[image: cover]
Positioning in CSS

Layout Enhancements for the Web

Eric A. Meyer

Positioning in CSS

by Eric A. Meyer

Copyright © 2016 Eric A. Meyer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Meg Foley

		Production Editor: Colleen Lobner

		Copyeditor: Amanda Kersey

		Proofreader: Molly Ives Brower

		Interior Designer: David Futato

		Cover Designer: Ellie Volckhausen

		Illustrator: Rebecca Demarest

		April 2016: First Edition

Revision History for the First Edition

		2016-04-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491930373 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Positioning in CSS, the cover image of salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-93037-3

[LSI]

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/positioning-in-css.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Positioning

The idea behind positioning is fairly simple. It allows you to define
exactly where element boxes will appear relative to where they would
ordinarily be—or position them in relation to a parent element, another
element, or even to the viewport (e.g., the browser window) itself.

Basic Concepts

Before we delve into the various kinds of positioning, it’s a good idea
to look at what types exist and how they differ. We’ll also need to
define some basic ideas that are fundamental to understanding how
positioning works.

Types of Positioning

You can choose one of five different types of positioning, which affect
how the element’s box is generated, by using the position property.

position

	Values:

	static | relative | sticky | absolute | fixed
| inherit

	Initial value:

	static

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	As specified

The values of position have the following meanings:

	static

	
	The element’s box is generated as normal. Block-level elements generate
a rectangular box that is part of the document’s flow, and inline-level
boxes cause the creation of one or more line boxes that are flowed
within their parent element.

	relative

	
	The element’s box is offset by some distance. The element retains the
shape it would have had were it not positioned, and the space that the
element would ordinarily have occupied is preserved.

	absolute

	
	The element’s box is completely removed from the flow of the document
and positioned with respect to its containing block, which may be
another element in the document or the initial containing block
(described in the next section). Whatever space the element might have
occupied in the normal document flow is closed up, as though the element
did not exist. The positioned element generates a block-level box,
regardless of the type of box it would have generated if it were in the
normal flow.

	fixed

	
	The element’s box behaves as though it was set to absolute, but its
containing block is the viewport itself.

	sticky

	
	The element is left in the normal flow until the conditions that trigger
its stickiness come to pass, at which point it is removed from the
normal flow but its original space in the normal flow is preserved. It
will then act as if absolutely positioned with respect to its containing
block. Once the conditions to enforce stickiness are no longer met, the
element is returned to the normal flow in its original space.

Don’t worry so much about the details right now, as we’ll look at each
of these kinds of positioning later. Before we do that, we
need to discuss containing blocks.

The Containing Block

In general terms, a containing block is the box that contains another
element. As an example, in the normal-flow case, the root element
(html in HTML) is the containing block for the body element, which
is in turn the containing block for all its children, and so on. When it
comes to positioning, the containing block depends entirely on the type
of positioning.

For a non-root element whose position value is relative or static,
its containing block is formed by the content edge of the nearest
block-level, table-cell, or inline-block ancestor box.

For a non-root element that has a position value of absolute, its
containing block is set to the nearest ancestor (of any kind) that has a
position value other than static. This happens as follows:

	
If the ancestor is block-level, the containing block is set to be
that element’s padding edge; in other words, the area that would be
bounded by a border.

	
If the ancestor is inline-level, the containing block is set to the
content edge of the ancestor. In left-to-right languages, the top and
left of the containing block are the top and left content edges of the
first box in the ancestor, and the bottom and right edges are the bottom
and right content edges of the last box. In right-to-left languages, the
right edge of the containing block corresponds to the right content edge
of the first box, and the left is taken from the last box. The top and
bottom are the same.

	
If there are no ancestors, then the element’s containing block is
defined to be the initial containing block.

There’s an interesting variant to the containing-block rules when it
comes to sticky-positioned elements, which is that a rectangle is
defined in relation to the containing block called the
sticky-constraint rectangle. This rectangle has everything to do with
how sticky positioning works, and will be explained in full later, in
“Sticky Positioning”.

An important point: positioned elements can be positioned
outside of their containing block. This is very similar to the way in
which floated elements can use negative margins to float outside of
their parent’s content area. It also suggests that the term “containing
block” should really be “positioning context,” but since the
specification uses “containing block,” so will I. (I do try to minimize
confusion. Really!)

Offset Properties

Four of the positioning schemes described in the previous
section—relative, absolute, sticky, and fixed—use four distinct
properties to describe the offset of a positioned element’s sides with
respect to its containing block. These four properties, which are
referred to as the offset properties, are a big part of what makes
positioning work.

top, right, bottom, left

	Values:

	<length> | <percentage> | auto | inherit

	Initial value:

	auto

	Applies to:

	Positioned elements

	Inherited:

	No

	Percentages:

	Refer to the height of the containing block for top and
bottom, and the width of the containing block for right and left

	Computed value:

	For relative or sticky-positioned elements, see
the sections on those positioning types. For static elements, auto; for
length values, the corresponding absolute length; for percentage values,
the specified value; otherwise, auto

These properties describe an offset from the nearest side of the
containing block (thus the term offset properties). For example, top
describes how far the top margin edge of the positioned element should
be placed from the top of its containing block. In the case of top,
positive values move the top margin edge of the positioned element
downward, while negative values move it above the top of its
containing block. Similarly, left describes how far to the right (for
positive values) or left (for negative values) the left margin edge of
the positioned element is from the left edge of the containing block.
Positive values will shift the margin edge of the positioned element to
the right, and negative values will move it to the left.

Another way to look at it is that positive values cause inward offsets,
moving the edges toward the center of the containing block, and negative
values cause outward offsets.

The implication of offsetting the margin edges of a positioned element
is that everything about an element—margins, borders, padding, and
content—is moved in the process[of positioning the element. Thus, it is
possible to set margins, borders, and padding for a positioned element;
these will be preserved and kept with the positioned element, and they
will be contained within the area defined by the offset properties.

It is important to remember that the offset properties define an offset
from the analogous side (e.g., left defines the offset from the left
side) of the containing block, not from the upper-left corner of the
containing block. This is why, for example, one way to fill up the
lower-right corner of a containing block is to use these values:

top: 50%; bottom: 0; left: 50%; right: 0;

In this example, the outer-left edge of the positioned element is placed
halfway across the containing block. This is its offset from the left
edge of the containing block. The outer-right edge of the positioned
element, however, is not offset from the right edge of the containing
block, so the two are coincident. Similar reasoning holds true for the
top and bottom of the positioned element: the outer-top edge is placed
halfway down the containing block, but the outer-bottom edge is not
moved up from the bottom. This leads to what’s shown in Figure 1-1.

[image: image]
Figure 1-1. Filling the lower-right quarter of the containing block

Note

What’s depicted in Figure 1-1, and in most of the examples in this
chapter, is based around absolute positioning. Since absolute
positioning is the simplest scheme in which to demonstrate how top,
right, bottom, and left work, we’ll stick to that for now.

Note the background area of the positioned element. In Figure 1-1, it has
no margins, but if it did, they would create blank space between the
borders and the offset edges. This would make the positioned element
appear as though it did not completely fill the lower-right quarter of
the containing block. In truth, it would fill the area, but this fact
wouldn’t be immediately apparent to the eye. Thus, the following two
sets of styles would have approximately the same visual appearance,
assuming that the containing block is 100em high by 100em wide:

top: 50%; bottom: 0; left: 50%; right: 0; margin: 10em;
top: 60%; bottom: 10%; left: 60%; right: 10%; margin: 0;

Again, the similarity would be only visual in nature.

By using negative offset values, it is possible to position an element
outside its containing block. For example, the following values will
lead to the result shown in Figure 1-2:

top: 50%; bottom: -2em; left: 75%; right: -7em;

[image: image]
Figure 1-2. Positioning an element outside its containing block

In addition to length and percentage values, the offset properties can
also be set to auto, which is the default value. There is no single
behavior for auto; it changes based on the type of positioning used.
We’ll explore how auto works later on, as we consider each of the
positioning types in turn.

Width and Height

There will be many cases when, having determined where you’re going to
position an element, you will want to declare how wide and how high that
element should be. In addition, there will likely be conditions where
you’ll want to limit how high or wide a positioned element gets, not to
mention cases where you want the browser to go ahead and automatically
calculate the width, height, or both.

Setting Width and Height

If you want to give your positioned element a specific width, then the
obvious property to turn to is width. Similarly, height will let you
declare a specific height for a positioned element.

Although it is sometimes important to set the width and height of an
element, it is not always necessary when positioning elements. For
example, if the placement of the four sides of the element is described
using top, right, bottom, and left, then the height and
width of the element are implicitly determined by the offsets. Assume
that we want an absolutely positioned element to fill the left half of
its containing block, from top to bottom. We could use these values,
with the result depicted in Figure 1-3:

top: 0; bottom: 0; left: 0; right: 50%;

[image: image]
Figure 1-3. Positioning and sizing an element using only the offset properties

Since the default value of both width and height is auto, the
result shown in Figure 1-3 is exactly the same as if we had used these
values:

top: 0; bottom: 0; left: 0; right: 50%; width: 50%; height: 100%;

The presence of width and height in this example add nothing to the
layout of the element.

Of course, if we were to add padding, a border, or a margin to the
element, then the presence of explicit values for height and width
could very well make a difference:

top: 0; bottom: 0; left: 0; right: 50%; width: 50%; height: 100%;
 padding: 2em;

This will give us a positioned element that extends out of its
containing block, as shown in Figure 1-4.

This happens because (by default) the padding is added to the content
area, and the content area’s size is determined by the values of
height and width. In order to get the padding we want and still have
the element fit inside its containing block, we would either remove the
height and width declarations, explicitly set them both to auto,
or set box-sizing to border-box.

[image: image]
Figure 1-4. Positioning an element partially outside its containing block

Limiting Width and Height

Should it become necessary or desirable, you can place limits on an
element’s width by using the following properties, which I’ll refer to
as the min-max properties. An element’s content area can be defined to
have minimum dimensions using min-width and min-height.

min-width, min-height

	Values:

	<length> | <percentage> | inherit

	Initial value:

	0

	Applies to:

	All elements except nonreplaced inline elements and table
elements

	Inherited:

	No

	Percentages:

	Refer to the width of the containing block

	Computed value:

	For percentages, as specified; for length values, the
absolute length; otherwise, none

Similarly, an element’s dimensions can be limited using the properties
max-width and max-height.

max-width, max-height

	Values:

	<length> | <percentage> | none | inherit

	Initial value:

	none

	Applies to:

	All elements except nonreplaced inline elements and table
elements

	Inherited:

	No

	Percentages:

	Refer to the height of the containing block

	Computed value:

	For percentages, as specified; for length values, the
absolute length; otherwise, none

The names of these properties make them fairly self-explanatory. What’s
less obvious at first, but makes sense once you think about it, is that
values for all these properties cannot be negative.

The following styles will force the positioned element to be at least
10em wide by 20em tall, as illustrated in Figure 1-5:

top: 10%; bottom: 20%; left: 50%; right: 10%;
 min-width: 10em; min-height: 20em;

[image: image]
Figure 1-5. Setting a minimum width and height for a positioned element

This isn’t a very robust solution since it forces the element to be at
least a certain size regardless of the size of its containing block.
Here’s a better one:

top: 10%; bottom: auto; left: 50%; right: 10%;
 height: auto; min-width: 15em;

Here we have a case where the element should be 40% as wide as the
containing block but can never be less than 15em wide. We’ve also
changed the bottom and height so that they’re automatically
determined. This will let the element be as tall as necessary to display
its content, no matter how narrow it gets (never less than 15em, of
course!).

Note

We’ll look at the role auto plays in the height and width of
positioned elements in an upcoming section.

You can turn all this around to keep elements from getting too wide or
tall by using max-width and max-height. Let’s consider a situation
where, for some reason, we want an element to have three-quarters the
width of its containing block but to stop getting wider when it hits 400
pixels. The appropriate styles are:

left: 0%; right: auto; width: 75%; max-width: 400px;

One great advantage of the min-max properties is that they let you mix
units with relative safety. You can use percentage-based sizes while
setting length-based limits, or vice versa.

It’s worth mentioning that these min-max properties can be very useful
in conjunction with floated elements. For example, we can allow
a floated element’s width to be relative to the width of its parent
element (which is its containing block), while making sure that the
float’s width never goes below 10em. The reverse approach is also
possible:

p.aside {float: left; width: 40em; max-width: 40%;}

This will set the float to be 40em wide, unless that would be more than
40% the width of the containing block, in which case the float will be
limited to that 40% width.

Content Overflow and Clipping

If the content of an element is too much for the element’s size, it will
be in danger of overflowing the element itself. There are a few
alternatives in such situations, and CSS lets you select among them.
It also allows you to define a clipping region to determine the area of
the element outside of which these sorts of things become an issue.

Overflow

So let’s say that we have, for whatever reason, an element that has been
pinned to a specific size, and the content doesn’t fit. You can take
control of the situation with the overflow property.

overflow

	Values:

	visible | hidden | scroll | auto | inherit

	Initial value:

	visible

	Applies to:

	Block-level and replaced elements

	Inherited:

	No

	Computed value:

	As specified

The default value of visible means that the element’s content may be
visible outside the element’s box. Typically, this leads to the content
simply running outside its own element box but not altering the shape of
that box. The following markup would result in Figure 1-6:

div#sidebar {position: absolute; top: 0; left: 0; width: 25%; height: 7em;
 background: #BBB; overflow: visible;}

If overflow is set to scroll, the element’s content is clipped—that
is, hidden—at the edges of the element box, but there is some
way to make the extra content available to the user. In a web browser,
this could mean a scroll bar (or set of them), or another method of
accessing the content without altering the shape of the element itself.
One possibility is depicted in Figure 1-7, which results from the
following markup:

div#sidebar {position: absolute; top: 0; left: 0; width: 15%; height: 7em;
 overflow: scroll;}

If scroll is used, the panning mechanisms (e.g., scroll bars) should
always be rendered. To quote the specification, “this avoids any problem
with scrollbars appearing or disappearing in a dynamic environment.”
Thus, even if the element has sufficient space to display all its
content, the scroll bars should still appear. In addition, when printing
a page or otherwise displaying the document in a print medium, the
content may be displayed as though the value of overflow were declared
to be visible.

[image: image]
Figure 1-6. Content visibly overflowing the element box

If overflow is set to hidden, the element’s content is clipped at
the edges of the element box, but no scrolling interface should be
provided to make the content outside the clipping region accessible to
the user. Consider the following markup:

div#sidebar {position: absolute; top: 0; left: 0; width: 15%; height: 7em;
 overflow: hidden;}

In such an instance, the clipped content would not be accessible to the
user. This would lead to a situation like that illustrated in Figure 1-8.

[image: image]
Figure 1-7. Overflowing content made available via a scroll mechanism

[image: image]
Figure 1-8. Clipping content at the edges of the content area

Finally, there is overflow: auto. This allows user agents to determine
which behavior to use, although they are encouraged to provide a
scrolling mechanism when necessary. This is a potentially useful way to
use overflow, since user agents could interpret it to mean “provide
scroll bars only when needed.” (They may not, but they certainly could
and probably should.)

Element Visibility

In addition to all the clipping and overflowing, you can also control
the visibility of an entire element.

visibility

	Values:

	visible | hidden | collapse | inherit

	Initial value:

	visible

	Applies to:

	All elements

	Inherited:

	Yes

	Computed value:

	As specified

This one is pretty easy. If an element is set to have
visibility: visible, then it is, of course, visible. If an element is set to visibility: hidden, it is made “invisible” (to
use the wording in the specification). In its invisible state, the
element still affects the document’s layout as though it were visible.
In other words, the element is still there—you just can’t see it, pretty
much as if you’d declared opacity: 0.

Note the difference between this and display: none. In the latter
case, the element is not displayed and is removed from the document
altogether so that it doesn’t have any effect on document layout.
Figure 1-9 shows a document in which a paragraph has been set to hidden,
based on the following styles and markup:

em.trans {visibility: hidden; border: 3px solid gray; background: silver;
 margin: 2em; padding: 1em;}

<p>
 This is a paragraph which should be visible. Nulla berea consuetudium ohio
 city, mutationem dolore. <em class="trans">Humanitatis molly shannon
 ut lorem. Doug dieken dolor possim south euclid.
</p>

[image: image]
Figure 1-9. Making elements invisible without suppressing their element boxes

Everything visible about a hidden element—such as content, background,
and borders—is made invisible. The space is still there because the
element is still part of the document’s layout. We just can’t see it.

It’s possible to set the descendant element of a hidden element to be
visible. This causes the element to appear wherever it normally would,
despite the fact that the ancestor is invisible. In order to do so, we
explicitly declare the descendant element visible, since visibility
is inherited:

p.clear {visibility: hidden;}
p.clear em {visibility: visible;}

As for visbility: collapse, this value is used in CSS table rendering,
which we don’t really have room to cover here. According to the
specification, collapse has the same meaning as hidden if it is used
on nontable elements.

Absolute Positioning

Since most of the examples and figures in the previous sections are
examples of absolute positioning, you’re already halfway to
understanding how it works. Most of what remains are the details of what
happens when absolute positioning is invoked.

Containing Blocks and Absolutely Positioned Elements

When an element is positioned absolutely, it is completely removed from
the document flow. It is then positioned with respect to its containing
block, and its margin edges are placed using the offset properties
(top, left, etc.). The positioned element does not flow around the
content of other elements, nor does their content flow around the
positioned element. This implies that an absolutely positioned element
may overlap other elements or be overlapped by them. (We’ll see how to
affect the overlapping order later.)

The containing block for an absolutely positioned element is the nearest
ancestor element that has a position value other than static. It is
common for an author to pick an element that will serve as the
containing block for the absolutely positioned element and give it a
position of relative with no offsets, like so:

.contain {position: relative;}

Consider the example in Figure 1-10, which is an illustration of the
following:

p {margin: 2em;}
p.contain {position: relative;} /* establish a containing block*/
b {position: absolute; top: auto; right: 0; bottom: 0; left: auto;
 width: 8em; height: 5em; border: 1px solid gray;}

<body>
<p>
 This paragraph does not establish a containing block for any of
 its descendant elements that are absolutely positioned. Therefore, the
 absolutely positioned boldface element it contains will be
 positioned with respect to the initial containing block.
</p>
<p class="contain">
 Thanks to <code>position: relative</code>, this paragraph establishes a
 containing block for any of its descendant elements that are absolutely
 positioned. Since there is such an element-- that is to say, a
 boldfaced element that is absolutely positioned, placed with respect
 to its containing block (the paragraph), it will appear within the
 element box generated by the paragraph.
</p>
</body>

The b elements in both paragraphs have been absolutely positioned. The
difference is in the containing block used for each one. The b element
in the first paragraph is positioned with respect to the initial
containing block, because all of its ancestor elements have a position
of static. The second paragraph has been set to
position: relative, so it establishes a containing block for its
descendants.

[image: image]
Figure 1-10. Using relative positioning to define containing blocks

You’ve probably noted that in that second paragraph, the positioned
element overlaps some of the text content of the paragraph. There is no
way to avoid this, short of positioning the b element outside of the
paragraph (by using a negative value for right or one of the other
offset properties) or by specifying a padding for the paragraph that is
wide enough to accommodate the positioned element. Also, since the b
element has a transparent background, the paragraph’s text shows through
the positioned element. The only way to avoid this is to set a
background for the positioned element, or else move it out of the
paragraph entirely.

You will sometimes want to ensure that the body element establishes a
containing block for all its descendants, rather than allowing the user
agent to pick an initial containing block. This is as simple as
declaring:

body {position: relative;}

In such a document, you could drop in an absolutely positioned
paragraph, as follows, and get a result like that shown in Figure 1-11:

<p style="position: absolute; top: 0; right: 25%; left: 25%; bottom:
 auto; width: 50%; height: auto; background: silver;">
 ...
</p>

The paragraph is now positioned at the very beginning of the document,
half as wide as the document’s width and overwriting other content.

[image: image]
Figure 1-11. Positioning an element whose containing block is the root element

An important point to highlight is that when an element is absolutely
positioned, it establishes a containing block for its descendant
elements. For example, we can absolutely position an element and then
absolutely position one of its children, as shown in Figure 1-12, which was
generated using the following styles and basic markup:

div {position: relative; width: 100%; height: 10em;
 border: 1px solid; background: #EEE;}
div.a {position: absolute; top: 0; right: 0; width: 15em; height: 100%;
 margin-left: auto; background: #CCC;}
div.b {position: absolute; bottom: 0; left: 0; width: 10em; height: 50%;
 margin-top: auto; background: #AAA;}

<div>
 <div class="a">
 absolutely positioned element A
 <div class="b">
 absolutely positioned element B
 </div>
 </div>
 containing block
</div>

Remember that if the document is scrolled, the absolutely positioned
elements will scroll right along with it. This is true of all absolutely
positioned elements that are not descendants of fixed-position or
sticky-position elements.

This happens because, eventually, the elements are positioned in
relation to something that’s part of the normal flow. For example, if
you absolutely position a table, and its containing block is the initial
containing block, then it will scroll because the initial containing
block is part of the normal flow, and thus it scrolls.

If you want to position elements so that they’re placed relative to the
viewport and don’t scroll along with the rest of the document, keep
reading. The upcoming section on fixed positioning has the answers you
seek.

[image: image]
Figure 1-12. Absolutely positioned elements establish containing blocks

Placement and Sizing of Absolutely Positioned Elements

It may seem odd to combine the concepts of placement and sizing, but
it’s a necessity with absolutely positioned elements because the
specification binds them very closely together. This is not such a
strange pairing upon reflection. Consider what happens if an element is
positioned using all four offset properties, like so:

#masthead h1 {position: absolute; top: 1em; left: 1em; right: 25%; bottom: 10px;
 margin: 0; padding: 0; background: silver;}

Here, the height and width of the h1’s element box is determined by
the placement of its outer margin edges, as shown in Figure 1-13.

If the containing block were made taller, then the h1 would also
become taller; if the containing block is narrowed, then the h1 will
become narrower. If we were to add margins or padding to the h1, then
that would have further effects on the calculated height and width of
the h1.

[image: image]
Figure 1-13. Determining the height of an element based on the offset properties

But what if we do all that and then also try to set an explicit height and width?:

#masthead h1 {position: absolute; top: 0; left: 1em; right: 10%; bottom: 0;
 margin: 0; padding: 0; height: 1em; width: 50%; background: silver;}

Something has to give, because it’s incredibly unlikely that all those
values will be accurate. In fact, the containing block would have to be
exactly two and a half times as wide as the h1’s computed value for
font-size for all of the shown values to be accurate. Any other
width would mean at least one value is wrong and has to be ignored.
Figuring out which one depends on a number of factors, and the factors
change depending on whether an element is replaced or nonreplaced.

For that matter, consider the following:

#masthead h1 {position: absolute; top: auto; left: auto;}

What should the result be? As it happens, the answer is not “reset the
values to zero.” We’ll see the actual answer, starting in the next
section.

Auto-edges

When absolutely positioning an element, there is a special behavior that
applies when any of the offset properties other than bottom is set to
auto. Let’s take top as an example. Consider the following:

<p>
 When we consider the effect of positioning, it quickly becomes clear that
 authors can do a great deal of damage to layout, just as they can do very
 interesting things.<span style="position: absolute; top: auto;
 left: 0;">[4] This is usually the case with useful technologies:
 the sword always has at least two edges, both of them sharp.
</p>

What should happen? For left, it’s easy: the left edge of the element
should be placed against the left edge of its containing block (which
we’ll assume here to be the initial containing block). For top,
however, something much more interesting happens. The top of the
positioned element should line up with the place where its top would
have been if it were not positioned at all. In other words, imagine
where the span would have been placed if its position value were
static; this is its static position—the place where its top edge
should be calculated to sit. CSS 2.1 had this to say about static
positions:

the term “static position” (of an element) refers, roughly, to the position an element would have had in the normal flow. More precisely: the static position for top is the distance from the top edge of the containing block to the top margin edge of a hypothetical box that would have been the first box of the element if its specified position value had been static and its specified float had been none and its specified clear had been none… The value is negative if the hypothetical box is above the containing block.

Therefore, we should get the result shown in Figure 1-14.

[image: image]
Figure 1-14. Absolutely positioning an element consistently with its “static” top edge

The “[4]” sits just outside the paragraph’s content because the initial
containing block’s left edge is to the left of the paragraph’s left
edge.

The same basic rules hold true for left and right being set to
auto. In those cases, the left (or right) edge of a positioned element
lines up with the spot where the edge would have been placed if the
element weren’t positioned. So let’s modify our previous example so that both top and left are set to auto:

<p>
 When we consider the effect of positioning, it quickly becomes clear that
 authors can do a great deal of damage to layout, just as they can do very
 interesting things.<span style="position: absolute; top: auto; left:
 auto;">[4] This is usually the case with useful technologies:
 the sword always has at least two edges, both of them sharp.
</p>

This would have the result shown in Figure 1-15.

[image: image]
Figure 1-15. Absolutely positioning an element consistently with its “static” position

The “[4]” now sits right where it would have were it not positioned.
Note that, since it is positioned, its normal-flow space is closed up.
This causes the positioned element to overlap the normal-flow content.

This auto-placement works only in certain situations, generally wherever
there are few constraints on the other dimensions of a positioned
element. Our previous example could be auto-placed because it had no
constraints on its height or width, nor on the
placement of the bottom and right edges. But suppose, for some reason,
there had been such constraints. Consider:

<p>
 When we consider the effect of positioning, it quickly becomes clear that
 authors can do a great deal of damage to layout, just as they can do very
 interesting things.<span style="position: absolute; top: auto; left: auto;
 right: 0; bottom: 0; height: 2em; width: 5em;">[4] This is usually
 the case with useful technologies: the sword always has at least two edges,
 both of them sharp.
</p>

It is not possible to satisfy all of those values. Determining what
happens is the subject of the next section.

Placing and Sizing Nonreplaced Elements

In general, the size and placement of an element depends on its
containing block. The values of its various properties (width,
right, padding-left, and so on) affect its layout, of course, but
the foundation is the containing block.

Consider the width and horizontal placement of a positioned element. It
can be represented as an equation which states:

left + margin-left + border-left-width + padding-left + width +
padding-right + border-right-width + margin-right + right =
the width of the containing block

This calculation is fairly reasonable. It’s basically the equation that
determines how block-level elements in the normal flow are sized, except
it adds left and right to the mix. So how do all these interact?
There is a series of rules to work through.

First, if left, width, and right are all set to auto, then you
get the result seen in the previous section: the left edge is placed at
its static position, assuming a left-to-right language. In right-to-left
languages, the right edge is placed at its static position. The width of
the element is set to be “shrink to fit,” which means the element’s
content area is made only as wide as necessary to contain its content.
The nonstatic position property (right in left-to-right languages,
left in right-to-left) is set to take up the remaining distance. For
example:

<div style="position: relative; width: 25em; border: 1px dotted;">
 An absolutely positioned element can have its content <span style="position:
 absolute; top: 0; left: 0; right: auto; width: auto; background:
 silver;">shrink-wrapped thanks to the way positioning rules work.
</div>

This has the result shown in Figure 1-16.

[image: image]
Figure 1-16. The “shrink-to-fit” behavior of absolutely positioned elements

The top of the element is placed against the top of its containing block
(the div, in this case), and the width of the element is just as much
as is needed to contain the content. The remaining distance from the
right edge of the element to the right edge of the containing block
becomes the computed value of right.

Now suppose that only the left and right margins are set to auto, not
left, width, and right, as in this example:

<div style="position: relative; width: 25em; border: 1px dotted;">
 An absolutely positioned element can have its content <span style="position:
 absolute; top: 0; left: 1em; right: 1em; width: 10em; margin: 0 auto;
 background: silver;">shrink-wrapped thanks to the way positioning
 rules work.
</div>

What happens here is that the left and right margins, which are both
auto, are set to be equal. This will effectively center the element,
as shown in Figure 1-17.

[image: image]
Figure 1-17. Horizontally centering an absolutely positioned element with auto margins

This is basically the same as auto-margin centering in the normal flow.
So let’s make the margins something other than auto:

<div style="position: relative; width: 25em; border: 1px dotted;">
 An absolutely positioned element can have its content <span style="position:
 absolute; top: 0; left: 1em; right: 1em; width: 10em; margin-left: 1em;
 margin-right: 1em; background: silver;">shrink-wrapped thanks to the
 way positioning rules work.
</div>

Now we have a problem. The positioned span’s properties add up to only
14em, whereas the containing block is 25em wide. That’s an 11-em deficit
we have to make up somewhere.

The rules state that, in this case, the user agent ignores the value for
right (in left-to-right languages; otherwise, it ignores left) and
solves for it. In other words, the result will be the same as if we’d
declared:

<span style="position: absolute; top: 0; left: 1em;
right: 12em; width: 10em; margin-left: 1em; margin-right: 1em;
right: auto; background: silver;">shrink-wrapped

This has the result shown in Figure 1-18.

[image: image]
Figure 1-18. Ignoring the value for right in an overconstrained situation

If one of the margins had been left as auto, then that would have been
changed instead. Suppose we change the styles to state:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: 10em; margin-left: 1em; margin-right: auto;
background: silver;">shrink-wrapped

The visual result would be the same as that in Figure 1-18, only it would
be attained by computing the right margin to 12em instead of overriding
the value assigned to the property right.

If, on the other hand, we
made the left margin auto, then it would be reset, as illustrated in
Figure 1-19:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: 10em; margin-left: auto; margin-right: 1em;
background: silver;">shrink-wrapped

[image: image]
Figure 1-19. Ignoring the value for margin-right in an overconstrained situation

In general, if only one of the properties is set to auto, then it will
be used to satisfy the equation given earlier in the section. Thus,
given the following styles, the element’s width would expand to whatever
size is needed, instead of “shrink-wrapping” the content:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: auto; margin-left: 1em; margin-right: 1em;
background: silver;">not shrink-wrapped

So far we’ve really only examined behavior along the horizontal axis,
but very similar rules hold true along the vertical axis. If we take the
previous discussion and rotate it 90 degrees, as it were, we get almost
the same behavior. For example, the following markup results in Figure 1-20:

<div style="position: relative; width: 30em; height: 10em; border: 1px solid;">
 <div style="position: absolute; left: 0; width: 30%;
 background: #CCC; top: 0;">
 element A
 </div>
 <div style="position: absolute; left: 35%; width: 30%;
 background: #AAA; top: 0; height: 50%;">
 element B
 </div>
 <div style="position: absolute; left: 70%; width: 30%;
 background: #CCC; height: 50%; bottom: 0;">
 element C
 </div>
</div>

In the first case, the height of the element is shrink-wrapped to the
content. In the second, the unspecified property (bottom) is set to
make up the distance between the bottom of the positioned element and
the bottom of its containing block. In the third case, top is unspecified, and therefore used to make up the difference.

[image: image]
Figure 1-20. Vertical layout behavior for absolutely positioned elements

For that matter, auto-margins can lead to vertical centering. Given the
following styles, the absolutely positioned div will be vertically
centered within its containing block, as shown in Figure 1-21:

<div style="position: relative; width: 10em; height: 10em; border: 1px solid;">
 <div style="position: absolute; left: 0; width: 100%; background: #CCC;
 top: 0; height: 5em; bottom: 0; margin: auto 0;">
 element D
 </div>
</div>

There are two small variations to point out. In horizontal layout,
either right or left can be placed according to the static position
if their values are auto. In vertical layout, only top can take on
the static position; bottom, for whatever reason, cannot.

Also, if an absolutely positioned element’s size is overconstrained in
the vertical direction, bottom is ignored. Thus, in the following
situation, the declared value of bottom would be overridden by the
calculated value of 5em:

<div style="position: relative; width: 10em; height: 10em; border: 1px solid;">
 <div style="position: absolute; left: 0; width: 100%; background: #CCC;
 top: 0; height: 5em; bottom: 0; margin: 0;">
 element D
 </div>
</div>

There is no provision for top to be ignored if the properties are
overconstrained.

Placing and Sizing Replaced Elements

Positioning rules are different for replaced elements (e.g., images)
than they are for nonreplaced elements. This is because replaced
elements have an intrinsic height and width, and therefore are not
altered unless explicitly changed by the author. Thus, there is no
concept of “shrink to fit” in the positioning of replaced elements.

[image: image]
Figure 1-21. Vertically centering an absolutely positioned element with auto-margins

The behaviors that go into placing and sizing replaced elements are most
easily expressed by a series of rules to be taken one after the other.
These state:

	
If width is set to auto, the used value of width is determined
by the intrinsic width of the element’s content. Thus, if an image is
intriniscally 50 pixels wide, then the used value is calculated to be
50px. If width is explicitly declared (that is, something like
100px or 50%), then the width is set to that value.

	
If left has the value auto in a left-to-right language, replace
auto with the static position. In right-to-left languages, replace an
auto value for right with the static position.

	
If either left or right is still auto (in other words, it
hasn’t been replaced in a previous step), replace any auto on
margin-left or margin-right with 0.

	
If, at this point, both margin-left and margin-right are still
defined to be auto, set them to be equal, thus centering the element
in its containing block.

	
After all that, if there is only one auto value left, change it to
equal the remainder of the equation.

This leads to the same basic behaviors we saw with absolutely positioned
nonreplaced elements, as long as you assume that there is an explicit
width for the nonreplaced element. Therefore, the following two
elements will have the same width and placement, assuming the image’s
intrinsic width is 100 pixels (see Figure 1-22):

<div>
 <img src="frown.gif" alt="a frowny face"
 style="position: absolute; top: 0; left: 50px; margin: 0;">
</div>
<div style="position: absolute; top: 0; left: 50px;
 width: 100px; height: 100px; margin: 0;">
 it's a div!
</div>

[image: image]
Figure 1-22. Absolutely positioning a replaced element

As with nonreplaced elements, if the values are overconstrained, the
user agent is supposed to ignore the value for right in left-to-right
languages and left in right-to-left languages. Thus, in the following
example, the declared value for right is overridden with a computed
value of 50px:

<div style="position: relative; width: 300px;">
 <img src="frown.gif" alt="a frowny face" style="position: absolute; top: 0;
 left: 50px; right: 125px; width: 200px; margin: 0;">
</div>

Similarly, layout along the vertical axis is governed by a series of
rules that state:

	
If height is set to auto, the computed value of height is
determined by the intrinsic height of the element’s content. Thus, the
height of an image 50 pixels tall is computed to be 50px. If height
is explicitly declared (that is, something like 100px or 50%) then
the height is set to that value.

	
If top has the value auto, replace it with the replaced
element’s static position.

	
If bottom has a value of auto, replace any auto value on
margin-top or margin-bottom with 0.

	
If, at this point, both margin-top and margin-bottom are still
defined to be auto, set them to be equal, thus centering the element
in its containing block.

	
After all that, if there is only one auto value left, change it to
equal the remainder of the equation.

As with nonreplaced elements, if the values are overconstrained, then
the user agent is supposed to ignore the value for bottom.

Thus, the following markup would have the results shown in Figure 1-23:

<div style="position: relative; height: 200px; width: 200px; border: 1px solid;">
 <img src="one.gif" alt="one" width="25" height="25"
 style="position: absolute; top: 0; left: 0; margin: 0;">
 <img src="two.gif" alt="two" width="25" height="25"
 style="position: absolute; top: 0; left: 60px; margin: 10px 0;
 bottom: 4377px;">
 <img src="three.gif" alt=" three" width="25" height="25"
 style="position: absolute; left: 0; width: 100px; margin: 10px;
 bottom: 0;">
 <img src="four.gif" alt=" four" width="25" height="25"
 style="position: absolute; top: 0; height: 100px; right: 0;
 width: 50px;">
 <img src="five.gif" alt="five" width="25" height="25"
 style="position: absolute; top: 0; left: 0; bottom: 0; right: 0;
 margin: auto;">
</div>

[image: image]
Figure 1-23. Stretching replaced elements through positioning

Placement on the z-axis

With all of the positioning going on, there will inevitably be a
situation where two elements will try to exist in the same place,
visually speaking. Obviously, one of them will have to overlap the
other—but how does one control which element comes out “on top”? This is
where the property z-index comes in.

z-index lets you alter the way in which elements overlap each other.
It takes its name from the coordinate system in which side-to-side is
the x-axis and top-to-bottom is the y-axis. In such a case, the
third axis—that which runs from back to front, as you look at the
display surface—is termed the z-axis. Thus, elements are given values
along this axis using z-index. Figure 1-24 illustrates this system.

z-index

	Values:

	<integer> | auto | inherit

	Initial value:

	auto

	Applies to:

	Positioned elements

	Inherited:

	No

	Computed value:

	As specified

[image: image]
Figure 1-24. A conceptual view of z-index stacking

In this coordinate system, an element with a higher z-index value is
closer to the reader than those with lower z-index values. This will
cause the high-value element to overlap the others, as illustrated in
Figure 1-25, which is a “head-on” view of Figure 1-24. This precedence of
overlapping is referred to as stacking.

[image: image]
Figure 1-25. How the elements are stacked

Any integer can be used as a value for z-index, including negative
numbers. Assigning an element a negative z-index will move it further
away from the reader; that is, it will be moved lower in the stack.
Consider the following styles, illustrated in Figure 1-26:

p {background: rgba(255,255,255,0.9); border: 1px solid;}
p#first {position: absolute; top: 0; left: 0;
 width: 40%; height: 10em; z-index: 8;}
p#second {position: absolute; top: -0.75em; left: 15%;
 width: 60%; height: 5.5em; z-index: 4;}
p#third {position: absolute; top: 23%; left: 25%;
 width: 30%; height: 10em; z-index: 1;}
p#fourth {position: absolute; top: 10%; left: 10%;
 width: 80%; height: 10em; z-index: 0;}

Each of the elements is positioned according to its styles, but the
usual order of stacking is altered by the z-index values. Assuming the
paragraphs were in numeric order, then a reasonable stacking order would
have been, from lowest to highest, p#first, p#second, p#third,
p#fourth. This would have put p#first behind the other three
elements, and p#fourth in front of the others. Thanks to z-index,
the stacking order is under your control.

[image: image]
Figure 1-26. Stacked elements can overlap

As the previous example demonstrates, there is no particular need to
have the z-index values be contiguous. You can assign any integer of
any size. If you want to be fairly certain that an element stayed in
front of everything else, you might use a rule along the lines of
z-index: 100000. This would work as expected in most cases—although if
you ever declared another element’s z-index to be 100001 (or
higher), it would appear in front.

Once you assign an element a value for z-index (other than auto),
that element establishes its own local stacking context. This means
that all of the element’s descendants have their own stacking order,
relative to the ancestor element. This is very similar to the way that
elements establish new containing blocks. Given the following styles,
you would see something like Figure 1-27:

p {border: 1px solid; background: #DDD; margin: 0;}
#one {position: absolute; top: 1em; left: 0;
 width: 40%; height: 10em; z-index: 3;}
#two {position: absolute; top: -0.75em; left: 15%;
 width: 60%; height: 5.5em; z-index: 10;}
#three {position: absolute; top: 10%; left: 30%;
 width: 30%; height: 10em; z-index: 8;}
p[id] em {position: absolute; top: -1em; left: -1em;
 width: 10em; height: 5em;}
#one em {z-index: 100; background: hsla(0,50%,70%,0.9);}
#two em {z-index: 10; background: hsla(120,50%,70%,0.9);}
#three em {z-index: -343; background: hsla(240,50%,70%,0.9);}

[image: image]
Figure 1-27. Positioned elements establish local stacking contexts

Note where the em elements fall in the stacking order. Each of them is
correctly layered with respect to its parent element, of course. Each
em is drawn in front of its parent element, whether or not its
z-index is negative, and parents and children are grouped together like layers in an editing program. (The specification keeps children from
being drawn behind their parents when using z-index stacking, so the
em in p#three is drawn on top of p#one, even though its z-index
value is -343.) Its z-index value is taken with respect to its local
stacking context: its containing block. That containing block, in turn,
has a z-index, which operates within its local stacking context.

There remains one more value to examine. The CSS specification has this
to say about the default value, auto:

The stack level of the generated box in the current stacking context is
0. The box does not establish a new stacking context unless it is the
root element.

So, any element with z-index: auto can be treated as though it is set
to z-index: 0.

Fixed Positioning

As implied in a previous section, fixed positioning is just like
absolute positioning, except the containing block of a fixed element is
the viewport. A fixed-position element is totally removed from the
document’s flow and does not have a position relative to any part of
the document.

Fixed positioning can be exploited in a number of interesting ways.
First off, it’s possible to create frame-style interfaces using fixed
positioning. Consider Figure 1-28, which shows a very common layout scheme.

[image: image]
Figure 1-28. Emulating frames with fixed positioning

This could be done using the following styles:

div#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;
 background: gray;}
div#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;
 background: silver;}

This will fix the header and sidebar to the top and side of the
viewport, where they will remain regardless of how the document is
scrolled. The drawback here, though, is that the rest of the document
will be overlapped by the fixed elements. Therefore, the rest of the
content should probably be contained in its own div and employ
something like the following:

div#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;
 overflow: scroll; background: white;}

It would even be possible to create small gaps between the three
positioned divs by adding some appropriate margins, as follows:

body {background: black; color: silver;} /* colors for safety's sake */
div#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;
 background: gray; margin-bottom: 2px; color: yellow;}
div#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;
 background: silver; margin-right: 2px; color: maroon;}
div#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;
 overflow: auto; background: white; color: black;}

Given such a case, a tiled image could be applied to the body
background. This image would show through the gaps created by the
margins, which could certainly be widened if the author saw fit.

Another use for fixed positioning is to place a “persistent” element on
the screen, like a short list of links. We could create a persistent
footer with copyright and other information as follows:

footer {position: fixed; bottom: 0; width: 100%; height: auto;}

This would place the footer element at the bottom of the viewport and
leave it there no matter how much the document is scrolled.

Note

Many of the layout cases for fixed positioning, besides
“persistent elements,” are handled as well, if not better, by grid
layout.

Relative Positioning

The simplest of the positioning schemes to understand is relative
positioning. In this scheme, a positioned element is shifted by use of
the offset properties. However, this can have some interesting
consequences.

On the surface, it seems simple enough. Suppose we want to shift an
image up and to the left. Figure 1-29 shows the result of these styles:

img {position: relative; top: -20px; left: -20px;}

[image: image]
Figure 1-29. A relatively positioned element

All we’ve done here is offset the image’s top edge 20 pixels upward and
offset the left edge 20 pixels to the left. However, notice the blank
space where the image would have been had it not been positioned. This
happened because when an element is relatively positioned, it’s shifted
from its normal place, but the space it would have occupied doesn’t
disappear. Consider the results of the following styles, which are
depicted in Figure 1-30:

em {position: relative; top: 10em; color: red;}

[image: image]
Figure 1-30. Another relatively positioned element

As you can see, the paragraph has some blank space in it. This is where
the em element would have been, and the layout of the em element in
its new position exactly mirrors the space it left behind.

Of course, it’s also possible to shift a relatively positioned element
to overlap other content. For example, the following styles and markup
are illustrated in Figure 1-31:

img.slide {position: relative; left: 30px;}

<p>
 In this paragraph, we will find that there is an image that has been
 pushed to the right. It will therefore <img src="star.gif" alt="A star!"
 class="slide"> overlap content nearby, assuming that it is not the
 last element in its line box.
</p>

[image: image]
Figure 1-31. Relatively positioned elements can overlap other content

There is one interesting wrinkle to relative positioning. What happens
when a relatively positioned element is overconstrained? For example:

strong {position: relative; top: 10px; bottom: 20px;}

Here we have values that call for two very different behaviors. If we
consider only top: 10px, then the element should be shifted downward
10 pixels, but bottom: 20px clearly calls for the element to be
shifted upward 20 pixels.

The original CSS2 specification does not say what should happen in this
case. CSS2.1 stated that when it comes to overconstrained relative
positioning, one value is reset to be the negative of the other. Thus,
bottom would always equal -top. This means the previous example
would be treated as though it had been:

strong {position: relative; top: 10px; bottom: -10px;}

Thus, the strong element will be shifted downward 10 pixels. The
specification also makes allowances for writing directions. In relative
positioning, right always equals -left in left-to-right languages;
but in right-to-left languages, this is reversed: left always equals
-right.

Note

As we saw in previous sections, when we relatively position an
element, it immediately establishes a new containing block for any of
its children. This containing block corresponds to the place where the
element has been newly positioned.

Sticky Positioning

A new addition to CSS is the concept of sticky positioning. If you’ve
ever used a decent music app on a mobile device, you’ve probably noticed
this in action: as you scroll through an alphabetized list of artists,
the current letter stays stuck at the top of the window until a new
letter section is entered, at which point the new letter replaces the
old. It’s a little hard to show in print, but Figure 1-32 takes a stab at
it by showing three points in a scroll.

[image: image]
Figure 1-32. Sticky positioning

CSS makes this sort of thing possible by declaring an element to be
position: sticky, but (of course) there’s more to it than that.

First off, the offsets (top, left, etc.) are used to define a
sticky-positioning rectangle with relation to the containing block.
Take the following as an example. It will have the effect shown in
Figure 1-33, where the dashed line shows where the sticky-positioning
rectangle is created:

#scrollbox {overflow: scroll; width: 15em; height: 18em;}
#scrollbox h2 {position: sticky; top: 2em; bottom: auto;
 left: auto; right: auto;}

Notice that the h2 is actually in the middle of the rectangle in Figure 1-33. That’s its place in the normal flow of the content inside the
#scrollbox element that contains the content. The only way to make it
sticky is to scroll that content until the top of the h2 touches the
top of the sticky-positioning rectangle—at which point, it will stick
there. This is illustrated in Figure 1-34.

[image: image]
Figure 1-33. The sticky-positioning rectangle

In other words, the h2 sits in the normal flow until its sticky edge
touches the sticky edge of the rectangle. At that point, it sticks there
as if absolutely positioned, except that it leaves behind the space it
otherwise would have occupied in the normal flow.

[image: image]
Figure 1-34. Sticking to the top of the sticky-positioning rectangle

You may have noticed that the scrollbox element doesn’t have a
position declaration. There isn’t one hiding offstage, either: it’s
overflow: scroll that created a containing block for the
sticky-positioned h2 elements. This is the one case where a containing
block isn’t determined by position.

If the scrolling is reversed so that the h2’s normal-flow position
moves lower than the top of the rectangle, the h2 is detached from the
rectangle and resumes its place in the normal flow. This is shown in
Figure 1-35.

[image: image]
Figure 1-35. Detaching from the top of the sticky-positioning rectangle

Note that the reason the h2 stuck to the top of the rectangle in
these examples is that the value of top was set to something other
than auto for the h2; that is, for the sticky-positioned element.
You can use whatever offset side you want. For example, you
could have elements stick to the bottom of the rectangle as you scroll
downwards through the content. This is illustrated in Figure 1-36:

#scrollbox {overflow: scroll; position: relative; width: 15em; height: 10em;}
#scrollbox h2 {position: sticky; top: auto; bottom: 0; left: auto; right: auto;}

[image: image]
Figure 1-36. Sticking to the bottom of the sticky-positioning rectangle

This could be a way to show footnotes or comments for a given paragraph,
for example, while allowing them to scroll away as the paragraph moves
upward. The same rules apply for the left and right sides, which is
useful for side-scrolling content.

If you define more than one offset property to have a value other than
auto, then all of them will become sticky edges. For example, this
set of styles will force the h2 to always appear inside the scrollbox,
regardless of which way its content is scrolled (Figure 1-37):

#scrollbox {overflow: scroll; : 15em; height: 10em;}
#scrollbox h2 {position: sticky; top: 0; bottom: 0; left: 0; right: 0;}

[image: image]
Figure 1-37. Making every side a sticky side

You might wonder: what happens if I have multiple sticky-positioned
elements in a situation like this, and I scroll past two or more? In
effect, they pile up on top of one another:

#scrollbox {overflow: scroll; width: 15em; height: 18em;}
#scrollbox h2 {position: sticky; top: 0; width: 40%;}
h2#h01 {margin-right: 60%; background: hsla(0,100%,50%,0.75);}
h2#h02 {margin-left: 60%; background: hsla(120,100%,50%,0.75);}
h2#h03 {margin-left: auto; margin-right: auto;
 background: hsla(240,100%,50%,0.75);}

It’s not easy to see in static images like Figure 1-38, but the way the headers are
piling up is that the later they are in the source, the closer they are
to the viewer. This is the usual z-index behavior—which means that you
can decide which sticky elements sit on top of others by assigning
explicit z-index values. For example, suppose we wanted the first
sticky element in our content to sit atop all the others. By giving it
z-index: 1000, or any other sufficiently high number, it would sit on
top of all the other sticky elements that stuck in the same place. The
visual effect would be of the other elements “sliding under” the topmost
element.

[image: image]
Figure 1-38. A sticky-header pileup

Warning

As of early 2016, the only browsers that supported
position: sticky were Firefox and Safari.

Summary

Thanks to positioning, it’s possible to move elements around in ways that
the normal flow could never accommodate. Although many positioning
tricks are soon to give way to grid layout, there are still a lot of
uses for positioning—from sidebars that always stay in the viewport to
sticky section headings in lists or long articles. Combined with the
stacking possibilities of the z-axis and the various overflow
patterns, there’s still a lot to like in positioning.

About the Author

Eric A. Meyer has been working with the Web since late 1993 and is an internationally recognized expert on the subjects of HTML, CSS, and web standards. A widely read author, he is also the founder of Complex Spiral Consulting, which counts among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Macromedia, which described Eric as “a critical partner in our efforts to transform Macromedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for the Case Western Reserve University website, where he also authored a widely acclaimed series of three HTML tutorials and was project coordinator for the online version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biography, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The Definitive Guide (O’Reilly), and CSS 2.0 Programmer’s Reference (Osborne/McGraw-Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a wide variety of organizations, including Los Alamos National Laboratory, the New York Public Library, Cornell University, and the University of Northern Iowa. Eric has also delivered addresses and technical presentations at numerous conferences, among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web Design World, CMP, SXSW, the User Interface conference series, and The Other Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mailing list, which he cofounded with John Allsopp of Western Civilisation, and which is now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city than you’ve been led to believe. For nine years he was the host of “Your Father’s Oldsmobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

 Colophon

 The animals on the cover of Positioning in CSS are salmon (salmonidae), which is a family of fish consisting of many different species. Two of the most common salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30 pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where they incubate through the winter and emerge as inch-long fish. They live for a year or two in streams or lakes and then head downstream to the ocean. There they live for a few years, before heading back upstream to their exact place of birth to spawn and then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America and Europe. There are many subspecies of Atlantic salmon, including the trout and the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel beds to the sea. A major difference between the two, however, is that the Atlantic salmon does not die after spawning; it can return to the ocean and then return to the stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins. Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusually keen sense of smell is thought to help them navigate from the ocean back to the exact spot of their birth, upstream past many obstacles. Some species of salmon remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fertilizer for streambeds. Their numbers have been dwindling over the years, however. Factors in the declining salmon population include habitat destruction, fishing, dams that block spawning paths, acid rain, droughts, floods, and pollution.

Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/pcss_0102.png
containing block

OEBPS/assets/pcss_0126.png
.

first

second

mira

fourth

OEBPS/assets/pcss_0132.png
A

Anselark

Aperture Science Psychoacoustics...

The Aquabats
Army of Anyone
Audioslave

B

Baddd Spellah

The Beastie Boys
Bif Naked

The Bobs

C

Cake

M o P o

A

Audioslave

B

Baddd Spellah
The Beastie Boys
Bif Naked

The Bobs

C

Cake

Chemical Brothers
Crystal Method

D

The Dead Milkmen

NAAA_l i+~

Cc

vrystdl vietnoa

D

The Dead Milkmen
Deee-Lite

Die Kreuzen

DJ Z-Trip

Django Reinhardt
E

Elana Stone

Elvis Costello
Eric Serra

G

Geddy Lee

OEBPS/assets/pcss_0112.png
containing block absolutely positioned element
A

OEBPS/assets/pcss_0113.png
transcendent

scratchings

OEBPS/assets/pcss_0103.png
positioned element

OEBPS/assets/pcss_0120.png
element A element B

element C

OEBPS/assets/pcss_0104.png

OEBPS/assets/pcss_0134.png
The arcade euismod lectorum delenit
ea joel grey amet consectetuer. Qui
akewood eorum eros lebron james
eum liber non congue children’s

An h2 element

Quarta insitam lectores option
utationem dynamicus ipsum ii minim

An h2 element

Quarta insitam lectores option
utationem dynamicus ipsum ii minim
parum. Geauga lake bob golic
ommodo toni morrison glenwillow
bob feller etiam lorem, euclid beach
iriure cleveland rocky river. Steve
harvey humanitatis nobis praesent.

uarta_incitam loctarac ontion

An h2 element

parum. Leauga lake bop golic

ommodo toni morrison glenwillow
bob feller etiam lorem, euclid beach
iriure cleveland rocky river. Steve
harvey humanitatis nobis praesent.

Est dead man’s curve north randall
john d. rockefeller nunc, typi. Euismod
peter b. lewis molestie te oakwood

OEBPS/assets/pcss_0105.png

OEBPS/assets/pcss_0115.png
When we consider the effect of positioning, it quickly
becomes clear that authors can do a great deal of damage to
layout, just as they can do very interesting things.[%his is
usually the case with useful technologies: the sword always
has at least two edges, both of them sharp.

OEBPS/assets/pcss_0123.png
| =

OEBPS/assets/pcss_0124.png

OEBPS/assets/pcss_0130.png
Even there, however, the divorce is not complete

. I've been saying this in public presentations for a
while now, and it bears repetition here: you can have
structure without style, but you can't have style without
structure. You have to have elements (and, also, classes and
IDs and such) in order to apply style. If I have a document
on the Web containing literally nothing but text, as in no
HTML or other markup, just text, then it can't be styled.

and never
can be

OEBPS/assets/pcss_0114.png
[4]

When we consider the effect of positioning, it quickly
becomes clear that authors can do a great deal of damage to
layout, just as they can do very interesting things. This is
usually the case with useful technologies: the sword always
has at least two edges, both of them sharp.

OEBPS/assets/cover.png
O'REILLY"

Positioning

1N COS

AYOUT ENHANCEMENTS FOR THE WEB

Eric A. Meyer

OEBPS/assets/pcss_0106.png
This is a positioned
element that’s acting
as a ‘sidebar’, but it’s
only 7em tall. Any
overflowing content
won’t be visible
outside the boundaries
of the element box,
whether or not that’s
what the author really
wanted.

OEBPS/assets/pcss_0119.png
absolutely positioned elemenshrink-wrapped
he way positioning rules work.

OEBPS/assets/pcss_0117.png
absolutely posishrink-wrapped its content thanks |
he way positioning rules work.

OEBPS/assets/pcss_0110.png
This paragraph does not establish a containing block for any of its descendant
elements that are absolutely positioned. Therefore, the absolutely positioned
element it contains will be positioned with respect to the initial containing block.

Thanks to position: relative, this paragraph establishesth @oldfasiedl block
for any of its descendant elements that are absolutely positionefeBGRE frekdsis
such an element-- that is to say, placed with respect to its cont”ﬁﬁﬂf!‘[ﬂb’ck (the

paragraph), it will appear within the element box generated b'PﬂfétffmﬁgIaph. boldface

OEBPS/assets/pcss_0135.png
mutatlonem dynamicus ipsum ii minim

narum (2aauna laka hab anlic

An h2 element !

DOD Teller euam iorem, eucia peacn |

riure cleveland rocky river. Steve i

harvey humanitatis nobis praesent. !
1
1
1
1
1

Est dead man’s curve north randall
john d. rockefeller nunc, typi. Euismod
peter b. lewis molestie te oakwood
guam tremont eu mirum volutpat ut
otare. Aliquip warrensville heights
phil donahue suscipit ut in iusto odio

- - L ol — b -] - -

An h2 element

Quarta insitam lectores option
utationem dynamicus ipsum ii minim;

parum. Geauga lake bob golic
ommodo toni morrison glenwillow

bob feller etiam lorem, euclid beach

iriure cleveland rocky river. Steve

harvey humanitatis nobis praesent.

_Est dead man’s curve north randall

ohn d. rackefeller nung. tvpi. Euismod!

An h2 element

Quarta insitam lectores option
utationem dynamicus ipsum ii minim
parum. Geauga lake bob golic
ommodo toni morrison glenwillow
bob feller etiam lorem, euclid beach
iriure cleveland rocky river. Steve
arvey humanitatis nobis praesent.

OEBPS/assets/pcss_0137.png
he arcade euismod lectorum delenit ,
ea joel grey amet consectetuer. Qui
akewood eorum eros lebron james
eum liber non congue children’s

useum.

An h2 element

Quarta insitam lectores option
utatlonem dynamlcus |psum il m|n|m

Another h2 element

An h2 element

Quarta insitam lectores option
utationem dynamicus ipsum ii minim
parum. Geauga lake bob golic
ommodo toni morrison glenwillow
bob feller etiam lorem, euclid beach
iriure cleveland rocky river. Steve
harvey humanitatis nobis praesent.

An h2 element 1

1
john d. rockefeller nunc, typi. Euismod:!
peter b. lewis molestie te oakwood |
guam tremont eu mirum volutpat ut

otare. Aliquip warrensville heights !
phil donahue suscipit ut in iusto odio |
accumsan west side nisl commodo.
Tempor tincidunt legunt autem. Parma'
nunc university heights placerat. Omar,
vizquel cuyahoga heights nulla exerci 1
blandit esse dolore anteposuerit eric |

Another h2 element

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/assets/pcss_0125.png
element C

viewport

OEBPS/assets/pcss_0138.png
One more h2
element

Quod duis qui putamus liber
dynamicus, elit vero. Cleveland
museum of art dolor westlake bedford
collision bend consequat mutationem

playhouse square consequat jesse
owens. Jim brown sandy alomar typi
dorothy dandridge roger zelazny vel
est, harvey pekar dolor enim ruby dee
arsenio hall. Metroparks zoo major
everett augue iusto the metroparks sit
duis. emerald necklace mike aolic et.

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/assets/pcss_0111.png
Once the competit It could be worse. Just imagine if she 1alone, and they never
notice the facial color owere a proctologist. 're trapped at a
midwifery party when the games begin. They just keep topping each other with tales of
pregnancies with more complications and bigger emergencies, as though it were the most
natural thing in the world, until the stories involve more gore and slime than any three David
Cronenberg movies put together, with a little bit of "Alien" thrown in for good measure. And
then you get to the really icky stories.

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/pcss_0109.png
This is a paragraph which should be visible. Nulla berea
consuetudium ohio city, mutationem dolore.

Doug
dieken dolor possim south euclid.

OEBPS/assets/pcss_0116.png
rink- wrappedosmoned element can have its content thanks

rules work

OEBPS/assets/pcss_0107.png
This is a positioned
element that’s acting
as a ‘sidebar’, but it’s
only 7em tall. Any
overflowing content
won’t be visible

OEBPS/assets/pcss_0129.png
Style shere our last, best hope for structure. They

succeeded. It was the dawn of the second age of Web
browsers. This is the story of the first important steps towards
sane markup and accessibility.

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/pcss_0131.png
In this paragraph, we will find that there is an image that has

been pushed to the right. It will therefore ooflap content
nearby, assuming that it is not the last element in its line
box.

OEBPS/assets/pcss_0133.png
ea joel grey amet consectetuer. Qui
lakewood eorum eros lebron james
eum liber non congue children’s
museum.

An h2 element

Quarta insitam lectores option
mutationem dynamicus ipsum ii minim
arum. Geauga lake bob golic

OEBPS/assets/pcss_0101.png
positioned element

OEBPS/assets/pcss_0122.png

OEBPS/assets/pcss_0128.png
sidebar

linkone
linktwo
linkthree
linkfour
linkfive

main

Halle berry lectorum consequat lorem iusto legentis, accumsan chrissie hynde. Major everett molly shannon hendrerit
claritatem. Ii arsenio hall margaret hamilton steve harvey. Independence bob hope illum te consuetudium indians playhouse
square ipsum mutationem ipsum. Gates mills nisl patricia heaton bobby knight sollemnes, modo ad ghoulardi eleifend nibh don
ing hal holbrook. Me lew wasserman henry mancini parma william g. mather iriure roger zelazny typi, legunt mentor
eadlands dolor nam. Littera claritatem children’s museum ea nulla metroparks zoo, bay village mazim legere qui woodmere
lacerat. Processus valley view minim shaker heights amet nunc fred willard, ullamcorper et tincidunt omar vizquel lectorum.
Severance hall investigationes pierogies typi. Lius decima qui vel. Mike golic consectetuer george voinovich tincidunt id est
augue decima. Tim conway ex tremont ut.

Praesent lake erie chagrin falls township consequat. Commodo municipal stadium euismod eorum nunc duis. Gothica amet eros
lacerat videntur ad lorem clari, at laoreet. Lakewood facilisi futurum typi quod ruby dee qui putamus. Dennis kucinich north
olmsted lebron james linndale. Ipsum ut vel dolore browns in soluta chagrin falls. Gund arena aliquip nostrud notare. Erat paul

newman collision bend ipsum illum per. Iriure nonummy luptatum formas, in saepius.

Velit dolor quod sequitur euclid beach mark price. Quod esse middleburg heights molestie. Jesse owens ii screamin’ jay
awkins jacobs field. Aliquip mark mothersbaugh glenwillow duis urban meyer nulla legentis bob feller. Minim te warrensville
eights zzril. Sequitur assum the flats, dolor.

Adipiscing bowling kenny lofton facit sammy kaye nam sit berea congue gothica suscipit amet. Eros cuyahoga river mirum
ohio city. Nibh autem vero fiant est soluta, john w. heisman, squire’s castle, est anteposuerit etiam bob golic. Quam elit in dolor

+rarl-aville nonitmmvyv Nihil nenner nilke ced ecnlon heachwonod dehra winoer altam a1iferm Naofare dolore leoiint maolectie

OEBPS/assets/pcss_0127.png
[three]

OEBPS/assets/pcss_0108.png
This is a positioned
element that’s acting
as a ‘sidebar’, but it’s
only 7em tall. Any
overflowing content
won’t be visible
outside the boundaries

OEBPS/toc01.html
		Preface

		Conventions Used in This Book

		Safari® Books Online

		How to Contact Us

		1. Positioning

		Basic Concepts

		Types of Positioning

		The Containing Block

		Offset Properties

		Width and Height

		Setting Width and Height

		Limiting Width and Height

		Content Overflow and Clipping

		Overflow

		Element Visibility

		Absolute Positioning

		Containing Blocks and Absolutely Positioned Elements

		Placement and Sizing of Absolutely Positioned Elements

		Auto-edges

		Placing and Sizing Nonreplaced Elements

		Placing and Sizing Replaced Elements

		Placement on the z-axis

		Fixed Positioning

		Relative Positioning

		Sticky Positioning

		Summary

OEBPS/assets/pcss_0121.png
element D

OEBPS/assets/pcss_0136.png
he arcade euismod lectorum delenit | harvey humanitatis nobis praesent
ea joel grey amet consectetuer. Qui
akewood eorum eros lebron james Est dead man’s curve north randall !
eum liber non congue children’s john d. rockefeller nunc, typi. Euismod,
useum. peter b. lewis molestie te oakwood
guam tremont eu mirum volutpat ut
otare. Aliquip warrensville heights
phil donahue suscipit ut in iusto odio
o _ accumsan west side nisl commodo.
Quarta insitam lectores option empor tincidunt legunt autem. Parmau
utationem dynamicus ipsum i m|n|m unc university heights placerat. Omar

Another h2 element Another h2 element

An h2 element

Tempor t|nC|dunt Iegunt autem Parma!

nunc university heights placerat. Omar,

vizquel cuyahoga heights nulla exerci 1

blandit esse dolore anteposuerit eric !
etcalf illum dolor harlan ellison.

Another h2 element

Tincidunt john w. heisman sequitur et !
non bentleyville dolor quarta dignissim,
avaliers. Bedford heights lyndhurst 1
orth olmsted delenit lake erie parum |

v el] D - — e —

OEBPS/assets/pcss_0118.png
ient can have its content thanks

rules work

