/conv3/conv3_1')  %>% 
    slim$conv2d(256, shape(3,3), scope='vgg_16/conv3/conv3_2')  %>% 
    slim$conv2d(256, shape(3,3), scope='vgg_16/conv3/conv3_3')  %>% 
    slim$max_pool2d(shape(2, 2), scope='vgg_16/pool3')  %>% 
     
    slim$conv2d(512, shape(3,3), scope='vgg_16/conv4/conv4_1')  %>% 
    slim$conv2d(512, shape(3,3), scope='vgg_16/conv4/conv4_2')  %>% 
    slim$conv2d(512, shape(3,3), scope='vgg_16/conv4/conv4_3')  %>% 
    slim$max_pool2d(shape(2, 2), scope='vgg_16/pool4')  %>% 
     
    slim$conv2d(512, shape(3,3), scope='vgg_16/conv5/conv5_1')  %>% 
    slim$conv2d(512, shape(3,3), scope='vgg_16/conv5/conv5_2')  %>% 
    slim$conv2d(512, shape(3,3), scope='vgg_16/conv5/conv5_3')  %>% 
    slim$max_pool2d(shape(2, 2), scope='vgg_16/pool5')  %>% 
     
    slim$conv2d(4096, shape(7, 7), padding='VALID', scope='vgg_16/fc6')  %>% 
    slim$conv2d(4096, shape(1, 1), scope='vgg_16/fc7') %>%  
     
    slim$conv2d(1000, shape(1, 1), scope='vgg_16/fc8')  %>% 
    tf$squeeze(shape(1, 2), name='vgg_16/fc8/squeezed') 
  return(vgg16.network) 
} 
 



	The preceding function defines the network architecture used for the VGG16 network. The network can be assigned using the following script:




vgg16.network<-VGG16.model(slim, input.image = scaled.img) 



	Load the VGG16 weights vgg_16_2016_08_28.tar.gz downloaded in the Getting started section:




# Restore the weights 
restorer = tf$train$Saver() 
sess = tf$Session() 
restorer$restore(sess, 'vgg_16.ckpt')



	Download a sample test image. Let's download an example image from a testImgURL location as shown in following script:




# Evaluating using VGG16 network 
testImgURL<-"http://farm4.static.flickr.com/3155/2591264041_273abea408.jpg" 
img.test<-tempfile() 
download.file(testImgURL,img.test, mode="wb") 
read.image <- readJPEG(img.test) 
# Clean-up the temp file 
file.remove(img.test)  


The preceding script downloads the following image from URL mention in variable testImgURL. The following is the downloaded image:



Sample image used to evaluate imagenet


	Determine the class using the VGG16 pretrained model:




## Evaluate  
size = dim(read.image) 
imgs = array(255*read.image, dim = c(1, size[1], size[2], size[3])) 
VGG16_eval = sess$run(vgg16.network, dict(images = imgs)) 
probs = exp(VGG16_eval)/sum(exp(VGG16_eval))  
 


The maximum probability achieved is 0.62 for class 672, which refers to the category--mountain bike, all-terrain bike, off-roader--in the VGG16 trained dataset.



            

            
        
    
        

                            
                    Setting up the Transfer Learning model

                
            
            
                
The current recipe will cover Transfer Learning using the CIFAR-10 dataset. The previous recipe presented how to use a pretrained model. The current recipe will demonstrate how to use a pretrained model for different problem statements.

We will use another very good deep learning package, MXNET, to demonstrate the concept with another architecture, Inception. To simplify the computation, we will reduce the problem complexity from 10 classes to two classes: aeroplane and automobile. The recipe focuses on data preparation for Transfer Learning using Inception-BN.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The section prepares for the upcoming section for setting-up Transfer Learning model.


	Download the CIFAR-10 dataset from http://www.cs.toronto.edu/~kriz/cifar.html. The download.cifar.data function from Chapter 3, Convolution Neural Networks, can be used to download the dataset.

	Install the imager package:




install.packages("imager")




            

            
        
    
        

                            
                    How to do it...

                
            
            
                
The current part of the recipe will provide a step-by-step guide to prepare the dataset for the Inception-BN pretrained model.


	Load the dependent packages:




# Load packages 
require(imager) 
source("download_cifar_data.R") 
The download_cifar_data consists of function to download and read CIFAR10 dataset. 



	Read the downloaded CIFAR-10 dataset:




# Read Dataset and labels  
DATA_PATH<-paste(SOURCE_PATH, "/Chapter 4/data/cifar-10-batches-bin/", sep="") 
labels <- read.table(paste(DATA_PATH, "batches.meta.txt", sep="")) 
cifar_train <- read.cifar.data(filenames = c("data_batch_1.bin","data_batch_2.bin","data_batch_3.bin","data_batch_4.bin")) 



	Filter the dataset for aeroplane and automobile. This is an optional step and is done to reduce complexity later:




# Filter data for Aeroplane and Automobile with label 1 and 2, respectively 
Classes = c(1, 2)  
images.rgb.train <- cifar_train$images.rgb 
images.lab.train <- cifar_train$images.lab 
ix<-images.lab.train%in%Classes 
images.rgb.train<-images.rgb.train[ix] 
images.lab.train<-images.lab.train[ix] 
rm(cifar_train)   



	Transform to image. This step is required as the CIFAR-10 dataset is a 32 x 32 x 3 image, which is flattened to a 1024 x 3 format:




# Function to transform to image 
transform.Image <- function(index, images.rgb) { 
  # Convert each color layer into a matrix,  
  # combine into an rgb object, and display as a plot 
  img <- images.rgb[[index]] 
  img.r.mat <- as.cimg(matrix(img$r, ncol=32, byrow = FALSE)) 
  img.g.mat <- as.cimg(matrix(img$g, ncol=32, byrow = FALSE)) 
  img.b.mat <- as.cimg(matrix(img$b, ncol=32, byrow = FALSE)) 
 
  # Bind the three channels into one image 
  img.col.mat <- imappend(list(img.r.mat,img.g.mat,img.b.mat),"c")  
  return(img.col.mat) 
} 



	The next step involve padding images with zeros:




  # Function to pad image 
  image.padding <- function(x) { 
  img_width <- max(dim(x)[1:2]) 
  img_height <- min(dim(x)[1:2]) 
  pad.img <- pad(x, nPix = img_width - img_height, 
                 axes = ifelse(dim(x)[1] < dim(x)[2], "x", "y")) 
  return(pad.img) 
}



	Save the image to a specified folder:




# Save train images 
MAX_IMAGE<-length(images.rgb.train) 
 
# Write Aeroplane images to aero folder 
sapply(1:MAX_IMAGE, FUN=function(x, images.rgb.train, images.lab.train){ 
  if(images.lab.train[[x]]==1){ 
    img<-transform.Image(x, images.rgb.train)   
    pad_img <- image.padding(img) 
    res_img <- resize(pad_img, size_x = 224, size_y = 224) 
    imager::save.image(res_img, paste("train/aero/aero", x, ".jpeg", sep=""))     
  } 
}, images.rgb.train=images.rgb.train, images.lab.train=images.lab.train) 
 
 
# Write Automobile images to auto folder 
sapply(1:MAX_IMAGE, FUN=function(x, images.rgb.train, images.lab.train){ 
  if(images.lab.train[[x]]==2){ 
    img<-transform.Image(x, images.rgb.train)   
    pad_img <- image.padding(img) 
    res_img <- resize(pad_img, size_x = 224, size_y = 224) 
    imager::save.image(res_img, paste("train/auto/auto", x, ".jpeg", sep=""))     
  } 
}, images.rgb.train=images.rgb.train, images.lab.train=images.lab.train) 


The preceding script saves the aeroplane images into the aero folder and the automobile images in the auto folder.


	Convert to the recording format .rec supported by MXNet. This conversion requires im2rec.py MXnet module from Python as conversion is not supported in R. However, it can be called from R once MXNet is installed in Python using the system command. The splitting of the dataset into train and test can be obtained using the following file:




System("python ~/mxnet/tools/im2rec.py --list True --recursive True --train-ratio 0.90 cifar_224/pks.lst cifar_224/trainf/")


The preceding script will generate two list files: pks.lst_train.lst and pks.lst_train.lst. The splitting of train and validation is controlled by the -train-ratio parameter in the preceding script. The number of classes is based on the number of folders in the trainf directory. In this scenario, two classes are picked: automotive and aeroplane.


	Convert the *.rec file for training and validation dataset:




# Creating .rec file from training sample list 
System("python ~/mxnet/tools/im2rec.py --num-thread=4 --pass-through=1 /home/prakash/deep\ learning/cifar_224/pks.lst_train.lst /home/prakash/deep\ learning/cifar_224/trainf/")   
 
# Creating .rec file from validation sample list 
System("python ~/mxnet/tools/im2rec.py --num-thread=4 --pass-through=1 /home/prakash/deep\ learning/cifar_224/pks.lst_val.lst /home/prakash/deep\ learning/cifar_224/trainf/") 


The preceding script will create the pks.lst_train.rec and pks.lst_val.rec files to be used in the next recipe to train the model using a pretrained model.



            

            
        
    
        

                            
                    Building an image classification model

                
            
            
                
The recipe focuses on building an image classification model using Transfer Learning. It will utilize the dataset prepared in the previous recipes and use the Inception-BN architecture. The BN in Inception-BN stands for batch normalization. Details of the Inception model in computer vision can be found in Szegedy et al. (2015).



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The section cover's the prerequisite to set-up a classification model using INCEPTION-BN pretrained model.


	Convert images into .rec file for train and validation.

	Download the Inception-BN architecture from http://data.dmlc.ml/models/imagenet/inception-bn/.

	Install R and the mxnet package in R.





            

            
        
    
        

                            
                    How to do it...

                
            
            
                

	Load the .rec file as iterators. The following is the function to load the .rec data as iterators:




# Function to load data as iterators 
data.iterator <- function(data.shape, train.data, val.data, BATCHSIZE = 128) { 
   
  # Load training data as iterator 
  train <- mx.io.ImageRecordIter( 
    path.imgrec = train.data, 
    batch.size  = BATCHSIZE, 
    data.shape  = data.shape, 
    rand.crop   = TRUE, 
    rand.mirror = TRUE) 
   
  # Load validation data as iterator 
  val <- mx.io.ImageRecordIter( 
    path.imgrec = val.data, 
    batch.size  = BATCHSIZE, 
    data.shape  = data.shape, 
    rand.crop   = FALSE, 
    rand.mirror = FALSE 
  ) 
   
  return(list(train = train, val = val)) 
} 


In the preceding function, mx.io.ImageRecordIter reads batches of images from the RecordIO (.rec) files.


	Load data using the data.iterator function:




# Load dataset 
data  <- data.iterator(data.shape = c(224, 224, 3), 
                      train.data = "pks.lst_train.rec", 
                      val.data  = "pks.lst_val.rec", 
                      BATCHSIZE = 8) 
train <- data$train 
val   <- data$val 



	Load the Inception-BN pretrained model from the Inception-BN folder:




# Load Inception-BN model 
inception_bn <- mx.model.load("Inception-BN", iteration = 126) 
symbol <- inception_bn$symbol 
The different layers of the model can be viewed using function symbol$arguments 



	Get the layers of the Inception-BN model:




# Load model information 
internals <- symbol$get.internals() 
outputs <- internals$outputs 
flatten <- internals$get.output(which(outputs == "flatten_output")) 



	Define a new layer to replace the flatten_output layer:




# Define new layer 
new_fc <- mx.symbol.FullyConnected(data = flatten,  
                                   num_hidden = 2,  
                                   name = "fc1")  
new_soft <- mx.symbol.SoftmaxOutput(data = new_fc,  
                                    name = "softmax") 



	Initialize weights for the newly defined layer. To retrain the last layer, weight initialization is performed using the following script:




# Re-initialize the weights for new layer 
arg_params_new <- mxnet:::mx.model.init.params( 
  symbol = new_soft,  
  input.shape = c(224, 224, 3, 8),  
  output.shape = NULL,  
  initializer = mxnet:::mx.init.uniform(0.2),  
  ctx = mx.cpu(0) 
)$arg.params 
fc1_weights_new <- arg_params_new[["fc1_weight"]] 
fc1_bias_new <- arg_params_new[["fc1_bias"]] 


In the aforementioned layer, weights are assigned using uniform distribution between [-0.2, 0.2]. The ctx define the device on which the execution is to be performed.


	Retrain the model:




# Mode re-train 
model <- mx.model.FeedForward.create( 
  symbol             = new_soft, 
  X                  = train, 
  eval.data          = val, 
  ctx                = mx.cpu(0), 
  eval.metric        = mx.metric.accuracy, 
  num.round          = 5, 
  learning.rate      = 0.05, 
  momentum           = 0.85, 
  wd                 = 0.00001, 
  kvstore            = "local", 
  array.batch.size   = 128, 
  epoch.end.callback = mx.callback.save.checkpoint("inception_bn"), 
  batch.end.callback = mx.callback.log.train.metric(150), 
  initializer        = mx.init.Xavier(factor_type = "in", magnitude = 2.34), 
  optimizer          = "sgd", 
  arg.params         = arg_params_new, 
  aux.params         = inception_bn$aux.params 
)  


The preceding model is set to run on CPU with five rounds, using accuracy as the evaluation metric. The following screenshot shows the execution of the described model:



Output from Inception-BN model, trained using CIFAR-10 dataset

The trained model has produced a training accuracy of 0.97 and a validation accuracy of 0.95.



            

            
        
    
        

                            
                    Training a deep learning model on a GPU

                
            
            
                
The Graphical processing unit (GPU) is hardware used for rendering images using a lot of cores. Pascal is the latest GPU micro architecture released by NVIDIA. The presence of hundreds of cores in GPU helps enhance the computation. This section provides the recipe for running a deep learning model using GPU.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
This section provides dependencies required to run GPU and CPU:


	The experiment performed in this recipe uses GPU hardware such as GTX 1070.

	Install mxnet for GPU. To install mxnet for GPU for a specified machine, follow the installation instruction from mxnet.io. Select the requirement as shown in the screenshot, and follow the instructions:





Steps to get installation instruction for MXNet



            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Here is how you train a deep learning model on a GPU:


	The Inception-BN-transferred learning recipe discussed in the previous section can be made to run on the GPU installed and the configured machine by changing the device settings as shown in the following script:




# Mode re-train 
model <- mx.model.FeedForward.create( 
  symbol             = new_soft, 
  X                  = train, 
  eval.data          = val, 
  ctx                = mx.gpu(0), 
  eval.metric        = mx.metric.accuracy, 
  num.round          = 5, 
  learning.rate      = 0.05, 
  momentum           = 0.85, 
  wd                 = 0.00001, 
  kvstore            = "local", 
  array.batch.size   = 128, 
  epoch.end.callback = mx.callback.save.checkpoint("inception_bn"), 
  batch.end.callback = mx.callback.log.train.metric(150), 
  initializer        = mx.init.Xavier(factor_type = "in", magnitude = 2.34), 
  optimizer          = "sgd", 
  arg.params         = arg_params_new, 
  aux.params         = inception_bn$aux.params 
)  


In the aforementioned model, the device setting is changed from mx.cpu to mx.gpu. The CPU for five iteration tools takes ~2 hours of computational effort, whereas the same iteration is completed in ~15 min with GPU.



            

            
        
    
        

                            
                    Comparing performance using CPU and GPU

                
            
            
                
One of the questions with device change is why so much improvement is observed when the device is switched from CPU to GPU. As the deep learning architecture involves a lot of matrix computations, GPUs help expedite these computations using a lot of parallel cores, which are usually used for image rendering.

The power of GPU has been utilized by a lot of algorithms to accelerate the execution. The following recipe provides some benchmarks of matrix computation using the gpuR package. The gpuR package is a general-purpose package for GPU computing in R.



            

            
        
    
        

                            
                    Getting ready

                
            
            
                
The section covers requirement to set-up a comparison between GPU Vs CPU.


	Use GPU hardware installed such as GTX 1070.

	CUDA toolkit installation using URL https://developer.nvidia.com/cuda-downloads.

	Install the gpuR package:




install.packages("gpuR") 



	Test gpuR:




library(gpuR) 
# verify you have valid GPUs 
detectGPUs()  




            

            
        
    
        

                            
                    How to do it...

                
            
            
                
Let's get started by loading the packages:


	Load the package, and set the precision to float (by default, the GPU precision is set to a single digit):




library("gpuR") 
options(gpuR.default.type = "float") 
 



	Matrix assignment to GPU:




# Assigning a matrix to GPU 
A<-matrix(rnorm(1000), nrow=10) 

vcl1 = vclMatrix(A)


The output of the preceding command will contain details of the object. An illustration is shown in the following script:


> vcl1 
An object of class "fvclMatrix" 
Slot "address": 
<pointer: 0x000000001822e180> 
 
Slot ".context_index": 
[1] 1 
 
Slot ".platform_index": 
[1] 1 
 
Slot ".platform": 
[1] "Intel(R) OpenCL" 
 
Slot ".device_index": 
[1] 1 
 
Slot ".device": 
[1] "Intel(R) HD Graphics 530" 



	Let's consider the evaluation of CPU vs GPU. As most of the deep learning will be using GPUs for matrix computation, the performance is evaluated by matrix multiplication using the following script:




# CPU vs GPU performance 
DF <- data.frame() 
evalSeq<-seq(1,2501,500) 
for (dimpower in evalSeq){ 
  print(dimpower) 
  Mat1 = matrix(rnorm(dimpower^2), nrow=dimpower) 
  Mat2 = matrix(rnorm(dimpower^2), nrow=dimpower) 
   
  now <- Sys.time() 
  Matfin = Mat1%*%Mat2 
  cpu <- Sys.time()-now 
   
  now <- Sys.time() 
  vcl1 = vclMatrix(Mat1) 
  vcl2 = vclMatrix(Mat2) 
  vclC = vcl1 %*% vcl2 
  gpu <- Sys.time()-now 
   
  DF <- rbind(DF,c(nrow(Mat1), cpu, gpu))  
} 
DF<-data.frame(DF) 
colnames(DF) <- c("nrow", "CPU_time", "gpu_time")   


The preceding script computes the matrix multiplication using CPU and GPU; the time is stored for different dimensions of the matrix. The output from the preceding script is shown in the following diagram:



Comparison between CPU and GPU

The graph shows that the computation effort required by CPUs increases exponentially with the CPU. Thus, GPUs help expedite it drastically.



            

            
        
    
        

                            
                    There's more...

                
            
            
                
The GPUs are new arena in machine learning computing, and a lot of packages have been developed in R to access GPUs while keeping you in a familiar R environment such as gputools , gmatrix , and gpuR. The other algorithms are also developed and implemented while accessing GPUs to enhance their computational power such as RPUSVM, which implements SVM using GPUs. Thus, the topic requires a lot of creativity with some exploration to deploy algorithms while utilizes full capability of hardware.



            

            
        
    
        

                            
                    See also

                
            
            
                
To learn more on parallel computing using R, go through Mastering Parallel Programming with R by Simon R. Chapple et al. (2016).
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Parameter name

Parameter description

Xdata Matrix of train input MNIST data

Ydata Matrix of train output MNIST data
Xtestdata Matrix of testinput MNIST data

Ytestdata Matrix of test output MNIST data

input_size Number of attributes (or pixels) in train data

learning_rate

Learning rate for updating weight matrix

momentum Increment in size of steps to jump out of local minima
epochs Number of iterations

batchsize Number of observations per batch run

rbm_list List of outcomes of stacked RBM

dbn_sizes Vector of sizes of hidden layers in stacked RBM
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Installing MXNet

Indicate your preferred configuration. Then, follow the customized commands to install MXNet.

Lint

MacOS = Windows = Cloud  Devices ‘

@Xnet Install Tutorials How To API v Architecture Github |

" Python  Scala ﬂ Julia = Perl ‘
9 -

The following installation instructions have been tested on Ubuntu 14.04 and 16.04.

Prerequisites
Install the following NVIDIA libraries to setup MXNet with GPU support:

1. Install CUDA 8.0 following the NVIDIA’s installation guide.
2. Install cuDNN 5 for CUDA 8.0 following the NVIDIA’s installation guide. You may need to register with
NVIDIA for downloading the cuDNN library.

Note: Make sure to add CUDA install path to LD_LIBRARY_PATH.

Example - export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:3LD_LIBRARY_PATH

Building MXNet from source is a 2 step process.

_ 1. Build the MXNet core shared library, libmxnet.so, from the C++ sources.
—_——

11:55 PM
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Input (Pre RBM) input_data Matrix of train MNIST data

Input (Pre RBM) num_input Number of independent variables

Input (Pre RBM) num_output Number of nodes in the corresponding hidden layer
Input (Pre RBM) epochs Number of iterations

Input (Pre RBM) alpha Learning rate for updating weight matrix

Input (Pre RBM) batchsize Number of observations per batch run

Output (Post RBM) output_data Matrix of reconstructed output

Output (Post RBM) error_list List of reconstruction errors for every run of 10 batch
Output (Post RBM) weight_list List of weight matrices for every run of 10 batch
Output (Post RBM) weight_final Matrix of final weights obtained after all epochs
Output (Post RBM) bias_final Vector of final biases obtained after all epochs
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K= r®f + SV + A7 o1

where, X and f(h) represent input matrix and output from decoder. The W represent
weight matrix for nodes and Aand /£ are regularization parameter and penalty to sparsity

term. The term Jy; (p[[p) is KL divergence value captured for sparsity term p . KL

divergence for given sparsity parameter can be computed as

‘a b 1-p,

where, 72 is number of nodes in layer h and 4 is vector of average activities in hidden
layer on normalized neurons.
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In [17]:

# Loading and setting placeholder in tensorflow
Sys.setenv(TENSORFLOW_PYTHON="/usr/bin/python")
require(tensorflow)

x <- tf$placeholder(tf$float32, shape(NULL, 11L))

Error: Python module tensorflow was not found.

Detected Python configuration:

python: Jusr/bin/python
Juse/1ib/python2.7/config-x86_64-1inux-gnu/libpython2.7.s0
Jusr:/usr

2.7.12 (default, Nov 19 2016, 06:48:10) [GCC 5.4.9 20160609]
/usr/1ib/python2.7/dist-packages/nunpy

numpy_version: 1.11.6

tensorflow: [NOT Founp]

python versions found:
Jusr/bin/python
Jusr/bin/python3

Traceback:

1. tf$placeholder

2. °$.python.builtin.module’ (tf, placeholder)
3. py_resolve_module_proxy(x)

4. stop(message, call. = FALSE)






assets/79104b9c-c90a-49f7-b455-3b2a0b0c5bd4.png
W’ Backward
RNN

Forward
RNN






assets/10ff974b-4f21-4081-967e-652c96b8f767.png





assets/c6d0a622-4cc8-4cad-9947-e0a06331e971.jpg
automobile:32x32 size

doq:32x32 size

bird:32x32 size

horse:32x32 size

1

froq:32x32 size

airplane:32x32 size






assets/172d7793-390e-4e30-8d68-f12aef7a4cd4.png
S13

S14

S15

100

Si6

S9

S10

S11

512

S5

S6

S7

S8

S1

S2

S3

sS4






assets/392bbe70-a1c9-4d1a-be43-e18ae79ea015.png
S13

S14

S15

100

Si6

S9

S10

S11

512

S5

S6

S7

S8

S1

S2

S3

sS4






assets/5bd26e0e-c5a1-434d-b436-6788505075b7.png





assets/5a7fef2d-a514-4425-a8cb-570f89e96759.png
tanh

X






assets/aff5748c-e921-4d49-b273-bae41683fa5a.png
) w2
G
wi
S
X

a) 2-layer Recurrent Neural Network (RNN) b) Unfolded 2-layer Recurrent Neural Network (RNN)





assets/11264375-d813-44a8-8f35-d859f08e32fa.png
&«

H,0 FLOW Flowv  Cellv  Datav Scorev  Adminv  Help~
Untitled Flow DeepLearning.. v
0> + 2 ¥ < B B # @ M Distributed Random Forest... »
& frame 0750 Gradient Boosting Method... 075
Generalized Linear Modeling... OUTLINE  FLOWS CLIPS
Generalized Low Rank Modeling...
= i “ Q Help #
buildModel "glm" Kemeans...
. 7 time?
Naive Bayes... i
Principle Components Analysis... [® Quickstart Videos
®© Build a Model
List All Modell i
Select an algorithm:| Generalized Linear Modeling 1 € Or, view example Flows to explore and
List Grid Search Results learn H;0.
PARAMETERS Import Model... GRID?
STAR H20 ON GITHUB!
model id glm-57c12468-ac7e-4436-  Export Model... |auto-generated if not specified
) star 1,788
training frame |frame 0.750 v Training frame
validation_frame |frame 0.250 v Validation frame e GENERAL
nfolds O Number of folds for N-fold cross-validation o FlowWebUl...
response_column Response column s} * - Importing Data
o ...Building Models
ignored_columns  Search... o ...Making Predictions
Showing page 1of 1. e ...Using Flows
@ x2 REAL o ...Troubleshooting Flow
REAL
Bx3 EXAMPLES
x4 REAL Flow packs are a great way to explore and
@ x5 INT learn H,0. Try out these Flows and run
them inyour browser. >

C ‘ ® 127.0.0.1:54321/flow/indexhtml

b

:54321/flow/index html#

Connections: 0 H,0





assets/9b8e785c-1d08-4b0b-840f-193d88ef9eda.png
S E——————————————

D> O | koo
= Jupyter

Files  Rumning  Clusters  Conda

‘Selact tems to perform actions on ther.

Text File

o -

O ods

Era— Notebooks
YSpe———
' [ buid_truble_shooting md

O [ MANFESTin

O D prep_pipsh

u]

D README.rst





assets/bd7646ad-199d-4cf4-9118-59021042486b.png
co2 Light Humidity Temperature

HumidityRatio

20-

18-

10-

05-

00-
1.00-

075~

050-

0.25-

0.00-
1.00-

075~

050-

0.25-

0.00-
1.00-

075~

050-

0.25-

0.00-
1.00-

075~

050-

0.25-

0.00-

-

- -

000 025 050 075 100 000 025 050 075
Temperature Humidity

100 0.00

025

00
Light

078

100 0.00

025

00
co2

078

100 0.00

025

00
HumidityRatio

075

100





assets/342178b0-0e7c-4cbf-b1e3-3eb5c36a5771.png
Update

Errors

—>{ Sigmoid H Pr(Y=1 | X)

Sigmoid Probability

Summation transformation

(WX+bias)

Weights

Input






assets/ea0293db-0e70-441a-815a-3dbfa7617a5c.png
h =f(h_.x :S.W)





assets/380b79e2-af98-499a-8d7f-e9d060ce8f11.png
‘R RGui (64-bit)
File Edit View Misc Packages Windows Help
EEERRREIE

‘Q R Console folre =

R version 3.3.0 (2016-05-03) -- "Supposedly Educational®
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HIML browser interface to help.

Type 'q()' to quit R.

[Previously saved workspace restored]

>






assets/5deb56f5-9453-4488-a61d-ce8f22f60a95.png
"4
w 0 w ! w ! w
» w h t-1 h t h t+]) >
S S S S
X Xt1 Xt Xirg

a) Recurrent Neural Network (RNN) b) Unfolded Recurrent Neural Network (RNN)





assets/dc7e4475-5f02-41bc-8aa4-420610f03de0.png
J

ca_obj

[

| S e m— —]
§¢ 0T &G+ 0V S0 00

saoueleA






assets/308c022d-883f-4395-b51f-54fa92731dde.png
new (5,0) = Qoa(s,a)

+ @[+ ¥ M3 Qurpeceed opromat vatue (518) — Qora(s, )|






assets/d80c2f4a-f805-4501-9b2c-cc6694141e1d.png
R Deep
Learning

Solve complex neural net problems with TensorFlow,

HHHHHHHHHHH






assets/d58a1124-1caa-4c47-8ea1-6e4dbd83f9d7.png
@ Rstudio
File Edit Code View Plots Session Build Debug Tools Help

- o X

Q.- a A Goto cii BB~ | Addins » () Project: (None) ~
Source a0 Environment  History =0
a m - - @
s o 2B Bmenoma- | L we @
@ Giobal Environment ~ 2
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Copyright (C) 2016 The R Foundation for Statistical Computing
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You are welcome to redistribute it under certain conditions.
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R is a collaborative project with many contributors.
Type ‘contributors()' for more information and
"citation()' on how to cite R or R packages in publications.
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Multithreaded BLAS/LAPACK libraries detected. Using 4 cores for math algorithms.

>

Environment is empty

Files Plots Packages Help Viewer =0
e S a A

Home + | Find in Topic

@R R Resources @ Rstudio

Learning R Online RStudio IDE Support
CRAN Task Views RStudio Cheat Sheets
R on StackOverflow RStudio Tip of the Day
Getting Help with R Rstudio Packages

Rstudio Products

Manuals

An Introduction to R The R Language Definition

Writing R Extensions R Installation and
Administration

R Data Import/Export R Internals

Reference






assets/75a0d2fd-15e8-4aee-b566-60a62c06c074.png
Initiate a Policy (Pg)

Evaluate the policy based on
the value function return

Optimal

No

Iterate with different policies
(greedy exploration)

Value
function

Yes






assets/edfe3f14-1996-4e19-afdb-4fe788174dfd.png
Node 2 of layer 3

03 04 05 08

02

0.0

00 02 04 06 08

Node 1 of layer 3





assets/6e398a55-a0a4-45f5-80f6-6dbb98682a82.png
Petal Width

25-

20-

q

2

05-

00-

Variation by Clusters

H
Petal Length

iris_clusterScluster
.1
.2
.3





assets/816336b5-03d0-4c8b-82b7-b63d74ec9939.png





assets/88f82b88-9230-4bcf-a3ec-c59f4a7e7d53.png
austen -
prejudice -
pride -

jane -
garden -
fitzwilliam -
fun-
mercenary -
strangers -
humble -
accomplished -
danced -
cough -
govemess -
music -

o

II||
:
!

© ™ — — -

ti-idf





assets/0d2860f9-50ed-412b-bc8c-94cfaa62fd97.png
Visible
Layer
X/vl

Forward
Phase

n
iterations

Backward
phase

Hidden
Layer
ho/h1

Reconstruction of
visible layer inputs





assets/f7f1f5ca-53f5-4ee0-b4d3-540399a1245b.png
argmin() £ [ 1ogP(0)





assets/b09831e2-4510-42fa-a764-54f89956d56a.jpg
Standardized Coef. Magnitudes

A _
o _
AR _
Humdiyzste _
Humidity ‘ * Positive
* Negative
r T T T T

00 02 04 06 08 10





assets/6258de97-5de8-412e-9db2-74866bad7f8c.png
@) Rstudio _— =alai X
le Edit Code View Plots Session Build Debug Tools Help
el-a- 8 = (B9~ | Addins - (& Project: (None] ~

Source

1| Environment | History
% [ PmportDataset~

Console ~/02 Z5P/00 PACKT/Deep Learning Cookbook - R/00 Inital Chapters/Chapter 10 - Transfer Learning/sic/

et pa | Global Emironment -

+ learning.rate 0.0s, pata B
T pomentum 080001 ©labels 10 obs. of 1 variable &
+  kvstore “Tocal”, values

+ array.batch.size - 128, arg params_new  List of 278
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> top_recom_movies

[1] "Star Wars: Episode VI - Return of the Jedi (1983)"
[2] "Matrix, The (1999)"

[3] "Star Wars: Episode V - The Empire Strikes Back (1980)"
[4] "Jurassic Park (1993)"

[5] "Star Wars: Episode IV - A New Hope (1977)"

[6] "Terminator 2: Judgment Day (1991)"

[7] "Raiders of the Lost Ark (1981)"

[8] "Star Wars: Episode I - The Phantom Menace (1999)"
[9] "Men in Black (1997)"

[10] "Princess Bride, The (1987)"
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C ell\v1.0 elle
PS E:\dockervolume\deepimage> 1s ~

Directory: E:\dockervolume\deepimage

Mode LastWriteTime Length Name

- 2/27/2017 10:28 AM 1036 Dockerfile

PS E:\dockervolume\deepimage> docker run -t -
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RStudio - [m} X

File Edit Code View Plots Session Build Debug Tools Help

= A== [~ Addins ~ & Project: (None)
Source ([T | Environment History =0
= LA Import Dataset List~
Console ~/ — =~ impor F4 -
Su, var | T Global Environment »
N . val
The following objects are masked from ‘package:base’: alues i
© Tocalv2o Formal class H20Connection
%%, %in%, &, ||, apply, as.factor, as.numeric, colnames, colnames<-, ifelse,
is.character, is.factor, is.numeric, log, logl0. loglp, log2, round, signif, trunc
> localH20 = h2o.initQ
H20 is not running yet, starting it now...
Note: In case of errors look at the following log files:
C:\Users\prakash\AppData\Local\Temp\RtmpCoFpin/h2o_prakash_started_from_r.out
C\Users\prakash\AppData\Local\Temp\RtmpCoFpin/h2o_prakash_started_from_r.err
Files Plots Packages Help Viewer =0

java version "1.8.0_111"

Java(T™M) SE Runtime Environment (build 1.8.0_111-b14) 3 Export ~
Java HotSpot(T™M) 64-Bit Server VM (build 25.111-b14, mixed mode)

Starting H20 JVM and connecting: Connection successful!

R is connected to the H20 cluster:

H20 cluster uptime: 1 seconds 536 milliseconds
H20 cluster version: 3.8.1.3

H20 cluster name: H20_started_from_R_prakash_lvs514
H20 cluster total nodes: 1

H20 cluster total memory: 14.22 B

H20 cluster total cores: 8

H20 cluster allowed cores: 2

H20 cluster healthy: TRUE

H20 Connection ip: Tocalhost

H20 Connection port: 54321

H20 Connection proxy: NA

R Version: R version 3.3.0 (2016-05-03)

Note: As started, H20 is limited to the CRAN default of 2 CPUs.
shut down and restart H20 as shown below to use all your CPUs.
> h20.shutdown ()
> h2o.init(nthreads = -1)
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