

 [image: cover]

Get Programming with JavaScript

 John R. Larsen

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Helen Stergius
Technical development editors: Chuck Henderson, Ozren Harlovic
Review editor: Ozren Harlovic
Project editor: Tiffany Taylor
Copyeditor: Linda Recktenwald
Proofreaders: Elizabeth Martin
Bonnie Culverhouse
Technical proofreader: Romin Irani
Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

 ISBN: 9781617293108

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Core concepts on the console

 Chapter 1. Programming, JavaScript, and JS Bin

 Chapter 2. Variables: storing data in your program

 Chapter 3. Objects: grouping your data

 Chapter 4. Functions: code on demand

 Chapter 5. Arguments: passing data to functions

 Chapter 6. Return values: getting data from functions

 Chapter 7. Object arguments: functions working with objects

 Chapter 8. Arrays: putting data into lists

 Chapter 9. Constructors: building objects with functions

 Chapter 10. Bracket notation: flexible property names

 2. Organizing your programs

 Chapter 11. Scope: hiding information

 Chapter 12. Conditions: choosing code to run

 Chapter 13. Modules: breaking a program into pieces

 Chapter 14. Models: working with data

 Chapter 15. Views: displaying data

 Chapter 16. Controllers: linking models and views

 3. JavaScript in the browser

 Chapter 17. HTML: building web pages

 Chapter 18. Controls: getting user input

 Chapter 19. Templates: filling placeholders with data

 Chapter 20. XHR: loading data

 Chapter 21. Conclusion: get programming with JavaScript

 The Crypt: a running example

 The Crypt: a running example

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Core concepts on the console

 Chapter 1. Programming, JavaScript, and JS Bin

 1.1. Programming

 1.2. JavaScript

 1.3. Learning by doing and thinking

 1.4. JS Bin

 1.4.1. JS Bin panels

 1.4.2. Following the code listings on JS Bin

 1.4.3. Logging to the console

 1.4.4. Code comments

 1.4.5. Further Adventures

 1.4.6. Error messages

 1.4.7. Line numbers

 1.4.8. Get an account

 1.5. The Crypt—our running example

 1.5.1. Playing The Crypt

 1.5.2. Steps for building The Crypt

 1.6. Further examples and practice

 1.7. Browser support

 1.8. Summary

 Chapter 2. Variables: storing data in your program

 2.1. What is a variable?

 2.2. Declaring variables and assigning values

 2.2.1. Declaring variables

 2.2.2. Assigning values to variables

 2.2.3. One-step declaration and assignment

 2.2.4. Using a variable in its own assignment

 2.3. Choosing good variable names

 2.3.1. Keywords and reserved words

 2.3.2. Rules for naming variables

 2.3.3. camelCase

 2.3.4. Use descriptive variable names

 2.4. The Crypt—player variables

 2.5. Summary

 Chapter 3. Objects: grouping your data

 3.1. A need for organization

 3.2. Creating objects

 3.2.1. Creating an empty object

 3.2.2. Properties as key-value pairs

 3.3. Accessing object properties

 3.4. Updating object properties

 3.5. Further examples

 3.5.1. Writing a blog

 3.5.2. Creating a calendar

 3.5.3. What’s the weather like?

 3.5.4. The testing effect

 3.5.5. Create your own

 3.6. The Crypt—a player object

 3.7. Summary

 Chapter 4. Functions: code on demand

 4.1. Noticing repetition

 4.1.1. Displaying object properties as text

 4.1.2. Adding tax and displaying a summary

 4.2. Defining and calling functions

 4.2.1. Defining new functions

 4.2.2. Function expressions and function declarations

 4.2.3. Using functions

 4.2.4. Functions step by step

 4.3. Reducing repetition

 4.3.1. A function for displaying object properties as text

 4.3.2. Functions for adding tax and displaying a summary

 4.4. Making code easier to read and update

 4.4.1. Updating the showMovieInfo function

 4.5. The Crypt—displaying player information

 4.5.1. A function to display player information

 4.6. Summary

 Chapter 5. Arguments: passing data to functions

 5.1. Function reuse and versatility

 5.2. Passing information to functions

 5.2.1. Passing one argument to a function

 5.2.2. Passing multiple arguments to a function

 5.3. The Crypt—displaying player information

 5.3.1. Displaying players’ names

 5.3.2. Displaying players’ health

 5.3.3. Displaying players’ locations

 5.3.4. Putting it all together—displaying players’ information

 5.4. Summary

 Chapter 6. Return values: getting data from functions

 6.1. Returning data from functions

 6.1.1. The return value replaces the function call

 6.1.2. The return keyword

 6.1.3. Using arguments to determine the return value

 6.2. Experimenting at the console prompt

 6.2.1. Calling functions

 6.2.2. Declaring new variables

 6.3. The Crypt—building player information strings

 6.3.1. Building strings for a player’s name, health, and location

 6.3.2. A function for player information—putting the pieces together

 6.4. Summary

 Chapter 7. Object arguments: functions working with objects

 7.1. Using objects as arguments

 7.1.1. Accessing properties of an object argument

 7.1.2. Adding properties to an object argument

 7.2. Returning objects from functions

 7.2.1. Building planets—an object creation function

 7.2.2. Points in 2D space

 7.3. Methods—setting functions as properties of objects

 7.3.1. Namespaces—organizing related functions

 7.3.2. Math methods

 7.3.3. String methods

 7.3.4. spacer—more methods for your namespace

 7.3.5. Deep namespace exploration

 7.4. The Crypt–player objects as arguments

 7.5. Summary

 Chapter 8. Arrays: putting data into lists

 8.1. Creating arrays and accessing elements

 8.1.1. Creating an array

 8.1.2. Accessing array elements

 8.2. Array methods

 8.2.1. Adding and removing elements

 8.2.2. Slicing and splicing arrays

 8.2.3. Visiting each element with forEach

 8.3. The Crypt—a player items array

 8.4. Summary

 Chapter 9. Constructors: building objects with functions

 9.1. Using functions to build objects

 9.1.1. Adding properties

 9.1.2. Adding methods

 9.2. Using constructor functions to build objects

 9.2.1. Constructor functions

 9.2.2. World building—making use of the Planet constructor

 9.2.3. Telling objects apart with the instanceof operator

 9.3. Building mastery—two examples of constructors

 9.4. The Crypt—providing places to plunder

 9.4.1. Building the Place constructor—title and description

 9.4.2. Building the Place constructor—items for your hoard

 9.4.3. Building the Place constructor—exits to explore

 9.5. The Crypt—streamlining player creation

 9.5.1. Organizing player properties

 9.5.2. Turning functions into methods

 9.5.3. Assigning places to players

 9.5.4. Using null as a placeholder for objects

 9.6. Summary

 Chapter 10. Bracket notation: flexible property names

 10.1. Using square brackets instead of dots

 10.1.1. Brackets in action—people’s names as keys

 10.1.2. Making the most of square bracket notation—word counts

 10.2. The Crypt—enhancing exit excitement

 10.2.1. Using an object to hold the exits

 10.2.2. Creating functions to add and display exits

 10.2.3. Giving each place object its own set of exits

 10.2.4. Adding the exits object to the full Place constructor

 10.2.5. Testing the Place constructor

 10.3. The Crypt—let the games begin!

 10.3.1. Updating the display—render

 10.3.2. Exploring the map—go

 10.3.3. Collecting all the things—get

 10.3.4. Designing a bigger adventure—Jahver’s ship

 10.4. What’s next?

 10.5. Summary

 2. Organizing your programs

 Chapter 11. Scope: hiding information

 11.1. The dangers of global variables

 11.1.1. Access all areas—peeking and tweaking

 11.1.2. Access all areas—relying on an implementation

 11.1.3. Naming collisions

 11.1.4. Crazy bugs

 11.2. The benefits of local variables

 11.3. Interfaces—controlling access and providing functionality

 11.3.1. Using a function to hide variables

 11.3.2. Creating multiple independent counters with getCount

 11.3.3. Creating multiple independent counters with a constructor function

 11.4. Creating a quick quiz app

 11.4.1. Using an object as a namespace

 11.4.2. Hiding the questions array

 11.5. The Crypt—hiding player info

 11.5.1. Our current Player constructor—everything is public

 11.5.2. An updated Player constructor—some variables are hidden

 11.6. The Crypt—hiding place info

 11.7. The Crypt—user interaction

 11.7.1. The interface—go and get

 11.7.2. Hiding the implementation

 11.8. Summary

 Chapter 12. Conditions: choosing code to run

 12.1. Conditional execution of code

 12.1.1. The strict equality operator, ===

 12.1.2. The if statement

 12.1.3. The else clause

 12.1.4. Hide the secret number inside a function

 12.2. Generating random numbers with Math.random()

 12.3. Further conditions with else if

 12.3.1. Comparison operators

 12.4. Checking answers in the quiz app

 12.4.1. Multiple declarations with a single var keyword

 12.4.2. Displaying a question

 12.4.3. Moving to the next question

 12.4.4. Checking the player’s answer

 12.4.5. Handling a player’s answer

 12.4.6. Returning the interface object

 12.5. The Crypt—checking user input

 12.5.1. Step by step through the go method

 12.5.2. Never trust user input

 12.5.3. Safe exploration—using the if statement to avoid problems

 12.6. Summary

 Chapter 13. Modules: breaking a program into pieces

 13.1. Understanding bins and files on JS Bin

 13.1.1. Creating a bin

 13.1.2. Writing some code

 13.1.3. Making a note of the filename

 13.1.4. Viewing an individual code file

 13.2. Importing files into other projects

 13.2.1. Creating a bin

 13.2.2. Writing some code

 13.2.3. Adding a script element

 13.2.4. Refreshing the page

 13.2.5. Running the program

 13.3. Importing the Number Generator—further examples

 13.3.1. Picking random questions in the quiz app

 13.3.2. Using the between function in your guessing game

 13.4. Importing multiple files

 13.5. Collisions—when imported code overwrites your variables

 13.5.1. Variable collisions

 13.5.2. Minimizing collisions by using namespaces

 13.6. Immediately invoked function expressions (IIFE)

 13.6.1. Recognizing function expressions

 13.6.2. Invoking functions

 13.6.3. Immediately invoking function expressions

 13.6.4. Returning information from an IIFE

 13.7. The Crypt—organizing code into modules

 13.7.1. Sharing a namespace across modules

 13.8. Summary

 Chapter 14. Models: working with data

 14.1. Building a fitness app—data and models

 14.1.1. Defining a User constructor

 14.1.2. Getting a feel for the data as a JavaScript object

 14.1.3. Converting the data into a user model

 14.1.4. What’s next for the fitness app?

 14.2. The Crypt—separating map data from the game

 14.2.1. Map data

 14.2.2. Adding challenges to the map data

 14.2.3. Updating the Place constructor to include challenges

 14.2.4. Using the map data to build a game map

 14.2.5. Bringing all the pieces together to run the game

 14.3. Summary

 Chapter 15. Views: displaying data

 15.1. Building a fitness app—displaying the latest user data

 15.1.1. Creating your first fitness app view

 15.1.2. Using modules to switch fitness app views

 15.1.3. What’s next for the fitness app?

 15.2. The Crypt—moving view code from Player and Place

 15.2.1. Creating a view for players

 15.2.2. Creating a view for places

 15.3. Talking to players—a message view

 15.4. Summary

 Chapter 16. Controllers: linking models and views

 16.1. Building a fitness app—controllers

 16.1.1. What does the controller do?

 16.1.2. Building the fitness app controller

 16.1.3. Putting the pieces together for a working fitness app

 16.1.4. What’s next for the fitness app?

 16.2. The Crypt—adding a game controller

 16.2.1. What does the controller do?

 16.2.2. Approaching the controller code

 16.3. The Crypt—the structure of the controller code

 16.4. The Crypt—starting and stopping the game

 16.4.1. Initializing the game

 16.4.2. Monitoring player health

 16.4.3. Updating the display—functions that use the view modules

 16.5. The Crypt—giving commands and solving puzzles

 16.5.1. Picking up items with game.get

 16.5.2. Listing the properties of a challenge

 16.5.3. Moving with game.go

 16.5.4. Licking the leopard with game.use

 16.6. The Crypt—running the game

 16.7. The Crypt—what’s next for the app?

 16.8. Summary

 3. JavaScript in the browser

 Chapter 17. HTML: building web pages

 17.1. HTML, CSS, JavaScript—building a web page

 17.1.1. Loading the layers

 17.1.2. Loading the layers in JS Bin

 17.2. HTML—a very short introduction

 17.2.1. Starting with an empty page

 17.2.2. Adding some content

 17.2.3. Marking up a list

 17.2.4. Some common HTML elements

 17.3. Adding content to a web page with JavaScript

 17.3.1. Getting an element by its id

 17.3.2. Function declarations

 17.3.3. What, no JavaScript?

 17.4. Displaying data from an array

 17.5. The Crypt—displaying players and places with web views

 17.5.1. Updating the player and place view modules—the render method

 17.5.2. Updating the player and place view modules—the listings

 17.5.3. Using JavaScript’s strict mode

 17.5.4. Loading modules and adding placeholders in the HTML

 17.5.5. Adding a touch of CSS

 17.5.6. Playing the game

 17.5.7. Preparing the message view

 17.6. Summary

 Chapter 18. Controls: getting user input

 18.1. Working with buttons

 18.1.1. Adding a button to a page

 18.1.2. Writing functions to update the greeting

 18.1.3. Listening for clicks

 18.2. Using a select element to choose an option

 18.2.1. Adding a select element to the page

 18.2.2. A function to rate movies and a button to call it

 18.3. Reading user input with text boxes

 18.3.1. Adding a text box to the page

 18.3.2. Adding an unordered list to display the comments

 18.3.3. Getting references to the new elements

 18.3.4. Updating the rateMovie function

 18.3.5. Styling the examples with CSS

 18.4. The Crypt—player commands via a text box

 18.4.1. Adding controls to the page

 18.4.2. Mapping text box entries to game commands

 18.4.3. Issuing orders with split, join, pop, and shift

 18.4.4. Deciding between options with switch

 18.4.5. Making it so—listening for button clicks

 18.4.6. Enter The Crypt

 18.5. Summary

 Chapter 19. Templates: filling placeholders with data

 19.1. Building a news page—breaking news

 19.1.1. Comparing the news item data and HTML

 19.1.2. Constructing the HTML by string concatenation

 19.1.3. Designing with HTML templates

 19.1.4. Using script tags for templates

 19.2. Replacing one string with another

 19.2.1. Chaining calls to replace

 19.3. While loops—replacing a string multiple times

 19.3.1. Repeating code while a condition is met

 19.3.2. The while loop

 19.3.3. Replacing a string while it can be found

 19.3.4. Replacing strings with regular expressions

 19.4. Automating placeholder replacement for templates

 19.4.1. Matching template placeholders with object properties

 19.4.2. Filling all of the placeholders for each key

 19.4.3. Building a list of items using a template

 19.5. Building a news page—news just in

 19.5.1. Creating the templates and data modules

 19.5.2. Importing the modules

 19.6. The Crypt—improving the views

 19.6.1. Creating HTML templates for all of the views

 19.6.2. Updating the views to use the new templates

 19.6.3. Enter The Crypt

 19.7. Summary

 Chapter 20. XHR: loading data

 20.1. Building a fitness app—retrieving user data

 20.1.1. Locating the user data

 20.1.2. Loading the user data—an outline

 20.1.3. Loading the user data—the XMLHttpRequest constructor

 20.1.4. Loading the user data—parsing the XHR response with JSON.parse

 20.1.5. Loading JS Bin data—a handy function

 20.1.6. Building the fitness app

 20.1.7. The fitness app—what’s next?

 20.2. JSON—a simple data format

 20.2.1. Converting JSON into objects and arrays with JSON.parse

 20.3. The Crypt—loading a map on demand

 20.3.1. Specifying exits with JS Bin file codes

 20.3.2. Using a cache—load each place only once

 20.3.3. Replacing the Map Data and Map Builder modules with Map Manager

 20.3.4. Updating the game controller to use the Map Manager

 20.3.5. Building the game page

 20.3.6. Enter The Crypt

 20.4. Summary

 Chapter 21. Conclusion: get programming with JavaScript

 21.1. Working locally with files

 21.1.1. Writing code

 21.1.2. Saving files

 21.1.3. Opening your pages in a browser

 21.1.4. Concatenating and minifying files

 21.2. Getting help

 21.3. What next?

 21.3.1. The companion site

 21.3.2. Books

 21.3.3. Sites

 21.3.4. Practice makes permanent

 21.4. Summary

 The Crypt: a running example

 The Crypt: a running example

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 When John emailed me to ask if I would write a foreword for Get Programming with JavaScript, I have to admit the main thing that got me on the hook was that he had used JS Bin throughout the book to let readers try
 out live demos. JS Bin was created in 2008 as a place for programmers to collaborate, test, debug, experiment, and share.
 Education is close to JS Bin’s heart, so John’s background as a teacher and his practical approach seemed like a great fit
 with its ethos and purpose. I’m a firm believer that getting your hands dirty with real code is a great way to learn, and
 being encouraged to create, extend, play, and rewrite, all in a safe, no-mistakes-barred space, looked like a good idea for
 a beginners’ programming book.

 As the developer of JS Bin, an application created with JavaScript, I’m always excited to see JS Bin being used to teach beginners,
 and that’s exactly what John does with this book. It goes without saying that different people in different contexts take
 different lengths of time to learn programming. But they all benefit from a practical approach. JS Bin, as a free resource
 requiring no installation, provides an instantly accessible environment in which to learn, and this book provides the guidance
 to get started, the support to keep practicing, and the encouragement to enjoy the adventure.

 I remember seeing object dot notation well over 10 years ago and wondering how I was supposed to Google “What does . mean?”
 If I’d had John’s gentle and thorough introduction to JavaScript back then, I would have saved myself a lot of pain wading
 through many failed search attempts! He doesn’t cover everything, but he takes his time with key concepts, showing patience
 and consideration for readers and encouraging them to stretch their knowledge and build their skills. The variety of examples
 really helps; there’s lots to get your teeth into, but also plenty of support and suggestions for further practice. Don’t
 get lost in The Crypt—trust your guide. It builds into a substantial project and should help you see how little pieces can make big apps.

 I’ve had the privilege of creating a number of tools for the programmer community, and a number of JavaScript tools in particular.
 Programming lets us make things for fun, for profit, and for others, and it’s wonderful to welcome newcomers to the fold;
 who knows what great ideas they’ll have as they build the next big thing (or the next small thing!)? I’m thrilled that their
 first steps on such an exciting path will be on JS Bin. Welcome! Create bins for your code, tinker, share, and build up your
 bank of modules. Get Programming with JavaScript shows you how to manage your code bins and combine them into bigger projects. (You even get to play with the HTML and CSS
 panels on JS Bin!)

 Enjoy the book, dear reader. I expect that by the end of it, you’ll have a firm grasp of how to write JavaScript.

 Remy Sharp

 Founder of JS Bin

Preface

 I started programming using the BASIC language on a Commodore VIC-20 in 1982. It had 3.5 KB of RAM, and programming involved
 me copying a program from a magazine, instruction by instruction and line by line. The process was time-consuming and error-prone,
 but it certainly built focus and attention to detail! Rather than cut-and-paste, it was read-and-type; but eventually, the
 program was transferred from the printed page to the computer’s memory. Then the moment of truth ... and alas, it never worked
 the first time. And that’s where my learning really began.

 Staring at the code, trying to make sense of the instructions and follow the flow of the program as it jumped from line to
 line, I had to think carefully and patiently about what was going on. Not everything made sense—sometimes squeezing a program
 into 3.5 KB required some seriously supple code gymnastics—but, bit by bit, the program’s secrets would start to reveal themselves.
 Sometimes my typos stopped the program from running; sometimes there were mistakes in the code itself. Most of the time, but
 not always, I eventually got the program to run.

 Half the time, the program would turn out to be rubbish! I’d reach out and hit the VIC-20’s off switch, and the program would
 be gone forever. (It took five minutes and a cassette-tape recorder to save, and some programs just weren’t worth it.) I wasn’t
 usually upset, and I didn’t see it as a waste of time; from the start, I was amazed by the transformation of text into a working
 program (even a rubbish one) on the computer screen.

 Today, in 2016, with our smartphones, tablets, drones, and AI Go champions, that sense of wonder has grown even stronger.
 Programming is magical and transformative. Even knowing how it works, I still love how my typed instructions turn into a working
 website, a fun game, or a useful utility.

 As a teacher in the United Kingdom, I’m privileged to be able to teach 16- and 17-year-olds programming. My philosophy is
 to let them get programming from lesson one: to enter code and see the result as soon as possible. I want them to be curious
 and experiment at all times. It’s great to see their eyes widen and their smiles grow as they start their adventures in code
 and realize they can convert imagination into reality. Online code-editing environments such as JS Bin allow them to quickly
 try out ideas and build projects piece by piece. They don’t learn a long list of language features before beginning; they
 learn a few concepts at a time, often in response to getting stuck but also directly from me (they don’t know what they don’t
 know), and they practice and experiment before moving on. Their skills build day by day and week by week, and code that might
 have seemed like cryptic hieroglyphs at the start of the course becomes second nature by the end. It’s great to be a part
 of that learning process.

 In addition to being a teacher, I’m also a programmer and develop education applications, including ones for organizing, sharing,
 and booking resources; creating online handbooks; planning lessons; managing timetables; and generating quizzes. It’s great
 to see people using the applications as part of their day-to-day work; I’m lucky to understand the target audience, being
 one of them myself, and to see firsthand my applications used over an extended period—that’s great feedback!

 I’ve reviewed a number of book manuscripts for Manning. Having seen my bio describing me as a programmer and a teacher, Manning
 suggested that I write a book of my own. Get Programming with JavaScript is my attempt at translating my approach to teaching programming into book form. It’s packed with code listings to get you
 thinking about the concepts as you progress, and there are plenty of exercises and supplementary materials online, as detailed
 shortly. I hope it fires your imagination and gets you started on your own programming adventures. Good luck, and have fun!

Acknowledgments

 Thank you to Robin de Jongh at Manning for suggesting I write a book and to my editor Helen Stergius for her patience, advice,
 and support throughout the writing process. Thanks also to all of the people who reviewed the book and provided excellent
 feedback to make it better, including Philip Arny, Dr. Markus Beckmann, Rocio Chongtay, Sonya Corcoran, Philip Cusack, Alvin
 Raj, Conor Redmond, Ivan Rubelj, Craig Sharkie, and Giselle Stidston; in particular, thanks to Ozren Harlovic, Chuck Henderson,
 Al Sherer, Brian Hanafee, and Romin Irani for their attention to detail, honest reactions, and constructive suggestions.

 I’d also like to thank Remy Sharp, the creator of JS Bin, for responding to my questions and requests quickly and positively,
 for being kind enough to agree to write the foreword for this book, and for creating JS Bin!

 Finally, I want to thank the people at Manning who made this book possible: publisher Marjan Bace and everyone on the editorial
 and production teams, including Janet Vail, Mary Piergies, Tiffany Taylor, Linda Recktenwald, Dennis Dalinnik, Elizabeth Martin,
 Bonnie Culverhouse, and many others who worked behind the scenes.

About this Book

 Get Programming with JavaScript is a book for beginners, for those with no programming experience. It makes extensive use of online code listings on the
 JS Bin website, a sandbox where you can experiment with the code and see the results instantly. There’s no setup or installation
 required; if you’ve got internet access, you can just get programming straight away. If you don’t have internet access, don’t
 worry, the printed listings include helpful annotations, and all the ideas are explained in the text.

 In addition to shorter examples to illustrate the concepts covered, there is an ongoing example—a text-based adventure game
 called The Crypt—that you build as you progress through the book.

 Who should read this book

 If you are happy working with computers, using a variety of applications, and saving and organizing your files but haven’t
 written programs before and would like to learn how, then this book is for you. It doesn’t try to cover all of JavaScript,
 or even all parts of JavaScript; it helps you to get programming with lots of practical examples and exercises that encourage
 you to think and explore. If you’re already a programmer and are looking for a complete JavaScript reference, then move along.
 But if you want a patient introduction to the language, then it’s worth sticking around; a strong understanding of the basics
 will make it much easier to access some of the other excellent books for programmers.

 Roadmap

 Get Programming with JavaScript has 21 printed chapters; an additional four chapters are available online only from the publisher’s website at www.manning.com/books/get-programming-with-javascript. The book makes extensive use of code listings and exercises, with successive examples building on previous work. I recommend
 you read it in order, trying out the examples and exercises online and taking time to understand the ideas presented.

 Part 1 covers some of the core concepts of programming with JavaScript. It sticks to using the text-based Console panel on JS Bin,
 letting you focus on the JavaScript and not worry about web pages and HTML:

 	Chapter 1 looks at programming and programming with JavaScript in particular before introducing JS Bin, a website where you can get programming right away, and The Crypt, a text-based adventure game that you build as you progress through the book.

 	Chapter 2 describes variables, a way of labeling and using values in your programs. Your variables can hold different types of values, like numbers or
 text, but their names must follow certain rules.

 	In chapter 3 you learn how to group values into objects. Just like a first-aid kit can be passed around as a single object and its contents accessed only when needed, JavaScript
 objects can be treated as a single item and their properties accessed when required.

 	Functions are central to JavaScript, helping you to organize your code and execute sets of instructions on-demand and multiple times.
 They are introduced over four chapters, chapters 4 to 7, so that you get a firm grasp of how to define them and use them, how to pass data to them and from them, and how they work
 beautifully with objects.

 	Chapter 8 shows you how to create ordered lists, or arrays, of values. Whether they hold blog posts, calendar events, users, functions, or movie reviews, lists are very common in programming,
 and you learn how to create them and access, manipulate, and remove their items.

 	Objects are at the heart of JavaScript, and programs often create many objects; a calendar could have thousands of events
 and an adventure game dozens of locations, for example. Constructor functions are a way of streamlining the creation of many similar objects, and chapter 9 investigates why they’re useful and how you define them and use them.

 	In chapter 10 you meet square bracket notation, an alternate method of accessing the values stored in JavaScript objects. Armed with this more flexible way of getting and
 setting object properties, you write some example programs that can cope with unpredictable values that may appear in external
 data or user input.

 Having covered some key, core concepts in part 1, you learn how to better organize your code in part 2:

 	Chapter 11 discusses the dangers of global variables, variables that can be seen throughout a program, and the benefits of local variables, variables defined inside functions. Along the way, you consider who might use your code and the difference between an interface and an implementation.

 	If you want to find out about conditions, then chapter 12 is the place to go. Only executing code if a condition is met adds flexibility to your programs and lets you check input
 from users before using it.

 	As your programs grow, it usually makes sense to organize the pieces that make them up into modules, separate files that can be combined and swapped to improve versatility, focus, portability, and maintainability. Chapter 13 considers ways of modularizing your code, including namespaces and the snappily titled immediately invoked function expressions.

 	Having learned techniques for creating modules, in chapters 14, 15, and 16 you see three different roles that modules might play. Models help you work with data (calendar events, blog posts, or movie reviews, for example); views present that data to the user (as text, HTML, or a graph, for example); and controllers work with the models and views, responding to user actions and updating the models before passing them to the views for display.

 Part 3 covers using JavaScript to update web pages and respond to user input via buttons, drop-down lists, and text boxes. It also
 introduces templates for displaying repetitive, dynamic data, and techniques for loading that data into an existing page:

 	Chapter 17 has a brief introduction to HyperText Markup Language (HTML), a way of specifying the structure of your content in a web page (headings, paragraphs, or list items, for example)
 and of loading further resources like images, videos, scripts, and style sheets. It then shows how you can use JavaScript
 to access and update a page’s content.

 	In order to capture user input, you need to use HTML controls, like buttons, drop-down lists, and text boxes. Chapter 18 demonstrates how to set up code that can work with user input and that the program executes when a user clicks a button.

 	Templates offer a way to design the presentation of data by using placeholders. In chapter 19 you learn how to include HTML templates in a page and replace their placeholders with data. You avoid the confusing mess
 of JavaScript, HTML, and data all mixed together and create a neat, clear way of populating a web page with nicely formatted
 information.

 	Chapter 20 explains how to load further data into a web page by using XMLHttpRequest objects. Commonly referred to as Ajax, the techniques let you update parts of a page with fresh data in response to user actions, leading to more responsive applications.

 	Chapter 21 wraps up everything in the printed book, discussing text editors and integrated development environments and how to organize
 your own files when creating projects away from JS Bin. It also suggests sources of further learning about JavaScript and
 wishes you well on your programming adventures.

 Chapters 22–25 are available online only, at www.manning.com/books/get-programming-with-javascript. They’re more advanced and cover programming on the server with Node.js and Express.js, polling the server with XHR, and
 real-time communication with Socket.IO.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
 of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 Most of the code listings in the book include a link to the same code on the JS Bin website, where you can run the code and
 experiment with it. The code is also available on GitHub at https://github.com/jrlarsen/getprogramming and on the book’s Manning.com page at www.manning.com/books/get-programming-with-javascript.

 Other online resources

 The book’s website at www.room51.co.uk/books/getprogramming/index.html includes answers to many of the book’s exercises as well as video tutorials, further articles and guides for learning JavaScript,
 and links to other resources on the Internet.

 About the author

 John Larsen is a mathematics and computing teacher with an interest in educational research. He has an MA in mathematics and
 an MSc in information technology. He started programming in 1982, writing simple programs for teaching mathematics in 1993,
 building websites in 2001, and developing data-driven web-based applications for education in 2006.

 Author Online

 Purchase of Get Programming with JavaScript includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/books/get-programming-with-javascript. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the Author Online remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from
 the publisher’s website as long as the book is in print.

Part 1. Core concepts on the console

 Get Programming with JavaScript starts by introducing the key concepts you use in every program. The ideas presented form the foundation for all the subsequent
 code you write. The discussion starts gently and takes its time, with plenty of examples. There is an overarching theme of
 organization, which runs throughout the book; you see how to store and retrieve values with variables, group values with objects
 and arrays, and group instructions with functions.

 By the end of part 1, you’ll have built a working version of an adventure game called The Crypt. Players will be able to explore a map of locations and move from room to room and tomb to tomb, collecting treasure. Chapter 1 sets the scene, introducing programming, JavaScript, and JS Bin, the online code environment in which your adventures take
 place. Let the games begin!

Chapter 1. Programming, JavaScript, and JS Bin

 This chapter covers

 	Programming

 	JavaScript

 	JS Bin

 	Our ongoing example: The Crypt

 Get Programming with JavaScript is a practical introduction to programming. Through hands-on code samples coupled with carefully paced explanations, supporting
 video tutorials, and a variety of examples, this book will help you build knowledge and skills and get you on your way to
 coding expertise.

 This chapter sets the scene with a brief overview of programming and programming with JavaScript and then an introduction
 to JS Bin, the online programming sandbox you’ll be making full use of while you learn. Finally, you’ll meet The Crypt, our ongoing context for the concepts covered in the book.

 1.1. Programming

 Programming is about giving the computer a series of instructions in a format it understands. Programs are everywhere, running
 Mars rovers, the Large Hadron Collider, engine management systems, financial markets, drones, phones, tablets, TVs, and medical equipment. The power and versatility of programs are astonishing. Programs can be a few lines long or millions
 of lines long, with complex solutions built from simple building blocks.

 Deep down in a computer’s electronics is a land of binary, counters, registers, busses, and memory allocation. There are low-level
 programming languages that let us work in that land, known as machine code and assembly language. Luckily for us, high-level
 languages have been created that are much easier to read, follow, and use. We can write code that’s almost understandable
 by anyone; here’s some pretend code (pseudocode) that’s close to what high-level languages allow:

 increase score by 100
if score is greater than 5000 print "Congratulations! You win!"
otherwise load new level

 Different languages set out how you might write such code; some use more symbols than others, some more natural words. Here’s
 how it might look in JavaScript:

 score = score + 100;
if (score > 5000) {
 alert("Congratulations! You win!");
} else {
 loadNewLevel();
}

 The parentheses and curly braces and semicolons are all part of the language’s syntax, its rules for setting out the code so it can be understood by the computer. The code you write will be automatically translated
 into low-level code for the computer to execute.

 In the previous JavaScript snippet is the instruction loadNewLevel();, to load a new level in the game, presumably. Somewhere else in the program will be more code with instructions outlining,
 step-by-step, how to load a new level. Part of the art of programming is breaking larger programs into smaller pieces that
 perform specific jobs. The smaller pieces are then combined to fulfill the purpose of the main program.

 There are many, many programming languages. Some you may have heard of are Java, C, PHP, Python, and Swift. Let’s take a look
 at why you might choose JavaScript.

 1.2. JavaScript

 JavaScript is an incredibly popular programming language, mostly seen in web browsers but gaining popularity in other contexts.
 On web pages it adds interactivity, from simple animation effects to form validation to full-blown single-page applications.
 Servers—programs that make files, web pages, and other resources available on the internet—are now written using JavaScript
 with Node.js. Other programs can be scripted with JavaScript, like Photoshop and Minecraft, and some databases store JavaScript
 and let you query data with JavaScript. And as more and more network-enabled objects are added to the Internet of Things,
 JavaScript is becoming more popular for programming sensors, robots, drones, and Arduino-style electronics.

 Learning to program gives you a great skill that’s versatile, useful, stimulating, creative, fun, rewarding, and in demand.
 Learning to program with JavaScript puts one of the world’s most widely used languages at your fingertips, letting you develop
 applications for all manner of uses, devices, platforms, and OSes.

 1.3. Learning by doing and thinking

 Learning follows thinking. The philosophy of Get Programming with JavaScript is that by experimenting with programs in an online sandbox, finding out firsthand what works and what doesn’t, and by attempting
 challenges, you’ll have to think carefully about the concepts in each chapter. That thinking will lead to understanding and
 learning.

 The sandbox lets you run programs and get instant feedback. Sometimes the feedback will be unexpected and force you to question
 what you thought you knew. Some ideas may click into place quickly whereas others could take longer; careful consideration
 and further experimentation may be needed. Curiosity, commitment, and resilience are key attitudes when learning anything,
 and they’ll certainly help you to be a better programmer.

 That’s not to say learning to program will be a chore! Far from it. Even after more than 30 years of programming, I still
 find the transformation of code into a useful and/or fun application to be almost magical. That lines of simple statements,
 when combined, can accomplish such a variety of outcomes is astonishing. And seeing others use something you’ve created to
 be more productive or more organized or just to have more fun is a privilege and a pleasure.

 So be prepared for an adventure of discovery, and don’t be disheartened if you find some concepts tricky at first. Take your
 time, do the exercises, and don’t forget the resources on the Get Programming with JavaScript website; it has links to listings, solutions, videos, and further reading at www.room51.co.uk/books/getProgramming/index.html. Learning to program is worth the effort.

 1.4. JS Bin

 JavaScript is most commonly run by a web browser. The browser loads a web page from a server, and that page may include JavaScript
 code or a link to code the browser then fetches. The browser steps through the code, executing the instructions. For part 1 of Get Programming with JavaScript, you avoid the extra considerations of writing and loading web pages and linking to code files. You keep your focus on the
 JavaScript language itself. To do that, you make use of JS Bin, a free online service.

 JS Bin is an online sandbox for developing and sharing web pages and JavaScript programs. All of the code listings in this
 book are available on JS Bin (www.jsbin.com) to give you hands-on practice with the code and to let you experiment and learn.

 When you first visit the site, you’ll see a header section with a picture of Dave the BinBot and some helpful links to get
 you started, as shown in figure 1.1. Feel free to explore, but don’t be put off by any complicated information you might find. Once you’ve finished exploring, close the header by clicking the X to the left of Dave. (You can close any welcome messages or
 other messages that JS Bin sometimes shows as well.)

 Figure 1.1. JS Bin showing the HTML, CSS, Output, and Info panels

 [image:]

 1.4.1. JS Bin panels

 JS Bin is a tool for developing web pages and applications. In addition to the Info panel at the top, it has five panels available
 for display: HTML, CSS, JavaScript, Console, and Output. Clicking a panel’s name on the JS Bin toolbar toggles the panel on
 or off. In part 1 you work with just the JavaScript and Console panels, part 2 will use the HTML panel, and part 3 will add the CSS and Output panels. You’ll be using only the JavaScript and Console panels to begin with, so toggle those
 two panels on and the others off; see figure 1.2.

 Figure 1.2. JS Bin showing the JavaScript and Console panels.

 [image:]

 HTML

 HTML is used to structure the content of web pages. Text, images, video, and forms are examples of content.

 CSS

 Cascading Style Sheets let you specify how your content should be presented. You can define background color, font details,
 margins, sizes, and so on.

 JavaScript

 JavaScript lets you add behavior and interactivity to your web pages. Or you can use it to write programs not in the context
 of a web page.

 Console

 The console can be used by a program to display information for users and developers. Warnings and errors about a program
 may be shown here. The console is interactive; you can type into it to find out about the state of a program. It’s not normally
 used in finished applications, but you’ll make good use of it as a quick and simple way of interacting with your programs
 as you learn.

 Output

 The Output panel shows a preview of the web page defined in the HTML, CSS, and JavaScript panels. It shows what a visitor
 to a page would normally see in a browser.

 1.4.2. Following the code listings on JS Bin

 You’ll write programs by adding lines of code to the JavaScript panel on JS Bin. The programs will start simply and slowly
 increase in complexity as you cover more features of the language. For most of the code listings in part 1 of the book, you can test the code on JS Bin by following these steps:

 1. Select New on the File menu on JS Bin.

 2. Toggle the panels so that the JavaScript and Console panels are visible.

 3. Enter code in the JavaScript panel.

 4. Click Run.

 5. Check the result on the Console panel.

 Figure 1.3 shows the steps on a screenshot from JS Bin.

 Figure 1.3. The steps for running JavaScript on JS Bin

 [image:]

 Most of the listings in the book also have a link to the same code on JS Bin. The listings on JS Bin include extra information
 and exercises related to the code, discussed further in sections 1.4.4 and 1.4.5.

 1.4.3. Logging to the console

 At various points you want programs to output information by displaying it on the Console panel. To display information on
 the console, use the console.log command. Running the program in this listing displays the following on the console:

 > Hello World!

 Listing 1.1. Using console.log to display information (http://jsbin.com/mujepu/edit?js,console)

 console.log("Hello World!");

 You place the message to be displayed between quotation marks, within the parentheses.

 Notice that the listing title contains a JS Bin link. Click the link to see the live code on JS Bin. To execute the code in
 the JavaScript panel, click the Run button at the top of the Console panel. You’ll see your message, “Hello World!”, appear
 on the console.

 Try clicking Run a few more times. Every time it’s clicked, your code is executed and “Hello World!” is logged to the console.
 You can click Clear to clear all the messages from the console.

 When following links to code on JS Bin, the program may run automatically. You can switch off auto-run in your preferences
 on JS Bin if you sign up for an account.

 1.4.4. Code comments

 Along with the code statements, the JS Bin listings for this book include comments, text that’s not part of the program but is useful for explaining what the code does. Here’s the first block comment from
 listing 1.1 on JS Bin:

 /* Get Programming with JavaScript
 * Listing 1.1
 * Using console.log
 */

 As well as block comments, which can span multiple lines, you’ll sometimes see single-line comments:

 // This is a single-line comment

 On JS Bin, the comments are usually shown in green. Programmers add comments to their code if they feel it needs some explanation
 to be understood by other programmers. When a program is executed, the computer ignores the comments.

 1.4.5. Further Adventures

 Most code listings for Get Programming with JavaScript on JS Bin come with a small set of exercises, called Further Adventures, included as comments after the code. Some are easy, some are repetitive, and some are challenging. The best way to learn
 programming is to program, so I urge you to jump in and try the challenges. You can get help on the Manning Forums, and solutions
 to many of the tasks are given on the book’s websites at www.manning.com/books/get-programming-with-javascript and www.room51.co.uk/books/getProgramming/index.html.

 1.4.6. Error messages

 As you add code to the JavaScript panel, JS Bin is continuously checking for errors. You’ll see a red error section appear
 at the bottom of the JavaScript panel. Don’t worry about it until you’ve finished adding a line of code. If the error section
 is still there, click it to see the error messages.

 For example, try deleting the semicolon from the end of the line of code in listing 1.1. Figure 1.4 shows the error that JS Bin displays in response to the deleted semicolon.

 Figure 1.4. The JS Bin error section (closed and then open)

 [image:]

 The semicolon signals the end of a line of code. Each line of code, ending with a semicolon, is called a statement. If you stop typing but the line does not end with a semicolon, JS Bin will complain. The program may still run, and JavaScript
 will try to insert semicolons where it thinks they should go, but it’s much better practice to put the semicolons in yourself;
 the errors in JS Bin are encouraging good practice.

 JS Bin does its best to give error messages that help you fix any problems. Delete more characters, one by one, from the end
 of your line of code and watch as the error messages update.

 1.4.7. Line numbers

 The error message in figure 1.4 told you the line number where the error occurred. You had only one line of code, so the error was on line 1. Programs can
 get quite long, so it’s helpful to have line numbers you can see. You don’t add line numbers by hand; your text editor, in
 this case JS Bin, does that automatically. They’re not part of the program; they help you while writing and testing the code.
 Figure 1.5 shows a longer program with a couple of errors. Don’t worry about understanding the code for now, but see if you can spot
 the errors reported by JS Bin in the figure. Without the line numbers it would be much harder, especially if the program were
 longer.

 Figure 1.5. Line numbers are helpful when finding errors.

 [image:]

 To toggle the display of line numbers on JS Bin, double-click the word JavaScript at the top left of the JavaScript panel (see figure 1.5). A menu will open and close as you double-click, but the line numbers should switch from hidden to visible (or vice versa)
 as well. You can also switch on line numbers in your JS Bin profile, if you’ve registered.

 1.4.8. Get an account

 It’s worth signing up for a free account on JS Bin. Your work will be saved and you’ll be able to set a lot more preferences.
 As you start to write your own programs, it’s a great place to try out your ideas and get immediate previews and feedback.

 1.5. The Crypt—our running example

 Throughout the book, you’re developing a text-based adventure game called The Crypt. Players will be able to explore locations on a map, moving from place to place, picking up items to help them solve challenges
 and get past obstacles. The last section of each chapter will use what you covered in the chapter to develop the game further.
 You’re able to see how the programming concepts help you build the pieces that are then combined to produce a large program.

 1.5.1. Playing The Crypt

 The game will display a description of a player’s current location along with any items that are found there and any exits,
 as shown in figure 1.6.

 Figure 1.6. Playing The Crypt

 [image:]

 Players can type in commands to move from place to place, pick up items they discover, and use the items to overcome challenges.

 You need to write code for all of the different elements within the game. But don’t worry—you take it step by step, and I’ll
 introduce what you need to know as you progress. You can play the game on JS Bin at http://output.jsbin.com/yapiyic.

 1.5.2. Steps for building The Crypt

 In part 1, while learning some of the core concepts in JavaScript, you write code to represent the players and the places in the game
 and to let players move from place to place and pick up items they find. Figure 1.7 shows the components that you’ll create for Players, Places, Maps, and the Game as a whole. Don’t worry about all of the
 terms in the figure—you’ll cover them in detail as you progress through the book. A similar figure will be used in each chapter
 to highlight the ideas being discussed in the context of the whole game.

 Figure 1.7. Game elements in The Crypt for part 1

 [image:]

 Both parts 1 and 2 will use the console on JS Bin to display game information and to accept input from users. Table 1.1 shows how the game elements correspond to the JavaScript being covered in part 1.

 Table 1.1. Game elements and JavaScript in part 1 of The Crypt

 	
 Game element

 	
 Task

 	
 JavaScript

 	
 Chapter

 	Players
 	Deciding on the information we need to know about each player
 	Variables
 	Chapter 2

 	
 	Collecting player information in one place
 	Objects
 	Chapter 3

 	
 	Displaying information about players on the console
 	Functions
 	Chapters 4–7

 	
 	Creating a list of items collected by each player
 	Arrays
 	Chapter 8

 	
 	Organizing player creation code
 	Constructors
 	Chapter 9

 	Places
 	Creating lots of places to explore, all with a similar structure
 	Constructors
 	Chapter 9

 	
 	Joining places with exits
 	Square bracket notation
 	Chapter 10

 	Game
 	Adding simple functions for movement, collecting items, and displaying information
 	Square bracket notation
 	Chapter 10

 	Maps
 	Joining places with exits
 	Square bracket notation
 	Chapter 10

 Part 2 adds challenges for players, blocking exits until the players use appropriate items to solve the puzzles. The programming
 focus is more about organizing your code, hiding how it works, checking user input, and building modules that you can reuse
 and swap to make the project more flexible.

 Figure 1.8 shows how the game is split into modules for map data, constructors that you use to create players and places, views for
 displaying information on the console, and a controller for running the game and linking all of the pieces. Again, the figures
 are presented here to give a sense of what to expect and how the full game is made up of smaller building blocks—you’re not
 expected to understand all of the terms at this point. You are allowed to be curious and excited! Each building block will
 be fully explained over the next 400 pages; take your time to explore the concepts and play with the code.

 Figure 1.8. Game elements in The Crypt for part 2

 [image:]

 Part 3 updates the display to use HTML templates, modifies the game to load data while it’s running, filling the templates with
 player and place information, and introduces text boxes and buttons so that players can enter commands via a web page (figure 1.9).

 Figure 1.9. Game elements in The Crypt for part 3

 [image:]

 Part 4, available online, shows how game data can be stored on a server using Node.js.

 1.6. Further examples and practice

 Although The Crypt is our ongoing context for learning JavaScript, each chapter includes other examples to show you concepts at work in a variety
 of situations. Some of the smaller examples will also be developed as you progress, letting you see how the new concepts help to improve the examples. In particular, you’ll look at a quiz app, a fitness-tracking app, a movie ratings
 web page, and a news headlines page.

 1.7. Browser support

 Browsers are evolving all of the time. Some of the JavaScript listings in Get Programming with JavaScript may not work in older browsers (Internet Explorer 8 and earlier, for example). The discussions on the book’s website will
 provide alternative methods to get code working for browsers that aren’t happy with the main methods shown in the listings.

 1.8. Summary

 	Programs are sets of instructions for computers to follow.

 	High-level languages let us write instructions that are easier to read and understand.

 	JavaScript is one of the most widely used programming languages in the world. Associated most strongly with adding interactivity
 to web pages, it’s also used in server-side programming, as a scripting language for applications, and as a way of programming
 robots and other devices.

 	Learning follows from thinking. So, get involved in the practical examples in the book and be curious, committed, and resilient.

 	JS Bin, an online code sandbox, will help you to focus on the JavaScript and give quick feedback as you experiment and practice.

 	Our main running example is The Crypt. It gives you a context for learning programming concepts and for building a relatively complicated program from simple elements.

 	Further examples will help you to gain depth through breadth and to appreciate how the concepts you learn are applied in a
 wider variety of situations.

Chapter 2. Variables: storing data in your program

 This chapter covers

 	Storing and using information with variables

 	Declaring variables

 	Assigning values to variables

 	Displaying variable values on the console

 Get Programming with JavaScript has been written as a gentle introduction to programming. This chapter, then, is a gentle introduction to a gentle introduction.
 As far as adventures go, you hardly leave the house. You can think of it as the packing stage for your journey, vitally important—you
 don’t want to get to the airport without your passport or to the Oscars without your selfie stick—but not the main event.

 Almost without exception, programs store, manipulate, and display data. Whether you’re writing a system for blogging, analyzing
 engine performance, predicting the weather, or sending a probe to land on a comet in 10 years’ time, you need to consider
 the data you’ll use and what kinds of values that data might take. To work with data in your programs, you use variables.

 2.1. What is a variable?

 A variable is a named value in your program. Whenever you use the name in the program, it’s replaced with the value. You could create
 a variable called score and give it the value 100. Then, if you tell the computer to “display the score,” it will display 100. Now, variables can change, hence the name, so later in the program, maybe in response to some action a player takes, you
 can update the score. If you add 50 to score and tell the computer to “display the score,” it will now display 150.

 So how can you use JavaScript to make this magic happen?

 2.2. Declaring variables and assigning values

 Letting the computer know about information you’d like to store requires two steps:

 1. You need to set a name you can use to refer to your data in the program, like score or playerName or taxRate.

 2. You need to link the name with the value you want to store: something like set score equal to 100 or make ‘George’ the playerName or let the tax rate be 12%.

 In section 2.2.3, you’ll see how both steps, giving a variable a name and giving it a value, can be completed in a single JavaScript statement.
 For now, you take things slowly and use a separate statement for each step.

 2.2.1. Declaring variables

 You’ve been dreaming of making it big with your design for the next mobile app craze, The Fruitinator! Players are sent back in time to splat fruit with their Smoothie 9mm, racking up record scores as they go. Your program needs to track those scores. That means setting up a variable.

 Registering a name to represent a value is called variable declaration. You declare a variable by using the var keyword. The following listing shows the code statement needed to declare a variable called score.

 Listing 2.1. Declaring a variable (http://jsbin.com/potazo/edit?js,console)

 var score;

 The var keyword tells the computer to take the next word in the statement and turn it into a variable. Figure 2.1 annotates the code statement from listing 2.1.

 Figure 2.1. Declaring a variable

 [image:]

 That’s it! You’ve declared a variable called score ready for some splatted fruit action. It’s the very first line of a fruit-based system that might just destroy humanity.
 Let’s start scoring points.

 2.2.2. Assigning values to variables

 Your program now knows about the variable score. But how do you assign it a value? You use the humble equals symbol, =. (Actually, in JavaScript, it’s not so humble. It turns up all over the place, performing a number of important jobs. A smooth
 operator.) Figure 2.2 illustrates the equals symbol at work, with listing 2.2 showing its use in context.

 Figure 2.2. Assigning a value to a variable

 [image:]

 Listing 2.2. Assigning a value to a variable (http://jsbin.com/yuvoju/edit?js,console)

 [image:]

 You assign the variable score the value 100. In general, you assign the value on the right of the equals sign to the variable on the left of the equals sign (figure 2.3). When you use the equals sign to assign a value, JavaScript gives it a special name, the assignment operator.

 Figure 2.3. The equals sign is called the assignment operator.

 [image:]

 You have declared a variable and assigned it a value. It’s time to display it on the console. The output of the following
 listing should look something like this:

 > 100

 Listing 2.3. Using a variable (http://jsbin.com/huvime/edit?js,console)

 var score;
score = 100;
console.log(score);

 Using the console.log function, introduced in chapter 1, you tell the computer to display the value of the score variable, whatever it happens to be. You’ve just assigned it a value of 100, so that value appears on the console.

 Why didn’t you just print out 100 directly, using console.log(100)? Well, the values of variables usually change during the course of a program. By using a variable rather than a literal value, your programs can use current values, whatever they happen to be at the time. The next listing displays the value
 of score on the console, changes the value, and displays the new value, like this:

 > 100
> 150

 Listing 2.4. Variables vary (http://jsbin.com/jasafa/edit?js,console)

 var score;
score = 100;
console.log(score);

score = 150;
console.log(score);

 You used the same instruction, console.log(score), twice but the program printed two different values on the console. Your instruction used the variable score. Because its value had changed, so did the output.

 You assigned the score variable numbers, 100 and then 150, as values. Text is easy too; just wrap the text you want to assign in quotation marks. The next listing displays two messages
 on the console:

 > Hello World!
> Congratulations! Your tweet has won a prize ...

 Listing 2.5. Assigning text to variables (http://jsbin.com/hobiqo/edit?js,console)

 [image:]

 Programmers call sections of text strings because they’re strings, or sequences, of characters. As you saw in listing 2.5, to denote a string you place the text inside quotation marks. The marks can be double, "Hello World!", or single, 'Congratulations!', as long as they match. Without the quotation marks, JavaScript would try to interpret the text as instructions or variables.

 2.2.3. One-step declaration and assignment

 You’ve seen how to declare variables and then assign them values in two steps. It’s also possible to declare a variable and
 assign it a value in a single statement, as illustrated in figure 2.4.

 Figure 2.4. You declare a variable and assign it a value in a single statement.

 [image:]

 Listings 2.6 and 2.7 achieve exactly the same outcome, declaring variables and assigning them values before displaying the following message:

 > Kandra is in The Dungeon of Doom

 Listing 2.6. Declaring and assigning in two steps (http://jsbin.com/vegoja/edit?js,console)

 [image:]

 Listing 2.7. Declaring and assigning in one step (http://jsbin.com/dorane/edit?js,console)

 [image:]

 In listing 2.7, you assign the value on the right side of each equals symbol to the newly declared variable on the left. In both programs,
 you create the message displayed on the console by joining pieces of text using the addition symbol, +. Joining pieces of text is called string concatenation and + is the string concatenation operator.

 If you know the value of a variable at the time you declare it, then this single-step approach can be a neat way of assigning
 the value to the variable. Sometimes, the value won’t be known at the time of declaration; maybe some calculations need to
 be performed, user input is required, or you’re waiting for a network response. In that case, declaration and assignment would
 be separate. It’s common for programmers to declare their variables at the top of a program, even if they won’t assign them
 values until later.

 2.2.4. Using a variable in its own assignment

 When you assign a value to a variable, JavaScript evaluates the expression to the right of the assignment operator and assigns the result to the variable.

 var score;
score = 100 + 50;

 JavaScript evaluates the expression, 100 + 50, and assigns the result, 150, to the variable score.

 The values in the expression probably won’t be hard-coded literals like 100 and 50; they’re more likely to be variables. Here’s an example, using the variables callOut-Charge, costPerHour, and numberOfHours, to calculate the total cost when hiring a plumber to do some work:

 total = callOutCharge + costPerHour * numberOfHours;

 The * symbol is used for multiplication; it is the multiplication operator. You can also use – for subtraction and / for division.

 Because JavaScript evaluates the expression on the right first, before assigning its value to the variable on the left, you
 can even use the current value of a variable to set its new value. Say a player in your app sensation The Fruitinator! has just splatted a strawberry; that’s 50 points! The player needs an update.

 > Your score was 100
> Great splat!!!
> New score: 150
> Way to go!

 Figure 2.5 shows a statement using the current score when assigning the updated score, and listing 2.8 is your score-updating program.

 Figure 2.5. Updating a variable with the result of a calculation involving itself

 [image:]

 Listing 2.8. Using a variable’s current value to set its new value (http://jsbin.com/kijuce/edit?js,console)

 [image:]

 In the code, you evaluate the expression, score + 50, using the current value of score, 100, to give the result 150. This value, 150, is then assigned to score. Next up for The Fruitinator! ... kumquats. Worth a cool 100 points! Kumquats are tricky. Never trust a kumquat.

 2.3. Choosing good variable names

 In all the code listings so far, there was nothing forcing you to give the variables the names you did. You tried to choose
 names that would help anyone reading the code understand the purpose of the variables. You almost have a free choice but must
 be careful not to tread on JavaScript’s toes; there are names that JavaScript has set aside for its own use and further rules
 governing valid variable names.

 2.3.1. Keywords and reserved words

 JavaScript has a set of keywords, like var and function, that are part of the language itself and govern the actions and properties available in every program. It also sets aside
 some reserved words that may turn up as keywords in the language in the future. You can’t use those keywords or reserved words as variable names.
 Other examples of keywords are if, switch, do, and yield, and a full list can be found on the Mozilla Developer Network (http://mng.bz/28d9). But don’t take my word for it. Head over to JS Bin and try using one of those words as a variable name, as shown in figure 2.6.

 Figure 2.6. JavaScript has some words that can’t be used as variable names.

 [image:]

 You don’t have to learn the lists of keywords and reserved words; you’ll pick up most of them as you do more programming,
 and they usually throw errors when you try to use them. But do bear them in mind if your program isn’t working and you’re
 not sure why.

 2.3.2. Rules for naming variables

 So now that keywords and reserved words are out, is everything else in? Not quite—there are a few further rules. Variable
 names can start with any letter, a dollar sign, $, or an underscore, _. Subsequent characters can be any of those or numbers. Spaces are not allowed. Listing 2.9 includes one block of valid names and one block of invalid names. If you visit the code on JS Bin, you’ll see it reports
 a long list of errors. Take a look and try to make sense of them, but don’t worry if you don’t understand them all; the listing
 includes invalid names on purpose and JavaScript isn’t happy about it.

 Listing 2.9. Valid and invalid variable names (http://jsbin.com/biqawu/edit?js,console)

 [image:]

 JavaScript is case sensitive. Changing the case of characters in a variable name will give a different variable. score, Score, and SCORE are three different names. These differences can be hard to spot, so it’s worth trying to be consistent, as discussed in
 the next section.

 2.3.3. camelCase

 You may have noticed the capitalization of letters in the variable names you’ve been using. Where names like costPerHour, playerName, and selfieStickActivated are made up of multiple words joined together, the first word is lowercase and the following words start with an uppercase
 character. This is called camel casing and is an extremely widespread convention that can help to make the names more readable.

 Some programmers choose to separate words within variable names with underscores instead, like cost_per_hour, player_name, and selfie_stick_activated. How you name variables is up to you; it’s part of your programming style. I’ll be sticking with camel case throughout Get Programming with JavaScript.

 2.3.4. Use descriptive variable names

 Try to give your variables names that describe what they’re for or what they do. You’re free to choose the names but costPerHour is much easier to understand than cph. Other programmers may need to read and update your code in the future, and you’ll thank yourself when you return to it at
 some point down the line. As your programs grow and involve more and more variables, objects, and functions, good variable
 names can really help you follow the flow of the program and understand its purpose. So keep those variable names simple,
 direct, and descriptive.

 You’ve seen what variables are for, how to declare and assign them, and what makes for a good name. But how do you know what
 variables you need in a program? Analyzing the problem you’re trying to solve and planning out a solution that fits your users
 is an important part of program design. In the next section, you take a little time to consider the information you need to
 represent the players in your ongoing example, The Crypt.

 2.4. The Crypt—player variables

 As discussed in chapter 1, The Crypt includes a number of elements: players, places, game, maps, and challenges. You need to consider the properties of all of
 those elements as you design and build the game. For now, you focus on the players, as shown in figure 2.7.

 Figure 2.7. Elements in The Crypt

 [image:]

 As players move from place to place, what does the program need to know to create fun and challenging adventures? You may
 want to keep track of names, health, items carried, or location. Or maybe hairiness of feet or color of lightsaber. Some of
 that information may stay the same during a game and some may change.

 Part of the art of programming is abstraction, knowing what information to include and what to leave out. It might be that just how hairy a player’s feet are has a role
 to play in the game, but it’s likely to be more than you need to know. You should think carefully about what data you’ll use
 as the player completes their quest.

 Table 2.1 shows some possible properties that you may want to include when representing each player in your program.

 Table 2.1. Possible player properties

 	
 Property

 	
 What’s it for?

 	
 Example values

 	Name
 	Used when displaying player information and when interacting with other players.
 	"Kandra", "Dax"

 	Health
 	Decreased by monsters and poison. Increased by food and potions.
 	68

 	Place
 	Where is the player on the map?
 	"The Old Library"

 	Hairiness of feet
 	A measure of how well the player copes in cold conditions, without boots.
 	94

 	Items
 	Keeping track of the items a player has picked up.
 	"A rusty key", "A purple potion", "Cheese"

 You may well need other properties, and you can add and remove properties if necessary. Declaring player properties could
 go something like this:

 var playerName = "Kandra";
var playerHealth = 50;

 Part of a programmer’s expertise is being able to model situations and predict which variables will be needed to complete
 a program. The more you get right ahead of time, the less chance there’ll be a need for a big rewrite of your program—nobody
 wants that. Just as you don’t want to realize you’ve forgotten your passport at the airport, you don’t want to find you’ve
 overlooked a crucial part of a program when you’ve written lots of code.

 2.5. Summary

 	Variables let you store data for your program to use while it’s running.

 	Declare a variable by following the var keyword with a name:

var costPerHour;

 	Choose simple, descriptive names for your variables, avoiding JavaScript’s keywords and reserved words.

 	Assign values to variables with the assignment operator, the equals symbol =:

costPerHour = 40;

 You assign the value on the right of the equals sign to the variable on the left.

 	Use variables in expressions:

total = callOutCharge + costPerHour * numberOfHours;

 	As part of the planning for your programs, consider what variables you’ll need and what kinds of data they’ll hold.

Chapter 3. Objects: grouping your data

 This chapter covers

 	Organizing information with JavaScript objects

 	Creating objects

 	Adding properties to objects

 	Accessing properties using dot notation

 	Examples of objects

 In chapter 2 you saw how to declare variables and assign them values, and you considered the variables you could use to model a player
 in The Crypt. As your programs grow, so does the number of variables you use; you need ways to organize all this data, to make your programs
 easier to understand and easier to update and add to in the future.

 Sometimes it makes sense to group items and see them as a whole. Consider a first-aid kit; we happily treat it as a single
 item—“Have you packed the first-aid kit?” “Pass the first-aid kit.” “We need the first-aid kit, now!”—but will quickly switch focus to its contents when the need arises—“Pass the antiseptic and the bandages from the first-aid
 kit, please.” A number of items is neatly encapsulated by a single object.

 This chapter introduces JavaScript objects, a simple and efficient way to collect variables together so that you can pass
 them around as a group rather than individually.

 3.1. A need for organization

 Your library of adventure stories is growing, and you decide to write a program to keep track of your precious collection.
 The following listing shows variables you use to generate this test output on the console:

 > The Hobbit by J. R. R. Tolkien

 Listing 3.1. Using variables to represent a book (http://jsbin.com/fucuxah/edit?js,console)

 [image:]

 First, you declare two variables, bookTitle and bookAuthor, using the var keyword. You’re going to use those two names to store and access values in the program. You then assign strings (text) to
 your freshly created variables. You wrap the strings in quotation marks so JavaScript doesn’t try to interpret them as keywords
 or variable names. Finally, you log a message to the console. You build the message by using the concatenation operator (the
 + symbol) to join three strings.

 It may be early days but you certainly have more than one book. How can you cope with the variables needed as you buy more?
 You could have a different prefix for each book. The next listing ups the number of books to three, printing these messages
 to the console:

 > There are three books so far ...
> The Hobbit by J. R. R. Tolkien
> Northern Lights by Philip Pullman
> The Adventures of Tom Sawyer by Mark Twain

 Listing 3.2. Using prefixes to tell book variables apart (http://jsbin.com/qowagi/edit?js,console)

 [image:]

 This works up to a point. But as the number of books and the number of facts about each book increase, the number of variables
 is harder to manage. It would be helpful to be able to group all of the information about a book together, using a single
 variable.

 3.2. Creating objects

 In the same way as it is easier to ask for a first-aid kit rather than for the scissors, antiseptic, bandages, and sticking
 plasters separately, it can be easier to ask for book1 rather than book1Title, book1Author, book1ISBN, and so on separately. JavaScript provides us with the ability to create objects to group variables. Very specific notation, or syntax, is used to define a new object. Let’s look at a full example and then break it down into stages.

 Listing 3.3 shows how to create a book as an object rather than as separate variables. Figure 3.1 shows the output on JS Bin when you log the book object to the console.

 Figure 3.1. You log an object to the console on JS Bin.

 [image:]

 Listing 3.3. A book as an object (http://jsbin.com/ruruko/edit?js,console)

 var book;

book = {
 title : "The Hobbit",
 author : "J. R. R. Tolkien",
 published : 1937
};

console.log(book);

 When you run listing 3.3 on JS Bin, the console displays all the properties of your new book object, as well as telling you it’s an object. Notice that it displays the properties in alphabetical order. The object itself
 doesn’t order the properties; JS Bin has chosen an ordering purely for display.

 Let’s break down the object creation to get a clearer idea of what’s going on and what all the different bits of notation
 represent.

 3.2.1. Creating an empty object

 In chapter 2 you saw that variables can be declared but not assigned a value until later in a program. You might have to wait for some
 user input or a response from a server or a reading from a sensor before you know the value you want to assign to the variable.
 In the same way, you can create an object with no properties, knowing that properties will be added at some point in the future.

 To create an object, use curly braces, as in the following listing.

 Listing 3.4. Creating an empty object (http://jsbin.com/kaqatu/edit?js,console)

 [image:]

 You create an empty object, one with no properties, and assign it to the variable book. It’s not much use without any properties, and you’ll see how to add new properties to an existing object in section 3.4. But how would you create your book object with properties in place?

 3.2.2. Properties as key-value pairs

 The book in listing 3.3 includes three properties: its title, its author, and its year of publication. The values of those properties are "The Hobbit", "J. R. R. Tolkien", and 1937. In a JavaScript object, the names of the properties are called keys. For book the keys are title, author, and published. When creating an object, you add a property by including its key and value, separated by a colon, between the curly braces.
 Figure 3.2 shows a property definition.

 Figure 3.2. Set properties by using key-value pairs.

 [image:]

 Another name for a key-value pair is a name-value pair, but we’ll stick with keys and values in this book.

 In the next listing you create an object with a single property.

 Listing 3.5. An object with a single property (http://jsbin.com/robupi/edit?js,console)

 var book;

book = {
 title : "The Hobbit"
};

 You declare a variable and then create an object and assign it to the variable. The object has a single property. The key
 of the property is title and its value is "The Hobbit". We usually simply say that the title property of book is "The Hobbit".

 Property values aren’t restricted to number and string literals, like 50 or "The Hobbit". You can also use previously declared variables as values. The following listing assigns the name of a book to a variable
 and then uses that variable as the value of an object’s property.

 Listing 3.6. Using a variable as a property value (http://jsbin.com/bafige/edit?js,console)

 [image:]

 Having an object with a single property is a little extravagant; you might as well stick with a variable. Let’s see how to
 create an object with more than one property.

 When you need multiple properties, commas separate the key-value pairs. Figure 3.3 shows two properties as part of an object definition, and listing 3.7 creates two objects, each with two properties.

 Figure 3.3. An object definition with two properties

 [image:]

 Listing 3.7. Objects with multiple properties (http://jsbin.com/bawiqev/edit?js,console)

 [image:]

 Now that you’ve created an object, you need to be able to access its properties.

 3.3. Accessing object properties

 We’re comfortable with the concept of a first-aid kit as a single object we can pass around from person to person and take
 from place to place. It’s only when we need to use the kit that we consider what’s inside: antiseptic, scissors, bandages,
 and so on.

 For JavaScript objects, to access the values of an object’s properties you can use dot notation. Join the name of the variable to the name of the property, its key, with a period or dot. For a first-aid kit as an object
 you might use kit.antiseptic or kit.scissors or kit.bandages. And for books, to access the author property of the object assigned to the variable called book, you write book.author (figure 3.4).

 Figure 3.4. Accessing object properties using dot notation

 [image:]

 In the next listing, you print the title and author properties of the book object to the console to give the following output:

 > The Hobbit
> J. R. R. Tolkien

 Listing 3.8. Using dot notation to access property values (http://jsbin.com/funiyu/edit?js,console)

 [image:]

 You line up the colons in the object properties in listing 3.8 to aid readability. Although JavaScript will ignore the extra spaces, indenting blocks of code and lining up values can make
 your programs easier to read and follow, especially as they grow in size. And the easier your code is to read, the easier
 it is to maintain and update, both for you and for other programmers.

 Replacing a bunch of separate variables with a single object helps you manage the complexity of your programs. You can think
 more clearly about how programs work when details are hidden until you need them. You consider a book a single entity in your
 program until you need to access the book’s title or author or publication date. It may seem that replacing three variables
 with one variable and three properties isn’t an improvement, but when you start to use objects with functions in chapter 7 and arrays in chapter 8, their economy and clarity will be more obvious.

 You use property values just like variables. The code in the following listing concatenates each book’s title with the string
 " by " and its author to give this output:

 > The Hobbit by J. R. R. Tolkien
> Northern Lights by Philip Pullman

 Listing 3.9. Concatenating string properties (http://jsbin.com/yoweti/edit?js,console)

 var book1;
var book2;

book1 = {
 title: "The Hobbit",
 author: "J. R. R. Tolkien"
};

book2 = {
 title: "Northern Lights",
 author: "Philip Pullman"
};

console.log(book1.title + " by " + book1.author);
console.log(book2.title + " by " + book2.author);

 3.4. Updating object properties

 In a quiz app, players attempt questions one after another. The number of questions attempted, number of questions correct,
 and score will change over time. You can create a player object with initial values set and then update them whenever a question
 is attempted. Use dot notation to change a property that already exists or to add a new property to an object, as in the following
 listing.

 Listing 3.10. Using dot notation to update a property (http://jsbin.com/mulimi/edit?js,console)

 [image:]

 Your code in listing 3.10 sets the attempted and correct properties to an initial value when the object is created but then updates them to a new value. It uses the assignment operator,
 =, to assign the value, 1, on the right of the operator, to the property, player1.attempted, on its left. You set the attempted and correct properties and then immediately update them; in the actual quiz app, the change would be in response to the player answering
 a question.

 You can add new properties to an object after creating it. In listing 3.10, you assign the value 50 to the score property of the player1 object.

 player1.score = 50;

 You didn’t set the score property when creating the object; assigning a value automatically creates the property if it does not yet exist.

 Just like using variables, you can use properties in a calculation and assign the result back to the property. The next listing
 shows code updating a player’s properties:

 > Max has scored 0
> Max has scored 50

 Listing 3.11. Using a property in a calculation (http://jsbin.com/cuboko/edit?js,console)

 [image:]

 When you update the score property (in bold in the listing), JavaScript evaluates the right side of the assignment first. Because player1.score is 0, the expression becomes 0 + 50, which is 50. JavaScript then assigns that value to the left side, that is, back to the score property. So, you update player1.score from 0 to 50.

 3.5. Further examples

 Although developing The Crypt program gives you an ongoing context for introducing and discussing new concepts, a broader range of examples will help to
 deepen your understanding of the different ideas presented. You can also revisit some of these examples throughout the book
 to apply fresh techniques as you master them.

 The examples all use curly braces to create an object and then assign the object to a variable created with the var keyword, in a single step.

 3.5.1. Writing a blog

 A blog is made up of blog posts. It would be good to have more information about each author, to be able to tag posts with
 keywords, and to add comments to each post. For now, here’s a minimal object to represent a single post.

 Listing 3.12. A blog post (http://jsbin.com/jiculu/edit?js,console)

 var post = {
 id : 1,
 title : "My Crazy Space Adventure",
 author : "Philae",
 created : "2015-06-21",
 body : "You will not believe where I just woke up!! Only on a comet..."
};

 3.5.2. Creating a calendar

 Calendar events clearly involve dates. JavaScript does have a Date object, but you won’t be using it in the book. The next listing represents dates as strings in a specific format.

 Listing 3.13. A calendar event (http://jsbin.com/viroho/edit?js,console)

 [image:]

 Notice how to cope with the apostrophe in the notes property. A backslash character before the apostrophe stops JavaScript from seeing it as the end of the string. The backslash
 is called an escape character and won’t be shown.

 event.notes = 'Don\'t forget the portfolio!';

 Use the escape character to display double quotes when a string is already wrapped in double quotes.

 var story = "She looked at me. \"What did you say?\" she asked.";

 JavaScript also uses the backslash escape character to specify special characters like tabs and new lines. You’ll see it in
 action throughout the book.

 A calendar contains lots of event objects. In chapter 9, you’ll see how to streamline the process of creating objects that all have a similar structure when you investigate constructor
 functions.

 3.5.3. What’s the weather like?

 Online weather information services provide weather data you can use in your programs. The data is often formatted using JSON
 (JavaScript Object Notation—see chapter 20) that’s very similar to the objects you’ve been learning about in this chapter. The data can be quite detailed with many
 properties. The next listing shows a cut-down version of location data supplied by one of these services.

 Listing 3.14. Location for a weather app (http://jsbin.com/diguhe/edit?js,console)

 var location = {
 "city" : "San Francisco",
 "state" : "CA",
 "country" : "US",
 "zip" : "94101",
 "latitude" : 37.775,
 "longitude" : -122.418,
 "elevation" : 47.000
};

 The property keys are within double quotation marks. JavaScript is happy for you to wrap keys, the property names, in quotation
 marks, single or double, although you haven’t been doing that in the examples so far. In fact, quotation marks are required
 if the property name doesn’t satisfy the rules for valid variable names discussed in chapter 2. You’ll take a more detailed look at working with such property names in chapter 10. The JSON specification, which sets out how programs should transmit JavaScript object data as text across the internet,
 requires all keys to be in double quotation marks. Because it’s sometimes required, many programmers recommend that property
 names always be placed within quotation marks to avoid inconsistency and potential errors.

 This example also lines up the colons in the key-value pairs. Do you think that helps? Compare it to the other examples in
 this section. Are they easy to read and follow? You don’t have to rigidly stick to one style or the other, although it’s quite
 common for programmers to adopt particular stylistic habits over time.

 3.5.4. The testing effect

 A great way to learn is to test yourself often. A quiz app could represent its questions and answers as properties of objects
 like the one in the next listing.

 Listing 3.15. A question and answer for a quiz app (http://jsbin.com/damoto/edit?js,console)

 var questionAndAnswer = {
 question: "What is the capital of France?",
 answer1: "Bordeaux",
 answer2: "F",
 answer3: "Paris",
 answer4: "Brussels",
 correctAnswer: "Paris",
 marksForQuestion: 2
};

 A quiz app is likely to include a small set of question types. Listing 3.15 is an example of a multiple-choice question type. Each type of question would have a fixed form of presentation. Templates
 are a great way of presenting copies of similarly structured data, and we’ll look at them in more detail in chapter 19.

 3.5.5. Create your own

 Think of some programs you’d like to create. What kinds of objects could you design to represent entities in the program?
 Head to JS Bin and have a go at building objects and displaying properties on the console. Maybe share your creations or ask
 any questions they inspire over on the Get Programming with JavaScript forum at https://forums.manning.com/forums/get-programming-with-javascript.

 3.6. The Crypt—a player object

 You’ll now apply your knowledge of JavaScript objects to The Crypt. Figure 3.5 shows where the focus of this section, a player object, fits into the overall structure of our ongoing game example.

 Figure 3.5. Elements in The Crypt

 [image:]

 In chapter 2, you considered the kind of information you need to store for players in The Crypt. For a single player, you start off with variables like these:

 playerName = "Kandra";
playerHealth = 50;
playerPlace = "The Dungeon of Doom";
playerItems = "a rusty key, The Sword of Destiny, a piece of cheese";

 You then need to replicate those variables for each player in the game, maybe by using variable prefixes like player1Name, player2Name, and so on.

 Clearly, it’s much neater to use JavaScript objects as a way of grouping all of the information about a single player. Listing 3.16 shows how you can represent a player as an object and display some of their properties on the console. The output is as follows:

 > Kandra
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> Items: a rusty key, The Sword of Destiny, a piece of cheese

 Listing 3.16. A player object (http://jsbin.com/qelene/edit?js,console)

 var player;

player = {
 name: "Kandra",
 health: 50,
 place: "The Dungeon of Doom",
 items: "a rusty key, The Sword of Destiny, a piece of cheese"
};

console.log(player.name);
console.log(player.name + " is in " + player.place);
console.log(player.name + " has health " + player.health);
console.log("Items: " + player.items);

 The last four lines of the listing are just for displaying player information. Having to repeat those lines of code every
 time you want to display a player’s information seems a little tedious. It would be great to be able to write the lines of
 code once and then call them up on demand.

 You’re in luck! JavaScript lets you define functions to execute blocks of code whenever you need them. Functions are very powerful and will help streamline the display of player
 properties and the creation of multiple player objects. You’ll take a really detailed look at functions over the next four
 chapters.

 3.7. Summary

 	Group related variables as properties of an object.

 	Define objects as collections of comma-separated properties between curly braces:

var player = { name : "Hadfield", location : "The ISS" };

 	For each property use a key-value pair, with key and value separated by a colon:

name : "Hadfield"

 	Access property values by using dot notation. If the object is assigned to a variable, join the property name to the variable
 name with a dot:

player.name

 	Use properties in expressions just as you would variables:

console.log(player.name + " is in " + player.location);

 	Assign values to properties using the assignment operator, =:

player.location = "On a space walk";

 	Add new properties to existing objects whenever you want:

player.oxygen = 96;

Chapter 4. Functions: code on demand

 This chapter covers

 	Organizing instructions with functions

 	Defining a function—specifying code to be executed on demand

 	Calling a function—executing code on demand

 	Reducing repetition in code

 	Making programs easier to read and update

 One of the main themes of Get Programming with JavaScript is managing complexity through good organization. In chapter 2, you stored information in variables and saw how choosing good names for those variables helps you understand their purpose
 in a program. In chapter 3, you grouped variables as properties of objects. You can focus on objects as a whole or drill down into the details when
 needed. In this chapter you take a look at another important method for organizing code and avoiding repetition, the function.

 4.1. Noticing repetition

 As the programs you write become longer and more complex, you find yourself repeating similar sections of code with only slight
 differences. Common tasks, like displaying text, animating an image, or saving to a database, may need to be performed often. You need to notice these recurring
 bits of code; they’re prime function fodder.

 A function is a way of writing code once but using it many times. Section 4.2 looks at how to create functions. This section explores a couple of examples of JavaScript repeated.

 4.1.1. Displaying object properties as text

 Programs use objects and variables to store all kinds of information—profiles, posts, documents, and photos—you name it and
 someone has stored it on a computer somewhere. A common task is to display that information to the user. Say you have some
 objects representing movies and need to display the information about each movie on the console. The kind of output expected
 is shown in figure 4.1.

 Figure 4.1. Movie information shown on the console in JS Bin

 [image:]

 As you can see in the following listing, the code required to create the output in figure 4.1 includes five calls to console.log. And that’s just for one movie.

 Listing 4.1. Displaying an object’s properties on the console (http://jsbin.com/besudi/edit?js,console)

 [image:]

 If you have to write those five lines of code every time you want to display movie information and for every movie, that’s
 going to get pretty repetitive. And if you then decide to change the information displayed, you’ll have to go through all
 the places where it appears in the code and make sure it’s changed consistently.

 The next listing shows the code repeated for three different movies.

 Listing 4.2. Displaying information from similar objects (http://jsbin.com/gewegi/edit?js,console)

 console.log("Movie information for " + movie1.title);
console.log("------------------------------");
console.log("Actors: " + movie1.actors);
console.log("Directors: " + movie1.directors);
console.log("------------------------------");

console.log("Movie information for " + movie2.title);
console.log("------------------------------");
console.log("Actors: " + movie2.actors);
console.log("Directors: " + movie2.directors);
console.log("------------------------------");

console.log("Movie information for " + movie3.title);
console.log("------------------------------");
console.log("Actors: " + movie3.actors);
console.log("Directors: " + movie3.directors);
console.log("------------------------------");

 There could be many more than three movies and a number of places where the information needs to be displayed. If you later
 need to change the word information to info, you’ll have to make sure you find all the places it’s used.

 The three blocks of five statements are almost identical. All that varies is which movie’s properties are being displayed.
 It would be great to be able to define one block of statements and ask JavaScript to use that block whenever needed. That’s
 what functions are for!

 The next section has one more example of repetitive code. (Don’t worry, we’ll get to functions before the examples get too
 repetitive!)

 4.1.2. Adding tax and displaying a summary

 A simple task like adding tax to a price is the kind of thing that happens again and again. You calculate the tax and add
 it to the price to give a total cost.

 > price = $140
> tax @ 15% = $21
> total cost = $161

 The following listing shows a program to add tax for three different transactions. The two operators, * and /, perform multiplication and division, respectively.

 Listing 4.3. Adding tax to find the total cost (http://jsbin.com/kawocu/edit?js,console)

 [image:]

 [image:]

 Wow! That’s a riot of repetition. As well as the blocks of console.log lines, you repeat the structure of the calculations. It’s essentially the same code every time you want to perform the calculation.
 Rest assured, you’ll learn a much better way to write this program. Enter the function!

 4.2. Defining and calling functions

 Just as an object is a collection of properties, a function is a collection of statements or instructions. Functions help
 you avoid repetition and make your code more organized and easier to update and maintain. Well-named functions should also
 make your programs easier to follow. If you find your functions are used a lot in a program and would be useful in other programs
 too, you can create libraries of helpful functions to include in other projects.

 In the previous section you saw two examples of programs where blocks of code with the same structure were repeated. To reduce
 the code bloat you want to replace those blocks with something like the following:

 showMovieInfo();
showCostBreakdown();

 The two functions, showMovieInfo and showCostBreakdown, should produce the same output as the code blocks in listings 4.2 and 4.3, and you should be able to use them again and again, whenever you want. Let’s see how such code-on-demand magic is conjured.

 4.2.1. Defining new functions

 Define a function by using the following pieces, as shown in figure 4.2:

 Figure 4.2. The pieces of a function definition

 [image:]

 	The function keyword

 	Parentheses, ()

 	A code block between curly braces, {}

 The code block contains the list of instructions you’d like to execute whenever you use the function. The list of instructions
 is also called the function body.

 It’s common to see function definitions set out like this:

 function () {
 // Lines of code to be executed go here
}

 Once you’ve defined a function, you can assign it to a variable, just like any value. The next listing defines a function
 to display “Hello World!” on the console and assigns the function to the variable sayHello.

 Listing 4.4. A simple function definition and assignment (http://jsbin.com/tehixo/edit?js,console)

 [image:]

 It’s easy to see the different pieces that make up the function definition in listing 4.4: the function keyword, the empty parentheses, and the code block for the function body. The function body has only a single statement,
 console.log(“Hello World!”);. At this point, you have only defined the function, ready for use later. The code in the function body won’t be executed until you run the function—you’ll see
 how to do that in section 4.2.3.

 The following listing shows a couple more examples of defining functions and then assigning them to variables.

 Listing 4.5. Two more function definitions and assignments (http://jsbin.com/xezani/edit?js,console)

 [image:]

 4.2.2. Function expressions and function declarations

 In the previous examples you’ve been using function expressions to define functions and assign them to variables with the assignment operator.

 var findTotal = function () { ... }; // The function expression is in bold.

 You can also use an alternative syntax, called a function declaration. Rather than defining the function and then assigning it to a variable, you can declare a name for the function as part of
 the definition.

 function findTotal () { ... } // Declare a name with the function

 You can treat the two ways of defining functions as equivalent; there are some subtle differences but we won’t go into them
 here. Get Programming with JavaScript uses function expressions throughout parts 1 and 2 to highlight the similarities between creating and assigning different values, including objects, functions, and arrays.

 var numOfDays = 7; // Assign a number
var player = { ... }; // Create and assign an object
var findTotal = function () { ... }; // Define and assign a function
var items = []; // Create and assign an array (ch8)

 Don’t worry about the function declaration syntax for now or even about the difference between declarations and expressions.
 You’ll be much more comfortable with functions when you meet the declaration syntax again in part 3.

 Just defining the functions isn’t enough to make “Hello World!” appear on the console, calculate the total, or display the
 menu. You need a way to tell the function to execute its list of instructions.

 4.2.3. Using functions

 Once you’ve assigned a function to a variable, whenever you want to execute the statements in the function body, you write
 the variable name followed by parentheses, ().

 sayHello();
findTotal();
displayMenu();

 Other names for running the function are calling the function or invoking the function.

 In listing 4.6, you call the sayHello function three times. It displays the string "Hello World!" three times, like this:

 > Hello World!
> Hello World!
> Hello World!

 Listing 4.6. Calling the sayHello function three times (http://jsbin.com/vozuxa/edit?js,console)

 [image:]

 The next listing uses the findTotal function to update the result variable. It then displays the whole calculation on the console:

 > 1000 + 66 = 1066

 Listing 4.7. Using the findTotal function to display a calculation (http://jsbin.com/hefuwa/edit?js,console)

 var number1 = 1000;
var number2 = 66;
var result;
var findTotal;

findTotal = function () {
 result = number1 + number2;
};

findTotal();

console.log(number1 + " + " + number2 + " = " + result);

 Listing 4.8 calls the displayMenu function to, well, display a menu. (These functions do exactly what they say on the tin!)

 > Please choose an option:
> (1) Print log
> (2) Upload file
> (9) Quit

 Listing 4.8. Displaying a menu (http://jsbin.com/cujozo/edit?js,console)

 var displayMenu;

displayMenu = function () {
 console.log("Please choose an option:");
 console.log("(1) Print log");
 console.log("(2) Upload file");
 console.log("(9) Quit");
};

displayMenu();

 It may seem strange to use empty parentheses as the notation for calling a function. But, as you’ll see in chapter 5, they’re not always empty ... [cue mysterious music].

 	

 Definition

 For those who like their terminology, the parentheses, (), added to the end of a variable when calling a function are called the function invocation operator or the function call operator.

 	

 4.2.4. Functions step by step

 Table 4.1 summarizes the steps used to define and call a function.

 Table 4.1. Steps used to define and call a function

 	
 Action

 	
 Code

 	
 Comments

 	Declare a variable
 	var sayHello;
 	Sets aside the name for your use in the program.

 	Define a function
 	
 function () {
 console.log("Hello World!");
}

 	The code in the function body is not executed at this point.

 	Assign to a variable
 	
 sayHello = function () {
 console.log("Hello World!");
};

 	Assigning the function to a variable gives you a label you can use to call the function.

 	Call the function
 	sayHello();
 	The code in the function body is executed.

 	Call the function again and again as needed
 	
 sayHello();
sayHello();
sayHello();

 	The code in the function body is executed every time the function is called.

 The second row in the table, Define a function, doesn’t usually occur on its own; you’re much more likely to define a function
 and assign it to a variable, as seen on the third row, Assign to a variable. (You’ll see in later chapters that you can assign
 function definitions as elements in arrays [lists] and pass them to and from other functions—they’re not always assigned to
 variables.)

 4.3. Reducing repetition

 In listings 4.2 and 4.3 you saw the repeated blocks of code needed when you didn’t have functions at your disposal. It’s time to rein in those runaways,
 cut back those fast-growing weeds, put the kids on a diet, cap the spending—you get the picture; let’s reduce the repetition!

 4.3.1. A function for displaying object properties as text

 Returning to the code from listing 4.2, you streamline the display of movie information. Write the movie display code once, in a function, and simply call the function
 whenever it’s needed.

 Listing 4.9. Using a function to display object properties (http://jsbin.com/toqopo/edit?js,console)

 var showMovieInfo;

showMovieInfo = function () {
 console.log("Movie information for " + movie.title);
 console.log("------------------------------");
 console.log("Actors: " + movie.actors);
 console.log("Directors: " + movie.directors);
 console.log("------------------------------");
};

 The code assigns the new function to the showMovieInfo variable. Call the function by writing the variable name followed by parentheses, showMovieInfo(), as shown in the next listing. You should end up with the following output on the console, matching the aim seen way back in figure 4.1.

 > Movie information for Inside Out
> ------------------------------
> Actors: Amy Poehler, Bill Hader
> Directors: Pete Doctor, Ronaldo Del Carmen
> ------------------------------

 Listing 4.10. Calling the showMovieInfo function (http://jsbin.com/menebu/edit?js,console)

 [image:]

 With the movie variable, used by the showMovieInfo function, you can switch which movie’s information the function will use. Listing 4.11 shows how to switch between movies. Information for three different movies is printed to the console.

 > Movie information for Inside Out
> ------------------------------
> Actors: Amy Poehler, Bill Hader
> Directors: Pete Doctor, Ronaldo Del Carmen
> ------------------------------
> Movie information for Spectre
> ------------------------------
> Actors: Daniel Craig, Christoph Waltz
> Directors: Sam Mendes
> ------------------------------
> Movie information for Star Wars: Episode VII – The Force Awakens
> ------------------------------
> Actors: Harrison Ford, Mark Hamill, Carrie Fisher
> Directors: J.J.Abrams
> ------------------------------

 Listing 4.11. Using the same function with multiple objects (http://jsbin.com/mavutu/edit?js,console)

 [image:]

 [image:]

 4.3.2. Functions for adding tax and displaying a summary

 Listing 4.12 shows a function to add tax for sales and display a summary of each transaction. Most of the code that you need to repeat
 is in the two functions, calculateTax and displaySale. You call them for each sale object in turn. The output is shown here.

 price = $140
tax @ 15% = $21
total cost = $161
price = $40
tax @ 10% = $4

total cost = $44
price = $120
tax @ 20% = $24
total cost = $144

 As with all of the listings on JS Bin, there are “Further Adventures” below the program that suggest ways of exploring the code and building your understanding. In this case, one challenge is
 to reduce the repetition of the function calls; calculateTax and displaySale are always called together. Although it’s good to have two different functions—they do different jobs—can you avoid having
 to call them both for each sale object? If you’re connected, click the link above listing 4.12 to head to JS Bin now and embrace the adventure. If you’re reading a print copy of the book, away from technology, it’s paper
 and pencil for you! Solutions to most problems are on the Get Programming with JavaScript website at www.room51.co.uk/books/getProgramming/listings.html.

 Listing 4.12. Using functions to add and display tax (http://jsbin.com/raqiri/edit?js,console)

 [image:]

 [image:]

 The two functions use the sale variable in their definitions, accessing properties on the object, sale.price, sale.taxRate, and so on. The code in the function bodies won’t run until the program calls the two functions, by which time the program will have assigned one of the sale objects
 to the sale variable.

 The function names calculateTax and displaySale help to make the program in listing 4.12 easier to follow and understand. Section 4.4 investigates these ideas in more detail.

 4.4. Making code easier to read and update

 As your programs get longer and more complicated, you manage that complexity by breaking them into well-named objects and
 functions. Anyone reading your code can follow its flow and understand the purpose of the pieces and of the whole.

 Take a look at the following code snippet; you should get a sense of what’s happening even if you don’t know the details of
 how the functions work.

 ...
var balance = getAccountBalance();

displayBalance();

addInterest()
addBonus();
setAccountBalance();

displayBalance();
...

 Each function should have a single, clear purpose. If you need to investigate what a function does, you should be able to
 find it defined in one place. Let’s look at an example of updating a function.

 4.4.1. Updating the showMovieInfo function

 In listing 4.11, you created a showMovieInfo function to display information about a movie object. It was great to be able to encapsulate the blocks of display code into
 a single function. But having the information for multiple movies squashed together on the console makes it hard to pick out
 individual facts about particular movies. It would be useful to add blank lines, making it easier to see each movie.

 > Movie information for Inside Out
> ------------------------------
> Actors: Amy Poehler, Bill Hader
> Directors: Pete Doctor, Ronaldo Del Carmen
> ------------------------------
>
> Movie information for Spectre
> ------------------------------
> Actors: Daniel Craig, Christoph Waltz
> Directors: Sam Mendes
> ------------------------------
>
> Movie information for Star Wars: Episode VII – The Force Awakens
> ------------------------------
> Actors: Harrison Ford, Mark Hamill, Carrie Fisher

> Directors: J.J.Abrams
> ------------------------------
>

 Because you have all of the display code inside your showMovieInfo function, you can head right there and add an extra call to console.log to create the blank line, as shown in the next listing. Your organization is already paying off!

 Listing 4.13. Updating your display function to add a blank line (http://jsbin.com/cijini/edit?js,console)

 [image:]

 So close! Because the JS Bin console wraps strings in speech marks, you don’t quite get your blank lines. You get empty quotation
 marks instead. But if you check the browser’s own console (see the online guide at www.room51.co.uk/guides/browser-consoles.html), you should see the blank lines expected, as shown in figure 4.3.

 Figure 4.3. JS Bin displays empty strings in quotation marks but the Safari browser doesn’t.

 [image:]

 If this example were part of a larger (maybe much larger) program and you didn’t have the player display logic safely nestled
 in a single function, you’d have to inspect all the code to find the lines where changes should be made. Text editors and
 development environments should have tools to help, but they’re not foolproof and your program could end up with coy corners
 of uncorrected code. You try it out and, to begin with, everything seems fine. Then later there’s running and, um, screaming.
 Avoid the nightmare—use functions.

 4.5. The Crypt—displaying player information

 You’ll now apply your knowledge of JavaScript functions to The Crypt. Figure 4.4 shows where the focus of this section, showing player information by using functions, fits into the overall structure of
 our ongoing game example.

 Figure 4.4. Elements of The Crypt

 [image:]

 In chapter 3 you saw how to group information about a player into a single JavaScript object. You create the object using curly braces
 and set the properties using key-value pairs, like this:

 var player;

player = {
 name: "Kandra",
 health: 50,
 place: "The Dungeon of Doom"
};

 Once you assign the new object to the player variable, you can get the property values by using dot notation. Displaying information about the player involves logging
 properties to the console.

 console.log(player.name + " is in " + player.place);

 In the game, you may have to display player info a number of times and for a number of players. You should use your new knowledge
 of functions to make the display of information more efficient; make it code on demand—code you can execute by calling a function.

 4.5.1. A function to display player information

 The showMovieInfo function from listing 4.13 looks like exactly the kind of function you need. Whereas showMovieInfo displays information about movies, listing 4.14 shows a showPlayerInfo function doing a very similar job for players, producing the following output:

 > Kandra
> ------------------------------
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ------------------------------
>
> Dax
> ------------------------------
> Dax is in The Old Library
> Dax has health 40
> ------------------------------

 Listing 4.14. A function to display player information (http://jsbin.com/mafade/edit?js,console)

 [image:]

 [image:]

 Excellent! That does the job. A single call to a function now displays player information. It’s a shame you have to keep assigning
 different players to the player variable to make it work; it would be better if you could somehow say to the function, “Show info for player1” or “Show info
 for player2.” Well, passing information to and from functions will be investigated in detail over the next three chapters.
 Flexibility, reusability, efficiency, here we come!

 4.6. Summary

 	A function is a block of code that you write once but use many times. It should have a clear, single purpose.

 	You define a function by using the function keyword, parentheses, and a function body in a code block between curly braces:

function () {
 // Statements go here in the function body
};

 	You assign the function to a variable with the equals symbol, = , also known as the assignment operator:

showPlayerInfo = function () { ... };

 	Once a function is assigned to a variable, you call or invoke the function by adding parentheses to the end of the variable name:

addTax();
showPlayerInfo();
evadeRaptor();

 	Be on the lookout for repetition; sections of code with the same structure and only slight changes in values or variables
 used. Move repeated code into a function.

 	Give functions clear names that communicate their purpose. Use the functions to organize your code, making your programs easier
 to follow and maintain.

Chapter 5. Arguments: passing data to functions

 This chapter covers

 	Defining functions with parameters, ready to accept data

 	Calling functions, passing in data with arguments

 Functions are an essential means of organization; you write them once and use them many times. But so far, your functions
 have been tied to the values of variables around them. It’s time to set your functions free, letting them name their own variables
 and passing them the data they need.

 5.1. Function reuse and versatility

 The functions you’ve used up to now have relied on variables declared and assigned values elsewhere in the program. In the
 following listing, the showMessage function relies on a variable called message, declared outside the function definition.

 Listing 5.1. Relying on a variable outside the function (http://jsbin.com/taqusi/edit?js,console)

 [image:]

 In the showMessage function definition, you use a variable called message. The message variable has to exist for the function to do its job. If you change the name of the variable, the function breaks. If message is renamed msg, as shown in the next listing, and the program is run on JS Bin, you should get an error something like this: “Reference
 error: Can’t find variable: message.” (Different browsers may give slightly different error messages.)

 Listing 5.2. Breaking a function by changing a variable name (http://jsbin.com/yaresa/edit?js,console)

 [image:]

 The instructions in the function body can use variables defined elsewhere in your program but that couples the function with the external variable; a better practice
 is to pass the information a function needs to the function when it’s called. This helps avoid the variables a function needs
 being misnamed, missing, deleted, or changed by other parts of your program and makes it easier to follow the flow of the
 program and spot mistakes if they occur.

 We don’t want arrogant Rock God functions demanding particular variables in their dressing rooms before they’ll perform; we
 want easy-going functions that are reliable and happy to strut their stuff wherever they are in the world. By decoupling functions
 from variables, you make the functions more portable; the function definitions can be moved to other parts of your program or be reused in other programs or code libraries, without causing havoc and throwing
 errors.

 So, how is this decoupling achieved?

 5.2. Passing information to functions

 Passing information to functions is achieved in two stages: when you define the function and when you call the function:

 1. When you define the function, you set up variable names, called parameters, ready for when you call the function.

 2. When you call the function, you include data to assign to the variables you named in step 1.

 You’ll look at a number of examples over the course of this chapter (and there are plenty more throughout the rest of the
 book), but there’s nothing like practice to make permanent. The Further Adventures section for each code listing on JS Bin should get you started.

 5.2.1. Passing one argument to a function

 It’s time to make use of those empty parentheses in your function definitions! To pass information to functions when you call
 them, include it between the parentheses, like this:

 showMessage("It's full of stars!");
showPlayerInfo("Kandra");
getMovieActors("The Hobbit");
square(12);

 You pass each of the four functions some information for their code to use. Each value included in the parentheses is called
 an argument. Each of the four functions shown here includes a single argument. The arguments are “It’s full of stars!”, “Kandra”, “The
 Hobbit”, and 12.

 To use the information in the parentheses, you need to make the functions ready to accept it. You add a parameter when you define the function. The parameter shows that the function expects you to give it some information when you call
 it, as shown in figure 5.1.

 Figure 5.1. Including a parameter in the parentheses when defining a function

 [image:]

 For the four functions in the previous example, the function definitions could be something like this:

 showMessage = function (message) { ... };
showPlayerInfo = function (playerName) { ... };
getMovieActors = function (movieTitle) { ... };
square = function (numberToSquare) { ... };

 Each function definition includes a parameter, shown in bold. The parameter is a variable that you can use only inside the
 function body.

 Let’s update the showMessage function from listing 5.1 to accept a message, rather than relying on an external variable. When defining the function, include a message parameter. The message parameter is available as a variable in the function body. Now when you call the function, you pass the message to display
 in parentheses, showMessage("It's full of stars!"). The function adds extra text and displays the following:

 > The message is: It's full of stars!

 Listing 5.3. Passing information to a function (http://jsbin.com/xucemu/edit?js,console)

 [image:]

 When you call the showMessage function at the end of listing 5.3, you include the string “It’s full of stars!” in the parentheses. A value included in the function call parentheses like
 this is called an argument. The program assigns the argument to the variable named message. The function then uses the message variable to generate the string that’s logged to the console, "The message is: It's full of stars!"

 Table 5.1 lists the steps involved in declaring a function with parameters and then calling it with different arguments.

 Table 5.1. Steps used to define and call a function, passing it data

 	
 Action

 	
 Code

 	
 Comments

 	Declare a variable
 	var showMessage;
 	Sets aside the name for use in the program.

 	Define a function with a parameter
 	
 function (message) {

}

 	Sets aside a variable name, message, for use in the function body.

 	Use the parameter
 	
 function (message) {
 console.log(message);
}

 	The parameter is available as a variable within the function body.

 	Assign the function to a variable
 	
 showMessage = function (message) {
 console.log(message);
};

 	Assigning the function to a variable gives you a label you can use to call the function.

 	Call the function with an argument
 	showMessage("It's full of stars!");
 	The code in the function body is executed with the argument in parentheses assigned to message.

 	Call the function again and again with different arguments
 	
 showMessage("It's full of stars!");
showMessage("Yippee!");
showMessage("Cowabunga!");

 	Every time you call the function, the argument is assigned to the message parameter.

 You can call the showMessage function with any text you choose. The text is assigned to the message variable and used as part of the full message logged to the console.

 In listing 5.4 you call the showMessage function with three different arguments, leading to three different messages on the console:

 > The message is: It's full of stars!
> The message is: Hello to Jason Isaacs
> The message is: Hello to Jason Isaacs and Stephen Fry

 Listing 5.4. Calling the same function with different arguments (http://jsbin.com/zavavo/edit?js,console)

 [image:]

 Because you declared the name of the parameter along with the function definition, the showMessage function no longer relies on variable names from elsewhere, making it less brittle. Decoupling complete.

 Listing 5.5 shows the definition of a square function, including a numberToSquare parameter. The function squares the number you pass to it as an argument. You call the function four times to give the following
 output:

 > 10 * 10 = 100
> -2 * -2 = 4
> 1111 * 1111 = 1234321
> 0.5 * 0.5 = 0.25

 Listing 5.5. Using the square function (http://jsbin.com/vequpi/edit?js,console)

 [image:]

 	

 Parameters vs. arguments

 You knew those parentheses would come in handy!

 The names you include in the parentheses when defining the function are available as variables in the function body. They’re called parameters and show that you expect information to be included when the function is called.

 var myExample;
myExample = function (parameter) { ... }

 The values you include in the parentheses when calling the function are assigned to the parameter variables to be used in the function body. These values are called arguments.

 myExample(argument);

 Don’t worry too much about the terminology; it can take a little while to get used to. After you’ve created and used a few
 functions, you’ll pick up an intuitive sense of what’s going on even if you mix up the terms parameter and argument from time to time.

 	

 5.2.2. Passing multiple arguments to a function

 You can define functions with as many parameters as they need to complete their work. Simply separate the parameters with
 commas in the parentheses of the definition (figure 5.2).

 Figure 5.2. Including multiple parameters in a function definition

 [image:]

 Suppose you want a function to add two numbers together. If you have two pairs of numbers, 30 and 23, and 2.8 and -5, the
 correct output would be

 > The sum is 53
> The sum is -2.2

 How do you do this?

 Listing 5.6. A function with two arguments (http://jsbin.com/siyelu/edit?js,console)

 [image:]

 When you call the showSum function, the program automatically assigns the two arguments you provide to the two parameters in the definition, number1 and number2. For the first call to showSum in listing 5.6, it’s as if the function body becomes

 var number1 = 30;
var number2 = 23;
var total = number1 + number2;
console.log("The sum is " + total);

 You can define a function with as many parameters as you want. As the number of parameters increases, it becomes more likely
 for people (including you!) to make mistakes when using your function; they might miss an argument or put the arguments in the wrong order when calling the function.
 A neat way to overcome the problem is to pass an object to the function. The function definition needs only a single parameter
 and the function body can access whichever properties it needs. You’ll take a look at using objects with functions in chapter 7.

 5.3. The Crypt—displaying player information

 You’ll now apply your knowledge of JavaScript function arguments to The Crypt. Figure 5.3 shows where the focus of this section, showing player information by using functions with arguments, fits into the overall
 structure of our ongoing game example.

 Figure 5.3. Elements of The Crypt

 [image:]

 In chapter 4, you wrote a showPlayerInfo function as code on demand. You could display player information on the console whenever you wanted, just by calling the
 function. Unfortunately, it relied on a player variable being set elsewhere in the code. Let’s update the showPlayerInfo function, setting parameters so you can pass it the information it needs directly.

 In order to display information about each player, you break the job into subtasks and create functions for each piece of
 information. You then show information about a player like this:

 showPlayerName("Kandra");
showPlayerHealth("Kandra", 50);
showPlayerPlace("Kandra", "The Dungeon of Doom");

 Each function has a specific job to do. If you want to display all of the information at once, you wrap the individual functions
 inside one master function and pass it all the information it needs:

 showPlayerInfo("Kandra", "The Dungeon of Doom", 50);

 Over the next few sections, you define the four functions and see them working with player objects. The first three functions
 are very similar; pay attention to what changes and what stays the same. Notice how you use parameters when defining the functions
 and how you use arguments when calling them.

 5.3.1. Displaying players’ names

 Your first function’s job is to display the player’s name. That’s it. No bells or whistles. The next listing shows the showPlayerName function definition and calls the function with two different names to produce the following output:

 > Kandra
> Dax

 Listing 5.7. Displaying a player’s name (http://jsbin.com/yubahi/edit?js,console)

 [image:]

 In the actual The Crypt program, you’re not likely to call the showPlayerName function with literal values like "Kandra" and "Dax". You’re much more likely to use variables. In particular, JavaScript objects will represent players. The next listing updates
 the code to use a couple of player objects instead.

 Listing 5.8. Displaying a player’s name via an object property (http://jsbin.com/juhewi/edit?js,console)

 [image:]

 That’s names covered. Next up, health.

 5.3.2. Displaying players’ health

 The showPlayerHealth function definition in the following listing includes two parameters, playerName and playerHealth, to produce output like this:

 > Kandra has health 50
> Dax has health 40

 Listing 5.9. Displaying a player’s health (http://jsbin.com/nomija/edit?js,console)

 [image:]

 The call to showPlayerHealth in listing 5.9 used the literal values "Kandra" and 50. In the final program, each player’s information is assigned to the properties of a player object. Your calls to showPlayerHealth are much more likely to use those properties than hard-coded values. The next listing updates the code to include player
 objects.

 Listing 5.10. Displaying a player’s health via object properties (http://jsbin.com/zufoxi/edit?js,console)

 [image:]

 Name: check. Health: check. That just leaves location.

 5.3.3. Displaying players’ locations

 The showPlayerPlace function definition in the following listing also includes two parameters, this time playerName and playerPlace, and produces output like this:

 > Kandra is in The Dungeon of Doom
> Dax is in The Old Library

 Listing 5.11. Displaying a player’s location (http://jsbin.com/yifahe/edit?js,console)

 var showPlayerPlace;

showPlayerPlace = function (playerName, playerPlace) {
 console.log(playerName + " is in " + playerPlace);
};

showPlayerPlace("Kandra", "The Dungeon of Doom");
showPlayerPlace("Dax", "The Old Library");

 Once again, switching from the hard-coded literal values in listing 5.11 to object properties gives you an updated version in the next listing.

 Listing 5.12. Displaying a player’s location via object properties (http://jsbin.com/mejuki/edit?js,console)

 var player1;
var player2;
var showPlayerPlace;

showPlayerPlace = function (playerName, playerPlace) {
 console.log(playerName + " is in " + playerPlace);
};

player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

showPlayerPlace(player1.name, player1.place);
showPlayerPlace(player2.name, player2.place);

 You have the three functions you need to show individual pieces of information about players. Now it’s time to use the functions
 together.

 5.3.4. Putting it all together—displaying players’ information

 The showPlayerInfo function uses your three individual functions—showPlayerName, showPlayerHealth, and showPlayerPlace—and adds a touch of formatting to produce a display of each player’s properties. The output for one player looks like this:

 >
> Kandra
> ----------------------------
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ----------------------------
>

 The next listing leaves out the three component functions to focus on the new function. They’re included on JS Bin.

 Listing 5.13. Displaying a player’s information (http://jsbin.com/likafe/edit?js,console)

 var showPlayerInfo;

showPlayerInfo = function (playerName, playerPlace, playerHealth) {
 console.log("");

 showPlayerName(playerName);

 console.log("----------------------------");

 showPlayerPlace(playerName, playerPlace);
 showPlayerHealth(playerName, playerHealth);

 console.log("----------------------------");
 console.log("");
};

showPlayerInfo("Kandra", "The Dungeon of Doom", 50);
showPlayerInfo("Dax", "The Old Library", 40);

 You call the showPlayerInfo function with three arguments each time. It, in turn, passes the required arguments on to the showPlayerName, showPlayerHealth, and showPlayerPlace functions.

 You end with all the pieces put together in a single listing, shown next. It includes each variable declaration and assignment
 as a single step and uses player object properties, like player1.name, rather than literal values, like "Kandra", when calling showPlayerInfo.

 Listing 5.14. Displaying a player’s information using properties (http://jsbin.com/loteti/edit?js,console)

 var showPlayerName = function (playerName) {
 console.log(playerName);
};

var showPlayerHealth = function (playerName, playerHealth) {
 console.log(playerName + " has health " + playerHealth);
};

var showPlayerPlace = function (playerName, playerPlace) {
 console.log(playerName + " is in " + playerPlace);
};

var showPlayerInfo = function (playerName, playerPlace, playerHealth) {
 console.log("");
 showPlayerName(playerName);
 console.log("----------------------------");
 showPlayerPlace(playerName, playerPlace);
 showPlayerHealth(playerName, playerHealth);
 console.log("----------------------------");
 console.log("");
};

var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50
};

var player2 = {
 name: "Dax",
 place: "The Old Library",
 health: 40
};

showPlayerInfo(player1.name, player1.place, player1.health);
showPlayerInfo(player2.name, player2.place, player2.health);

 5.4. Summary

 	Define a function with named parameters to show that you expect to pass data to the function when you call it. Commas separate the parameters inside the parentheses
 of the definition:

function (param1, param2) { ... }

 	Use the parameters inside the function body as if they are variables.

 	Call the function with arguments. When you run the program, the arguments are automatically assigned to the parameters for use in the function body:

myFunction(arg1, arg2)

Chapter 6. Return values: getting data from functions

 This chapter covers

 	Returning information from functions

 	The return keyword

 	Experimenting at the console prompt

 In chapter 4 you discovered how functions can increase your efficiency by allowing you to write code once but use it many times. In chapter 5, you made functions much more flexible by passing them information with each call; a function can act in different ways and
 produce different outputs depending on the arguments you give it. In this chapter you give functions the chance to talk back
 by returning the results of their work. You also call functions directly at the console prompt to investigate the values they
 return.

 6.1. Returning data from functions

 It’s often useful to have a function do some work for you and give you back the result of that work. You can then use the
 result however you want. In listing 5.6 you saw a showSum function that displays the sum of two numbers on the console. It may be better to have an add function that simply adds the numbers and returns the result. Whereas showSum always displays the result on the console, with add you can display the result the function returns if you choose, use it in further calculations, send it across a network,
 or save it to a database.

 6.1.1. The return value replaces the function call

 Most of the functions you’ve written so far have executed code for you on demand and then logged something to the console.
 They’ve helped you to break up programs into understandable chunks. By assigning the functions to well-named variables, you’ve
 made the programs easier to follow. For an example of well-named variables, here’s a snippet of code for displaying player
 information in The Crypt:

 showPlayerName("Kandra");
showLine();
showPlayerPlace("Kandra", "The Dungeon of Doom");
showPlayerHealth("Kandra", 50);
showLine();

 Even if you don’t know how the functions perform their jobs, their names give you a good idea of the intentions of the code.

 Functions can also return information: the result of a calculation, a constructed piece of text, or data from a database.
 You can assign the returned value to a variable or use it as an argument with other functions. The following examples show,
 in bold, calls to the four functions add, getPlayerPlace, findPlanetPosition, and getMessage:

 var sum = add(50, 23);
var placeInfo = getPlayerPlace("Kandra", "The Dungeon of Doom");
console.log(findPlanetPosition("Jupiter"));
console.log(getMessage());

 Each function returns a value and the returned value replaces the function call. Assuming the functions return the following
 values in bold, the previous four statements become

 var sum = 73;
var placeInfo = "Kandra is in The Dungeon of Doom";
console.log("Jupiter: planet number 5");
console.log("I'm going on an adventure!");

 Figure 6.1 shows what happens when you call the add function.

 Figure 6.1. You call the add function and it returns the value 73.

 [image:]

 To return a value from a function, use the return keyword.

 6.1.2. The return keyword

 Return a value from a function by using the return keyword. Whatever follows return in a statement is the value that replaces the function call.

 Listing 6.1 shows the definition of a getMessage function. It includes a return statement, a statement that starts with the return keyword:

 return "I'm going on an adventure!";

 The function returns the string "I'm going on an adventure!" because the string follows the return keyword. The program assigns the string to the response variable and logs it to the console to show

 > I'm going on an adventure!

 Listing 6.1. Returning a value from a function (http://jsbin.com/yucate/edit?js,console)

 [image:]

 The getMessage function always returns the same value. It’s common to determine the return value by using information you pass in as arguments
 when you call the function.

 6.1.3. Using arguments to determine the return value

 In chapter 5, you passed information into a function by including parameters in the function definition and arguments in the function
 call. You can use that information in the function body to determine the value the function returns and so call the function
 again and again with different arguments to produce different return values.

 The following listing shows a getHelloTo function that returns a string including a name passed in as an argument. The program assigns the return value to a variable
 and logs it to the console.

 > Hello to Kandra

 Listing 6.2. Using an argument to determine the return value (http://jsbin.com/nijijo/edit?js,console)

 [image:]

 In listing 6.2, you assign the return value to a variable, fullMessage, and log it to the console. The variable is redundant; you could just log the return value directly, as shown in the next
 listing, in which you call the getHelloTo function twice to give the following output:

 > Hello to Kandra
> Hello to Dax

 Listing 6.3. Using the return value as an argument (http://jsbin.com/yapic/edit?js,console)

 [image:]

 Functions can return any type of value: strings, numbers, objects, and even other functions. Let’s look at an example that
 returns a number.

 Figure 6.2 shows a call to the add function, add(50, 23). The figure shows how the arguments passed to add are used to calculate the return value.

 Figure 6.2. The add function calculates the return value.

 [image:]

 The next listing shows the code to make the add function do its thing. Notice, in particular, the return keyword.

 Listing 6.4. Returning the sum of two numbers (http://jsbin.com/haqapu/edit?js,console)

 [image:]

 add(50, 23) calls the add function, assigning 50 to number1 and 23 to number2. The value of number1 is then added to the value of number2 and the result assigned to the total variable. The return keyword then ends the function and replaces the call to the function with the value of total.

 var sum = add(50, 23);

 becomes

 var sum = 73;

 because add(50, 23) returns 73.

 Remember, the assignment operator, =, works by assigning the value on its right to the variable on its left. If a function call is on its right, then it assigns
 the function’s return value.

 The total variable in the add function in listing 6.4 isn’t really needed; it’s assigned a value and then immediately returned. You could have returned the result of the calculation
 directly, as the totalCost function does in listing 6.5. Given the call-out charge and hourly rate charged by a plumber, totalCost calculates the total cost for a certain number of hours of work. So, say the call-out charge is $30 and the plumber charges
 $40 per hour, what is the total cost for three hours of work? totalCost(30, 40, 3) should return the result $150.

 Listing 6.5. A function with three arguments (http://jsbin.com/jedigi/edit?js,console)

 [image:]

 When you call the totalCost function, it evaluates the calculation to the right of the return keyword and returns the value. It follows the usual rules of arithmetic: it performs the multiplication first and then the
 addition: 30 + 40 * 3 = 30 + 120 = 150.

 6.2. Experimenting at the console prompt

 Programmers don’t generally use the console in production, that is, in published programs and websites. They use it in development,
 when designing and writing programs. It provides a convenient way for programmers (that’s you) to log values and errors and
 investigate the state of their programs while they’re running. That interactivity, the chance to get immediate feedback, makes
 the console really useful for learning—particularly for learning through experimentation. It’s time to go on an adventure
 of discovery with the functions you’ve seen so far in this chapter.

 6.2.1. Calling functions

 The next listing includes four functions from earlier listings. If you run the program, it won’t produce any output on the
 console; it doesn’t include any calls to console.log.

 Listing 6.6. A collection of functions that return values (http://jsbin.com/lijufo/edit?js,console)

 var getMessage;
var getHelloTo;
var add;
var totalCost;

getMessage = function () {
 return "I'm going on an adventure!";
};

getHelloTo = function (name) {
 return "Hello to " + name;
};

add = function (number1, number2) {
 return number1 + number2;
};

totalCost = function (callOutCharge, costPerHour, numberOfHours) {
 return callOutCharge + costPerHour * numberOfHours;
};

 Running the program assigns the four functions to the four variables declared at the top of the program. You can then access
 the variables from the console prompt. You can call the functions assigned to the variables to investigate their return values.

 Follow the link to the listing on JS Bin and make sure you run the program. At the console prompt type

 > getMessage()

 and press Enter. The getMessage function runs and displays its return value:

 "I'm going on an adventure!"

 At the prompt, press the up arrow on your keyboard. It should bring up the last line you typed. (You can navigate through
 your previous entries at the console with the up and down arrows.) Press Enter to resubmit a command. The getMessage function always returns the same string. If you look at its function body, you can see it returns a string literal, a hard-coded
 value.

 return "I'm going on an adventure!";

 The next function in the program, getHelloTo, includes a name parameter in its definition. The name parameter allows the return value to vary in response to the argument you pass to the function when you call it.

 getHelloTo = function (name) {
 return "Hello to " + name;
};

 Have a go at calling the function at the console with different arguments each time:

 > getHelloTo("Jason")
 "Hello to Jason"
> getHelloTo("Rosemary")
 "Hello to Rosemary"

 You can immediately see how changing the argument affects the return value.

 6.2.2. Declaring new variables

 As well as giving you access to variables declared in your programs, the console allows you to declare new variables and assign
 them values.

 Carrying straight on from the previous section, at the console type

 > var friend

 and press Enter. The console displays the value of your previous entry. Because you didn’t assign a value to the friend variable, undefined is logged to the console.

 undefined

 Give it a value. Type

 > friend = "Amber"

 and press Enter. The console displays the new value.

 "Amber"

 Finally, use your new friend variable as an argument for the getHelloTo function.

 > getHelloTo(friend)
 "Hello to Amber"

 Have a play with the add and totalCost functions, passing them different arguments and checking the return values displayed on the console, for example:

 > add(30, 12)
 42
> totalCost(10, 20, 3)
 70

 The console is more than a place to log messages from your programs. You can really dig into your programs and check that
 they behave as expected. Don’t wait for permission; jump in and test all the listings.

 Now let’s use your new knowledge of return values to improve how The Crypt displays player information.

 6.3. The Crypt—building player information strings

 Figure 6.3 shows where the focus of this section, showing player information by using return values, fits into the overall structure
 of our ongoing game example.

 Figure 6.3. Elements of The Crypt

 [image:]

 In chapter 5, you divided the work of displaying player information among a number of functions, with each function having a specific
 job to do.

 showPlayerName("Kandra");
showPlayerPlace("Kandra", "The Dungeon of Doom");
showPlayerHealth("Kandra", 50);

 The functions each logged a string of information to the console. But what if you don’t want the information on the console?
 You might want to send it in an email, serve it as a response to a web request, or append it to an existing element on a web page. It would be more flexible if the
 functions built the information strings and returned them for the program to use as required.

 6.3.1. Building strings for a player’s name, health, and location

 You pass your new functions the information they need as arguments and they return a string containing that information. The
 kind of return values you expect are shown here:

 getPlayerName("Kandra"); // --> "Kandra"
getPlayerHealth("Kandra", 50); // --> "Kadra has health 50"
getPlayerPlace("Kandra", "The Dungeon"); // --> "Kandra is in The Dungeon"

 First up is getPlayerName. At the moment it just returns the name it’s given, which seems like a waste of time. But defining a function allows you
 to make all the player information accessible in the same way; getting the name is similar to getting the health or the location.
 It also makes it easier to update the code later if you decide to change how the name is displayed. The following listing
 shows the getPlayerName function definition and an example call to it, producing the output

 > Kandra

 Listing 6.7. Getting a string for a player’s name (http://jsbin.com/hijeli/edit?js,console)

 var getPlayerName;

getPlayerName = function (playerName) {
 return playerName;
};

console.log(getPlayerName("Kandra"));

 The next two functions, getPlayerHealth and getPlayerPlace, are very similar, both building a simple string from the information passed in. The next listing includes the definitions
 of both functions along with some usage examples, producing the following on the console:

 > Kandra has health 50
> Kandra is in The Dungeon of Doom

 Listing 6.8. Getting strings for a player’s health and location (http://jsbin.com/pemore/edit?js,console)

 var getPlayerHealth;
var getPlayerPlace;

getPlayerHealth = function (playerName, playerHealth) {
 return playerName + " has health " + playerHealth;
};

getPlayerPlace = function (playerName, playerPlace) {
 return playerName + " is in " + playerPlace;
};

console.log(getPlayerHealth("Kandra", 50));
console.log(getPlayerPlace("Kandra", "The Dungeon of Doom"));

 Calling the three functions from one main getPlayerInfo function will give you the display string you want. The next section shows how the pieces are assembled.

 6.3.2. A function for player information—putting the pieces together

 With the pieces in place you can now build the main function to produce a string of information about a player. You want the
 output to look something like this:

 >
> Kandra
> ********************
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ********************
>

 To construct the lines of characters separating the player information, you make use of a getBorder function that returns a line of asterisk symbols. The listing that follows shows the getPlayerInfo definition. It includes calls to other functions not shown in the printed listing but included in the JS Bin version.

 Listing 6.9. Getting a string for a player’s information (http://jsbin.com/javuxe/edit?js,console)

 [image:]

 The getPlayerInfo function builds up the player information string piece by piece, appending the strings returned by the functions called to
 the playerInfo variable. The extra string, \n, appended at each stage is a new-line character; text following the new-line character will appear on a new line on the console.
 You use the += operator to append a string to the end of an existing string.

 The final example for this chapter gathers all of the code into a single listing, listing 6.10, along with two player objects used to test the getPlayerInfo function. It also uses a different separator character in the getBorder function, producing output for both players like this:

 >
> Kandra
> ================================
> Kandra is in The Dungeon of Doom
> Kandra has health 50
> ================================
>
>
> Dax
> ================================
> Dax is in The Old Library
> Dax has health 40
> ================================
>

 Listing 6.10. Displaying player information using objects (http://jsbin.com/puteki/edit?js,console)

 [image:]

 [image:]

 You’ve successfully switched from functions that always print the output on the console to ones that return player information
 as strings. You then choose what to do with the strings.

 Having to pass individual bits of information about the players to the functions is a bit of a drag. The different functions
 require different bits of info and you have to make sure to put the arguments in the right order. It would be easier if you
 could just pass the whole player object as an argument and let the functions access whichever properties they need. In chapter 7 you’ll see how useful it is to use JavaScript objects both as arguments and as return values.

 6.4. Summary

 	Pass information out of functions by using the return keyword:

return "Pentaquark!";
return 42;
return true;

 	Use a function call as a value to assign to a variable or use as an argument. The value the function returns replaces the
 function call:

var particle = getDiscovery();
console.log(getPlayerPlace("Kandra"));

 	Include parameters in the function definition and use the arguments passed in to the function to determine the value returned:

var sum = add(28, 14);

 	Use the console to explore and test programs.

 	Call functions at the console prompt and see their return values displayed.

 	Declare variables at the console, assign them values, and use them as arguments for functions.

Chapter 7. Object arguments: functions working with objects

 This chapter covers

 	Using objects as arguments

 	Accessing object properties from within a function

 	Adding new object properties from within a function

 	Returning objects from functions

 	Setting functions as properties of objects

 This is the last of the run of four chapters introducing functions. By now, you know about using functions to execute code
 on demand and passing information to and from functions using parameters, arguments, and the return keyword. You’ve also seen how to use objects to collect values together as named properties. Well, it’s time to combine functions
 and objects to turbocharge productivity, efficiency, and readability.

 Remember the first-aid kit from chapter 3? We consider the kit to be a single object that we can pass around, pack in a rucksack, and speak about. Such encapsulation,
 or chunking, where we treat a collection as singular, is an important part of how we as humans cope with complex information,
 both in language and in memory. When the need arises, we can consider the elements that make up the kit: antiseptic, plasters, bandages, and so on.

 You use the same concept of encapsulation throughout this chapter as you pass objects to and from functions as arguments and
 return values.

 7.1. Using objects as arguments

 Being able to pass an object to a function is really useful, especially if the function needs to access lots of the object’s
 properties. You need only a single parameter in the function definition and you don’t need a long list of arguments when calling
 the function. showPlayerInfo(player1) is neater, more easily understood, and less prone to error than showPlayerInfo(player1.name, player1.location, player1.health).

 You can pass the same information to the function but wrapped into a single object rather than as separate values (figure 7.1).

 Figure 7.1. A single object as an argument is neater than multiple arguments.

 [image:]

 7.1.1. Accessing properties of an object argument

 Inspired by the space adventures of New Horizons, Curiosity, Rosetta, and Philae, you decide to write a quick app for displaying
 information about the solar system. One feature of the app is to display information about planets.

 Your first listing shows the getPlanetInfo function with a planet parameter. When you call the function using a planet object as an argument, the function body returns a string built using some of the planet’s properties. The code produces
 the following output:

 > Jupiter: planet number 5

 Listing 7.1. Passing a function an object as an argument (http://jsbin.com/tafopo/edit?js,console)

 [image:]

 Passing an object to a function as a single argument is neat and tidy. There’s no need to make sure you’ve included all the
 required arguments in the right order—a single argument does the job.

 Once you’ve passed an object to a function, JavaScript automatically assigns it to the parameter included in the function’s
 definition.

 You access the properties of the object through the parameter, as shown in figure 7.2. The function has full control of the object via the parameter; it can even add new properties.

 Figure 7.2. Object properties can be accessed inside the function body.

 [image:]

 7.1.2. Adding properties to an object argument

 When you pass an object to a function as an argument, the code in the function body has access to the object’s properties.
 It can read them, change them, and delete them and can add new properties too.

 Listing 7.2 shows two functions with planet parameters. When you pass a planet object, encapsulating a name and a radius, to the calculateSizes function, the function adds two new properties, area and volume, to the object (figure 7.3).

 Figure 7.3. The calculateSizes function adds new properties to the planet object.

 [image:]

 The displaySizes function uses the two new properties to print information about the planet on the console:

 > Jupiter
> surface area = 61426702271.128 square km
> volume = 1431467394158943.2 cubic km

 Listing 7.2. A function that adds properties to an object (http://jsbin.com/qevodu/edit?js,console)

 [image:]

 You create the planet object and assign it to the planet1 variable:

 planet1 = { name: "Jupiter", radius: 69911 };

 When you call the calculateSizes function, you pass planet1 to it as an argument:

 calculateSizes(planet1);

 JavaScript assigns the object referred to by planet1 to the planet parameter for use within the function. The function uses the planet parameter to add two new properties to the object, planet.area and planet.volume. By the time you call the displaySizes function, the object has the two new properties needed to display all the required information:

 displaySizes(planet1);

 As well as passing objects to functions, you can return objects from functions.

 7.2. Returning objects from functions

 Just as passing objects to functions as arguments is an efficient way of moving information to where it’s needed, so is using
 objects as return values. Functions can either manipulate objects that you pass to them and then return them, or they can
 return brand-new objects that they create in the function body.

 This section explores two examples: the first uses a number of parameters to build a new planet object and the second uses
 two object parameters to create a point in 2D space.

 7.2.1. Building planets—an object creation function

 Back with your solar system app, you decide to streamline the creation of planets. You write a function to which you pass
 the key facts, and it returns a planet object with properties set accordingly. Your buildPlanet function lets you create planets like this:

 planet1 = buildPlanet("Jupiter", 5, "Gas Giant", 69911, 1);

 Figure 7.4 shows how JavaScript assigns the arguments to parameters when you call buildPlanet. You use the parameters to create a new object.

 Figure 7.4. JavaScript assigns the arguments to parameters when you call buildPlanet. The function uses the parameters to create an object.

 [image:]

 Listing 7.3 shows the definition of the buildPlanet function. It also has a getPlanetInfo function that it uses to get planet information for display. Once displayed, the information looks like this:

 JUPITER: planet 5
NEPTUNE: planet 8

 Notice here how the planet names are in uppercase. The getPlanetInfo function makes use of a built-in JavaScript function, toUpperCase, that converts strings to uppercase. toUpperCase and some other JavaScript functions will be discussed in section 7.3.

 Listing 7.3. A function to create planets (http://jsbin.com/coyeta/edit?js,console)

 [image:]

 The key-value pairs inside the object created by the buildPlanet function look a little strange at first:

 name: name, position: position, and so on.

 For each key-value pair, the key is to the left of the colon and the value is to the right. You use the parameters as values,
 so for the function call

 planet1 = buildPlanet("Jupiter", 5, "Gas Giant", 69911, 1);

 the object-creation code becomes

 name: "Jupiter",
position: 5,
type: "Gas Giant",
radius: 69911,
sizeRank: 1

 7.2.2. Points in 2D space

 Keen to create an animation showing the planets in the solar system, you start to investigate coordinates in two dimensions.
 All of the coordinates have two values associated with them, x and y. This seems like an obvious place to use objects. Each
 point is an object with x and y properties:

 point1 = { x : 3 , y : 4 };
point2 = { x : 0 , y : -2 };

 You can access individual values using dot notation: point1.x, point2.y, and so on.

 As an initial experiment, you write a program to move a point a certain amount in the x direction and a certain amount in
 the y direction. Because the change in position also has x and y components, you use an object for that too. For example,
 to represent a movement of four across and two down you use the object { x : 4, y : -2 }.

 Listing 7.4 includes a move function that takes two arguments, an initial point object and a change object. It returns a new point representing the final
 position if you started from the first point and moved by the change specified.

 The program uses a showPoint function to produce the following output:

 (2 , 5)
Move 4 across and 2 down
(6 , 3)

 Listing 7.4. Moving a point in 2D (http://jsbin.com/baxuvi/edit?js,console)

 [image:]

 The second argument you pass to the move function in listing 7.4 is written using an object literal, { x : 4, y : -2 }. You could assign it to a variable first but, because you use it only once, a literal value is okay too. The two points are
 plotted and their coordinates shown in figure 7.5.

 Figure 7.5. The points before and after the move of 4 across and 2 down (plotted using desmos.com—an application written in JavaScript)

 [image:]

 You’ve seen objects being passed to functions and objects being returned from functions and, in listing 7.4, a function that uses objects as arguments and returns an object. That’s functions using objects. You can also set functions
 as properties of objects.

 7.3. Methods—setting functions as properties of objects

 In JavaScript, you can use functions as values, just like numbers, strings, and objects. That means you can pass them as arguments,
 return them from other functions, and set them as properties of objects. In this section, continuing the theme of functions
 working with objects, you look at an example of setting functions as properties of an object.

 7.3.1. Namespaces—organizing related functions

 Let’s write some functions to help format text displayed on the console. Displaying text is a big part of your interactive
 console applications, so the number of helper functions you create will expand. For now, you start with two really simple
 functions: blank returns an empty string and newLine returns a new-line character.

 Because all of the functions are related to the same job, it’s good to collect them together. You can do just that by setting
 each function as the property of a single object. Call it spacer:

 var spacer = {};

 Once you have an object, you can set functions as properties. First, here’s a function to return an empty string:

 spacer.blank = function () {
 return "";
};

 Figure 7.6 illustrates how you create the function and then assign it to the blank property of the spacer object.

 Figure 7.6. Create a function and assign it to an object property

 [image:]

 Sometimes it’s useful to include line breaks in a string, to space it over multiple lines. The special escape sequence, "\n", is called the new-line character. Add a function to return the new-line character:

 spacer.newLine = function () {
 return "\n";
};

 Now you have two functions set as properties of the spacer object. When we use an object to collect functions together in this way, we call it a namespace. The newLine and blank functions belong to the spacer namespace. You can call the functions by adding parentheses as normal:

 console.log(spacer.blank());
console.log("Line 1" + spacer.newLine() + "Line 2");
console.log(spacer.blank());

 That code snippet produces this output:

 >
> Line 1
> Line 2
>

 The individual functions don’t have to be added to the namespace one at a time. You can use the object literal syntax, curly
 braces with comma-separated key-value pairs, to set up the namespace with properties in place:

 spacer = {
 blank: function () {
 return "";
 },

 newLine: function () {
 return "\n";
 }
};

 Functions set as properties of an object are called methods. Currently, the spacer object has two methods, blank and newLine. You’ll return to spacer in sections 7.3.4 and 7.3.5, where you’ll add more methods and have a play with it on JS Bin.

 JavaScript includes a number of useful objects and methods. Before you expand your spacer object, let’s investigate Math and String methods.

 7.3.2. Math methods

 Math is a namespace built into JavaScript that provides properties and functions all related to mathematical calculations. Listing 7.5 shows the Math.min and Math.max methods in action. They return the smaller of two numbers and the larger of two numbers, respectively. The program produces
 the following output:

 3 is smaller than 12
-10 is smaller than 3

 Listing 7.5. Using Math.min and Math.max (http://jsbin.com/moyoti/edit?js,console)

 [image:]

 Math.min and Math.max, when used together, are useful for making sure a value is in a specified range. Say a lineLength variable has to be between 0 and 40 inclusive. To force lineLength to be at least zero you can use

 lineLength = Math.max(0, lineLength);

 If lineLength is greater than zero, it will be the biggest and its value won’t change. But, if lineLength is less than zero, zero will be the biggest and lineLength will be assigned zero.

 Similarly, you can force lineLength to be less than or equal to 40:

 lineLength = Math.min(40, lineLength);

 Listing 7.6 shows such constraints in action. line is a function that returns a separator line of a specified length. The length must be between 0 and 40. Trying to display
 lines of length 30, 40, and 50 produces the following output:

 > ==============================
> ==
> ==

 Notice, the last two lines are both of length 40. Although 50 is specified as the length of the last line, the line function constrains the length to 40.

 Listing 7.6. Using Math.min and Math.max to constrain an argument (http://jsbin.com/qiziyo/edit?js,console)

 [image:]

 The substr method returns part of a string and is discussed in the next section.

 There are a large number of Math methods for all kinds of mathematical tasks, many of which are used often. You can investigate some of them at www.room51.co.uk/js/math.html.

 7.3.3. String methods

 For every string you create, JavaScript makes available a number of methods. These functions help you manipulate the strings
 in a variety of ways. The next listing uses the toUpperCase method to convert a string to uppercase, like this:

 > Jupiter becomes JUPITER

 Listing 7.7. Converting a string to uppercase (http://jsbin.com/jizaqu/edit?js,console)

 [image:]

 You use dot notation to call the method on the planet string. As a method, toUpperCase is able to use the value of the planet variable to which it’s attached; you don’t need to pass planet to the function as an argument in parentheses.

 Although string methods can act on the variables to which they are attached, they’re still functions and you can also pass
 them arguments. Figure 7.7 shows how the substr method uses the value of message and two arguments.

 Figure 7.7. Methods can use arguments as well as the value of the object to which they’re attached.

 [image:]

 The following listing shows an example of using the substr method, displaying a substring on the console.

 > choose to go

 Listing 7.8. Finding substrings (http://jsbin.com/mesisi/edit?js,console)

 var message = "We choose to go to the Moon!";

console.log(message.substr(3, 12));

 The substr method accepts two arguments: the starting position in the original string and the number of characters to return. When specifying
 the position of a character in a string, counting is zero based: the first character is position 0, the second position 1,
 the third position 2, and so on. (I know starting at zero seems a bit odd at first; it’s actually very common in programming
 languages.)

 	0
 	1
 	2
 	3
 	4
 	5
 	6
 	7
 	8
 	9
 	10
 	11
 	12
 	13
 	14

 	W
 	e
 	
 	c
 	h
 	o
 	o
 	s
 	e
 	
 	t
 	o
 	
 	g
 	o

 substr(3, 12) starts with the character at position 3, c, and returns a string of length 12, from position 3 to position 14.

 But you don’t have to spend all your time counting the positions of characters in strings, however exciting that sounds; you
 can use the indexOf method instead. The indexOf method returns the position, or index, of the first occurrence of a specified search string within a string.

 The next listing uses indexOf to find the position of the M character in a string. It then passes the position to substr to grab a substring of length 3, producing the bovine pronouncement Moo on the console.

 Listing 7.9. Finding a character with indexOf (http://jsbin.com/bidabi/edit?js,console)

 var message = "The cow jumped over the Moon!";

var charIndex = message.indexOf("M");

console.log(message.substr(charIndex, 3));

 You can use indexOf to find search strings longer than a single character. Here’s an example using message from listing 7.9:

 message.indexOf("cow"); // Returns 4
message.indexOf("the"); // Returns 20
message.indexOf("not"); // Returns -1

 Notice that indexOf is case sensitive, so the and The are different, and it returns -1 if a string is not found.

 Just like for Math, there are a lot of String methods available in JavaScript. Once again, the book’s website has you covered: www.room51.co.uk/js/string-methods.html.

 	

 “So, are strings objects now?”

 In listing 7.7, the string "Jupiter" is assigned to the planet variable. The toUpperCase method is then called: planet.toUpperCase();.

 If methods are functions set as properties of objects, how is it we can call methods on strings?

 Well, behind the scenes, whenever we access a string value, JavaScript creates a special String object that wraps the value. That object includes all the handy string methods. Once the statement has finished executing,
 the object is destroyed.

 So, no, strings are not objects, but JavaScript provides a useful way to give us properties and methods for working with them.

 	

 7.3.4. spacer—more methods for your namespace

 In section 7.3.1 you created a spacer object with a couple of functions attached, blank and newLine. You now add a few more interesting functions to help format your output nicely.

 	line is your line separator function, upgraded! It returns a line of a given length between 0 and 40 characters long, now with
 a choice of five gorgeous characters! ("*", "+", "=", "-", or " ").

spacer.line(10, "*");
spacer.line(6, "+");

> **********
> ++++++

 	wrap returns text padded to a given length with added prefix and suffix characters.

spacer.wrap("Saturn", 10, "=");
spacer.wrap("Venus", 12, "-");
spacer.wrap("Mercury", 14, "+");

> = Saturn =
> - Venus -
> + Mercury +

 	box returns text padded to a given length, with a line of characters above and below.

spacer.box("Saturn", 10, "=");
spacer.box("Venus", 12, "-");

==========
= Saturn =
==========

- Venus -

 The following listing shows the code for your new methods. Notice that spacer.wrap uses spacer.line to pad the text with space characters and spacer.box uses both spacer.line and spacer.wrap to generate its box outline. You’ll look in detail at how the new methods work after the listing.

 Listing 7.10. Organizing functions as object properties (http://jsbin.com/kayono/edit?js,console)

 [image:]

 [image:]

 	

 Tip

 Notice how the wrap and box methods use the same parameters in the same order: text, length, and character. The line method has only two of those three parameters but is also consistent with the ordering: length and character. Such a conscious choice of parameter order reduces the chance of errors when calling the methods.

 	

 7.3.5. Deep namespace exploration

 So how do your wonderful new methods work? Be brave and curious as you indulge in some deep namespace exploration. And remember,
 you can try code out on JS Bin, both in the JavaScript panel and at the prompt. For example, for the line method explanation that follows, declare and assign the longString variable at the console prompt:

 > var longString = "**********----------==========++++++++++ "

 Then you can try out the indexOf method:

 > longString.indexOf("*")
 0
> longString.indexOf("=")
 20

 Be playful and take your time. But don’t worry if you don’t follow everything the first time; the methods use a lot of ideas
 you’ve only just met. Stick with it; learning follows thinking.

 The line method

 Both the wrap and box methods use the trusty line method. It returns a string of a given length made up of one of five repeated characters:

 line: function (length, character) {
 var longString = "**";
 longString += "--";
 longString += "==";
 longString += "++";
 longString += " ";

 length = Math.max(0, length);
 length = Math.min(40, length);
 return longString.substr(longString.indexOf(character), length);
 },

 The method starts by creating one long string made up of all of the characters to be made available. It uses the += operator to append new strings to an existing string. The variable longString ends up as a string of the following form:

 longString = "**********----------==========++++++++++ ";

 This snippet has 10 of each character, whereas the actual method has 40 of each. The code uses the string method indexOf to find the position of the first character that matches the one specified when you call line. Here’s an example, using the shorter snippet shown previously:

 longString.indexOf("*"); // 0
longString.indexOf("-"); // 10

longString.indexOf("="); // 20
longString.indexOf("+"); // 30
longString.indexOf(" "); // 40

 Having found where the requested character first appears, the code then uses substr to grab a substring of the specified length:

 longString.substr(10, 6); // ------
longString.substr(30, 3); // +++

 But the line method doesn’t use hard-coded values; it uses parameters, length and character, to hold the arguments passed in when you call it:

 // Get the index of the first matching character
var firstChar = longString.indexOf(character);

// Get a string of the requested length, starting at the first matching
// character
var requestedLine = longString.substr(firstChar, length);

 The extra variables aren’t really needed, although they could be used to make the method easier to follow. line finds the substring and returns it in one go:

 return longString.substr(longString.indexOf(character), length);

 Notice that a space is one of the available characters. Strings of spaces can be used to pad titles and boxes on the console.
 The wrap method uses line to do just that.

 The wrap method

 To form the middle line of some boxed text, the wrap method returns a string of a specified length. The character argument specifies the first and last characters of the string:

 wrap : function (text, length, character) {
 var padLength = length - text.length - 3;
 var wrapText = character + " " + text;
 wrapText += spacer.line(padLength, " ");
 wrapText += character;
 return wrapText;
},

 Here are some strings of increasing length returned by wrap:

 spacer.wrap("Neptune", 11, "="); // = Neptune =
spacer.wrap("Neptune", 12, "="); // = Neptune =
spacer.wrap("Neptune", 13, "="); // = Neptune =

 The method pads the last character with spaces on its left to make the whole string the correct length (figure 7.8).

 Figure 7.8. The wrapped text is made up of character + space + text + padding + character.

 [image:]

 To find the length of the padding, start with the desired length of the whole string and subtract the length of the text you’re
 wrapping and then three more to account for the first character, the leading space, and the last character:

 var padLength = length – text.length – 3;

 JavaScript makes the length property available on all strings:

 var text = "Neptune";
text.length; // 7

 Having calculated the required length of the padding, wrap then enlists the help of the line method to grab a string of spaces of that length:

 spacer.line(padLength, " ");

 The wrap method builds the string to be returned by concatenating all the pieces: character, space, text, padding, character.

 The box method

 And finally, the box method uses line and wrap to surround a string in a box of a specified length:

 spacer.line(11, "*"); // ***********
spacer.wrap("Neptune", 11, "*"); // * Neptune *
spacer.line(11, "*"); // ***********

 The method uses newLine so that the single returned string can span multiple lines on the console:

 box: function (text, length, character) {
 var boxText = spacer.newLine();
 boxText += spacer.line(length, character) + spacer.newLine();
 boxText += spacer.wrap(text, length, character) + spacer.newLine();
 boxText += spacer.line(length, character) + spacer.newLine();
 return boxText;
}

 Excellent! The spacer namespace now has a number of useful methods to format the display of information on the console. They’ll be really handy
 in The Crypt. So, let’s mix them in!

 7.4. The Crypt–player objects as arguments

 You’ll now apply your knowledge of JavaScript objects as arguments, return values, and namespaces to The Crypt. Figure 7.9 shows where the focus of this section, showing player information by using functions with objects, fits into the overall
 structure of our ongoing game example.

 Figure 7.9. Elements in The Crypt

 [image:]

 In chapter 6 you built up a number of functions to help display information about players in the game. The functions rely on separate
 arguments for different player properties. Here’s the getPlayerInfo function being called:

 getPlayerInfo(player1.name, player1.place, player1.health);

 You’ve seen in this chapter that you can simply pass a player object as an argument and let the function pick out the properties
 it needs. The getPlayerInfo function call should become

 getPlayerInfo(player1);

 Much neater!

 You can use the helper methods in your spacer namespace to format the text—box and wrap will do the trick. But how can you find the right box length to snugly wrap the information? The place string will probably be the longest, but might the health string sometimes stretch farther?

 > ==================================== > +++++++++++++++++++++
> = Kandra is in The Dungeon of Doom = > + Dax is in Limbo +
> = Kandra has health 50 = > + Dax has health 40 +
> ==================================== > +++++++++++++++++++++

 You have to check which is the longest. The Math.max method has you covered:

 var longest = Math.max(place.length, health.length);

 Don’t forget the border and single space at either end:

 var longest = Math.max(place.length, health.length) + 4;

 The following listing uses the spacer namespace methods, so the live example includes that code on JS Bin.

 Listing 7.11. Displaying player information using objects (http://jsbin.com/beqabe/edit?js,console)

 [image:]

 [image:]

 7.5. Summary

 	Use objects as arguments and access their properties from within the function body:

var getPlayerHealth = function (player) {
 return player.name + " has health " + player.health;
};
getPlayerHealth(player1);

 	Update objects and add new properties from within the function body:

var calculateSizes = function (rectangle) {
 rectangle.area = rectangle.width * rectangle.height;
 rectangle.perimeter = 2 * (rectangle.width + rectangle.height);
};

 	Return new or existing objects from functions, using the return keyword:

var getRectangle = function (width, height) {
 return {
 width: width,
 height: height,
 area: width * height
 };
};

 	Create methods by setting functions as properties of objects.

 	Use objects as namespaces to collect related functions and properties:

var spacer = {};
spacer.newLine = function () {
 return "\n";
};

 	Make use of the Math object and its methods, like Math.max and Math.min.

 	Use the length property of strings and string methods like indexOf and substr.

Chapter 8. Arrays: putting data into lists

 This chapter covers

 	Grouping values as lists

 	Creating an array

 	Accessing elements in an array

 	Manipulating the elements in an array

 	Using forEach to visit each element

 Almost everything you’ve covered so far has been about organizing your data or organizing your code. This chapter continues
 that theme but with a twist: it’s not just about grouping items; now you can put them in order.

 In The Crypt, you’ll finally have the ability for players to collect items they find on the journey; with arrays they can start on their
 very own treasure hoards.

 8.1. Creating arrays and accessing elements

 Working with lists is an essential part of programming. Blog posts, quiz questions, stock prices, emails, files, tweets, and
 bank transactions all turn up as lists. In fact, you’ve just read a list of lists! Sometimes the order doesn’t matter and
 sometimes it does. A list of names could represent the members of a team, with no order, or it could represent places in a
 race—I’m sure Usain Bolt thinks the order is important there! An ordered list is called an array in JavaScript, as it is in many programming languages.

 The items in an array are called its elements and you usually want to work on the elements in some way. You might want to

 	Perform some action with each element, say display it on the console or increase it by 20%

 	Find only certain elements that match a condition, say all tweets by Lady Gaga, blog posts in a given month, or questions
 answered correctly

 	Combine all the elements into a single value, say to find the total of a list of prices or the average number of points scored
 per game

 The array object in JavaScript provides functions to help you perform all of these actions and more. But, we’re getting ahead
 of ourselves. Let’s go back to the start and find out how to create an array.

 8.1.1. Creating an array

 To create an array, use square brackets. Once it’s created, you can assign the array to a variable so you can refer to it
 in your code. Figure 8.1 illustrates the process.

 Figure 8.1. Use square brackets to create an array

 [image:]

 The following listing creates two arrays and displays them on the console to give this output:

 > [3, 1, 8, 2]
> ["Kandra", "Dax", "Blinky"]

 Listing 8.1. Creating arrays (http://jsbin.com/cevodu/edit?js,console)

 [image:]

 Commas separate the elements, which can be numbers, strings, objects, functions, or any data type or mix of types—you can
 even have arrays of arrays. Like the curly braces for objects and the function keyword for functions, the square brackets tell JavaScript to create an array. Once it’s created, you can assign the array
 to a variable, set it as a property, include it in another array, or pass it to a function.

 Listing 8.2 creates a couple of arrays of objects representing places to visit, thisYear and nextYear. Figure 8.2 shows how JS Bin displays the arrays of objects.

 Figure 8.2. JS Bin displays each of the two arrays in listing 8.2 between square brackets.

 [image:]

 Listing 8.2. Using existing objects in an array (http://jsbin.com/gizulu/edit?js,console)

 [image:]

 8.1.2. Accessing array elements

 You’ve created an array and assigned it to a variable, so now you can pass that variable to functions, like console.log. At some point you’ll want to access the elements that make up the array, to peel away the skin to get at the juicy goodness
 inside. Well, those square brackets do double duty; they enclose the list when you define the array, and you use them to access
 individual elements.

 As shown in figure 8.3, you specify each element with an index, a whole number marking where in the list the element occurs. The first element in
 an array has an index of 0, the second an index of 1, and so on. You can think of the index as an offset from the start of the array; the
 first element is zero away from the start, the second is one away from the start, and so on.

 Figure 8.3. Each element of an array has an index, starting at 0.

 [image:]

 To retrieve the value of an element at a given index, put the index inside square brackets after the name of a variable to
 which the array has been assigned, as shown in figure 8.4.

 Figure 8.4. Use square brackets and an index to access elements of an array assigned to a variable

 [image:]

 Here, you create an array and assign it to a variable:

 var scores;
scores = [3, 1, 8, 2];

 To get the value of the third item in the array, 8, place the index, 2 (because you start with 0), in square brackets after the name of the variable:

 scores[2];

 You can assign scores[2] to another variable, set it as a property on an object, use it in an expression, or pass it as an argument to a function.
 Listing 8.3 creates strings using the values of elements in the scores array and displays them on the console to give the following:

 > There are 4 scores:
> The first score is 3
> The second score is 1
> The third score is 8
> The fourth score is 2

 It also makes use of the array’s length property that simply gives the number of elements in the array.

 Listing 8.3. Accessing array elements (http://jsbin.com/qemufe/edit?js,console)

 [image:]

 Now, say you have a days array, holding the names of the weekdays, and you want to get the name of a particular day in the week, maybe the fourth
 day.

 var days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"];

 There’s a mismatch between the index in JavaScript and the words used to describe a particular element. The first day of the
 week has index 0. The fourth day of the week has index 3. You might want to access a different day at different times, so
 you could use a variable, dayInWeek, to hold the day in the week you want.

 // I want the fourth day of the week
dayInWeek = 4;

 But using dayInWeek as the index for the array will give you the wrong day. An index of 4 will give you the fifth day in the week.

 The next listing shows code for this scenario. It displays two days on the console: the wrong one (that is, not the fourth
 day of the week) and then the right one:

 > Friday
> Thursday

 Listing 8.4. Using a variable as an index (http://jsbin.com/veyexa/edit?js,console)

 [image:]

 The first call to console.log displays the wrong day because the dayInWeek variable doesn’t take into account that arrays are zero-based; they start with an index of 0, not 1. The second call to console.log fixes the problem by subtracting one from dayInWeek; the fourth day of the week has an index of 3.

 Okay. It’s time to hold onto your hat. In listing 8.5 you’ll define a function and add it to the mix. The local pencil museum records the number of visitors through its doors
 each day. The owners ask you to create a program that, when given a week’s worth of visitor numbers as an array, will display
 how many visitors there were on a given day:

 > There were 132 visitors on Tuesday

 You decide to write a function, getVisitorReport, to generate the report and return it. You then would have the option of displaying the report on the console, on a web page,
 or in an email. In the next listing you generate a report for a Tuesday and display it on the console.

 Listing 8.5. Passing an array to a function (http://jsbin.com/bewebi/edit?js,console

 [image:]

 You create an array of visitor numbers, assign it to the visitors variable, and pass it to the getVisitorReport function as an argument. Within the function, the array is assigned to the visitorArray variable and used to generate the report. The report is returned from the function, assigned to the report variable, and displayed on the console. The += operator in the function adds the value on its right to the variable on its left. Because a string has been assigned to the visitorReport variable, += concatenates the value on its right to the variable on its left.

 So, you can create an array and access its elements. But, once you have data in an array, there’s a whole host of ways you
 can manipulate it. Let’s get started with a few of the most common ways to work with arrays.

 8.2. Array methods

 Arrays are a type of object provided by the JavaScript language to help you manage lists. JavaScript also provides you with
 a number of functions you can use to work with arrays. When we assign functions to properties of an object, we call the functions
 methods of the object; arrays are a type of object, so their functions are also called methods.

 In this section you look at just a few of the many methods available when working with arrays: push and pop and splice let you add and remove elements, slice lets you grab consecutive elements, join lets you concatenate the array elements to form a string, and forEach allows you to pass each element as an argument to a specified function. These methods are summarized in table 8.1. Further array methods and examples can be found on the book’s website at www.room51.co.uk/js/array-methods.html.

 Table 8.1. Array methods

 	
 Method

 	
 What’s it for?

 	
 Example

 	push
 	Appending an element to the end of an array.
 	items.push("Put me last");

 	pop
 	Removing an item from the end of an array.
 	wasLast = items.pop();

 	join
 	Concatenating all of the elements in the array, inserting an optional string between each pair of elements.
 	allItems = items.join(",");

 	slice
 	Creating an array from a range of elements in an existing array. Passing in the indexes at which to start and stop the range.
 	section = items.slice(2, 5);

 	splice
 	Changing an array by adding and/or removing consecutive elements. Passing in the index at which to start removing elements,
 the number of elements to remove, and any elements to add.

 	out = items.splice(1,2,"new");

 	forEach
 	Passing each element in turn to a specified function.
 	
 items.forEach(function (item){
 console.log(item);
}

 Let’s begin with push, pop, and join.

 8.2.1. Adding and removing elements

 In listing 8.6, you create an empty array and assign it to the items variable. The push method is used to append three elements to the array. Once you’ve added the three elements, you log the whole array to the
 console:

 > ["The Pyramids", "The Grand Canyon", "Bondi Beach"]

 You then use the pop method to remove the last item and display it. Finally, you log the whole array to the console again, this time with the
 elements joined to make a single string.

 > Bondi Beach was removed
> The Pyramids and The Grand Canyon

 Listing 8.6. Manipulating arrays with push, pop, and join (http://jsbin.com/faqabu/edit?js,console)

 [image:]

 JavaScript makes the push, pop, and join functions available as properties on every array. Because they’re properties of the array, you can use dot notation to call
 the functions, items.push(itemToAdd), just as you can to access any object property.

 8.2.2. Slicing and splicing arrays

 To demonstrate the two array methods, slice and splice, you continue with your array of holiday destinations. Play along on the JS Bin console. Commands can span multiple lines
 on the console; press Shift-Enter to move to a new line without executing a statement. If you press Enter by mistake and execute
 an unfinished statement, you may be able to retrieve your previous entry by pressing the up arrow on your keyboard. The statements
 that you type are shown starting with >. The console automatically shows the return value of each function called. I show those values in bold.

 > var items = [
 "The Pyramids",
 "The Grand Canyon",
 "Bondi Beach",
 "Lake Garda"]
 undefined

> items
 ["The Pyramids", "The Grand Canyon", "Bondi Beach", "Lake Garda"]

 Slice

 The slice method returns a new array made up of part of the original array. It doesn’t change the original array. The arguments are
 the index of the first element you want and the index of the first subsequent element you don’t want. Remember, the first
 element has index 0.

 > items.slice(0, 2)
 ["The Pyramids", "The Grand Canyon"]

> items.slice(2, 3)
 ["Bondi Beach"]

 items.slice(2, 3) says you want the items from index 2 onward but not the items from index 3 onward. In other words, you just want the item
 with index 2.

 Omit the second argument if you want all elements after the one specified by the first argument. Omit both arguments if you
 want the whole array.

 > items.slice(2)
 ["Bondi Beach", "Lake Garda"]

> items.slice()
 ["The Pyramids", "The Grand Canyon", "Bondi Beach", "Lake Garda"]

 Splice

 The splice method does change the original array. It lets you remove items from an array and, optionally, insert new items. To remove
 items, specify the index of the first element to remove and the number of elements to remove. The method returns the removed
 elements as an array.

 > items.splice(2, 1)
 ["Bondi Beach"]

> items
 ["The Pyramids", "The Grand Canyon", "Lake Garda"]

> items.splice(0, 2)
 ["The Pyramids", "The Grand Canyon"]

> items
 ["Lake Garda"]

 To insert new elements into the array, add them as arguments after the start index and the number of items to remove. In this
 example, no items are removed:

 > items.splice(0, 0, "The Great Wall", "St Basil's")
 []

> items
 ["The Great Wall", "St Basil's", "Lake Garda"]

 In this example, one item is removed:

 > items.splice(1, 1, "Bondi Beach", "The Grand Canyon")
 ["St Basil's"]

> items
 ["The Great Wall", "Bondi Beach", "The Grand Canyon", "Lake Garda"]

 You’ll use both slice and splice when working with player and place items in The Crypt.

 8.2.3. Visiting each element with forEach

 If you have a list of items that you want to display on the console, you could manually call a function for each one:

 showInfo(items[0]);
showInfo(items[1]);
showInfo(items[2]);

 Unfortunately, it’s common not to know in advance how many items will be in the list, so you can’t hard-code the right number
 of showInfo calls ahead of time. Also, as the number of elements increases, you don’t want to be manually calling a function for each
 one.

 What you need is a way to make JavaScript call a given function for every element in the list, however many there are. That’s
 exactly what the forEach method does. To call showInfo for each element in the items array, replace the individual calls with

 items.forEach(showInfo);

 The forEach method iterates over the array, passing each element in turn as an argument to the function specified in parentheses, as shown in figure 8.5.

 Figure 8.5. items.forEach passes each item in the items array to the showInfo function.

 [image:]

 Listing 8.7 shows forEach in action, displaying the elements of an items array on the console:

 > The Pyramids
> The Grand Canyon
> Bondi Beach

 Listing 8.7. Iterating over an array with forEach (http://jsbin.com/sokosi/edit?js,console)

 [image:]

 In listing 8.7, your function to display each item was assigned to the showInfo variable. You then passed the showInfo variable to forEach as an argument.

 If you’re going to use a function only once, as the argument for forEach, you can create the function and pass it to forEach inline, without the need for an extra variable. The code in listing 8.8 passes the function definition directly to forEach. You also add extra information to set the scene and improve the output:

 > Dream destinations:
> - The Pyramids
> - The Grand Canyon
> - Bondi Beach

 Listing 8.8. Calling forEach with an inline function (http://jsbin.com/yapecu/edit?js,console)

 [image:]

 The forEach method actually passes three arguments to the specified function: the element, the index of the current element, and the
 whole array. You can capture the extra arguments by including extra parameters in the definition of the function you pass
 to forEach.

 items.forEach(function (item, index, wholeArray) {
 // item is the current item being passed to the function
 // index is the index of the current item
 // wholeArray is the same as 'items'
});

 Listing 8.9 shows all three arguments in action. It uses forEach to pass each player in the players array to the showArguments function, producing the following output:

 > Item: Dax
> Index: 0
> Array: Dax,Jahver,Kandra
> Item: Jahver
> Index: 1
> Array: Dax,Jahver,Kandra
> Item: Kandra
> Index: 2
> Array: Dax,Jahver,Kandra

 Listing 8.9. Using the arguments passed by forEach (http://jsbin.com/suvegi/edit?js,console)

 [image:]

 The forEach method does the job of calling a function for you. In listing 8.9, it calls the showArguments function. It calls the function for each element in the players array. It always passes the three arguments to the function it calls, although you don’t have to use all three.

 You can call array methods like forEach directly on arrays without the need for variables. Listing 8.10 rewrites listing 8.9 without assigning the array or the function to variables.

 Listing 8.10. Using the arguments passed by forEach—compact (http://jsbin.com/pagahe/edit?js,console)

 ["Dax", "Jahver", "Kandra"].forEach(function (item, index, wholeArray) {
 console.log("Item: " + item);
 console.log("Index: " + index);
 console.log("Array: " + wholeArray);
});

 If you’re using the array and function only once, the compact syntax in listing 8.10 can be appropriate. But the longer form in listing 8.9 is more readable, so if the meaning of the code isn’t obvious in context, it might be better to opt for the longer version.
 Being able to write something like

 players.forEach(showScore);

 can help you and other programmers make better sense of your code.

 To further demonstrate using the index argument, you’re off to the shops in listing 8.11. (If you have your adventure head on, then maybe you’re buying equipment for your travels.) You buy four types of items but
 different amounts of each. The program calculates the total cost and displays it, like this:

 > The total cost is $41.17

 It uses two arrays, one for the numbers of each item bought and one for their costs.

 Listing 8.11. Finding the total shopping bill (http://jsbin.com/zizixu/edit?js,console)

 [image:]

 Listing 8.11 uses the index to match the current item cost with the correct number of items. For this to work, the arrays have to be in
 the same order. I hope you noticed that i isn’t a very descriptive variable name! It is so common to need index variables that most programmers are happy to use short
 names—i, j, and k—for them. They’re quicker to type and it’s such a well-established convention that most people reading your code will expect
 them to be used as a counter or index. If you’d rather call the variable index or itemIndex or something similar, that’s fine.

 As one last example, let’s return to your quiz questions. A multiple-choice question has a list of possible answers that need
 to be displayed to whomever is taking the quiz. Sounds like a good fit for an array and forEach; see listing 8.12. You could even have an array of question-and-answer objects. For now, stick with a single question, displayed like this:

 > What is the capital of France?
> A – Bordeaux
> B – F
> C – Paris
> D - Brussels

 Listing 8.12. Displaying a multiple choice question (http://jsbin.com/lobahu/edit?js,console)

 [image:]

 You’ll look at actually answering questions when you investigate user interaction in part 2.

 8.3. The Crypt—a player items array

 You’ll now apply your knowledge of JavaScript arrays to The Crypt. Figure 8.6 shows where the focus of this section, displaying a list of player items by using arrays, fits into the overall structure
 of our ongoing game example.

 Figure 8.6. Elements of The Crypt

 [image:]

 In part 1 of Get Programming with JavaScript, we’ve covered some core concepts to help you model and use players in The Crypt. You have variables to store and retrieve player information, objects to collect player properties together, arrays so you
 can list the items a player collects, array methods to add and remove items in the collection, and functions to display information
 about each player.

 Listing 8.13 brings all of these concepts together: creating a player, displaying information about them, picking up a new item, and displaying
 the updated info. You format the output using the spacer namespace developed in chapter 7. The elements that make up the output are highlighted in figure 8.7.

 Figure 8.7. The elements shown when a Player object is displayed on the console

 [image:]

 To save space, spacer isn’t shown in the listing (it hasn’t changed) but it is on JS Bin. The code in this listing builds on the player display
 code from chapter 7, adding the ability to list a player’s items.

 Listing 8.13. Displaying player items (http://jsbin.com/mecude/edit?js,console)

 [image:]

 [image:]

 The Player object now includes an items array:

 var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50,
 items: ["a trusty lamp"]
};

 It starts with only one element, but you add another by using the push array method:

 player1.items.push("a rusty key");

 getPlayerItems uses forEach to pass each item in the items array to a function. The function appends the item to a string using +=, building a list of all of the player’s items:

 player.items.forEach(function (item) {
 itemString += " - " + item + spacer.newLine();
});

 The showPlayerInfo function calls getPlayerInfo to retrieve the player information string and then displays the information on the console.

 You’re starting to build up quite a collection of functions to help with the display of players; you should really organize
 them. You could collect them into a namespace or, seeing as they all relate to players, include them as part of each Player object. JavaScript provides a way to streamline the creation of many similar objects, incorporating the methods that work
 with them: constructor functions. That’s what you investigate in chapter 9, where you also build the places the players will explore in The Crypt.

 8.4. Summary

 	Create an array with a comma-separated list of values between square brackets:

["Kandra", "Dax", true, 50]

 	Assign the array to a variable and then access its elements by adding an index in square brackets to the variable name. The
 following code displays "Dax":

var items = ["Kandra", "Dax", true, 50]
console.log(items[1]);

 	Remember to use a zero-based index for array elements. items[1] refers to the second element in the items array. You can think of the index as an offset from the start of the array: the first element is zero away from the start,
 the second is one away from the start, and so on.

 	Use array methods, functions provided by JavaScript, to add, remove, join, and iterate over array elements. The methods covered
 in this chapter are push, pop, join, slice, splice, and forEach.

Chapter 9. Constructors: building objects with functions

 This chapter covers

 	Using functions to create objects

 	The keyword new

 	Using constructor functions to create objects

 	The special variable this

 	Defining constructor functions for players and places

 It’s common for programs to create many similar objects—a blog post could have hundreds of posts and a calendar thousands
 of events—and to include functions for working on those objects. Rather than building each object by hand using curly braces,
 you can use functions to streamline the process. You want to change

 planet1 = {
 name: "Jupiter",
 position: 8,
 type: "Gas Giant"
};

showPlanet = function (planet) {
 var info = planet.name + ": planet " + planet.position;
 info += " - " + planet.type;
 console.log(info);
};

showPlanet(planet1);

 into

 planet1 = buildPlanet("Jupiter", 8, "Gas Giant");
planet1.show();

 where the buildPlanet function creates the planet object for you and adds the show method automatically. You define a blueprint for your object in the function body of buildPlanet and then use that blueprint to generate new objects whenever you need them. That keeps your object-creation code in one place;
 you’ve seen throughout the book how such organization makes it easier to understand, maintain, and use your programs.

 You can do even better than a simple function to create many similar objects; you can use a constructor function. Writing functions to generate objects is so common that JavaScript includes a built-in way of streamlining the process.
 With a constructor function, creating and displaying a planet looks like this:

 planet1 = new Planet("Jupiter", 8, "Gas Giant");
planet1.show();

 Constructor functions standardize object creation—standardizing code is generally a good thing—and provide a way of identifying
 objects, making it easier to differentiate among planets, players, posts, and positions, for example. They also provide a
 way of sharing a single function among many objects by using prototypes, covered in part 4.

 In section 9.1 you write your own functions to make it easier to build objects with properties and methods in place. In section 9.2, you investigate constructor functions and see how they simplify the process. It’s time to get the production line rolling.

 9.1. Using functions to build objects

 Rather than using curly braces to manually construct each object, create a function to do the heavy lifting. Just pass the
 function the information it needs and it will return a shiny new object for you. In larger programs, you may well want to
 create similar objects in a number of places in the code. Having a single function you can call on saves you from repeating
 yourself and makes it easy to make changes if what you need your object to do develops over time.

 Section 9.1.1 shows a simple object-creation function, and section 9.1.2 builds on it to add a method to your created objects.

 9.1.1. Adding properties

 Figure 9.1 shows a buildPlanet function to help you create each planet object. You pass the function the planet data as arguments and it returns an object
 with those arguments set as properties. You’ve only just started learning JavaScript and you’re already building planets!

 Figure 9.1. The buildPlanet function creates and returns an object.

 [image:]

 The first listing shows the code for the buildPlanet function. Notice how it starts by creating an object and ends by returning the object.

 Listing 9.1. Using a function to create an object (http://jsbin.com/jiroyo/edit?js,console)

 [image:]

 The steps the buildPlanet function takes are important for understanding how JavaScript’s constructor functions streamline the process of object creation.
 You take a look at constructor functions in section 9.2. But first, you enhance what your created objects can do, with methods.

 9.1.2. Adding methods

 As well as setting some initial properties, you can make buildPlanet add methods into the mix. Remember, a method is a just function you assign to an object property. Rather than defining an external function to display information about
 each planet object, bake it into the object itself.

 In the next listing, you add a showPlanet method to each planet object before returning the object. The output looks like this:

 > Jupiter: planet 5 - Gas Giant

 Listing 9.2. Adding methods to your constructed object (http://jsbin.com/zogure/edit?js,console)

 [image:]

 In the showPlanet method you build up an information string including the planet’s properties (name, position, and type) before logging the string to the console. You use the += operator to append strings to the info variable.

 You can include as many methods as you need to give your objects the functionality required. Every time you call buildPlanet, it returns an object with the properties and methods required to do its job in your program. You can put the function to
 work, churning out as many planet objects as you want. You can’t have too many planets, am I right?

 Listing 9.3 uses the buildPlanet function to construct three planets (okay, not quite a production line, but you get the idea!) and display their details
 on the console:

 > Jupiter: planet 5 – Gas Giant
> Neptune: planet 8 – Ice Giant
> Mercury: planet 1 – Terrestrial

 Listing 9.3. An array of constructed objects (http://jsbin.com/jiweze/edit?js,console)

 [image:]

 [image:]

 In listing 9.3 you create an array with three elements, the objects that each call to buildPlanet returns. You assign the array to the planets variable and then iterate over the array using forEach. You don’t need to assign the three planets to individual variables; the objects are accessible via an array index, with
 the first planet at index 0:

 planets[0].name // "Jupiter"
planets[2].type // "Terrestrial"

 In defining buildPlanet, you moved object creation into a function, returning the nascent planet once you had set its properties. But JavaScript
 can create and return objects for you. Let’s see how.

 9.2. Using constructor functions to build objects

 Creating your own function to build objects and attach methods should have given you an insight into the steps involved in
 an object production line. It’s such a common way to build objects that JavaScript provides its own standard mechanism—the
 constructor function.

 In the buildPlanet function, you created an empty object and set its properties, and you returned the object.

 var buildPlanet = function (name, position, type) {
 var planet = {}; // You create an empty object

 planet.name = name; //
 planet.position = position; // Assign properties
 planet.type = type; //

 return planet; // You return the object
};

 Well, JavaScript has you covered; with constructor functions it will create the empty object and return it for you free of
 charge. You still get to set the properties, but the rest is automagical. And what mystic invocations transform an ordinary
 function into a constructor function? Two keywords: this and new.

 9.2.1. Constructor functions

 In JavaScript, you define a constructor function just like any other function but call it after the new keyword. If you have a Planet function, you could create new planet objects like this:

 planet1 = new Planet("Jupiter", 5, "Gas Giant");
planet2 = new Planet("Neptune", 8, "Ice Giant");

 To use the Planet function as a constructor function you simply add the new keyword before the call to Planet. It’s a convention to start the names of constructor functions with capital letters so programmers know to use the new keyword when calling them. Figure 9.2 shows how the constructor function automatically creates and returns an object.

 Figure 9.2. Call the constructor with the new keyword. The constructor automatically creates and returns an object.

 [image:]

 The following listing shows the full Planet constructor along with an example of calling Planet with new.

 Listing 9.4. The Planet constructor (http://jsbin.com/bixico/edit?js,console)

 [image:]

 Within the function body, but only when you call the function with new, JavaScript creates an empty object for you and assigns it to the special variable this. You can imagine the hidden first line of the Planet function being

 var this = {};

 You can then set properties on this just as you did with planet in the buildPlanet function earlier. The function automatically returns the object assigned to this, so there’s no need to add a return statement. You can imagine the hidden last line of the Planet function being

 return this;

 When you execute the code in listing 9.4, the newly created object replaces the call to the Planet constructor and is assigned to the planet variable. The following

 var planet = new Planet("Jupiter", 5, "Gas Giant");

 becomes

 var planet = {
 name: "Jupiter",
 position: 5,
 type: "Gas Giant",
 showPlanet: function () {
 var info = this.name + ": planet " + this.position;
 info += " - " + this.type;
 console.log(info);
 }
};

 You can add as many properties and methods to the this object as you need. Listing 9.5 extends the Planet constructor to add a moons property and an addMoon method to the generated objects:

 > Jupiter: planet 5 – Gas Giant
> Moons: Io, Europa.

 Listing 9.5. Including a moons array in the Planet constructor (http://jsbin.com/wiguya/edit?js,console)

 [image:]

 [image:]

 Remember from chapter 8, the push method adds a new element to the end of an array and the join method joins all of the elements of an array to form a single string, with an optional separator string between each pair
 of elements.

 Planets and moons! Your industriousness knows no bounds. Io, Io, it’s off to work we go

 9.2.2. World building—making use of the Planet constructor

 Listing 9.6 uses an updated implementation of the Planet constructor. When you call addMoon, it now prepends new moons at the beginning of the moons array using an array method you haven’t seen before: unshift. You create three planet objects and assign them to variables planet1, planet2, and planet3 before calling showPlanet on each one. In the partial output shown here, pay close attention to the order of the moons:

 > Jupiter
> Planet 5 – Gas Giant
> Moons: Europa, Io.

 Listing 9.6. Creating multiple planets with our constructor (http://jsbin.com/wewewe/edit?js,console)

 [image:]

 [image:]

 In the code for planet1, you added Io first, then Europa. But in the output the order is reversed. That’s because you now use unshift to add items at the start of the moons array rather than push to add items at the end.

 9.2.3. Telling objects apart with the instanceof operator

 When working with many different objects in a program, objects that you may have created with a number of different constructor
 functions, it’s sometimes useful to be able to tell one type of object from another: is item1 a planet, a player, a post, or a position? The JavaScript instanceof operator lets you check if a particular constructor function was involved in the creation of an object. Assuming you’ve defined
 the Planet constructor, the following code snippet logs true to the console:

 var item1 = new Planet("Jupiter", 5, "Gas Giant");

console.log(item1 instanceof Planet);

 The instanceof operator returns either true or false. The values true and false are called boolean values. In fact, they’re the only two boolean values. You won’t be using instanceof in the rest of Get Programming with JavaScript—I mention it here as another reason why a programmer may prefer constructor functions over their own object-creation functions.
 You’ll see a lot more of true and false in parts 2 and 3 of the book; they’re central to making decisions and running code only if certain conditions are met.

 To get a better feel for constructors, it’s worth looking at a few more examples. The next section does just that, with constructors
 for quiz questions and calendar events.

 9.3. Building mastery—two examples of constructors

 A quiz is likely to have tens of questions and a calendar hundreds or thousands of events. The questions will probably all
 have a similar structure and the events likewise. Both types of objects seem like prime candidates for constructor functions.

 In listing 9.7, you use a QuizQuestion constructor to create a single question and display it on the console:

 > What is the capital of France?
> (1) Bordeaux
> (2) F
> (3) Paris
> (4) Brussels

 Listing 9.7. A quiz question constructor (http://jsbin.com/vuyesi/edit?js,console)

 [image:]

 [image:]

 In the showQuestion function in listing 9.7, you use the forEach method to iterate over the options array of possible answers. The forEach method passes each option and its index to a function that displays the option along with an option number.

 function (option, i) {
 console.log("(" + (i + 1) + ") " + option);
}

 The index of the first option is 0 but you want the displayed numbers to start at (1). You use (i + 1) rather than i to shift each index up by one for display.

 > (1) Bordeaux
> (2) F
> (3) Paris
> (4) Brussels

 The next listing is a simple constructor for calendar events. The showEvent method produces the following output:

 > Annual Review
> 3/5/16, from 4.00pm to 5.00pm

 Listing 9.8. A calendar event constructor (http://jsbin.com/gemiyu/edit?js,console)

 [image:]

 [image:]

 In the showEvent method, you create and immediately join an array to form a string for the date information. You met the join method in chapter 8. This is quite a neat way of building a string from multiple pieces. JavaScript programmers used to see string concatenation,
 for example, using +=, as a relatively slow way of building strings from substrings. Joining the elements of an array was a common alternative.
 These following two ways of building dateString give the same result:

 var dateString = [
 this.startDate,
 ", from ",
 this.startTime,
 " to ",
 this.endTime
].join("");

var dateString = this.startDate;
dateString += ", from ";
dateString += this.startTime;
dateString += " to ";
dateString += this.endTime;

 These days, in modern browsers, string concatenation is much faster than it was. I’ve included an example of using join because you may well come across it in the wild.

 Constructor functions provide a standardized, streamlined way of creating multiple objects using a single template. A great
 adventure will involve many locations; let’s revisit The Crypt and use constructors to give your players plenty of places to plunder.

 9.4. The Crypt—providing places to plunder

 You’ll now apply your knowledge of constructor functions to The Crypt. Figure 9.3 shows where the focus of this section, creating Place objects by using constructor functions, fits into the overall structure of our ongoing game example.

 Figure 9.3. Elements of The Crypt

 [image:]

 Up until now, you’ve been focusing on the players in The Crypt. It’s time to build some places to explore. Each place needs a title and description, a collection of items, and a collection of exits to other places. It
 also needs methods for adding items and exits and for displaying its information. Figure 9.4 highlights the elements you want to see when you display a Place object on the console.

 Figure 9.4. The elements shown when a Place object is displayed on the console.

 [image:]

 Managing all of those elements will require quite a lot of code. As you’ve seen, a constructor function is a good way to organize
 all that code and streamline the creation of multiple Place objects. This will be your most complicated constructor yet, so let’s build it in stages.

 9.4.1. Building the Place constructor—title and description

 Okay, here’s a nice bare-bones constructor to get you started. It simply sets up the title and description properties and a basic getInfo method that you can develop as you add more properties. The initial output looks like this:

 > The Old Library
> You are in a library. Dusty books line the walls.

 Listing 9.9. A Place constructor, part 1 (http://jsbin.com/pogive/edit?js,console)

 [image:]

 No boxes or borders yet—just the bare bones. You define a getInfo method that returns a string containing the place’s title and description. Remember, "\n" is an escape sequence used to specify a new-line character; the title will be on one line and the description on the next.

 Okay, so you can create places. But how can players plunder those places? You need some treasure!

 9.4.2. Building the Place constructor—items for your hoard

 As players explore their environment they expect to come across items that will help them solve puzzles and overcome obstacles
 like locked doors, putrid zombies, snarling leopards, and over-friendly tentacles. You need a way to add items to the places
 you create and to include the items in the information displayed about each location.

 Listing 9.10 extends your bare-bones constructor to include the item functionality needed. You’ve upgraded the display of information
 by using the spacer namespace from chapter 7; it now looks like this:

 ===================
= The Old Library =
===================
You are in a library. Dusty books line the walls.
Items:
 - a rusty key
==

 That’s more like your target output from figure 9.4! The spacer code isn’t shown in the listing but is on JS Bin.

 Listing 9.10. A Place constructor, part 2 (http://jsbin.com/qemica/edit?js,console)

 [image:]

 [image:]

 You use the spacer namespace to add new-line characters, put a box around the title, and end the information string with a border. There’s a
 detailed description of how the spacer methods work in chapter 7, so check back there if you need a reminder.

 You could have included an items parameter as part of the Place constructor function. But you want to be able to add items to a place while the game is running—when a player drops an item,
 for example—so you’ve kept the constructor function simple and included an addItem method instead.

 What’s that down that dark passageway? A dragon’s lair? The bridge of a starship? A lost valley of dinosaurs?

 9.4.3. Building the Place constructor—exits to explore

 One location does not an adventure make; players want to wander vast worlds of wonder. The last addition to your Place constructor is a way to add exits leading to other locations. You include an array of exits for each place and a method for
 adding destinations to the array. You need to display the exits, leading to your target output:

 ===================
= The Old Library =
===================
You are in a library. Dusty books line the walls.

Items:
 - a rusty key

Exits from The Old Library:
 - The Kitchen
 - The Main Hall
==

 Once again, the spacer code has been omitted from the printed listing.

 Listing 9.11. A Place constructor, part 3 (http://jsbin.com/parale/edit?js,console)

 [image:]

 [image:]

 The listing is quite long, but you’ve seen all of the techniques before and there’s some repetition. Focus on the methods
 one by one and take your time to follow the code.

 You start by setting up a quick shortcut. The spacer.newLine method always returns the new-line escape sequence, "\n", so you call it once and assign the return value to the newLine variable. You then use newLine instead of spacer.newLine(). That saves you some typing without impacting the readability of the code. You also add getExits and getTitle methods that build their part of the place information string. And the addExits method is just like the addItems method but—you guessed it—for adding exits instead of items.

 The exits property holds an array of Place objects. In other words, each Place object contains a collection of Place objects. This ability to nest objects inside objects can lead to sophisticated models of real-world situations. Although
 a full model can be quite complicated, each component should be relatively easy to understand. Your game, The Crypt, provides you with enough moving parts to appreciate how complicated programs can be constructed from simple pieces. Let’s revisit a piece you know well and define a constructor function for
 player objects.

 9.5. The Crypt—streamlining player creation

 Figure 9.5 shows where a Player constructor function fits into the overall structure of our ongoing game example.

 Figure 9.5. Elements of The Crypt

 [image:]

 In chapter 8 you added an array of items to Player objects and defined functions to include the items when displaying player information. You still created the players manually:

 var player1 = {
 name: "Kandra",
 place: "The Dungeon of Doom",
 health: 50,
 items : ["a trusty lamp"]
};

 You assigned the player display functions to their own variables—you collected quite a bunch!

 var getPlayerName = function (player) { ... };
var getPlayerHealth = function (player) { ... };
var getPlayerPlace = function (player) { ... };
var getPlayerItems = function (player) { ... };
var getPlayerInfo = function (player, character) { ... };
var showPlayerInfo = function (player, character) { ... };

 The display functions combined to show information on the console, as shown in figure 9.6.

 Figure 9.6. The elements shown when a Player object is displayed on the console.

 [image:]

 To add an item to the player’s collection, you pushed it directly to the items array:

 player1.items.push("a rusty key");

 9.5.1. Organizing player properties

 It’s time to wrangle all those pieces; you use your mastery of constructor functions to streamline player creation, make the
 functions into methods, and do away with the growing number of variables. The Player constructor will let you create Player objects like this:

 var player1 = new Player("Kandra", 50);

 The constructor will also add a method you can call to add items, for example:

 player1.addItem("a rusty key");

 Listing 9.12 shows the code for the Player constructor function. It uses methods from the spacer namespace introduced in chapter 7. The spacer code is included on JS Bin but is not shown in the listing. To test a Player object created by the Player constructor, the listing also uses the Place constructor from section 9.4. Again, that code is omitted here but included on JS Bin. And there’s a new type of value, null, that’s explained in the sections after the listing.

 Once again, there’s quite a lot of code here (and even more on JS Bin), but don’t worry; you’ve seen similar code before.
 Check the annotations, read the explanations below the listing, and try the Further Adventures on JS Bin. It might be worth having a quick look at The Crypt section from chapter 8 too; this builds on that.

 Listing 9.12. A Player constructor function (http://jsbin.com/leqahi/edit?js,console)

 [image:]

 [image:]

 Phew! That’s another long listing. Let’s break it down.

 9.5.2. Turning functions into methods

 In chapters 7 and 8, you defined a number of functions to build up a string of player information and display it, for example,

 var getPlayerHealth = function (player) {
 return player.name + " has health " + player.health;
};

 You pass a Player object to the function as an argument:

 getPlayerHealth(player1);

 The function then uses properties of the Player object to build up and return an information string.

 You’ve now moved the functions into the Player constructor and assigned them to properties of the special this object.

 this.getHealth = function () {
 return this.name + " has health " + this.health;
};

 When we assign functions as properties of objects, we call them methods. You invoke the methods by using dot notation and parentheses:

 player1.getHealth();

 You no longer need to pass the Player object as an argument to the function. Where this has been used in the function body, player1 will take its place.

 return this.name + " has health " + this.health;

 becomes

 return player1.name + " has health " + player1.health;

 Converting all of the functions into methods of the Player object does away with the need for a separate variable for each function. It also keeps the function definitions with the
 object on which they act. Neat!

 9.5.3. Assigning places to players

 You need to know where players are in The Crypt. In earlier chapters, you assigned a string to each player’s place property:

 player1.place = "The Old Library";

 But places are more than titles; Place objects created with the Place constructor have titles, descriptions, arrays of items, exits, and methods. From now on, you’ll assign players full Place objects:

 var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

var player1 = new Player("Kandra", 50);

player1.place = library;

 As players explore their environment, you’re able to update the place property, assigning a previously built Place object for each new location.

 Now that you’re assigning full Place objects to a player’s place property, the getPlace method has to do a little extra work to build its information string:

 this.getPlace = function () {
 return this.name + " is in " + this.place.title;
};

 Previously, this.place held the title of the player’s current location; it now holds a Place object. The title is now accessed via this.place.title.

 9.5.4. Using null as a placeholder for objects

 Notice, in listing 9.12, that you assign the special value null to the place property in the constructor function. This shows that you intend to use a place property in your program but you don’t have a value for it yet; you’ll only be able to assign a player’s place property when you’ve created some places.

 player.place = null; // You expect an object to be assigned later

/* other code */

player.place = library; // An object is assigned, as expected

 	

 Definition

 null is its own type of value. It’s not a string, number, boolean (true or false), or undefined. And it’s not an object. Programmers often use it, as you have, to show that they haven’t yet assigned an object to a variable
 or property but expect to assign one at some point.

 	

 Now that you have an efficient way of creating many objects, you can build all of the places in The Crypt using a constructor function. You can add items and link the places together into a map. You can assign places to players.
 You still need to find a way for players to move from place to place. Once you’ve done that, you’ll have a game environment
 you can explore!

 9.6. Summary

 	Use constructor functions to create objects with similar structures.

 	Assign constructor functions to variables starting with a capital letter. Naming constructor functions this way is a widely
 followed convention:

var Person = function (name) { ... };

 	Call constructor functions with the new keyword. Assign the object returned to a variable:

var person = new Person("Jahver");

 	Use the special this variable to set properties within the constructor function. this is automatically returned from the constructor:

var Person = function (name) {
 this.name = name;
};

var person = new Person("Jahver");

 	Access properties of the returned object just like any other object:

person.name; // Jahver

 	Assign functions to properties to create methods. Call the methods using dot notation and parentheses:

var Person = function (name) {
 this.name = name;
 this.sayHello = function () {
 return this.name + " says hi.";
 };
};

var person = new Person("Jahver");
person.sayHello(); // Jahver says hi.

 	Assign the value null to variables or properties if you expect to assign an object at some point but the object is not yet available:

player1.place = null;

/* other code */

player1.place = library;

 	Use the instanceof operator to check if a constructor function was involved in creating an object. The operator returns a boolean value, true or false:

var person = new Person("Jahver");

person instanceof Person; // true

person instanceof Planet; // false

Chapter 10. Bracket notation: flexible property names

 This chapter covers

 	Square brackets as an alternative to dot notation

 	The use of square brackets to set and get properties

 	The flexibility of square bracket notation

 	How to build a working game in The Crypt

 In chapter 3 you saw how to create objects with curly braces and get and set properties with dot notation. You’ve used objects to model
 players, places, planets, and posts as well as quizzes and calendar events. You’ve added functions as properties to make methods
 and passed your objects to and from functions as arguments and return values. Objects are the center of the JavaScript universe!

 In this chapter you take a look at a new way of working with object properties that gives you more flexibility with the property
 names, lets you use variables as keys, and gives you the ability to generate new properties from data while programs are running.

 We also bring part 1 of Get Programming with JavaScript to a close with a working version of The Crypt, finally giving players the chance to explore a map and collect treasure! Square bracket notation provides a better way for you to manage the links between locations in the game, create
 a web of Place objects, and add a touch of mystery to the adventure. Ooooo, mystery ...

 10.1. Using square brackets instead of dots

 Up until now you’ve used dot notation to set and get object properties.

 question1.question = "What is the capital of France?";

console.log(player1.name);

this.title = title;

 The property name, its key, is joined to a variable name with a period, or dot. JavaScript also offers an alternative approach: you can set and get
 properties by including a property’s key as a string between square brackets.

 question1["question"] = "What is the capital of France?";

console.log(player1["name"]);

this["title"] = title;

 This new approach gives you more flexibility in the strings you can use as keys and lets you add dynamic properties while
 your programs are running. Say you had a states object that held the abbreviations of U.S. states as values, using the full names of states as keys. You could use dot notation
 to find the abbreviation for Ohio

 console.log(states.ohio); // OH

 but, because of that pesky space, not for New Hampshire

 console.log(states.new hampshire); // ERROR!

 Square brackets solve the problem (figure 10.1):

 Figure 10.1. Using square bracket notation to set a property

 [image:]

 console.log(states["new hampshire"]); // NH

 And if you had a getStateCode function that used the states object, square bracket notation would let you use a parameter as a key:

 var getStateCode = function (stateName) {
 var stateCode = states[stateName];
 return stateCode;
};

 Using a parameter to provide the key isn’t possible with dot notation. Table 10.1 shows more situations in which square bracket notation is needed.

 Table 10.1. Situations in which certain keys do and don’t work

 	
 I want to

 	
 I try

 	
 Success?

 	Use ohio as a key in an object literal
 	
 states = {
 ohio : "OH"
};

 	Yes

 	Use new hampshire as a key in an object literal
 	
 states = {
 new hampshire : "NH"
};

 	No

 	Use "new hampshire" as a key in an object literal
 	
 states = {
 "new hampshire" : "NH"
};

 	Yes

 	Use maryland as a key with dot notation
 	states.maryland = "MD";
 	Yes

 	Use south carolina as a key with dot notation
 	states.south carolina = "SC";
 	No

 	Use south carolina as a key with square bracket notation
 	states["south carolina"] = "SC";
 	Yes

 	Use a parameter as a key with dot notation
 	
 function (stateName) {
 return states.stateName;
}

 	No

 	Use a parameter as a key with square bracket notation
 	
 function (stateName) {
 return states[stateName];
}

 	Yes

 Let’s investigate these ideas with a few more examples.

 10.1.1. Brackets in action—people’s names as keys

 Say you need to keep a simple record of people’s ages. You could use an ages object where each person’s name is a key and their age is the corresponding value. Listings 10.1, 10.2, and 10.3 develop this approach, logging two ages to the console:

 > 56
> 21

 In the first listing, you set the properties using bracket notation and get them using dot notation.

 Listing 10.1. Bracket notation for object properties (http://jsbin.com/kipedu/edit?js,console)

 [image:]

 The two methods are equivalent for the keys used in listing 10.1. If you want to include spaces in the property names, you must use bracket notation. The next listing shows a similar example using full names.

 Listing 10.2. Longer strings as keys (http://jsbin.com/toviya/edit?js,console)

 var ages = {};

ages["Kandra Smith"] = 56;
ages["Dax Aniaku"] = 21;

console.log(ages["Kandra Smith"]);
console.log(ages["Dax Aniaku"]);

 Trying to use dot notation with property names that include spaces will confuse JavaScript: ages.Kandra Smith will be interpreted as ages.Kandra and Smith will be seen as a separate variable name, as shown in figure 10.2.

 Figure 10.2. Spaces in property names don’t work with dot notation.

 [image:]

 The bracket notation immediately gives you the flexibility to use property names that may make more sense in context, like
 people’s names, rather than being restricted to the single words of dot notation.

 Bracket notation also allows you to add properties on the fly, when you may not know the keys in advance. Maybe a user is
 entering the information or it’s being fetched from a file or database. In the next listing, you include an addAge function for adding new people to the ages object. If you run this listing you’ll be able to use the function to add new people via the console.

 Listing 10.3. Using a function to add ages (http://jsbin.com/pipuva/edit?js,console)

 [image:]

 In listing 10.3 you use the name parameter in the addAge function as the key for the ages object. When you call addAge, the first argument you include in the call is assigned to the name parameter. For example,

 addAge("Kandra Smith", 56);

 assigns "Kandra Smith" to name and 56 to age, so that

 ages[name] = age;

 becomes

 ages["Kandra Smith"] = 56

 This ability to use a variable between the square brackets for setting a property gives you great versatility to dynamically
 create and mutate objects in your programs. You make further use of the technique in sections 10.1.2 and 10.2.

 If you want to create an object with properties already in place, then you use the curly braces syntax, with commas separating
 the key-value pairs. You can include spaces in the keys if you wrap the keys in quotation marks. The following listing shows
 the idea. It also introduces the Object.keys method that returns an array containing all of the keys set on an object. In the listing, you print the keys array to the console.

 > ["Kandra Smith", "Dax Aniaku", "Blinky"]

 Listing 10.4. Using Object.keys (http://jsbin.com/mehuno/edit?js,console)

 [image:]

 Object is a built-in JavaScript object. It provides a number of methods, one of which is called keys. Because Object.keys returns an array, you can use forEach to pass each key to a function. Listing 10.5 passes each key in turn to the console.log function that simply logs the key to the console.

 > Kandra Smith
> Dax Aniaku
> Blinky

 Listing 10.5. Iterating over Object.keys with forEach (http://jsbin.com/seteco/edit?js,console)

 [image:]

 Let’s check out another example of using square bracket notation’s ability to include complicated property names.

 10.1.2. Making the most of square bracket notation—word counts

 As the social media expert at your workplace, you’ve been tasked with analyzing tweets. Your first job is to count the number
 of times each word is used in a batch of tweets. Figure 10.3 shows parts of the console output of a tweet-analyzing program.

 Figure 10.3. Counting words used in tweets

 [image:]

 The program is shown in the following listing (with only three tweets to save space) and uses an object, words, to record the word counts.

 Listing 10.6. Counting words from tweets (http://jsbin.com/figati/edit?js,console)

 [image:]

 The program does quite a lot in a few lines of code. First, it uses the join array method (introduced in chapter 8) to join all of the tweets to form one long string with a space between each pair of tweets. Next, it uses the split method to create an array of all of the words. split is a built-in string method. You can use it to break a string into pieces, with each piece as an element of an array. If
 you assign a string to the message variable

 var message = "I love donuts";

 you can break the string into an array with three elements by calling the split method on the variable.

 console.log(message.split(" "));

> ["I", "love", "donuts"]

 The argument you pass to the split method is a string the function uses to decide where to split the text. The previous example uses a space as the separator,
 but any string will work. Here’s an example using commas:

 var csv = "Kandra Smith,50,The Dungeon of Doom";
var details = csv.split(",");
console.log(details);

> ["Kandra Smith", "50", "The Dungeon of Doom"]

 If you pass the empty string, "", as the argument to split, it creates an array of all of the individual characters used in the text:

 var message = "I love donuts";
console.log(message.split(""));

> ["I", " ", "l", "o", "v", "e", " ", "d", "o", "n", "u", "t", "s"]

 Back to your tweet analyzer. Once it generates the array of words with split, listing 10.6 iterates over the array of words twice. The first time, it creates properties with the words as keys and zero as the values.
 ["I", "love", "donuts"] leads to

 words["I"] = 0;
words["love"] = 0;
words["donuts"] = 0;

 If a word appears more than once, its property will be assigned zero each time—a little redundancy but not a problem. On the
 second iteration, the code adds one to a property’s value every time the word appears.

 words["I"] = words["I"] + 1;
words["love"] = words["love"] + 1;
words["donuts"] = words["donuts"] + 1;

 Alternatively, you could use the += operator to add one to the count for each word. You’ve seen += used to concatenate strings but it also works with numbers, adding a new number to an existing number. The following two
 statements are equivalent:

 words[word] = words[word] + 1;
words[word] += 1;

 In fact, if you just want to add one each time, there’s an operator for exactly that purpose, ++. The following two statements are equivalent:

 words[word] += 1;
words[word]++;

 But you want your code to be easy to follow and ++ is a bit terse (as well as having some other complications we won’t go into). You’ll probably bump into it out and about
 in codeland, but you won’t use it in this book until part 4.

 You’ve iterated over all of the words twice. By the end of the second iteration, each property has a word as a key and the
 word’s count as its value. Well done; have a pay raise! Do check out the working example on JS Bin and add more tweets or
 text from other sources for analysis.

 With a simple tweak, you can perform a letter count instead of a word count. The next listing shows how.

 Listing 10.7. Counting letters from tweets (http://jsbin.com/rusufi/edit?js,console)

 [image:]

 Listing 10.7 works in the same way as listing 10.6, using join and split to create an array and then iterating over the array twice to perform the count.

 In the next section, you put square bracket notation’s ability to work with arbitrary strings to good use managing exits in
 The Crypt.

 10.2. The Crypt—enhancing exit excitement

 You’ll now apply your knowledge of square bracket notation to The Crypt. Figure 10.4 shows where the focus of this section, linking places via exits, fits into the overall structure of our ongoing game example.

 Figure 10.4. Elements of The Crypt

 [image:]

 As it stands, the Place constructor you defined for The Crypt in chapter 9 gives away a little too much when it lists the exits for the current place in a game:

 ===============
= The Kitchen =
===============
You are in a kitchen. There is a disturbing smell.

Items:
 - a piece of cheese

Exits from The Kitchen:
 - The Kitchen Garden
 - The Kitchen Cupboard
 - The Old Library
==

 It lists what players will find when they leave the current location. By the end of this section, you inject a bit more mystery
 by simply listing the directions available rather than the destinations.

 Exits from The Kitchen:
 - west
 - east
 - south

 Players will find out what’s around the corner only when they get there. Feel the tension!

 To help you focus on using objects with square bracket notation to enhance the exits—that’s what this chapter is all about
 after all—you create a new, simplified Place constructor on which to experiment. Then, in section 10.2.4, you use your burgeoning square bracket skills to update your constructor from chapter 9.

 10.2.1. Using an object to hold the exits

 To add that extra layer of the unknown, you use an exits object rather than an exits array. The object keys are directions, like "north" or "the trapdoor", and the values are the destinations. Listing 10.8 displays the directions and destinations on the console. You hide the destinations later.

 > north goes to The Kitchen
> the trapdoor goes to The Dungeon

 Listing 10.8. An exits object (http://jsbin.com/daqato/edit?js,console)

 [image:]

 In listing 10.8, you begin by defining a very simple Place constructor function. Remember from chapter 9 that when you call a constructor function with the new keyword, JavaScript automatically creates an empty object and assigns it to the special this variable. You set the title property of this to the value of the title parameter.

 var Place = function (title) {
 this.title = title;
};

 You immediately use the constructor function to create two Place objects:

 var kitchen = new Place("The Kitchen");
var dungeon = new Place("The Dungeon");

 To keep things simple, you use a single exits variable for now. Later, you include it as part of the Place constructor function. So, you create an empty object and assign it to the exits variable:

 var exits = {};

 You have two Place objects, kitchen and dungeon, and you want to set them as destinations for different directions. You create corresponding properties on the exits object, using the directions as keys and the destinations as values:

 exits["north"] = kitchen;
exits["the trapdoor"] = dungeon;

 Finally, you use the forEach method to pass each key (in other words, each direction) in turn to the function specified.

 console.log(key + " goes to " + exits[key].title);

 The keys are "north" and "the trapdoor", so the code is the same as

 console.log("north" + " goes to " + exits["north"].title);
console.log("the trapdoor" + " goes to " + exits["the trapdoor"].title);

 But exits["north"] is the kitchen object and exits["the trapdoor"] is the dungeon object, so the code becomes

 console.log("north" + " goes to " + kitchen.title);
console.log("the trapdoor" + " goes to " + dungeon.title);

 leading to the output shown before the listing.

 10.2.2. Creating functions to add and display exits

 Okay, so you successfully used square bracket notation to associate directions and destinations. In listing 10.9 you add a couple of helper functions to the code, addExit and showExits, to simplify the adding and displaying of exits. The output is the same as for listing 10.8:

 > north goes to The Kitchen
> the trapdoor goes to The Dungeon

 Listing 10.9. Functions to add and show exits (http://jsbin.com/mibube/edit?js,console)

 [image:]

 [image:]

 The addExit function takes two arguments: a direction string and a Place object. The direction string becomes a new key on the exits object; the Place object becomes the corresponding value.

 addExit("north", kitchen);

 executes the code

 exits["north"] = kitchen;

 The showExits function iterates over the keys of the exits object (in other words, it iterates over the directions) and displays the destination for each direction.

 10.2.3. Giving each place object its own set of exits

 You’ve seen how you can use an exits object to model directions and destinations. But each place object needs its own set of exits. You don’t want to mix up the
 exits from The Fairy Fun Park with the exits from The Dungeon of Doom. In listing 10.10, you move the exits object into the Place constructor. To test the functionality of the new Place constructor, you create three places, library, kitchen, and garden, and add a couple of exits to kitchen. The kitchen exits are then displayed:

 > Exits from The Kitchen:
> south
> west

 Listing 10.10. An exits object in the Place constructor (http://jsbin.com/foboka/edit?js,console)

 [image:]

 [image:]

 The addExit and showExits functions are designed to work with Place and exits objects, so it makes sense to bundle them with the other place code inside the constructor. You can then use dot notation
 and parentheses to call the functions:

 kitchen.addExit("south", library);
kitchen.showExits();

 Listing 10.11 uses the same Place code to build a slightly bigger map, linking four locations, as shown in figure 10.5.

 Figure 10.5. A map with four locations

 [image:]

 The output from two locations is shown on the console:

 > Exits from The Old Library:
> north
> Exits from The Kitchen:
> south
> west
> east

 Listing 10.11. A map with four locations (http://jsbin.com/bufico/edit?js,console)

 [image:]

 [image:]

 Notice how, once you’ve defined a Place constructor, you can use it to create and link as many places as you need. The constructor code can stay the same—you can
 move it from one adventure into another—all you need to change are the places you create, the map data.

 10.2.4. Adding the exits object to the full Place constructor

 So far in section 10.2, you’ve seen how to combine an exits object with square bracket notation to manage the links between Place objects in The Crypt. To keep the focus on the square brackets, you built up the code starting with a new, simple Place constructor. It’s time to combine the enhanced exits with the great work you did building constructors in chapter 9, to produce the format of output for each place shown in figure 10.6.

 Figure 10.6. The console output for a Place object when you call showInfo

 [image:]

 Listing 10.12 shows the complete Place constructor function code. Most of it was discussed in chapter 9, so head back there if you need to refresh your memory. The new exits code is shown in bold and is annotated. The listing
 on JS Bin includes map info that is discussed in the next section.

 Listing 10.12. A Place constructor function (http://jsbin.com/zozule/edit?js,console)

 [image:]

 [image:]

 With this latest version of the Place constructor, you can create place objects, manage their items and exits, and display formatted information (courtesy of spacer) on the console. Let’s take it for a spin.

 10.2.5. Testing the Place constructor

 To test the Place constructor, you re-create the map from listing 10.11 that links four locations: kitchen, library, garden, and cupboard. The next listing shows the map-creation code. The output is shown in figure 10.6.

 Listing 10.13. Testing the Place constructor (http://jsbin.com/zozule/edit?js,console)

 [image:]

 [image:]

 You follow the map-creation code with a call to kitchen.showInfo to test that the kitchen object and its items and exits have been created as expected.

 10.3. The Crypt—let the games begin!

 You’re so close! You have everything you need to build and display a universe of worlds for players to explore:

 	The spacer namespace

 	The Player constructor

 	The Place constructor

 	The map-creation code

 There’s one more piece to be added before players can be set free on their adventures:

 	Game controls

 Figure 10.7 shows the three game functions you’ll create in this section and how they fit into the overall structure of our ongoing example.

 Figure 10.7. Elements of The Crypt

 [image:]

 You want players to be able to issue commands at the console prompt, commands to move from place to place and to pick up items
 that they find. For example, to move north and pick up an item, a player would type

 > go("north")
> get()

 Luckily, because of the work you put into the constructors, the game control code is actually quite short. It’s shown here.

 Listing 10.14. Playing the game (http://jsbin.com/sezayo/edit?js,console)

 [image:]

 [image:]

 You create three functions: render, go, and get. Each function is discussed in its own section next. Both go and get end by returning an empty string, "". When you call functions at the console, it automatically displays their return values. Returning an empty string prevents
 the console from displaying the return value undefined.

 10.3.1. Updating the display—render

 At the start of each game and each time a player takes an action, you want to update the display on the console. Both Place objects and Player objects have showInfo methods to display their current state; for example,

 player.showInfo("*");
kitchen.showInfo();

 The program assigns the player’s current location to their place property. To display information about the current place, you therefore include the code

 player.place.showInfo();

 You could keep appending text to the console, but it’s neater to clear it and start from a blank slate after each player action.
 The clear method removes the text from the console.

 console.clear();

 You update the console after a player moves and after they pick up an item. Rather than repeating the display code, you wrap
 it inside the render function and call it on demand.

 10.3.2. Exploring the map—go

 To move to a new location, a player calls the go function, specifying the direction in which they want to move:

 go("south");

 You need to find the destination for the direction the player specifies and assign it as the player’s new location:

 player.place = player.place.exits[direction];

 In the expression on the right side of the assignment, you use square bracket notation to retrieve the Place object for the direction specified, exits[direction]. You use dot notation to access the exits object:

 player; // The Player object

player.place; // The player's current location
 // A Place object

player.place.exits; // The exits from the current location.
 // An object with directions as keys and
 // destinations as values.

player.place.exits[direction]; // The place is the specified direction.
 // A Place object.

 The Place object for the destination is assigned to the player’s place property, replacing their old location. They’ve moved.

 10.3.3. Collecting all the things—get

 To pick up an item, the player calls the get function:

 get();

 You remove the item from the current location and add it to the player’s array of items. The current location is player.place. The items at the current location are held in the player.place.items array. To remove and return the last item in the items array, you use the pop method:

 var item = player.place.items.pop();

 You then add it to the player’s collection:

 player.addItem(item);

 And that’s it! You’ve given players the ability to boldly go from place to place, picking up any treasure they might find.

 10.3.4. Designing a bigger adventure—Jahver’s ship

 Four locations based around a kitchen may not be the world of adventure you were hoping for. To conjure mystical realms, replicate
 dystopian futures, and weave webs of intrigue, all you need to do is change the map section of the code. Have a go at building
 your own locations, linking them via exits, and stocking them with interesting artifacts.

 To get you started, there’s a brief adventure you can explore and extend on JS Bin, at http://jsbin.com/yadabo/edit?console. You may need to click Run to start the game. It’s set on a small space-freighter called The Sparrow. There are six items to collect, not including your blaster. Once you’ve collected all of the items, open up the JavaScript
 panel and try adding a few more locations. Happy hunting!

 10.4. What’s next?

 While it’s great to have a working game, the code for The Crypt isn’t very robust. A player can easily break it, by trying to go in a nonexistent direction, for example. They can also access
 all the game objects at the console—it’s easy to award themselves extra treasure or teleport to a new location:

 > player.addItem("riches beyond my wildest dreams")
> player.place = treasureRoom

 And the game could certainly do with more challenge. There should be puzzles that can be overcome only with certain items.

 In part 2 of Get Programming with JavaScript, you’ll address those issues by splitting your code into modules, preventing access to objects, setting conditions for when
 code runs, and separating data from the display of data. Such organization will help you design and manage programs as they
 get larger and more complicated and set you up nicely for working with web pages in part 3.

 10.5. Summary

 	Use a string between square brackets to specify property names:

player["Kandra"] = 56;
exits["north"] = kitchen;
words["to"] = words["to"] + 1;

 	In particular, use square brackets when the property names include spaces or other characters not allowed with dot notation:

player["Kandra Smith"] = 56;
exits["a gloomy tunnel"] = dungeon;
words["!"] = 0;

 	Use function parameters to dynamically assign property names when the function is called:

var scores = {};
var updateScore = function (playerName, score) {
 scores[playerName] = score;
};
updateScore("Dax", 2000);
console.log(scores["Dax"]);

 	Pass an object as an argument to the Object.keys method to create an array of the object’s keys:

var scores = {
 Kandra : 100,
 Dax : 60,
 Blinky : 30000
};
var keys = Object.keys(scores); // ["Kandra", "Dax", "Blinky"]

 	Break a string into an array with the split method. Pass as an argument the string used to determine where to make the breaks:

var query = "page=5&items=10&tag=pluto";
var options = query.split("&"); // ["page=5", "items=10", "tag=pluto"]

Part 2. Organizing your programs

 Sharing code is common among programmers; many problems have been solved by others already, and your solutions could prove
 useful in your own future projects, to your team, or to the wider developer community. When code modules are shared, it’s
 important to make clear how others should use them by defining a clear interface, or set of properties and functions you expect users to utilize. The internals of a module—how you make it do its job—should
 be protected. Part 2 looks at ways of using local rather than global variables to hide a module’s implementation from other code.

 As your programs grow, the need for organization increases, and you’ll start to notice patterns and procedures you use again
 and again. Part 2 also looks at ways of using modules in your code to improve flexibility, reuse, and maintainability. Your code’s flexibility may be improved by executing parts
 of it only if certain conditions are met, and you’ll see how to specify those conditions with if statements.

 The modules you create will usually perform specific, well-defined tasks within a project. Three common types of module are
 models, for representing and working with data, views for presenting the data in models, and controllers for updating models and views in response to user or system actions.

 By the end of part 2, you’ll have broken The Crypt into modules and updated the game to include challenges: puzzles for players to overcome.

Chapter 11. Scope: hiding information

 This chapter covers

 	The dangers of global variables

 	The benefits of local variables

 	Using namespaces to reduce global variables

 	Creating local variables with functions

 	Returning an interface for the user

 You want the user to be able to interact with your console-based programs. But you don’t want to give them too much control!
 This chapter explores ways of hiding parts of your program from the user at the console and clearly defining the properties
 and methods you expect them to use. For example, for a quiz program the user should be able to submit an answer but not change
 their score:

 > quiz.submit("Ben Nevis") // OK

> quiz.score = 1000000 // Don't let the user do this!

 By separating the public interface from the private variables and functions that make the program work, you declare your intentions,
 setting out what a user can do and what other programmers using your code should do, and reduce the risk of code being misused. That’s good for the program, for the players, and for other programmers.

 Functions are the key. Whereas variables declared outside functions are accessible everywhere in the program, those declared
 inside functions are accessible only within the function. This chapter will show you how to return objects from functions
 with only those properties and methods you want to be accessible to users. Constructors are functions too, and you’ll see
 how to use their special this object to set up public properties and methods.

 Finally, you’ll apply what you’ve learned to The Crypt, removing user access to constructors, places, and player properties and providing methods to display player and place information
 and to navigate the map. Users will be able to do this:

 > game.go("north") // Move from place to place
> game.get() // Pick up an item

 Users won’t be able to cheat the game by doing this:

 > player.health = 1000000
> player.place = exit
> player.items.push("The Mega-Sword of Ultimate Annihilation")

 Let’s start by highlighting the pitfalls of variables you can see anywhere in the program; they seem like such a good idea!
 [Spoiler: they’re not.]

 11.1. The dangers of global variables

 Way back in chapter 2, at the start of your adventures in JavaScript, you discovered how to declare, assign, and use variables. The following listing
 shows a really simple example of the process that displays the name of a mountain on the console:

 > Ben Nevis

 Listing 11.1. Declare, assign, and use a variable (http://jsbin.com/gujacum/edit?js,console)

 var mountain;

mountain = "Ben Nevis";

console.log(mountain);

 You declare the variable, mountain, on the first line of the program. You can then use the variable throughout the code; you assign it a value and pass it to
 console.log as an argument.

 Functions in the program can also access the mountain variable (figure 11.1).

 Figure 11.1. The function can see the mountain variable that’s outside the function body.

 [image:]

 The next listing shows a showMountain function using mountain, leading to the same output as listing 11.1.

 Listing 11.2. Accessing a variable from within a function (http://jsbin.com/zojida/edit?js,console)

 [image:]

 Variables like mountain, declared outside any function and so accessible everywhere, are called global variables. You may think these global variables sound really useful: declare them once and then use them freely from anywhere in your
 code. Unfortunately, they have some serious downsides and are generally considered to be a bad thing. Let’s investigate reasons for avoiding these naughty globals.

 11.1.1. Access all areas—peeking and tweaking

 You want users to be able to interact with your programs at the console. You don’t want them to have a sneaky peek at all
 the geeky variables. The next listing shows a tiny quiz.

 Listing 11.3. A tiny quiz (http://jsbin.com/nubipi/edit?js,console)

 var question = "What is the highest mountain in Wales?";
var answer = "Snowdon";

console.log(question);

 Because question and answer are global variables, they’re accessible throughout the program and via the console. At the console prompt, once users run
 the program, they can type answer and press Enter and display the value of the answer variable. A sneaky peek at our geeky peak!

 > answer
 Snowdon

 It’s not just sneaky peeks that are a problem; it’s sneaky tweaks too! Users can change the value of global variables at will,
 updating scores, bank balances, velocities, prices, and answers.

 > answer = "Tryfan"

 11.1.2. Access all areas—relying on an implementation

 The idea of not relying on an implementation is important but might require time to appreciate fully. Don’t worry if not everything
 clicks the first time through—you can always return to it after reading the other examples in the chapter.

 Sneaky peeks and tweaks can be a problem for programmers too (see the sidebar “Who’s using your code?”). If you’ve written code that is then used by other programmers, you probably don’t want them to be tinkering under the
 hood, writing their own code that relies on the internals of yours. When you release a new version of your code that uses
 a more efficient algorithm internally, other code that has been relying on some of your variables may break.

 	

 Who’s using your code?

 Consider the spacer functions you created in chapter 7. You’ve been using them in your code for The Crypt ever since. That’s an example of you using your own code.

 It’s common for programmers to be part of a team, small or large. The team could be working on different aspects of the same program. There’s no need for each programmer
 to create their own formatting functions, so they all use your spacer namespace.

 Your team members are so impressed by your formatting prowess that they encourage you to share the spacer namespace more widely. You upload your code to a community repository like Github.com (https://github.com) or npmjs.com (https://www.npmjs.com). Other programmers can then download and use your code and even contribute improvements and extensions.

 The spacer code catches on and is developed further by a team of dedicated enthusiasts. It even gets its own website! It’s so popular
 that everyone is using the spacer.js library.

 	

 Users should be able to rely on your interface—the functionality you make public—and not be concerned with your implementation—how you program that functionality.

 	

 Definition

 An interface is a set of properties and functions that you want users to access. It’s how they interact with your application. For example,
 the screen, buttons, and cash dispenser on an ATM.

 	

 	

 Definition

 An implementation is the code you use to make an application do its job behind the scenes. It isn’t usually visible to users. For example,
 the code that makes an ATM work, how it communicates with your bank, and how it counts the cash.

 	

 For example, to implement links between places in The Crypt you might use an exits array for exit directions and a destinations array for the places to which the exits lead.

 var exits = [];
var destinations = [];

 Then, to manage adding new exits you write an addExit function.

 var addExit = function (direction, destination) {
 exits.push(direction);
 destination.push(destination);
};

 You expect other programmers working with your Place objects to use the addExit function (figure 11.2).

 Figure 11.2. Users should use the interface, not the implementation.

 [image:]

 You document the fact that addExit is part of the interface, the set of properties and functions that users—in this case programmers—should work with.

 addExit("north", kitchen); // Good—using function

 But if they have access to the exits and destinations variables, they might choose to use those variables directly, bypassing the function.

 exits.push("north"); // Bad—accessing variables directly
destinations.push(kitchen);

 Everything seems fine and the other programmers’ programs are working well. Then, after reviewing your code, you decide you
 can improve on having two separate arrays by using a single object.

 var exits = {};
// No destinations array. No longer needed in new implementation.

 To use the new way you’ve implemented exits, you update the addExit function.

 var addExit = function (direction, destination) {
 exits[direction] = destination;
};

 Programmers who were using the interface will see no change in their programs. But programmers who bypassed the interface
 and accessed the variables directly will see their programs break! (See figure 11.3.)

 Figure 11.3. Relying on the implementation can lead to errors if it changes.

 [image:]

 addExit("north", kitchen); // Good. Works just the same.

exits.push("north"); // ERROR! exits is not an array.
destinations.push(kitchen); // ERROR! destinations doesn't exist.

 Allowing access to all areas of our programs by using global variables blurs the line between implementation and interface,
 giving users freedom to peek and tweak and setting up programs to fail when implementation details change.

 11.1.3. Naming collisions

 Because our programs can be made up from lots of pieces of code written by different teams or programmers, it’s quite possible
 that the same variable names will be used in multiple places. If one programmer declares a variable name, say spacer (a namespace of formatting functions), and then later in the program another programmer declares the same variable name,
 spacer (a canine character in a console-based space-adventure game), the second will overwrite the first—a collision! We really
 need a way to protect our variables from such collisions. (Chapter 13 looks at collisions in more detail.)

 11.1.4. Crazy bugs

 Programs can be thousands of lines long. Relying on global variables that may be declared a long way away in the code and
 that may be peeked at and tweaked by functions and instructions throughout the program leads to a fragile program. If anything
 goes wrong with the program (and it probably will), it could be difficult to follow the flow of the code and pin down the
 location of the problems.

 11.2. The benefits of local variables

 Variables declared inside the body of a function can’t be accessed outside the function. They’re called local variables; they are local to the function in which they’re declared (figure 11.4).

 Figure 11.4. Variables declared inside a function are local to the function.

 [image:]

 Trying to access a local variable outside its function will cause an error. Listing 11.4 tries to log the value of the mountain variable to the console but produces a message like this:

 > ReferenceError: Can't find variable: mountain

 (The error you get might look slightly different. Different browsers may format the error messages in different ways.)

 Listing 11.4. A variable hidden from the console (http://jsbin.com/bobilu/edit?js,console)

 [image:]

 The collection of variables outside all functions is called the global scope. Each function creates its own local scope, its own collection of variables. In listing 11.4, the variable mountain is not in the global scope outside the function and so an error is reported when it’s used in the console.log statement.

 Using a variable from within the same scope causes no trouble, as shown in the following listing.

 > Devils Tower

 Listing 11.5. The variable is visible from within the function (http://jsbin.com/raluqu/edit?js,console)

 [image:]

 Listing 11.6 combines global and local variables. You can access the global variables anywhere, but you can only use the local variable,
 secretMountain, inside the show function.

 Listing 11.6 produces the following output:

 > Ben Nevis
> Devils Tower
> Ben Nevis
> ReferenceError: Can't find variable: secretMountain

 Listing 11.6. Global and local variables (http://jsbin.com/riconi/edit?js,console)

 [image:]

 11.3. Interfaces—controlling access and providing functionality

 You want users to interact with your program on the console but you don’t want them digging into its implementation to make
 changes you didn’t intend. The set of properties and actions you make available to a user is called an interface. You need a way to provide a simple interface while hiding everything else.

 In this section you use a very simple program, a counter, as an example. In section 11.4, you develop an interface for a quiz app and in sections 11.5, 11.6, and 11.7 you apply what you’ve learned to The Crypt.

 The following listing shows the first version of the counter program, using a global variable to hold the current count.

 Listing 11.7. A counter (http://jsbin.com/yagese/edit?js,console)

 [image:]

 Run the program and follow these steps at the console prompt. (Your actions show the prompt, >, but the responses do not.)

 > count()
 1
> count()
 2
> count()
 3

 It seems to be working, so what’s the problem? Well, because counter is a global variable, the user can change it at any time.

 > counter = 99
 99
> count()
 100

 You probably don’t want the user tweaking your counting variable like that. Next, you use what you learned about local variables
 in section 11.2 to hide the counter variable from the user.

 11.3.1. Using a function to hide variables

 You want to achieve two outcomes with your counting app:

 	The counter variable is hidden from the user.

 	The count function can be seen by the user.

 Listing 11.8 shows a solution. Running the program enables the following console interaction, as required:

 > count()
 1
> counter
 Can't find variable: counter

 (Again, the error your browser displays may be slightly different.)

 Listing 11.8. Hiding the counter variable (http://jsbin.com/fuwuvi/edit?js,console)

 [image:]

 Table 11.1 summarizes the key ideas as a series of problems and solutions; figure 11.5 illustrates how the returned counting function, assigned to count, still has access to the local counter variable.

 Figure 11.5. The returned function still has access to the local counter variable.

 [image:]

 Table 11.1. Problems and solutions for the counter app

 	
 Problem

 	
 Solution

 	I want the counter variable to be hidden from the user.
 	Declare the counter variable inside the getCounter function. As a local variable, counter won’t be accessible by the user.

 	My function, countUpBy1, which increments the counter, needs access to the counter variable.
 	Define the countUpBy1 function inside the getCounter function as well. Because it’s inside getCounter, it will have access
 to the counter variable.

 	I want the user to be able to call the counting function.
 	Return the counting function, countUpBy1, from the getCounter function. It can then be assigned to a global variable.

 By returning a function and assigning it to the count variable (figure 11.5), you’ve given the user a way to use the program; you’ve given them an interface—they just call getCounter() to obtain a counting function and then count() to increment the counter.

 11.3.2. Creating multiple independent counters with getCount

 In listing 11.8 you defined a function, getCounter, to create counters. Each time you call getCounter it executes the same three steps:

 1. Declare a counter variable and assign it the value 0.

 2. Define a function to do the counting. The function uses the counter variable from step 1.

 3. Return the function that does the counting.

 Each time you call getCounter, it declares a counter variable and defines a counting function. If you call getCounter multiple times, don’t the counter variables interfere with each other? No, because getCounter creates a fresh local scope each time it runs; you get multiple copies of the counter variable, each within its own isolated collection of variables, its own local scope.

 Listing 11.9 updates the getCounter code to create two counters. You can then perform the following console interactions:

 > climbCount()
 1
> climbCount()
 2

> climbCount()
 3
> peakCount()
 1
> climbCount()
 4

 peakCount and climbCount do not interfere with each other.

 Listing 11.9. Multiple counters (http://jsbin.com/sicoce/edit?js,console)

 [image:]

 Having counter as a local variable allows you to have multiple independent counters.

 11.3.3. Creating multiple independent counters with a constructor function

 If you’re going to be creating lots of counters, you could use a constructor function to define what a counter is and does.
 As detailed in chapter 9, a constructor function streamlines the common process of creating objects with similar properties and methods. You call
 a constructor by using the new keyword. For counters, you might have the following:

 var peaks = new Counter();
var climbs = new Counter();

 The constructor will automatically create an object assigned to the special this variable and return it. You can set the counting function as a property of this to make it available outside the constructor; see listing 11.10. On the console, you might call the counting function like this:

 > peaks.count()
 1
> peaks.count();
 2
> climbs.count();
 1

 Listing 11.10. A counter constructor (http://jsbin.com/yidomap/edit?js,console)

 [image:]

 Compare listings 11.9 and 11.10. They’re almost identical! The only difference is that in listing 11.10 you set the counting function as a property of this rather than returning it. The constructor function automatically returns the this object, so you don’t need to. The constructor is still a function, so counter is still a local variable. Either approach, the plain function or the constructor function, is valid. They both let you return
 an interface while hiding the implementation details.

 The counter was a nice, simple example. Let’s look at something with a few more moving parts, the quiz app. No cheating!

 11.4. Creating a quick quiz app

 You want to create a simple quiz app. The app should be able to do three things:

 1. Display a question on the console.

 2. Display the answer to the current question on the console.

 3. Move to the next question in the question bank.

 The start of a typical interaction on the console might look like this:

 > quiz.quizMe()
 What is the highest mountain in the world?
> quiz.showMe()
 Everest
> quiz.next()
 Ok
> quiz.quizMe()
 What is the highest mountain in Scotland?

 As you can see, there are three functions, quizMe, showMe, and next, that satisfy the app’s three requirements. You also need an array of questions and answers and a variable to keep track
 of which is the current question. Global variables, those declared outside any functions, are said to be in the global namespace. To avoid polluting the global namespace with all those quiz variables, you can set them as properties of a single object. As you saw in chapter 7, when a single object is used to collect related variables together in this way, it’s often called a namespace.

 11.4.1. Using an object as a namespace

 The app will create a single global variable, quiz. All of your variables can then be set as properties of the quiz object, as shown in listing 11.11. The array of questions and answers starts like this:

 var quiz = {
 questions: [
 {
 question: "What is the highest mountain in the world?",
 answer: "Everest"
 }
]
};

 You then access the array via quiz.questions. Remember, array indexes start at 0, so to access the first question-and-answer object, use quiz.questions[0]. To get the first question and the first answer from the questions array, use the following:

 quiz.questions[0].question;
quiz.questions[0].answer;

 You keep track of the current question with the qIndex property.

 Listing 11.11. Improving the quiz app (http://jsbin.com/tupoto/edit?js,console)

 [image:]

 [image:]

 Listing 11.11 satisfies the three requirements of your app and is polite enough to use only a single global variable, quiz. Everything it needs is within the quiz object. Because all of the properties are accessed as properties of quiz, we say they’re in the quiz namespace.

 Unfortunately, your app doesn’t overcome the access all areas drawback of global variables seen in section 11.1.1. All of the properties of the quiz object are public—the user can still steal a peak and tweak all the values.

 11.4.2. Hiding the questions array

 In listing 11.11, players can access all of the quiz object’s properties at the console. This allows them to cause mischief, changing properties on a whim:

 > quiz.qIndex = 300
> quiz.questions[2].answer = "282"

 But you want them to use only quiz.quizMe, quiz.showMe, and quiz.next. Let’s make the questions array and the qIndex value private by using local variables, as shown in figure 11.6.

 Figure 11.6. Use local variables to make qIndex and questions private

 [image:]

 The next listing uses the getQuiz function to create a local scope in which to hide the questions array and the qIndex value.

 Listing 11.12. Hiding the questions and answers (http://jsbin.com/qahedu/edit?js,console)

 [image:]

 [image:]

 The program returns an object with three properties: quizMe, showMe, and next. The last line assigns the returned object to the quiz variable. You can then use quiz to access the three functions:

 > quiz.quizMe()
 What is the highest mountain in the world?
> quiz.answer()
 Everest

 The code that makes the quiz app work is called its implementation. Some of the implementation is hidden in the getQuiz function by using local variables. The object returned by the function provides the user with an interface, a public way of interacting with the program. The user can call the quizMe, showMe, and next functions because they’re methods of the interface object. The user can’t access the qIndex and questions variables because they’re local to the getQuiz function.

 Figure 11.7 shows how errors are thrown when an attempt is made to access the variables qIndex and questions at the console prompt on JS Bin. (Your error messages may be slightly different.)

 Figure 11.7. Trying to access qIndex and questions from the console now causes errors.

 [image:]

 11.5. The Crypt—hiding player info

 In this section, and in sections 11.6 and 11.7, you update your code for The Crypt to hide variables, properties, and functions that are part of the implementation and that should not be spied by outside
 eyes. At the same time, you consider what form your interfaces should take—what information and actions you’ll make available
 to players and to programmers.

 11.5.1. Our current Player constructor—everything is public

 Up to this point, you haven’t made any attempt to control a user’s access to the data in a Player object. The following listing shows the current form of your Player constructor.

 Listing 11.13. The Player constructor (http://jsbin.com/dacedu/edit?js,console)

 [image:]

 You set all of the player data and all of the functions as properties of the special this object. The constructor creates the this object automatically when you call it with the new keyword. In the snippet that follows, you call the Player constructor to create a new player.

 var player1 = new Player("Jahver", 80);

 The constructor function automatically returns the this object, and you then assign the object to the player1 variable. Because you attached everything to this within the constructor, and this was returned and assigned to player1, you can now use player1 to access data and methods: player1.name, player1.items, player1.addItem, player1.getInfo, and player1.showInfo are all accessible, for example.

 11.5.2. An updated Player constructor—some variables are hidden

 To control users’ access to player data you can use parameters and variables without assigning values to properties of the
 this object. Parameters, between the opening parentheses in a function definition, act just like variables declared within the
 function body. They’re local to the function and can be used anywhere within the function but can’t be accessed by code outside
 the function.

 var Player = function (name, health) {

 // name and health are local variables.
 // They can be used here.

 this.getHealthInfo = function () {
 // name and health can be used here.
 };
};

// name and health can NOT be used here.
// This is outside the scope of the player function.

 Figure 11.8 shows the change in visibility of variables and properties from the old Player constructor (listing 11.13) to the new (listing 11.14). The new constructor hides most of the functions in the local scope, assigning only four functions to the special this object as an interface.

 Figure 11.8. Hiding variables and functions in the local scope of the constructor function

 [image:]

 The next listing shows the changes in code; local variables, declared with var, are used to prevent direct access to a player’s data.

 Listing 11.14. Hiding player info in the constructor (http://jsbin.com/fuyaca/edit?js,console)

 [image:]

 [image:]

 The properties and functions you don’t want to be seen outside the constructor you assign to local variables. The methods
 you want to make visible you assign as properties of the this object.

 var items = []; // Keep private

this.showInfo = function () { }; // Make public

 The setPlace and getPlace methods give users access to the place variable. Why bother using a variable to make place private if you’re only going to provide methods to access it anyway? They provide an interface and allow you to hide the
 implementation and also let you mediate access. When the setPlace method is called, you can check that the destination argument is a valid place before assigning it to the place variable. When the getPlace method is called, you can check that the user is allowed to get access before returning the place. You haven’t put those
 extra checks in place yet, but your two methods are ready for when you need to add any conditions.

 You’ve also simplified the information displayed by showInfo so that it no longer includes the current place. Place objects have their own showInfo method, so there’s no need to double up and display place details as part of a player’s information. When you display player info on the console,
 it now looks like this:

 **
* Kandra (50) *
**
 Items:
 - The Sword of Doom
**

 The player’s health is shown in parentheses after their name. To show information about a player’s current location, you can
 call getPlace to retrieve the place object and then call the place object’s showInfo method:

 var place = player.getPlace();
place.showInfo();

 11.6. The Crypt—hiding place info

 You now do for the Place constructor what you did for the Player constructor. You hide the data and provide methods that access it as required. The next listing shows the structure of the
 previous Place constructor, from chapter 10, with data and methods set on the this object.

 Listing 11.15. The Place constructor (http://jsbin.com/kavane/edit?js,console)

 [image:]

 The following listing shows your updated version of the Place constructor, using parameters and variables to hide data, a new getExit function to return the destination for a specified direction, and a new getLastItem method to return the last item from the items array.

 Listing 11.16. Hiding place info in the constructor (http://jsbin.com/riviga/edit?js,console)

 [image:]

 [image:]

 You’ve hidden certain properties and functions in the Player and Place constructors while making a small set of methods—your interface—visible via the this object. Other parts of your program that use the constructors (or programmers who may use your code in their own adventure
 game programs) can use only the methods in the interface.

 For players typing commands at a console, you’ll preserve their enjoyment of the game by preventing them from stumbling inadvertently
 over important game values they find they can change. (Cheating is such a nasty word.) You’ll present the players with a small, simple set of actions they can take to explore, collect,
 smite, and destroy—whatever is appropriate as they journey through The Crypt.

 11.7. The Crypt—user interaction

 In chapter 10 you created a version of The Crypt that let the player move from place to place and pick up items they found. Unfortunately, you polluted the global namespace
 with all of your variables. Don’t beat yourself up about it; you were young and naïve. Now you have a way to hide the implementation
 from the user.

 Listing 11.17 shows an outline of the current implementation; the full version is on JS Bin. It’s almost the same as the version from chapter 10 but uses the getPlace and setPlace player methods and the getExit and getLastItem place methods from this chapter’s constructor updates. The code that uses them is shown in full.

 Listing 11.17. Lots of global variables in the game (http://jsbin.com/dateqe/edit?js,console)

 // The spacer namespace
var spacer = { /* formatting functions */ };

// Constructors
var Player = function (name, health) { ... };
var Place = function (title, description) { ... };

// Game controls
var render = function () {
 console.clear();
 player.getPlace().showInfo();
 player.showInfo();
};

var go = function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);
 player.setPlace(destination);
 render();
 return "";
};

var get = function () {
 var place = player.getPlace();
 var item = place.getLastItem();

 player.addItem(item);
 render();
 return "";
};

// Map
var kitchen = new Place("The Kitchen", "You are in a kitchen...");
var library = new Place("The Old Library", "You are in a library...");

kitchen.addItem("a piece of cheese");
library.addItem("a rusty key");

kitchen.addExit("south", library);
library.addExit("north", kitchen);

// Game initialization
var player = new Player("Kandra", 50);
player.addItem("The Sword of Doom");
player.setPlace(kitchen);

render();

 Notice all the global variables—the spacer namespace, the Player and Place constructors, the game control functions, all the places, and the player—are assigned to variables outside any functions.
 Smelly pollution. Only the game control functions, go and get, need to be available to players. You can hide the rest.

 11.7.1. The interface—go and get

 There are only two actions you want the user to take for now:

 game.go("north"); // Move; e.g. to the place north of the current location
game.get(); // Pick up an item from the current location

 To hide the implementation, you wrap the game code inside a function. Then, to allow the user to take the two desired actions
 and no more, you return an interface object from the function, with the two methods:

 return {
 go: function (direction) {
 // Move to a new place
 },

 get: function () {
 // Pick up an item
 }
};

 The interface methods use the functionality of player and place objects to do their jobs, with those objects created by their
 respective constructor functions.

 11.7.2. Hiding the implementation

 To hide the rest of the code from the users, you wrap it in a function to create a local scope. Only your interface object
 is returned. The listing that follows shows highlights from the updated code. The full listing is available on JS Bin.

 Listing 11.18. Letting users interact with the game via an interface object (http://jsbin.com/yuporu/edit?js,console)

 [image:]

 [image:]

 The last statement of the listing calls the getGame function. The function executes and then returns the interface object that has the go and get methods. The statement assigns the interface object to the game variable. The player can access the go and get methods via the game variable by using dot notation:

 game.get();
game.go("east");

 The player can’t access any other variables or functions from the game. Your work is done! At least for this chapter.

 The wrap-and-return process of wrapping code in a function from which you then return an interface object is called the module pattern. It’s a common way of separating the interface from the implementation and helps package your code for portability and reuse.
 You’ll see it a lot from now on, particularly in chapter 13 when you investigate importing modules by using HTML script tags. Before you get to that, you have some decisions to make in chapter 12. If you’re ready, read on; else take a break, chill out, try the Further Adventures, and gird your loins.

 11.8. Summary

 	Reduce the number of global variables in your programs. Global variables are variables declared outside all functions. They
 can be accessed anywhere in the program but pollute the global namespace, expose your implementation, can create naming collisions,
 and can help introduce hard-to-find bugs:

var myGlobal = "Look at me";

var useGlobal = function () {
 console.log("I can see the global: " + myGlobal);
};

console.log("I too can see the global: " + myGlobal);

 	Reduce the number of global variables by collecting related variables and functions as properties of a single object. Such
 an object is often called a namespace:

var singleGlobal = {
 method1 : function () { ... },
 method2 : function () { ... }
};

 	Wrap code in functions to create local scopes, collections of local variables:

var getGame = function () {
 var myLocal = "A local scope, for local people.";
 console.log(myLocal); // Displays message
};

console.log(myLocal); // ERROR! myLocal is not declared here.
 // It is not in the global scope.

 	Wrap code in functions to make variables private, hide your implementation, avoid naming collisions, and reduce the risk of
 hard-to-find bugs.

 	Return public interfaces from functions to clearly define the properties and methods you expect users to access (the module
 pattern).

 	Return a single function:

var getCounter = function () {
 var counter = 0; // Private

 return function () { ... };
};

var count = getCounter();

 	Return an object:

var getGame = function () {
 // Game implementation

 return {
 // Interface methods
 };
};

var game = getGame();

 	Remember that constructor functions create a local scope, just like any other functions. The special this variable is automatically returned. It acts as the public interface:

var Counter = function () {
 var counter = 0; // Private

 this.count = function () { ... };
};

Chapter 12. Conditions: choosing code to run

 This chapter covers

 	Comparing values with comparison operators

 	Checking conditions that are true or false

 	The if statement—running code only if a condition is met

 	The else clause—running code when a condition is not met

 	Making sure user input won’t break your code

 	Generating random numbers with Math.random()

 So far, all of your code follows a single path. When you call a function, every statement in the function body is executed.
 You’ve managed to get a lot done and covered quite a few core ideas in JavaScript but your programs have lacked flexibility;
 they haven’t been able to decide whether or not to execute blocks of code.

 In this chapter you learn how to run code only when specified conditions are met. Suddenly, your programs can branch, providing
 options, flexibility, and richness. You can increase a player’s score if they splat a kumquat, move to a new location if the user specifies a valid direction, or post a tweet if it’s less than 141 characters long.

 If you want to find out how your programs can make decisions, read on, else, ... well, read on anyway. You really need to
 know this stuff!

 12.1. Conditional execution of code

 To start, create a simple program that asks the user to guess a secret number. If they guess correctly, the program says,
 “Well done!” An interaction at the console might look like this:

 > guess(2)
 undefined
> guess(8)
 Well done!
 undefined

 What’s with the ugly appearances of undefined? When you call a function at the console, its code is executed and then its return value is displayed. The guess function in the following listing doesn’t include a return statement so it automatically returns undefined.

 Listing 12.1. Guess the number http://jsbin.com/feholi/edit?js,console

 [image:]

 The guess function checks to see if the user’s number is equal to the secret number. It uses the strict equality operator, ===, and an if statement so that you display the “Well done!” message only if the numbers match. The following sections look at the strict equality
 operator and the if statement in more detail and introduce the else clause.

 12.1.1. The strict equality operator, ===

 The strict equality operator compares two values. If they’re equal it returns true; if they’re not equal it returns false. You can test it at the console:

 > 2 === 8
 false
> 8 === 8
 true
> 8 === "8"
 false
> "8" === "8"
 true

 In the third example, you can see that the strict equality operator doesn’t consider the number 8 and the string "8" to be equal. That’s because numbers and strings are different types of data. The values true and false are a third type of data; they’re called boolean values. In fact, true and false are the only possible boolean values. Boolean values are useful when deciding what a program should do next; for example,
 by using an if statement.

 12.1.2. The if statement

 To execute a block of code only when a specified condition is met, you use an if statement.

 if (condition) {
 // Code to execute
}

 If the condition in parentheses evaluates to true, then JavaScript executes the statements in the code block between the curly braces. If the condition evaluates to false, then JavaScript skips the code block. Notice there’s no semicolon after the curly braces at the end of an if statement.

 Listing 12.1 used the strict equality operator to return a true or false value for the condition.

 if (userNumber === secret) {
 console.log("Well done!");
}

 The code logs the “Well done!” message to the console only if the value of user-Number is equal to the value of secret. For example, say the secret is 8 and the user chooses 2:

 if (2 === 8) { // The condition is false.
 console.log("Well done!"); // Not executed
}

 If the user chooses 8, the if statement becomes

 if (8 === 8) { // The condition is true.
 console.log("Well done!"); // This is executed.
}

 12.1.3. The else clause

 Sometimes we want different code to be executed if the condition in an if statement evaluates to false. We can make that happen by appending an else clause to the if statement (figure 12.1).

 Figure 12.1. Executing code depending on the value of a condition, with if and else

 [image:]

 From listing 12.2:

 if (userNumber === secret) {
 console.log("Well done!");
} else {
 console.log("Unlucky, try again.");
}

 If userNumber and secret are equal, JavaScript displays “Well done!” Otherwise, it displays “Unlucky, try again.” Notice there’s no semicolon after
 the curly braces at the end of an else clause. Once again, say the secret is 8 and the user chooses 2:

 if (2 === 8) { // The condition is false.
 console.log("Well done!"); // Not executed.
} else {
 console.log("Unlucky, try again."); // This is executed.
}

 If the user chooses 8, the if statement becomes

 if (8 === 8) { // The condition is true.
 console.log("Well done!"); // This is executed.
} else {
 console.log("Unlucky, try again."); // Not executed.
}

 A guessing game interaction at the console might now look something like this:

 > guess(2)
 Unlucky, try again.
 undefined
> guess(8)
 Well done!
 undefined

 Listing 12.2. Guess the number—the else clause (http://jsbin.com/nakosi/edit?js,console)

 [image:]

 Next, you use local variables to make secret secret.

 12.1.4. Hide the secret number inside a function

 In listing 12.2, both the secret and the guess variables are declared outside any function. You saw in chapter 11 how that makes them global variables, accessible at the console and throughout the program. That’s great for guess—you want users to be able to guess numbers—but it’s a disaster for secret—users can peek and tweak its value at will. If you run the code in listing 12.2, you can then perform the following actions at the console:

 > secret // You can access secret. It's a global variable.
 8
> guess(8)
 Well done!
 undefined
> secret = 20 // You can reset secret to whatever you want.
 20
> guess(20)
 Well done!
 undefined

 That’s not much of a guessing game!

 Chapter 11 also discussed how functions are used in JavaScript to create a local scope, a collection of variables accessible only within
 the function. Listing 12.3 uses the getGuesser function to hide the secret number. The function returned by getGuesser is assigned to the guess variable (figure 12.2).

 Figure 12.2. The function returned by getGuesser is assigned to the guess variable

 [image:]

 guess is a global variable, available at the console:

 > guess(2)
 Unlucky, try again
 undefined

 Listing 12.3. Guess the number—using local scope (http://jsbin.com/hotife/edit?js,console)

 [image:]

 The function assigned to getGuesser creates a local scope that lets you protect the secret variable from the user. It returns another function that lets the user guess a number. That function is assigned to the guess variable. Because the guess-checking function is defined in the local scope created by the getGuesser function, it has access to the secret variable and is able to do its checking.

 You have a guessing game but it’s always the same secret number. Really, it’s a not-so-secret number! Let’s make use of a
 couple of methods from JavaScript’s Math namespace to inject some extra mystery into our guessing game.

 12.2. Generating random numbers with Math.random()

 The Math namespace provides you with a random method for generating random numbers. It always returns a number greater than or equal to 0 and less than 1. Give it a whirl
 at the console prompt:

 > Math.random()
 0.7265986735001206
> Math.random()
 0.07281153951771557
> Math.random()
 0.552000432042405

 Obviously, your numbers will be different because they’re random! Unless you’re really into guessing games and have a lot
 of free time, those random numbers are probably a bit too tricky for your purposes.

 To tame the numbers, scale them up to fall in a range you want and then convert them to whole numbers (integers). Because
 they start off less than 1, multiplying by 10 will make them less than 10. Here’s a series of assignments using Math.random:

 var number = Math.random(); // 0 <= number < 1

 To scale the possible numbers, multiply:

 var number = Math.random() * 10; // 0 <= number < 10

 To shift the possible numbers up or down, add or subtract:

 var number = Math.random() + 1; // 1 <= number < 2

 To scale and then shift, multiply and then add:

 var number = Math.random() * 10 + 1; // 1 <= number < 11

 Notice for the last assignment the numbers will be between 1 and 11; they can equal 1 but will be less than 11. The <= symbol means less than or equal to, whereas the < symbol means less than. The inequality 0 <= number < 1 means the number is between 0 and 1 and can equal 0 but not 1 (see section 12.3.1).

 Okay, so you’ve scaled up the random numbers, but they’re still a trifle tricky. At the console you can see the kind of numbers
 you’re generating:

 > Math.random() * 10 + 1
 3.2726867394521832
> Math.random() * 10 + 1
 9.840337357949466

 The last step is to lose the decimal fraction part of each number, to round the numbers down to integers. For that you use
 the floor method of the Math namespace.

 > Math.floor(3.2726867394521832)
 3
> Math.floor(9.840337357949466)
 9

 The floor method always rounds down, whatever the decimals are: 10.00001, 10.2, 10.5, 10.8, and 10.99999 are all rounded down to 10, for example. You use floor to get an expression that returns a random integer between 1 and 10 inclusive:

 var number = Math.random() * 10 + 1 // 1 <= number < 11
var number = Math.floor(Math.random() * 10 + 1) // 1 <= number <= 10

 There’s also a Math.ceil method that always rounds up and a Math.round method that rounds up or down, following the usual rules for mathematical rounding. More information about JavaScript’s Math object can be found on the Get Programming with JavaScript website: http://www.room51.co.uk/js/math.html.

 Listing 12.4 puts the Math methods into practice. The guess function now returns strings rather than logging them; the console automatically displays the return values, tidying up the interactions:

 > guess(2)
 Unlucky, try again.
> guess(8)
 Unlucky, try again.
> guess(7)
 Well done!

 Listing 12.4. Guess the random number (http://jsbin.com/mezowa/edit?js,console)

 [image:]

 Using random numbers has made your guessing game more interesting. But there isn’t a great deal of strategy involved; it’s
 just straight guessing. The game could be improved by giving better feedback after each guess.

 12.3. Further conditions with else if

 By receiving better feedback for each guess, users can develop more efficient strategies when battling your guessing game.
 And strategy games are always more fun than guessing games. If a user’s guess is incorrect, tell them if it’s too high or
 too low.

 > guess(2)
 Too low!
> guess(7)
 Too high!
> guess(5)
 Well done!

 Figure 12.3 shows the conditions used to produce the three possible types of feedback for a user’s guess.

 Figure 12.3. Nesting conditions can provide multiple options.

 [image:]

 The following listing shows how an extra if statement can be used to differentiate between the two types of incorrect answer.

 Listing 12.5. Higher or lower (http://jsbin.com/cixeju/edit?js,console)

 [image:]

 If a code block contains a single statement, JavaScript lets us leave out the curly braces; the following three statements
 are equivalent:

 if (userNumber === secret) {
 return "Well done!";
}

if (userNumber === secret)
 return "Well done!";

if (userName === secret) return "Well done!";

 As if and else clauses get more complicated and when code gets updated over time, if you leave out the curly braces it can sometimes be
 hard to spot which statements go with which clauses. Many programmers (including me) recommend that you always use curly braces
 for the code blocks (apart from the case of nested if statements, as shown shortly). Others aren’t so strict. Ultimately, it can come down to personal (or team) preferences. For
 now, I’d go with whatever you find easiest to understand.

 An if statement, even with an else clause, counts as one statement. When an else clause contains a single if statement, it’s common to leave out the curly braces. The following three code snippets are equivalent:

 First, the code as shown in listing 12.5. The nested if-else statement is inside a pair of curly braces.

 else { // Curly braces at start
 if (userNumber > secret) {
 return "Too high!";
 } else {
 return "Too low!";
 }
} // Curly braces at end

 The inner if-else is a single statement, so it doesn’t need to be wrapped in curly braces.

 else // No curly braces
 if (userNumber > secret) {
 return "Too high!";

 } else {
 return "Too low!";
 }
 // No curly braces

 And finally, because JavaScript mostly ignores spaces and tab characters, the inner if-else statement can be moved to follow on from the initial else.

 else if (userNumber > secret) { // if moved next to else
 return "Too high!";
} else {
 return "Too low!";
}

 The last version is the format most commonly seen. The next listing shows the neater else-if block in context.

 Listing 12.6. A neater else-if block (http://jsbin.com/cidoru/edit?js,console)

 var getGuesser = function () {
 var secret = Math.floor(Math.random() * 10 + 1);

 return function (userNumber) {
 if (userNumber === secret) {
 return "Well done!";
 } else if (userNumber > secret) {
 return "Too high!";
 } else {
 return "Too low!";
 }
 };
};

var guess = getGuesser();

 The second if statement is shown in bold for comparison with listing 12.5. You’ve removed the curly braces for the first else block and moved the second if next to the first else. Listing 12.6 shows the most common way of writing else-if blocks. If you prefer the longer version in listing 12.5, feel free to stick with it; there are no Block Judges waiting to sentence you for syntax abuse. (At this point the author is called away to deal with a ruckus—some very loud banging on the door to his apartment ... it’s
 The Law!)

 All possible outcomes are catered for in the guessing game; the guess could be correct or too high or too low. If the guess
 is not correct and it’s not too high, then it must be too low.

 12.3.1. Comparison operators

 Listings 12.5 and 12.6 both make use of the greater than operator, >. It operates on two values and returns true or false. It’s one of a family of operators that compare two values. Some of the operators are shown in table 12.1.

 Table 12.1. Comparison operators

 	
 Operator

 	
 Name

 	
 Example

 	
 Evaluates to

 	>
 	Greater than
 	5 > 3
 3 > 10
 7 > 7

 	true
 false
 false

 	>=
 	Greater than or equal to
 	5 >= 3
 3 >= 10
 7 >= 7

 	true
 false
 true

 	<
 	Less than
 	5 < 3
 3 < 10
 7 < 7

 	false
 true
 false

 	<=
 	Less than or equal to
 	5 <= 3
 3 <= 10
 7 <= 7

 	false
 true
 true

 	===
 	Strictly equal to
 	5 === 3
 7 === 7
 7 === "7"

 	false
 true
 false

 	!==
 	Not strictly equal to
 	5 !== 3
 7 !== 7
 7 !== "7"

 	true
 false
 true

 Because the operators in table 12.1 return true or false, they can be used in the condition for if statements. You may be wondering about the strict part of the strict equality operator—something we’ll be sticking to throughout
 the book—and whether there’s a non-strict version. Yes, there is. For non-strict equality you can use ==. See the “Loose equality and coercion” sidebar.

 	

 Loose equality and coercion

 The loose equality operator, ==, is allowed to coerce values into different types in order to compare them for equality.

 Coercion is the process of converting a value from one type to another, for example, from a string to a number.

 So, whereas the strict comparison 7 === "7" evaluates to false, because one value is a number and the other is a string, the loose comparison 7 == "7" evaluates to true, because the string is first coerced to a number and 7 == 7 is true.

 The rules for coercion are beyond the scope of this book (although ignore people who say they’re not worth learning), and
 we’ll stick to strict equality comparisons.

 	

 Now, obviously, guessing numbers is great fun, but you can learn more from a fact-based quiz like the one you’ve considered
 a few times earlier in the book. Adding the ability to check your answers will help raise the quiz app above a mere trivial
 pursuit.

 12.4. Checking answers in the quiz app

 Now that you can check conditions in an if statement, you’re finally able to keep a score for the number of questions a user gets right in the quiz program. A typical
 console interaction could be this:

 > quiz.quizMe()
 What is the highest mountain in the world?
> quiz.submit("Everest")
 Correct!
 Your score is 1 out of 1
> quiz.quizMe()
 What is the highest mountain in Scotland?
> quiz.submit("Snowdon")
 No, the answer is Ben Nevis
 You have finished the quiz
 Your score is 1 out of 2

 The code for the quiz program is shown in the next listing. The getQuiz function contains the implementation of the quiz and returns an interface object with only two methods, quizMe and submit. You take a good look at how the program works after the listing.

 Listing 12.7. Checking quiz answers (http://jsbin.com/hidogo/edit?js,console)

 [image:]

 [image:]

 Your new quiz program has a number of moving parts; let’s break it down into smaller pieces.

 12.4.1. Multiple declarations with a single var keyword

 Up until now you’ve been using a var keyword for each variable you’ve declared:

 var score;
var getQuestion;
var next;
var submit;

 JavaScript allows you to declare a list of variables with a single var keyword. Commas separate the variables, with a semicolon ending the list. The previous declarations can be rewritten in the
 following shorter form:

 var score,
 getQuestion,
 next,
 submit;

 You could even declare the variables on a single line:

 var score, getQuestion, next, submit;

 Most programmers prefer one variable per line. You can include assignments too:

 var score = 0,
 getQuestion,
 next,
 submit = function (userAnswer) {
 // function body
 };

 The aim is to make sure all variables are declared and the code is easy to read and understand. The style in listing 12.7 is what I tend to prefer; I find it slightly easier to read and it’s slightly less typing. Some programmers declare each
 variable on its own line with a var keyword, just as we’ve been doing in our listings up until now; it’s easier to cut and paste variables if each has its own
 var keyword. It’s not worth worrying about—you’ll probably settle on one style over time.

 12.4.2. Displaying a question

 The getQuestion function returns a question from the questions array. It uses the qIndex variable to pick the current question-and-answer object from the array. It returns the question property of the question-and-answer object.

 return questions[qIndex].question;

 But it returns the question only if the quiz is still in progress. Otherwise, it returns a string to say the quiz is finished:

 return "You have finished the quiz.";

 The program uses the inPlay variable to flag when the quiz is in progress and when it has finished. The inPlay variable has a value of true while the quiz is in progress and false when it has finished. The getQuestion function uses the inPlay variable as the condition in an if statement:

 if (inPlay) {
 return questions[qIndex].question;

} else {
 return "You have finished the quiz.";
}

 When inPlay is true, the question is returned. When inPlay is false, the message is returned. (Remember, when you call a function at the console prompt, the console automatically displays the
 return value.)

 12.4.3. Moving to the next question

 The program calls the next function to move from one question to the next. It moves by incrementing the qIndex variable.

 qIndex = qIndex + 1;

 The program stores the index of the current element in the questions array in qIndex. Remember that the array index is zero based, so for an array of length 4 the index could be 0, 1, 2, or 3. An index of 4
 would be past the end of the array (3 is the last index). In general, if the index is greater than or equal to the length
 of the array, you’re past the end of the array. All arrays have a length property. In the quiz, it represents the number of questions.

 The next function checks the index to see if it is past the last question:

 if (qIndex >= questions.length)

 If the index is past the end of the array, then all the questions have been asked and the quiz is over, so inPlay is set to false.

 if (qIndex >= questions.length) {
 inPlay = false;
 console.log("You have finished the quiz.");
}

 12.4.4. Checking the player’s answer

 The checkAnswer function is straightforward. If the player’s submitted answer is equal to the current answer from the questions array, the
 player’s score is incremented. Otherwise, the correct answer is displayed.

 if (userAnswer === questions[qIndex].answer) {
 console.log("Correct!");
 score = score + 1;
} else {
 console.log("No, the answer is " + questions[qIndex].answer);
}

 12.4.5. Handling a player’s answer

 The submit function orchestrates what happens when a player submits an answer. It returns either a message with the player’s score or
 a message to say the quiz is over.

 Your score is 1 out of 2 // If inPlay is true

You have finished the quiz. // If inPlay is false

 If the quiz is still in progress, submit calls two other functions, checkAnswer and next. Each will execute its code in turn. You’re using the functions to run code on demand.

 if (inPlay) {
 checkAnswer(userAnswer);
 next();
 message = "Your score is " + score + " out of " + qIndex;
}

 12.4.6. Returning the interface object

 You’ve kept the interface object returned by getQuiz simple. It has no implementation code of its own. You assign its two properties functions from within the local scope of
 getQuiz.

 return {
 quizMe: getQuestion,
 submit: submit
};

 As discussed in chapter 11, the interface object allows you to maintain a consistent interface over time, even if the implementation within getQuiz is changed. The user will always call quiz.quizMe() and quiz.submit(). You can change which functions are assigned to those two properties of the interface object and how those functions work,
 but you never remove or rename those properties.

 Notice how the program is made up of small pieces working together to build its functionality. As ever, your aim is to make
 the code readable, understandable, and easy to follow. The if statement and its else clause help you to direct the flow of the program to take the appropriate actions at each stage.

 It’s time to put these new ideas to work in The Crypt.

 12.5. The Crypt—checking user input

 In chapter 11, you created a getGame function that returns a public interface for The Crypt. Players can call a go method to move from place to place and a get method to pick up items:

 return {
 go: function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);
 player.setPlace(destination);

 render();
 return "";
 },

 get: function () {
 var place = player.getPlace();
 var item = place.getLastItem();
 player.addItem(item);
 render();
 return "";
 }
};

 12.5.1. Step by step through the go method

 Let’s step through the first three lines of the go method. See if you can spot where a problem could arise.

 Retrieve the player’s location

 You start with the getPlace method. It returns the player’s current location.

 var place = player.getPlace();

 You then assign the location to the place variable. If the player is currently in the kitchen, then the code is equivalent to

 var place = kitchen;

 The program assigned the player’s starting location earlier, using the setPlace method:

 player.setPlace(kitchen);

 Use the direction to find the destination

 Now that you have the current place, you can call its getExit method to retrieve the destination for a given direction.

 var destination = place.getExit(direction);

 When the player calls the go method, the argument is assigned to the direction parameter.

 > game.go("south")

 The previous command will execute code equivalent to the following:

 var destination = place.getExit("south");

 If The Library is south of The Kitchen, then the code is equivalent to

 var destination = library;

 Move the player to the destination

 You have the destination; you only need to update the player’s location.

 player.setPlace(destination);

 Fantastic! The user can decide where to go in the game. So, can you let them loose in your carefully crafted castles? Well,
 no. You see, users are evil. Pure evil!

 12.5.2. Never trust user input

 Sorry, I panicked. Of course users aren’t evil. But they do make mistakes. And they sometimes own cats. And most cats can’t
 type. Whenever a user is expected to provide input for a program, we must guard against mistakes, whether typos (possibly
 of cat origin), misunderstandings (which may be our fault), or curiosity-driven explorations of what the program can do.

 The go method expects the user to enter a valid direction as a string. It uses that direction to find a destination, the place to
 which the player is to be moved. If the user enters a direction that doesn’t exist, the whole game breaks!

 > game.go("snarf")

 Figure 12.4 shows what happened on JS Bin when I entered the previous command while playing the chapter 11 version of The Crypt at http://jsbin.com/yuporu/edit?js,console.

 Figure 12.4. Specifying a direction that doesn’t exist breaks The Crypt.

 [image:]

 Error messages on your browser might be slightly different. Even entering a valid direction after the mistake doesn’t fix
 things. From the errors in figure 12.4 it looks like there may be a problem with the place variable. The key statement in the go method is the one that uses the user input:

 var destination = place.getExit(direction);

 If the specified direction is not one of the place’s exits, then the getExit function will return undefined. The program assigns undefined to the destination variable and sets that value as the new place for the player:

 player.setPlace(destination);

 So the player’s location is now undefined, not a place constructed with the Place constructor. undefined has no showInfo or getExit methods; it has no methods at all! The errors in figure 12.4 should now make more sense.

 So how can you guard against users (and their cats) making errors?

 12.5.3. Safe exploration—using the if statement to avoid problems

 You can use an if statement to check that you have a valid destination before updating the player’s location:

 go: function (direction) {
 var place = player.getPlace();
 var destination = place.getExit(direction);

 if (destination !== undefined) {
 player.setPlace(destination);
 render();
 return "";
 } else {
 return "*** There is no exit in that direction ***";
 }
}

 The getExit method returns undefined if the current place doesn’t have an exit for the specified direction. You just need to check that the destination is not
 undefined before calling setPlace.

 if (destination !== undefined) {
 // There is a valid destination.
}

 Remember from table 12.1 that the !== operator returns true when two values are not equal and false when they are equal. You can add an else clause to catch the cases where the destination is undefined.

 if (destination !== undefined) {
 // There is a valid destination.
} else {
 // There is no exit in the direction specified.
}

 Listing 12.8 shows an updated version of the go and get methods returned from the getGame function. Entering a nonexistent direction at the console now looks like this:

 > game.go("snarf")
 *** You can't go in that direction ***

 Calling get when there are no items to pick up looks like this:

 > game.get()
 *** There is no item to get ***

 Only partial code is shown in this listing. The full listing with Player and Place constructors and more places is on JS Bin.

 Listing 12.8. Checking user input (http://jsbin.com/zoruxu/edit?js,console)

 [image:]

 [image:]

 In the printed listing 12.8, the details of the Player and Place constructors were left out to make it easier to focus on the changes to the go and get methods. In chapter 13 you’ll move each constructor function to its own file and see how to import the files in JS Bin. Such increased modularity
 can help you focus on one thing at a time and make it easier to reuse code across multiple projects.

 12.6. Summary

 	Use comparison operators to compare two values. The operators return true or false, boolean values:

> 5 === 5 // Strict equality
 true
> 10 > 13 // Greater than
 false

 	Use an if statement to execute code only if a condition is met:

if (condition) {
 // Execute code if condition evaluates to true
}

 	Set conditions using comparison operators and/or variables:

if (userNumber === secret) {
 // Execute code if userNumber and secret are equal
}

if (inPlay) {
 // Execute code if inPlay evaluates to true
}

 	Add an else clause to execute code when a condition is not met:

if (condition) {
 // Execute code if condition evaluates to true
} else {
 // Execute code if condition evaluates to false
}

 	Include extra if statements in the else clause to cover all possibilities:

if (userNumber === secret) {
 console.log("Well done!");
} else if (userNumber > secret) {
 console.log("Too high!");
} else {
 console.log("Too low!");
}

 	Generate random numbers with Math.random(). The numbers generated are between 0 and 1. They can equal 0 but not 1:

> Math.random()
 0.552000432042405

 	Scale up the random numbers to the range you want:

Math.random() * 10 // 0 <= decimal < 10
Math.random() * 10 + 1 // 1 <= decimal < 11

 	Round the random numbers to integers with Math.floor():

Math.floor(Math.random() * 10 + 1) // 1 <= integer <= 10

 	Never trust user input. Put checks in place to make sure any input is valid.

Chapter 13. Modules: breaking a program into pieces

 This chapter covers

 	Importing code into JS Bin with script elements

 	Avoiding repeated variable names

 	Running functions without assigning them to variables

 	Using modules to organize your (shared) codebase

 As the applications you develop become larger, involving more and more variables, objects, arrays, and functions, it can become
 harder and harder to work efficiently within a single program file. Good text editors and development environments can help,
 but even with their tools, it quickly becomes a good idea to split the code across multiple files.

 For example, in The Crypt you have spacer, players, places, maps, and the game logic itself. You’ve probably noticed how long the code listings have become on JS Bin
 when all of the elements are included. Putting the code for each element in its own file can help you to focus on one piece
 of the program at a time and make it easier for different programmers to develop and test different parts of applications.
 Figure 13.1 shows your aim of splitting one large program into modules.

 Figure 13.1. Breaking one large program into modules

 [image:]

 Having discrete pieces of functionality and data in different files also promotes code reuse. Rather than cutting and pasting
 useful functions and snippets of JavaScript from one project into others, they can stay in a single library file that’s imported
 into other projects when needed. For example, our trusty spacer namespace from chapter 7, for formatting text on the console, could be used in a quiz app and a blog app. Rather than repeating the spacer code in each app, you could place it in its own file and import it when needed (figure 13.2).

 Figure 13.2. Moving spacer into a module allows the same single file to be used in many projects.

 [image:]

 I’m going to loosely call such files modules. There are a number of published JavaScript projects and standards for managing modules that will have their own, stricter
 definitions for what form a module must take, and the latest versions of JavaScript itself are introducing a native module
 system, but I’m happy to keep things simple for now.

 This chapter looks at how to import modules into JS Bin using HTML script elements. You’ll see how a random number generator function and the text-formatting capabilities of the spacer namespace can be incorporated into other projects. When you start to include code from various modules into a single program,
 you have to keep a close eye on which variable names are being used; there’s a danger that imported files could overwrite
 your variables. You also take a look at how to minimize such problems by using namespaces and by making use of immediately
 invoked function expressions, a way of running function code without assigning the functions to variables.

 First up, let’s look at how JS Bin works with files.

 13.1. Understanding bins and files on JS Bin

 In chapter 12 you created a simple game that challenged players to guess a number between 1 and 10. You generated the number using the
 Math.random method. In a similar way, you now want to update your quiz app to display a random question from its bank of questions. Both
 the guessing game and the quiz need to be able to generate a random whole number between two limits. They can both use a function
 like the following:

 var between = function (lowest, highest) {
 // Return a whole number between lowest and highest inclusive
};

 In this section, you create and save a JavaScript file on JS Bin that contains the Number Generator code. In section 13.2 you learn how to load the file, and in section 13.3 you load it into the guessing game and the quiz app, as illustrated in figure 13.3.

 Figure 13.3. The Number Generator code is imported by the quiz app and the guessing game.

 [image:]

 Before you learn how to import files, we need to take a brief look at how JS Bin saves your work.

 JS Bin is a simple development environment that lets you work on HTML, CSS, and JavaScript code in separate panels. Figure 13.4 shows those three panels open at the same time, all containing code.

 Figure 13.4. HTML, CSS, and JavaScript panels on JS Bin

 [image:]

 JS Bin combines the code in the HTML, CSS, and JavaScript panels to produce your web page, which it shows in the Output panel
 (figure 13.5). You’ll look at HTML (and a little CSS) in more detail in part 3.

 Figure 13.5. The HTML, CSS, and JavaScript code are all used to produce the web page output.

 [image:]

 Any errors or warnings that occur when you run your code appear in the Console panel. You can also log messages to the Console
 panel from within your JavaScript code—that’s how you’ve been displaying your output so far. You’re focusing on JavaScript,
 so you haven’t been bothered about the web page generated in the Output panel. You can see the page from figures 13.4 and 13.5 on JS Bin at http://jsbin.com/jejunu/edit?output. Toggle the panels to see the code.

 As well as providing a combined environment for you to edit the different types of code that make up a web page, JS Bin gives
 you access to the HTML, the CSS, and the JavaScript code as separate files. To create JavaScript code and see it as a separate
 file, follow these steps on JS Bin:

 1. Create a bin

 2. Write some code in the JavaScript panel

 3. Make a note of the filename

 4. View an individual code file

 13.1.1. Creating a bin

 On the File menu on JS Bin, click New. JS Bin will create HTML, CSS, and JavaScript files for you. It calls those three files
 together a bin and displays the contents of each file on its matching panel. The HTML file includes some boilerplate code that’s common
 to most new web pages; the CSS and JavaScript files are blank.

 13.1.2. Writing some code

 Add the following code to the JavaScript panel.

 var between = function (lowest, highest) {
 var range = highest - lowest + 1;
 return lowest + Math.floor(Math.random() * range);
};

 The between function returns a random whole number between the values of lowest and highest inclusive. For example, between(3, 5) will return 3 or 4 or 5.

 13.1.3. Making a note of the filename

 JS Bin assigns each bin a code used to edit the bin’s files and to access them individually. Take a look at the current URL
 in your browser’s address bar. (You may have to click the address bar to see the full address.) Figure 13.6 shows the URL with the bin code and visible panels highlighted.

 Figure 13.6. Breaking down a JS Bin URL

 [image:]

 Make a note of the bin code for your current work on JS Bin—it will be different from figure 13.6. The bin code for my work is qezoce.

 13.1.4. Viewing an individual code file

 To access individual code files, you use a different format of URL, shown in figure 13.7. It has a prefix of output and ends with the bin code and a file extension. The file extension specifies what type of file you want to load. Use js for JavaScript.

 Figure 13.7. The JS Bin URL for a JavaScript file

 [image:]

 Visiting http://output.jsbin.com/qezoce.js loads just the JavaScript file, as shown in figure 13.8. All the panels and menus and controls that are part of the JS Bin editing environment are not loaded; it’s just the plain
 text of the JavaScript file.

 Figure 13.8. A JavaScript file on JS Bin

 [image:]

 (The output isn’t always formatted nicely for human readers; unnecessary spaces and line-breaks may have been removed.) Have
 a go at loading your version of the file, using your bin code from JS Bin.

 Great! You can get your hands on your pure JavaScript. But how do you make it appear in another program?

 13.2. Importing files into other projects

 You’re going to create a program that uses the number generation function, between, from the last section. You take these steps:

 1. Create a bin

 2. Write some code in the JavaScript panel

 3. Add a script element to the HTML panel

 4. Refresh the page

 5. Run the program

 13.2.1. Creating a bin

 Create a bin on JS Bin by clicking New on the File menu. The HTML, CSS, and Java-Script panels are reset.

 13.2.2. Writing some code

 Enter the following code in the JavaScript panel:

 // requires the Number Generator module
var num = between(3, 7);
console.log(num);

 Running the program now will cause an error—there’s no between variable declared or function defined. The between function is in a separate file. This brings up the issue of dependencies; when splitting code into modules, it’s not uncommon for one module to depend on another in order to function. The previous
 code depends on the Number Generator module. More advanced module systems usually let you explicitly record and automatically
 load dependencies; for now, you can add comments to show any required modules.

 13.2.3. Adding a script element

 It’s time to make use of the HTML panel on JS Bin. HTML is the code used for the structure and content of web pages; it’s
 how you specify headings and paragraphs and lists and links and so on. You’ll get a proper introduction in chapter 17 and make good use of it throughout part 3. For now, your focus is still very much on the JavaScript and using JS Bin to help you learn and explore. You’re going to
 use only a tiny snippet of HTML to help you break up longer programs into separate files and load them as needed.

 You use an HTML script element to specify the JavaScript file you want to load. Figure 13.9 shows the parts that make up the element.

 Figure 13.9. The parts that make up a script element

 [image:]

 Don’t worry too much for now about the names of all of the parts. You can use the script element to load files without a full understanding of HTML elements, tags, and attributes. You’ll focus on those in chapter 17.

 Show the HTML panel on JS Bin. You’ll see some default HTML already in place. You don’t need that for your purposes—you’re
 not building a web page; you’re just interested in loading a JavaScript file. Replace the default HTML with code to load the
 JavaScript, using the bin code of the file you created in the last section.

 <script src="http://output.jsbin.com/qezoce.js"></script>

 The HTML included is a single script element with an src attribute. You use the script element to load the JavaScript file specified by the src attribute. (src is short for source—the address of the file.) In general, to load a file, use the following format:

 <script src="path/to/someFile.js"></script>

 Modern browsers will assume the file contains JavaScript. For older browsers, you can include a type attribute as well.

 <script src="path/to/someFile.js" type="text/javascript"></script>

 13.2.4. Refreshing the page

 JS Bin doesn’t always load files automatically; you may need to refresh the page in your browser after you add the script element.

 13.2.5. Running the program

 Click Run. The Console panel should show a number between 3 and 7. Keep clicking Run to generate more random numbers.

 Listings 13.1 and 13.2 repeat the HTML and JavaScript you’ve used. The JS Bin links for the two listings lead to the same bin. Running the program
 five times produces output something like this (it is random!):

 > 5
> 7
> 7
> 3
> 4

 Listing 13.1. Loading JavaScript with a script tag (HTML) (http://jsbin.com/lifugam/edit?html,js,console)

 <script src="http://output.jsbin.com/qezoce.js"></script>

 Listing 13.2. Code in the JavaScript panel as well (http://jsbin.com/lifugam/edit?html,js,console)

 // requires the Number Generator module
var num = between(3, 7);
console.log(num);

 When you run the program, JS Bin will first load and run the file specified in the script element’s src attribute. Then it will run any code in the JavaScript panel. The loaded file and JavaScript panel code together form the
 following single program:

 // From the loaded file
var between = function (lowest, highest) {

 var range = highest - lowest + 1;
 return lowest + Math.floor(Math.random() * range);

};

// From the JavaScript panel
var num = between(3, 7);
console.log(num);

 When you click the Run button in the Console panel, it can take a moment for JS Bin to load the file specified in the script tag. Once the code runs, the random number is logged to the console.

 13.3. Importing the Number Generator—further examples

 You’ve seen how JS Bin assigns a code to each bin you create and how you can use that code to access individual files from
 your project. You created a random number generator function, between, and accessed the JavaScript file containing the code. One of the goals of splitting your work into modules is to use the
 same code in multiple projects by importing it rather than copying and pasting it; see figure 13.10.

 Figure 13.10. Importing the Number Generator function into two projects

 [image:]

 Let’s see that idea in action by importing the Number Generator into two other projects: the quiz app and the guessing game.

 13.3.1. Picking random questions in the quiz app

 It’s time to randomize your quiz app. The new version of the app displays a random question from its question bank each time
 you call quizMe on the console:

 > quiz.quizMe()
 5 x 6
> quiz.submit("30")
 Correct!
> quiz.quizMe()
 7 x 8
> quiz.submit("30")
 No, the answer is 56

 Listing 13.4 shows the JavaScript for the main quiz app. You import the code for the between function by using a script element on the HTML panel (listing 13.3).

 Listing 13.3. Using the Number Generator with the quiz app (HTML) (http://jsbin.com/ponogi/edit?html,js,console)

 <script src="http://output.jsbin.com/qezoce.js"></script>

 Listing 13.4. Using the Number Generator with the quiz app (http://jsbin.com/ponogi/edit?html,js,console)

 [image:]

 [image:]

 You use the between function to pick a random question from the question bank. The number of elements in the questions array is given by questions.length (every array has a length property) and the question indexes run from 0 to one less than the length. If there are four elements in the array, then
 the indexes run from 0 to 3. So, to pick a random index you use

 qIndex = between(0, questions.length – 1);

 You use the wrap-and-return module pattern from chapter 11, hiding your implementation (the code that makes everything work) inside the getQuiz function and returning the public interface as an object.

 Follow the listing link to the game on JS Bin and test your knowledge of multiplication facts! The answers are stored as strings,
 so make sure you submit strings for the program to check: quiz.submit("30"), not quiz.submit(30).

 13.3.2. Using the between function in your guessing game

 Listing 13.6 shows the JavaScript code for your guessing game. At the console prompt, players have to guess a number between 5 and 10,
 inclusive:

 > guess(7)
 Too high!
> guess(5)
 Too low!
> guess(6)
 Well done!

 The app uses the between function, so you import it using a script element on the HTML panel (see the following listing).

 Listing 13.5. Using the Number Generator in the guessing game (HTML) (http://jsbin.com/tixina/edit?html,js,console)

 <script src="http://output.jsbin.com/qezoce.js"></script>

 Listing 13.6. Using the Number Generator in the guessing game (http://jsbin.com/tixina/edit?html,js,console)

 [image:]

 Again, follow the listing link to JS Bin and get guessing!

 Both the quiz app and the guessing game now import the same Number Generator file. The number generation code is in one place;
 there is a single source of truth. Any updates or fixes can be performed on that one file, and all the projects that use it will load the new version.

 Importing one file is useful, but can you load more than one?

 13.4. Importing multiple files

 In chapters 7 and 11, you saw that an object can be used as a namespace, a way of organizing properties and methods so that only a single variable
 is required. As an example, you created spacer, a namespace of functions for formatting text on the console. The spacer namespace could be useful in a number of projects, whenever you want to format your text output with borders and boxes. Rather
 than copying and pasting the spacer code into every program where it’s used, it seems like an obvious candidate to be saved to its own file and imported as needed.
 You can view the spacer code at http://jsbin.com/juneqo/edit?js.

 Let’s put spacer to work straight away. In listing 13.6 you updated your guessing game to import the between function and used it to generate the secret number to be guessed. Say you now want to format the feedback you give to players
 by wrapping the messages in boxes. That’s what spacer is for! A game on the console will look something like this:

 > guess(10) > guess(5) > guess(9)
 +++++++++++++ ------------ ==============
 + Too high! + - Too low! - = Well done! =
 +++++++++++++ ------------ ==============

 Figure 13.11 shows the guessing game app importing the Number Generator and spacer modules.

 Figure 13.11. Importing the Number Generator and spacer modules

 [image:]

 The following listing shows the script elements added to the HTML panel to import the two modules you’re using.

 Listing 13.7. Using spacer and between in the guessing game (HTML) (http://jsbin.com/foqowa/edit?html,js,console)

 <!-- Number Generator -->
<script src="http://output.jsbin.com/qezoce.js"></script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

 Comments have been added to note which modules are being imported; JS Bin addresses aren’t very user friendly, so it’s helpful
 to make it clear what you’re trying to load. The comments are HTML comments, so they look a little different from Java-Script
 comments.

 The next listing shows the guessing game code using the two imported modules, between and spacer.

 Listing 13.8. Using spacer and between in the guessing game (http://jsbin.com/foqowa/edit?html,js,console)

 [image:]

 Putting previously written and tested code into separate files like this also helps you focus on new code you’re working on;
 listing 13.8 can be short and sweet because your trusted spacer code is packaged off in an external file.

 When you import JavaScript, it’s as if all of the imported code is joined to form a single file. If different imported files
 use the same variable names, it’s possible for later code to inadvertently overwrite earlier code. Boom—you have variable
 collisions!

 13.5. Collisions—when imported code overwrites your variables

 You decide the boxed messages for your guessing game feedback are a bit too much. You’d like the feedback to look like this:

 > guess(10) > guess(9)
 + T-o-o- -h-i-g-h-! + = W-e-l-l- -d-o-n-e-! =

 The messages take up less room but are nicely spaced out with dashes between characters. Fortunately, a friend of yours, Kallie,
 has been working on her own formatting functions and has kindly bundled them into a module you can import. The function you
 need is called dasher and is really easy to use:

 dasher("message"); // m-e-s-s-a-g-e
dasher("Too low!"); // T-o-o- -l-o-w-!

 You add a script element to the guessing game HTML panel to import Kallie’s code, as shown next.

 Listing 13.9. Importing Kallie’s code (HTML) (http://jsbin.com/zusodu/edit?html,js,console)

 <!-- Number Generator -->
<script src="http://output.jsbin.com/qezoce.js"></script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Kallie's code -->
<script src="http://output.jsbin.com/soxeke.js"></script>

 No, I haven’t shown you the JavaScript of Kallie’s code. You know dasher is part of the interface, the variables and functions you’re expected to use, and you know what dasher does; you shouldn’t need to know how it does what it does, the implementation. Of course, you might (and probably should) be interested in the implementation,
 but you don’t need to understand it in order to use the interface, the dasher function.

 You update the guessing game to use the dasher function, as shown here.

 Listing 13.10. Using Kallie’s code (http://jsbin.com/zusodu/edit?html,js,console)

 [image:]

 Happy with your work, you run the program and make a guess. Error! What? Where has spacer.wrap gone? Figure 13.12 shows what happened in my browser.

 Figure 13.12. For some reason, the program can’t find spacer.wrap.

 [image:]

 There seems to be a problem with spacer.wrap, which has been a working part of your spacer namespace since chapter 7. Why has it chosen now to break? It’s time to check inside Kallie’s module. If you take a look at her code in the following
 listing, you might spot the problem.

 Listing 13.11. Kallie’s formatting code (http://jsbin.com/soxeke/edit?js,console)

 [image:]

 Kallie’s code doesn’t only include the dasher function; it also has a spacer function. The three variables she has used, spreader, spacer, and dasher, are global variables. Your spacer namespace also uses a global variable, spacer. Her spacer has overwritten your spacer, as shown in figure 13.13.

 Figure 13.13. Two modules declare the same global variable, leading to a collision.

 [image:]

 The problem isn’t with the implementation of the functions—they work just fine—it’s with how the functions have been made
 available within the module. When variables are added to the global scope, possibly by different people in different modules,
 there’s always the chance that the same name will be used in more than one declaration.

 13.5.1. Variable collisions

 Your modules make their functionality available by using at least one global variable. But what happens if the same variable
 is used by more than one module? Well, the last module wins, assigning its own value to the variable. In the guessing game
 code, you load two modules that use a global spacer variable and then you try to use that variable later in the program. The following snippet shows how the second spacer overwrites the first, leading to an error when you try to use spacer.wrap.

 // Code in first module
var spacer = {
 line : ...,
 wrap : ...,
 box : ...
};

// Code in second module
var spacer = function (text) { ... };

// Later in the code
spacer.wrap(msg, msg.length + 4, "="); // ERROR! There is no spacer.wrap.

 When one declaration supersedes another like this it’s called a variable collision; the second variable declaration clobbers the first. You can appreciate why declaring lots of global variables is called
 polluting the global namespace—the more variables you declare, the greater the chance of collisions. Reduce the number of global variables by using namespaces,
 discussed next, and immediately invoked function expressions, discussed in section 13.6.

 13.5.2. Minimizing collisions by using namespaces

 Your spacer namespace module is well behaved because it uses only a single global variable. Rather than separate global variables for
 the line, wrap, and box functions, it uses an object as a namespace and assigns the functions to properties of the object. The object is then assigned
 to the single variable, spacer.

 Kallie apologizes for the pollution her module caused—she’s been busy—and updates the module to use a namespace, as shown
 in the next listing.

 Listing 13.12. Kallie’s formatting code in a namespace (http://jsbin.com/moheka/edit?js,console)

 [image:]

 You update your guessing game HTML to import the updated module (listing 13.13) and your JavaScript code to call the dasher function from within the kalliesCode namespace (listing 13.14).

 Listing 13.13. Importing Kallie’s namespace (HTML) (http://jsbin.com/seqahi/edit?html,js,console)

 <!-- Number Generator -->
<script src="http://output.jsbin.com/qezoce.js"></script>

<!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Kallie's code -->
<script src="http://output.jsbin.com/moheka.js"></script>

 Listing 13.14. Using Kallie’s code (http://jsbin.com/seqahi/edit?html,js,console)

 [image:]

 Follow the listing link to JS Bin, run the program, and play the game. Using a namespace has fixed the problem.

 = W-e-l-l- -d-o-n-e-! =

 Another important way of avoiding polluting the global namespace, this time by using functions, is covered next. It has a
 great name ... and here it is!

 13.6. Immediately invoked function expressions (IIFE)

 If the name of this section has immediately invoked a funky expression on your face, I hope it’s one of curiosity, intrigue,
 and adventure rather than befuddlement, fear, or horror. Immediately invoked function expressions are just functions that you call straight away, without even bothering to use a variable. But why would you do that?

 In section 13.5, you imported a module of code written by a friend, Kallie. (Honestly, you’ve known her for years.) Unfortunately, Kallie’s
 global variables collided with yours (ouch!) and overwrote your beloved spacer namespace. You learned an important lesson about the dangers of global variables and vowed to do whatever you can to reduce
 pollution of the global namespace. You decide to review some of your code, on the lookout for global variables you can remove.

 You start your review with the quiz app from earlier in the chapter. The following listing shows the structure of your code,
 with global variables, local variables, and the interface object.

 Listing 13.15. Random quiz questions with two global variables (http://jsbin.com/ponogi/edit?html,js,console)

 [image:]

 The program declares two global variables: getQuiz and quiz. On the first line you define a function and assign it to getQuiz.

 var getQuiz = function () { ... };

 Then, on the last line, you immediately call the function.

 var quiz = getQuiz();

 So, you declare getQuiz as a global variable—nasty pollution—and then use it only once before leaving it hanging around in the global scope like
 a bad smell. Shame on you! Remember, global variables run the risk of clobbering other global variables; they may seem fine
 in small pieces of code, but as projects grow and modules are created and imported, a faint whiff of unease soon builds to
 the furious stench of despair.

 	

 Tip

 Avoid declaring global variables, polluting the global namespace. Reduce the number of global variables by using objects as namespaces. Declare
 local variables inside functions.

 	

 You can use an immediately invoked function expression to cut the number of global variables in half. To appreciate how to
 use an IIFE for the benefit of your programs, consider the following points:

 	Recognizing function expressions

 	Invoking functions

 	Immediately invoking function expressions

 	Returning information from an IIFE

 13.6.1. Recognizing function expressions

 You’ve been using function expressions since chapter 4. You’ve assigned them to variables and properties, passed them as arguments, and returned them from other functions.

 var show = function (message) { //
 console.log(message); // Assign to a variable
}; //

var namespace = {
 show: function (message) { //
 console.log(message); // Assign to a property
 } //
};

tweets.forEach(function (message) { //
 console.log(message); // Pass as an argument to forEach
}); //

var getFunction = function () {
 var localMessage = "Hello Local!";

 return function () { //
 console.log(localMessage); // Return from a function
 }; //
};

 You’ve used functions to create blocks of code you can call on demand and to create local scopes, hiding variables you want
 to be private from the peeks and tweaks of users and programmers.

 13.6.2. Invoking functions

 To invoke, or call, a function, you use the function invocation operator, (), a pair of parentheses. Here’s how to invoke the four example function expressions in the last section:

 show("Hello World!"); // Call the show function

namespace.show("Hello World!"); // Call the show method

// Automatically called by forEach

var show = getFunction(); // getFunction returns a function
show(); // Call the returned function

 You pass arguments to the functions between the parentheses of the invocation operator. Any values that the functions return
 replace the function call.

 13.6.3. Immediately invoking function expressions

 You don’t need to assign a function expression to a variable in order to invoke it. Just wrap the function expression in parentheses
 and append the function invocation operator:

 (function () {
 console.log("Hello World!");
})();

 Figure 13.14 shows an annotated version of the code pattern.

 Figure 13.14. An immediately invoked function expression

 [image:]

 The code in the function body runs immediately. But no global variable is used. The function expression has no impact on the
 global namespace. Breathe in the pollution-free, piquant freshness.

 13.6.4. Returning information from an IIFE

 So, immediately invoked functions reduce pollution and are great for hiding your privates. But there’s more! Just like any
 other functions, immediately invoked functions can return values, such as objects acting as interfaces, giving you controlled
 access to the secret goodies inside the functions. (Note: please think carefully about just how much access to your privates
 is appropriate.)

 Listing 13.16 demonstrates how an IIFE can return an interface object that you then assign to a variable. If you run the program, you can
 access the quiz interface at the console:

 > quiz.quizMe()
 12 x 12
> quiz.submit("144")
 Correct!

 Listing 13.16. Using an IIFE with the quiz app (http://jsbin.com/titano/edit?html,js,console)

 [image:]

 You define a function, immediately invoke it, and assign the object returned to the quiz variable. Using an immediately invoked function expression just does away with the extra variable. Rather than

 var getQuiz = function () {
 /* private */
 return interface;
};
var quiz = getQuiz();

 you have

 var quiz = (function () {
 /* private */
 return interface;
})();

 You don’t need to use the getQuiz variable.

 The Crypt uses a number of constructors and functions and objects to build the game. You’ve seen the benefit of modules and immediately
 invoked function expressions; let’s break the game code into modules.

 13.7. The Crypt—organizing code into modules

 Back at the start of this chapter, you saw how the growing amount of code in The Crypt is motivation for breaking the program into modules. Now that you’ve learned the hows and whys, it’s time to do the deed.

 The next listing shows the five HTML script elements you use to load the different modules that make up the game.

 Listing 13.17. Importing modules for The Crypt (HTML) (http://jsbin.com/zikuta/edit?html,js,console)

 <!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Player constructor -->
<script src="http://output.jsbin.com/nubijex.js"></script>

<!-- Place constructor -->
<script src="http://output.jsbin.com/dofuci.js"></script>

<!-- Map code -->
<script src="http://output.jsbin.com/dipaxo.js"></script>

<!-- Game initialization -->
<script src="http://output.jsbin.com/fisupe.js"></script>

 Notice that the address for the spacer module is the same one you’ve been using throughout the chapter. That’s the beauty of modules! You have a single file that’s
 used in multiple projects. If you were to add a new formatting function to the spacer namespace, it would immediately be available to all of the projects that import the module.

 The next listing shows the single line of JavaScript needed to get the game started.

 Listing 13.18. Importing modules for The Crypt (http://jsbin.com/zikuta/edit?html,js,console)

 var game = theCrypt.getGame();

 Run the game; it should work just the same in modular form. All of the functionality is defined in the modules; it requires
 minimal code to get the game started.

 Apart from spacer, the modules for The Crypt all share the same namespace, theCrypt (figure 13.15). You start the game by calling the getGame method of the theCrypt namespace, theCrypt.getGame();

 Figure 13.15. The game imports five modules. Four of them need to share a namespace.

 [image:]

 You know that using a namespace is a good way to reduce the number of global variables and group related functions, but how
 can code in different module files share the same namespace?

 13.7.1. Sharing a namespace across modules

 Using what you’ve learned in this chapter, you want to do the following:

 	Use a single global namespace, theCrypt, for all of the modules that form The Crypt.

 	Assign to the namespace only those properties and functions that are needed by other modules.

 	Hide everything else in the local scope of functions.

 Modules add properties to the namespace theCrypt just as they would to any other object:

 theCrypt.Player = Player;

 But which module creates the namespace in the first place? Trying to access an undeclared variable will cause an error. But
 it would be inconvenient to have to load the modules in a certain order to ensure whichever one declares theCrypt is first. Fortunately, in browsers, global variables are automatically assigned to the special global object, window.

 The global object, window

 The window object is part of the way JavaScript works with global variables in browsers. You can test out global variable declarations
 and window at the console prompt:

 > var test = "Hi"
 undefined
> test
 "Hi"
> window.test
 "Hi"

 You declare a global variable, test, and it’s automatically assigned as a property of window. Back at the prompt, try accessing a nonexistent global variable:

 > theCrypt
 "Can't find variable: theCrypt"

 An error is thrown (although your browser may display a slightly different error message). On the other hand, trying to access
 a nonexistent property of window doesn’t throw an error; it returns undefined:

 > window.theCrypt
 undefined

 You can use the window object to check if theCrypt has been declared as a namespace without causing any errors.

 Using window to check for global variables

 The next listing shows the Player module. Extra code has been wrapped around the constructor to modularize it.

 Listing 13.19. The Player constructor as a module (http://jsbin.com/nubijex/edit?js)

 [image:]

 In listing 13.19 the Player module checks the window object to see if theCrypt has been declared as a global variable. If the module can’t find theCrypt, then it declares it:

 if (window.theCrypt === undefined) {
 window.theCrypt = {};
}

 Once the module has ensured that the namespace is present, it adds the Player constructor as a property:

 theCrypt.Player = Player;

 The Player constructor is now available to other code that needs it, via the global variable theCrypt.

 The next listing shows the Place module using the same global namespace.

 Listing 13.20. The Place constructor as a module (http://jsbin.com/dofuci/edit?js)

 [image:]

 Having each module check for theCrypt as a global variable on the window object means no one module is required to be loaded first because it’s the one that creates the namespace. They all check
 for theCrypt. The first module to be loaded won’t find it and will create it before using it. Modules loaded after the first will find
 theCrypt and assign to it the properties they want to be shared.

 Assigning namespace properties to local variables

 You like the way a namespace cuts down on global variables, but you’re not so keen on having to do more typing to use the
 shared properties. For example, the map code module needs to create places in The Crypt using the Place constructor:

 var kitchen = new Place("The Kitchen", "You are in a kitchen...");

 But you’ve moved the Place constructor into a namespace, theCrypt. You could change all of the references to Place in the map code:

 var kitchen = new theCrypt.Place("The Kitchen", "You are in a kitchen...");
var library = new theCrypt.Place("The Old Library", "You are in a lib...");

 But it can be easier to create a local Place variable and leave the original code alone:

 var Place = theCrypt.Place;

var kitchen = new Place("The Kitchen", "You are in a kitchen...");

 That’s a handy way to reduce typing if you need to use a namespace property multiple times.

 Having moved sections of code into their own modules, you can start to think carefully about what each module does. Could
 they be split into smaller modules that have more specific tasks? The next three chapters look at some common tasks and the
 code patterns that are often seen in programs that use and display data that changes: models, views, and controllers.

 13.8. Summary

 	Break up programs into modules, sections of code that can be loaded independently.

 	Use the same module in multiple projects.

 	Load modules in JS Bin by using an HTML script element:

<script src="path/to/module.js"></script>

 	Specify the location of the module file in the script element’s src attribute.

 	Minimize variable collisions, where one variable is overwritten by another, by using namespaces and immediately invoked function
 expressions.

 	Create immediately invoked function expressions by wrapping a function definition in parentheses and appending the function
 invocation operator, ().

(function () {
 // Code to be executed immediately
})();

 	Return an interface from the immediately invoked function expression. This is called the module pattern:

var game = (function () {
 // Local variables go here

 return {
 // Interface methods
 };
})();

 	Make sure you load any modules that other modules depend on.

Chapter 14. Models: working with data

 This chapter covers

 	Building models from data

 	Using the same data in multiple projects

 	Switching between data files

 	Specifying map data in The Crypt

 In chapter 13, you saw how you can use modules to break a program into separate files. You can then work on the modules independently,
 easily switch between modules, and reuse them across multiple projects. You can even publish your modules and import published
 modules written by others.

 This chapter maintains that spirit of modularization and reuse. You look at moving data out of constructors and functions.
 You represent the data simply so that multiple apps can use the data, even if the apps are written in different programming
 languages. You then consider how to feed that data into constructors and functions to build models that add extra functionality.
 Finally, you define map data for The Crypt, adding challenges to make the game more engaging.

 14.1. Building a fitness app—data and models

 Your development work has really gotten you noticed (The Fruitinator! was a global smash), and you’re now part of a team developing a fitness application. Health-conscious users track their exercise,
 logging the date and duration of each session.

 Mahesha
120 minutes on February 5th, 2017
35 minutes on February 6th, 2017

2 hours 35 minutes so far.
Great work!

 The team is working on an Android version of the app using the Python programming language, an iOS version using Swift, and
 a web-based version using JavaScript. The same data will be used in all versions (figure 14.1).

 Figure 14.1. The same data is used by the different versions of the app.

 [image:]

 Tasks involved in building the app include:

 1. Retrieve user data as a string

 2. Convert user data into user models

 3. Display user data

 4. Provide an interface for users to add sessions

 The data is transferred across the internet as text. The format of the text is JSON, which you’ll look at in chapter 20. As you’ll see then, the text is easy to convert into a JavaScript object. The team has asked you to concentrate on the second
 task, building user models from user data.

 14.1.1. Defining a User constructor

 You’ve been asked to write JavaScript code to model a fitness app user. Your model needs to do the following:

 1. Store the user’s name.

 2. Store a list of exercise sessions for the user, each with a date and duration.

 3. Include a method for adding sessions to the list.

 4. Include a method for retrieving data about the user.

 Listing 14.1 shows your initial constructor function. You test it on the console:

 > var user = new User("Mahesha")
 undefined
> user.addSession("2017-02-05", 120)
 120
> user.addSession("2017-02-06", 35)
 155
> user.getData().total
 155

 Listing 14.1. The User constructor (http://jsbin.com/suzala/edit?js,console)

 [image:]

 The constructor includes a name parameter, some private variables declared using var, and two public methods assigned to the this object, addSession and getData. The getData method uses slice with no arguments to grab a copy of the sessions array. (See chapter 8 for a reminder on array methods like slice.) Providing a copy of the session information prevents users from tweaking the sessions array outside the addSession method. The object that getData returns also includes a total property, holding the total duration of the logged sessions.

 When you create a JavaScript object using the User constructor, you create a user model. The model is more than just data; it includes private variables and public methods for managing the data, as shown in figure 14.2.

 Figure 14.2. A user model created by the User constructor function

 [image:]

 If the model is more than the data, what does the data look like?

 14.1.2. Getting a feel for the data as a JavaScript object

 The data for a user is a simple JavaScript object:

 var userData = {
 "name" : "Mahesha",
 "sessions" : [
 { "sessionDate" : "2017-02-05", "duration" : 120 },
 { "sessionDate" : "2017-02-06", "duration" : 35 },
 { "sessionDate" : "2017-02-06", "duration" : 45 }
]
};

 You can access its properties, like userData.name. But it’s still just data; it doesn’t have the extra capabilities of a model built with the User constructer, like an addSession or getData method. The data object is shown again in figure 14.3 for comparison with figure 14.2.

 Figure 14.3. User data represented as a simple JavaScript object

 [image:]

 Using simple JavaScript objects as the format for data is very common, even in other programming languages and especially
 on the web. Your team developing the fitness app is very happy that the user data is represented in such a well-supported
 form.

 In order to make the most of the extra methods provided by a user model, addSession and getData, you need to define a function to build a model from the basic data object.

 14.1.3. Converting the data into a user model

 In listing 14.3, you define the buildUser function that takes data for a single user as a JavaScript object and creates a model by calling the User constructor. You
 test the buildUser function by creating a user model with it from a JavaScript object. Adding one extra exercise session for the created user
 produces the following output on the console:

 > 240

 You’re using the User constructor from listing 14.1, so you import that by adding an HTML script element to the project (see chapter 13), as shown first in the next listing.

 Listing 14.2. A function to build a user model from user data (HTML) (http://jsbin.com/zenire/edit?html,js,console)

 <!-- User constructor -->
<script src="http://output.jsbin.com/suzala.js"></script>

 Listing 14.3. A function to build a user model from user data (http://jsbin.com/zenire/edit?html,js,console)

 [image:]

 With the buildUser function you can now upgrade plain user data, stored as a simple JavaScript object, to an enhanced user model that hides the data as private variables but adds methods to manage the state of the model and access a copy of the data.

 14.1.4. What’s next for the fitness app?

 Your team is pleased with your work on the app; you’ve fulfilled the requirements for this chapter. The full set of requirements
 for the app is repeated here:

 1. Retrieve user data as a string

 2. Convert user data into user models

 3. Display user data

 4. Provide an interface for users to add sessions

 You’ve completed the second requirement. You’ll work on the others later in the book. For now, it’s back to The Crypt. Can you separate the map data from the place models just as you separated user data from user models in the fitness app?

 14.2. The Crypt—separating map data from the game

 In this section you apply what you learned from working with the fitness app to The Crypt. In particular, you complete these tasks:

 1. Use a basic JavaScript object to represent map data in the game

 2. Add exit challenges to the map data

 3. Update the Place constructor with methods to set and get challenges

 4. Write a function to build place models from the map data

 Currently, you build the map for The Crypt manually within the program by calling the Place constructor for each place you create and then by calling methods to add items and exits.

 // Create two places
var kitchen = new Place(
 "The Kitchen",
 "You are in a kitchen. There is a disturbing smell."
);

var library = new Place(
 "The Old Library",
 "You are in a library. Dusty books line the walls."
);

kitchen.addItem("a piece of cheese"); // Add items separately
library.addItem("a rusty key"); //

kitchen.addExit("south", library); // Add exits separately
library.addExit("north", kitchen); //

 The map data (the descriptions of places, exits, and items) are bound up with the JavaScript that creates the objects used
 by the game; the only place in the code you can find out about map locations is inside calls to the Place constructor.

 var library = new Place(
 "The Old Library", // Data inside
 "You are in a library. Dusty books line the walls." // constructor
);

 Details about exits and items for places are separated from the places themselves.

 You saw in section 14.1 that data can be more easily shared when represented in a common format; other programs and programming languages can read
 data formatted as simple JavaScript objects but don’t know about your Place objects. If you separate the raw map data from the constructor function and methods like addItem and addExit, it will be easier to define new maps, store them, switch them, and share them (figure 14.4).

 Figure 14.4. Splitting the map data from the map builder makes it easier to switch maps.

 [image:]

 To achieve such a separation of data and game code, you have to decide what form the data will take and then write a function
 to convert the data into the Place models that the game uses.

 14.2.1. Map data

 A JavaScript object with a title, a list of places, and the name of the starting place will represent each map.

 {
 "title": "The Dark House",
 "firstPlace" : "The Kitchen",
 "places" : [
 // Array of place objects
]
};

 Each place within the places array will also be an object. The following snippet shows one such place:

 {
 "title" : "The Kitchen",
 "description" : "You are in a kitchen. There is a disturbing smell.",
 "items" : ["a piece of cheese"],
 "exits" : [
 { "direction" : "south", "to" : "The Old Library" },
 { "direction" : "west", "to" : "The Kitchen Garden" },
 { "direction" : "east", "to" : "The Kitchen Cupboard" }
]
};

 Each exit is an object with properties for its direction and the title of the place to which it leads. The data is compact
 and readable and keeps items and exits with the places to which they belong.

 The following listing shows a section of map data. The four complete locations are on JS Bin.

 Listing 14.4. Map data (http://jsbin.com/qonoje/edit?js,console)

 [image:]

 [image:]

 The map data is only the description of each place; the constructed Place models will add the functionality your program expects.

 14.2.2. Adding challenges to the map data

 The Crypt, as it stands, lets you explore strange new worlds. You can find items in exotic locations. You can even pick up those items
 and add them to your hoard. But there’s something missing. Your adventures are more like holidays (albeit with a bit of casual
 theft thrown in). You need to be challenged!

 To make the game more fun, you add challenges to exits. When trying to go in a certain direction, you may be presented with
 a problem to solve. The game play will look something like this:

 > game.go("south")
 *** A zombie sinks its teeth into your neck. ***

> game.use("a piece of cheese south")
 *** The zombie is strangely resilient. ***

> game.use("holy water south")
 *** The zombie disintegrates into a puddle of putrid goo. ***

> game.go("south")
 The Old Library
 You are in The Old Library...

 The challenge prevented you from going south. To overcome the challenge, you had to use a particular item in the direction
 of the challenge.

 game.use("holy water south")

 If you don’t have the required item, you have to go adventuring in a different direction, overcoming other challenges, until
 you find the item you need. So, how do you create challenges in the game?

 All of the information about an adventure in The Crypt needs to be represented in its map data. At the moment, the exits from a place are simple:

 { "direction" : "south", "to" : "The Old Library" }

 They have a direction and the title of the place to which they lead. To add a challenge to a particular exit, include a challenge property, like this:

 {
 "direction" : "south",
 "to" : "The Old Library",
 "challenge" : {
 "message" : "A zombie sinks its teeth into your neck.",
 "success" : "The zombie disintegrates into a puddle of goo.",
 "failure" : "The zombie is strangely resilient.",
 "requires" : "holy water",
 "itemConsumed" : true,
 "damage" : 20
 }
}

 Table 14.1 lists the properties of the challenge object along with their purpose and whether they’re required.

 Table 14.1. Challenge properties

 	
 Property

 	
 What is it for?

 	
 Required?

 	message
 	The message displayed to the player when they try to go in the direction of the exit and the challenge has not been overcome
 	Yes

 	success
 	The message displayed to the player when they use the item required to overcome the challenge
 	Yes

 	failure
 	The message displayed to the player when they try to use the wrong object to overcome the challenge
 	Yes

 	requires
 	The item required to overcome the challenge
 	Yes

 	itemConsumed
 	If the item is removed from the player’s list of items once it is used
 	No

 	damage
 	The amount subtracted from the player’s health when they try to go in the direction of the exit before they have overcome
 the challenge

 	No

 To accommodate the challenges, you need to update the Place constructor.

 14.2.3. Updating the Place constructor to include challenges

 You have to update the Place model to allow for challenges. It needs an object in which to store the challenges, and methods, addChallenge and getChallenge, for adding and retrieving challenges for a specified direction. The next listing shows the changes to the Place constructor.

 Listing 14.5. A Place constructor with challenges (http://jsbin.com/ruviso/edit?js,console)

 [image:]

 You create a private challenges object to store any challenges. Just like for exits, you use directions as the keys for stored challenges. If a player must
 overcome a challenge before moving south, the details of the challenge will be stored in challenges["south"].

 To store a challenge use the addChallenge method, and to retrieve a challenge for a specified direction use the getChallenge method.

 14.2.4. Using the map data to build a game map

 Your implementation of The Crypt uses models created with the Place constructor linked with exits. Now that your map data is no longer tied up with the game logic, you need a way to convert
 the map into a set of place models.

 You write a function called buildMap that takes a map data object as an argument and creates the place models, linked by their exits. It returns the model of
 the first place on the map, the starting point of the game.

 var firstPlace = buildMap(mapData);

 Figure 14.5 shows how the buildMap function uses forEach twice: first to create the place models and then to join the models by adding exits.

 Figure 14.5. First, all of the place models are created; then they’re linked via their exits.

 [image:]

 The buildMap function is shown in listing 14.6 and follows these steps:

 1. Create a model for each place (buildPlace)

 	Call the Place constructor with the title and description

 	Add any items to the newly created place model

 	Put the place model in the places store

 2. Add the exits and challenges for each place (buildExits)

 	Retrieve the place model from the places store

 	Add an exit to the model for each exit in the place’s data

 	Add a challenge for each exit in the place’s data

 3. Return the model for the first place in the game

 Listing 14.6. The map builder (http://jsbin.com/paqihi/edit?js,console)

 [image:]

 [image:]

 The buildPlace function converts the data for a single place into a place model by using the Place constructor. Remember, the game modules use a global namespace, theCrypt (see chapter 13), so the constructor is accessed via theCrypt.Place. Before you can link the place models via their exits, all the place models need to exist. You call buildPlace for every place in the map data by iterating over the mapData.places array with forEach.

 mapData.places.forEach(buildPlace);

 Within buildPlace, you add each place you create to the placesStore object.

 The buildExits function assigns the data for a place to a parameter, placeData, and grabs the matching place model from placesStore.

 var here = placesStore[placeData.title];

 It assigns the model to the here variable. Because place models have an addExit method, you can use here.addExit to add exits for the current model. The exits data looks like this:

 "exits" : [
 { "direction": "south",
 "to": "The Old Library",
 "challenge" : {
 "message" : "A zombie sinks its teeth into your neck.",
 "success" : "The zombie disintegrates into a puddle of goo.",
 "failure" : "The zombie is strangely resilient.",
 "requires" : "holy water",
 "itemConsumed" : true,
 "damage" : 20
 }
 },
 { "direction": "west", "to": "The Kitchen Garden" },
 { "direction": "east", "to": "The Kitchen Cupboard" }
]

 So, buildExits runs through the exit data, if it exists, and calls addExit and add-Challenge for each exit it finds.

 placeData.exits.forEach(function (exit) {
 var there = placesStore[exit.to];
 here.addExit(exit.direction, there);
 here.addChallenge(exit.direction, exit.challenge);
});

 The to property of each exit gives the title of the place to which the exit leads. The place model to which the exit leads can thus
 be found in placesStore by using exit.to as the key.

 You add a challenge to every exit, whether or not a challenge is present in the map data.

 here.addChallenge(exit.direction, exit.challenge);

 If there’s no challenge for the exit in the map data, then exit.challenge will be undefined. When you write code to work with challenges in chapter 16, you’ll check if a challenge is undefined before trying to use it.

 Et voila! By calling buildPlaces and buildExits for every place, you’ve created an interlinked map of place models for intrepid adventurers to explore. Will they find riches
 and glory? Will they discover enlightenment? Or will they meet their doom? Well, they’ll need to start somewhere, and that’s
 why the buildMap function returns the place model specified as the first model on the map.

 return placesStore[mapData.firstPlace];

 You’ve successfully separated the map data from the game implementation. The data is in a form that can be reused across projects
 and programming languages.

 If you follow the JS Bin link for listing 14.6, you’ll see that the full code wraps the buildMap function in an immediately invoked function expression and assigns buildMap to your global namespace, theCrypt. It’s the same mechanism used for all of your modules, so it isn’t shown in the printed listing.

 14.2.5. Bringing all the pieces together to run the game

 The game initialization module requires a tiny tweak. Here you update the call to buildMap, passing it the data from the new map data module.

 Listing 14.7. Using the new map builder (http://jsbin.com/mogano/edit?js,console)

 [image:]

 The buildMap function returns the place where the adventure begins, and that is set as the player’s location.

 You also need to add an HTML script element to import the map data module in The Crypt. The next listing shows the HTML panel for the latest version of the game.

 Listing 14.8. Using the map builder (HTML) (http://jsbin.com/rulayu/edit?html,console)

 <!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- Player constructor -->
<script src="http://output.jsbin.com/nubijex.js"></script>

<!-- Place constructor -->
<script src="http://output.jsbin.com/ruviso.js"></script>

<!-- map data (Kitchen example with challenge) -->
<script src="http://output.jsbin.com/jayici.js"></script>

<!-- map builder -->
<script src="http://output.jsbin.com/paqihi.js"></script>

<!-- Game initialization -->
<script src="http://output.jsbin.com/mogano.js"></script>

 Have a play. It should work exactly as it did before, with the two commands game.go and game.get available. You won’t spot the zombie (although it’s there, lurking in the shadows of the map data)—you’ll incorporate the
 challenges into the gameplay in chapter 16.

 One of the aims of separating map data from the map building code was to more easily switch between maps. So because you’ve
 done so well, here’s the exact same game code but with a different map file. (It’s an old Jedi map trick!)

 The Sparrow

 Map data: http://jsbin.com/woniqo/edit?js

 Game: http://jsbin.com/dequzi/edit?console

 You can take this whole modularization drive even further and separate the display of players and places from the models.
 Chapter 15 guides you on the next leg of your journey.

 14.3. Summary

 	Represent data in a form that’s easy to reuse across projects, apps, and programming languages. Simple JavaScript objects
 are a common format for exchanging data on the web.

 	Separate the data from the program logic to make it easier to switch between data sources.

 	Define models that enhance the data, adding functionality and hiding private variables, ready to be used by other parts of
 your program.

 	Define functions to create models from the data.

Chapter 15. Views: displaying data

 This chapter covers

 	Presenting data with views

 	Removing display code from constructors

 	Passing the same model to multiple views

 The console isn’t the only place where you can display information for your users; I’m pretty sure you’re keen to see how
 to output data on a web page! There are also desktop and phone applications, emails, and print documents to consider. Even
 on the console you may want the flexibility of a number of different formats for your output; maybe you want a simple text
 version and a fancy version with boxes and borders. You don’t want to have to rewrite large portions of your programs to change
 the way they present information.

 Views are focused modules of code that concentrate on displaying information. They take data and create visual output based on
 it. They may include controls like buttons and text boxes, but you’ll leave that for part 3. Moving your display code into views lets you switch the type of output you want or display data in multiple ways without
 having to change other parts of your code, like the constructor functions for models.

 In this chapter, you create views in the context of two examples, the fitness app and The Crypt. For the fitness app, you build a simple console view and then an enhanced version using the spacer namespace for formatting. For The Crypt, you separate out the display code that’s currently in the Player and Place constructor functions, moving it into new player and place views.

 All this modularization you’ve been pursuing throughout part 2 may seem like an uphill struggle, but the flexibility it gives you to update functionality by switching simple blocks of
 code in and out of a project is well worth the effort. And the views are magnificent!

 15.1. Building a fitness app—displaying the latest user data

 You and your team are hard at work writing a multiplatform fitness app that lets users log their exercise. The tasks involved
 in building the app include:

 1. Retrieving user data as a string.

 2. Converting user data into user models.

 3. Displaying user data.

 4. Providing an interface for users to add sessions.

 You’ve already managed to convert a user’s data from a simple JavaScript object into a user model with added functionality,
 including addSession and getData methods (see chapter 14). Now it’s time to work on displaying the user data.

 You’re going to create two views, code that takes a user model and displays data from the model. Figure 15.1 shows how different views can work with the same single model to produce different output.

 Figure 15.1. The same user model is used by different views to produce different output.

 [image:]

 You’re going to stick with console views for now, but in part 3 of Get Programming with JavaScript, you’ll switch to views that generate HTML for output on a web page.

 15.1.1. Creating your first fitness app view

 Your first view for the fitness app is simple but effective, displaying user information on the console that looks like this:

 Mahesha
35 minutes on 2017-02-05
45 minutes on 2017-02-06

80 minutes so far
Well done!

 To produce the output you need a view and a user model:

 var user = new User("Mahesha"); // Create a user model
user.addSession("2017-02-05", 35);
user.addSession("2017-02-06", 45);

 userView.render(user); // Pass the model to a view for display

 In the listing 15.1 you define and immediately invoke a function that creates the user view, returning a simple interface object. You assign
 the interface to the userView variable. To test the view you call userView.render, which produces the display shown previously.

 Listing 15.1. A simple user view (http://jsbin.com/goqinep/edit?js,console)

 [image:]

 [image:]

 You wrap the view code in an immediately invoked function expression to create a local scope, hiding implementation details,
 without the need for an extra global variable. (See chapter 13 for more on IIFEs and the perils of global pollution.)

 The User constructor for user models from chapter 14 is included at the start of the listing. The user model provides a getData method that returns a simple JavaScript object:

 {
 "name" : "Mahesha",
 "total" : 80,
 "sessions" : [
 { "sessionDate" : "2017-02-05", "duration" : 35 },
 { "sessionDate" : "2017-02-06", "duration" : 45 }
]
}

 The view’s getInfo function uses that data object to build the string of information shown before the listing.

 But why stop at one view when you can have two?

 15.1.2. Using modules to switch fitness app views

 Ultimately, you’ll present a number of views to your team from which they’ll choose the best to go into production with the
 fitness app. The second view you add to your portfolio uses the formatting functions from the spacer namespace to add borders and boxes to the view’s output. It’s called fitnessApp.userViewEnhanced, and you can see the view’s code as a module on JS Bin: http://jsbin.com/puculi/edit?js,console. It produces output like this:

 Mahesha

35 minutes on 2017-02-05
45 minutes on 2017-02-06

80 minutes so far

* Well done! *

 (The code for the second view is similar to the first. Here, I’m more interested in showing how multiple views can be used,
 so I’ve omitted the second view’s code from the book.)

 The next listing shows the HTML script elements used to import the spacer and fitnessApp modules. Notice, two view modules are imported.

 Listing 15.2. Testing two user views (HTML) (http://jsbin.com/vamuzu/edit?html,js,console)

 <!-- spacer -->
<script src="http://output.jsbin.com/juneqo.js"></script>

<!-- fitnessApp.User -->
<script src="http://output.jsbin.com/fasebo.js"></script>

<!-- fitnessApp.userView -->
<script src="http://output.jsbin.com/yapahe.js"></script>

<!-- fitnessApp.userViewEnhanced -->
<script src="http://output.jsbin.com/puculi.js"></script>

 The following listing shows the JavaScript used to test the two views you’ve created.

 Listing 15.3. Testing two user views (http://jsbin.com/vamuzu/edit?html,js,console)

 [image:]

 What lovely views! They both work well, displaying data from the same user model, so it will be easy to use whichever your
 team chooses. And it will be easy for you or others on the team to create more views if needed (that web view would be nice)
 without having to touch the user model code.

 15.1.3. What’s next for the fitness app?

 You’ve created user models from data and displayed that data in a number of ways using views. Your next job is to give users
 a simple way to log their exercise sessions at the console, getting the views to re-render the display as the data changes.
 You’ll do that by creating a fitness app controller in chapter 16.

 15.2. The Crypt—moving view code from Player and Place

 In the last section you saw how to create a view from scratch. You had a user model that provided data, and you wrote view code to display the data. In this section you work with existing models, Player and Place, from The Crypt. The code to display model data is currently mixed in with the models themselves. Figure 15.2 shows all of the modules in the current and new versions of the game. To change to the new version, you’ll separate the display
 code from the Player and Place models, creating two views, playerView and placeView.

 Figure 15.2. Move the view functions from the Player and Place models into their own modules

 [image:]

 You’ll update players first and then places.

 15.2.1. Creating a view for players

 On the left of figure 15.3 are the functions currently defined in the Player model, before you make any changes. As it stands, the model includes six functions (on the top left) for the display of player
 information. You want the model to be concerned only with the management of player data, not with its display. The right of
 figure 15.3 shows an updated Player model with some extra methods to be added as well as a new module called playerView, concerned only with the display of player information. You create those two modules now.

 Figure 15.3. Move the display functions from the Player model into their own module.

 [image:]

 The model

 Models are more than just data. They provide methods for managing the data—adding, deleting, updating—and can prevent direct
 access to the data. To create a player model you call the Player constructor with the new keyword.

 var player = new Player("Jahver", 80);

 Listing 15.4 shows the new Player constructor. Although you don’t want the Player model to bother with the display of its data, you do need to make that data available to any view that requires it. You still
 want to protect the private data from cheeky tweaks, so you create a method, getData, that returns a copy of the data. The data returned will look like this:

 {
 "name" : "Jahver",
 "health" : 80,
 "items" : ["a rusty key"],
 "place" : "The Crypt"
}

 In order to work with challenges in chapter 16, you add three more methods to the Player constructor: hasItem, removeItem, and applyDamage. If you head to JS Bin and run the code for the new constructor, you can perform the following actions at the console prompt
 (responses of undefined have been left out):

 Create a player, add a couple of items, and get the player’s data:

 > var p = new theCrypt.Player("Dax", 10)
> p.addItem("a key")
> p.addItem("a lamp")
> p.getData()
 [object Object] {
 health: 10,
 items: ["a key", "a lamp"],
 name: "Dax"
 }

 Use the new item methods to check if the player has an item and to remove an item:

 > p.hasItem("a key")
 true
> p.hasItem("a sword")
 false
> p.removeItem("a key")
> p.getData().items
 ["a lamp"]

 Apply damage to the player and check their health:

 > p.applyDamage(2)
> p.getData().health
 8
> p.applyDamage(10)
> p.getData().health
 -2

 Listing 15.4. The Player constructor (http://jsbin.com/yaneye/edit?js,console)

 [image:]

 [image:]

 The Player constructor no longer assigns any display methods to the models it creates. The methods that are left from the previous version,
 addItem, setPlace, and getPlace, are purely for managing the player data the model holds. The display methods have been moved to the new view object.

 Both hasItem and removeItem use the indexOf array method. If a specified item is in the items array, indexOf will return the index of that item. If the item is not in the array, indexOf will return -1.

 ["a key", "a lamp"].indexOf("a lamp"); // 1 -> second item in array
["a key", "a lamp"].indexOf("a sword"); // -1 -> not in array

 The removeItem method also uses splice to remove an item from the items array.

 items.splice(itemIndex, 1);

 The first argument to splice is the index in the array at which to start removing items. The second argument is the number of items to remove. In removeItem, you want to remove a single specified item, so the second argument to splice is 1.

 The view

 Your player view will re-create the representation that used to be generated by the player objects themselves. To display
 a player, you call the view’s render method, passing the player model as an argument:

 theCrypt.playerView.render(kandra);

 The render method calls getInfo, the function that builds up a string of player information, and displays the string returned on the console:

 **
* Kandra (50) *
**
 Items:
 - a rusty key
 - a piece of cheese
**

 The next listing shows the code for playerView. The interface assigned to theCrypt .playerView has the single method, render.

 Listing 15.5. A player view (http://jsbin.com/zucifu/edit?js,console)

 [image:]

 [image:]

 render is the only function that produces any output that the user can see, logging the generated player information string to the
 console. In it, you pass the player’s data to getInfo, and it passes the data on to the helper functions that each build a part of the overall information string.

 You’ve split the player model from the player view. You’ll see in chapter 17 how easy it is to change the view so it displays the player information on a web page rather than on the console. First, you follow the steps you used for players to create a model and a view for places in The Crypt.

 15.2.2. Creating a view for places

 Just as you did for players in the last section, you rewrite the constructor function for places so that it creates models
 that hold the data for each place and that provide some methods for manipulating that data. The models will also have a getData method so that views can get hold of a copy of each place’s data for display. Then you create a view to log place data on
 the console. Figure 15.4 shows how the old model code will be split to form the new.

 Figure 15.4. Move the display functions from the Place model into their own module

 [image:]

 The model

 Listing 15.6 shows a new version of the Place constructor, with its presentation code removed and a getData method added. The data returned by getData will have this form:

 {
 "title" : "The Old Library",
 "description" : "You are in a dusty library. Books line the walls.",
 "items" : ["a rusty key"],
 "exits" : ["west", "up"]
}

 The other methods are unchanged from previous incarnations of the constructor.

 Listing 15.6. A simplified Place constructor (http://jsbin.com/vuwave/edit?js,console)

 [image:]

 [image:]

 Each place model links to destinations. The destinations are also place models. The destinations are stored in a place model’s
 exits object. The keys of the exits object are the directions of the destinations. For example, exits["south"] might be the place model with a title property of "The Old Library". The Object.keys method returns all of the keys of an object as an array. So, Object.keys(exits) returns all of the directions of exits from the current place, for example, ["south", "east", "west"].

 The getData method in the Place constructor returns a copy of some of the data about a place, including an array of exit directions generated by using Object .keys(exits). The view will use that array to display the available exits from which players can choose to continue their adventures.

 The view

 Listing 15.7 shows the code for the place view module. How it works should be pretty familiar by now. It produces output on the console
 like this:

 ===============
= The Kitchen =
===============
You are in a kitchen. There is a disturbing smell.

Items:
 - a piece of cheese

Exits from The Kitchen:
 - east
 - south
==

 Listing 15.7. A place view (http://jsbin.com/royine/edit?js,console)

 [image:]

 [image:]

 Just like the view module for players, the view for places calls some helper functions, in this case getItemsInfo, getExitsInfo, and getTitleInfo, from a main display function, getInfo, to build up a string of information about a model. The render function is the only one that produces output that the user can see, displaying the assembled place information on the console.

 You now have model constructors and views for players and places. The data and the presentation of the data have been separated.
 The models are concerned only with the manipulation of the data and have nothing to do with its display. The views are concerned
 only with displaying the data and have nothing to do with changing it.

 The views have been written to be used in the same way. They both have a render method that’s passed the model to be displayed, as shown in the following snippet:

 // Create some models
var kandra = new Player("Kandra", 50);
var library = new Place("The Library", "You are in a dusty library.");

// Use views to display the model info
playerView.render(kandra);
placeView.render(library);

 As well as displaying information about players and places, you need to display messages to users as they play the game. They
 probably want to know if they’ve been bitten by a zombie or lacerated by a leopard!

 15.3. Talking to players—a message view

 As adventurers make their way around The Crypt, you need to let them know what’s going on. You use the player view to give them updates on their health and the items they
 carry. You use the place view to display each place’s title and description and to list its items and exits. You also need
 a way of displaying feedback when the players attempt an invalid action or succumb to their injuries.

 > game.go("north")
 *** There is no exit in that direction ***
> game.get("a piece of cheese")
 *** That item is not here ***
> game.use("a lamp north")
 *** That doesn't help. The door is still locked. ***

 To handle such messages, you create a message view. Like your other views, it has a single method in its public interface,
 render. You pass the text to be displayed to the render method:

 theCrypt.messageView.render("That item is not here.");

 The next listing shows the code for the view. The local getMessageInfo function returns a string for display, and the render function logs it to the console.

 Listing 15.8. A message view (http://jsbin.com/jatofe/edit?js,console)

 [image:]

 You use the console.error method in the render function. It’s similar to console .log but developers use it to flag errors in programs. The console normally displays errors differently from standard logged messages.
 The errors are often shown in red. That suits your purposes for displaying messages to players on the console.

 In chapter 14 you added challenges to the map data for The Crypt. You’ll use the message view to display the various success and failure messages associated with each challenge. Knowing
 when to show those messages requires some code that checks user actions against challenges, updates player and place models
 as a result, and uses views to display the latest state of the game. You need controllers. Chapter 16 has you covered.

 15.4. Summary

 	Create views to display data from models.

 	Maintain a separation of concerns where models manipulate data and views display data.

 	Create multiple views to display the same model data in different ways.

 	Keep the interface consistent for all views. For example, all of the views in this chapter have a render method as their interface. They can all be called the same way:

fitnessApp.userView.render(user);
fitnessApp.userViewEnhanced.render(user);
theCrypt.playerView.render(player);
theCrypt.placeView.render(place);
theCrypt.messageView.render(message);

Chapter 16. Controllers: linking models and views

 This chapter covers

 	Acting on user input

 	Updating models in response to user actions

 	Passing updated models to views for display

 	Completing the console version of The Crypt

 Part 2 of Get Programming with JavaScript has been about organizing your code. As your programs grow, that organization pays dividends, making it easier to focus on
 individual pieces, switch modules to alter functionality, and reuse code in multiple projects.

 Breaking programs into modules encourages you to give each module a specific task. Chapters 14, 15, and 16 form a trilogy, with each chapter looking at a common task a module might perform. You met models in chapter 14 and views in chapter 15 and now you link them with controllers.

 To see controllers in action and how they act on user input to manage models and update views, you continue your work on two
 projects: the fitness app and The Crypt. In the fitness app, users will log sessions of exercise, and in The Crypt, players will face puzzles to solve as they explore perilous places. But will they escape before their health reaches zero?

 16.1. Building a fitness app—controllers

 Your team members have been telling friends and family about the fitness app you’re creating and they have a list of people
 lined up to test it out; they’re a super-keen bunch and have been diligently logging their exercise on paper. Your work has
 gone well so far—what’s left to do? Here are the requirements set out by the team:

 1. Retrieve user data as a string.

 2. Convert user data into user models.

 3. Display user data.

 4. Provide an interface for users to add sessions.

 You’ve completed tasks 2 and 3, building models in chapter 14 and views in chapter 15. Task 1 involves retrieving data across the internet—you’ll work on that in part 3. That leaves task 4—you need to provide a simple way for those eager fitness fanatics to log the sessions of exercise they
 complete.

 You decide to provide a single command for users of the app to log their activity:

 app.log("2017-02-07", 50)

 The users call the app.log method, passing in the date of their session and the duration of their exercise in minutes. But how does that command reach
 the user model? And how does the view know to update the display? That’s the job of the controller.

 16.1.1. What does the controller do?

 The controller orchestrates the other pieces of the program, reacting to user input and updating the models and views. Figure 16.1 shows the modules that your fitness app will load when opened in JS Bin. You already have data, the User constructor, and views from chapters 14 and 15. You need to create a controller to handle the interactions between the different parts.

 Figure 16.1. The four modules of the fitness app

 [image:]

 Figure 16.2 shows how your controller is involved in initializing the app, using the User constructor to build a user model from the data. And when the app is running, the controller reacts to users calling app.log by adding the logged session to the user model and then passing the updated model to the view for display.

 Figure 16.2. The tasks the controller performs in the fitness app

 [image:]

 You know what the controller needs to do; how will you make it do it?

 16.1.2. Building the fitness app controller

 The snippets that follow show the kind of code you’d expect to see in the controller:

 var user = buildUser(userData); // Convert user data into a user model.

> app.log("2017-02-08", 50) // When the user logs a session

user.addSession("2017-02-08", 50); // the controller adds it to the model

fitnessApp.userView.render(user); // and updates the view.

 The first listing shows the full code for the controller.

 Listing 16.1. The fitness app controller (http://jsbin.com/goniro/edit?js,console)

 [image:]

 [image:]

 When the controller module is loaded, it adds its init function to the fitnessApp namespace. You’ll be able to start the app by calling init and passing it the user data.

 var app = fitnessApp.init(fitnessApp.userData);

 The init function returns an interface with a single method, log. By assigning the returned interface to app, you let users record their sessions by calling app.log.

 16.1.3. Putting the pieces together for a working fitness app

 Listings 16.2 and 16.3 show the HTML and JavaScript for the fitness app on JS Bin. Running the program lets you log a session like this:

 > app.log("2017-02-08", 55)

 The controller adds your logged session to the user model and passes the updated model to the view, producing this output:

 Mahesha
35 minutes on 2017-02-05
45 minutes on 2017-02-06
55 minutes on 2017-02-08

135 minutes so far
Well done!

Thanks for logging your session.

 The following listing uses HTML script elements to load your four fitness app modules. The modules share properties, objects, and functions by assigning them to
 the fitnessApp namespace.

 Listing 16.2. The fitness app (HTML) (http://jsbin.com/huxuti/edit?html,js,console)

 <!-- fitnessApp.userData -->
<script src="http://output.jsbin.com/tenuwis.js"></script>

<!-- fitnessApp.userView -->
<script src="http://output.jsbin.com/yapahe.js"></script>

<!-- fitnessApp.User -->
<script src="http://output.jsbin.com/fasebo.js"></script>

<!-- fitnessApp.controller -->
<script src="http://output.jsbin.com/goniro.js"></script>

 The next listing shows the single line of JavaScript needed to initialize the program and make the app.log method available to users.

 Listing 16.3. The fitness app (http://jsbin.com/huxuti/edit?js,console)

 var app = fitnessApp.init(fitnessApp.userData);

 Run the program and have a go at logging some sessions.

 16.1.4. What’s next for the fitness app?

 The last step for your app is to grab user data as text from across the internet and then convert that text into a JavaScript
 object ready to pass to fitnessApp.init. You’ll return to your work on the app in chapter 20.

 16.2. The Crypt—adding a game controller

 Okay, this is it for The Crypt in part 2 of Get Programming with JavaScript. By the end of the chapter, you’ll have a working console app with challenges for players to overcome and the danger of their
 health falling to zero, ending the game. There’s one more piece of the puzzle needed to get the game fully working: a controller.

 You have the data, the models, and the views for The Crypt. The controller is the module that ties everything together. It feeds the map data to the map builder and passes the model data to the views.
 It provides the interface that users will access to play the game and responds to player commands. That’s quite a lot of jobs
 for one game module, so it’s worth taking a minute to see how it fits in with the other modules that make up The Crypt.

 Figure 16.3 shows all of the modules that make up The Crypt. The Controller module has replaced the module that used to be labelled “Game init.” Now that you’re working with models and views, it’s
 more appropriate to call the module a controller. But why? What does the controller do?

 Figure 16.3. The modules that make up The Crypt

 [image:]

 16.2.1. What does the controller do?

 Your controller will initialize the game and act on user input while the game is running, updating models and views in response
 to the players’ actions.

 Initialize the game

 When the game first loads, the controller will:

 1. Use the Place constructor to build place models from the map data.

 2. Use the Player constructor to build a player model.

 3. Assign the place specified as first in the map data as the player’s location.

 4. Provide a UI.

 Steps 1 and 2 are shown in figure 16.4.

 Figure 16.4. When the game loads, the controller builds the player and place models.

 [image:]

 Act on user input

 While the game is running, the controller will:

 1. Check that player actions are valid.

 2. Update player and place models.

 3. Pass updated models to views for display.

 4. Pass feedback messages to the message view.

 5. Stop the game if the player’s health reaches zero.

 Steps 2, 3, and 4 are shown in figure 16.5.

 Figure 16.5. The controller responds to user actions and updates models and views.

 [image:]

 The player model includes a getPlace method that the controller uses to access the player’s current location (notice how the Place model is connected to the Player model in figure 16.5).

 16.2.2. Approaching the controller code

 You’ve seen what the controller does in The Crypt and are ready to explore the code that makes it work. Even though you’ve seen a lot of the code before, presenting it as
 one long listing can make it seem more daunting than it deserves, so your exploration is broken across sections.

 	(16.3) The overall structure of the controller

 	(16.4) Initializing the game, monitoring player health, updating the display, and ending the game

 	(16.5) Handling player commands and challenges—get, go, and use

 	(16.6) Running the game

 Let the games begin!

 16.3. The Crypt—the structure of the controller code

 As you’ve seen, the controller has a number of tasks to perform to start, monitor, and end a game in The Crypt. To help you get a feel for how the parts make up the whole, listing 16.4 omits the function bodies and focuses on the variables in the code. You can see the full listing, function bodies and all,
 by following the link to JS Bin, and the code is also shown in the sections that follow in this chapter.

 Listing 16.4. The game controller (http://jsbin.com/yeqicu/edit?js)

 [image:]

 Listing 16.4 also includes comments pointing you to the listings in this chapter that investigate the missing function bodies.

 It’s time to start the game! And stop it! And monitor player health! And update the display! (Sorry for the excitement, but
 the full game is so close.)

 16.4. The Crypt—starting and stopping the game

 While the main game action takes place in the get, go, and use functions, you also need to easily start and stop the game and keep the display updated with the latest info. And now that
 players are facing cruel challenges, challenges that may drain their health, you need to check that they are still hale and
 hearty enough to carry on.

 16.4.1. Initializing the game

 To get the game started, it needs to be initialized by calling the init method.

 game.init(map, playerName);

 init builds the map, creates the player model, sets the player’s location to the correct place, and then displays the player and
 place information, as shown in the following listing.

 Listing 16.5. The init function (http://jsbin.com/yeqicu/edit?js)

 [image:]

 You declare the player and inPlay variables outside the init function so other functions in the controller can access them. The buildMap function returns the starting place in the game, and then you set that place as the player’s current location. The init function calls render to display the starting place and player information.

 The render, get, go, and use functions use the inPlay variable. They perform their usual tasks only when inPlay is true. When a player’s health drops to zero, the controller sets inPlay to false. For that to happen, you have to keep an eye on the player’s health.

 16.4.2. Monitoring player health

 Whenever a player takes damage, you need to check if their health has reached zero, because that’s “Game over, man. Game over!”
 The controller’s checkGameStatus function does the checking, setting the isPlay variable to false if the player has succumbed to the litany of zombie bites, leopard lacerations, and nasty splinters they encounter, as shown
 in the next listing.

 Listing 16.6. Checking if health has dropped to zero (http://jsbin.com/yeqicu/edit?js)

 [image:]

 The condition uses the less than or equal to comparison operator, <=, to check if the health is less than or equal to zero.

 player.getData().health <= 0

 If the player has died, you stop the game and display a final message. If they’re fit enough to carry on, checkGameStatus does nothing.

 16.4.3. Updating the display—functions that use the view modules

 Rather than calling the render methods of view modules directly, the controller uses its own functions. This makes it easier
 to switch to different view modules if required because the views are referenced in only one place, as shown in the following
 listing.

 Listing 16.7. Updating the display (http://jsbin.com/yeqicu/edit?js)

 [image:]

 The init function gets things started, and then checkGameStatus, render, and render-Message are used throughout the game. The main action comes from the get, go, and use functions, with go and use making some tricky decisions based on items, exits, and challenges. It’s time to investigate the player commands—make it
 so!

 16.5. The Crypt—giving commands and solving puzzles

 Users are permitted to take only a small set of actions when exploring The Crypt. The controller module assigns the following interface to the global window object:

 window.game = {
 get: get,
 go: go,
 use: use,
 init: init
};

 The user initiates actions in the game by calling the game controller interface methods at the console (game.get() or game.go("south"), for example). The game controller then creates, accesses, or updates models in response to the user’s instructions and passes
 changed models to the views for display.

 You’ve already looked at the init function; this section (16.5) steps through the get, go, and use functions. The get function hasn’t evolved much, but the go function now checks for challenges. And use is a completely new function.

 16.5.1. Picking up items with game.get

 Players exploring The Crypt will find items as they travel from place to place. The items will help them to overcome challenges they may face. The get method gives them a way of picking up the items they find, as shown next.

 Listing 16.8. The get function (http://jsbin.com/yeqicu/edit?js)

 [image:]

 An item is removed from the end of the place’s list of items and added to the player’s list of items. If the place has no
 items, getLastItem will return undefined.

 Both the go and use functions involve checking challenges. A quick refresher is in order.

 16.5.2. Listing the properties of a challenge

 You’re keen on the idea of challenges and want to add a splash of jeopardy. Players have had a health property right from
 the start of the book; you’re ready to do dastardly damage to players as they meekly move around your maze.

 You first saw challenges in The Crypt when developing map data in chapter 14, but you haven’t put them to use until now. Two of the player commands, go and use, check for challenges in a specified direction, so it’s worth reminding yourself of the properties that make up a challenge:

 "challenge" : {
 "message" : "A zombie sinks its teeth into your neck.",
 "success" : "The zombie disintegrates into a puddle of goo.",
 "failure" : "The zombie is strangely resilient.",
 "requires" : "holy water",
 "itemConsumed" : true,
 "damage" : 20
}

 Table 16.1 lists the properties of the challenge object along with their purpose and whether they are required.

 Table 16.1. Properties of the challenge object

 	
 Property

 	
 What is it for?

 	
 Required?

 	message
 	The message displayed to the player when they try to go in the direction of the exit and the challenge has not been overcome.
 	Yes

 	success
 	The message displayed to the player when they use the item required to overcome the challenge.
 	Yes

 	failure
 	The message displayed to the player when they try to use the wrong object to overcome the challenge.
 	Yes

 	requires
 	The item required to overcome the challenge.
 	Yes

 	itemConsumed
 	If the item is removed from the player’s list of items once it is used.
 	No

 	damage
 	The amount subtracted from the player’s health when they try to go in the direction of the exit before they have overcome
 the challenge.

 	No

 	complete
 	Whether the challenge has been completed. Usually missing in the initial data, it’s set to true during the game when a challenge
 is solved.

 	No

 To retrieve a challenge from a place object, call getChallenge, specifying a direction:

 place.getChallenge("south");

 If there’s no challenge in that direction, getChallenge returns undefined. The first command that uses challenges is game.go.

 16.5.3. Moving with game.go

 Players use the controller’s go function to move from place to place. But if a lock or a leap or a leopard blocks their path, the controller needs to let
 them know. Players call go, specifying the direction in which they wish to travel:

 > game.go("south")

 The full go function is shown here. A walkthrough of the code follows the listing.

 Listing 16.9. The go function (http://jsbin.com/yeqicu/edit?js)

 [image:]

 [image:]

 The function starts by collecting the information it needs to act on the player’s request:

 var place = player.getPlace();
var destination = place.getExit(direction);
var challenge = place.getChallenge(direction);

 It could be that there’s no exit in the direction the player specified. You need to check for that:

 if (destination === undefined) {
 renderMessage("There is no exit in that direction");
} else {
 // Check for challenges
}

 Okay, say the player isn’t walking into a wall and there’s an exit in the direction specified. If there’s no challenge, or
 if the player has completed the challenge, you can move them to the destination.

 if ((challenge === undefined) || challenge.complete) {
 player.setPlace(destination);
 render();
} else {
 // Mention the leopard
 // and apply any damage.
}

 The || symbol in the if condition is the logical OR operator. It lets you check a condition made up of two expressions at once. If either the first
 expression, challenge === undefined, or the second expression, challenge.complete, evaluates to true, then the whole condition is true. If both expressions evaluate to false, then the whole condition is false. (JavaScript also has a logical AND operator, &&, that evaluates to true if both expressions are true, and false otherwise.)

 If the player hasn’t completed a challenge, you need to apply any damage that the challenge causes (bumps, bruises, leopard
 bites, and so on).

 if (challenge.damage) {
 player.applyDamage(challenge.damage);
}

 Finally, update the display to show any changes to health, show the challenge’s initial message, and check that the player’s
 health is still above zero—the game remains in play.

 render();
renderMessage(challenge.message);
checkGameStatus();

 That takes care of player peregrinations. But what if there is a big, hungry cat blocking the path? How can players lick the leopard?

 16.5.4. Licking the leopard with game.use

 If a lock or a leap or a leopard blocks a player’s path, the player can call the controller’s use function to overcome the challenge. They specify the item to use and the direction in which to use it:

 > game.use("a ball of wool", "south")
 *** The leopard chases the ball of wool, purring loudly. ***

 The full use function is shown in listing 16.10. It has a number of nested if statements, but don’t worry: the key decisions are shown in figure 16.6, and you venture down the rabbit hole to see how it works following the listing.

 Figure 16.6. The key decisions made by the use function

 [image:]

 Listing 16.10. The use function (http://jsbin.com/yeqicu/edit?js)

 [image:]

 [image:]

 The function starts by collecting the information it needs to act on the player’s request:

 var place = player.getPlace();
var challenge = place.getChallenge(direction);

 It could be that there’s no challenge in the direction the player specified. You need to check for that:

 if ((challenge === undefined) || challenge.complete) {
 renderMessage("You don't need to use that there");
} else {
 // There is a challenge to be overcome.
}

 Some players are sneaky! You need to check that they have the item they’re trying to use. If they don’t, send them a polite
 message:

 if (player.hasItem(item)) {
 // Check it's the right item
} else {
 renderMessage("You don't have that item");
}

 Okay, so they’re using an item they have against an actual challenge. Is it the right tool for the job? Let them know if it’s
 not:

 if (item === challenge.requires) {
 // Complete the challenge
} else {
 renderMessage(challenge.failure);
}

 And finally, at the bottom of the rabbit hole, if they’ve passed all the checks, complete the challenge:

 renderMessage(challenge.success);
challenge.complete = true;

if (challenge.itemConsumed) {
 player.removeItem(item);
}

 Well done; you made it through the get, go, and use function wonderland. The pieces aren’t too taxing, but when you have deeply nested ifs and buts, they can get quite hairy.
 Throw yourself a tea party! But don’t be late for section 16.6—that’s where your adventure really begins.

 16.6. The Crypt—running the game

 To get the game running, you need to include all of the modules you’ve created and then call the game.init method, passing it the map data and the player’s name. Figure 16.7 shows all of the modules involved.

 Figure 16.7. The many modules of The Crypt

 [image:]

 The next listing shows the HTML script elements used to load the modules.

 Listing 16.11. Loading the game modules (HTML) (http://jsbin.com/fociqo/edit?html,console)

 [image:]

 [image:]

 The HTML includes an initial script element that’s different from the rest. It has no src attribute. Rather than linking to a file to load, it includes the JavaScript directly between the script tags. The module files can take a moment to load, so it’s nice to give players feedback that something is happening. Putting
 the code in the HTML lets it run straight away; no need to wait for a file to load.

 The following listing shows the code needed to get things up and running.

 Listing 16.12. Running the game (http://jsbin.com/fociqo/edit?js,console)

 var playerName = "Jahver";
var map = theCrypt.mapData;

game.init(map, playerName);

 Hide the JavaScript panel, run the game, and start exploring! Be careful though; challenges chip away at your health.

 16.7. The Crypt—what’s next for the app?

 Congratulations! You’ve created a working console-based adventure game with swappable maps and a modular architecture (a fancy
 way of saying it’s made up of lots of bits).

 Part 2 of Get Programming with JavaScript was all about organizing your code to better cope with larger programs. Your knowledge of private variables, modules, models,
 views, and controllers equips you to cope with more ambitious projects. By sticking to the console, you were able to focus
 on the key JavaScript language concepts; now it’s time to make the jump to HTML and web interfaces. As you’ll see, the work
 you’ve done building a well-organized program will make your first steps as a web developer much easier.

 16.8. Summary

 	Use a controller to manage the models and the views. The controller updates the models in response to user input and passes data from the
 models to the views for display.

Part 3. JavaScript in the browser

 Up to this point in Get Programming with JavaScript, you’ve been using the console as the way of interacting with your programs. You’ve been able to focus on the JavaScript
 code. Now it’s time to start using a web page as the user interface, using HyperText Markup Language (HTML) to specify headings,
 paragraphs, and list items for presentation; and buttons, drop-down lists, and text boxes for user input. You use templates
 as an efficient way to generate HTML from your data and XMLHttpRequest objects to load extra data for your web pages.

 Part 3 shows you how to organize files on your own computer rather than on JS Bin and suggests some next steps as you continue your
 JavaScript adventure. The Crypt gets an HTML makeover and the ability to load locations one at a time as players explore the worlds you create for them.

Chapter 17. HTML: building web pages

 This chapter covers

 	Using HTML to display static content

 	Tags, elements, and attributes

 	Common HTML elements

 	Manipulating web page content with JavaScript

 	Switching to HTML-based views in The Crypt

 JavaScript is associated with adding interactivity to web pages: reacting to users clicking buttons and selecting from drop-down
 menus, for example, and updating parts of a page with new content. Having learned the fundamentals of the language, you’re
 almost ready to take that step to interactivity and dynamic content. Your focus is still on JavaScript, but you need to learn
 enough HTML to see how JavaScript can be used to create and manipulate the content of a web page. JS Bin still has you covered
 while you learn; you can add HTML and view the resulting web page in the Output panel. In chapter 21 you’ll see how to move on from the JS Bin sandbox and organize your own HTML, CSS, and JavaScript files.

 You’ve spent a lot of time building The Crypt in a modular fashion. That work pays off in this chapter when you see how easy it is to switch from displaying output on the console to displaying it on a web page. It will just take a few lines of code—it’s almost magical.

 17.1. HTML, CSS, JavaScript—building a web page

 You want to build a movie reviews web page, My Movie Ratings, that displays information about your favorite movies and lets
 you rate them (figure 17.1). To build the page you use three languages:

 Figure 17.1. CSS and JavaScript build on the HTML content with enhanced presentation and interactivity.

 [image:]

 	HTML —You use HTML to annotate the text of the page and specify media to be loaded; headers, paragraphs, lists, images, and buttons
 are all specified with HTML. This is your base layer, the essential content, the information you want visitors to find and
 read.

 	CSS —You use the Cascading Style Sheets language to specify the look of the page, its colors, fonts, margins, borders, and so
 on. This is your presentation layer, a visual treat that enhances the content.

 	JavaScript —You use the JavaScript language to add interactivity to the page; you respond to button clicks, filter content, load extra
 data, and pop-up messages with JavaScript. This is your behavior layer, a subtle dash of user interface magic that smooths
 the way and can improve the user’s experience and efficiency.

 Figure 17.1 includes three screenshots of the My Movie Ratings page and shows how the CSS and JavaScript layers build on the HTML foundation.

 Even without CSS and JavaScript, on the left of figure 17.1, the key information about the movie is accessible. The CSS adds visual styles, a sense of identity, and (hopefully) design
 that guides and delights the visitor. Finally, on the right, the figure shows a message that has been popped up using JavaScript
 after a user clicked the Rate button.

 Take a look at your My Movie Ratings pages on JS Bin. There’s the base HTML version at http://jsbin.com/sayayim/edit?output and the version with CSS and JavaScript at http://jsbin.com/hikuzi/edit?output. (You may have to run the JavaScript to make the Rate button work.)

 17.1.1. Loading the layers

 If you had your own website, jahvers.crypt, you’d load the My Movie Ratings web page by pointing your browser at the page’s
 URL, jahvers.crypt/movies.html, say. The browser loads the HTML document, movies.html, sent by the server at that address.
 The movies.html document may contain CSS and JavaScript code within it, between style and script tags, respectively:

 <head>
 <title>My Movie Ratings</title>

 <style>
 /* CSS goes here */
 </style>

 <script>
 /* JavaScript goes here */
 </script>
</head>

<body>
 <!-- Page content for display goes here -->
</body>

 Don’t worry about all the HTML tags for now; we cover them in section 17.2. You’re well aware of the benefits of modularization (that’s what part 2 was all about!), so you’ll be pleased to know that HTML documents can load CSS files as well as JavaScript files:

 <head>
 <title>My Movie Ratings</title>

 <link rel="stylesheet" href="movies.css" />
 <script src="movies.js"></script>
</head>

<body>
 <!-- Page content for display goes here -->
</body>

 You’ve seen the script tags for loading JavaScript modules before; the link tag does a similar job for loading CSS. When your browser is reading through your HTML document, ready to display it, it will load the CSS and JavaScript files it finds specified by the link and script elements. You’ll take a proper look at organizing your own HTML, CSS, and JavaScript files in chapter 21. For now, JS Bin does the work for you.

 17.1.2. Loading the layers in JS Bin

 When working on your projects, or bins, on JS Bin, you can add code to three panels: HTML, CSS, and JavaScript. JS Bin automatically
 merges the code from the three panels, embedding the CSS and JavaScript into the HTML and showing the resulting web page on
 its Output panel.

 You won’t spend much time working on CSS in Get Programming with JavaScript, but where it’s used in examples, you can always take a look at the CSS panel yourself; the code used is mostly straightforward.
 You return to JavaScript in section 17.3, after saying a brief hello to HTML.

 17.2. HTML—a very short introduction

 For My Movie Ratings, your movie reviews website, you want headings, lists of actors and directors, a choice of possible ratings,
 and a button to submit your verdict. You need a way of specifying that this text is a heading but that text is a list item;
 here’s a drop-down list and there’s a button. You’re not on the console anymore, Dorothy—you’ve left the monochrome world
 of spaces and new-line characters and entered the wonderful, colorful land of HTML. (Rest assured. There are no flying monkeys
 in this chapter.)

 You use HTML to annotate text and to identify media that you want to embed in a document. The annotations specify the role
 that each section of text plays within the structure of the document. The media can be images, video, audio, or some other
 format.

 The markup itself takes the form of tags. In a document, a section of text might be a heading, a paragraph, a list item, or a quotation, for example, and there are
 tags to mark up those sections of text. Here’s a heading and a paragraph, each marked up with an opening and closing tag:

 <h1>My Movie Ratings</h1>

<p>Brief info about my favorite movies.</p>

 You wrap each section of text with an opening and closing tag. The heading has <h1> and </h1>, the paragraph <p> and </p>. Together, each opening and closing tag pair specifies an element. The h1 tags specify a heading element; the p tags specify a paragraph element.

 When a web browser loads an HTML document, it sees the tags and creates the corresponding element in its model of the page
 in memory. The tags specify what type of element to create and the text between the tags forms the content of the element.

 17.2.1. Starting with an empty page

 Before you start adding content to pages, take a look at the HTML that constitutes a bare-bones web page. If you create a
 new bin on JS Bin and view the HTML panel, you’ll see the following markup. (I’ve reformatted it slightly.)

 <!DOCTYPE html>

<html>
 <head>
 <meta charset="utf-8">
 <title>JS Bin</title>
 </head>

 <body>

 </body>
</html>

 The DOCTYPE in the first line gives the browser information about the version of HTML you’re using and helps it decide how to process
 and display the page. HTML has evolved over the years, and a number of versions and variations are specified by complicated-looking
 document type declarations. Fortunately, <!DOCTYPE html> is a neat shorthand for the latest version (currently HTML5).

 You wrap the whole document, after the document type, in html tags. Within the document, there are two sections, head and body. The head section contains information about the document: its title and character encoding. The body section is where the main content of the page goes—the content that will be displayed to the user when they visit the web
 page. All of your pages will use the same basic structure shown here.

 17.2.2. Adding some content

 Figure 17.2 shows some text for My Movie Ratings added between the body tags of a new JS Bin document. The text has been marked up with appropriate HTML tags to denote headings, subheadings, and
 paragraphs.

 Figure 17.2. The hierarchy of headings and the paragraphs

 [image:]

 The browser represents the hierarchy of headings, h1, h2, h3, by using different font sizes. The following listing shows the HTML used between the body tags for the web page.

 Listing 17.1. My Movie Ratings—headings and paragraphs (HTML) (http://jsbin.com/nosiwi/edit?html,output)

 [image:]

 17.2.3. Marking up a list

 Each movie includes a list of actors and a list of directors. Use the li tag to mark up list item elements. A single list item for an actor looks like this:

 Amy Poehler

 The list items need to be part of a list. You can have an ordered list, if the order of the items matters, or an unordered
 list, if it doesn’t. Use ol tags for an ordered list and ul tags for an unordered list. Figure 17.3 shows the output for lists of actors and directors. Listing 17.2 shows the new code.

 Figure 17.3. The browser renders the ordered list with numbers and the unordered list with bullets.

 [image:]

 Listing 17.2. Ordered and unordered lists (HTML) (http://jsbin.com/vegahe/edit?html,output)

 [image:]

 As you can see in figure 17.3, the browser automatically adds numbers for an ordered list and bullets for an unordered list.

 17.2.4. Some common HTML elements

 Figure 17.4 is a screenshot of a web page made up of some common HTML elements. The content of each element describes the element. You
 can visit the page on JS Bin: http://jsbin.com/nuriho/edit?html,css,output.

 Figure 17.4. A web page with self-describing HTML elements

 [image:]

 The tags used to create the page in figure 17.4 are shown in table 17.1. There are plenty more HTML tags, but these are enough for you to work with for now.

 Table 17.1. Some common HTML elements for wrapping content

 	
 Tag

 	
 Element

 	
 What is it for?

 	<h1>
 	Heading
 	Main heading for a document or part of a document

 	<h2>...<h6>
 	Subheading
 	Subheadings in decreasing order of importance

 	<p>
 	Paragraph
 	Paragraphs

 	<div>
 	Division
 	Wraps a set of elements that belong together as a section of a document

 	
 	Ordered list
 	Wraps a set of list items where the order of the items is important (e.g., a numbered list)

 	
 	Unordered list
 	Wraps a set of list items where the order of the items is not important (e.g., a bulleted list)

 	
 	List item
 	Wraps a single item in an ordered or unordered list

 	<head>
 	Head
 	Wraps elements that provide meta-information about a document and load extra code needed by the document

 	<body>
 	Body
 	Wraps the main content of the page, the content that is displayed directly on the web page

 17.3. Adding content to a web page with JavaScript

 Looking for ways to add interest to the site, you decide to welcome visitors to your My Movie Ratings web page with a random
 greeting. To test out the idea, you create a minimal page. Figure 17.5 shows what you’re aiming for, with four visits to the page producing four different greetings.

 Figure 17.5. Random greetings from a web page

 [image:]

 Refreshing the page generates a new random greeting. Try it out on JS Bin at http://output.jsbin.com/mikura.html. The next two listings show how to create the page. Run the JavaScript to make the message appear.

 Listing 17.3. Adding content to a paragraph with JavaScript (HTML) (http://jsbin.com/mikura/edit?html,js,output)

 <p id="greeting">Welcome!</p>

 Listing 17.4. Adding content to a paragraph with JavaScript (http://jsbin.com/mikura/edit?html,js,output)

 [image:]

 To generate the effect, you follow these steps:

 1. Assign an id to an element in the HTML

 2. Use the id to get a reference to the element in JavaScript

 3. Use the reference to update the element’s contents

 17.3.1. Getting an element by its id

 You display the greeting in a paragraph element. To set the greeting, you need to get hold of a reference to that paragraph
 in JavaScript. You give the HTML element a unique id attribute:

 <p id="greeting">Welcome!</p>

 To get a reference to the element in a JavaScript program, you use the document.get-ElementById method, passing the id of the element as an argument:

 var para = document.getElementById("greeting");

 The web browser makes the document object available to your JavaScript code. The document object has properties and methods that allow you to interact with the hierarchy of elements on a page.

 You obtained a reference to the paragraph element by using document.get-ElementById. Having assigned the reference to the para variable, you can now use para to manipulate the element. You update the content of the paragraph by setting the element’s innerHTML property.

 para.innerHTML = "Ay up me duck!";

 The original content of the paragraph is replaced and becomes

 <p id="greeting">Ay up me duck!</p>

 17.3.2. Function declarations

 You’re now using function declarations rather than function expressions when defining named functions for later use.

 var sayHello = function () { //
 console.log("Hello"); // function expression assigned to variable
}; //

function sayHello () { //
 console.log("Hello"); // function declaration
} //

 Function declarations were mentioned in chapter 4 as an alternate syntax for defining functions. You’ve been using expressions up until now to be consistent with the assignment
 of values, objects, arrays, and functions to variables.

 var num = 4;
var movie = {};
var actors = [];
var getRating = function () {};

 It’s more common to see function declarations for named functions, so you’ve switched to declarations for part 3 of Get Programming with JavaScript.

 17.3.3. What, no JavaScript?

 Occasionally, visitors will arrive at your site on devices that either don’t have JavaScript or have it disabled. Or they’ll
 be on a slow network, maybe at a hotel or on a train, where it takes longer (much longer!) to load any JavaScript modules
 for the page. If your page relies on JavaScript to display its content, visitors may be presented with an empty space. Whenever
 possible, consider including initial content in the page so that visiting is not a useless waste of time. Content should be
 available to everyone, with the extra flexibility, fluidity, and flashiness that JavaScript brings layered on top for those
 whose devices can handle it.

 For your random greeting test, you included a greeting, “Welcome!”, in the initial HTML (listing 17.3). A random greeting is a nice bit of fun but isn’t essential.

 Having seen how to add some text to a paragraph, you now step things up and add a whole series of elements at once.

 17.4. Displaying data from an array

 Each movie on My Movie Ratings has a title and a one-line summary. Figure 17.6 shows a list of three movies on the site.

 Figure 17.6. A list of movies

 [image:]

 Given some movie data, you can loop through the movies and insert them into an existing element on the page. The movie data
 looks like this:

 var moviesData = [
 {
 "title" : "Inside Out",
 "summary" : "An emotional adventure inside the head of a young girl."
 },
 {
 "title" : "Tomorrowland",
 "summary" : "Recreating the hope and wonder of previous generations."
 },
 {
 "title" : "The Wizard of Oz",
 "summary" : "Strangers find friendship and strength on a long walk."
 }
];

 You place a div element with an id of movies on the page, as shown in the following listing. Use div elements as containers to collect groups of related elements together.

 Listing 17.5. Building HTML with JavaScript (HTML) (http://jsbin.com/jakowat/edit?html,js,output)

 <body>
 <h1>My Movie Ratings</h1>

 <div id="movies"></div>
</body>

 Each movie will be a list item in an unordered list. The browser automatically adds the bullets for list items in an unordered
 list. The next listing shows the JavaScript used to display the movies.

 Listing 17.6. Building HTML with JavaScript (http://jsbin.com/jakowat/edit?html,js,output)

 [image:]

 The getMovieHTML method builds up the HTML for a single movie by sandwiching the properties of the movie object between appropriate opening and closing tags.

 var html = "<h3>" + movie.title + "</h3>";
html += "<p>" + movie.summary + "</p>";

 The getMoviesHTML method iterates over the array of movies, building up the HTML for all of the movies as it goes. It uses getMovieHTML to get the HTML for each movie, wrapping the returned strings in li tags to create list item elements.

 movies.forEach(function (movie) {
 html += "" + getMovieHTML(movie) + "";
});

 It then wraps the HTML for the list of items in opening and closing ul tags for an unordered list and returns the complete HTML string.

 return "" + html + "";

 The getMoviesHTML function returns HTML that looks like the following (but without the line breaks and extra spaces):

 <h3>Inside Out</h3>

 <p>An emotional adventure inside the head of a young girl.</p>

 <h3>Tomorrowland</h3>
 <p>Recreating the hope and wonder of previous generations.</p>

 <h3>The Wizard of Oz</h3>
 <p>Strangers find friendship and strength on a long walk.</p>

 The render method is the one that changes the page. It gets a reference to the target div on the page and sets its innerHTML property with the HTML string returned by getMoviesHTML.

 var moviesDiv = document.getElementById("movies");
moviesDiv.innerHTML = getMoviesHTML(movies);

 To reduce the number of global variables, you could wrap the getMovieHTML, get-MoviesHTML, and render functions in an immediately invoked function expression (IIFE—see chapter 13) that returns just render in its interface. The listing has been kept simple to help focus on the generation of HTML and how to update an element on
 a web page.

 17.5. The Crypt—displaying players and places with web views

 You’ve split the program for The Crypt across multiple modules, sections of code that can be loaded independently. The modules perform different tasks: you have
 data, models, views, and a controller (figure 17.7).

 Figure 17.7. The modules that make up The Crypt

 [image:]

 The promise of modules is that you can switch them easily to change the behavior of the program. It’s time to make good on
 that promise. To build your first HTML version of The Crypt, follow these steps:

 1. Update the player view (two lines of code)

 2. Update the place view (two lines of code)

 3. Create an HTML page that has script elements to load all of the game modules and that has placeholders for the player and place views to fill

 You won’t see the output until all of the pieces are in place. But to get a sense of what you’re building, figure 17.8 shows your first HTML game in action. The web page output shows the current states of the player and place. You enter commands
 at the console.

 Figure 17.8. The Crypt with commands and messages on the Console panel and updates on the Output panel

 [image:]

 Before looking at the updated versions of the player and place views, take time to consider the awesome power of your modular
 approach. The single method that displays information for each view is the render method. To reflect its beauty and simplicity, it gets the following section all to itself.

 17.5.1. Updating the player and place view modules—the render method

 In moving from a console application to a web application, you update the player and place views. The new versions display
 information by inserting text into an element on a web page rather than logging the information to the console. Those are
 the only changes you make (figure 17.9), and the changes themselves are small.

 Figure 17.9. You only need to change the views to switch to a web-based version of The Crypt.

 [image:]

 The views in chapter 15 use console.log in a single method, the render method. That was by design; you have a single place where changes need to be made.

 The render method for the console-based player view looks like this:

 function render (player) {
 console.log(getInfo(player.getData()));
};

 The render method for the console-based place view looks like this:

 function render (place) {
 console.log(getInfo(place.getData()));
};

 Using what you’ve learned in this chapter about updating web page elements, the new place view’s render method looks like this:

 function render (place) {
 var placeDiv = document.getElementById("place");
 placeDiv.innerHTML = getInfo(place.getData());
};

 The new player view’s render method looks almost identical:

 function render (place) {
 var playerDiv = document.getElementById("player");
 playerDiv.innerHTML = getInfo(player.getData());
};

 Those really are the only changes to the JavaScript that you need. The new methods use document.getElementById to get references to elements on the web page. Until you create the web page in listing 17.9, those elements won’t exist, so you can’t test your new views. Be patient; their time will come.

 17.5.2. Updating the player and place view modules—the listings

 Listing 17.7 shows the new player view with its updated render method. Everything else is the same as it’s been since chapter 15, so function bodies have been omitted in print. The JS Bin link is there so you can check the full listing if you want. The
 meaning of "use strict" is discussed after the listings for both views.

 Listing 17.7. A web-based player view (http://jsbin.com/cehexi/edit?js,console)

 [image:]

 The next listing shows the new place view with its updated render method.

 Listing 17.8. A web-based place view (http://jsbin.com/cakine/edit?js,console)

 [image:]

 Those changes to the render methods are all you need to move the display of player and place information to the web page from the console. For now, the
 user continues to give commands via the console.

 17.5.3. Using JavaScript’s strict mode

 JavaScript is in use on millions of web pages. Those pages need to continue working even as JavaScript evolves and matures.
 To opt into more recent ways of using the language that alert you to more errors you might have made, optimize how the language
 works, and prepare the way for further developments, you can run your code in strict mode. To enable strict mode for a function, add "use strict" at the top of the function.

 All of your code throughout the book could have been run in strict mode, but I felt it might be distracting while learning
 the basics. Modules in part 3 will all be in strict mode; listing 17.8 is the first module in part 3, which is why it’s being introduced at this point. Find out more at www.room51.co.uk/js/strict-mode.html.

 17.5.4. Loading modules and adding placeholders in the HTML

 The next listing shows the complete HTML for your first web-based version of The Crypt. It includes script tags to load all of the modules you need.

 Listing 17.9. A web-based The Crypt game (HTML) (http://jsbin.com/zaxaje/edit?html,console,output)

 [image:]

 [image:]

 You set the title of the page using a title element in the head section. The page title isn’t always visible when working in the JS Bin editing environment but is normally used by browsers
 to label tabs and windows showing the page and when saving the page as a bookmark or favorite. The script tags for loading modules are added just before the closing body tag. This ensures that the two div elements used by the program are on the page before any code tries to update them with player and place information.

 Unfortunately, because your views use the spacer namespace to format the generated text with line breaks and spaces for the console, and web pages don’t honor those line
 breaks and spaces, all of the player and place information runs together. Although the output isn’t quite what you wanted,
 you can still play the game, as shown in figure 17.10.

 Figure 17.10. The text output runs together but the game is playable.

 [image:]

 17.5.5. Adding a touch of CSS

 You have one more panel up your sleeve on JS Bin! The CSS panel is used for specifying how you want elements to look on a
 page: their size, color, margins, borders, and so on. With a couple of lines of CSS, you can tell the browser to honor the
 line breaks generated by your view modules and use a font that gives the same amount of space to each character, just like
 the font on the console.

 The next listing shows the code to add to the CSS panel.

 Listing 17.10. A web-based The Crypt game (CSS) (http://jsbin.com/toyahi/edit?css)

 div {
 white-space: pre;
 font-family: monospace;
}

 The first rule tells the browser to preserve the white space (that is, spaces and line breaks) of text content in div elements. The second specifies that the browser should use a monospace font for text in div elements. Your page uses div elements for the player information and for the place information. The output on the web page is now formatted as it was
 on the console. Refer to figure 17.8 to see the nicely formatted output.

 17.5.6. Playing the game

 You still issue game instructions via the console as methods of game. The methods available are get, go, and use. Run the program at http://jsbin.com/toyahi/edit?console,output and have a go at playing the game, issuing commands on the console like this:

 > game.get()
> game.go("south")
> game.use("a rusty key", "north")

 Using line breaks and spaces to format the output isn’t the best approach. It would be better to use appropriate HTML tags
 (for headings, paragraphs, and lists) to convey the structure of the different pieces of information in the output. You’ll
 look at better ways of formatting the player and place information using HTML in chapter 19 when you investigate templates.

 The current version of The Crypt is a bit of a hybrid. Although you make use of HTML to display some information, you still force players to enter commands
 on the console. In chapter 18 you’ll discover how to use simple form elements like buttons, drop-down lists, and text boxes to let players interact with
 the game directly on the web page. To prepare the way for that fully HTML-based version, you finish this chapter by repeating
 the changes you made to the place and player views but this time for the message view.

 17.5.7. Preparing the message view

 In order to make the UI 100% web page based, you need to update the message view so that it displays messages on the web page
 rather than on the console. The following listing shows the new module code.

 Listing 17.11. A web-based message view (http://jsbin.com/nocosej/edit?js,console)

 [image:]

 The view will need an element with an id of messages. It also adds a clear method for removing messages from the page.

 17.6. Summary

 	Annotate text with HTML to specify the role the text plays in the structure of a document. For example, the text is a heading,
 a list item, or a paragraph.

 	Precede an HTML document with its document type:

<!DOCTYPE html>

 	Use html tags to wrap the entire document:

<html> ... </html>

 	The head element of a document contains information about the document, for example, its title and character encoding:

<head>
 <meta charset="utf-8">
 <title>My Web Page</title>
</head>

 	The body element of a document contains the content to be displayed on the web page:

<body> ... </body>

 	Use tags appropriate to the content. Among many more tags, there are headings <h1>, <h2>, ... , <h6>; paragraphs <p>; list items ; and lists and .

 	Add id attributes to opening tags to uniquely identify elements on the page.

<p id="message"></p>

 	From JavaScript, get a reference to an HTML element by using the document .getElementById method:

var para = document.getElementById("message");

 	Change the content of an element by setting its innerHTML property:

para.innerHTML = "New text for the paragraph.";

Chapter 18. Controls: getting user input

 This chapter covers

 	Using buttons to initiate actions

 	Collecting user input with text boxes and drop-down lists

 	Calling functions automatically when a button is clicked

 We love buttons! Whether we’re buying books on Amazon, liking a tweet, or sending that late-night drunken email, we find it
 hard to resist clicking those alluring, colorful buttons. Well, it’s time for you to issue your own calls to action and start
 adding buttons to your pages. And while you’re at it, you need to make space for text boxes and drop-down lists too.

 In chapter 17 you made the jump to HTML and used JavaScript to add content to a web page. To get user input, however, you stuck with the
 console. In these days of flashy web apps you want the users to interact solely via the web page; they shouldn’t have to know
 JavaScript and go searching for the console to use the programs you write for them.

 This chapter introduces the HTML input, select, and button elements, letting users type information and commands into a text box, choose from a drop-down list, and initiate actions by clicking buttons. You see how to set up functions that are automatically called when a button
 is clicked.

 It’s fun to click buttons, so let’s start with those. Click!

 18.1. Working with buttons

 You’re building a My Movie Ratings website (see chapter 17) and have been testing random greetings when visitors arrive at the site. You want to give visitors the ability to check
 out more greetings without reloading the whole page. You decide to add a button to your test page that updates the display
 with a random greeting (figure 18.1).

 Figure 18.1. Clicking the Say Hi button displays a random greeting.

 [image:]

 Clicking the Say Hi button displays the greeting. But how? How can you make your JavaScript program respond to a user clicking
 the button? You need to do three things:

 1. Add a button HTML element to the page

 2. Write a function to update the greeting

 3. Get the button to call the function when it’s clicked

 18.1.1. Adding a button to a page

 Well, for starters, you need a button on the page. HTML includes a button element. Put the button text between the tags (figure 18.2):

 Figure 18.2. The HTML for three buttons and the output generated

 [image:]

 <button>Button 1</button>

 To work with the button in JavaScript, you give it a unique id attribute in HTML.

 <button id="btnGreeting">Say Hi</button>

 The following listing shows the key HTML for the My Movie Ratings test page. The paragraph with id of "greeting" is where you’ll insert the random greeting later.

 Listing 18.1. My Movie Ratings greetings with button (HTML) (http://jsbin.com/josoqik/edit?html,output)

 <button id="btnGreeting">Say Hi</button>

<p id="greeting">Welcome!</p>

 The output was shown in figure 18.1. Feel free to take a peek at the CSS panel on JS Bin if you’re interested in how the styling is applied.

 18.1.2. Writing functions to update the greeting

 In chapter 17 you wrote two functions, getGreeting and updateGreeting, that chose a random welcome message and updated the display.

 function getGreeting () {
 // Return random greeting
};

function updateGreeting () {
 para.innerHTML = getGreeting();
};

var para = document.getElementById("greeting");
updateGreeting();

 The updateGreeting function updates the display by setting the innerHTML property of the paragraph element, para.

 So you have your button and paragraph in place in the HTML and you have a function to update the paragraph. Now you want the
 button to call the updateGreeting function when a user clicks it.

 18.1.3. Listening for clicks

 Click—“Wassup!” ... Click—“Hola!” ... Click—“Ay up me duck!”

 “Dear button, please call my updateGreeting function whenever someone clicks you,” is the instruction you want to send. To give the button an instruction like that,
 you need a reference to the button in JavaScript.

 var btn = document.getElementById("btnGreeting");

 Once you have a reference to the button, btn, you can tell the button to call a function whenever the button is clicked:

 btn.addEventListener("click", updateGreeting);

 The addEventListener method tells the button (or whichever element it’s called from) to call a specified function whenever a specified event occurs—in this case whenever the button is clicked. It’s like the updateGreeting function is waiting, or listening, for the button to be clicked.

 Listing 18.2 shows the final listing for your random greetings test page. It’s the same as the listing from chapter 17 but with the two lines of button code added. The code is wrapped in an immediately invoked function expression to avoid polluting
 the global namespace. It also includes a use strict statement to instruct the browser to use strict mode (see section 17.5.3).

 Listing 18.2. My Movie Ratings greetings with button (http://jsbin.com/josoqik/edit?js,output)

 [image:]

 Take a look back at chapter 12 for a reminder of how to use Math.floor and Math .random to generate a random index for an array.

 	

 A marvelous menagerie of events

 Clicks aren’t the only events that functions can listen out for; mouse moves, page scrolling, keys on the keyboard being pressed,
 and images loading are some others, and taps, flicks, force presses, and shakes are some new events appearing for touch-enabled
 and mobile devices.

 You’ll keep it simple and stick with button clicks for now, but if you’re interested in the marvelous menagerie of possible
 events, check out the event reference on the Mozilla Developer Network at https://developer.mozilla.org/en-US/docs/Web/Events.

 	

 18.2. Using a select element to choose an option

 The My Movie Ratings website lets users rate movies. They choose a rating from a drop-down menu and click the Rate button.
 The page then shows a message with their rating (figure 18.3).

 Figure 18.3. Clicking the Rate button pops up a message with your rating.

 [image:]

 To implement the rating system, you need to do four things:

 1. Add a select HTML element to the page with option elements for each rating

 2. Add a button HTML element to the page with “Rate” as its text

 3. Write a function to pop up the message with the rating

 4. Tell the button to call the function when clicked

 18.2.1. Adding a select element to the page

 Web browsers render the select element as a drop-down list. You use option elements to specify the choices in the list (figure 18.4).

 Figure 18.4. Two select elements in HTML, displayed on a web page and with a selection in progress

 [image:]

 <select id="movies">
 <option>Inside Out</option>
 <option>Tomorrowland</option>
 <option>The Wizard of Oz</option>
</select>

 Test it out on JS Bin. Create a new bin with the HTML, Console, and Output panels open. Replace the contents of the HTML panel
 with the select code in the previous snippet. You should see the drop-down list appear on the Output panel. At the console prompt, enter
 these commands:

 > var dd = document.getElementById("movies")
 undefined
> dd.value
 Inside Out

 Choose a different film from the drop-down list on the Output panel. Then use JavaScript to check its new value:

 > dd.value
 The Wizard of Oz

 You can update the drop-down’s selected value from JavaScript too:

 > dd.value = "Tomorrowland"
 Tomorrowland

 The value set in JavaScript is selected on the Output panel.

 Figure 18.4 shows the HTML for two select elements and how they’re rendered on a web page.

 The next listing shows the HTML for the body of the My Movie Ratings main page, with a select element and a button to rate the film shown.

 Listing 18.3. My Movie Ratings with a drop-down list (HTML) (http://jsbin.com/hikuzi/edit?html,output)

 [image:]

 [image:]

 Notice that you can add an attribute of selected to have that option selected when the drop-down list is shown on the web page.

 18.2.2. A function to rate movies and a button to call it

 To rate a movie, you need a function that gets the user’s choice from the drop-down list, gets the value of the selected option
 in the select element, and pops up a message that includes that value, shown in listing 18.4.

 Listing 18.4. My Movie Ratings with a drop-down list (http://jsbin.com/hikuzi/edit?js,output)

 [image:]

 The value property of the drop-down list gives you the user’s rating. You call the alert function, provided by the browser, to display the rating in a pop-up dialog box. Having wrapped the code in a function, rateMovie, you use addEventListener to tell the Rate button to call rateMovie whenever it’s clicked.

 Your users can choose a rating from a list. But what if you want to give them more freedom to express themselves?

 18.3. Reading user input with text boxes

 Congratulations, the My Movie Ratings site now lets users rate movies! Your success gets you thinking—what about comments?
 Why not get users to add a brief comment with their ratings? Figure 18.5 shows the site with two comments added and a third in progress.

 Figure 18.5. The movie has a text box to add comments and a section to display them.

 [image:]

 Users type their comment into the text box, pick a rating from the drop-down list, and click the Rate button. Rather than
 popping up a message, you now add their comment and rating to the comments section for the movie. To add comments to the site,
 you need to do five things:

 1. Add a text box to the page

 2. Add an unordered list to the HTML as a place for comments to go

 3. Get a reference to the text box in JavaScript and access its value

 4. Get a reference to the comments list in JavaScript

 5. Update the rateMovie function to append a comment to the comments list

 18.3.1. Adding a text box to the page

 To add a text box to the page, you use an input HTML element with its type attribute set to "text". Include an id attribute to reference the element from JavaScript.

 <input type="text" id="txtComment" />

 The input element displays form controls on a web page. It doesn’t wrap any other content so is written as a self-closing tag. There’s no opening and closing tag pair. Notice the forward slash at the end of the tag; it shows you that this tag
 doesn’t need a closing tag. The text box goes in the "controls" div along with the ratings drop-down list and the Rate button.

 <div class="controls">

 <input type="text" id="txtComment" />

 <select id="rating"> <!-- options for ratings --> </select>
 <button id="rate">Rate</button>

 </div>

 The input element with a type attribute set to "text" is displayed as a text box on the page. Other common type attributes for input elements include password, submit, checkbox, and radio. Browser makers such as Microsoft, Apple, Google, Mozilla, and Opera are working to improve support for new types like color
 pickers, date pickers, and sliders. To find out more about types of input elements, you can visit the Mozilla Developer Network
 at https://developer.mozilla.org/en/docs/Web/HTML/Element/Input.

 18.3.2. Adding an unordered list to display the comments

 You use a ul element for the list of comments, preceding it by a heading. You give the list an id attribute so you can add list items using JavaScript.

 <h4>Comments</h4>
<ul id="comments">

 You add the comments list after the Actors and Directors lists.

 18.3.3. Getting references to the new elements

 In order to read comments typed into the text box and to add list items to the list of comments, you need to get a reference
 to the two elements in your JavaScript code.

 var commentsList = document.getElementById("comments"); // The list
var commentBox = document.getElementById("txtComment"); // The text box

 The text entered by the user in the text box is accessed via its value property. To see the value property in action, you can access and update it at the console. Visit the My Movie Ratings page at http://jsbin.com/nevaxit/edit?console,output, type “Great Movie!” into the text box, and then type these commands at the console prompt:

 > var txt = document.getElementById("txtComment")
 undefined
> txt.value
 Great Movie!
> txt.value = "Rubbish!"
 Rubbish!

 The last command will update the contents of the text box on the web page.

 18.3.4. Updating the rateMovie function

 The next listing shows all of the assembled pieces. The comment from the text box and the rating from the drop-down list are
 appended as a list item to the existing list of comments.

 Listing 18.5. Movies, comments, and a random greeting (http://jsbin.com/nevaxit/edit?js,output)

 [image:]

 [image:]

 In the listing, you need to get references to five HTML elements. Rather than typing out document.getElementById(id) each time, you create a function that does the same job but with a shorter name, getById.

 Listing 18.6 shows the updated HTML including the text box, comments list, and a span element for your random greetings. A span wraps text inline, within a paragraph, for example, and lets you describe the purpose of the text it wraps, in this case with an id of "greeting", style it differently (change the color, make it bold, change its size), and access it via JavaScript (to add a random greeting,
 for example).

 The contents of the body element are shown here, and some items have been omitted or compressed because they’re unchanged from listing 18.3. Everything is on JS Bin.

 Listing 18.6. Movies, comments, and a random greeting (HTML) (http://jsbin.com/nevaxit/edit?html,output)

 [image:]

 Try out the web page at http://output.jsbin.com/nevaxit. Add some comments and ratings and add them to the list. And check out the random greetings.

 18.3.5. Styling the examples with CSS

 Many of the examples in part 3 of Get Programming with JavaScript have had colors, fonts, margins, borders, and so on set with CSS rules on the CSS panel. Although the book doesn’t teach
 CSS directly, please have a look at the CSS rules. Taken one at a time, most of them are easy to follow. Try changing some
 values or deleting some or all of the rules. Although they may make the page look nicer, all examples should work just fine
 without them.

 18.4. The Crypt—player commands via a text box

 Players exploring The Crypt have been entering their get, go, and use commands at the console prompt. You can now move user input to the game’s web page with commands entered via a text box,
 as shown in figure 18.6.

 Figure 18.6. Commands are now entered into a text box at the bottom of the page.

 [image:]

 In order to create a web-based set of user controls, you need to do three things:

 1. Add a text box and button to the page.

 2. Write a function to convert the text in the text box into game commands.

 3. Write a function to be called when the button is clicked.

 You could update the code in the controller module to include the two new functions. But the controller module works nicely
 already, setting up the game and working with the models and views for players, places, and messages (see chapter 16). A better plan is to add a separate module that deals with the commands entered into the text box, calling on the existing
 controller to execute the get, go, and use methods as necessary. Figure 18.7 shows the modules used by The Crypt, including the new Commands module.

 Figure 18.7. Modules for The Crypt, including a Commands module to execute commands via a text box

 [image:]

 Get started by adding a text box and button to the HTML for the page.

 18.4.1. Adding controls to the page

 You need a way for users to enter the command string and submit it. The following listing shows the HTML added to your The Crypt web page for the text box and button. The player, place, and messages div elements are initially empty, which is why they can’t be seen on the Output panel.

 Listing 18.7. Adding controls to The Crypt (HTML) (http://jsbin.com/rijage/edit?html,output)

 [image:]

 Your controls, the text box and button, are now on the page and they have id attributes set so they can be accessed using JavaScript.

 18.4.2. Mapping text box entries to game commands

 Table 18.1 shows how the commands entered into the text box will match up with the methods from the controller module created in chapter 16.

 Table 18.1. Comparing text box commands with methods from the controller module

 	
 Text box command

 	
 Controller method

 	get
 	game.get()

 	go north
 	game.go("north")

 	use a rusty key north
 	game.use("a rusty key", "north")

 As you can see, the text box commands should make it easier for users to play the game. So how do you translate the text box
 input into commands that the controller understands?

 18.4.3. Issuing orders with split, join, pop, and shift

 The user will type a command into a text box. You need to convert that command into an action that the program will take,
 as shown in table 18.1. To call the correct controller method (get, go, or use) based on the command entered in the text box, you first represent the command by a JavaScript object. The object will have
 a type property that matches the controller method that you need to call. Table 18.2 shows the commands and the command objects that they should generate.

 Table 18.2. Command objects

 	
 Text box command

 	
 Command object

 	get
 	
 {
 type: "get"
}

 	go north
 	
 {
 type: "go",
 direction: "north"
}

 	use a rusty key north
 	
 {
 type: "use",
 item: "a rusty key",
 direction: "north"
}

 The first word of each text box command gives you the type of the command object. To get at the separate words of the command, you convert the string into an array of words using split.

 var commandWords = commandString.split(" ");

 For example, "get a rusty key" becomes ["get", "a", "rusty", "key"]. The shift array method removes and returns the first element in an array. That’s perfect for grabbing the command type for your command object.

 var commandWords = commandString.split(" ");
var command = {
 type: commandWords.shift();
};

 The command word is no longer in the array. ["get", "a", "rusty", "key"] becomes ["a", "rusty", "key"].

 For go and use, you grab the direction, the last element in the commandWords array, by using the pop array method.

 command.direction = commandString.pop();

 If there are any elements left in the commandWords array, you join them back together to form the name of an item.

 command.item = commandWords.join(" ");

 For example, ["a", "rusty", "key"] is joined to become "a rusty key".

 The next listing shows a function that converts a command string into a command object using the ideas just discussed.

 Listing 18.8. Converting a command string into a command object (http://jsbin.com/repebe/edit?js,console)

 [image:]

 With the command object in hand you can now call the matching method of the game controller. To organize the different possible
 command types, use a control structure tailor made for deciding between many options: the switch block.

 18.4.4. Deciding between options with switch

 You want to take different actions depending on which command was issued. You could use a series of if-else blocks. But a switch block is an alternative that some programmers feel is neater. switch lets you define a series of code blocks and execute certain blocks depending on the value of a variable or property. Here’s
 an example comparing the two approaches, using command.type as the switch variable:

 switch (command.type) { |
 |
 case "get": | if (command.type === "get") {
 game.get(); | game.get();
 break; | }
 |
 case "go": | else if (command.type === "go") {
 game.go(command.direction); | game.go(command.direction);
 break; | }
 |
 case "use": | else if (command.type === "use") {
 game.use(command.item, | game.use(command.item,
 command.direction); | command.direction);
 break; | }
 |
 default: | else {
 game.renderMessage(| game.renderMessage(
 "I can't do that"); | "I can't do that");
} | }

 If the value of command.type is "get", then the code in the first case block is executed. If the value of command.type is "go", then the code in the second case is executed. Without the break statement, the switch block would continue to execute all of the case blocks after the first one matched. You can include a default case with code to be executed if no other conditions are matched.

 There’s not much difference between the two approaches; it’s a bit easier to read the condition in the switch block, but you have the extra break statements. Once again, it comes down to personal preference: if you think the switch block is neater, use it; just don’t forget the break statements.

 Listing 18.9 shows the switch block for The Crypt in context, as part of a doAction function.

 18.4.5. Making it so—listening for button clicks

 The final piece of the UI puzzle is to link the JavaScript to the HTML. You need the button to call the doAction function from listing 18.9 whenever it’s clicked:

 var commandButton = document.getElementById("btnCommand");

commandButton.addEventListener("click", doAction);

 The doAction function retrieves the text from the text box:

 var txtCommand = document.getElementById("txtCommand");
var commandString = txtCommand.value;

 The doAction function then parses the command string to create a command object. It uses a switch block to call the matching controller method. Listing 18.9 shows how the pieces fit together for the command module. It uses the parseCommand function from listing 18.8, which can be seen on JS Bin. Note that the JS Bin listing is for reference; the module won’t run in isolation on JS Bin
 but will throw an error.

 Listing 18.9. The command module (http://jsbin.com/qedubi/edit?js,console)

 [image:]

 [image:]

 You like to smooth the path for the players, so, after the switch block, you clear the user’s command from the text box by setting its value property to an empty string. And because you really care, you put the cursor in the text box, ready for their next command, by calling the text box’s focus method. Just before the switch block, you also use the message view’s clear method, added at the end of chapter 17, to clean up any old messages.

 The code for the command module is wrapped inside an immediately invoked function expression. As soon as the script is loaded
 by the web page, it will be executed and the event listener will be added to the button element.

 18.4.6. Enter The Crypt

 Rather than changing the existing, working code of the Controller module, you created a new module, the Commands module, that
 parses a player’s commands and calls the controller’s public methods, get, go, and use. That’s neat! The controller is independent of the player interface; it’s the same one that worked in the console-based game
 and it will work with new interfaces—could you add a button to get items in a room?

 Figure 18.8 shows a game of The Crypt in progress with a message being displayed to a player via the message view.

 Figure 18.8. The Crypt in progress showing a message to the player

 [image:]

 Listing 18.7 included the HTML for the latest version of the game but you need to change the message view script element and add one for the new Commands module:

 <!-- message view -->
<script src="http://output.jsbin.com/nocosej.js"></script>

<!-- Web Page Controls -->
<script src="http://output.jsbin.com/qedubi.js"></script>

 Play the game at http://output.jsbin.com/depijo, and see the HTML and JavaScript at http://jsbin.com/depijo/edit?html,javascript. Be careful not to step in the zombie!

 18.5. Summary

 	To use controls like buttons, drop-down lists, and text boxes, you need an HTML element for the control, an id attribute on the element, and a reference to the element in JavaScript. You can then access the value properties of text boxes or drop-down lists and specify a function to call when a button is clicked.

 	Use a button element to display a button on the page. Include the text to be shown on the button between the opening and closing tags:

<button>Click Me!</button>

 	Include an id attribute in the opening tag so that the button can be accessed from JavaScript code:

<button id="messageButton">Click Me!</button>

 	Use the button’s id to get a reference to the button in JavaScript:

var btn = document.getElementById("messageButton");

 	Define a function that can be called when the button is clicked:

var showMessage = function () {
 var messageDiv = document.getElementById("message");
 messageDiv.innerHTML = "You clicked the button!";
};

 	Add an event listener to the button to call a function when the button is clicked:

btn.addEventListener("click", showMessage);

 	Use an input element with its type attribute set to text to display a text box on the page. input elements don’t have closing tags:

<input type="text" id="userMessage" />

 	Get or set the text in a text box by using its value property:

var txtBox = document.getElementById("userMessage");
var message = txtBox.value;

 	Use a select element with option elements to display a drop-down list:

<select>
 <option>Choice 1</option>
 <option>Choice 2</option>
 <option>Choice 3</option>
</select>

 	Execute code depending on the value of a variable or property by using a switch block:

switch (command.type) {
 case "go":
 // Execute code when command.type === "go"
 break;

 case "get":
 // Execute code when command.type === "get"
 break;

 default:
 // Execute code if no other cases match
}

Chapter 19. Templates: filling placeholders with data

 This chapter covers

 	Replacing one string with another

 	Repeating code with while loops

 	Using templates to separate HTML from JavaScript

 	Embedding templates in web pages

 	Transforming one array into another with map

 You want your websites to be easy to navigate and a pleasure to use. Their designs should consider what content to include
 on each page, its accessibility and usability, the look and feel, and the overall user experience. Members of your team, building
 and maintaining a site, will have different strengths; even as a team of one, it makes sense to focus on different aspects
 of a site at different times.

 Get Programming with JavaScript has favored a modular approach to developing applications, and you’ve seen that although there may be more pieces to manage,
 the management of each piece is simpler, more flexible, and more focused. But in moving from pure JavaScript in part 2 to JavaScript and HTML in part 3, there has been an unwelcome crossing of the streams. You now have views that mix data and JavaScript with HTML to produce their output (see chapter 17—or better yet, read on):

 var html = "<h3>" + movie.title + "</h3>";
html += "<p>" + movie.summary + "</p>";

 This chapter shows you how to untangle the HTML from the data and the JavaScript by using templates. The designers on your
 team can focus on their HTML and avoid the tricky JavaScript syntax. And, as ever with a modular approach, isolating the pieces
 improves flexibility, swapability, and maintainability. Don’t cross the streams!

 19.1. Building a news page—breaking news

 In chapters 14, 15, and 16 you worked on a fitness app that let users log their sessions of exercise; you’re part of a team of developers working on
 the app for different devices and platforms. Well, the fitness app is gaining a lot of attention; early reports from testers
 are positive and there’s quite a buzz on social media. You decide to create a news page for the team, to keep developers,
 testers, and other interested parties up to date with the work you’re doing.

 Figure 19.1 shows the news page with two news items. All team members contribute to the news page, adding their items to a central content
 management system (CMS). Someone else manages the CMS and provides you with the news items as JavaScript data. Your job is
 to turn the data into HTML for the news page.

 Figure 19.1. Fitness App News with two news items

 [image:]

 19.1.1. Comparing the news item data and HTML

 The team members are keen and update the news on the content management system regularly. The CMS provides you with data in
 this form:

 var posts = [
 {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
 },
 {
 title: "Improved Formatting",
 body: "The app's looking better than ever...",
 posted: "October 8th, 2016",
 author: "Kallie",
 social: "@kal5tar"
 }
];

 A designer on the team writes the HTML for a single news item:

 <div class="newsItem">
 <h3>Fitness App v1.0 Live! - by Oskar</h3>
 <p>Yes, version 1 is here...</p>
 <p class="posted">Posted: October 3rd, 2016</p>
 <p class="follow">Follow Oskar @appOskar51</p>
</div>

 Each item is wrapped in a div element and is made up of a heading and three paragraphs. The heading includes a span element for the author of the post. (You use the span to style the author differently from the rest of the heading with CSS.) How do you construct the finished HTML news item
 from the data?

 19.1.2. Constructing the HTML by string concatenation

 Up to this point, you’ve been constructing strings for display piece by piece by using string concatenation. For a news item
 you do something like this:

 var item = '<div class="newsItem"><h3>' + post.title;
item += ' - ' + post.author + '</h3>';
item += '<p>' + post.body + '</p>';
item += '<p class="posted">Posted: ' + post.posted + '</p>';
item += '<p class="follow">Follow ' + post.author + ' ';
item += post.social + '</p></div>';

 A big drawback to this approach is the way it mixes up JavaScript and data with HTML. There are some fantastic designers on
 your team who know HTML inside out but who are not so confident with JavaScript. They’ll happily piece together the structure
 of a news item with HTML, but all the var and += and dot notation are a mystery. And even if they were okay with JavaScript, updating the code isn’t exactly a walk in the park; I’m looking at you, quotation
 marks! There is a better way: let the HTML experts stick to what they know best.

 19.1.3. Designing with HTML templates

 You want the designers to come up with some elegant, well-structured HTML for a generic news item, and you’ll then fill it
 with the latest data. You want them to provide you with a template for a news item.

 <div class="newsItem">
 <h3>{{title}} - {{author}}</h3>
 <p>{{body}}</p>
 <p class="posted">Posted: {{posted}}</p>
 <p class="follow">Follow {{author}} {{social}}</p>
</div>

 That’s much neater than all that string concatenation, right? There’s no potential confusion with single and double quotation
 marks, and the different fields of the data (title, body, author, posted, social) are clearly identified as placeholders with double curly braces.

 But if the template is included with the HTML, won’t it appear on the web page? Not if you wrap it in script tags.

 19.1.4. Using script tags for templates

 The HTML templates are kept with the rest of the HTML for a web page, placed within script tags. Use a nonstandard type attribute for the script element, and then when the browser is loading the page it won’t recognize the type and will ignore the template. The content of the script element won’t appear as part of the output—the visible web page—and won’t be run as JavaScript either.

 <script type="text/template" id="newsItemTemplate">
 <div class="newsItem">
 <h3>{{title}} - {{author}}</h3>
 <p>{{body}}</p>
 <p class="posted">Posted: {{posted}}</p>
 <p class="follow">Follow {{author}} {{social}}</p>
 </div>
</script>

 If the script element has a type of "text/javascript" or if the type is missing, the browser will try to execute its contents as JavaScript code. But with a type of "text/template", the browser simply passes over the contents.

 Although the browser will ignore the template when rendering the page, you can still access it from JavaScript via its id attribute.

 var templateScript = document.getElementById("newsItemTemplate");
var templateString = templateScript.innerHTML;

 The first listing shows the contents of the body element for your news page. There’s a heading, a div for the news items, and your template wrapped in a script tag.

 Listing 19.1. Fitness App News (HTML) (http://jsbin.com/viyuyo/edit?html,output)

 [image:]

 You only need to find a way to replace the placeholders with the actual data, and you’ll have news items ready for publication.
 You need to learn how to replace one string, a placeholder, with another, some data.

 19.2. Replacing one string with another

 To switch one string for another, you use the replace string method, passing the string to find as the first argument and the string with which to replace it as the second. The
 method returns a new string. The following listing shows how to replace the string "{{title}}" with the string "Fitness App v1.0 Live!". It produces the following output on the console:

 > <h3>{{title}}</h3>
> <h3>Fitness App v1.0 Live!</h3>

 Listing 19.2. Replacing one string with another (http://jsbin.com/jeyohu/edit?js,console)

 [image:]

 The replace method searches the string to which it is attached, returning a new string.

 before.replace(string1, string2);

 This snippet searches the string stored in the variable before.

 19.2.1. Chaining calls to replace

 The replace method acts on strings. It also returns a string. This means replace can be called on its own return value, allowing you to chain calls like this:

 template
 .replace("{{title}}", "Fitness App v1.0 Live!")
 .replace("{{author}}", "Oskar");

 If template is the string "<h3>{{title}} - by {{author}}</h3>", then the previous snippet works through the following steps. First, the {{title}} placeholder is replaced:

 "<h3>{{title}} - by {{author}}</h3>"
 .replace("{{title}}", "Fitness App v1.0 Live!")
 .replace("{{author}}", "Oskar");

 Then the {{author}} placeholder is replaced:

 "<h3>Fitness App v1.0 Live! - by {{author}}</h3>"
 .replace("{{author}}", "Oskar");

 The final result is

 "<h3>Fitness App v1.0 Live! - by Oskar</h3>";

 Listing 19.3 shows an example of chaining two calls to replace. It produces the following output on the console:

 > Follow {{author}} {{social}}
> Follow Oskar @appOskar51

 Listing 19.3. Chaining calls to replace (http://jsbin.com/rebugu/edit?js,console)

 [image:]

 The calls to replace were written across multiple lines in listing 19.3. This has no impact on the program but makes it easier for someone reading the code to pick out the separate calls. When
 methods can be chained with dot notation, like replace, they are said to have a fluent interface. Programmers often design whole suites of objects and methods to use fluent interfaces so they become easier to use, read,
 and understand.

 19.3. While loops—replacing a string multiple times

 Knowing how to use replace to swap one string for another, you write code to test it out for the news page. Figure 19.2 shows what a news item template looks like before you replace its placeholders.

 Figure 19.2. A news item with all of its placeholders showing

 [image:]

 The data for a news item is a JavaScript object with five properties: title, body, author, posted, and social:

 var data = {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
};

 You call replace for each of the properties and, at first, you think things have gone well. Figure 19.3 shows the rendered news item.

 Figure 19.3. A news item—one of the {{author}} placeholders has not been replaced (bottom right).

 [image:]

 Close, but no Pulitzer! One of the placeholders hasn’t been replaced. There’s still a stubborn {{author}} in the bottom right of the news item. The following listing shows the code you used. What went wrong?

 Listing 19.4. Calling replace once for each property (http://jsbin.com/quroha/edit?js,html,output)

 [image:]

 The problem is, the replace method replaces only the first occurrence of the string it’s trying to match. The news item template has two {{author}} placeholders and you replace only one of them. Have a go at fixing the problem yourself, by calling replace twice for the same placeholder.

 The template and replace code are all a bit too tightly coupled. If the designer changes the template to include the {{author}} placeholder a third time (maybe for an email link or a short bio), you’ll have to dig back into the JavaScript and update
 the code to add another call to replace.

 You want code that automatically keeps calling replace while there are placeholders to fill. How can you call replace the correct number of times?

 19.3.1. Repeating code while a condition is met

 All of the placeholders in your news item template need to be replaced with the corresponding data. For example, both instances
 of {{author}} should be filled with Oskar, as shown in the top right and bottom right of figure 19.4.

 Figure 19.4. Both author placeholders have been replaced with Oskar (top right and bottom right).

 [image:]

 Your code should keep calling replace while it finds a placeholder for each property. In pseudocode (pretend code) it should look something like this:

 while there is a placeholder {
 replace the placeholder with data
}

 The code block between the curly braces should keep being repeated while there’s a placeholder. Once no placeholder is found,
 the code block can be skipped. Here’s how to accomplish that goal in JavaScript:

 while (filled.indexOf(placeholder) !== -1) {
 filled = filled.replace(placeholder, data.property);
}

 You’ll dig into the details shortly, so don’t worry too much if you don’t follow everything yet. But you should be able to
 appreciate the gist of what the code is doing. Let’s look at how the while loop works in general.

 19.3.2. The while loop

 The while loop keeps calling replace while a placeholder is found in the filled string. When no placeholder is found, execution continues after the code block. In general, the while loop lets you repeatedly execute a block of code while a condition is true. The structure of a while loop looks like this:

 while (condition) {
 // Code to execute if condition is true.
}

 The loop first evaluates the condition. If it evaluates to true, then the code block is executed, just like an if statement. Unlike an if statement, once the code block has been executed, the while loop evaluates the condition again. If the condition still evaluates to true, then the block is executed again. The loop keeps executing the code block while the condition is true. If the condition is false, then the code block is skipped and the program continues with the statements after the block.

 The next listing shows a while loop being used to display whole numbers from 1 to 10.

 Listing 19.5. Using a while loop to count (http://jsbin.com/quroga/edit?js,console)

 [image:]

 Once the count variable reaches 11, the condition will evaluate to false and the value of count won’t be logged to the console. The code block should always change the value of a variable used in the condition. Otherwise,
 if the condition’s value starts as true, it will never become false and the loop will become an infinite loop. In listing 19.5, you use the increment operator, ++, to add 1 to the value of count. Three different ways of adding 1 to the value of a count variable are shown here:

 count = count + 1;
count += 1;
count++;

 19.3.3. Replacing a string while it can be found

 You can use a while loop to replace multiple occurrences of a placeholder. First, check if the placeholder you want to replace is present with
 the indexOf method. indexOf returns -1 if a string can’t be found. If the placeholder is found, then indexOf won’t return -1. Use that fact in the condition of a while loop:

 while (filled.indexOf(placeholder) !== -1) {
 // Make changes to filled
}

 Listing 19.6 uses a while loop to keep replacing a string until it’s no longer found. It produces the following output on the console:

 > Starting replacement...
> {{title}} by Oskar. Follow {{author}} {{social}}
> {{title}} by Oskar. Follow Oskar {{social}}
> ...replacement finished.

 Listing 19.6. Using a while loop with replace (http://jsbin.com/cabaju/edit?js,console)

 [image:]

 The code first logs that it’s starting the replacement process. The while loop then executes its code block twice, replacing one instance of {{author}} and then the other. With no more instances of {{author}} to find, filled.indexOf("{{author}}") returns -1 and the while loop ends. Execution continues after the loop, and the code concludes by logging that the replacement process has finished.

 19.3.4. Replacing strings with regular expressions

 There’s an alternative way of replacing strings. It uses regular expressions, a powerful but often complicated way of specifying patterns of characters you want to match and replace. Regular expressions
 are a little beyond the scope of the book, but you can investigate a number of examples on the Get Programming with JavaScript website at www.room51.co.uk/js/regexp.html.

 19.4. Automating placeholder replacement for templates

 The fitness app uses data for user exercise sessions, and its news page uses data for news items. The quiz app uses data for
 sets of questions and answers, and The Crypt uses data for its maps. It would be great to use HTML templates to display all kinds of data you might find in your projects.
 But you don’t want to have to reinvent the while every time you need to fill placeholders with data. So, what’s the key to automating template use?

 19.4.1. Matching template placeholders with object properties

 Figure 19.5 shows a news item from the fitness app news page again. The placeholders have yet to be filled with data.

 Figure 19.5. A news item with placeholders unfilled

 [image:]

 The data that will fill the placeholders looks like this:

 var data = {
 title: "Fitness App v1.0 Live!",
 body: "Yes, version 1 is here...",
 posted: "October 3rd, 2016",
 author: "Oskar",
 social: "@appOskar51"
};

 The property names of the news item data object, its keys, match the names of the placeholders in the template. For each key, you want to keep replacing its matching placeholders
 while they can be found.

 1. Start with title and keep replacing {{title}} with Fitness App v1.0 Live! until there are no more {{title}} placeholders to replace.

 2. Move on to body and keep replacing {{body}} with Yes, version 1 is here... until there are no more {{body}} placeholders to replace.

 3. Repeat the process for each key until all of the keys have had all of their placeholders replaced.

 You can get an array of all of the news item’s property names by using the Object .keys method.

 var keys = Object.keys(data);

 For the news item, keys = ["title", "body", "posted", "author", "social"].

 Armed with the keys, you can easily create the placeholders and replace them with values in the template. Remember, you can
 use square bracket notation to retrieve the value for a key:

 data["title"]; // "Fitness App v1.0 Live!"
data["author"]; // "Oskar"

 And if you have a property’s key, you can also build the placeholder you need to match in the template:

 var placeholder = "{{" + key + "}}";

 The key for a property is well named; you use it to unlock the value of the property and its placeholder (table 19.1).

 Table 19.1. A property’s keys are used to access its value and build its placeholder

 	
 Key

 	
 Value

 	
 Placeholder

 	title
 	data["title"]

 	{{title}}

 	body
 	data["body"]

 	{{body}}

 	posted
 	data["posted"]

 	{{posted}}

 19.4.2. Filling all of the placeholders for each key

 It’s time to bring all of the parts together and write some code that will not only fill templates with data for the fitness
 app news page but will also work with any data and matching templates. Listing 19.7 shows a fill function that uses the ideas from the previous section, iterating over the keys of a data object and replacing the placeholders
 with values.

 Listing 19.7. A function to fill templates with data (http://jsbin.com/bazika/edit?js,output)

 [image:]

 [image:]

 Listing 19.7 also includes code to test the fill function. On the last line, it sets the contents of a div element with the HTML returned by the function.

 19.4.3. Building a list of items using a template

 You’re already smiling. Yes, the fitness app news page features a list of news items. And yes, your template fill function works with only a single news item. But you know the power of forEach for working with lists. Writing a fillList function is a snap, as shown here.

 Listing 19.8. Building a list using a template (http://jsbin.com/hilecu/edit?js,output)

 [image:]

 [image:]

 In the fillList function in listing 19.8, you use the forEach method to iterate over the array of data objects, dataArray, passing each one to the fill function and appending the filled templates it returns to listString.

 Now that you have the two template functions you need, you’re keen to get the scoop on the finished fitness app news page.

 19.5. Building a news page—news just in

 It’s time to get modular. You know how the fitness app team rolls; they love to share code but they hate pollution. They want
 to see a finished news page with separate data and template modules. Figure 19.6 shows the setup.

 Figure 19.6. The page includes the news item template and JavaScript code and imports two modules.

 [image:]

 The news page on JS Bin includes the news item template inside a script element and code in the JavaScript panel that uses the modules and template to display the news items. The finished web page
 with two news items displayed was shown in figure 19.1.

 To finish your work on the news page, first create the modules and then import them into the web page. Read all about it in
 the next two sections.

 19.5.1. Creating the templates and data modules

 Put the template functions into one module and the news data into another. Use namespaces to avoid creating too many local
 variables.

 Templating functions

 The next listing shows how the two templating functions from listings 19.7 and 19.8 are packaged into a templates module.

 Listing 19.9. The templates module (http://jsbin.com/pugase/edit?js,console)

 [image:]

 You use a new namespace, gpwj (from Get Programming with JavaScript); the templates module will be useful in so many projects that it’s worth having it as part of a general utilities namespace
 rather than in with the fitness app or The Crypt or wherever else it will be used. To call the functions, include the namespace:

 var newsItemHTML = gpwj.templates.fill(newsItemTemplate, data);

 News data

 For the real-world news page, the data will come from a central content management system. You mimic the CMS news feed by
 creating a module that supplies dummy data. You can swap the module for one with a live CMS connection further down the line.

 The next listing includes the data and a function for getting it assigned to the fitnessApp.news namespace.

 Listing 19.10. A news page data module (http://jsbin.com/fupiki/edit?js,console)

 [image:]

 To get news items, call getItems, specifying the number of items you want. For example, to get three news items you’d use the following code:

 var itemsData = fitnessApp.news.getItems(3);

 The real news data module that retrieves items from the CMS will use the same interface as listing 19.10. In other words, its news will also be accessed by calling its getItems method. By using the same interface, you can easily swap modules from your static version to the dynamic CMS version.

 19.5.2. Importing the modules

 To provide your readers with the latest headlines on developments from the fitness app team, you create the simple news page
 HTML shown here.

 Listing 19.11. A modular news page (HTML) (http://jsbin.com/vemufa/edit?html,output)

 [image:]

 To bring all of the pieces together, you add JavaScript that retrieves the template from the page, fills it with the news
 item data, and updates the news div with the generated HTML, as in the next listing.

 Listing 19.12. A modular news page (http://jsbin.com/vemufa/edit?js,output)

 [image:]

 Using templates is a common way to generate HTML from an application’s data. There are many JavaScript templating libraries
 freely available for general use; Handlebars, Moustache, and Pug are three popular examples.

 Stop the press! Your team members love the neat, modular, reusable approach you’ve taken and vow to add new news items every
 day. Some of them have already started incorporating the gpwj.templates functions into their own applications. You decide to do the same, as you return to The Crypt.

 19.6. The Crypt—improving the views

 In chapter 17 you created some web-based views for players and places. The information they displayed, originally intended for the console,
 was formatted with spaces, line breaks, and boxes and borders from the spacer namespace, rather than HTML. Now that you’ve seen how templates can be used to separate markup and JavaScript, it’s time
 to improve the views so that appropriate HTML tags are used to wrap data in The Crypt.

 Figure 19.7 shows what The Crypt will look like after the changes. Switching to HTML from plain text makes it possible to style the output with CSS, leading
 to much greater potential for visually interesting designs. Figure 19.8 shows the modules for the project with new and updated modules highlighted.

 Figure 19.7. The latest version of The Crypt uses HTML templates to build page elements.

 [image:]

 Figure 19.8. Modules in The Crypt with new or updated modules highlighted

 [image:]

 You created the Templates module earlier in the chapter. Now you create templates and update the views to use them.

 19.6.1. Creating HTML templates for all of the views

 The following listing shows all of the templates for The Crypt embedded within HTML script tags. They’re part of a full web page on JS Bin.

 Listing 19.13. The Crypt with Templates (HTML) (http://jsbin.com/yapiyic/edit?html,output)

 [image:]

 There’s no JavaScript mixed with the templates. A web designer used to working in HTML could use their knowledge to update
 the templates without having to unpick the HTML from any other code. Clearly, this separation of concerns makes the templates
 neater, easier to read, and easier to use for anyone involved in building the application.

 19.6.2. Updating the views to use the new templates

 With the template strings for The Crypt now embedded as HTML on the page, you need to update the view modules to grab the template strings and fill them with a message
 or with data from the player and place models. Listings 19.14, 19.15, and 19.16 show the new view code. Note: The views are designed to be used by the controller and won’t work in isolation. The links to JS Bin are included so you can copy, clone, or change the code if you choose.

 Messages

 The simplest view is the message view. Here’s the updated code.

 Listing 19.14. A message view using templates (http://jsbin.com/jojeyo/edit?js,console)

 [image:]

 The messages passed to the render method for the message view are just strings. The template.fill method expects objects (it uses object keys to create placeholders and find values), so render creates an object, data, from the message to use as the argument. A message of "hello" becomes { message : "hello" }. The fill method will then replace the {{message}} placeholder with the value "hello".

 Players

 The player view is slightly more complicated than the message view because players have items. As well as having a template
 string to display the player’s name and health, the player view needs another for the items.

 The next listing shows the new player view. The code relating to items is shown in bold.

 Listing 19.15. A player view using templates (http://jsbin.com/suyona/edit?js,console)

 [image:]

 [image:]

 The player’s items data is an array of strings. Because fillList expects an array of objects, you use map to transform the array from strings to objects. You pass a function to the map method and map builds a new array, with each new element created by the function. The array ["a lamp", "a key"] becomes [{ item : "a lamp" }, { item : "a key" }].

 The items HTML generated by fillList can’t be added to the page until the player HTML has been added because the player HTML includes the ol element that will contain the items.

 //Add the filled player template to the page.
playerDiv.innerHTML = gpwj.templates.fill(playerTemplate, data);

// Get a reference to the playerItems ol that's just been added to the page
itemsDiv = document.getElementById("playerItems");

// Add the HTML for the list of items to the playerItems ol element
itemsDiv.innerHTML = gpwj.templates.fillList(itemTemplate, items);

 Places

 The places view is the most complicated because places have items and exits. But the method for displaying exits is the same as that for items, so the extra complication is just a touch of repetition.
 The exits data is an array of strings, just like the items data. The same template can be used for both.

 The following listing shows the updated place view. The code for exits is in bold.

 Listing 19.16. A place view using templates (http://jsbin.com/yoquna/edit?js,console)

 [image:]

 [image:]

 Once again, map is used to convert an array of strings into an array of objects, this time for both items and exits.

 19.6.3. Enter The Crypt

 Listing 19.13 on JS Bin is a working example of The Crypt using templates and the three new views. The scripts to import the new modules are shown here:

 <!-- gpwj.templates -->
<script src="http://output.jsbin.com/pugase.js"></script>

<!-- player view -->
<script src="http://output.jsbin.com/suyona.js"></script>
<!-- place view -->
<script src="http://output.jsbin.com/yoquna.js"></script>
<!-- message view -->
<script src="http://output.jsbin.com/jojeyo.js"></script>

 Make your way to http://output.jsbin.com/yapiyic and have a play.

 19.7. Summary

 	Use the replace string method to replace one string with another:

"One too three".replace("too", "two"); // Returns "One two three"

 	Chain calls to replace to swap multiple strings:

"One too three".replace("One", "Far").replace("three", "long");
// Returns "Far too long"

 	Use a while loop to execute a block of code while a condition remains true.

var count = 10;

while (count > 5) { // Displays 10 9 8 7 6 on separate lines
 console.log(count);
 count = count – 1;
}

 	Use the map array method to create a new array based on the elements of an existing array. The function passed to map as an argument returns a new value based on an old value:

var planets = ["Mercury", "Venus"];

var bigPlanets = planets.map(function (oldValue) {
 return oldValue + " becomes " + oldValue.toUpperCase();
});

// bigPlanets === ["Mercury becomes MERCURY", "Venus becomes VENUS"]

 	Use template strings with placeholders to avoid mixing JavaScript with display strings:

var templateString = "<h3>{{title}}</h3><p>{{body}}</p>";

 	Embed template strings in HTML by using script tags with nonstandard type attributes.

<script type="text/template" id="postTemplate">
 <h3>{{title}}</h3><p>{{body}}</p>
</script>

 	Access the template from JavaScript via the script tag’s id attribute and the element’s innerHTML property:

var templateString = document.getElementById("postTemplate").innerHTML;

 	Fill a template with data from an object. It returns a string with the placeholders replaced by the properties of the object:

var data = {title: "Out of Office", body: "I'm going on an adventure!"};
var template = "<h3>{{title}}</h3><p>{{body}}</p>";
gpwj.templates.fill(template, data);
// Returns "<h3>Out of Office</h3><p>I'm going on an adventure!</p>"

Chapter 20. XHR: loading data

 This chapter covers

 	Loading data with the XMLHttpRequest object

 	Calling functions once the data loads

 	Updating views with loaded data

 	JavaScript Object Notation (JSON)

 	Converting JSON text into JavaScript objects

 A calendar or movies database or adventure game can use a lot of data. A news site may have up-to-the-minute updates with
 breaking news and sports scores. It’s not always desirable to load all of the data at once or for a visitor to have to keep
 refreshing a web page to get the latest information. It would be great if a page could access just the pieces of new data
 it needs to stay fresh, even after it has loaded. Stock prices, tweets, comments, scores, and, yes, the current health of
 zombies can all be updated independently without a full page reload.

 This chapter shows you how to reach out across the internet and grab data for your apps while they’re running. In particular,
 you load exercise data as you switch between users in the fitness app, and you load location data, tomb by tomb, as players
 solve the riddles of The Crypt.

 20.1. Building a fitness app—retrieving user data

 You and your team have been building a fitness app that lets users track their exercise (see chapters 14 to 16). The app can convert JavaScript data into user models, use a choice of views to display user info on the console, and accept
 user input at the console prompt. The tasks you were given for the project are these:

 1. Retrieve user data as a string.

 2. Convert user data into user models.

 3. Display user data.

 4. Provide an interface for users to add sessions.

 You’ve completed tasks 2, 3, and 4, and now it’s time to retrieve user data over the internet. You want to be able to switch
 between users while using the app, as shown in figure 20.1.

 Figure 20.1. Switching between users while using the fitness app

 [image:]

 Figure 20.1 shows an app.loadUser method being called to load data for second and third users. Before you can get your hands on the data, you need some way
 of specifying the location of the data for each user.

 20.1.1. Locating the user data

 Different team members are working on versions of the fitness app for different platforms and devices. But all of the versions
 will use the same data, provided by the central fitness app server, as shown in figure 20.2.

 Figure 20.2. The same data is used by all of the apps.

 [image:]

 Up until now, while developing the app, you’ve been using a static data file for a single user. You want to be able to swap
 between users without reloading the whole app and without loading the data for all of the users at once (you’re hoping for
 lots of users!). You decide to define a loadUser method that will load user data for a given user ID and display it on the console:

 > app.loadUser("qiwizo")
 Loading user details...

 Mahesha
 120 minutes on 2017-02-05
 35 minutes on 2017-02-06
 45 minutes on 2017-02-06

 200 minutes so far
 Well done!

 Your IDs for the fitness app correspond to files on JS Bin; in a real application they may be IDs from a database or maybe
 unique usernames. Each file contains the data for just one user. For example, here’s Mahesha’s data at http://output.jsbin.com/qiwizo.json:

 {
 "name" : "Mahesha",
 "sessions" : [
 {"sessionDate": "2017-02-05", "duration": 120},
 {"sessionDate": "2017-02-06", "duration": 35},
 {"sessionDate": "2017-02-06", "duration": 45}
]
}

 So, how do you load data for a player while your program is running? The secret lies with the strangely named XMLHttpRequest object. But before you load up its secrets, it’ll be worth getting a better sense of the steps involved in working with the remote data.

 20.1.2. Loading the user data—an outline

 You need to load user data for the fitness app. Whenever a user calls the loadUser method, your app needs to reach out across the internet, find the data, retrieve it, and then use it. To do all that, the
 app will need the following:

 	A user ID

 	A URL at which to find the data

 	A function to call once the data is retrieved

 The third requirement is worth considering further. The data is across the internet, possibly across the world, on another
 machine. It will take time for the data to be found and retrieved (hopefully milliseconds, but maybe seconds). Your program
 needs the data before it can use it to create a new User and update the display. You define a function, called a callback function, that will be called when the data is loaded. You’ve come across callback functions before: when working with buttons in
 chapter 18, you asked for a function to be called when a button was clicked. It was as if the function were listening for the click
 event to happen. For loading user data, your callback function is listening for a load event to happen. Your code for loading
 user data and using it to update the app will be something like this:

 function updateUser (userData) {
 // Create a new User from the data
 // Use a view to update the display
}

function loadData (id, callback) {
 // Build a URL using the id

 // Let the app know to run the callback function when the data loads

 // Tell the app to go and get the data from the URL
}

loadData("qiwizo", updateUser);

 You pass the loadData function the id of the user, qiwizo, and a function to call when the data has loaded, updateUser.

 You have a sense of the steps involved in retrieving the data you need. It’s time to study the specifics.

 20.1.3. Loading the user data—the XMLHttpRequest constructor

 Yes, the XMLHttpRequest constructor has a funny name, although the request bit’s okay. You want to request information from a computer, a server, somewhere in the world. You can research XML and HTTP as homework. From now on, apart from in code, I’ll call it the XHR
 constructor. Short. Snappy. Cuddly?

 The XHR constructor is provided by the browser. You use it to create XHR objects that include methods for requesting resources
 from across the internet. You pass an XHR object a URL and a function to call, and when it loads the data it will call your
 function. Figure 20.3 shows the data retrieved when an XHR object is used to load the data for a user in the fitness app.

 Figure 20.3. The string of data returned by an XHR object

 [image:]

 Listing 20.1 has the code, which includes these five steps, required to make the request for the data.

 1. Use the XHR constructor to create an XHR object

 2. State or build the URL

 3. Give the XHR object a function to call when the data has loaded

 4. Call the open method, passing it the URL

 5. Call the send method to start the request

 Listing 20.1. Using an XHR object to load user data (http://jsbin.com/qakofo/edit?js,console)

 [image:]

 You call the XHR constructor with the new keyword and it creates and returns an XHR object. You call the object’s methods to set up and start the request. You provide
 a function to call once the data is loaded; in listing 20.1 you use a function expression as the second argument to addEventListener, but you could also use the name of a previously defined function. Once loaded, the data is automatically assigned to the
 responseText property of the XHR object and your callback function can access the data via that property. The first argument to the open function, GET, is the HTTP method or verb for the request. You stick with GET for this chapter because you’re getting data, but there are other verbs, like POST, PUT, and DELETE.

 You can see in figure 20.3 that the data is returned as text. The text is shown between double quotation marks (the very first character and the very
 last). The data is in a format called JavaScript Object Notation (JSON), which is discussed in more detail in section 20.2. Because it’s text, a string, you can’t access the data as you would a JavaScript object, with expressions such as data.name or data["sessions"].

 Happily, there’s a simple way to convert the JSON text into a JavaScript object.

 20.1.4. Loading the user data—parsing the XHR response with JSON.parse

 The XHR request runs your callback function once it has loaded the data for a fitness app user. The data, as a string, is
 automatically assigned to the responseText property of the XHR object. In order to translate the string into a JavaScript object with properties you can access, like
 name and sessions, you use the JSON.parse JavaScript method.

 var dataAsObject = JSON.parse(dataAsString);

 Figure 20.4 shows what the user data looks like once you parse it and log it to the console. Rather than just a string, it’s now an object with properties (compare figures 20.3 and 20.4).

 Figure 20.4. Once the

 [image:]

 The following listing updates listing 20.1, parsing the loaded text to obtain a Java-Script object, before logging the data to the console.

 Listing 20.2. Parsing JSON text to obtain a JavaScript object (http://jsbin.com/rexolo/edit?js,console)

 [image:]

 You should have a big smile on your face. With just a few lines of code, you can access data from anywhere in the world. (Well,
 from the server hosting your web page. But that could be anywhere.) Big hugs.

 All of the apps developed in Get Programming with JavaScript could benefit from an easy way to access data on JS Bin; the bin codes it generates, like qiwizo, are a bit fiddly. In the next section, you package the XHR code into a load function that makes retrieving data even easier.

 20.1.5. Loading JS Bin data—a handy function

 The quiz app, the My Movie Ratings page, the fitness app news page, and The Crypt could all use the ability to load data while running, just like the fitness app itself. To streamline the process of loading
 data from JS Bin, you create a module, Bin Data.

 As a general utility function, you add the load function to the gpwj namespace, already home to templating functions (see chapter 19). To load the data in a JS Bin file, you use code of the following form:

 function doSomethingWithData (data) {
 // Do something amazing with the data
}

gpwj.data.load("qiwizo", doSomethingWithData);

 The next listing shows the function in action. It produces the output in figure 20.4.

 Listing 20.3. A function for loading JS Bin data (http://jsbin.com/suxoge/edit?js,console)

 [image:]

 You use the load function to grab location data in The Crypt in section 20.3. Data-loading versions of the other projects in the book are available on the Get Programming with JavaScript website at www.room51.co.uk/books/getprogramming/projects/. The fitness app gets the upgrade right now.

 20.1.6. Building the fitness app

 The fitness app team is excited to see the working prototype of the console-based program. There are three tasks remaining:

 1. Update the controller module to use the new load function for user data

 2. Use script elements to load the modules the app uses

 3. Add a line of JavaScript to initialize the app

 The new controller is shown here. It has a loadUser function that calls the gpwj.data .load method. Both loadUser and log are returned from the init method as an interface.

 Listing 20.4. The fitness app controller (http://jsbin.com/nudezo/edit?js,console)

 [image:]

 [image:]

 Because the app loads user data while running, there’s a chance a user may try to log an exercise session before the data
 has loaded (the fitness app users are super-keen). The log method makes sure the user has been set, user !== null, before allowing logging to take place. Remember, null is a special JavaScript value often used to signify that an object is expected but is missing or not yet assigned.

 With all the pieces in place, it’s simply a matter of gathering them together and firing the starting pistol. The four fitness
 app modules are shown in figure 20.5, with the Bin Data module replacing the module that provided static data.

 Figure 20.5. The modules that make up the fitness app

 [image:]

 You haven’t had to alter the User constructor or view. The next listing shows the script elements used to load the four modules.

 Listing 20.5. The fitness app (HTML) (http://jsbin.com/mikigo/edit?html,console)

 <!-- fitnessApp.User -->
<script src="http://output.jsbin.com/fasebo.js"></script>

<!-- fitnessApp.userView -->
<script src="http://output.jsbin.com/yapahe.js"></script>

<!-- fitnessApp.controller -->
<script src="http://output.jsbin.com/nudezo.js"></script>

<!-- gpwj.data -->
<script src="http://output.jsbin.com/guzula.json"></script>

 The following listing shows the JavaScript that fires the starting pistol, calling fitnessApp.init with the JS Bin code for an initial user.

 Listing 20.6. The fitness app (http://jsbin.com/mikigo/edit?js,console)

 var app = fitnessApp.init("qiwizo");

 The best place to see the app in action is on JS Bin, but figure 20.1 at the start of the chapter shows a user loading and logging sessions.

 You’re thrilled with the working app and so is the development team. But there’s something missing (apart from actually being
 able to save data somewhere). Isn’t part 3 of Get Programming with JavaScript all about HTML-based apps? Why are you back at the console?

 20.1.7. The fitness app—what’s next?

 Figure 20.6 shows what you’re really after—an HTML-based fitness app with drop-down lists, text boxes, and buttons. You can choose users
 from a list, load their details, and log new sessions. With all you’ve learned in the book, could you build the app? There’s
 nothing like jumping in and trying to build something yourself for helping you learn. There’s no pressure, no race, and no
 failure; be brave and curious, make mistakes, and ask for help. Even if you don’t make it to the finish line, you’re sure
 to learn lots along the way, get a great JavaScript workout, and build your coding muscles. And once you’ve tried it for yourself,
 you can sneak a peek at http://jsbin.com/vayogu/edit?output to see one way of piecing it together. (Don’t forget to run the program.)

 Figure 20.6. The fitness app using web-based views

 [image:]

 And if it’s an HTML-based data-driven app that you’re after, there’s no better place to see it in action than in The Crypt.

 But first, as promised, here’s a very brief introduction to the JSON data format.

 20.2. JSON—a simple data format

 JSON is a data format that’s easy for humans to read and write and easy for computers to parse and generate. It has become
 very popular as a format for exchanging data on the web. Here’s a calendar event written in JSON:

 {
 "title" : "Cooking with Cheese",
 "date" : "Wed 20 June",
 "location" : "The Kitchen"
}

 The format should be very familiar; it’s based on a subset of JavaScript. Property names and strings must be enclosed in double
 quotation marks. Property values can be arrays or nested objects. Here is some calendar data for June:

 {
 "calEvents" : [
 {
 "title" : "Sword Sharpening",
 "date" : "Mon 3 June",
 "location" : "The Crypt"
 },
 {
 "title" : "Team Work Session",
 "date" : "Mon 17 June",
 "location" : "The Crypt"
 },
 {
 "title" : "Cooking with Cheese",
 "date" : "Wed 20 June",
 "location" : "The Kitchen"
 }
]
}

 Values can also be numbers, booleans, null, and undefined. That’s as much as you need. (There’s not much more to JSON, to be honest. The full specification is at http://json.org. You may be surprised at how brief it is—you have to love those train track diagrams for efficiency!)

 JSON data is transferred as text. So, how do you convert it into objects and arrays that can be used in a JavaScript program?

 20.2.1. Converting JSON into objects and arrays with JSON.parse

 You turn JSON as text into JavaScript objects by passing it to the JSON.parse method. You can then access the properties or elements in the data using dot or bracket notations. If you’ve used an XHR
 object to send a request for a single calendar event as JSON, you can convert the response to a JavaScript object like this:

 var calEvent = JSON.parse(xhr.responseText);

calEvent.title; // Cooking with Cheese
calEvent.date; // Wed 20 June
calEvent.location; // The Kitchen

 That’s quite a brief introduction to JSON, but seeing as the whole book is about JavaScript, it should be enough.

 It’s time to load map data, mysterious room by mysterious room, as you return to The Crypt.

 20.3. The Crypt—loading a map on demand

 Adventures in The Crypt involve exploring ancient tombs, sprawling spaceships, and mysterious forests. Each adventure may cover dozens of locations
 with little chance of completion in a single sitting. Rather than loading the whole map at the start of a game, it might make
 more sense to load places only when a player visits them. The game can store the JSON data for each place in a separate file
 on JS Bin and use XMLHttpRequest to load the files when needed.

 Figure 20.7 shows only the first location, loaded at the start of a game. The loaded data includes the JS Bin file codes for the exits
 from the location. The data file for the location south of the The Kitchen has the code kacaluy, for example.

 Figure 20.7. At the start of the game, only the initial place data is loaded.

 [image:]

 The data for each place on the map is loaded only when a player moves to that place. Figure 20.8 shows the same map once a player has moved south from The Kitchen. The data for The Old Library has now been loaded.

 Figure 20.8. The data for The Old Library has been loaded because the player moved there.

 [image:]

 To allow step-by-step loading like this, you have to include the JS Bin file codes for each place’s exits in its map data.

 20.3.1. Specifying exits with JS Bin file codes

 Say a game in The Crypt starts in The Kitchen. At first, the game will load only the data for The Kitchen, not for any other places on the map. That’s
 a lot less data loaded at the start of the game. The next listing shows the data for that single location. (The challenges
 have been left out so you can focus on the ids.)

 Listing 20.7. The JSON data for The Kitchen (http://output.jsbin.com/qulude.json)

 [image:]

 Each place has a unique id that corresponds to the JS Bin code of the file where its data is stored. You use the id to construct a place’s URL like this:

 var url = "http://output.jsbin.com/" + id + ".json";

 Players will move back and forth around the map, solving puzzles, collecting treasure, dissolving zombies, and licking leopards.
 They’re likely to visit some locations several times, and you’d like to avoid loading the same data again and again.

 20.3.2. Using a cache—load each place only once

 Whenever you create a new place from loaded data, you store it in a cache, using the place’s id as the key. Further requests for a place can be given the stored place from the cache, avoiding repeatedly loading the same
 data from JS Bin.

 var placeStore = {}; // Set up an object to store the loaded places

placesStore[placeData.id] = place; // Use the place's id as the key

 20.3.3. Replacing the Map Data and Map Builder modules with Map Manager

 The map builder for The Crypt used to take data for the whole map, create all of the place models, and then add the items, exits, and challenges to the
 places. Once it had done that for the whole map, it would return the first place and the game was ready to play. You now load
 one place at a time; you need a function to load the individual place data and a function to build a single place model from
 the loaded data.

 Listing 20.8 shows the code for a new Map Manager module that will replace the map-building code you were using in previous versions of
 The Crypt (figure 20.9). The Map Manager module makes a single method available in its interface, loadPlace. Use it with a previously defined callback function or a function expression:

 Figure 20.9. The modules for The Crypt with new or updated modules highlighted

 [image:]

 // Use a previously defined function as the callback
theCrypt.map.loadPlace("qiwizo", doSomethingWithPlace);

// Use a function expression as the callback
theCrypt.map.loadPlace("qiwizo", function (place) {
 // Use the place model
});

 Listing 20.8. Map Manager (http://jsbin.com/xesoxu/edit?js)

 [image:]

 [image:]

 The Map Manager is made up of two functions. Let’s explore them in turn.

 Adding a place to the store

 The addPlace function uses the Place constructor to create a model from the data; adds items, exits, and challenges; stores the place in the cache; and returns
 it.

 function addPlace (placeData) {
 // Create a place model

 // Store place in cache

 // Add items
 // Add exits and challenges

 // Return the new place model
}

 There’s nothing more to say for the function; apart from the cache, you’ve seen it all before.

 Loading the data for a single place

 When you call the loadPlace function, you give it the id of the place you want and a callback function. Your callback will be called with the place model for the id as an argument.

 callback(place);

 But where does the loadPlace function get the place model from? First, it tries the cache. If the place isn’t there, it loads the place data from JS Bin.

 var place = placesStore[id]; // Try to get the place from the cache

if (place === undefined) {
 // The place is not in the cache, so
 // load the place data from JS Bin and
 // pass the place to the callback
 callback(place);
} else {
 // The place was in the cache, so
 // pass it to the callback
 callback(place);
}

 If the loadPlace function has to load the data, it uses the Bin Data module’s load function to get it from JS Bin. The place wasn’t in the cache, so the code passes the place data to addPlace, to create and store the model, before passing the new place model to the callback.

 gpwj.data.load(id, function (placeData) {
 var place = addPlace(placeData); // Create and store a place model
 callback(place); // Pass the new place model to the callback
});

 Now you know how the data loading works, you put it to use in the game controller, for loading an initial location and for
 moving a player to a new location.

 20.3.4. Updating the game controller to use the Map Manager

 You’ll need to update two controller methods to make use of the new Map Manager. The init method used to call buildMap to build the whole map for an adventure. Now it will call loadPlace to load only the first place in the game. And because places are no longer preloaded, the go method will need to call loadPlace to retrieve a place from the cache or load it from JS Bin.

 The next listing shows the two updated methods in the context of the controller.

 Listing 20.9. The game controller using the Map Manager (http://jsbin.com/vezaza/edit?js)

 [image:]

 [image:]

 The init method can’t do the bulk of its work until the starting place has been loaded. Most of its code, therefore, is inside the
 callback function passed to loadPlace. Similarly, the go method gets the place with loadPlace before setting it as the player’s new location.

 20.3.5. Building the game page

 All that’s left is to import the modules and add a few lines of JavaScript to initialize the game.

 The following listing shows the full HTML for the game. The messages div and the text box for commands have been moved above the place and player sections.

 Listing 20.10. The Crypt (HTML) (http://jsbin.com/cujibok/edit?html,output)

 <!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>The Crypt</title>
</head>
<body>

 <h1>The Crypt</h1>

 <div id="messages" class="hidden"></div>

 <div id="controls">
 <input type="text" id="txtCommand" />
 <input type="button" id="btnCommand" value="Make it so" />
 </div>

 <div id="views">
 <div id="place"></div>
 <div id="player"></div>
 </div>

 <!-- Templates -->

 <script type="text/x-template" id="itemTemplate">
 {{item}}
 </script>

 <script type="text/x-template" id="playerTemplate">
 <h3>{{name}}</h3>
 <p>{{health}}</p>
 <ol id="playerItems">
 </script>

 <script type="text/x-template" id="placeTemplate">
 <h3>{{title}}</h3>
 <p>{{description}}</p>

 <div class="placePanel">
 <h4>Items</h4>
 <ol id="placeItems">
 </div>

 <div class="placePanel">
 <h4>Exits</h4>
 <ol id="placeExits">
 </div>
 </script>

 <script type="text/x-template" id="messageTemplate">
 <p>*** {{message}} ***</p>
 </script>

 <!-- Modules -->

 <!-- gpwj.templates -->
 <script src="http://output.jsbin.com/pugase.js"></script>
 <!-- gpwj.data -->
 <script src="http://output.jsbin.com/guzula.js"></script>

 <!-- Place constructor -->
 <script src="http://output.jsbin.com/vuwave.js"></script>
 <!-- Player constructor -->
 <script src="http://output.jsbin.com/nonari.js"></script>

 <!-- player view -->
 <script src="http://output.jsbin.com/suyona.js"></script>
 <!-- place view -->
 <script src="http://output.jsbin.com/yoquna.js"></script>
 <!-- message view -->
 <script src="http://output.jsbin.com/jojeyo.js"></script>

 <!-- map manager -->
 <script src="http://output.jsbin.com/xesoxu.js"></script>

 <!-- game controller -->
 <script src="http://output.jsbin.com/vezaza.js"></script>
 <!-- Web Page Controls -->
 <script src="http://output.jsbin.com/xoyasi.js"></script>
</body>
</html>

 The next listing shows the JavaScript initialization code. It now specifies the JS Bin code for the data file of the first
 place in the game.

 Listing 20.11. The Crypt (http://jsbin.com/cujibok/edit?js,output)

 [image:]

 20.3.6. Enter The Crypt

 Fantastic! The templates for the game are organized with the rest of the HTML; if the design needs changing, the templates
 are easy to find and there’s no intertwining of JavaScript, data, and HTML to wrangle. Simpler maintenance, fewer mistakes,
 and happier designers. Win, win, win!

 Now, you just need to survive The Crypt. Test your strength, skill, and stamina and play the game on JS Bin at http://output.jsbin.com/cujibok. Good luck!

 20.4. Summary

 	Use XMLHttpRequest objects to load resources for a web page without reloading the whole page.

 	Transfer data for your applications using JSON, a lightweight, readable, JavaScript-based data exchange format.

 	To load data, create an XMLHttpRequest object, set an event listener for the load event, call the open method with the URL of the resource, and finally call the send method:

var xhr = new XMLHttpRequest();
xhr.addEventListener("load", function () {
 // Use xhr.responseText
});
xhr.open("GET", url);
xhr.send();

 	Access JSON data when the load event has fired via the responseText property of the XHR object.

 	Convert the JSON data string into a JavaScript object by passing it to the JSON.parse method:

var data = JSON.parse(xhr.responseText);

 	Use a JavaScript object as a cache. Place loaded data or models into the cache and check the cache before using XHR.

Chapter 21. Conclusion: get programming with JavaScript

 This chapter covers

 	Carrying on your good work

 	Working locally with files

 	Books and resources

 So, how do you get programming with JavaScript?

 Well, you just get programming with JavaScript.

 If you really want to understand programming, you have to jump in and write programs. Reading books and pondering code can
 be fun and informative, but it’s trying to solve problems and create code yourself that really builds up your skills, experience,
 and resilience. But you’re not alone. In this chapter you look at ways you can get help if you get stuck on a project or are
 just curious about how things work. First, you investigate using JavaScript in web pages saved on your own computer, rather
 than on JS Bin.

 21.1. Working locally with files

 JS Bin and other online coding sites are great for trying out your ideas and checking that your code works. But you want to
 break out from the sandbox and create your own sites. This section looks at writing and saving your files locally (on your
 own computer) and opening them in your browser.

 21.1.1. Writing code

 JavaScript and HTML files are just text files. You can write them in any text editor. Notepad for Windows and TextEdit on
 OS X would both do the job, although they’re very basic. More advanced text editors perform syntax highlighting, using colors
 to differentiate keywords from variables, arguments, strings, and so on, and they perform code completion, suggesting what
 you might be trying to type and letting you insert the suggestions quickly. Some popular editors are Sublime Text, BBEdit,
 Notepad++, Atom, and Emacs.

 There are also integrated development environments (IDEs) that provide extra tools that let you manage projects, collaborate,
 track versions, merge files, minify and compress files, and lots more. Examples are Visual Studio, Dreamweaver, Eclipse, and
 WebStorm. Figure 21.1 shows three editors with increasing levels of project support.

 Figure 21.1. Notepad, Notepad++, and WebStorm provide increasing levels of project support.

 [image:]

 21.1.2. Saving files

 Save your files in an organized way, with sensible folders splitting them into types or subprojects. Figure 21.2 shows a possible structure of files for The Crypt. There are separate folders for style sheets, JavaScript files, and game maps. The main HTML file is in the root of the project.
 Various project folders from Get Programming with JavaScript are available in its GitHub repository: https://github.com/jrlarsen/GetProgramming.

 Figure 21.2. A possible structure of folders and files for The Crypt

 [image:]

 The files have names that represent their purpose. Just because JS Bin assigns random names to files, that doesn’t mean you
 should. The following listing shows the HTML file for the game with the script elements used to load the JavaScript. There’s also a link element in the head section that loads the CSS file that styles the page. The templates have been omitted because they haven’t changed.

 Listing 21.1. script elements in theCrypt.html

 [image:]

 [image:]

 The paths used in the src attributes to tell the browser where to find the files to load are relative to theCrypt.html. For example, maps/TheDarkHouse.js
 means “starting from the same folder as theCrypt.html, find the maps folder, and in that folder find the file called TheDarkHouse.js.”

 21.1.3. Opening your pages in a browser

 In your browser menu, choose File > Open and browse your filesystem for theCrypt.html. The page should open in the browser.

 21.1.4. Concatenating and minifying files

 If you were hosting your project on a web server for users to access over the internet, it would be better to place all of
 your JavaScript modules into a single file. For each script element, the browser will make a request to the server for the file specified by the src attribute. If all of the files are needed to make the application work, then it will be quicker to load one large file rather
 than many small files.

 You can see a version of The Crypt on JS Bin with all of the JavaScript in the one bin: http://jsbin.com/xewozi/edit?js,output.

 While developing the application, using separate files helps with focus, reuse, and flexibility. But when the time comes to
 publish the app, merging the files will help the code load more quickly. You can copy the code by hand into a single file,
 but there are tools to help. They may be a bit advanced for beginners, but if you’re interested, look out for Grunt, Gulp,
 Browserify, and CodeKit.

 The tools will also minify your code, squashing it down into a smaller file. When the browser runs your JavaScript, it doesn’t need the spaces and line
 breaks that help you read the code. It doesn’t need well-named variables either; a, b, and c will do the job just as well as loadData, checkGameStatus, and renderMessage. The tools will strip the spaces and rename the variables to create a smaller file that does exactly the same job. The next
 two listings show the same code, the use function from The Crypt controller module.

 Listing 21.2. The use function (minified)

 function r(e,a){if(s){var o=l.getPlace(),i=o.getChallenge(a);void
0===i||i.complete===!0?t("You don't need to use that
there"):l.hasItem(e)?e===i.requires?(t(i.success),i.complete=!0,i.itemConsume
d&&l.removeItem(e)):t(i.failure):t("You don't have that item")}else t("The
game is over!")}

 Listing 21.3. The use function

 function use (item, direction) {
 if (inPlay) {
 var place = player.getPlace();
 var challenge = place.getChallenge(direction);

 if (challenge === undefined || challenge.complete === true) {
 renderMessage("You don't need to use that there");
 } else if (player.hasItem(item)) {

 if (item === challenge.requires) {
 renderMessage(challenge.success);
 challenge.complete = true;
 if (challenge.itemConsumed) {
 player.removeItem(item);
 }
 } else {
 renderMessage(challenge.failure);
 }

 } else {
 renderMessage("You don't have that item");
 }
 } else {
 renderMessage("The game is over!");
 }
}

 You can probably appreciate that file-size savings can be significant.

 21.2. Getting help

 The fact that you’ve read this book shows you appreciate guided, organized instruction. Once you’re up and running, though,
 it’s great to be able to dip in and out of resources, look things up, and ask for help with specific problems. For reference,
 a great site is the Mozilla Developer Network (https://developer.mozilla.org) which has documentation and examples for HTML, CSS, JavaScript, and more. For answers to specific questions, join the forums
 at stackoverflow (http://stackoverflow.com). Members of the community usually answer questions quickly. JavaScript was the first language to reach one million questions
 asked!

 21.3. What next?

 Get Programming with JavaScript was written as an introduction to programming. Whereas part 1 looked at the building blocks of the JavaScript language, parts 2 and 3 had a greater emphasis on organizing larger projects and getting a taste for things to come. The book was not written as
 a complete reference but as a practical experience of programming. So where next?

 21.3.1. The companion site

 Articles, tutorials, videos, resources, examples, and links to other support and reference sites will continue to be added
 to the Get Programming with JavaScript website at www.room51.co.uk/books/getProgramming/index.html. Some topics that have been left out of the book, like prototypes, inheritance, working with this, Node.js, and recent additions to JavaScript, will be covered there along with guides to improving the examples from the
 book, like the quiz app, the fitness app, fitness app news, and My Movie Ratings.

 21.3.2. Books

 There are many, many books on JavaScript. Here are a couple I’ve read and enjoyed. The first would follow nicely from this
 one, and the second is a much more in-depth dive into the language:

 	Eloquent JavaScript: A Modern Introduction to Programming (No Starch Press; 2nd ed., 2014) by Marijn Haverbeke

 	Professional JavaScript for Web Developers (Wrox; 3rd ed., 2012) by Nicholas C. Zakas

 21.3.3. Sites

 A number of sites mix video tutorials with interactive exercises. One I particularly like is Code School, http://codeschool.com. The folks at Code School have also built a nice introductory JavaScript site at http://javascript.com.

 21.3.4. Practice makes permanent

 Keep practicing. Get on JS Bin and try things out. There are a number of suggestions for projects on the book’s website. If
 you get stuck, feel free to post a question on the book’s forum (https://forums.manning.com/forums/get-programming-with-javascript) at Manning.com or join the community at stackoverflow.com.

 I hope you’ve enjoyed working through the book, tinkering with all of the code, making conjectures, and testing out your ideas
 on JS Bin. Stay curious and Get Programming with JavaScript!

 21.4. Summary

 	Use a text editor to write and save JavaScript and HTML files.

 	Organize the files for a project using folders and appropriate filenames.

 	Open the HTML files in your browser.

 	Find out more and get help at the Mozilla Developer Network and stackoverflow.com.

 	Make the most of the resources on the book’s website.

 	Practice, practice, practice.

 	Be curious, adventurous, resilient, and patient. Good luck on your adventures!

Appendix. The Crypt: a running example

 Throughout this book, you develop a text-based adventure game called The Crypt. Players can explore locations on a map, moving from place to place and picking up items to help them solve challenges and
 get past obstacles. The last section of each chapter uses what you’ve learned to develop the game further. You’ll see how
 the programming concepts help you build the pieces that are then combined to produce a large program.

 	
 Game element

 	
 Task

 	
 JavaScript

 	
 Chapter

 	Players
 	Deciding what information you need to know about each player
 	Variables
 	2

 	
 	Collecting player information in one place
 	Objects
 	3

 	
 	Displaying information about players on the console
 	Functions
 	4–7

 	
 	Creating a list of items collected by each player
 	Arrays
 	8

 	
 	Organizing player-creation code
 	Constructors
 	9

 	Places
 	Creating lots of places to explore, all with a similar structure
 	Constructors
 	9

 	
 	Joining places with exits
 	Square bracket notation
 	10

 	Game
 	Adding simple functions for movement, collecting items, and displaying information
 	Square bracket notation
 	10

 	Maps
 	Joining places with exits
 	Square bracket notation
 	10

Appendix. The Crypt: a running example

 In part 1 of this book, while learning core JavaScript concepts, you write code to represent the players and the places in the game
 and to let players move from place to place and pick up items. The following figure shows the components you create; a similar
 figure in each chapter highlights the ideas being discussed in the context of the entire game.

 [image:]

 Part 2 of the book adds challenges for players: blocking exits until players solve puzzles. The focus is on organizing your code, hiding how it works, checking user input, and building modules that you can reuse and swap to make the project more flexible.

 In part 3, you update the display to use HTML templates, modify the game to load data while it’s running, fill the templates with player and place information, and add text boxes and buttons so that players can enter commands via a web page.

 [image:]

Index

 [SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Y]

 SYMBOL

 !== operator

* operator, 2nd

+ symbol

+= operator, 2nd, 3rd, 4th

<= operator, 2nd

= operator

<= symbol

= symbol

=== operator, 2nd

/ operator

< operator

> operator

>= operator

|| symbol

 A

 abstraction

add function, 2nd

addAge function

addChallenge method

addEventListener method, 2nd, 3rd

addExit method, 2nd, 3rd, 4th

addExits method

addItem method, 2nd, 3rd

addItems method

addMoon method

addPlace method

addSession method, 2nd

alert function

answer variable

app.loadUser method

app.log method, 2nd

applyDamage method

area property

arguments
 determining return value using
 passing multiple arguments to function
 passing one argument to function
 using objects as
 accessing properties of object argument
 adding properties to object argument
 vs. parameters

arrays
 array methods
 adding and removing elements
 forEach method
 slice method
 splice method
 converting JSON data into objects and arrays with
 creating
 displaying data from
 elements of, accessing
 player items array

assignment operator, 2nd

attempted property

{{author}} placeholder, 2nd

author property

 B

 backslash character

between function, using in guessing game

bins, creating, 2nd

blank function

blogs, writing

body element

body key

body property

body tag, 2nd

book variable

bookAuthor variable

bookTitle variable

boolean values

box method

bracket notation
 using square brackets instead of dots
 people’s names as keys
 word counts
 using with Crypt
 game controls
 linking places via exits

break statement

browser support

browser, opening local files in

buildExits function

buildMap function, 2nd, 3rd, 4th

buildPlace function

buildPlaces function

buildPlanet function, 2nd, 3rd, 4th

buildUser function

buttons
 adding to page
 listening for clicks, 2nd
 writing functions to update greeting

 C

 cache, Crypt game

calculateSizes function

calculateTax function

calendars, creating

callback function

calling functions

callOutCharge variable

camel casing

Cascading Style Sheets.
 See CSS.

chaining calls, replacing one string with another

challenges object

challenges, Crypt game

character argument

checkAnswer function

checkGameStatus, 2nd

clear method, 2nd, 3rd

climbCount

closing tags

CMS (content management system), 2nd

code on demand

coercion

collisions
 using namespaces to minimize
 variable collisions

Commands module, 2nd, 3rd

commands.
 See player commands.

commandWords array

comparison operators, else if statement

complete property

concatenating local files

conditions
 checking answers in quiz app
 checking player’s answer
 displaying question
 handling player’s answer
 moving to next question
 multiple declarations with single var keyword
 returning interface object
 conditional execution of code
 else clause
 hiding secret number inside functions
 if statement
 strict equality operator
 Crypt-checking user input
 error messages
 go method
 using if statement to avoid problems
 else if statement
 generating random numbers with Math.random() method

Console panel, 2nd, 3rd

console prompt
 calling functions at
 declaring new variables at

console.error method

console.log function, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th

constructors
 creating multiple independent counters with
 examples of
 using to build objects
 overview
 telling objects apart with instanceof operator
 world building-making use of Planet constructor
 using with Crypt
 creating Place objects
 streamlining player creation

content management system.
 See CMS.

Controller module

controllers
 Crypt game
 approaching controller code
 controller code structure
 get function
 go function
 initializing game, 2nd
 listing properties of challenge
 monitoring player health
 overview
 running game
 updating display-functions that use view modules
 use function
 user input
 fitness app

controls
 buttons
 adding to page
 listening for clicks
 writing functions to update greeting
 Crypt game
 select element
 adding to page
 rateMovie function
 text boxes
 adding to page
 adding unordered list to display comments
 CSS
 getting references to new elements
 rateMovie function

correct property

costPerHour variable

counter variable

countUpBy1 function

Crypt game, 2nd, 3rd, 4th
 building
 building game page
 building player information strings
 for player’s name, health, and location
 function for player information
 cache
 checking user input
 error messages
 go method
 using if statement to avoid problems
 controllers
 approaching controller code
 controller code structure
 get function
 go function
 initializing game, 2nd
 listing properties of challenge
 monitoring player health
 overview
 running game
 updating display-functions that use view modules
 use function
 user input
 CSS
 displaying player information, 2nd
 health
 locations
 names
 hiding place info
 hiding player info
 JavaScript’s strict mode
 map data
 adding challenges to
 overview
 running game
 updating Place constructor
 using to build game map
 Map Manager module
 adding place to store
 loading data for single place
 updating game controller to use
 message view
 modules
 listings
 loading
 render method
 organizing code into modules
 place views
 model
 view
 placeholders, adding
 player commands via text box
 adding controls to page
 Commands module
 join command
 listening for button clicks
 mapping text box entries to game commands
 pop command
 shift command
 split command
 switch block
 player items array
 player object in
 player objects as arguments
 player variables
 player views
 model
 view
 playing, 2nd
 specifying exits with JS Bin file codes
 user interaction
 using bracket notation with
 using constructors with
 creating Place objects
 streamlining player creation
 views
 creating HTML templates for
 updating to use new templates

CSS (Cascading Style Sheets)
 Crypt game
 overview
 text boxes

CSS panel, JS Bin

curly braces, 2nd

 D

 damage property, 2nd

dasher function, 2nd

data loading
 Crypt game
 building game page
 cache
 Map Manager module
 specifying exits with JS Bin file codes
 fitness app
 building
 JS Bin data
 locating user data
 overview
 parsing XHR response with JSON.parse
 XMLHttpRequest constructor
 JSON data

data object, fitness app

data.
 See displaying data.

dataArray function

dataObject.name

dateString function

dayInWeek variable

defining functions
 new functions
 using function expressions and function declarations

dependencies

description property

destination argument

destinations variable, 2nd

direction parameter

direction string

displaying data
 fitness app
 creating views
 using modules to switch views
 from array
 message view
 place views
 player views

displayMenu function

displaySale function

displaySizes function

div elements, 2nd, 3rd, 4th

<div> tag

do keyword

doAction function

DOCTYPE tag

document.getElementById method, 2nd

dot notation, 2nd, 3rd, 4th, 5th, 6th

double curly braces

double quotation marks

 E

 else clause, 2nd

else if statement, 2nd

empty object

equals symbol

error messages
 checking user input
 JS Bin

escape sequence

exits variable, 2nd

exits, in Crypt game
 adding exits object to full Place constructor
 creating functions to add and display exits
 giving each place object its own set of exits
 testing Place constructor
 using an object to hold exits

 F

 failure property, 2nd

files
 filenames
 importing into other projects
 adding script element
 creating bins
 refreshing page
 running program
 writing code
 importing multiple files
 viewing individual code file.
 See also local files.

fill function

fillList function

findPlanetPosition function

findTotal function

fitness app, 2nd
 building
 controllers
 converting data into user model
 creating views
 data object
 loading data
 JS Bin data
 locating user data
 overview
 parsing XHR response with JSON.parse
 XMLHttpRequest constructor
 user constructor
 using modules to switch views

floor method

focus method

forEach method, 2nd, 3rd, 4th

friend variable

fullMessage variable

function body

function invocation operator

function keyword, 2nd, 3rd, 4th

functions
 calling
 calling at console prompt
 defining
 new functions
 using function expressions and function declarations
 hiding secret number inside
 hiding variables using
 invoking
 passing information to
 passing multiple arguments to function
 passing one argument to function
 recognizing function expressions
 repetition in code and
 adding tax and displaying summary, 2nd
 displaying object properties as text, 2nd
 returning data from
 return keyword
 return value as replacement for function call
 using arguments to determine return value
 returning objects from
 reuse and versatility of
 setting as properties of arguments (methods)
 box method
 line method
 math methods
 namespaces
 spacer
 string methods
 wrap method
 using to build objects
 adding methods
 adding properties

Further Adventures exercises, JS Bin

 G

 game.get() method

game.init method

get method, 2nd, 3rd, 4th, 5th

getBorder function

getById function

getChallenge method, 2nd

getCount, creating multiple independent counters with

getCounter function

getData method, 2nd, 3rd, 4th, 5th

getExit method, 2nd, 3rd

getExits method

getExitsInfo function

getGame function, 2nd, 3rd, 4th

getGreeting function

getGuesser function

getHelloTo function, 2nd

getInfo method, 2nd

getItems method

getItemsInfo function

getLastItem method, 2nd, 3rd

getMessage function, 2nd

getMessageInfo function

getMovieHTML method

getPlace method, 2nd, 3rd, 4th, 5th

getPlanetInfo function, 2nd

getPlayerHealth function

getPlayerInfo function, 2nd, 3rd

getPlayerName function

getPlayerPlace function, 2nd

getQuestion function

getQuiz function, 2nd, 3rd

getStateCode function

getTitle method

getTitleInfo function

getVisitorReport function

global namespace

global variables, 2nd, 3rd
 dangers of
 bugs
 naming collisions
 peeking and tweaking
 relying on implementation
 using window object to check for

go method, 2nd, 3rd, 4th, 5th, 6th
 checking user input with
 moving player to destination
 retrieving player’s location
 using direction to find destination
 Crypt game

gpwj namespace, 2nd

gpwj.data.load method

gpwj.templates function

greater than operator

greater than or equal to operator

guess function, 2nd

guess variable

 H

 <h1> tag, 2nd

<h2> tag

hasItem method, 2nd

head section, 2nd

<head> tag

help resources

HTML
 adding content
 function declarations
 id attribute
 to web page with JavaScript
 when user doesn’t have JavaScript
 common elements
 comparing news item data and
 constructing by string concatenation
 Crypt game
 CSS
 JavaScript’s strict mode
 message view
 modules
 placeholders
 playing game
 displaying data from array
 lists
 loading layers
 overview
 starting with empty page

HTML panel, JS Bin

html tags

 I

 id attribute, 2nd, 3rd

IDEs (integrated development environments)

if condition

if keyword

if statement, 2nd
 conditional execution of code
 using to avoid user input problems

if-else blocks

if-else statement

IIFE (immediately invoked function expressions)
 invoking functions
 overview
 recognizing function expressions
 returning information from

implementation, 2nd

importing
 files into other projects
 adding script element
 creating bins
 refreshing page
 running program
 writing code
 modules
 multiple files
 number generator
 picking random questions in quiz app
 using between function in guessing game

index variable

indexOf method, 2nd, 3rd, 4th

infinite loop

init method, 2nd, 3rd, 4th, 5th

innerHTML property, 2nd, 3rd

inPlay variable, 2nd

input element

instanceof operator, telling objects apart with

integrated development environments.
 See IDEs.

interfaces, 2nd
 creating multiple independent counters with constructor function
 creating multiple independent counters with getCount
 using function to hide variables

invoking functions

itemConsumed property, 2nd

itemIndex variable

items array, 2nd, 3rd

items parameter

items variable

 J

 JavaScript panel, JS Bin

join array method

join command

join method, 2nd

JS Bin, 2nd
 account, getting
 code comments
 creating bins
 error messages
 filenames
 following code listings on
 Further Adventures exercises
 line numbers
 loading data
 loading HTML layers in
 logging to console
 panels
 Console panel
 CSS panel
 HTML panel
 JavaScript panel
 Output panel
 specifying Crypt game exits
 viewing individual code file
 writing code

JSON.parse
 converting JSON data into objects and arrays with
 parsing XHR response with

 K

 kalliesCode namespace

keys array

key-value pairs, properties as

keywords

 L

 layers, HTML

length property, 2nd, 3rd, 4th, 5th

less than operator

less than or equal to comparison operator

less than or equal to operator

 tag, 2nd

line method, 2nd, 3rd

line numbers, JS Bin

lineLength variable

link element, 2nd

link tag

lists
 building with template
 HTML

load function, 2nd

loadData function, 2nd

loadNewLevel() method

loadPlace method, 2nd

loadUser method, 2nd

local files
 concatenating and minifying
 opening in browser
 saving
 writing code

local scope

local variables
 assigning namespace properties to
 benefits of

log method

longString variable

 M

 map data, Crypt game
 adding challenges to
 overview
 running game
 updating Place constructor
 using to build game map

Map Manager module, Crypt game
 adding place to store
 loading data for single place
 updating game controller to use

mapData.places array

math methods

Math namespace

Math.ceil method

Math.floor

Math.max method, 2nd

Math.min method

Math.random() method, generating random numbers with

Math.round method

message parameter

message property, 2nd

message variable, 2nd

message view
 Crypt game
 overview
 using templates

methods
 array methods
 adding and removing elements
 forEach method
 slice method
 splice method
 box method
 line method
 math methods
 namespaces and
 spacer
 string methods
 wrap method

minifying local files

models
 fitness app
 converting data into user model
 data object
 user constructor
 map data
 adding challenges to
 overview
 running game
 updating Place constructor
 using to build game map.
 See controllers.

modules
 collisions
 using namespaces to minimize
 variable collisions
 Crypt game
 listings
 loading
 render method
 immediately invoked function expressions
 invoking functions
 overview
 recognizing function expressions
 returning information from
 importing files into other projects
 adding script element
 creating bins
 refreshing page
 running program
 writing code
 importing multiple files
 importing number generator
 picking random questions in quiz app
 using between function in guessing game
 JS Bin
 creating bins
 filenames
 viewing individual code file
 writing code
 news page (fitness app)
 importing modules
 news data
 templating functions
 organizing code into
 sharing namespace across modules
 using to switch views

moons property

mountain variable, 2nd

move function

movie variable

multiplication operator

My Movie Ratings page, 2nd

 N

 name parameter, 2nd

namespaces, 2nd
 minimizing collisions with
 sharing across modules
 assigning namespace properties to local variables
 window object
 using object as

name-value pair

new keyword, 2nd, 3rd, 4th, 5th

new-line character

newLine function

news page (fitness app), 2nd
 comparing news item data and HTML
 constructing HTML by string concatenation
 designing with HTML templates
 modules
 importing
 news data
 templating functions
 using script tags for templates

next function, 2nd

nextYear array

not strictly equal to operator

notes property

null value

Number Generator code

number generator, importing
 picking random questions in quiz app
 using between function in guessing game

numberOfHours variable

numberToSquare parameter

 O

 object properties, matching template placeholders with

Object.keys method, 2nd

objects, 2nd
 accessing properties of
 converting JSON data into objects and arrays with
 creating
 empty object
 properties as key-value pairs
 Crypt game player object
 overview
 player objects as arguments
 returning from functions
 setting functions as properties of (methods)
 box method
 line method
 math methods
 namespaces
 spacer
 string methods
 wrap method
 updating properties of
 using as arguments
 accessing properties of object argument
 adding properties to object argument
 using as namespace
 using constructors to build, 2nd
 overview, 2nd
 telling objects apart with instanceof operator
 world building-making use of Planet constructor
 using functions to build
 adding methods
 adding properties

 tag

opening tags

option elements

options array

OR operator

Output panel, JS Bin

 P

 <p> tag, 2nd

parameters vs. arguments

parentheses, 2nd

parseCommand function

peakCount function

Place constructor, updating

Place object, 2nd, 3rd, 4th, 5th, 6th

place property, 2nd

place variable

place views
 model
 using templates
 view

placeholders
 automating placeholder replacement for templates
 building lists
 filling all placeholders for each key
 matching template placeholders with object properties
 Crypt game.
 See also templates.

places array

placesStore object

placeView function

Planet function, 2nd

planet parameter, 2nd

planet1 variable

planet.area property

planets variable

planet.volume property

player commands, Crypt game
 adding controls to page
 Commands module
 join command
 listening for button clicks
 mapping text box entries to game commands
 pop command
 shift command
 split command
 switch block

Player constructor, 2nd, 3rd, 4th

player information, displaying
 health
 locations
 names

Player module

Player objects, 2nd

player variable, 2nd, 3rd, 4th

player views
 model
 using templates
 view

playerHealth parameter

playerInfo variable

playerName parameter

playerPlace parameter

player.place.items array

players array

playerView function

polluting global namespace, 2nd

pop command, Crypt game

pop method

posted key

posted property

programming

properties of objects
 accessing
 as key-value pairs
 updating

properties, displaying as text

property values

prototypes

push method, 2nd

 Q

 qIndex property

qIndex variable

questions array, 2nd

quiz app, 2nd
 checking player’s answer
 creating
 hiding questions array
 using object as namespace
 displaying question
 handling player’s answer
 moving to next question
 multiple declarations with single var keyword
 picking random questions in
 returning interface object

quiz variables, 2nd, 3rd

quizMe method, 2nd, 3rd, 4th

quiz.next

QuizQuestion constructor

quiz.questions array

quiz.showMe

quiz.submit() method

 R

 random numbers, generating with Math.random() method

Rate button

rateMovie function, 2nd

refreshing page, JS Bin

regular expressions, replacing string multiple times with

removeItem method, 2nd

render method, 2nd, 3rd, 4th

renderMessage, 2nd

repetition in code
 adding tax and displaying summary
 displaying object properties as text

replace method, 2nd

requires property, 2nd

reserved words, for naming variables

resources

responseText property

result variable

return keyword, 2nd

return statement, 2nd

return value
 as replacement for function call
 determining using arguments

returning data from functions
 return keyword
 return value as replacement for function call
 using arguments to determine return value

running program, JS Bin

 S

 sale variable

saving local files

Say Hi button

sayHello function, 2nd

scope
 Crypt game
 hiding place info
 hiding player info
 user interaction
 global variables, dangers of
 bugs
 naming collisions
 peeking and tweaking
 relying on implementation
 interfaces
 creating multiple independent counters with constructor function
 creating multiple independent counters with getCount
 using function to hide variables
 local variables, benefits of
 quiz app, creating
 hiding questions array
 using object as namespace

score property

score variable

script element, adding

script tags, using for templates

secret variable

secretMountain variable

select element
 adding to page
 rateMovie function

selected attribute

self-closing tag

semicolon character

sessions array

setPlace method, 2nd, 3rd, 4th

shift array

shift command, The Crypt game

show function

showArguments function

showCostBreakdown function

showEvent method

showExits function

showInfo method, 2nd, 3rd, 4th

showMe function, 2nd

showMessage function, 2nd

showMountain function

showMovieInfo function, 2nd, 3rd

showPlanet method

showPlayerHealth function

showPlayerInfo function, 2nd, 3rd, 4th, 5th

showPlayerName function, 2nd

showPlayerPlace function

showQuestion function

showSum function, 2nd

slice method, 2nd

smooth operator

social property

spacer function

spacer.line

spacer.newLine method

spacer.wrap

span element, 2nd

splice method, 2nd

split command, The Crypt game

split method

square brackets, 2nd

square function

src attribute, 2nd, 3rd

statement

states object

strict equality operator

strict mode (JavaScript)

strictly equal to operator

string concatenation operator

string methods

strings
 constructing HTML by string concatenation
 replacing multiple times
 repeating code while condition is met
 replacing string while it can be found
 replacing strings with regular expressions
 while loop
 replacing one string with another

style tag

submit method

substr method

success property, 2nd

switch block, The Crypt game

switch keyword

switch variable

 T

 template.fill method

templates, 2nd
 automating placeholder replacement for
 building lists
 filling all placeholders for each key
 matching template placeholders with object properties
 news page (fitness app), 2nd
 comparing news item data and HTML
 constructing HTML by string concatenation
 designing with HTML templates
 modules
 using script tags for templates
 replacing strings
 multiple times
 replacing one string with another
 views
 creating HTML templates for
 updating to use new templates

Templates module

text boxes
 adding to page
 adding unordered list to display comments
 CSS
 getting references to new elements
 rateMovie function

text, displaying object properties as

this variable, 2nd, 3rd, 4th, 5th, 6th

thisYear array

tightly coupled

title element

title key

title property, 2nd, 3rd

total property

total variable

totalCost function

toUpperCase method, 2nd, 3rd

type attribute, 2nd

type property

 U

 tag, 2nd

unordered lists, adding to display comments

unshift method

updateGreeting function

updating properties of objects

use function, 2nd, 3rd, 4th

use strict statement

user constructor, fitness app

user input, checking
 error messages
 go method
 moving player to destination
 retrieving player’s location
 using direction to find destination
 using if statement to avoid problems

user model, converting data into

userView variable

 V

 value property, 2nd, 3rd

values, assigning to variables
 one-step declaration and assignment
 using variable in its own assignment

var keyword, 2nd, 3rd, 4th, 5th, 6th

variable collisions

variables
 assigning namespace properties to local variables
 assigning values to
 one-step declaration and assignment
 using variable in its own assignment
 choosing good names for
 camel casing
 descriptive names
 keywords and reserved words
 rules for naming variables
 Crypt game player variables
 declaring, 2nd
 declaring at console prompt
 global, dangers of
 bugs
 naming collisions
 peeking and tweaking
 relying on implementation
 local, benefits of
 overview
 using window object to check for global variables

views, 2nd
 creating HTML templates for
 fitness app
 creating views
 using modules to switch views
 message view
 place views
 model
 view
 player views
 model
 view
 updating to use new templates
 messages
 places
 players.
 See controllers.

visitorArray variable

visitors variable

volume property

 W

 weather app

web page, adding content with JavaScript
 function declarations
 id attribute
 when user doesn’t have JavaScript

while loops, replacing string multiple times
 overview
 repeating code while condition is met
 replacing string while it can be found
 with regular expressions

window object

word counts

words object

wrap method

wrap-and-return process

wrapping code

writing blog

writing code
 JS Bin
 local files

 X

 XHR data loading
 Crypt game
 building game page
 cache
 Map Manager module
 specifying exits with JS Bin file codes
 fitness app
 building
 JS Bin data
 locating user data
 overview
 parsing XHR response with JSON.parse
 XMLHttpRequest constructor
 JSON data

XMLHttpRequest object, 2nd, 3rd

 Y

 yield keyword

List of Figures

 Chapter 1. Programming, JavaScript, and JS Bin

 Figure 1.1. JS Bin showing the HTML, CSS, Output, and Info panels

 Figure 1.2. JS Bin showing the JavaScript and Console panels.

 Figure 1.3. The steps for running JavaScript on JS Bin

 Figure 1.4. The JS Bin error section (closed and then open)

 Figure 1.5. Line numbers are helpful when finding errors.

 Figure 1.6. Playing The Crypt

 Figure 1.7. Game elements in The Crypt for part 1

 Figure 1.8. Game elements in The Crypt for part 2

 Figure 1.9. Game elements in The Crypt for part 3

 Chapter 2. Variables: storing data in your program

 Figure 2.1. Declaring a variable

 Figure 2.2. Assigning a value to a variable

 Figure 2.3. The equals sign is called the assignment operator.

 Figure 2.4. You declare a variable and assign it a value in a single statement.

 Figure 2.5. Updating a variable with the result of a calculation involving itself

 Figure 2.6. JavaScript has some words that can’t be used as variable names.

 Figure 2.7. Elements in The Crypt

 Chapter 3. Objects: grouping your data

 Figure 3.1. You log an object to the console on JS Bin.

 Figure 3.2. Set properties by using key-value pairs.

 Figure 3.3. An object definition with two properties

 Figure 3.4. Accessing object properties using dot notation

 Figure 3.5. Elements in The Crypt

 Chapter 4. Functions: code on demand

 Figure 4.1. Movie information shown on the console in JS Bin

 Figure 4.2. The pieces of a function definition

 Figure 4.3. JS Bin displays empty strings in quotation marks but the Safari browser doesn’t.

 Figure 4.4. Elements of The Crypt

 Chapter 5. Arguments: passing data to functions

 Figure 5.1. Including a parameter in the parentheses when defining a function

 Figure 5.2. Including multiple parameters in a function definition

 Figure 5.3. Elements of The Crypt

 Chapter 6. Return values: getting data from functions

 Figure 6.1. You call the add function and it returns the value 73.

 Figure 6.2. The add function calculates the return value.

 Figure 6.3. Elements of The Crypt

 Chapter 7. Object arguments: functions working with objects

 Figure 7.1. A single object as an argument is neater than multiple arguments.

 Figure 7.2. Object properties can be accessed inside the function body.

 Figure 7.3. The calculateSizes function adds new properties to the planet object.

 Figure 7.4. JavaScript assigns the arguments to parameters when you call buildPlanet. The function uses the parameters to
 create an object.

 Figure 7.5. The points before and after the move of 4 across and 2 down (plotted using desmos.com—an application written in
 JavaScript)

 Figure 7.6. Create a function and assign it to an object property

 Figure 7.7. Methods can use arguments as well as the value of the object to which they’re attached.

 Figure 7.8. The wrapped text is made up of character + space + text + padding + character.

 Figure 7.9. Elements in The Crypt

 Chapter 8. Arrays: putting data into lists

 Figure 8.1. Use square brackets to create an array

 Figure 8.2. JS Bin displays each of the two arrays in listing 8.2 between square brackets.

 Figure 8.3. Each element of an array has an index, starting at 0.

 Figure 8.4. Use square brackets and an index to access elements of an array assigned to a variable

 Figure 8.5. items.forEach passes each item in the items array to the showInfo function.

 Figure 8.6. Elements of The Crypt

 Figure 8.7. The elements shown when a Player object is displayed on the console

 Chapter 9. Constructors: building objects with functions

 Figure 9.1. The buildPlanet function creates and returns an object.

 Figure 9.2. Call the constructor with the new keyword. The constructor automatically creates and returns an object.

 Figure 9.3. Elements of The Crypt

 Figure 9.4. The elements shown when a Place object is displayed on the console.

 Figure 9.5. Elements of The Crypt

 Figure 9.6. The elements shown when a Player object is displayed on the console.

 Chapter 10. Bracket notation: flexible property names

 Figure 10.1. Using square bracket notation to set a property

 Figure 10.2. Spaces in property names don’t work with dot notation.

 Figure 10.3. Counting words used in tweets

 Figure 10.4. Elements of The Crypt

 Figure 10.5. A map with four locations

 Figure 10.6. The console output for a Place object when you call showInfo

 Figure 10.7. Elements of The Crypt

 Chapter 11. Scope: hiding information

 Figure 11.1. The function can see the mountain variable that’s outside the function body.

 Figure 11.2. Users should use the interface, not the implementation.

 Figure 11.3. Relying on the implementation can lead to errors if it changes.

 Figure 11.4. Variables declared inside a function are local to the function.

 Figure 11.5. The returned function still has access to the local counter variable.

 Figure 11.6. Use local variables to make qIndex and questions private

 Figure 11.7. Trying to access qIndex and questions from the console now causes errors.

 Figure 11.8. Hiding variables and functions in the local scope of the constructor function

 Chapter 12. Conditions: choosing code to run

 Figure 12.1. Executing code depending on the value of a condition, with if and else

 Figure 12.2. The function returned by getGuesser is assigned to the guess variable

 Figure 12.3. Nesting conditions can provide multiple options.

 Figure 12.4. Specifying a direction that doesn’t exist breaks The Crypt.

 Chapter 13. Modules: breaking a program into pieces

 Figure 13.1. Breaking one large program into modules

 Figure 13.2. Moving spacer into a module allows the same single file to be used in many projects.

 Figure 13.3. The Number Generator code is imported by the quiz app and the guessing game.

 Figure 13.4. HTML, CSS, and JavaScript panels on JS Bin

 Figure 13.5. The HTML, CSS, and JavaScript code are all used to produce the web page output.

 Figure 13.6. Breaking down a JS Bin URL

 Figure 13.7. The JS Bin URL for a JavaScript file

 Figure 13.8. A JavaScript file on JS Bin

 Figure 13.9. The parts that make up a script element

 Figure 13.10. Importing the Number Generator function into two projects

 Figure 13.11. Importing the Number Generator and spacer modules

 Figure 13.12. For some reason, the program can’t find spacer.wrap.

 Figure 13.13. Two modules declare the same global variable, leading to a collision.

 Figure 13.14. An immediately invoked function expression

 Figure 13.15. The game imports five modules. Four of them need to share a namespace.

 Chapter 14. Models: working with data

 Figure 14.1. The same data is used by the different versions of the app.

 Figure 14.2. A user model created by the User constructor function

 Figure 14.3. User data represented as a simple JavaScript object

 Figure 14.4. Splitting the map data from the map builder makes it easier to switch maps.

 Figure 14.5. First, all of the place models are created; then they’re linked via their exits.

 Chapter 15. Views: displaying data

 Figure 15.1. The same user model is used by different views to produce different output.

 Figure 15.2. Move the view functions from the Player and Place models into their own modules

 Figure 15.3. Move the display functions from the Player model into their own module.

 Figure 15.4. Move the display functions from the Place model into their own module

 Chapter 16. Controllers: linking models and views

 Figure 16.1. The four modules of the fitness app

 Figure 16.2. The tasks the controller performs in the fitness app

 Figure 16.3. The modules that make up The Crypt

 Figure 16.4. When the game loads, the controller builds the player and place models.

 Figure 16.5. The controller responds to user actions and updates models and views.

 Figure 16.6. The key decisions made by the use function

 Figure 16.7. The many modules of The Crypt

 Chapter 17. HTML: building web pages

 Figure 17.1. CSS and JavaScript build on the HTML content with enhanced presentation and interactivity.

 Figure 17.2. The hierarchy of headings and the paragraphs

 Figure 17.3. The browser renders the ordered list with numbers and the unordered list with bullets.

 Figure 17.4. A web page with self-describing HTML elements

 Figure 17.5. Random greetings from a web page

 Figure 17.6. A list of movies

 Figure 17.7. The modules that make up The Crypt

 Figure 17.8. The Crypt with commands and messages on the Console panel and updates on the Output panel

 Figure 17.9. You only need to change the views to switch to a web-based version of The Crypt.

 Figure 17.10. The text output runs together but the game is playable.

 Chapter 18. Controls: getting user input

 Figure 18.1. Clicking the Say Hi button displays a random greeting.

 Figure 18.2. The HTML for three buttons and the output generated

 Figure 18.3. Clicking the Rate button pops up a message with your rating.

 Figure 18.4. Two select elements in HTML, displayed on a web page and with a selection in progress

 Figure 18.5. The movie has a text box to add comments and a section to display them.

 Figure 18.6. Commands are now entered into a text box at the bottom of the page.

 Figure 18.7. Modules for The Crypt, including a Commands module to execute commands via a text box

 Figure 18.8. The Crypt in progress showing a message to the player

 Chapter 19. Templates: filling placeholders with data

 Figure 19.1. Fitness App News with two news items

 Figure 19.2. A news item with all of its placeholders showing

 Figure 19.3. A news item—one of the {{author}} placeholders has not been replaced (bottom right).

 Figure 19.4. Both author placeholders have been replaced with Oskar (top right and bottom right).

 Figure 19.5. A news item with placeholders unfilled

 Figure 19.6. The page includes the news item template and JavaScript code and imports two modules.

 Figure 19.7. The latest version of The Crypt uses HTML templates to build page elements.

 Figure 19.8. Modules in The Crypt with new or updated modules highlighted

 Chapter 20. XHR: loading data

 Figure 20.1. Switching between users while using the fitness app

 Figure 20.2. The same data is used by all of the apps.

 Figure 20.3. The string of data returned by an XHR object

 Figure 20.4. Once the

 Figure 20.5. The modules that make up the fitness app

 Figure 20.6. The fitness app using web-based views

 Figure 20.7. At the start of the game, only the initial place data is loaded.

 Figure 20.8. The data for The Old Library has been loaded because the player moved there.

 Figure 20.9. The modules for The Crypt with new or updated modules highlighted

 Chapter 21. Conclusion: get programming with JavaScript

 Figure 21.1. Notepad, Notepad++, and WebStorm provide increasing levels of project support.

 Figure 21.2. A possible structure of folders and files for The Crypt

List of Tables

 Chapter 1. Programming, JavaScript, and JS Bin

 Table 1.1. Game elements and JavaScript in part 1 of The Crypt

 Chapter 2. Variables: storing data in your program

 Table 2.1. Possible player properties

 Chapter 4. Functions: code on demand

 Table 4.1. Steps used to define and call a function

 Chapter 5. Arguments: passing data to functions

 Table 5.1. Steps used to define and call a function, passing it data

 Chapter 8. Arrays: putting data into lists

 Table 8.1. Array methods

 Chapter 10. Bracket notation: flexible property names

 Table 10.1. Situations in which certain keys do and don’t work

 Chapter 11. Scope: hiding information

 Table 11.1. Problems and solutions for the counter app

 Chapter 12. Conditions: choosing code to run

 Table 12.1. Comparison operators

 Chapter 14. Models: working with data

 Table 14.1. Challenge properties

 Chapter 16. Controllers: linking models and views

 Table 16.1. Properties of the challenge object

 Chapter 17. HTML: building web pages

 Table 17.1. Some common HTML elements for wrapping content

 Chapter 18. Controls: getting user input

 Table 18.1. Comparing text box commands with methods from the controller module

 Table 18.2. Command objects

 Chapter 19. Templates: filling placeholders with data

 Table 19.1. A property’s keys are used to access its value and build its placeholder

List of Listings

 Chapter 1. Programming, JavaScript, and JS Bin

 Listing 1.1. Using console.log to display information (http://jsbin.com/mujepu/edit?js,console)

 Chapter 2. Variables: storing data in your program

 Listing 2.1. Declaring a variable (http://jsbin.com/potazo/edit?js,console)

 Listing 2.2. Assigning a value to a variable (http://jsbin.com/yuvoju/edit?js,console)

 Listing 2.3. Using a variable (http://jsbin.com/huvime/edit?js,console)

 Listing 2.4. Variables vary (http://jsbin.com/jasafa/edit?js,console)

 Listing 2.5. Assigning text to variables (http://jsbin.com/hobiqo/edit?js,console)

 Listing 2.6. Declaring and assigning in two steps (http://jsbin.com/vegoja/edit?js,console)

 Listing 2.7. Declaring and assigning in one step (http://jsbin.com/dorane/edit?js,console)

 Listing 2.8. Using a variable’s current value to set its new value (http://jsbin.com/kijuce/edit?js,console)

 Listing 2.9. Valid and invalid variable names (http://jsbin.com/biqawu/edit?js,console)

 Chapter 3. Objects: grouping your data

 Listing 3.1. Using variables to represent a book (http://jsbin.com/fucuxah/edit?js,console)

 Listing 3.2. Using prefixes to tell book variables apart (http://jsbin.com/qowagi/edit?js,console)

 Listing 3.3. A book as an object (http://jsbin.com/ruruko/edit?js,console)

 Listing 3.4. Creating an empty object (http://jsbin.com/kaqatu/edit?js,console)

 Listing 3.5. An object with a single property (http://jsbin.com/robupi/edit?js,console)

 Listing 3.6. Using a variable as a property value (http://jsbin.com/bafige/edit?js,console)

 Listing 3.7. Objects with multiple properties (http://jsbin.com/bawiqev/edit?js,console)

 Listing 3.8. Using dot notation to access property values (http://jsbin.com/funiyu/edit?js,console)

 Listing 3.9. Concatenating string properties (http://jsbin.com/yoweti/edit?js,console)

 Listing 3.10. Using dot notation to update a property (http://jsbin.com/mulimi/edit?js,console)

 Listing 3.11. Using a property in a calculation (http://jsbin.com/cuboko/edit?js,console)

 Listing 3.12. A blog post (http://jsbin.com/jiculu/edit?js,console)

 Listing 3.13. A calendar event (http://jsbin.com/viroho/edit?js,console)

 Listing 3.14. Location for a weather app (http://jsbin.com/diguhe/edit?js,console)

 Listing 3.15. A question and answer for a quiz app (http://jsbin.com/damoto/edit?js,console)

 Listing 3.16. A player object (http://jsbin.com/qelene/edit?js,console)

 Chapter 4. Functions: code on demand

 Listing 4.1. Displaying an object’s properties on the console (http://jsbin.com/besudi/edit?js,console)

 Listing 4.2. Displaying information from similar objects (http://jsbin.com/gewegi/edit?js,console)

 Listing 4.3. Adding tax to find the total cost (http://jsbin.com/kawocu/edit?js,console)

 Listing 4.4. A simple function definition and assignment (http://jsbin.com/tehixo/edit?js,console)

 Listing 4.5. Two more function definitions and assignments (http://jsbin.com/xezani/edit?js,console)

 Listing 4.6. Calling the sayHello function three times (http://jsbin.com/vozuxa/edit?js,console)

 Listing 4.7. Using the findTotal function to display a calculation (http://jsbin.com/hefuwa/edit?js,console)

 Listing 4.8. Displaying a menu (http://jsbin.com/cujozo/edit?js,console)

 Listing 4.9. Using a function to display object properties (http://jsbin.com/toqopo/edit?js,console)

 Listing 4.10. Calling the showMovieInfo function (http://jsbin.com/menebu/edit?js,console)

 Listing 4.11. Using the same function with multiple objects (http://jsbin.com/mavutu/edit?js,console)

 Listing 4.12. Using functions to add and display tax (http://jsbin.com/raqiri/edit?js,console)

 Listing 4.13. Updating your display function to add a blank line (http://jsbin.com/cijini/edit?js,console)

 Listing 4.14. A function to display player information (http://jsbin.com/mafade/edit?js,console)

 Chapter 5. Arguments: passing data to functions

 Listing 5.1. Relying on a variable outside the function (http://jsbin.com/taqusi/edit?js,console)

 Listing 5.2. Breaking a function by changing a variable name (http://jsbin.com/yaresa/edit?js,console)

 Listing 5.3. Passing information to a function (http://jsbin.com/xucemu/edit?js,console)

 Listing 5.4. Calling the same function with different arguments (http://jsbin.com/zavavo/edit?js,console)

 Listing 5.5. Using the square function (http://jsbin.com/vequpi/edit?js,console)

 Listing 5.6. A function with two arguments (http://jsbin.com/siyelu/edit?js,console)

 Listing 5.7. Displaying a player’s name (http://jsbin.com/yubahi/edit?js,console)

 Listing 5.8. Displaying a player’s name via an object property (http://jsbin.com/juhewi/edit?js,console)

 Listing 5.9. Displaying a player’s health (http://jsbin.com/nomija/edit?js,console)

 Listing 5.10. Displaying a player’s health via object properties (http://jsbin.com/zufoxi/edit?js,console)

 Listing 5.11. Displaying a player’s location (http://jsbin.com/yifahe/edit?js,console)

 Listing 5.12. Displaying a player’s location via object properties (http://jsbin.com/mejuki/edit?js,console)

 Listing 5.13. Displaying a player’s information (http://jsbin.com/likafe/edit?js,console)

 Listing 5.14. Displaying a player’s information using properties (http://jsbin.com/loteti/edit?js,console)

 Chapter 6. Return values: getting data from functions

 Listing 6.1. Returning a value from a function (http://jsbin.com/yucate/edit?js,console)

 Listing 6.2. Using an argument to determine the return value (http://jsbin.com/nijijo/edit?js,console)

 Listing 6.3. Using the return value as an argument (http://jsbin.com/yapic/edit?js,console)

 Listing 6.4. Returning the sum of two numbers (http://jsbin.com/haqapu/edit?js,console)

 Listing 6.5. A function with three arguments (http://jsbin.com/jedigi/edit?js,console)

 Listing 6.6. A collection of functions that return values (http://jsbin.com/lijufo/edit?js,console)

 Listing 6.7. Getting a string for a player’s name (http://jsbin.com/hijeli/edit?js,console)

 Listing 6.8. Getting strings for a player’s health and location (http://jsbin.com/pemore/edit?js,console)

 Listing 6.9. Getting a string for a player’s information (http://jsbin.com/javuxe/edit?js,console)

 Listing 6.10. Displaying player information using objects (http://jsbin.com/puteki/edit?js,console)

 Chapter 7. Object arguments: functions working with objects

 Listing 7.1. Passing a function an object as an argument (http://jsbin.com/tafopo/edit?js,console)

 Listing 7.2. A function that adds properties to an object (http://jsbin.com/qevodu/edit?js,console)

 Listing 7.3. A function to create planets (http://jsbin.com/coyeta/edit?js,console)

 Listing 7.4. Moving a point in 2D (http://jsbin.com/baxuvi/edit?js,console)

 Listing 7.5. Using Math.min and Math.max (http://jsbin.com/moyoti/edit?js,console)

 Listing 7.6. Using Math.min and Math.max to constrain an argument (http://jsbin.com/qiziyo/edit?js,console)

 Listing 7.7. Converting a string to uppercase (http://jsbin.com/jizaqu/edit?js,console)

 Listing 7.8. Finding substrings (http://jsbin.com/mesisi/edit?js,console)

 Listing 7.9. Finding a character with indexOf (http://jsbin.com/bidabi/edit?js,console)

 Listing 7.10. Organizing functions as object properties (http://jsbin.com/kayono/edit?js,console)

 Listing 7.11. Displaying player information using objects (http://jsbin.com/beqabe/edit?js,console)

 Chapter 8. Arrays: putting data into lists

 Listing 8.1. Creating arrays (http://jsbin.com/cevodu/edit?js,console)

 Listing 8.2. Using existing objects in an array (http://jsbin.com/gizulu/edit?js,console)

 Listing 8.3. Accessing array elements (http://jsbin.com/qemufe/edit?js,console)

 Listing 8.4. Using a variable as an index (http://jsbin.com/veyexa/edit?js,console)

 Listing 8.5. Passing an array to a function (http://jsbin.com/bewebi/edit?js,console

 Listing 8.6. Manipulating arrays with push, pop, and join (http://jsbin.com/faqabu/edit?js,console)

 Listing 8.7. Iterating over an array with forEach (http://jsbin.com/sokosi/edit?js,console)

 Listing 8.8. Calling forEach with an inline function (http://jsbin.com/yapecu/edit?js,console)

 Listing 8.9. Using the arguments passed by forEach (http://jsbin.com/suvegi/edit?js,console)

 Listing 8.10. Using the arguments passed by forEach—compact (http://jsbin.com/pagahe/edit?js,console)

 Listing 8.11. Finding the total shopping bill (http://jsbin.com/zizixu/edit?js,console)

 Listing 8.12. Displaying a multiple choice question (http://jsbin.com/lobahu/edit?js,console)

 Listing 8.13. Displaying player items (http://jsbin.com/mecude/edit?js,console)

 Chapter 9. Constructors: building objects with functions

 Listing 9.1. Using a function to create an object (http://jsbin.com/jiroyo/edit?js,console)

 Listing 9.2. Adding methods to your constructed object (http://jsbin.com/zogure/edit?js,console)

 Listing 9.3. An array of constructed objects (http://jsbin.com/jiweze/edit?js,console)

 Listing 9.4. The Planet constructor (http://jsbin.com/bixico/edit?js,console)

 Listing 9.5. Including a moons array in the Planet constructor (http://jsbin.com/wiguya/edit?js,console)

 Listing 9.6. Creating multiple planets with our constructor (http://jsbin.com/wewewe/edit?js,console)

 Listing 9.7. A quiz question constructor (http://jsbin.com/vuyesi/edit?js,console)

 Listing 9.8. A calendar event constructor (http://jsbin.com/gemiyu/edit?js,console)

 Listing 9.9. A Place constructor, part 1 (http://jsbin.com/pogive/edit?js,console)

 Listing 9.10. A Place constructor, part 2 (http://jsbin.com/qemica/edit?js,console)

 Listing 9.11. A Place constructor, part 3 (http://jsbin.com/parale/edit?js,console)

 Listing 9.12. A Player constructor function (http://jsbin.com/leqahi/edit?js,console)

 Chapter 10. Bracket notation: flexible property names

 Listing 10.1. Bracket notation for object properties (http://jsbin.com/kipedu/edit?js,console)

 Listing 10.2. Longer strings as keys (http://jsbin.com/toviya/edit?js,console)

 Listing 10.3. Using a function to add ages (http://jsbin.com/pipuva/edit?js,console)

 Listing 10.4. Using Object.keys (http://jsbin.com/mehuno/edit?js,console)

 Listing 10.5. Iterating over Object.keys with forEach (http://jsbin.com/seteco/edit?js,console)

 Listing 10.6. Counting words from tweets (http://jsbin.com/figati/edit?js,console)

 Listing 10.7. Counting letters from tweets (http://jsbin.com/rusufi/edit?js,console)

 Listing 10.8. An exits object (http://jsbin.com/daqato/edit?js,console)

 Listing 10.9. Functions to add and show exits (http://jsbin.com/mibube/edit?js,console)

 Listing 10.10. An exits object in the Place constructor (http://jsbin.com/foboka/edit?js,console)

 Listing 10.11. A map with four locations (http://jsbin.com/bufico/edit?js,console)

 Listing 10.12. A Place constructor function (http://jsbin.com/zozule/edit?js,console)

 Listing 10.13. Testing the Place constructor (http://jsbin.com/zozule/edit?js,console)

 Listing 10.14. Playing the game (http://jsbin.com/sezayo/edit?js,console)

 Chapter 11. Scope: hiding information

 Listing 11.1. Declare, assign, and use a variable (http://jsbin.com/gujacum/edit?js,console)

 Listing 11.2. Accessing a variable from within a function (http://jsbin.com/zojida/edit?js,console)

 Listing 11.3. A tiny quiz (http://jsbin.com/nubipi/edit?js,console)

 Listing 11.4. A variable hidden from the console (http://jsbin.com/bobilu/edit?js,console)

 Listing 11.5. The variable is visible from within the function (http://jsbin.com/raluqu/edit?js,console)

 Listing 11.6. Global and local variables (http://jsbin.com/riconi/edit?js,console)

 Listing 11.7. A counter (http://jsbin.com/yagese/edit?js,console)

 Listing 11.8. Hiding the counter variable (http://jsbin.com/fuwuvi/edit?js,console)

 Listing 11.9. Multiple counters (http://jsbin.com/sicoce/edit?js,console)

 Listing 11.10. A counter constructor (http://jsbin.com/yidomap/edit?js,console)

 Listing 11.11. Improving the quiz app (http://jsbin.com/tupoto/edit?js,console)

 Listing 11.12. Hiding the questions and answers (http://jsbin.com/qahedu/edit?js,console)

 Listing 11.13. The Player constructor (http://jsbin.com/dacedu/edit?js,console)

 Listing 11.14. Hiding player info in the constructor (http://jsbin.com/fuyaca/edit?js,console)

 Listing 11.15. The Place constructor (http://jsbin.com/kavane/edit?js,console)

 Listing 11.16. Hiding place info in the constructor (http://jsbin.com/riviga/edit?js,console)

 Listing 11.17. Lots of global variables in the game (http://jsbin.com/dateqe/edit?js,console)

 Listing 11.18. Letting users interact with the game via an interface object (http://jsbin.com/yuporu/edit?js,console)

 Chapter 12. Conditions: choosing code to run

 Listing 12.1. Guess the number http://jsbin.com/feholi/edit?js,console

 Listing 12.2. Guess the number—the else clause (http://jsbin.com/nakosi/edit?js,console)

 Listing 12.3. Guess the number—using local scope (http://jsbin.com/hotife/edit?js,console)

 Listing 12.4. Guess the random number (http://jsbin.com/mezowa/edit?js,console)

 Listing 12.5. Higher or lower (http://jsbin.com/cixeju/edit?js,console)

 Listing 12.6. A neater else-if block (http://jsbin.com/cidoru/edit?js,console)

 Listing 12.7. Checking quiz answers (http://jsbin.com/hidogo/edit?js,console)

 Listing 12.8. Checking user input (http://jsbin.com/zoruxu/edit?js,console)

 Chapter 13. Modules: breaking a program into pieces

 Listing 13.1. Loading JavaScript with a script tag (HTML) (http://jsbin.com/lifugam/edit?html,js,console)

 Listing 13.2. Code in the JavaScript panel as well (http://jsbin.com/lifugam/edit?html,js,console)

 Listing 13.3. Using the Number Generator with the quiz app (HTML) (http://jsbin.com/ponogi/edit?html,js,console)

 Listing 13.4. Using the Number Generator with the quiz app (http://jsbin.com/ponogi/edit?html,js,console)

 Listing 13.5. Using the Number Generator in the guessing game (HTML) (http://jsbin.com/tixina/edit?html,js,console)

 Listing 13.6. Using the Number Generator in the guessing game (http://jsbin.com/tixina/edit?html,js,console)

 Listing 13.7. Using spacer and between in the guessing game (HTML) (http://jsbin.com/foqowa/edit?html,js,console)

 Listing 13.8. Using spacer and between in the guessing game (http://jsbin.com/foqowa/edit?html,js,console)

 Listing 13.9. Importing Kallie’s code (HTML) (http://jsbin.com/zusodu/edit?html,js,console)

 Listing 13.10. Using Kallie’s code (http://jsbin.com/zusodu/edit?html,js,console)

 Listing 13.11. Kallie’s formatting code (http://jsbin.com/soxeke/edit?js,console)

 Listing 13.12. Kallie’s formatting code in a namespace (http://jsbin.com/moheka/edit?js,console)

 Listing 13.13. Importing Kallie’s namespace (HTML) (http://jsbin.com/seqahi/edit?html,js,console)

 Listing 13.14. Using Kallie’s code (http://jsbin.com/seqahi/edit?html,js,console)

 Listing 13.15. Random quiz questions with two global variables (http://jsbin.com/ponogi/edit?html,js,console)

 Listing 13.16. Using an IIFE with the quiz app (http://jsbin.com/titano/edit?html,js,console)

 Listing 13.17. Importing modules for The Crypt (HTML) (http://jsbin.com/zikuta/edit?html,js,console)

 Listing 13.18. Importing modules for The Crypt (http://jsbin.com/zikuta/edit?html,js,console)

 Listing 13.19. The Player constructor as a module (http://jsbin.com/nubijex/edit?js)

 Listing 13.20. The Place constructor as a module (http://jsbin.com/dofuci/edit?js)

 Chapter 14. Models: working with data

 Listing 14.1. The User constructor (http://jsbin.com/suzala/edit?js,console)

 Listing 14.2. A function to build a user model from user data (HTML) (http://jsbin.com/zenire/edit?html,js,console)

 Listing 14.3. A function to build a user model from user data (http://jsbin.com/zenire/edit?html,js,console)

 Listing 14.4. Map data (http://jsbin.com/qonoje/edit?js,console)

 Listing 14.5. A Place constructor with challenges (http://jsbin.com/ruviso/edit?js,console)

 Listing 14.6. The map builder (http://jsbin.com/paqihi/edit?js,console)

 Listing 14.7. Using the new map builder (http://jsbin.com/mogano/edit?js,console)

 Listing 14.8. Using the map builder (HTML) (http://jsbin.com/rulayu/edit?html,console)

 Chapter 15. Views: displaying data

 Listing 15.1. A simple user view (http://jsbin.com/goqinep/edit?js,console)

 Listing 15.2. Testing two user views (HTML) (http://jsbin.com/vamuzu/edit?html,js,console)

 Listing 15.3. Testing two user views (http://jsbin.com/vamuzu/edit?html,js,console)

 Listing 15.4. The Player constructor (http://jsbin.com/yaneye/edit?js,console)

 Listing 15.5. A player view (http://jsbin.com/zucifu/edit?js,console)

 Listing 15.6. exits variableA simplified Place constructor (http://jsbin.com/vuwave/edit?js,console)

 Listing 15.7. A place view (http://jsbin.com/royine/edit?js,console)

 Listing 15.8. A message view (http://jsbin.com/jatofe/edit?js,console)

 Chapter 16. Controllers: linking models and views

 Listing 16.1. The fitness app controller (http://jsbin.com/goniro/edit?js,console)

 Listing 16.2. The fitness app (HTML) (http://jsbin.com/huxuti/edit?html,js,console)

 Listing 16.3. The fitness app (http://jsbin.com/huxuti/edit?js,console)

 Listing 16.4. The game controller (http://jsbin.com/yeqicu/edit?js)

 Listing 16.5. The init function (http://jsbin.com/yeqicu/edit?js)

 Listing 16.6. Checking if health has dropped to zero (http://jsbin.com/yeqicu/edit?js)

 Listing 16.7. Updating the display (http://jsbin.com/yeqicu/edit?js)

 Listing 16.8. The get function (http://jsbin.com/yeqicu/edit?js)

 Listing 16.9. The go function (http://jsbin.com/yeqicu/edit?js)

 Listing 16.10. The use function (http://jsbin.com/yeqicu/edit?js)

 Listing 16.11. Loading the game modules (HTML) (http://jsbin.com/fociqo/edit?html,console)

 Listing 16.12. Running the game (http://jsbin.com/fociqo/edit?js,console)

 Chapter 17. HTML: building web pages

 Listing 17.1. My Movie Ratings—headings and paragraphs (HTML) (http://jsbin.com/nosiwi/edit?html,output)

 Listing 17.2. Ordered and unordered lists (HTML) (http://jsbin.com/vegahe/edit?html,output)

 Listing 17.3. Adding content to a paragraph with JavaScript (HTML) (http://jsbin.com/mikura/edit?html,js,output)

 Listing 17.4. Adding content to a paragraph with JavaScript (http://jsbin.com/mikura/edit?html,js,output)

 Listing 17.5. Building HTML with JavaScript (HTML) (http://jsbin.com/jakowat/edit?html,js,output)

 Listing 17.6. Building HTML with JavaScript (http://jsbin.com/jakowat/edit?html,js,output)

 Listing 17.7. A web-based player view (http://jsbin.com/cehexi/edit?js,console)

 Listing 17.8. A web-based place view (http://jsbin.com/cakine/edit?js,console)

 Listing 17.9. A web-based The Crypt game (HTML) (http://jsbin.com/zaxaje/edit?html,console,output)

 Listing 17.10. A web-based The Crypt game (CSS) (http://jsbin.com/toyahi/edit?css)

 Listing 17.11. A web-based message view (http://jsbin.com/nocosej/edit?js,console)

 Chapter 18. Controls: getting user input

 Listing 18.1. My Movie Ratings greetings with button (HTML) (http://jsbin.com/josoqik/edit?html,output)

 Listing 18.2. My Movie Ratings greetings with button (http://jsbin.com/josoqik/edit?js,output)

 Listing 18.3. My Movie Ratings with a drop-down list (HTML) (http://jsbin.com/hikuzi/edit?html,output)

 Listing 18.4. My Movie Ratings with a drop-down list (http://jsbin.com/hikuzi/edit?js,output)

 Listing 18.5. Movies, comments, and a random greeting (http://jsbin.com/nevaxit/edit?js,output)

 Listing 18.6. Movies, comments, and a random greeting (HTML) (http://jsbin.com/nevaxit/edit?html,output)

 Listing 18.7. Adding controls to The Crypt (HTML) (http://jsbin.com/rijage/edit?html,output)

 Listing 18.8. Converting a command string into a command object (http://jsbin.com/repebe/edit?js,console)

 Listing 18.9. The command module (http://jsbin.com/qedubi/edit?js,console)

 Chapter 19. Templates: filling placeholders with data

 Listing 19.1. Fitness App News (HTML) (http://jsbin.com/viyuyo/edit?html,output)

 Listing 19.2. Replacing one string with another (http://jsbin.com/jeyohu/edit?js,console)

 Listing 19.3. Chaining calls to replace (http://jsbin.com/rebugu/edit?js,console)

 Listing 19.4. Calling replace once for each property (http://jsbin.com/quroha/edit?js,html,output)

 Listing 19.5. Using a while loop to count (http://jsbin.com/quroga/edit?js,console)

 Listing 19.6. Using a while loop with replace (http://jsbin.com/cabaju/edit?js,console)

 Listing 19.7. A function to fill templates with data (http://jsbin.com/bazika/edit?js,output)

 Listing 19.8. Building a list using a template (http://jsbin.com/hilecu/edit?js,output)

 Listing 19.9. The templates module (http://jsbin.com/pugase/edit?js,console)

 Listing 19.10. A news page data module (http://jsbin.com/fupiki/edit?js,console)

 Listing 19.11. A modular news page (HTML) (http://jsbin.com/vemufa/edit?html,output)

 Listing 19.12. A modular news page (http://jsbin.com/vemufa/edit?js,output)

 Listing 19.13. The Crypt with Templates (HTML) (http://jsbin.com/yapiyic/edit?html,output)

 Listing 19.14. A message view using templates (http://jsbin.com/jojeyo/edit?js,console)

 Listing 19.15. A player view using templates (http://jsbin.com/suyona/edit?js,console)

 Listing 19.16. A place view using templates (http://jsbin.com/yoquna/edit?js,console)

 Chapter 20. XHR: loading data

 Listing 20.1. Using an XHR object to load user data (http://jsbin.com/qakofo/edit?js,console)

 Listing 20.2. Parsing JSON text to obtain a JavaScript object (http://jsbin.com/rexolo/edit?js,console)

 Listing 20.3. A function for loading JS Bin data (http://jsbin.com/suxoge/edit?js,console)

 Listing 20.4. The fitness app controller (http://jsbin.com/nudezo/edit?js,console)

 Listing 20.5. The fitness app (HTML) (http://jsbin.com/mikigo/edit?html,console)

 Listing 20.6. The fitness app (http://jsbin.com/mikigo/edit?js,console)

 Listing 20.7. The JSON data for The Kitchen (http://output.jsbin.com/qulude.json)

 Listing 20.8. loadPlace methodMap Manager (http://jsbin.com/xesoxu/edit?js)

 Listing 20.9. The game controller using the Map Manager (http://jsbin.com/vezaza/edit?js)

 Listing 20.10. The Crypt (HTML) (http://jsbin.com/cujibok/edit?html,output)

 Listing 20.11. The Crypt (http://jsbin.com/cujibok/edit?js,output)

 Chapter 21. Conclusion: get programming with JavaScript

 Listing 21.1. script elements in theCrypt.html

 Listing 21.2. The use function (minified)

 Listing 21.3. The use function

01fig03_alt.jpg
1. Select New from the File menu STt elcalot el oot il 4.ClickRun

e <>l m < ° a

B Fo- Ay Swe WML 0SS lmascint | Coroe Oueut .w]-«.u

dmasapt - Consolo
+ console. Log("Hello Worldi"); "Hello Hortdt®

S ittt 5. Checkthe result on the Console panel

01fig04_alt.jpg
B Flo- Addibray Share B Flo- Addibray Sharo

JavaSaript
1 console. log("Hello World!")

Javasaript ~
1 console. log("Hello World!")

© Line 1: Missing semicolon.

01fig01_alt.jpg
Close theinfo panel T — e

o
Ui G5
s
s
Vo st i ot
-
BBt 50 e
o~ o Smons) AmensO
+ civocrre s> 2
3 g
S
3 VR dursenat
RSN
¢ ghas
* o=t
H
Pilten
HIMLPanel csspanel Outputpanel

01fig02_alt.jpg

common2.jpg

enter.jpg

common1.jpg

ch04ex11-1.jpg
"Star Wars: Episode VII - The Force Awakens",
actors: "Harrison Ford, Mark Hamill, Carrie Fisher",
directors: "J.J.Abrams"

b

showMovieInto = function () (
console. log(*Movie information for * + movie.title);
console. log (*)
console. log(*Actors: * + movie.actors)
console.log(*Directors: * + movie.directors)
console. log (* s

b

movie = moviel; Assign moviel to the movie
showtovieIno () ; variable, ready for display
movie = movie2;
showlovieInfo () ; Switch the movie

to be displayed

movie = movie3;
showMovieInfo() :

is used in the
showMovielnfo
function.

ch04ex12-1.jpg
var displaySale = function () {
console.log("price = §" + sale.price);
console.log("tax @ " + sale.taxRate + "% = §" + sale.tax);
console.log("total cost = §* + sale.total);

sale = salel; Assign sale1 to sale before
calculateTax() ; calling the two functions to
displaysale () ; update and display it

ale = sale2;
calculateTax() ;
aisplaySale() ;

sale = sale3;
calculateTax() ;
displaySale();

ch04ex12-0.jpg
var salel;

var sale2; Declare a sale
var sale3; variable to be used
var sale; by the functions

var calculateTax;
var displaySale;

salel
sale2
sale3

{ price: 140, taxRate: 15 };
{ price: 40, taxRate: 10 };
{ price: 120, taxRate: 20 };

calculateTax = function () {

sale.tax - sale.price + sale.taxRate / 100;

e.total = sale.price + sale.tax;

Use the sale variable
here and in the

splaySale function

01fig05_alt.jpg
Double click to toggle line numbers

£ var log » function (player) {
2 " consoe. log(player name + ¥ is in * + player.location);
an

% var playerd = { name ¢ tocation , "The Pt of Doos");
5 Var player2 = { nase : "Dax, gcotion : *The Kitchon);

7 Var playera + { name : "Brin®, location : "The Library" 1;

s

50 Log(player2)
11 log(playerd);

04fig03_alt.jpg
W G55 e ot st

o ferastion for Tnside o

hctors: dey soenar, BV oc

o fermstion for Spacerat

hctors: Buntel Crte, Ghristosh wiea®

e p——

01fig06_alt.jpg
The Kitchen

Jahver

You e na kichen, Thre s isbing scl.

4% A zombie sinks its teeth into your neck. *#+

053fig01_alt.jpg
showovisinfo = functiom () {
console. log("Movie information for * + movie.title);
console. log (* BN
console. log ("Actors: " + movie.actors) ;

g Add an extra call to
Coneatertont i amselog o gerou
boowcrioct -

044fig01_alt.jpg
var sayHello; < Declare a variable

sayHello = function () {

Define a function and assign
console.log ("Hello World!®);

) it to the sayHello variable
Include code between the curly
braces, to be executed whenever
you run the function

04fig02_alt.jpg
Parentheses

function keyword function () {
Code block between curly braces
for the function body

046fig01_alt.jpg
var saytlello;

sayHello = function () {

console.log("Hello World!"); Define the function and

assign it to a variable

sayHello() ; . Call the function by
sayHello(); Call the function adding parentheses
sayHello() ; again and again after the variable name

045fig01_alt.jpg
var findTotal;
var displayMenu;

The variables result,

findTotal = function () { number1 and number2,
result = numberl + number2; ‘would have to have been
b declared elsewhere.

displayMenu = function () {
console.log("Please choose an option:
console.log("(1) Print log")
console.log("(2) Upload file");
console.log("(9) Quit");

)i

ch04ex11-0.jpg
var moviel
var movie2

var movie3; Declare a movie variable
var movie; to hold the current
var showMovieInfo; ‘movie for display

"Inside Out",
actors: "Amy Poehler, Bill Hader"
directors: "Pete Doctor, Ronaldo Del Carmen"

}i

moviez = {
title: "Spectrer,
actors: "Daniel Craig, Christoph Waltz®,
directors: "Sam Mendes"

}:

049fig01_alt.jpg
VAE MOViSl
var showplayerInfo;
var movie;

moviel = {
title: "Inside Out*,
actors: "Amy Poehler, Bill Hader”,
directors: "Pete Doctor, Ronaldo Del Carmen®

}i

showdovieInfo = function () {
console. log(*Movie information for * + movie.title);
console.log(
console. log(*Actors: * + movie.actors) ;
console. log(*Directors: * + movie.directors) ;
console.log(N

Vi

novie = moviel;

Call the function. Now
AT Ty 3 ‘the code is executed.

Define the function.
The code in the
function body is not
executed at ths point

060fig01_alt.jpg
vaxr swiessage Include a parameter, message,

‘when defining the function
showMessage = function (message) { <«
console.log("The message is: " + message) ; <] Use message sywhere
inside the function body

showMessage ("It's full of stars

7] When the function “It's full of stars!’
assigned to message and the statements
in the function body are executed

05fig01.jpg
Parameter

function (paraml) {
parant is available as a variable
in the function body

062fig01_alt.jpg
. SR

Square the number by
square = function (numberTosquare) { multiplying i by itself; the *
var result; the multiplication operator
result = numberToSquare * numberToSquare;
console. log (numberToSquare + " * * + numberTosquare + * = " + result);

square (10) ;
square (-2) ;
square (1111) ;
square (0.5} ;

061fig01_alt.jpg
Seclares. Define a function with a
var showMessage; variable ‘message parameter; assign
the function to a variable
showMessage = function (message) {
console.log("The message is:

+ message) ; Use the parameter in

the function body

showlessage ("It's full of stars!");
showlessage ("Hello to Jason Isaacs");
showMessage ("Hello to Jason Isaacs and Stephen Fry");

Call the function,

argument each time

063fig01_alt.jpg
YRE Showlan;
You define the function with
showsum = function (numberl, number2) | two parameters, number1
var total = numberl + number2; and number2.
console.log("The sum is " + total);

You call the function with two
showSum (30, 23); arguments, 30 and 23.
an T8 o R

05fig02_alt.jpg
Parameters

function (paraml, param2, param3) {
param1, paran2, parans3, are available
as variables in the function body

ch04ex14-0.jpg
var playerl;
var player2; Declare the variables
var player; you'll be using

var showplayerrnfo;

playerl = {
name: "Kandra*,
place: "The Dungeon of Doom”,

health: 50
7 Create objects using curly

braces and key-value pairs.
gz Assign them to variables.

name: "Dax*,
place: "The 0ld Library",
health: 40

Vi

04fig04_alt.jpg
o

player variables

aplayer object

player toms

Player Constructor

using arguments.
using retur values

using objects

Flaces

place objects

place items

place exits

showing place info

Place Constructor

5o
linking places
Game
render
gt
3

058fig01_alt.jpg
e e
var showMessage;

Assign the string to be displayed
to the message variable
message "It's full of stars!";
showMessage = function () { Use the message variable,
console. log (message) ; defined outside the showMessage
b function, in the function body

showtessage () ; < Call the showMessage function. It uses the

current value of the message variable.

ch04ex14-1.jpg
showplayerInfo = function () {

console.
console.
console.
console.
console.
console.

player = playerl;
showplayerInfo() ;

log (-

1og(player.nane) ;

);
log(player.name + " is in * + player.place);

_log(player.name + " has health " + player.health);

log("-
log("");

"

Assign the other player

player - player2; Call the function to display
showplayerInfo(); < properties of the player object

object to the player variable

Define a function
to display player
properties. The
code will run
when the
function i called.

Assign one of the player objects to the player
variable so the function can access it

058fig02_alt.jpg
pmishon s .
var showMessage;

Assign the string to be
displayed to the msg variable
msg = "It's full of stars!";
showMessage = function () { Use a variable called message
console.log (message) ; in the function body

}i
| Produce an error by trying to
howMessade i | call the showMessage function

066fig02_alt.jpg
FRE RINyNES)
var player2;
var showlayerHealth;

showplayerHealth = function (playerName, playerHealth) {
console.log (playerName + * has health * + playerHealth);
bi

playerl = {
name: "Kandra®,
place: "The Dungeon of Doom",
health: 50

player2 = {
name: "Dax",
place: "The 0ld Library",

health: 40
bi

showplayeriiealth (playerl.name, playerl.health); Pass each player’s name
showplayerHealth (player2.name, player2.health); and health properties to the

showPlayerHealth function
as arguments

072fig01_alt.jpg
VAr gechessage;
var response;

Return the message from
the function by using the

getMessage = function () { e e

return "I'm going on an adventure!";
}i
response = getMessage () ; Callthe getMessage function
and assign the returned value

console.log (response) ; 40/ the resgiiiss Vartable

06fig01.jpg
‘You call the add function

var sum

add (50, 23);

The function returns the value 73

var sum

73;

The return value replaces
the function call

073fig01_alt.jpg
VAL getHe:lolo;

getHelloTo = function (name) {
return "Hello to " + name;

b Call the getHelloTo function

and use the return value as

console.log (getHelloTo (*Kandra®)) ; an argument for console.log

console.log (getHelloTo (*Dax")) ;

072fig02_alt.jpg
var getlelloTo;
var fullMessage;

getHelloTo = function (name) { Include a parameter in
; return "Hello to " + name; the function definition

" wy; Use the value assigned to
fullMessage = getHelloTo("Kandra"); the parameter o build the

console.log (fullMessage) ; return value

074fig01_alt.jpg
VA 8o

add = function (numberl, number2) { Assign the result of the

var total = numberl + number2; calculation to the total variable

return total;

Use the return keyword to pass the result
back to where the function is called

vaz gun; < a0 (503231 Call the add function and assign the

value returned to the sum variable
console.log (sum) ;

06fig02_alt.jpg
var sum = add(

v =
The return value = -

replaces the
function call

return

065fig01_alt.jpg
ol o e Include a playerName parameter

‘when defining the function
showPlayerName = function (playerName) {
console. 1og (playerName) ;
¥ Log the value assigned to
the parameter when the
showPlayerName ("Kandra") ; function is called

showPlayerName ("Dax") ;

05fig03_alt.jpg
s athid
player variables

aplayer object

plager tems

Player Consiructor

L3y

place objects
using functions

using retur values

placs tems.
placs exis
showing piace nfo

using objects
Place Constructor

i nd
tinking places
Game
rondor
gt
@

066fig01_alt.jpg
Include two parameters, playerName
var showplayerHealth; and playerHealth, in the definition

showplayerkealth = function (playerName, playerHealth)
console.log(playerName + * has health * + playerHealth) ;
b

showplayerHealth ("Kandra", 50); Use the valises assignad to

showplayerHealth ("Dax, 40); the, PMg7:m$;

065fig02_alt.jpg
vy DARYRTLE
var player2;
var showPlayerName;

showPlayerName = function (playerName) {
console. log (playerName) ;

playerl = {
name: "Kandra",

place: "The Dungeon of Doom",
health: 50
}i
player2 = {
name: "Dax",
place: "The Old Library",
health: 40
showPlayexrName (playerl.name) ; Pass the player’s name to the

showPlayerName (player2.name) ; showPlayerName function as an argument

ch06ex10-1.jpg
var

playerinfo += "\n" + getPlayerHealth(playerName, playerHealth);
playerInfo += "\n" + getBorder();
playerinfo += "\n";

return playerinfo;
playerl = {

name: "Kandra,
place: "The Dungeon of Doom",

Create two
health: 50
player objects
var playerz = {
name: "Dax*,
place: *The 014 Library",
health: 40
b
console. log(
getPlayerinto(:::;!:;'i:::m!.
playerl.name, playerl.place, playerl.health)); i bl
on the console

console.log(

getplayerInfo(
Diavars nase. dliverd sl Slevesd fenlthiya

ch06ex10-0.jpg
var

var

getPlayertiame = function (playerName) {
return playerName;

getPlayerkealth = function (Deine funcions to
playerName, playerhealth) { Ll 8
return playerNane + * has health " + playerHealth; Speclic pliyer olo
getPlayerplace = function (
playerName, playerPlace) {
return playerName + * is in * + playerplace;
getBorder = function () { [—
Eewy : a string used as a border
getPlayerinto = function (Deflie’s foiction tiie call
playerName, playerPlace, playerealth) { previous functions o build
a player info string

var playerInfo;

playerInfo = "\n* + getPlayerName (playerName) ;
playerInfo += "\n" + getBorder();
playerInfo += *\n" + getPlayerPlace (playerName, playerPlace);

084fig01_alt.jpg
i LR
var getPlanetInfo;

planetl = {
name: "Jupiter",
position: 5,
type: "Gas Giant",
radius: 69911, Include a planet
sizeRank: 1

b Access
properties of
getPlanetInfo = function (planet) { < the planet
return planet.name + ": planet number * + planet.position; object

Call the getPlanetinfo
console.log(getPlanetInfo (planetl)) ; function, passing in a
planet as an argument

07fig01_alt.jpg
‘An object as a single argument

showPlayerInfo(playerl);

showPlayerInfo(playerl.name , playerl.location , playerl.health);

Multiple arguments can be harder to work with

07fig03_alt.jpg
A single parameter

calculatesizes = funceion (D) (

var r = planet.radius;

@) - ¢ cs1a2 v xy The function adds

W0 new properties

G - < - 212 v rrrvx /3 tothe planet object

07fig02_alt.jpg
A single parameter

L

getPlanetinfo = function ((EUEHEE)) {

e

The properties of the object can be accessed inside the function body

return

07fig04_alt.jpg
planetl = buildPlanet (i

The retumn value
replaces the
function call

(.

return (
name
position:
type:
radius

sizeRank:

g

\

planetl = {
name: "Jupiter",
position: 5,

: 69911,
sizeRank: 1

“Gas Giant",

086fig01_alt.jpg
Adda
volume
property

var planetl = { name: "Jupiter*, radius: 69911 }; | i quution et
calculateSizes function
e = o S eeiies A anara property wthe
oot e i e L KRN | pleat b pssod e
Planet.volume = 4 *+ 3.142 s r * £ % £/ 3; function when it's called
i
Iocude s plane paarser
i the et
var displaysizes = function (planet) (ool rad Al

console. 1og (planet .name) ;
console.log(*surface area = * + planet.area + * square km');
console.log(*volune = * + planet.volume + * cubic ka');

Yi

calculatesizes (planstl); Pass the planet’ object as an
et ach Ty & i, sy ey

06fig03_alt.jpg
B ki
player variables

aplayer object

player toms

Player Constructor

Finea

place objects
using functions
place items
using arguments.
place exits

ame ...

using objects
Place Constructor

g
linking places
Game
render
got
%

074fig02_alt.jpg
var totalCost; Evaluate the total cost and return the value

totalCost = function (callOutCharge, costPerHour, numberOffours) {
return calloutCharge + costPerHour * numberOfHours;

The call to totalCost is replaced
SRR Tea (™ & SR ORI B by the value returned.

079fig01_alt.jpg
b il el

getPlayerInfo = function (playerName, playerPlace, playerealth) {
var playerInfo;

playerinfo = "\n* + getPlayerNane (playerNane); < pyilduptheinfostring by

playerInfo += "\n* + getBorder(); using the other functions
playerinfo += "\n* + getPlayerplace(to create the pieces
playerName, playerplace);
playerInfo += "\n" + getPlayerHealth(
playerName, playerHealth);

playerInfo += :: + getBorder () ; n—‘ Use +=to

playermno + append a string to

return playerinfo; i e i an exiting string

info string

NGl 1 (LR TORG (" RAGAEE" . *“Thi’ INRGEGH GF DODE™; B03Yi

logo.jpg
/I MANNING PUBLICATIONS

01fig07_alt.jpg
ayers

player variables

aplayer object

showing player info

player items

Player Constructor

Flaces

place objects

place items

place exits

showing place info

Place Constructor

Waps

linking places via exits

Game

render

oot

%

187fig01_alt.jpg
var spacer

{ /* visible on JS Bin */ };

var Player = function (name, health) {

var newLine = spacer.newLine();

this.name = name;
this.health = health;
this.items = [1;

this.place = null; the this object

this.addItem = function (item) { .. };
this.getNameInfo = function O { .. };
this.getHealthInfo = function () { ..}
this.getPlaceInfo = function () { ..

this.getItemsInfo

}
function O { .. };
this.getInfo = function (character) {

)

this.showInfo = function (character) { .. };

Make all data available
by setting properties on

Make all methods
available by setting

properties on the
this object

11fig07_alt.jpg
JavaSeript | Console | Outout B Account Blog Help

Console
> qIndex

X "Can't find variable: qIndex"
> questions[0]

X "Can't find variable: questions"

ch11ex12-1.jpg
question: "How many munros are in Scotland?",
answer: "284"

Return an object with properties
return { < for the user to access
quizMe : function () {

return questions[qIndex].question;

I

showMe : function () {
return questions (qndex] .answer;

b

next : function () {
qIndex = qIndex + 1;
return "ok";

h Call the function, assigning

the object returned to the
e quiz variable

ch11ex12-0.jpg
OJ Use a function to
var getQuiz = function () { s s fock s5op

var qindex = 0; Declare local variables
var questions = [inside the function
{
questior "What is the highest mountain in the world?",

answer: "Everest"

b

question: "What is the highest mountain in Scotland?",
answer: "Ben Nevis®

191fig01_alt.jpg
var spacer = { /* visible on JS Bin */ };

var Place = function (title, description) {
var newLine = spacer.newLine();

this.title = title;
this.description = description; Use properties to
this.items = [1; hold place data

this.exits = (};

this.getItensInfo = function ()
this.getExitsInfo = function ()

Create functions

this.getTitleInfo = function () { }; m:;’"“;z""
this.getInfo = function () { };

this.showInfo = function () { }; Create functions
this.addItem = function (item) { }; that update place
this.addExit = function (direction, exit) { }: data and display it

ch11ex14-1.jpg
items. forBach(function (item, i) {
itemsString += " - * + item + newLine;

b

return itemsString;

var getTitleInfo = function () {
Taturn getNameInfo() + * * + getHealthInto()s o
}i private—they're
for internal use.

var getInfo = function () {
var info = spacer.box (getTitleInfo(), 40,
info += " " + getItemsInfo();
info += spacer.line(40, "+*);
info += newLine;

eturn info;

b

this.addIten - function (item) [
items.push (item) ;
}

this.setPlace = function (destination) {
place = destination;
) Add methods to
manage access to
this.getPlace = function () { the place variable

eturn place;

b

this.showInfo = function (character) {
console.log (getInfo (character)) ;

02fig05.jpg
Assign the result to score,
updating its value

score = score + 50;

Evaluate the expression
using the current value of score

ch11ex14-0.jpg
var spacer = { /* visible on JS Bin */ };

var Player - function (name, health) { i s Gk
var neviine - spacer neveine :id:v::n:wr;‘wo ";:w
var place - null;
var getNameInfo - function ()
return name;
b Make these
var gethiealthInfo = function () { ;"ﬁ“v‘:;:"_’mq.n

return *(* + health + ")"; o inbormal i,

var getItemsInfo = function () {
var itemsString = "Items:" + newLine;

020fig02_alt.jpg
var playerName = "Kandra"; Declare a variable and assign
var locationName = "The Dungeon of Doom"; avalue to it in a single step

i s o et % X ik * % Tosed sl

11fig08_alt.jpg
local variables.

newLine

Local variables are private

Properties of this are public

this
name health
items place.
getNameInfo | | getHealthinfo
getPlacelnfo | getitemsinfo
getInto
adarcem showInfo

Old Player constructor

local variables
newLine
name health
items place.
getNameInfo | getHealthInfo
getTitleInfo getItemsInfo
getInfo
this
setPlace getplace
adartem showInfo

New Player consinuctor

01fig09_alt.jpg
=

Views
troller
Model Constructors Cont

Utiities - gpwi

01fig08_alt.jpg
-

Views

Model Constructors

Controller

o D

02fig02.jpg
‘I'he assignment operator

End each statement

ScoreisI00) with a semicolon

Variable name Value

ch11ex16-1.jpg
var getExitsInfo = function () {
var exitsString = "Exits from " + title;

exitsstring += ":" + newbine; Make these
functions private.
Object .keys (exits) . forEach(function (key) { They're for
exitastring += * - " + key; internal use.

exitsString += newline;

b

return exitsString;

var getTitleInfo = function () {
return spacer.box(title, title.length + 4, "=")

var getInfo = function () {
var infoString = getTitleInfo();
infoString += description;
infoString += newLine + newline;
infoString += getItemsInfo() + newLine;
infoString += getExitsInfo();
infostring += spacer.line (40, *
return infostring;

") + newLine;

this.showInfo = function () {
console.log(getInfo());

this.addItem = function (item) {
items.push(item) ;

this.addExit = function (direction, exit) (
exits(direction] = exit;

b
this.getBxit = function (direction) {

Add a public method to
return exits(direction]; B

); | give access to destinations

this.getlastItem = function () { ——

return items.pop(); Jast item from the ttems array

02fig01.jpg
The var keyword

End each statement

it with a semicolon

You choose the variable name

ch11ex16-0.jpg
var spacer = { /* visible on JS Bin */ };

var Place = function (title, description) (

var
var

var

newLine = spacer.newLine() ;
items = (1;
exits = {};

getItensinfo = function () {

var itemsString = "Items: " + newLine;

itens. forEach (function (item) (
itemsString += " - " + item;
itemsString += newLine;

D

return itemsString

Create private variables
with parameters and
the var keyword

02fig03.jpg
You assign the value on the right to
the variable on the left

score = 100;

Variable name Value

018fig01_alt.jpg
var score; <+ Declare a variable called score
score = 100; = Assign the value 100 to score

02fig04.jpg
Declare a variable

var score = 100;

Assign it a value

019fig01_alt.jpg
var message; <+—— Declare the message variable

messagel= “Hello World) Assign the message variable a piece of
console.log(message) ; text, using double quotation marks

nessage - 'Congratulations! Your tweet has won a prize...'
console. log (message) ;

Assign a new piece of text to message,

using single quotation marks

020fig01_alt.jpg
VHE Inmyaciy
var locationName;

playerName = "Kandra®;
locationName = "The Dungeon of Doom"; Use the + symbol

ciols. oo tolavarians + # 1u dn * 5 Tocativiiess to join strings.

03fig02.jpg
Key Value

title : "The Hobbit"

Colons separate keys from values

03fig03_alt.jpg
Properties are key-value pairs

Start of object

i {
definition Commas separate

title : "The Hobbit", properties

author : "J. R. R. Tolkien"
End of object }
definition

031fig01_alt.jpg
var book;
var bookName;

Assign the name of
bookName = "The Adventures of Tom Sawyer'; the book to a variable

book = { Use the variable as the
title : bookName value of the title property

02fig06_alt.jpg
00 < > . m @ sincom [£l

TR T E
B Fo- Adibuy Swe HIML 0SS JoaSaipt Consoe Owput [Accot Biog? Hep
— Console e e

1 var function = 163 X "SyntaxError: Cannot use the keyword
*function’ 25 a varioble nome. (line 1)

© Line 1:Expected andentifr and instead saw "uncton' (&
roserved)

Bininfo

021fig01_alt.jpg
ittt 5
score = 100;

console.log("Your score was " + score) ;
console.log("Great splat!!!");

Bcors. =iaccrs £ 20 Add 50 to the current score
console.log("New score: " + score); and assign the result back

to the score variable
console.log("Way to go!");

02fig07_alt.jpg
riayers
aplayer object
showing player info
player items

Player Constructor

b incd
place objects
place items
place exits
showing place info

Place Constructor

waps
linking places via exits
Game
render
get
%

023fig01.jpg
var
var
var
var
var

var
var
var
var
var

thisIsFine;
$noProblemHere;
_underscores6;
StartWithCapital;
25;

999;
39Steps;

&nope;

single words only;
vield;

These variable
names are valid.

These variable
names are not
allowed.

028fig02_alt.jpg
var
var

var
var

var
var

booklTitle = "The Hobbit"; Declare variables and assign
booklAuthor = "J. R. R. Tolkien"; them values in one step
book2Title = "Northern Lights

book2Author =

"Philip Pullman:

book3Title = "The Adventures of Tom Sawyer";
book3Author = "Mark Twain';

console.log("There are three books so far...");
console.log (booklTitle + " by " + booklAuthor) ;
console.log(book2Title + " by " + book2Author);
console.log(book3Title + ™ by " + book3Author) ;

028fig01_alt.jpg
var bookTitle; Declare the variables you'll

var bookhuthor; use n the program
bookTitle = “The Hobbit®; Assign values to
bookAuthor = "J. R. R. Tolkien"; the variables

console.log(bookTitle + * by * + bookAuthor) ; Use the variables to display

information about the book

030fig01.jpg
Declare a variable by

var book; using the var keyword

book = {}; Create an object by using curly

braces; assign it to the variable

03fig01_alt.jpg
B Fo- Addiay Swro HIML 0SS JaaScipt Console Ouput [Account Blog Help

savaserpt - Consalo n) (cew
; var book; [object Object] {
author: "3. R. R. Tolkien"
3 book = { 4 &
& eitle : "The Hobbit! published: 1937,
S author 1 M. R R. Tolkien", title: "The Hobbit"
& published : 1937)
7h
2 >
5 consote. Log(book);

041fig01_alt.jpg
et e R

moviel = {

title:
actors
directors:

bi

console
console
console
console
console.

log(*Movie information for " + moviel.title);

~log("
+log("Actors:

“Inside Out",
"Amy Poehler, Bill Hader",
"Pete Doctor, Ronaldo Del Carmen®

" + moviel.actors);

)i

.log("Directors: " + moviel.directors);

.log("

")

Create
amovie

object

Use five calls to
console.og to display
the values of various
‘movie properties

04fig01_alt.jpg
B Fio- Addibay Shre | HTML CSS JavaScript Console Output B Account Blog Hop

Gonsolo oo cow

“Movie information for Inside Out

"Actors: Any Poehler, Bill Hader"
"Directors: Pete Doctor, Ronaldo Del Carmen”

ch04ex03-1.jpg
console
console
console

console
console
console

console
console
SRR

log(*price

-log("tax ®
-log("total

-log("price
‘log("tax @
-log("total

-log("price
.log("tax @
“Yoa{"total

= $" + salel.price);
" + salel.taxRate + "% = $* + salel.tax);
cost = $" + salel.total

$" + sale2.price);
"+ sale2.taxRate + "% = §* + sale2.tax);
cost = $" + salez.total);

$" + saled.price)
" 4 salel.taxRate + "% = §" + saled.tax);
B R e

ch04ex03-0.jpg
VRX BALeLy
var salez;
var sale3;

salel
sale2
sale3

salel
sale2.
sale3.

salel.
sale2.
sale3

= { price: 140, taxRate: 15 };

{ price: 40, taxRate: 10 };

= { price: 120, taxRate: 20 };

tax =
tax
tax =

total
total
total

salel.price *
salez.price *
saled.price *

salel.price
- salez.price
sale3.price

salel.taxRate / 100;
sale2.taxRate / 100;
sales.taxrate / 100;

All three calculations have
the same structure, using *
and / to multiply and divide.

Again, all three calculation:

+ salez.tax; Py bty

+ salel.tax;
+ sale3.tax;

03fig04.jpg
Variable name Key

book . author

Dot operator

032fig01_alt.jpg
var bookl;

var book2;

bookl = {
title :
author :

}i

book2 = {
title :
author :

“The Hobbit",
"J. R. R. Tolkien"

“"Northern Lights",
"Philip Pullman"

Separate the properties
with a comma

Use key-value pairs to
set each property

034fig01.jpg
var playerl;

playerl = {
name: "Max",
attempted: 0,
correct: 0,

}i

playerl.attempted = 1;
playerl.correct = 1
playerl.score = 50;

Set initial properties when
creating the object

‘ Update the property
using dot notation

j Add a new property
and assign it a value

032fig02_alt.jpg
var book;

book = {
title "The Hobbit", o
author "J. R. R. Tolkien", ::;_"";"’I'::';i’s"""‘
published : 1937

}i

console.log (book.title) ; Access property values

console.log (book.author) ; using dot notation

035fig01_alt.jpg
var event

i

title ; *appraisal Mesting", Include an apastrophe n_

. g i the string when the string is
starcpate ; *2016-10-04 16:00:00", e g when the s
endDate : "2016-10-04 17:00:00", q
location : "Martha's officer,
importance: 1, Use an escaped apostrophe
notes : 'Don\'t forget the portfolio!' < when the string is delimited

by single quotes

034fig02_alt.jpg
YRR BNy EEL)

playerl =
name: "Max",
aeoEetli Evaluate the
expression on the
console.log(playerl.name + * has scored * + playeri.score); | DG andassign
playerl.score = playerl.score + 50 property

console.1oa(blayerl.name + * has scored ¥ « playeri.score);

03fig05_alt.jpg
o il
player variables
showing player info
player items

Player Constructor

place objects

place items.

place exits

showing place info

Place Constructor

b ool

linking places via exits

Game

render

oot

%

cover.jpg
- Programming

with

JavaScript

John R. Larsen

MM manning

18fig06_alt.jpg
% ptoce of chasta

A sombie siaks s st nto your neck,

9o south

ch11ex18-1.jpg
Show initial
info on the
console

var player = new Player("Kandra®, 50); Create a player—yep,

player.addItem("The Sword of Doom"); it's local—and give

Playes setplace (kitchen) ; them startig place.

cendex();

return

go: function (direction) {

var place = player.getplace(); st
Var Gestination = place.getExic (@irection); | e
Player . setPlace (dest inat ion) ;
Tendex ()5
ceturn "

get: function () {
var place - player.getPlace();
var item = place.getLastIten();
player.addrten(iten) ;

Tender)
return
}
W Call the getGame function to
4 return the interface object and
‘Z2sign ¢ o the game varible

— S - s -

333fig01_alt.jpg
<hl>My Movie Ratings</hl>

<p>Brief info about my favorite movies. Include a span for
Welcome!</p> random greetings
<h2>Movies</h2>

<div id="movieBox">
<h3 id="movie">Inside Out</h3>
<p>An emotional adventure inside the head of a young girl.</p>

<ha>Actors</hd> <!-- actors -->
<ha>Directors</hd> <!-- directors -->

<h>Comments</hd> Add an unordered list to
<ul id-"comments"> display comments and ratings
<div class="controls’>

<input type="text id="txtComment® /> Add a text box for users

to enter comments.
<select id="rating">

<i-- options for ratings -->
</select>
<button id="rate">Rate</button>
</div>
clatrs

ch11ex18-0.jpg
Include a
function for

updating
the console

Vivap the implementation In &
var getGane - function () { function to create a loca scope
var spacer = { . }; Include spacer and
var Player - function (name, health) (- }; the Player and Place
var Place = function (title, description) { .. } constructor functions
var render = function () { .
var kitchen = new Place(*The Kitchen®, *You are in a kitchen.*);
var library - new Place(*The Old Library", "You are in a library.

kitchen.addIten(*a piece of cheese");
Library.addIten(*a rusty key"):
kitchen.addExit ("south*, library):
Library.addexit (*north, kitchen):

ch18ex05-1.jpg
var comments = commentsList.innerHTML; <—

Read the text in
var comment commentBox.value; o the text box
comments += *" + comment + " (* + rating + | Appenda new comment and
* stars)</1i>*; rating using the += operator
commentsList.innerHTML = comments; <1 Update the comments ist
commentBox.value = **; s s st
} from the text box

rateButton.addBventListener ("click", rateMovie); <
Tell the button to call

/+ Random greeting code - see listing 18.2 +/ etaMoviewhen 1% cickisd

HO;

12fig02_alt.jpg
guess - getGuesser ()

secret isa
var secret local variable
The return value return function (userNunber) {
roplaces the if (userSumber --- secret) { S —

function call console. log("Well done!"

)i s188 { I ess secre:
console.log(*Unlucky, try again.) ; | %22 -
}

Retum the function

quess = function (userNumber) (
if (userhumber =us secret) {
console. log(*Hell done!");
} else (
console.log (*Unlucky, try again.®);
) The returned function can
}i sill access secret

defined n the local scope

ch18ex09-0.jpg
(function () {
"use strict”;

function parseCommand (commandString) { /* listing 18.8 +/ }

funceion doaction = () (Assign the text rom
the text box to the
var txtCommand = document.getElementById (*txtCommand®) ; commandString
var commandString = txtCommand.value; variable

command object created to
the command variable

var command = parseCommand (commandString) ; q—‘ Parse the text and assign the

theCrypt.messageview.clear () ;

switch (command.type) {
case "get": Clear old messages
game..get ()1 from the message view
break;

202fig01_alt.jpg
var secret

var guess = function (userNumber)
if (userNumber === secret) {

console.log(*Well done!);
) else {

console.log("Unlucky, try again.

]

Add an if statement with the
condition to check in parentheses

Execute this code only

| i the condition is true

Add an else clause for
‘when the condition is false

Execute this code only if
the condition s false

337fig01_alt.jpg
fwnocicn parseConmand. {commanastring) |

Checkif
the type s
£ OR use

Splitthe command string into.
var commandWords = commandstring.split(*); a— anamay of separate words
var command - (] Create an object
type: commandiords. shift () andanign o the
) ‘command variable
if (comand.type === "go* || command.type === "use®) {
command. dixection = conmandords.pop () ; < (Rasioes e et word
) in the armay and assign
it o the type property
command. item = commandiords.join(* ") ;
return command; Remove the last word in the
Join any remaining array and assign it to the
words to form the direction property

e of i B

12fig01_alt.jpg
> Well done!
if (userNumber === secret) {
console. log(*ell donel®) ; Which code is executed
‘depends on the value
 etach(of the condition,

ue or fal:
console.log(*Unlucky, try again.”); trueor false

> Unlucky, try again.
Ry

335fig01_alt.jpg
<hl>The Crypt</hl>

<div i
<aiv id:

place"></divs
"player"></divs
<div id="messages"></divs
<div id=rcontrols">
<input type="text® id="txtCommand">
<button id="btnCommand*>Make it so</button>
</div>

-« Tmeluda all of tha medilas «.

Add a text box with an
id of txtCommand

4—‘ Add a button with an
id of btnCommand

18fig07_alt.jpg
Utlity

May

Model Constructors

Views

Controller

‘Add code to convert
text box entries
into commands.

199fig01_alt.jpg
Assign a number to

var secret = 8; the secret variable

var guess = function lusezNum.bex)
if (userNumber

secret) the user's number and assign
console. log ("Well dons“‘7 it to the guess variable
}
Log “Well done!” to th —‘ Check if the user’s number

console if the numbers match ‘matches the secret number

Define a function that accepts

206fig01_alt.jpg
var getGuesser
var secret

function () {
Math. Floor (Math.zandom() + 10 + 1);

return function (userumber) { Use a condition to check
it (usertumber --= secret) { ifthe user has guessed
return "Well done!"; the secret number
Hetesil] Execute the firs lse clause
if (userNumber > secret) { gt
return “Too hight*; pes
1
o Check i the user’s guess is
N greater than the secret number
o Include code for when the
) incorrect guess is not greater
than the secret number

it B L

12fig03_alt.jpg
> Well done!

> Too high!

> Too low!

false

19fig01_alt.jpg
Fitness App News

Fitness App v1.0 Live! -y Oskar

Yes, version 1 is here...

Posted:Oetobar 3, 2016
Fotow Oskar @appOnkars
Improved Formatting by Kallo
The app's looking better than ever...

Postad: October 8, 2016

18fig08_alt.jpg
The Crypt

Exits fron The Kitehen:

“The zombie disiiegrats intoa pudlc of oo,

use holy water south e

205fig01_alt.jpg
var getGuesser

function () { Use Math.random and Math.floor
Math. £loor (Math.random() * 10 + 1)7 to generate a whole number
between 1 and 10 inclusive

return function (userNumber) (

. s Use an if statement to execute commands.
if (userNumber === secret) { < oal ifthe condition evauates t true

oturn “Hell done!

The return value will be displayed on

} etse { B the console when the function is called.
roturn *Unlucky, try aain.": | 1nciude an else cause with
) ‘commands to be executed if
W the condition evaluates to false
var guess = getGuesser(); +

Call getGuesser and assign the function
that’s returned o the guess variable

203fig01_alt.jpg
Use & lunction to

var getGuesser « function () (eate aloal scope
Ml’l: ¥ VanBecruci=ing Return a function the user
number return function (userNumber) { e 56 6 pyee O b
idin prye——] S kit
e ol conaate. 100 wel domeiv); & oo s e
scope } else {
console.log (*Unlucky, try again.®); <— | Log“Well done!” onlyif
} the numbers match
.l ... otherwise log
ucy,try agai
var quess = gecGuesser) G ol e g s i

It returns to the guess variable

ch18ex09-1.jpg
case "go":
game .go (command . direction) ;
break;
game .use (command. item, command.direction) ;
break;

default:
theCrypt .messageView.render ("I don't know how to do that®);

}

txtCommand.value =

Clear the text box and give it the

txtCommand. focus () 1 focus, ready for the next command
}
var commandputton = Get a reference to the
document .getElementById (*btnCommand®) ; button on the page
commandButton. addEventListener (click", doAction); [—
iR the dofction function

s clicked

18fig02_alt.jpg
HTML ~ Output

1 <button>Button 1</button> ‘utton 1 W Bistsor 2 11| Button' s
2 <button>Button 2</button>
3 <button>Button 3</button>|

18fig01_alt.jpg
= s nconomoak

eoe ¢ wsspncm 0 ©
ooo e +

Say Hi

Say Hi

ch18ex03-0.jpg
<hl>My Movie Ratings</hl>
<p>Brief info about my favorite movies.</p>

<h2>Movies</h2>
<div id="movieBox">

<h3 id="movie">Inside Out</h3>
<p>An emotional adventure inside the head of a young girl.</p>

<h4>Actors</hd>

Amy Poehler
<1i>Bill Hader

18fig04_alt.jpg
HTML ~

1
2
3

1
12
13
14
15

16

1
1

20

<h1>Pick a nuaber</hi>

<select>
<option>1</option>
<option>2</option>
<option>3</option>
<option>a</option>
<option>5</option>
</select>

<h1>Pick a daye/hi>

<select>
<option>Honday</option>
<option>Tuesday</option>
<option>Wednesday</option>
<option>Thursday</option>
<option>Friday</option>
<option>Saturday</option>
<option>Sunday</option>

</select>

Output

|8 e~ iy shwe

Pick a number | ou.

Pick a day

Monay

Pick a number

18fig03_alt.jpg
Britnfo about my favorto movies.

Movies @ e

S e—
rcors

o

=z

326fig01_alt.jpg
(function () {
"use strict";

function getGreeting ()
var hellos = ["Nanu nanut®, "Wassupi®, "Yo!", "Hello movie lover:®,

"Ay up me duckt", "Hola!" 1;

var index = Math.floor (Math.random() * hellos.length);

return hellos (index];

Y
function updateGreeting () {

para.innerHTHL - getGreeting();
i Getareference
var btn = document.getElementById (*btnGreeting®) 0 the bukton
var para = document .getElenentByld ("greeting) ;
btn.addEventListener ("click", updateGreeting); R a)

i the updateGreeti

updateGreeting () ; st et

s clicked

N O;

ch18ex05-0.jpg
(function () {
"use strict";

function getByld (id) {
return document .getElementByTd(id) ;
}

var rateButton = getByld(rate"
var ratingList = getByld(*rating");
var movie = getById("movier);

var commentsList = getByld(comments®) ;
var commentBox = getById(*txtComment®);
function rateovie () {
var rating = ratingList.value;
var movieTitle = movie. innerHTML;

Define a function with
a shorter name to get
elements by id

Get references to the
elements used for comments

Get the current lst items
in the comments list

18fig05_alt.jpg
Inside Out

An emotional adventure inside the head of a young gir.

Actors

Directors
Ronrie del Germen

Comments

"Tho Best Ever| (5 stars)

330fig01_alt.jpg
(function () {

ruse strice";
Collect references
to the elements

you're using

var rateButton = document.getElementById ("rate);
var ratingList = document.getElementById("rating®);
var movie = document .getElementById ("movie®) ;

function rateMovie () {
Get the selected option
from the drop-down

var rating = ratingList.value;

var movieTitle = movie.innerHTML; < Get the title of the movie

alert("You gave " + Use the alert function to
movieTitle + " " + rating + " stars! pop up a message
// save the rating to the database
}
rateButton.addEventListener ("click®, rateMovie); ol e ot all
the rateMovie function

h O ‘when clicked

ch18ex03-1.jpg
<h4>Directors</h4>

Pete Doctor
Ronnie del Carmen
 Add a drop-down list by
using a select element
<div class="controls">

<select id="rating"> Add choices to the
<option>1</option> with option elements
<option>2</option>
<option selected>3</option>
<option>4</option>
<option>5</option>
</select>

<button id="rate">Rate</button> <1 Add a button

Sfals element
</div>

ch19ex07-0.jpg
FRNotlon FLL1 (Pemplabe, Sebe) 1 Ierate over each

Object .keys (data) . forBach (function (key) { key in the data
var placeholder = *{{* + key + *}}; Use the key to build a placeholder
var value - datalkeyls and retrieve the data value
while (template.indexof (placeholder) == -1) { Keep replacin the
template - template.replace (placeholder, value); placeholder with
3 the value unilthe
placeholder can't
Dr be found
roturn templates b e B
} template

// Test the £ill function

08fig01.jpg
Values can pbe of any type

["Kandra" , "Blinky" , true , 50]

Start of array Commas separate End of array
definition values definition

13fig09_alt.jpg
script element

<script sr

http://output . jsbin.com/qezoce. js"></script>

Opening script tag Closing script tag

src attribute

"http://output.jsbin.com/gezoce.js"></script>

Address of the file to load

19fig06.jpg
Modules News Page
Page UL

News Items

News Iten Tenplate

Template Functions
Page Javascript

13fig08_alt.jpg
e0e® ¢ [IRE=] outputsbin.com
outputsbin comjaezoces
var between = function (lowest, highest) (

var range = highest - lowest + 1;
zeturn lovest + Math. £loor (¥ath.randon() * range);

[

=

ch07ex11-1.jpg
T Rt 1 AR WL WA A SO S e S AR

var info = spacer.box (getPlayerName (player), longest, character);
info += spacer.wrap(place, longest, character);

info += spacer.newLine() + spacer.wrap(health, longest, character);
info += spacer.newLine() + spacer.line(longest, character):

info += spacer.newLine();

return info;

var playerl = { name: "Kandra®, place: "The Dungeon of Doom', health: 50 };
var playerz = { name: "Dax", place: "Limbo", health: 40 };

console.log(getPlayerInto(playerl, *=*)); Specify the character to be used
console.log(getPlayerInfo (playerz, "+%)); ‘when displaying player info

ch19ex08-1.jpg
"Fitness App V1.0 Live
"Yes, version 1 is here
posted: "October 3rd, 2016",

author: "Oskar",
social: "sappOskar51"
I
{

title: "Improved Formatting",
body: "The app's looking better than ever...”,
posted: "October 8th, 2016",

author: "Kallie,

social: "ekalstar"

)

/* Two more items on JS Bin */

var templateScript = document.getElementById ("newsItemTemplate");
var templateString = templateScript.innerHTML;
var newsContainer = document.getElementById("news");

newsContainer.innerHTHL = Fill the template for every news
£11List (templateString, posts); item and update the display with
the completed HTML string

13fig07.jpg
Bin code

http://output.jsbin.com/qezoce.js

Prefix File extension

ch07ex11-0.jpg
b

var

getPlayerfiame = function (player) {
return player.name;

getPlayerHealth = function (player) {
return player.name + * has health * + player.health;

getPlayerplace = function (player) {
return player.name + * is in " + player.place;

getPlayerInfo = function (player, character) {
var place = getPlayerPlace (player) ;
var health = getPlayeriealth(player)

ch19ex08-0.jpg
function fill (template, data) { /* Listing 19.7

function fillList (template, dataArray) {
var listString = **;

dataarray. forEach (function (data) {
liststring += £ill(template, data);

b

return listString;

}

// Test the function
var posts = [

{

Call the fil function for
every item, by
the list string

13fig06.jpg
B8in coge Visible panels

http://jsbin.com/qezoce/edit?html, js, console

Load editing environment

ch19ex07-1.jpg
var

newsContainer.innerHTML = £ill(templateString, data);

data = {

title: "Fitness App v1.0 Livel”,
body: "Yes, version 1 is here...",
posted: "October 3rd, 2016",
author: "Oskar”,

social: "sapposkarsi®

templatescript =
document .getElementById (*nevsItenTemplate”) ;

templatesString = templateScript.innerHTML;

newsContainer = document .getElementById ("news®) ;

Collect the template
and news container
reference from the
web page

Fill the template with the data
‘and update the news display

08fig03.jpg
index 0 index 1 index 2 index 3

["Kandra" , "Blinky" , true , 50

232fig01_alt.jpg
Var getGuesser:

funceion {Jowssc, highesr) i

Wrap the code in a function

| to create a local scope
var secret = between(lowest, highest);

return function (userNunber) { Use the between function
if (userNumber === secret) { to pick a random number
veturn "Well done!®;

) else if (userNumber > secret) {
return "Too hight*; Return a function that players
) else { use to make their guesses
return "Too low!

Assign the returned function
var guess = getGuesser (5, 10); to the guess variable

359fig02_alt.jpg
var

templateScript

document .getElenent ById “neva e ntenplater) Grabthe peces
var Conplatestring - templatesoript. inneriTiL; youneed
var newsContainer = document.getElementById("news"); Lo
vax neveData = ficnesahop.nevs.getTtens (3); i e
‘module to retrieve
pevaCont atner inneriiL ol 8 e

gpwj.templates. fillList (templateString, newsbata); |

Use the template module to generate the
news items HTML and update the page

106fig01_alt.jpg
Var placel = { name : "The Pyramidse®, country : "Bgypt®)i

var placez = (name : "The Grand Canyon", country : "USA" Create an array

var places = (name : "Bondi Beach', country : "Australia® }; | of objectsand
assign it to the

var thisvear = [placel, place2]; thisYear variable

var nextYear = [place3];
Use zero or more.
console.log (thisYear) elements in an array

console.1og (nextYear)

359fig01_alt.jpg
<hl>Fitness App News</hl>

Include a div for
«div id="news"></news> the news items
<script types"text/template" id="newsItemTemplate"s
<div classs'newsItem">
<n3>{{title}} - by {{author}}</spans</h3> Put HTML
<p>{{body} }</p> templates in
<p class="posted">cem>Posted: {{posted}}</p> the page inside
<p class="follow>Follow {{author}} {{social}}</p> script tags

</aivs
</script>

<1-- templates module -->
<script src="http://output.jsbin.com/pugase.js"></script>

<1-- news items data -->
cscript sres*http://output.dsbin.com/fupiki.ds®></scripts

Import the
templating and
data modules

ch13ex04-1.jpg
var checkAnswer = function (userAnswer) {

if (userAnswer === questions(qIndex].answer) {
return "Correct!";
} else {

return "No, the answer is " + questions(qIndex].answer;
i

)i

return {
quizie: getuestion, Return an interface object
submit: checkAnswer from the getQuiz function
b
b
var quiz = getQuiz(); Aesign the Interface retirned from

il to the aubi witilds:

08fig02_alt.jpg
it et [v—
Pl el
L e 1 n s (B
: = o gy o e ¢
T T | o

R e D Py, e

ooy T Ptratiet 35

)

12 var hisvear = [places, placez e

e el Country: hustraliat,
5 console. og(ehtsvear) name: "Sondt sescn”
14 Coniole teg(nextrears b

MTML S5 JmaScriot Coracke Ot B rccom Bon ep.

358fig01_alt.jpg
(function () {

. : Include an array of news
use strict

items rather than getting
var posts = [data from the CMS
{
title: "Fitness App v1.0 Live!",
body: "Yes, version 1 is here...",
posted: "October 3rd, 2016",
author: "oskar",
social: "eappOskarsi®
)

/* more data on JS Bin */
¥

function getNews (numItems) {
return posts.slice (0, numItems);

)

if (window.fitnessApp === undefined) {
window. fitnessApp = {};
}

fitnessApp.news = { Add a news namespace
getItems: getNews to the fitnessApp
i | namespace

Return the specified
number of news items

Ensure the fitnessApp
global namespace exists

) ()5

ch13ex04-0.jpg
var getQuiz
var gindex = 0;

FROaLn: 3 4 Wrap the code in a function
q—l to create a local scope

var questions = [
"7 x 8", answer: "se" },

"12 x 127, answer: "144" },
"5 x 6", answer: "30" },
"9 x 3", answer: "27" }

{ question:

5

var getQuestion = function () {
qIndex = between(0, questions.length - 1); s thi e famiction

return questions[qIndex] .question; to pick a random question

105fig01_alt.jpg
var scores; Create an array of
var names; numbers and assign it

to the scores variable
scores = [3, 1, 8, 2];

names = ["Kandra®, "Dax*, "Blinky" 1; <—‘ Create an array of

strings and assign it

console.log (scores) ; 46 the names variablé

console.log (names) ;

13fig10_alt.jpg
‘I'he Number Generator code s

in its own file

The same file is imported by both apps

357fig01_alt.jpg
(function () {
"use strict®;

function £ill (template, data) { /* see listing 19.7 */ }

function filllist (template, dataArray) { /* see Listing 19.8 */)

if (::::gz.gp:] “L‘\ndehned) { Ensure gow exists In
) el 4 the global namespace

gpwj . templates = {
£ £i11,
fillList: fillList

Add the two
template functions
to gpwi.templates

}i

b O;

108fig02_alt.jpg
VAL GEYS = | WOOORy"T. TIUeeGRy”,
var dayInWeek = 4;

console.log(days [dayInWeek]);
console.log(days [dayInWeek - 1]

"Wednesday"®,

TAAMWL") TATAE A

Use the value of the dayinWeek
variable as an index

=

Subtract 1 from daylnWeek to
access the correct element for

the day wanted

108fig01_alt.jpg
console
console
console
console
console

S S N gy
to show how many

{31080, 35 -

elements are in the array
log("There are * + scores.length + * scores:"); The first element in
log(*The first score is * + scores(0l); the array has an
1og(*The second score is " + scores(l]); index of 0.
log(*The third score is * + scores(2]);
log(*The fourth score is * + #cores(3); < Thelsstelementin the array

has an index one less than the
eswber of dloments.

233fig01_alt.jpg
var getGuesser = function (lowest, highest) {

var secret = between(lowest, highest); Use the imported
return function (userNumber) { between function
if (userNumber === secret) {

return spacer.box("Well done!", 14,
} else if (userNumber > secret) {
return spacer.box("Too high!", 13, "+");
} else {
return spacer.box("Too low!", 12, "-")

. R,

08fig04_alt.jpg
items =

[

items (0]

"Kandra"

items (1]

"Blinky"

items (2]

true

items (3]

50

13fig11_alt.jpg
‘You can import as many modules as you need

19fig07_alt.jpg
The Kitchen

Jahver

You e na kichen, Thre s isbing scl.

4% A zombie sinks its teeth into your neck. *#+

12fig04_alt.jpg
> game.go("snarf")

X "undefined is not an object (evaluating 'place.showInfo')"

> game.go("south")

X "undefined is not an object (evaluating 'place.getExit')"

>

19fig02_alt.jpg
Fitness App News

{{body}y
Posted: (posted))

Follow {authon) {social)

348fig01_alt.jpg
var data = { author : "Oskar", social : "@appOskarSi
var before = "Follow {{author}} {{social}}

Call replace on the
var after = before O—J original string
data.author)

.replace ({{author}
.replace ("{{social}

y
o, daca.soctal) s i oplic o
console.log (before) ; ;Ieuﬂmull &

console.log(after) ;

ch12ex07-1.jpg
Define the
checkAnswer
method to check
ifthe answer
is correct and
update the score

var quiz - getquiz();

getQuestion = function () {
i (nelay) (
return qu
) etoe (
retum *You have finished the quiz

}

tions [qIndex) .quest ion;

next - function () (
qindex = qindex + 1;

if (qTndex >« questions.length) {
inPlay = false;
console.1og(*You have finished the

checknswer = function (userAnswer)
if (userAnswer === questions (qIndex]
console.log(*Correct 1) ;
score = score + 1;
) else {
console.log("No, the answer is * +

subnit = function (userAnswer) {
var message - "You have finished the

it (nelay) (
checkRnsver (userAnswer) ;
next();
message = "Your score is * + score

return message;

)

Define the getQuestion
‘method to return the
. current question

Definethe next method
0 move to the next.

question and check i
any questions remain

quiz.

answer) {

quest ions [qIndex] . answer) ;

quiz.t;

+ % out of * + qindex; user's

return |
Return an interface
quizhe: gerguestion, et .
i quizMe and submit

)

Callthe getQuiz function and

347fig02_alt.jpg
var before = “<h3>{{title}}</h3>";

Look for the first
var after = before.replace(string and replace
*{{title}}", "Fitness App v1.0 Live!"); it with the second

console. log (before) ; The original string
console.log (after) ; 1 mot changed

ch12ex07-0.jpg
WAE. genguix = fanerdon) ¢
var score - 0,

qindex - 0,
inplay - true, Use asingle var
questions, keyword to declre all
next., the variabls n the
gecquestion, FecQuiz funcion
Checkanswer,

submic;

questions « [

(

question: "What is the highest mountain in the world?",
answer: "Everest®

i

(
question: "What is the highest mountain in Scotland?*,
answer: “Ben Nevis®

}

"

347fig01_alt.jpg
<hl>Fitness App Wews</hi> Include a div in which to

div 1d="news"></news> place the news items
<script type="text/template" id="newsItemTemplate">
<div class="newsIten">
<h3>({title}} - by {{author)}</h3> Use a script
<p>((body) }</p> element to wrap
<p class="posted">Posted: {{posted}}</ems</p> the news item
<p class="follow">Follow {{author}} {{social}}</p> template
</divs

T aniitks

13fig02_alt.jpg
T BOp-AperoRc)

‘The spacer code is
repeated in each app.
‘They each have a
‘separate Copy

AR I,

‘The spacer code is I
inits own file

‘The same file is imported
by both apps

352fig01.jpg
var count =

Use the increment
operator, ++, to add 1
to the value of count

while (count < 11) {
console. log (count) ;
count++;

13fig01_alt.jpg
Different sections of
code perform different
functions

Al of the code in a single file

Break into modules

Each section of code
sy

19fig04_alt.jpg
Fitness App v1.0 Live! by Oskar

Yes, version 1 is here...

Posted: October 319, 2016
Follow Oskar @appOskars1

350fig01_alt.jpg
the HTHL
for the

‘var data
title: "Pitness App v1.0 Live
body: *Yes, version 1 is here.
posted: “October 3rd, 2016,
author: "Oskar,
social: "sappOskarsi®

1

var templatescript = Get a reference to the script
docunent .getElenentById ("nevsTtenTenplate®) ; | element that hokds the template

var templatestring = templateScript. innerHTHL;

Var newsItesTML « templatestring
replace (*({citle)], data.title)
replace (*{{author} }*, data.author) Beplace ot &
replace (*{ {posted) }*, data.posted) [yhencrvih.
replace (*({body})*, daca.body) oo
replace (*{{social)}, data.scctal);

Get a reference to
var newsContainer = document.getElenentById (*nevs®) ; the div that will hol
the news item
newaContainer . innerHTHL = newaItemHTHL;
Injec the news item

HTML into the div

ch12ex08-1.jpg
// Game initialization

var player - new Player (*Kandra®, 50); i Tt e
Player.addIten (*The Sword of Doon); with 5o 2ed £t metheds
Dlayer . setplace (kitchen) ;
i U et o nd e
destination fo the direction
return { Specied by the user
gor function (direction) {
var place - player.gatrlace(); Check that the desination
e Gaatinniion = place. peu¥igiEROITH J ooy
i¢ (@astination ien undetined) { chack that s vad
Player. setplace (destination) s Only st and show the new
Tender ()7 place f the destinaton exists
rorum
Yiaraei{ Add an else clause
roturn *ees You can’t go in that direction +see; < | tohandie when the
) destination is undeined
) Give the user feedback
oA . about the invalid
+ function diection specifed
var place = player.getrlace();)
var item = place.getiastitenls
beme, place; getinatILen() Update the get method
if (item 1o undetined) { to make simila checks
player.addItem (item) ; to the go method
Tender 07
Zetumm "
} else {

return "s++ Thers is mo item to get *+e%;

o B iR b

19fig03_alt.jpg
Fitness App News

Yes, version 1 is here...
Posted: October 39 2016.
Follow ({author)) @appOskars 1

ch12ex08-0.jpg
VEE gortusn = remmdon O 3
var spacer = { - };
var Player = function (name, health) { ..
var Place = function (title, description) {
var render = function () [- };

var kitchen = new Place (*The Kitchen®, "You are in a kitchen.);
var library = new Place("The Old Library", "You are in a library.');

kitchen.addExit ("south®, library) ;
1ibrary.addExit (*north®, kitchen) ;

13fig05_alt.jpg
B Fle- Adlibay Share HTML CSS JavaScript Console Output

Output

This is a heading

‘This is a paragraph.

13fig04_alt.jpg
B account Bop e
=

s var g = el Worli®s

3 console. log(msg)il

L oies page exomptec/icter
<rhesss

s
5 awhis 1e 0 nesdinge/nt>
B s 1s 0 paragrann. /o>
i <oty

fress

19fig05_alt.jpg
Fitness App News

{{pody}}
Postod: (fposted))

13fig03_alt.jpg
‘The Number Generator code is in its own file

The same file is imported by both apps

352fig02_alt.jpg
var template = "{{title;} by {{author}}. Follow {{author}} {{social}}®

var filled = template; 0—‘ Use a second variable so

- that the initial template
console.log ("Starting replacement . el

vhile (£illed.indexof (*{{author}}") t== -1) { Checkifthe placehalder
filled = filled.replace("{{author}}", "Oskar"); can be found
console. log(filled) ;
) Replace the
placeholder
with a value

gt e, Py 1 SO (R S T py {or 0 |

313fig01_alt.jpg
Var movissiera = { /* As sbowe v/ 11

‘ Use the getMovieHTML
function getMovieHTML (movie) (- function to generate a string
var html = "<h3>" + movie.title + "</h3>"; of HTML for a single movie
hEml 4= "cp> + movie.summary + "</p>";
return html; Use the getMoviesHTML
b function to generate a string
function getMoviesHTML (movies) { < OfHTML for an array of movies
var html = "%
novies. forEach (function (movie) | Wrap the response from
html o= "" + getMovieHTML(movie) + "</1i>"; getMovieHTML in I tags
b to create a lst tem
return "eul>' o heml + "</uls; Wrap al st items n an
b unordered list with ul tags
function render (movies) {
var moviesDiv = document.getElementById(*movies”); | Update the innerHTML of the
moviesDiv.innerHTML = getMoviesHTML (movies); element with an id of movies

}

Call the render method,

render (moviesbata) ; passing it the data it needs

317fig01_alt.jpg
(function () {
"use strict";

function getiametnfo (playerData) { - } Update the render
function gethealthinto (playerpata) { - } method to work with
web page elements

function getItemsInfo (playerbata) {
function getTitlelnfo (playerData) {
function getInfo (playerdata) { - }

Get a reference to

functicn reader (player) { e d st
var playerDiv = document.getElementById(*player*); “player”
playerDiv.innerHTHL = getInfo(player.getdata()); Sl e
) of the div to the
string produced
i€ (window, cheCrypt == undetined) (window.thecrype = ();) | B thegetnio

theCrypt .playerview = { render: render }:
HO;

17fig09_alt.jpg
Y

Map

Model Constructors

To switch from a console-based
toaweb-based game, simply
update the views

Controller

17fig08_alt.jpg
B Flo- Acairay snaw HTML CSS JavaScript Consle Output

Consco o
Xtans & zomble sinks fts teeth fnco your neck. wea"

> gone.go(west)

owput R

o aee i+ Ritsben. Thoro is

ccusbing smet.

it tron The Kitchen:

oo Boo b

17fig07_alt.jpg
o

Views

Controller

Map

g
U
i

17fig10_alt.jpg
8 Fiev Addibary Share

Consale

> gane.get0)|

HTML CSS JavaScript Console Output B8 accoum Biog e
o oupt Rawns Asomns A
The Crypt

mmmmemee = The Kitchen Garden =
You are ina smal, walled garden.

Ttems: - oly wate Exis from The Kiichen Garden: - ast

‘Sword of Doom

ch17ex09-1.jpg
<t-- Place comstructor -->
<script src="http://output
Player constructor
<script src="http://output

player view -->
<script src="http://output
place view -->
<script src="http://output
<t-- message view -->
<script src="http://output
<t-- map data -->

<script src="http://output
map builder
<script src="http

//outpue

<1-- game controller -->
<script src="http://output
B, o

.jsbin.com/vuwave . js"></script>

sbin.com/nonari.js"></script>

.jsbin.com/cehexi.js"></script>
.jsbin.com/cakine.js"></script>
.jsbin.com/jatofe.js"></script>
.jsbin.com/hozefe.js"></script>

.jsbin.com/pagihi.js"></script>

.isbin.com/yeqicu.js"></script> </body>

ch17ex09-0.jpg
CIRILER Y
<html>
<head>
<meta charset="utf-
<title>The Crypt</title>
</head>

<body>
<hl>The Crypt</hl>

<div id="place"></div>
<div id="player"></div>
<t-- Modules -->

<i-- spacer -->
<script src="http://output.jsbin

Update the
title element

Include a div with an id of

.

.com/junego. js"></script>

Include a div with an id of
“player” for player information

Load all of the modules
needed to run the game

317fig02_alt.jpg
(function () {
*use strict";

Update the render
function getItemsInfo (placedata) { .. } method to work with
function getExitsInfo (placeData) { .. } ‘web page elements
function getTitleInfo (placeData) { . }

function getInfo (placeData) | .. } et a reference to

the div element.
function render (place) { the dr s
var placediv = document.getElenentById (place*) s “place

PlaceDiv.innerHTML = getInfo(place.getpata()); Set the content

3 of the div to the
string
1£ (vindow,theCeypt =s= undstined) { window.thecrypt = {}; } | B thegetlnfo
theCrypt.placeView = { render: render };
T

320fig01_alt.jpg
(function () {
"use strictt;
function getMessagelnto (message) {
return "4+t % 4 message + * 44t
i

function render (nessage) (

function clear () {
var messageDiv = document.getElementById ("
messageDiv. innerHTML =

}

if (window. theCrypt =xx undefined) (
window. theCrypt = {}:

}
theCrypt .messageview = {
render: render, Include the clear
clear: clear <—| method in the
b interface

DO

Display the message
on the page

Define a method to
clear any displayed
messages

289fig02_alt.jpg
var render = function () {

console.clear () ; <] Clear the display
if (inPlay) {
theCrypt .placeView. render (player .getPlace ()) ; Update the place snd
theCrypt _playerview. render (player) ; e oo
) the game is in play

var renderMessage = function (message) {
theCrypt .messageView. render (message) ;

ch10ex09-1.jpg
keys. forEach (function (key) {
console.log(key + " goes to " + exits[key].title);

b
b
addExit (*north®, kitchen); Call addExit twice
addExit ("the trapdoor", dungeon); to add two exits
showBiitE ()} <] Call showEits to display

information about all the exits

289fig01_alt.jpg
var checkGamestatus = function () { Use getData to grab

if (player.getDatal() .health <= 0) { the player's data and
inPlay = false; check their health
renderMessage (*Overcone by your wounds...");
renderMessage (. ..you fall to the ground.”); Stop the game
renderessage ("~ Your adventure is over ") ; by setting inPlay

¥ to false

16fig06_alt.jpg
PUNS VIS LT PRLL OF WROSTS

Yes

rendermessage (challenge. success) ;
challenge.conplete = true;

rendertiessage (
"You don't need to use that there"

i

rendertessage (
"You don't have that item"
i

rendertessage (challenge. failure]

1+ The leopard snarls. *++

+++ The leopard chases the ball
of wool, purring loudly. **

player . removelten(item

ch10ex11-0.jpg
vax Blaos = Denotlon (EIEle, Resscipeiond | Use the same Place

this.title = title;

E constructor as lsting 10.10
this.exits = {};

this.addExit = function (direction, exit) {
this.exits [direction] = exit;

i

this.showExits = function () {
console.log(*Exits from * + this.title + ":

Object .keys (this.exits) . forEach(function (key) {
console. log (key) ;

b

10fig05_alt.jpg
‘The Kitchen Garden The Kitchen The Kitchen Cupboard

The Old Library

ch16ex09-1.jpg
if (challenge.damage) {

ayer .applyDamage (challenge damage) ; Apply any damage

S SEIR TG Shatl Chys-canseel caused by the challenge
render () ; Update the display showing
renderMessage (challenge.message); < | 2 CHangestohealth
checkGamestatus () ; Show the i

) challenge message

}
Check if the player's health
) else { has dropped to zero

renderMessage ("The game is over!

}

return "7;

ch10ex10-1.jpg
var library = new Place("The Old Library");
var kitchen = new Place("The Kitchen®):
var garden = new Place("The Kitchen Garden"):

Use the Place constructor
to create Place objects.

kitchen.addExit (*south, library); Use dot notation to call the addExit method
kitchen.addExit ("west", garden) ; and link the kitchen to the library and garden

kitchen. showExits() ; Vs datiotuiion to sl

the showExits method

ch16ex09-0.jpg
var go = function (direction) {
if (inPlay) {

Ver ecinacions paace.pecerie dizeceion) ot the
var challenge = place.getChallenge (direction); =

if (destination undefined) {
renderMessage ("There is no exit in that direction”);

} else {
if ((challenge === undefined) || challenge.complete) {
player.setPlace (destination) ; I there's no challenge or i's
render(); complete, move the player

} ate { and update the dispiay

290fig01_alt.jpg
var get = function () { Get an item only if the
if (inPlay) { game is still active

var place = player.getPlace() ; Retrieve the last item from
var item = place.getLastItem(); the player’s current location

if (item undefined) {
1 an item was retrieved,
player.addIten (item) ; add it to the player’s list
render(); Update the display to
Josrea(show the item has moved

renderMessage ("There is no item to get"):

}

) else {

renderMessage ("The game is over!®); W inPlay s false, et
) 3

the player know
return "n;
}s

ch10ex10-0.jpg
constructor so that each place

this.title = title;
created gets a set of exits

var Place = function (title, description) { Add wn exits object to the

this.exits = {};

this.addExit = function (direction, exit) { < ger the addBxit
this.exits(direction] = exit; function as a method

b of each Place object

this.showBxits = function () { Set the showExits
console.log("Exits from * + this.title + ":*); function as a method

of each Place object

Object.keys (this.exits) . forBach (function (key) {
console. 1og (key) ;
bhi

ch10ex12-1.jpg
this.getExits = function () {
var exitsString = "Exits from " + this.title;
exitsString += ":* + newlLine;

Object.keys (this.exits) . forBach (function (key) { Update the getExits
exitsString +x * - * + keys method to show
exitsString += newLine; directions rather

I than destinations

return exitsString;

}

this.getTitle = function () {
return spacer.box (
this.title,
this.title.length + 4,
B

}

this.getInfo = function () {
var infostring - this.getTitle(
infoString += this.description;
infoString += newLine + newline;
infoString += this.getItems() + newLine;
infoString += this.getExits();
infoString += spacer.line(40, "s") + newLine;
return infoString;

}

this.showInfo = function () (
console.log(this.getInfo()) ;
}

this.addItem = function (item) {
this. itens.push(item) ;
b
this.addExit = function (direction, exit) { Update the addExit
this.exits [direction] = exit; function to work with
h the exits object

ch16ex11-0.jpg
<script>

console.log ("Loading The Crypt

</script>

- spacer
<script src:

<!-- Place constructor -->

<script sre="http://output.jsbin

t-- Player constructor

<script src="http://output.jsbin

ttp://output.jsbin.

Let players know the
modules are loading

com/junego. js"></script>

com/vuwave . js"></script >

com/nonari . js"></script>

16fig07_alt.jpg
'3

Map

Model Constructors

Views

Controller

ch10ex12-0.jpg
var Place = function (title, description) {
var newline = spacer.newLine() ;

this.title = title;
thia.dascrigtion:u desciption Change the exts

this.items = [1; property from an
this.exits = {}; array to an object

this.getItems = function () {
var itemsString = "Items: " + newlLine;
this. items. forEach (function (item) {
itemsString += " - " + item;
itemsString += newLine;
b
return itemsString;

10fig06.jpg
The Kitchen

You are in a kitchen. There is a disturbing smell.
Items:

- a piece of cheese

Exits from The Kitchen:
- south

- west Alist of directions
- east

ch16ex10-1.jpg
if (challenge.itemConsumed) { Remove the item from the
player. renoveltem (item) player ifit’s consumed by
) the challenge.
} else (
rendertiessage (challenge. £ailure) i < isplaythe falure
i message ifthe player
has used the wrong item
} else (
rendertessage (*You don't have thAt $ten"): 9 Letthe player know they
. don't have the item
they're trying to use

} etse {
rendertessage ("The game is over!®);
)

%

ch10ex11-1.jpg
var library = new Place("The Old Library");

var garden

var kitchen = new Place("The Kitchen"); Uss the constructor
to create four Place
new Place("The Kitchen Garden); e

var cupboard = new Place("The Kitchen Cupboard");

library.addExit ("north’, kitchen)
garden. addExit (*east®, kitchen); Loy
cupboard. addExit ("west®, kitchen);

kitchen.addExit ("south®, library); "
kitchen.addExit (*west®, garden) fddedc rom
kitchen.addBxit ("east®, cupboard) ;

Library. showExits ()7 Show the exits for the
kitohen ahoumatalls Wrery sl Miche

ch16ex10-0.jpg
var use = function (item, direction) {
if (inPlay) (

var place - player.getrlace(); Get the chalenge for
var challenge = place.getchallenge (direction) ; the specfed direction

if ((challenge =

undefined) || challenge.complete) { Checkifthe challenge
renderMeasage (*You don't need to use that there') ipsatdedis
) else (doesn'Cexist
if (player.hasItem(item)) { Checkif the player has
the tem specified
Checkifthe > i (item == challenge.requires) {
item s the

one required renderhessage (challenge success) ; | Displaythe success message and
to overcome challenge.complete = true; mark the challenge as complete

the challenge

ch10ex13-0.jpg
var

var

kitchen = new Place(
"The Kitchen",
"You are in a kitchen. There is a disturbing smell.

Library = new Place(
"The 0ld Library",
"You are in a library. Dusty books line the walls

garden = new Place(
"The Kitchen Garden®,
"You are in a small, walled garden."

cupboard = new Place(
"The Kitchen Cupboard",
"You are in a cupboard. It's surprisingly roomy."

Call the Place
constructor with
the new keyword
to create place
objects

278fig01_alt.jpg
(function () {

var getiessagelnfo - function (messageData) (

return "+ " + messageData + " **+"; Format the message o

i make it seem urgent
var render = function (message) {

console. error (getlessageInto (message)) ; Use console.error to log

b the message as an error
if (window.theCrypt === undefined) {
window. thecrypt = (};

)

theCrypt .messageview = (
render: render

152fig02_alt.jpg
var ages 1

"Kandra Smith" : 56,

"Dax Aniaku" : 21,

"Blinky" : 36
b Obtain an array of the

property names used

var keys = Object.keys (ages) ; with the ages object
keys. forEach (function (key) {

console. log (key) ; < 1

each proj

b og each property

name to the console

ch16ex01-1.jpg
Pass the new user model

fitnesshpp.userView. render (user) ; Hordolaplugefunsi
return {
log: function (sessionDate, duration) {
user.addSession (sessionDate, duration) ; Returnan
fitnesshpp.userView. render (user) ; interface with a
return "Thanks for logging your session.”; single method, log
}
b

b

if (window.fitnessapp === undefined) [
window. fitnesshpp = (};

}
Make the init method
fitnesshpp.init = init; available by adding it to
the fitnessApp namespace
MDO;

152fig01_alt.jpg
var ages = {

"Kandra Smith" : 56, Blinky doesn’t need the
“Dax Anfaku® : 21, quotation marks; include
"Blinky" . 36 them for consistency.

}i
var keys = Object.keys(ages);

Use Object.keys to obtain an
array of the property names
console.log(keys) ; set on the ages object

ch16ex01-0.jpg
(function () { Define a function to
ine a function

var buildUser = function (userbata) { build a user model
var user = new fitnessApp.User (userData.name) ; from user data

userbata. sessions. forBach (function (session) {
user.addSession (session.sessionDate, session.duration);

N
Define an init function
return user; that initializes the app
i

Build a model from the
var init = function (userData) { user data and assign it

to the user variable
var user = buildUser (userData) ;

151fig01_alt.jpg
var ages = {}; Include a name parameter; you

expect a name to be passed to the
var addAge = function (name, age) { Sumctios 25 36 argemment
ages [name] = age;
b Use the name passed to
the function as the key

addAge ("Kandra Smith, 56);
addAge ("Dax Aniaku", 21);

console.log(ages ["Kandra Smith"]);
console.log(ages [*Dax Aniaku®]);

16fig02_alt.jpg
Initialize

2.The controller uses the User constructor to build a user model from the data.

use

3.The controller updates the model based on user input

s vaon7-02-06%, 50) ——> (eaieeiienl)

4.The controller passes the updated model to the view for display.

10fig02.jpg
JavaScript will look for the smith variable or keyword

ages.Kandra Smith = 56;

JavaScript will try to find the Kandra property

16fig01_alt.jpg
Load
1. Four modules are loaded

pata Constructor view Controller

10fig04_alt.jpg
e
player variables
2 player object
showing player info
player tems

Player Constructor

Flaces

g

ks 0.

Game

render

get

%

287fig01_alt.jpg
Check if
player
palth has

dropped

tozero

(function () {

b

Use inPlay to flag when
B the game is over.
inPlay = false;

init = function (napbata, playerName) {

Build the map, create a

/* Listing 16.5 +/ b g
checkGamestatus = function () { /+ 16.6 */)}

render = function () { /* 16.7 +/ }; Call the views to
renderMessage = function (message) {/+16.7+/}; update the display

get = function () { /+16.8 +/ };
go = function (direction) [/* 16.9 +/ };
use = function (item, direction) {/*16.10%/};

Respond to user
commands

window.game = {

b
Hos

i) hsignte
s %o inertace o game,
init: init A giobal vrisble

155fig01_alt.jpg
var tweets = [/¢ unchanged from listing 10.6 */];
var letters = {}; Pass the empty string to
var tweetText = tweets.join(""); split to create an array of
var tweetLetters = tweetText.split("); Individual characters

tweetLetters. forEach(function (letter) {
Tertoretiorrer cotmercuse] <01 | o]

b

tweetLetters. forBach (function (letter) (
letters[letter.toLowerCase()] +=

Convertallletters to lowercase
and use them as keys

Use the += operator to add 1
N for each occurrence of a letter

console.log(letters);

16fig05_alt.jpg
SRR TS ERENTI 16 TN SIS

Update the models
based on user input

game.go ("south) 5 Pass updated models

game.get () tothe views for display

game.use (holy vater south”)

Pass feedback messages.
1o the message view

153fig01_alt.jpg
VAL Fyaeth = L
"Education is showing business the way by using technology to share
= information. How do we do so safely?”,
"Enjoy a free muffin & coffee with Post Plus, our new loyalty club
= exclusive to subscribers
"We're LIVE on Periscope right now answering all your #pet questions
= - tweet us yours now!"
)i

Join all the tweets to
var words = {}; ‘make one long string
var tweetText = tweets.join(" ");
var tweetWords = tweetText.split (" "); Create an array of words
. using the split method
tweetWords . forEach (function (word) {
words [word] = 0;
1 Create a property for each
word, setting its value to 0
tweetWords. forEach (function (word) {
words [word] = words[word] + 1; Add one to the value every
hi time the word appears

ccnsclie: Jaaiwcxis

16fig04_alt.jpg
Initialize

Use the Place constructor o build
place models from the map data

Use the Player constructor
to build a player model

10fig03.jpg
‘subscriber:
sure,: 1,
technology: 1,

YESERO: 1,
vpet: 1,
¢STEMeducation: 1,

loyalty: 1,
Ty

16fig03_alt.jpg
My

Views

Model Constructors

Controller

"g'

ch10ex09-0.jpg
var

var
var
}s

var

Place = function (title) {
this.title = title;

kitchen = new Place("The Kitchen");
dungeon = new Place(*The Dungeon®) ;
i s Define an addExit

: function to add a Place
addExit = function (direction, place) { for a given direction

exits[direction] = place;

Define a showExits function
showExits - function () { < to display the destinations
var keys = Object.keys (exits); for each exit

156fig01_alt.jpg
WA Elkce. = Syction {Cirie) i

this.title - title Definea simple Place

. constructor function

var kitchen « new Place(*The Kitchen®); Use the Place constructor function

var dungeon - new Place (*The Dungeon*) ; o create two Place objects

var exits - ()

exice(noreh") = kitchen; Assign the Place objects o propertiesof

exits(*the trapdoor] = dungeen; the it abject, using irections 35 keys

var keys = Object ey (exits)

keys.orBach (function (key) (Use the tte property
onsole. log key + * goes to * + exitalkey) .title); of each Place to show

7 the destination

288fig01_alt.jpg
Declare a variable to record
if the game is running

var player;
var inPlay = false;

var init = function (mapbata, playerName) { Build the map, storing
var firstPlace = theCrypt.buildMap(mapData) ; the starting location
player = new theCrypt.Player (playerName, 50);
Phtver adareen o svote ok mosmrr sephe
player.setPlace (firstPlace) ; e
inPlay = true; Update inPlay: the
game is now running

render () ; Display the place

and player

179fig01_alt.jpg
var

var

counter = U

count = function () {
counter = counter + 1;
return counter;

Declare a global variable,
counter, and assign it a value

Access counter from
within a function

178fig02_alt.jpg
Vvar mountain; Declare giobal variables, mountain and
var show; show, visible throughout the program

"Ben Nevis";
Declare a local variable,

show = tunction () {
var secretMountain = "Devils Tower"; <
Usethe > console.log(mountain); Use the secretMountain
Wi console.1og (secretiountain) ; < variable. No problem, it's in
arisble.No | 1 the same local scope.
problem,
s global, | show()

Call the show function. No proble,
console. log (mountain) ; show is a global variable too.
console.log(secretiountain) ; <

i vari Use the mountain variable.
Use the secretMountain variable. No problem, it global.

Tovorl I aot s the slshal ooubn.

178fig01_alt.jpg
var show = function () {

var mountain = "Devils Tower"; ‘Within the function body, pass the

console.log (mountain) ; mountain variable to console.log
as an argument.

. —

183fig01_alt.jpg
var Counter = function () {
var counter = 0;

this.count = function () { Assign the counting
counter = counter + 1; function as a property of
; return counter; the special this object

}i

var peaks = new Counter();
est Ellibiie hiw Comntearl) s

182fig01_alt.jpg
var getCounter = function () {

var counter = 0; Define the counting function
and return it in one step;
return function () { there’s no need for a variable.

counter = counter + 1;
return counter;

var peakCount = getCounter () ; Call getCounter multiple times to
var climbCount = getCounter(); create independent counters

11fig05_alt.jpg
count = getCounter ()

function ()

var counter = counter is alocal variable
“The retur value

replaces the var counttpByl = function () { | The counting function is
function call counter = counter + 1; defined in the local scope.

return counter; It can access counter

3

return countUpByl;

Return the counting function

count - function (1 {
counter - counter + 1;

return counter;
Wi ‘The counting function

can still access counter

180fig01_alt.jpg
var getCounter = function () { Declare counter as a local variable

var icoivirss inside the getCounter function
var countUpByl = function () { Nest the definition of the
Gounter; Siooumtearp-l counting function, countUpBy1,
return counter; g St
}i
jrekun countURoVEy <] Return the counting function
bi 50t can be assigned
var count = getCounter(); <

returned by getCounter to the

Assign the counting function
count variable, ready for use

11fig06_alt.jpg
quiz = getQuiz ()

function ()

var qndex = 0; qlIndex and quest ions
var questions = (1 are local variables
“The return value
replaces the
funeton cal EREREng . The interface functions are
SunctionduR defined n the local scope.
e T They can access qincex
next: function () {} ki
Return the interface object
quiz = {
quizMe: function () {}, The interface functions can
showdle: function O {}. gl access qIndex and questions

next: function () {}

}

ch11ex11-1.jpg
] (Create a qindex property

to keep track of the
e current question
quizMe: function () { . :

veturn quiz.questions(quiz.qindex] .question; Use gt tn dapley
Jo o @s: questioasqyls:gindexl reacions ‘ﬂl:mmmqueslinn
showtte: function ()

., Use showMe to display

j e quta st canqia: qradea] anaver; s dhontie o o
next: function () {

quiz.qindex = quiz.qindex + 1; Use next to move to

return "0k
}
} s

the next question

ch11ex11-0.jpg
(Create an object and assign

p i Create an array and
var quiz = { it o the quiz variable e o ey sl awien.
questions: [& of the quiz object
{ 2
question: "What is the highest mountain in the worldz+, | Usean objectfor
answer: "Everest" each question-and
)) answer pair

{
question: "What is the highest mountain in Scotland?”,
answer: "Ben Nevis®

Set a question property
and an answer property for
each object in the array

}
{
question: "How many munros are in Scotland?",
answer: 284"

}

10fig07_alt.jpg
s el
player variables
aplayer object
showing player info
player tems

Player Constructor

Fisces

place objects

place items.

place exits

‘showing place info.

Place Constructor

b

linking places via exits

Game

17fig02_alt.jpg
B - Amay Swe

+ ctoaervpe st
P
ety

 hess
&

i

<hiomy Mot Rotingsc/ni>

<EaBrtef 1nfo ssout my faverite sovi

s
5 comertesciin

5 avtmsise aucrmas

MM S5 JmeScrpt Comce Oviut

<ooan motionsl soventure Snside e hess f 8 young GirL. /o>

v (SR

My Movie Ratings
[EPEAN——
Movies

Inside Out
P —

e 0o v

17fig01_alt.jpg
My Movie Ratings Add further interactivity
with JavaScript

Movies
Inside Out My Movie Ratings

Aot e e o e Bt ko abut my vt moviee,

- Movies
. e @
» Pete Doctor An emotional adventure inside the hea b
- o -
- = [—
=D €D =
— =
| & e

Directors

Structure content
with HTML

Style with CSS

ch10ex13-1.jpg
kitchen.addItem("a piece of cheese");

Libeary.adaiventva moscy kere)s swmso
library.addExit ("north", kitchen | z
citchen.showinto() Sho the formtion o

the kitchen on the console

ch16ex11-1.jpg
- player view -->
<script src="htt

- place view -->

/output .jsbin.com/zucifu.js"></script>

<script src="http://output.jsbin.com/royine.js"></script>

<i-- message view -->
<script src="http:

- map data -->
<script src="htt

- map builder -->
<script sre

<1-- game controller -->
<script sres“htt)

Joutput . jabin. con/yegicu. §

/output.jsbin.com/jatofe.js"></script>

//output .jsbin.com/hozefe . j5"></script>

http://output .jsbin.com/pagihi.js"></script>

se/aeEints

173fig01_alt.jpg
var mountain

R <T Declare the mountain variable,

outside any function
var showMountain = function () {

console.log (mountain) ; <
y 7

showMountain ()

Use the variable, even
inside a function

17fig04_alt.jpg
ece apasincon 2 °
os

hl. Heading 1
“The body of the page hasa lghtyelow background.
h2. Heading 2

p. This s paragraph, block oftex that flows from one lin tothe next. This i & paagraph,a block of text that
ows from one line tothe next. This s a paragraph, a block of text that lows from one line o the next.

‘This paragraph i in div along with the two lstsbelow. The div has a blue background and some padding
added with CSS.

h3. Heading 3

L. T listitem 1 in an ordered lst, ol
2. 1 list item 2 n an ordered lst ol
3. 1ilstitem 3 n an ordered lst ol

h3. Heading 3

Jilis item 1 inan unordered list, ul
i ls item2 in an unorderedlist, ul
i listitem 3 in an unordered list, ul

11fig01_alt.jpg
functions can see out
and use variables declared
outside of them

function () {

@ console. 1og (mountain)

}

307fig01_alt.jpg
<body>

<hl>My Movie Ratings</hl>
<p>Brief info about my favorite movies.</p>

<h2>Movies</h2>

<h3>Inside Out</h3>
<p>An emotional adventure inside the head of a young girl.</p>

Use ul tags to create

<hd4>Actors</hd> an unordered list

Amy Poehler Put each of the list items between
<1i>Bill Hader opening and closing i tags

<h4>Directors</h4>

 X Use ol tags to create
Pete Doctor an ordered list
Ronnie del Carmen

</body>

17fig03_alt.jpg

ch10ex14-1.jpg
var get = function () {
var item = player.place.items.pop();

3 Define a get function
player adarcenicem) ; Hhatlets & plarer
i pick up items
return **;
}i
var player = new Player("Kandra®, 50); Create a player, give
player.addItem("The Sword of Doom") ; them a sword, and put
player.place = kitchen; them in the kitchen
render () ;

Call render to display initial info
about the player and place

306fig01_alt.jpg
Put the content to be

<body> the web page between the body tags
<hlshy Movie Ratings</hl> Use an h tag for the
<p>Brief info about my favorite movies.</p> mala hesding on 3 page
<h2sMovies</h2> Use heading tags h2, h3, and so on for
headings of decreasing importance

<h3>Inside Out</h3>

<p>An emotional adventure inside the head of a young girl.</p>

</body> Wrap paragraphs in p tags

ch10ex14-0.jpg
var

render = function () {

Define a render
console.clear() ; ;
Player place showtno() oo cune U
Player shoutnto (v40) ok wod Soph

go = function (direction) {
player .place = player.place.exits (direction] ;
render ()
return "+

Define a go function
that moves a player
to the place in the
specified direction

177fig01_alt.jpg
var hide = function () {
var mountain = "Devils Tower";

Declare the mountais
variable inside a function

console..1og (mountain) ; Try to scress the mountain

variable outside its function

11fig04_alt.jpg
Tou can't see-
into the function
from outside function () {

console. log (mountain)

nountain has not been declared var mountain = "Devils Tower"
outside of the function.

‘The local variable can't be
‘accessed here. ERROR!

17fig06.jpg
My Movie Ratings
« Inside Out
An emotional adventure inside the head of a young girl.
« Tomorrowland
Recreating the hope and wonder of previous gencrations.
« The Wizard of Oz

Strangers find friendship and strength on a long walk.

11fig03.jpg
Interface Implementation

addExit still
works - the interface
is unchanged.

exits
array

3]

ERROR - the destinations
array no longer exists - the
implementation has changed.

309fig01_alt.jpg
function getGreeting () {

e hine Create an array
Shane nants ofgrcings
"Wassup! ",
"Yotn,
"Hello movie lover!®,
"Ry up me duck!", Generate a
vHolat® random index
1 from zero to one
Tess than the
var index = Math.floor (Math.random() * hellos.length); length of the array
return hellos(index] ;
b
function updateGreeting () {
para. innerHTHL = getGreeting();
}
| Geta refrence to
var para = document.getElementByld("greeting”); < the paragraph

o " Set the content o the paragraph
spdateGresting(); Satchacontin

11fig02.jpg
8}

Interface - Implementation

H exits
Users should : ot
call addExit H

destinations.
array
8]
Users should NOT access
exits or destinations

17fig05_alt.jpg
Ay up me duck!

07fig05_alt.jpg
o

093fig01_alt.jpg
Assign the smaller of the

var showsmaller = function (numl, num2) { e e
ver amaller - Math.nin (mant. muna) 5
Ve Tatsen ~ Hath.an hum) i thlargera
console.Log(smaler + * is snaller shan * + larger); | LS

showsmaller (12, 3);
showSmaller(-10, 3);:

07fig06.jpg
Use dot notation
to refer to the blank

property of the Create a function that
spacer object returns an empty string
spacer.blank = function () { return ""; };

Assign the function on the right
to the property on the left

094fig01_alt.jpg
Var pianet = “Jupiter”; Use dot notation to call the
var bigPlanet = planet.toUpperCase () ; < toUpperCase method on

the planet string
A S P e ey

093fig02_alt.jpg
var line

functicn (lineLength} |

var line - Make sure lineLength
linelength = Math.max(0, lineLength) s at least 0
LineLength - Math.min(40, lineLength);
console.log (1ine (30)) ; "i::::h"minf
console.log(1ine (40)) ; method to return a line
g of the right length

R e e 0

245fig02_alt.jpg
(function () {

var Place = function (title, description) {
/* unchanged implementation */

b
if (window.theCrypt undefined) {
window.theCrypt = {}; Assign the Place

} constructor to
the namespace

theCrypt.Place = Place;

DO ;

373fig01_alt.jpg
VAr xur = new IMLHELTpRequest();
var url = "http://output.jsbin.com/qiwizo.json";

hr .addBventListener ("load”, function () { Parse the JSON
var data = JSON.parse (xhr.responseText) ; text to obtain a
console.log(data) ; JavaScript object

b

xhr .open ("GET", url);
xhr.send () :

ch07ex10-0.jpg
var spacer = {

blank: function () { Return an

y e empty string

newLine: function () { Return a new

e "\nt line character

line: function (length, character) { Return a ine o
var longString = characters of a

[SOOI RPN given length

longstring
longstring

1ONGSETANG 4= "++4bssbsstbsbbsbbstbsbbsstssbssbsstbstss®s

longString += * i

length = Math.max(0, length);
length = Math.min(40, length);
return longString.substr (longString. indexof (character), length);

ch08ex13-0.jpg
var getPlayerName = function (player) {
return player.name;

var getPlayerHealth = function (player) {
return player.name + * has health " + player.health;

var getPlayerPlace = function (player) {

return player.name + * is in * + player.place; Define a function to
build a string for the
var getPlayerTtems = functica (playez) { <o display of player items

var itemsstring - "Items:" + spacer.newLine();

) {

player. items. forEach (function (it

itemsstring +- * - * + item + spacer.neviine(); i it mpend
b cach clement of the
return itensstring items array to the

)i string

07fig07.jpg
substr uses the value substr also uses arguments
of message between parentheses

message.substr(3, 12);

20fig04.jpg
Console

[object Object] {
name: "Mahesha’
sessions: [[object Object] {
duration: 120,
sessionDate: "2017-02-05"

}, [object Object] {
duration: 35,
sessionbate: "2017-02-06"

}, [object Object] {
duration: 45,
sessionDate:

n

}

"2017-02-06"

245fig01_alt.jpg
‘Wrap the constructor in a

(function () { function to create a local scope
var Player = function (name, health) { S
/* unchanged implementation */ g:;::::::&::w ;
bi
if (window.theCrypt === undefined) { Ensure there’s a
window. theCrypt = {}; global namespace
} called theCrypt
theCrypt.Player = Player; Assign the Player
constructor to the
hos: 7 Immediately invoke the namespace

function expression

07fig08.jpg
character text character

= Neptune =

space padding

371fig01_alt.jpg
Step 1: Use the XHR constructor

var xhr = new XMLHttpRequest () ; <1 tocreate a new XHR object
Step 2: Store a URL at
var url = *hetp://output.jsbin.com/qiwizo.json"; ‘which to find the data
xhr .addEventListener (*load", function () { Step 3: Tell the XHR object
console. log (xhr .responseText) ; to call a function when the
b data has loaded
xhr .open ("GET", url) ; Step 4: Call open,
specifying the URL

<hr.send () ; Step 5: Call send to
start the request

ch07ex10-1.jpg
>

wrap : function (text, length, character) (

var padlength - length - text.length - 3; iyl O
var wraplext = character + * ' + text; eyl
wrapText + spacer.line (padiength, " *);
wrapText s+ character;
return wrapText;
b Surround the textin a box
box: function (text, length, character) { of a specified character

var boxText = spacer.newLine();
boxText += spacer.line(length, character) + spacer.newLine();
boxText += spacer.wrap(text, length, character) + spacer.newLine();
boxText += spacer.line(length, character) + spacer.newLine();
return boxText;
)
b

console.log(spacer .box ("Mercury”, 11, "=")); Test the box
Gaate S aa laane S (e . T, WY ‘method

090fig01_alt.jpg
VAL peintly
var point2;

var move; G g
var showpoint ; Create an object using
curly braces and
move = function (point, change) { immediately return it
return {
x: point.x + change.x, Set the new coordinates by applying
y: point.y + change.y the change to the original point
i
showPoint = function (point) {
console.log("(* + point.x + * , " + point.y + ")");
}i
pointl = { x : 2,y : 5 };
point2 = move(pointl, { x : 4, y : -2 }); Pass in the original point as
pos avariable and the change
showPoint (point1) ; 2o an object literal

console.log("Move 4 across and 2 down');
showPoint (point2) ;

125fig01_alt.jpg
WIE DELIARMONE: o Baniion e, poscion: S L | Cresleanowmplyclfect et
varplanac = (]; new planet being constructed

Set properties on the planet object

planet .position = position; g 34 argunicts passed

planet .name = name;
planet.type = type;

Planet.showPlanet = function () {
var info = planet.name; Define a display function
info += *: planet * + planet.position; and assign it to the
info += * - * + planet.type; showPlanet property
console.log(info) 1

}

return planet; Return the new planet

b object you have created
var planetl - buildplanet (

"Jupiter®,

B

Ll Use dot notation and
J parentheses to call the
T showPlanet method

14fig03.jpg
user = |
name: "Mahesha",
sessions: [...]

Usir dhita o & sl JevaScrnt obistt

20fig05_alt.jpg
Bin Data

Constructor

View

Controller

088fig01_alt.jpg
WARE " SRCLLCOr M.)
var getPlanetInfo;
var planetl;
var planet2;

buildPlanet = function (name, position, type, radius, rank) {

return {
name: name, c’.““'ﬁ“:""
position: position, Create a name :.":‘5:“ YI races
type: type, property and assign gy
radius: radius, it the value of the fonction
sizeRank: rank name parameter
b
}i
getPlanetInfo = function (planet) {
return planet.name.toUpperCase() + ": planet " + planet.position

)i

planet1
planet2

buildPlanet ("Jupiter", 5, "Gas Giant", 69911, 1);
buildPlanet ("Neptune", 8, "Ice Giant", 24622, 4);

console.log(getPlanetInfo (planetl)) ;
console.log (getPlanetInfo (planet2)) ;

124fig01_alt.jpg
var buildPlanet = function (name, position, type) { (Create an empty object
var planet = {}; for the new planet being
‘constructed
planet .name = name;
planet position = position;
planet .type = type;
return planet;

Set properties on the planet object
using the arguments passed in

Return the new planet
object you've created

ey, et Call the buildPlanet function and assign the
: w: ¥ object returned to the planet variable
*Gas Giant®

console.log(planet1.name) ;
console.log(planet1.position) ;
console .loa (planetl.type) s

14fig02_alt.jpg
user = new User()

“The User constructor function
function ((D
The retur value /= private)=/
replaces the
function call this.addSession = function (session) { ... };
this.getbata = function O { ... };
The special chis object i retumed

user = {

addsession: function (session) { ...),

getbata: function) { ... }

}

A user model with private data and public methods

ch20ex04-1.jpg
function log (sessionDate, duration) {
i (user t== null) {
user. addsession (sessionbate, duration);
fitnesshpp.userView. render (user) ; Define a function
return "Thanks for logging your session. to let users log

} else { their sessions
return "Please wait for user details to load.";
}

}

function init (id) {
Lost the daa o
return
oo 103, etuman

}
}

if (window.fitnessApp
window. fitnesshpp = (};

}

fitnesshpp.init = init;

b (

undefined) {

09fig01_alt.jpg
planetl = buildPlanet

(

funceion ((EARE) . position (8)

“The return value.

replaces the
function call

var planet = {};

planee..nane - QD)

planet .position =
planet.type =

1. Create an empty object

2. Assign the arguments
to properties

Equivalent to

planet nane - QEEEED) :

planet.position
planet..type

3.Return the object

return planet;

\

planetl = (
name: "Jupiter",
position: 5,
type: "Gas Giant"

V;

re

250fig01_alt.jpg
var User

function (name) {

var sessions = [;
var totalDuration = 0;

this.addSession = function (sessionDate,

sessions.push ({
"sessionDate"
"duration"

sessionDate,
duration

i

totalburation += duration;]
return totalburation;
this.getbata = function () { <
return {
"name" name,
"total" : totalbDuration,
"sessions": sessions.slice()

}i

Declare private
variables

quration) {

Add a session
object to the
sessions array

Add the current session’s
duration to the total

Define a function to
retrieve user data

Use slice to copy the
sessions array

ch20ex04-0.jpg
(function () {
ruge strict!;

var user = null;
function buildUser (userData) { /* Listing 14.3 +/ }

function updateUserPromData (userData) {

Create a user from
r = buildUser (userData) ;
Pl e T T
; op g i update the display
function loadUser (id) { Load user data and

Seuen vioaing usee devatte.er o
] voe® function

}

14fig01_alt.jpg
T ENEES SPP SSIVIr MAKRS e N SRl

“The same data is used by all of the apps

373fig02_alt.jpg
(function () 1
"use strict";

function loadpata (bin, callback) { Use the bin code
var xhr = new XMLHttpRequest (); to construct
var url = *hetp://output.jsbin.con/* + bin + *.json"; <) theURL
xhr.addEventListener ("load”, function () { Pass the loaded
var data = JSON.parse (xhr.responseText) ; data to the
callback (data) ; callback function
b
Xhr .open ("GET", url);
xh.send () ;
}
if (window.gpwj === undefined) {
window.gpwj = {}:
}
gpwj.data = {
load: loadData
}i
nos Test the function, telling

it to call console.log
3R o7y o0 B Y SR - . ‘with the loaded data

ch08ex13-1.jpg
var getPlayerInfo = function (player, character) {
var place = getPlayerPlace (player) ;
var health = getPlayeriealth(player);
var longest = Math.max(place.length, health.length) + 4;

var info = spacer.box(getPlayerName (player), longest, character);
info += spacer.wrap(place, longest, character);

info += spacer.newLine() + spacer.wrap(health, longest, character);
info += spacer.newLine() + spacer.line (longest, character);

info += spacer.newLine();

e e Gl ratemsie

info += spacer.newlLine();

return info;

Vi
var showplayerInfo = function (player, character) { Create a showPlayerlnfo

console.log (getPlayerInto (player, character)); function to display the info
b string on the console
var playerl = {

name: *Kandra®,

place: "The Dungeon of Doom", §

health: 50, Give the player

items : ["a trusty lamp’] anitem
Vi
showplayerInfo (playerl,] Call showPlayerlfo passing the

player and a border character
playerl.items.push('a rusty key'); <
Use push to add an extra

showplayerInfo (playerl,

fosts s wey aspueng

128fig01_alt.jpg
var Planet = function (name, position, type) {
this.name = nam

this.position = position;
this.type = type;

this.showPlanet
var info
info += * - " + this.type;
console. log(info) ;

function () {

Qj—{ begins with a capital letter

Set properties on ths, which
has been assigned an empty
object automatically

this.name + ": planet " + this.position;

}
}i
var planet - new Planet(Call the function with the new
Jupiter", keyword to tell JavaScript to
s, assign an empty object to this

"Gas Giant"

T T i

ch14ex04-1.jpg
SRR 5 VI DL SO
“description® : *You are in a library. Dusty books line the valls.
“items® : [*a rusty key* 1,
mexitsr : [

{ "airection® : "north, "to" : *The Kitchen® }
1

“titler : "The Kitchen Garden", /* details on Js Bin */

"titler : "The Kitchen Cupboard®, /+ details on JS Bin +/

09fig02_alt.jpg
planetl = new Planet (5 i

(concrton (@D posieion (D))

// var this = {}; 1. JavaScript creates an

ey abjctatomaticaly
this nane - (@EED)

this.position = “position ;
‘The return value this.type = -

repiaces the
funcion cal Equivalent to
2.You assign e
argumens to propertes
this.name - (FUPEEEEY
this.position = ®
this.cype = "Gas Gianc!
) 5. JavaScrit rotuns
// veturn this; the object automaticall
piensey-ai] /
name: "gupiter”,

position: 5,
type: "Gas Giant"

20fig08_alt.jpg
xulare - jodeyo

ch14ex04-0.jpg
‘var mapData = {
e "title" : "The Dark House”,

et "firstPlace® : "The Kitchen®,

Include the title of the
|

L] ’ o | List allof the place objects
et 1 o] U ato e pce
“eitler : The Kitchent,
“deacription” : "You are in a kitchen. There is a disturbing smell.”
“itenat : ["a piece of cheese® 1,
rexitar . (

{ *direction®: south, "to": *The Old Library"),
{ *airection': *west®, "to": *The Kitchen Garden },
{ rairection: "eastr, "to": "The Kitchen Cupboard” }
1
b
{

14fig04_alt.jpg
Hewversion

Current version

‘Switch the map data for different
adventures more easily
and share it with other apps

v
A
v
A

Separate the map data
from the code that builds
Place obiecls

20fig07_alt.jpg
xulare

Kacaluy

Jodeyo

ch09ex03-1.jpg
var planets = [
buildPlanet(*Jupiter®, 5, "Gas Giant"), Create an array of planet
buildPlanet(*Neptune®, 8, "Ice Giant*), objects and assign it to
buildPlanet("Mercury", 1, "Terrestrial®) the planets variable

1

planets. forEach (function (planet) { Use forEach to pass each
planet. showPlanet ()1 planet object to a function
Y Gt calli shonPlanet

20fig06_alt.jpg
Fitness App Fitness App

Mahesha Obinna
F A S5t 7620
ot st [r——
Wotdoel
Loga session...
s Log a session...
ome
ouaion
(rinsen) ouaon —
e ()

252fig01_alt.jpg
var buildUser = function

var user =

(userpata) {

new User (userData.name) ;

Create a new user object
with the User constructor

userData.sessions. forEach (function (session) (
user . addSession (Add each
session.sessionDate, session.duration); session
hi
Return the newly
return user;
T created user model
var userbata = {
"name* : "Mahesha,
"sessions® : [
{"sessionDate": "2017-02-05", "duration": 120}, f;ﬂ";l:v?:c::t
{"sessionbate": "2017-02-06*, *duration®: 35}, ::(“ -
{"sessionDate": "2017-02-06", "duration": 45} etz
)
b
& 2 Call buildUser to create
var user = buildUser (userData) ; vy oy
console.log (user.addSession (*2017-02-15%, 40)); Add a session and log

‘the total time returned

ch09ex03-0.jpg
var buildPlanet = function (name, position, type)

var planet = {};

planet .name = name;
planet .position = position;
planet.type = type;

planet.showPlanet = function () {
var info = planet.name;
info += *: planet * + planet.position;
info 4= * - " + planet.type;
console.log (info) ;

return planet;

Define the same
buildPlanet function
as in lsting 9.2

ch09ex05-0.jpg
var Planet = function (name, positicm, type) {
this.name = name;

this.position = position; Create an empty array
this.type - type; and assig it to the
this.moons = (1; moons property
this. showPlanet = function () {
var info = this.name + *: planet * + this.position;
info += * - * + this.typ
console.log(info) ; Join the elements of
console. log(the moons array to

"Moons: " + this.moons.join(', ') + "."); form a string

235fig01_alt.jpg
var getGuesser = function (lowest, highest) {
var secret = between(lowest, highest);

return function (userNumber) {
if <ug§}uu...nu =a= secret) { Use dasher to space
msg = dasher (*Well done!®); out your message
return spacer.wrap(nsg, msg.length + 4, "=*);
} else if (userNumber > secret) {
msg = dasher("Too high!");
return spacer.wrap(nsg, msg.length + 4, "+%);

N Use spacer.wrap to start
else and end the mess
nsg = dasher (*Too low!®); Viha character ©

return spacer.wrap(msg, msg.length + 4,

Vb Gl e GEbaESRETS, 1657

361fig01_alt.jpg
'itemTemplate®>

1R o vt Usescript tags 2 nchde
i HTML templates in the page
aceipe eypecttax/coplater 16e"playerTerplace”s Gy
nonstandard

<p>{{neaitn) </p> S0 they're not executed
<ol ide"playerttens*s</ols

</scripts

cscript type-"text/template" ids"placeTemplate*s i bl i
<h3>({ticle) je/n3> tha seript slemests can be
<p>{{description}}</p> accessed from JavaScript

<div class="placePanel">
<hd>Items:</hd>
<ol id="placeItems">
</div>
<div class="placePanel">
<he>Exits:</ha>
<ol id=*placeExit:
</divs
/script>

></0l>

cocript types"text/template” i
<p>+++ {{message)} *++</p>
e

Include an ordered list
element in the template as
a container for list items

Give the lst containers ids
50 the items can be added
from JavaScript

i

messageTemplate" >

19fig08_alt.jpg
e
n e

Map

Player

Map data

Place

Map builder

Views

Controller

Controller

Comnands

114fig01_alt.jpg
var items; [Use the var keyword to

var showInfo;

items = [
"The Pyramids",
"The Grand Canyon",
"Bondi Beach"

showInfo = function (itemToShow)
console.log (itemToShow) ;

items.forEach (showInfo) ;

.

{

-

declare two variables

Use square brackets to
create an array. Assign the
array to the items variable.

Use the function keyword to
create a function. Assign it to
the showlnfo variable.

Call the showlnfo function for
each element in the array

237fig01_alt.jpg
var kalliesCode = { Wrap the functions in

spreader: function (text, character) { an object assigned to a
return text.split("") .join(character) ; single global variable

h

er: function (text) {

b namespace object

Gasher: function (text) {

return kalliesCode.spreader (text, "-"); [r——
}

calling kalliesCode
functions

ch19ex16-0.jpg
(function () {

"use strict

var
var

var

placeDiv = document .getElementById("place") ;
placescript = document.getElementById ("placeTemplate”) ;
itemScript = document.getElementById("itemTemplate");

placeTemplate = placeScript.innerHTML:
itemTemplate = itemScript.innerHTML;

function render (place) {
var data = place.getbata();
var itemsDiv;
var exitebiv

var items = data.items.map(function (itemName) {

return { item : itemdame };

b

07fig09_alt.jpg
e okl
player variables

aplayer object

player items.

Player Constructor

FIRce%

place objects’
using functions

place items
using arguments.

place exits

using return values
showing place info

aE ...

oy ol
linking plces
Game
ronder
gt
@

08fig05_alt.jpg
SEMmR. SOrMER] Ehowinee 1

t t t

- e
oo ot o, (D). e Gt coven,
R s B ot v

il

13fig13_alt.jpg
You can import as many
modules as you need, but
watch out for variable colisions

Two modules declare
the spacex global variable

—

The second spacex overwrites the frst

ch19ex15-1.jpg
var items = data.items.map(function (itesName) { | Usemap tocreate an array

Add the HTML generated
from the player template
to the page.

return (iten : itemvams }; ofitem objects from the
» array of item name strings
Get
i PlayerDiv. innerHTHL =
o the b3 . templates. £111 (playerTenplate, data);
playeritems

vt has | itemsDiv « document.getElementById("playerItems*)
just been

prverpel Stemaniv. innerHTHL - Add the items HTML to
the page gpw -templates. £111L4st (1tenTemplate, items); the playerltems div

)

i (window. theCrypt
window. thecrypt = {};
)

thecrypt playerview = {
render. render

undefined)

no

111fig01_alt.jpg
(Create an empty array and

var items = []; < S 4 i
var item “The Pyramids" Assign |t o the iems variable
var removed;

Add the value of item to
items.push(item) ; <+ the end of the array
items.push("The Grand Canyon") ; R o o
items.push ("Bondi Beach") ; astring to

4 end of the array

console.log (itens) ;
Remove the last item and assign

removed = items.pop() ; it to the removed variable
console.log (removed + * was removed®) ; Ut ol o 8 sl
console.1og (items. join(" and ")) ; e e

between each pair

235fig02_alt.jpg
var spreader = function (text, character) { Define a function to
return text.split("").join(character); spread out text with 2
; specified character
var spacer = function (text) { .
return spreader (text, " "); Define a function to spread
Vi out text with spaces
var dasher = function (text) {
Define a function to spread
t der (text, "-"); v
)Vre urn spreader (text) it CeCwith dishis

ch19ex15-0.jpg
{Ametion O 1
“use strices;

var playerbiv = document.getElementById (*player®) ;
var playerscript - docunent.getElementeyld (*playerTenplate*);
var itemscript = document.getElementById(+itenTemplater);

var playerTenplate = playerscript.innerHTHL;
var itenTemplate = itemscript.innerHTHL;

function render (player) (
var data = player.getbata();
var itemspivs

109fig01_alt.jpg
var getVisitorReport =
var days = [
"Monday"
"Tuesday",
"Wednesday" ,
"Thursday",
"Priday"

function

13
var index = dayInWeek - 1;
var visitorReport;

(visitorArray, dayInWeek) {

Include parameters for an
array of visitor numbers and
the day in week of the report

visitorReport = "There were "
visitorReport += visitorArray[index]; | Use the += operator to update
visitorReport += " visitors *; ‘ visitorReport, concatenating more
visitorReport += "on " + days[index]; text to its current value
return visitorReport; Return the report

from the function
var visitors = [354, 132, 210, 221, 481 1;
var report = getVisitorReport (visitors, 2); Get the report for
Tuesday and assignit to

console.log (report) ;

the report variable

13fig12.jpg
.Aoeoum Blog Help
Console Run | | Ciear
> guess(s)

X "spacer.wrap is not a function. (In
'spacer.vrap(msg, msg.length + 4, \"-\
'spacer.wrap' is undefined)"

362fig01_alt.jpg
(function () {
"use strict";

var messageDiv = document .getElementById("messages") :

var templatescript - Collect references

docunent .getElementById ("messageTemplate”) ; 0 Samants on the
var template = templateScript.innerHTML; page
function render (message) {
var data = { message: message }; Define a function to fil
messageDiv. innerHTHL the message template
gpwj.templates.£ill (template, data); and update the display
}
function clear () { Define a function to
messageDiv. innerKTML = "*; empty the message div,
) clearing the display

if (window.theCrypt
window.theCrypt = {};

)

theceypt messageview = { —
render: render, both
Clear: clear to the messageView

o namespace

undefined) {

O

117fig01_alt.jpg
vax displeyuestion = funntion (qestionfodluswer)

R e Include a parameter
var options = ["A", "BY, "C7, "D, "E' |; to which the question-
and-answer object can
console. 1og (quest ionAndAnswer .question) ; < be assigned
questionAndAnswer .answers . forEach(
function (answer, i) { Access properties of
console.log(options(il + * - * + answer): the question-and-
) answer obiject via
- the parameter
Use forEach to visit
var questionl = { each element o the
question : *What is the capital of France?", array assigned to the
answers : [answers property
*Bordeaux, Assign an array
<o, to the answers
*Paris®, property
*Brussels®

1,
correctAnswer : "Paris"

Vi

S asTanoaatdon tamertanayi

20fig03.jpg
Console.
a0
\"name\" : \"Mahesha\",
\"sessions\" : [
{\"sessionDate\": \"2017-62-65\", \"duration\": 120},
{\"sessionDate\": \"2017-62-06\", \"duration\": 35},
{\"sessionDate\": \"2017-62-06\", \"duration\": 45}
i)
o

242fig01_alt.jpg
‘Wrap the function

var quiz = (function () { parentheses

var qIndex = 0 o
var questions = [..]; S AR

variables within
var getQuestion = function () { - }; s
var checkAnswer = function (userAnswer) { ..

return {
quizie: getQuestion, Return the public
submit: checkAnswer interface as an object

b

ho; Finish wrapping the function in

parentheses and invoke it with ()

116fig01_alt.jpg
var getTotalBill = function (itemCosts, itemCounts) {
var total = 0

itenCosts. forEach (function (cost, 1)
i to be assigned the index
return total;
Vi Use the + = operator to add
var costs = [1.99, 4.95, 2.50, 9.87]; the result of the calculation
var numOfEach = [2, 1, 5, 2 1; to the total variable’s value

T B T D —.

13fig14_alt.jpg
(
function () {

Wrap the function expression onba1s 1 (*Rel1s Worddln)y

in parentheses)
)0

Immediately call the expression
with the function invocation operator

20fig02_alt.jpg
(ST RO S DRSNS Y —

The same data is used by all of the appe

115fig02_alt.jpg
VAX PrEYOrS)
var showhrguments;

players = ["Dax", "Jahver®, "Kandra"

Include extra
showArguments = function (item, index, wholeArray) <— By '::;:’: ure
console. log (*Item: * + item); | Bassed by forEach

console.log(*Index: * + index);
console.log("Array: " + wholeArray);

T T ———

20fig01_alt.jpg
wonesns

P —1
wonasrs
260 mimutes 50 for
ety

“harks for Logaing your sesston:

> rp.ondtser Cpomapa®y
“Lassing user dutatl.

145 sirutes 20 for
ol et

> s Lossser Craspon)

reipien

Liang
o0 mirutes an 2017-02-85

“Thanks for togging your session.”
Hi

239fig01_alt.jpg
Define a function to create

var getQuiz = function () local scope and assign it to
a global variable, getQuiz

var gIndex = 0;

var questions = [.. 1;

var getQuestion = function () { .. }:

var checkanswer = function (useranswer) { ..

Use var inside the
function to declare
local variables

}:

return {
quizMe: getQuestion,
submit: checkAnswer

b

Return an interface

object to give users
access to some functions

Call getQuiz and assign the
var quiz = getQuiz(); interface returned to a
global variable, quiz

115fig01_alt.jpg
var items

| "The Pyramids®, "The Grand Canyon®, "Bondi Beach®];

console.log(*Dream destinations:");
items.forEach (function (item) {

. Use the forEach method,
n conmole:dog(® <ty item) passing it an inline function

238fig01_alt.jpg
var getGuesser = function (lowest, highest) {
var secret = between(lowest, highest);

return function (userNumber) {

var msg:
if (userNumber == secret) {
nsg = kalliesCode.dasher ("Well done!®);
return spacer.wrap(msg, msg.length + 4, "=%);

} else if (userNumber > secret) {
msg = kalliesCode.dasher ("Too high!");
return spacer.wrap(msg, msg.length + 4, "+");

) else {
msg = kalliesCode.dasher (*Too low!™);
return spacer.wrap(msg, mag.length + 4, "-*);

Vi Godd v Gitoeser(e. 101y

Call the dasher function
from the kalliesCode
namespace

Happily use
spacerwrap

ch19ex16-1.jpg
var exits = data.exits.map(function (exitName) { Use map to get an

return { item : exitName }; array of objects from
1 | an array of strings
placeDiv. innerHTHL =
gpwi.templates. £i11 (placeTenplate, data);
itemsDiv = document .getElementById (*placeltems*);
itemsDiv. innerHTML
gpwi .templates. £i11List (itenTemplate, items);
exitsDiv = document.getElementById(*placeExits®); .
exiteDiv.innerHTHL = m:‘;:“" pdded,
_templates.£illList (itenTemplate, exits); serence (o the
| e sempisces st(itenTemplate, exit: v irpepebiood
with the exits HTML

if (window.theCrypt
window.thecrypt = (};

b

theCrypt .placeview = {
render: render

i

W O;

undefined) {

08fig07_alt.jpg
Player name

Player health

Alist of tems.

AONCRICEIG WS PRSI

* Kandra *

*+ Kandra is in The Dungeon of Doom *
* Kandra has health 50 *

Items:

- a trusty lamp
- a rusty key

Place info

Borders.

08fig06_alt.jpg
.
player variables

aplayer object

Player Constructor

Flaces

place objects

place items

place exits

CElE L

Plae Constructor

i i

linking places via exits

Game

render

et

%

13fig15_alt.jpg
‘These modules share
a namespace

Only a single ine of code
is needed 10 start the game

“The spacer module uses
a diferent namespace

ch21ex01-1.jpg
<p id="controls">

“text” id="txtCommand"s
btnCommand">Make it so</buttons
</p>
<i-- Templates -->
<i-- unchanged - see previous chapters -

<i-- Modules -->

<script
<script
<script
<script
<script
<script
<script
<script
<script
<script
</body>
bl

srce"maps/TheDarkHouse. ja"></script>

sxca*js/mapManager . js"></script>
srce"js/template.js></script>
src="js/player.js*></script>
sxc="js/place.js"></scripts
srca*js/playerView.js"></script>
srca*js/placeView.js*></script>
srca"js/messageview. ja"></script>
src-"js/gameController.js*></script>
srca"js/commands. js"></script>

You can use relative paths
to load the script fles.

ch09ex11-0.jpg
var Place = function (title, description) {

var newLine = spacer.newLine(); Ausinthe vewline charsciar
this.title = title; returned by spacer.newLine()
to the newLine variable

this.description = description;
this.items = [];

this.exits = [1; < Create an empty
this.getTtens = function O { /+ see Listing 9.10 +/ }; | ialac sl

this.getExits = function () {
var exitsString - "Exits from * + this.titl

exitsstring +a "

this.exits. forBach (function (exit) {
exitaString += " - " + exit.title;
exitestring +- newline

b

ch15ex05-0.jpg
(function () {

var getNameInfo = function (playerData) {
return playerdata.name;

b

var getHealthInfo = function (playerData) {
return " (" + playerData.health + ")

b

var getItemsInfo = function (playerData) {
var itemsString = "Items:" + spacer.newLine();

playerData.items.forEach(function (item, i) {
itemsString += " - * + item + spacer.newLine();

hi

return itemsstring;

ch09ex10-1.jpg
Enam. L Abie,
this.title.length + 4,

if
Include a call to
getitems when building

infoString += this.description; 8
info about a place

infostring += spacer.newLine();
infostring += this.getItems();
infostring += spacer.line(40, "=") + spacer.newLine();
return infostring;

b

this.addItem = function (item) { Define an additem method
this.items.push (item) ; to2dd 2 new item to the
Y items array

var library = new Place(
"The 014 Library",
"You are in a library. Dusty books line the walls."
Vs

library.addItem(*a rusty key"); < Use the additem

method to add an item
console.loq(library.getInfo());

ch15ex04-1.jpg
this.setPlace = function (destination) {
place = destination;

b

this.getPlace = function () {
return place;

i Subtract the specified
damage from the
this.applyDamage = function (damage) { player’s health
health = health - damage;
b Define a method to return a

this.getData = function () { copy of the model’s data

var data = {
“name* : name,
“health! health,
“items* : items.slice()

}s

if (place t== null) {
data.place = place.title;

}
return data; 7] Return the data object

Use the slice method with no
arguments to copy the items array

Include the title of the player’s
| location if one has been assigned

if (window.theCrypt undefined) {
window.theCrypt = {};

)

theCrypt.Player = Player;

O ;

ch09ex10-0.jpg
var Place = function (title, descriptiom} {
this.title = title; Crvats an gty arrsy

this description - description; peckp ol
this.items - 01 -
this.getItems = function () {
Var itemsstring - *Items: * + spacer.mevine();
this.items.forEach(function (item) {

itemsString += * - * + items Define a getltems
itemsString += spacer.newLine () ; method to build a
b string of the items

oturn itemsString;

this.getTnfo = function () {
var infoString = spacer.box(

ch15ex04-0.jpg
(function () {

var Player - function (name, health) {
var items = [1;
var place null;

this.addItem = function (item) {
items.push(item) ;
b
Return true if the

this.hasItem = function (item) { specified item is in

return items.indexOf (item) les -1 | theitems array
b
this.removeItem = function (item) {
var itemIndex = items.indexOf (item) ; Remove the
if (itemIndex t== -1) { specified item from
items.splice(itemIndex, 1); the items array

}

ibc_01fig02_alt.jpg
#2% A zombie sinks its teeth into your neck. *+*

use holy water south ===

15fig03_alt.jpg
Move display functions
1o their own module

Before
gethameInfo | gecTitlelnfo
getHealthInto getnto
getitensinto showlnto
setplace getplace
addrten
Player Keep the data

management functions
in the Player model

Preyerview After

getNanelnto | | gerTitlemnto
getsealthinto getnfo
get1tensino render
setplace getplace
adarcen removerten
hasicen app1ypanage
getvata

Player

ibc_01fig01_alt.jpg
s ke

player variables

‘aplayer object

showing player info

player items

Player Constructor

L%

place objects

place ftems

place exits

showing place info.

Place Constructor

b o
linking places via exis
Game
ronder
get
%

ch09ex12-0.jpg
var Player = functicn (name, health) {
var nevLine - spacer.newLine () ;

this.name = name;
this.health = health;

this.items = (17 Assign null to the place property
this.place = null; until you create a place to assign it

this.addIten = function (item) {

T S, ket o280
this.getName = function () {
return this.name;
b Return strings of player
this.gettealth = function () (J s

return this.name + " has health * + this.health;
b

ch15ex06-1.jpg
this.getExit = function (direction) {
return exits(direction] ;

b

this.addChallenge = function (direction, challenge) {
challenges[direction] = challenge;

b

this.getChallenge = function (direction) {
return challenges[direction];

Define amethod to
b J return a copy of
this.getData = function () { the place’s data
var data = {
"title® : title,
cription® : description, Use Object.keys to assign
items.slice(), an array of directions to
wexits" : Object.keys (exits) the exits property

Return the
, data object

if (window.theCrypt
window. theCrypt = {};

}

theCrypt.Place = Place;

undefined) {

b O;

09fig06_alt.jpg
‘A box around e players name

Player name
= Kandra is in The 0ld Library Place info
Player health Kandra has health 50 -
Items:
Alist of items i rustyghey Borders

- The Sword of Doom

ch15ex06-0.jpg
(function () {

var Place = function (title, description) {
var exits = {};
var Teend'= {1
var challenges = (};
this.addItem = function (item) {
items.push(item) ;

i

this.getLastItem = function () {
return items.pop();

this.addExit = function (direction, exit) {
exits[direction] = exit;

Y

09fig05_alt.jpg
iayeis
player variables
aplayer object

showing player info

player items

b incd
place objects
place tems
place exits
showing place info

Place Constructor

Waps

linking places via exits

Game

render

get

%

15fig04_alt.jpg
Before.

getExitsInfo

getTitlemnto

getItensinto

addreen

addexit

addchallenge

Place

Move display functions.
‘o their own module:
getInfo

showlnto

getLastIten
getaxit

getchallenge

Keep the data
management functions
in the Place model

PRACEVLEN

After
getExitsInto
getinfo
getTitletnto
render
getItemsInfo
addrten getLastIten
addexic getaxit
addChallenge | | getChallenge
getpata

Place

ch09ex11-1.jpg
return exitsString;

Y
this.getTitle = function () { Move the tide
return spacer.box(boing code to ts
this.ticle, s borea)
this.ticle.length + 4,
)
¥

this.getInfo = function () {
var infostring = this.getTitle();

infoString += this.description Use the new
infoString += newLine + newLine; methods to help
infoString += this.getItems() + newLine; build the info string
infoString += this.getExits();
infoString += spacer.line(40, "=") + newLine;
return infoString;

}

this.shoulnfo = function () {
console. log (this.getInfo()) ;

this.addItem = function (item) {
this.items.push(item) ;

this.addExit = function (exit) { Define an addExit
this.exits.push(exit) ‘method to add a new

¥ place to the exits array

library = new Place(
"The 014 Library",
"You are in a library. Dusty books line the walls.®

Kitchen = new Place(
“The Kitchen'
“You are in the kitchen. Th

is a disturbing smell."

hall = new Place(
“The Main Hall®,
“You are in a large hall. It is strangely empty."

library.addIten(*a rusty key");
Library.addExit (kitchen) ; Join the library to the
library.addBxit (hall); kitchen and to the hall

A beREv: EEOVTRES 1)

ch15ex05-1.jpg
var getTitleInfo = function (playerdata) {
return getNameInfo(playerData) + * " + getHealthInfo(playerData ;

s

var getinfo - function (playerdata) [
var info = spacer.box(
getTitleInfo(playerData), 40, "*");

info += * * + getItemsInfo(playerData): Use the player
info += spacer.line(40, "*"); data to build up
info += spacer.newLine(); a string of info

return info;

b

var render = function (player) {
console. log (getInfo (player.getData())) ;

b

if (window. theCrypt
window. theCrypt = (};

}

Pass a copy of the
player’s data to getinfo

undefined) {

theCrypt .playerview = { Set the render
render: render method as a property
b of playerView

WO

150fig01_alt.jpg
var ages = {};

ages ["Kandra"] = 56; ‘ Set the properties using bracket
ages ["Dax"] = 21; notation and the names as keys

console.log(ages.Kandra) ; Get the properties using dot
console.log(ages.Dax) ; notation and the names as keys

10fig01.jpg
Wrap the key In quotation marks

states ["new hampshire"] = "NH";

Use square brackets to specify a property

ch15ex07-1.jpg
return exitsString;

var getTitleInfo
return spacer.

b

var getInfo = function (placeData) {

infostring +=
infoString +=
infoString +=
infoString +=
infoString +=

= function (placeData) {
box (placeData.title, placeData.title.length + 4, "=");

return infoString;

b

var render = function (place) {

console. log (get Info (place

i

vaz infostring = getTitleTnfo(placeData) frostog spnid
placeData.description; getinto function
spacer.nevLine () + spacer.newLine ();
getItemsInfo(placeData) + spacer.nevLine();
getExitsInfo (placeData) ;
spacer. line (40, + spacer.newLine () ;
jetbatal))) Call getData to get
a copy of the place

if (window.theCrypt ==« undefined) {

model’s data

window. theCrypt = {};

i

theCrypt .placeView = {

render: render

i

D O;

ch09ex12-1.jpg
this.getPlace = function () {

return this.name + * is in * + this.place.title; s
) of the Place object
this.getItems = function () { assigned to this.place.

var itemsString = "Items:" + newLine;

this.items. forEach(function (item, i) {
itemsString += * - * + item + newLine;

b

return itemsString;

i

this.getInfo = function (character) {
var place = this.getPlace();

var health = this.getHealth(); Ut tpacn
var longest = Math.max(place.length, health.length) + 4; at player
var info = spacer.box(this.getName (), longest, character); information

info += spacer.wrap(place, longest, character);
info += newLine + spacer.wrap (health, longest, character);
info += newLine + spacer.line (longest, character);

info += newLine;
info 4= * ' + this.getItems();

info += newLine;

info += spacer.line(longest, character);
info += newLine

return info;

)i
this.showlnfo = function (character) { Define a method to get a
console. log(this.getInfo(character)) ; player information string
i and display it on the console
ia
/1 Test the Player constructor
var library = new Place(
“The 014 Library, oo,
"You are in a library. Dusty books line the walls.®
y it
var playerl = new Player ("Kandra", 50); S
playerl.place = library; Player object
Playerl.addIten(*a rusty key");
8 . Assign the Place
Layer].addIten("The Sword of Doom") ;
playe ¢) st B

T RRTEEE (M)

ch15ex07-0.jpg
(function ()} {

var getItemsInfo - function (placeData) { Pass the place’s data
var itemsString = "Items: * + spacer.newline(); to the helper functions
placeData.items. forEach(function (item) {
itemsString 4= - "+ item;

itemsString += spacer.newLine () ;
i
return itemsString;

b

var getExitsInfo = function (placebata) {
var exitsString = "Exits from " + placeData.title;
exitsString += ":" + spacer.newlLine();

placeData.exits. forEach(function (direction) {
exitsString += * - " + direction;
exitsString += spacer.newLine();

b

ch09ex06-0.jpg
var Planet = function (name, position, type) {
thi
this.position = position;
this.type = type;
this.moons = (1

this.showPlanet = function () {
console.1og (this name) ;
console.log(*Planet * + this.position + * - * + this.type);
console.log("Hoons: * + this.moons.join(',) + ".");
this.adduoon = function (moon) { Use unshift to prepend
‘this.moons.unshift (moon) ; elements at the start of

)i the array

ch14ex06-0.jpg
var buildMap = function (mapData) {
var placesstore = (};
var buildPlace = function (placeData) {
var place = new theCrypt.Place(

placeData.title, Step 1a: Call the Place

constructor with the

,, Pisesmec desczipeion e

if (placeData.items t== undefined) { Step 1b: Add any items
placeData. items. forBach (place .addItem) ; to the newly created

) place model

placesStore [placeData. title] = place; Step Tc: Put the place

b ‘model in the places store

ch20ex08-1.jpg
if (placeData.exits !== undefined) {
PlaceData.exits. forach (function (exit) (

place.addExit (exit.dizection, exit.id);
exit.direction, exit.challenge); st
ni
)
Check EecuEniplNoey Include a callback parameter
weade |) for forcin 1o b o
e | function oadrlace (10, catibact) { it theloaded place
place var place = placesstore (idl;
1 ace undet ine Only load the place data
3 dasisiey | e
P gpw.data.load (id, function (placeData) {
Bin Data var place = addPlace (placeData) ;
‘module to callback (place) ; Callthe callback with a
Toad the place newly constructed
data b from the data
) etse (
callback (place) ; P —
} Toaded, callthe callback with
¥ ‘the cached place

if (window.theCrypt === undefined) {
window. theCrypt = {};
}

thecrypt.map = {
loadPlace: loadrlace

¥
Hos

14fig05_alt.jpg
FATEENLACS & Puilchep | mepbacs)

var placesStore = {};

var buildplace
var buildExits

function (placepata) {...
function (placeData) (...

mapData.places. forgach (buildplace) ; Create all the
The return value

place models and
replaces the add them to the.
function call places store
mappata.places. forBach (buildBxits) ;
Link the place

models via
their exits

return placesstore [napData.firstplace] ;

.

\

tizocplace - 9

Retur the place at which
the game starts

ch09ex05-1.jpg
this.addmoon = function (moon) { Add the new moon to
this.moons. push (moon) ; the moons array using
3 the push method

var planet = new Planet("Jupiter”, 5, *Gas Giant®);
3 3

planet .addMoon (*Io") ;
planet .addMoon ("Europa®) ;

T —_——

ch20ex08-0.jpg
Ll ool 215 |
ruse strict;

Use an object to act as
var placesstore = (}; cache for loaded places
function addPlace (placepata) (
var place - new theCrypt.Place(Create a Place object
placeData.title, placeData.description) from the place data
placesstore [placeata. id) = place; -
Cache the newl created
if (placeData.items i-- undefined) | frrsfprion: Aok

PlaceData. items. forEach (place.addItem) ;

! using itsid as 2 key

20fig09_alt.jpg
i

Model Constructors

Controller

<
H

Utities - gowi Player

Place

;z

258fig01_alt.jpg
Ve Blace = FURCELGE JRACES: WMeripeion) i

11 other variables Create an empty
var challenges = {}; object in which to
store any challenges

/1 other methods
this.addChallenge = function (direction, challenge) { | TheaddChallenge method

challenges (direction] = challenge; stores a challenge for
i specified direction.
this.getChallenge = function (direction) { The getChallenge method

return challenges (direction]; returns the stored challenge
iy for a specified direction.

379fig01_alt.jpg
"title : "The Kitchen",
"id" : *quluder,
"description” : "You are in a kitchen. There is a disturbing smell.",

"items" : ["a piece of cheese"],
nexits® ¢ [
{
"direction" : "south",
“"to" : "The 01d Library",
*id» “kacaluy"
I
{
“direction” : "west",
"to" : "The Kitchen Garden", Inclnde tha code for, thy
aae & zulares destination of each exit
) 50.its data can be loaded
1 ifitis visited
"direction” : "east",
"to" : “The Kitchen Cupboard",

"id" : "jodeyo"

21fig01_alt.jpg

ch09ex08-0.jpg
var CalendarEvent = function (title, startDate, startTime, endTime) {
this.title = title;

this.startDate = startbate;
this.startTime = startTime; Define a method to display
this.endTime = endTime; information about the current
calendar event
this.showEvent = function () {
var datestring = [
this.startbate, Build up the pieces of the
", from *, date string as elements
this.startTime, inan array

t6 -

ch15ex01-0.jpg
var User = function (name) { /* unchanged from chid - on JS Bin */ };

var userview = (function () { ‘ion sidincilon
expression to create
var getInfo = function (userbata) (halcme
var infoString = "\n' + userData.name + "\n";
userData.sessions.forEach(function (session) { Define a function that
infostring += session.duration + " minutes on *; builds a string of nfo
infostring += session.sessionbate + "\n"; from user data
D
infoString 4= "\n" + userData.total + " minutes so far';
infoString += "\nWell donet\n";
return infoString; Define the veadsr fadtion to.

i log the info for a user model

15fig01_alt.jpg
Mahesha
35 minutes on February Sth
45 minutes on February 6th

1 hour 20 minutes so far.
Great work!

Mahesha

35 minutes on February Sth
45 minutes on February 6th

1 hour 20 minutes so far.

+ Great work! *

<hz>mahesha</h2>
<uls

<1i>35 minutes on February sthe/li>
45 minutes on February 6the/lis

<p>1 hour 20 minutes so far.</p>
<p><strongsGreat worki</p>

386fig01_alt.jpg
var playerName = "Kandra®; Specify the id of the JS
var firstPlaceld = "vitewib"; Bin file for the first

place on the map
game.init (firstPlaceld, playerName) ;

ch09ex07-1.jpg
Vi

questionl .
questionl .
question.

questionl

R, e,

addoption ("Bordeaux"
addoption ("F") ;
addoption (*Paris®) ;
addoption ("Brussels”) ;

abraaatton (3

262fig01_alt.jpg
var getGame = function () {

var render = function () { .. };
var firstPlace = theCrypt.buildMap (theCrypt.mapDa Pass the map data
to the buildMap
var player = new _Player ("Kandra", 50);
player = new theCrypt.Player(s0) Sotheb

player.addIten("The Sword of Doom") ;
player.setPlace (firstPlace) ;

render () ;

// Return the public interface
return (

go: function (airection) { .. },
: function () { - }

ch09ex07-0.jpg
var QuizQuestion = function (questiocn, answer) {
this.question = question;
this.answer = answer;
this.options = (17

this.addOption = function (option) {
this.options.push (option) ;

} Include a second
this. showquestion = function () { ‘parameter to catch
console. 1og (this.question) Ehe index argument
this.options. forEach (function (option, 1) {
consote og(*(* o (4 + 1) & % * ¢ eptiom)s e
o 3dd 1 to the index
} and use the result
i in the string

var questionl = new QuizQuestion(
"What is the capital of France?",
wparis"

ch20ex09-1.jpg
function go (direction) {
if (inelay) (
/% Declare variables +/

if (destination === undefined) {
rendereasage (“There is no exit in that direction’);
) else {

1€ ((chatlenge =us undetined) || chatlenge.conplete) { | LeadthePlaets
theCypt. map. losdrlace 0
destination, function (place) {
Flayer. satrlace (place)
render (Once loaded, set the place
» as the player's location
fesicait and update the display
// Bpply challenge
)
)
} else {

renderMessage ("The game is over!

}

)
/+ other functions */ R pallic
window.gane = { .. }; interface

O

ch09ex06-1.jpg
var planetl = new Planet (*Jupiter”, 5, "Gas Giant");
planetl.addoon (*To") ; First add “Io” and
planet1.addoon (*Europa®) ; then add “Europa”

var planet2 = new Planet ("Neptune®, 8, "Ice Giant');
planet2.addMoon (*Triton®) ;

var planet3 = new Planet ("Mercury®, 1, "Terrestrial®); Use square brackets
to create an array and
[planeci, planet2, planet3].forfach(function (planet) { <—| immediately terate
planet.showPlanet () ; over it with forEach

N

ch14ex06-1.jpg
var buildExits = function (placeData) {

var here = placesstore [placeData.title]; Sing T Raiavn e placs
modelfrom the places store
if (placeData.exits == undefined) {
placeData. exits. forEach (function (exit) {
var there = placesStore [exit.to] ; Step 2b: Add an exit to the mode
here.addExit (exit .direction, there); o] for each exit in the place’s data
here.addChallenge (
exit.direction, exit.challenge); R o—
g b each exit in the place’s data
b
Start Step 1: Create a
mapData.places. forEach (buildPlace) ; | modelfor each place
mapData.places. forEach (buildExits) ; Start Step 2: Add the
exis for each place
return placesstore (mapData. firstPlacel; <
)i Step 3: Return the model for
W frst wiace bé S8 S

ch20ex09-0.jpg
(function () {
ruse strict

var player;
var inPlay = false:

function init (firstPlaceld, playerName) { Use loadPlace to load the
theCrypt .map. loadplace first place in the game
firetPlaceld, function (firstPlace) { and run the it code

player = new theCrypt.Player (playerName, 50
player.addIten(*The Sword of Doom");
player.setplace (firstplace)

inplay = true;
render();

s

135fig01_alt.jpg
AERGE (RS CNEGNCIOF SERcHon 68 &
variable that begins with a capital letter
var Place = function (title, description) {
this.title = title; Assign values to properties of the
this.description = description; automatically created this object

this.getInfo = function () {
var infostring = this.title + "\n";
infoString += this.description + "\n";
return infoString;

7 Create a method by assigning.
a function to a property

g

| Catthe constructa unction
var library = new Place(. with the new keyword
“The 014 Library",
“You are in a library. Dusty books line the walls."
i
Call the getinfo method and log
console.log(library.getInfo()); the return value to the console

09fig04_alt.jpg
‘A box around the e

= The 0ld Library =

Atitle

A description You are in a library. Dusty books line the walls.

Items:
- a rusty key Alist of tems
Exits from The Old Library:
° o gleirs Alist of exits
- The Main Hall

& Bada

15fig02_alt.jpg
SANTTL V..

spacer ‘

Map data

‘ Map builder

e

ORI VO FRIS O] DN

DU —

spacer.

=)

‘ vap builder ‘

;
i

| (ome tnie ‘

09fig03_alt.jpg
-

Player variables

a player object

showing player info

player items.

Player Constructor

i

|||||i

e

linking places via exits

Game

render

et

%

268fig01_alt.jpg
var user = new fitnessApp.User("Mahesha®);
user.addSession ("2017-02-05", 35) ;
user.addSession ("2017-02-06", 45);

Create a user model
and add two sessions

fitnessApp.userView. render (user) ; S Test the first user view

fitnessApp.userViewEnhanced. render (user) ; <1 Test the enhanced user view

ch21ex01-0.jpg
<iDOCIIFS htmi>
html lang="en"s

chead>
<meta charset="UTF-8">
<link rel-"stylesheet® href="css/theCrypt.css* /> Load the CSS il to set
<titlesThe Crypte/titles the styls for the page

</head>

<body>

<h1>The Crypt</hl>

«div id="player></divs
<div id="place"></div>
<div id="messages"></div>

21fig02.jpg
v [theCrypt
> Bcss
> B
» [maps
o theCrypthtmi

v [theCrypt
v Bcss
o theCrypt.css
v
o commands.js
o gameController.js
o) mapManagerjs
o messageView]s
o) placejs
B
B
B

placeView.s
playerjs
playerViewjs
o template s
v [maps
8] TheDarkHouse.is
o theCrypthtmi

ch09ex08-1.jpg
this.endTime
1.join("");

console.log(this.title);
console. log (datestring) ;

var calEvent = new CalendarEvent (
"Annual Review",
"3/5/16%,
"4.00pm",
"5.00pm"
)1

calEvent . showEvent () ;

Join the elements of
the array to form the
full date string

ch15ex01-1.jpg
var render = function (user) { P Pass the data from the
console. 1og (get Info (user.getData()) user model to getinfo
b
return
render: render

i

Return a simple interface
oblectthat gies aceess 00 oy
the render function ‘ Immediately invoke

the enclosing
Dos function expression
var user = new User (*Mahesha") ;

user.addSession ("2017-02-05", 35);
user .addsession ("2017-02-06", 45);

Create a user model
and add two sessions

userview.render (user) ; <1 Display user info

