

 [image: cover]

Hello Raspberry Pi!: Python programming for kids and other beginners

 Ryan Heitz

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Dan Maharry
Copyeditor: Tiffany Taylor
Proofreader: Alyson Brener
Technical proofreader: Romin Irani
Typesetter: Marija Tudor
Cover designer: Leslie Haimes

 ISBN: 9781617292453

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Dedication

 To Juliana, Daniel, and John

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 1. Getting started

 Chapter 1. Meet Raspberry Pi

 Chapter 2. Exploring Python

 2. Playing with Python

 Chapter 3. Silly Sentence Generator 3000: creating interactive programs

 Chapter 4. Norwegian Blue parrot game: adding logic to programs

 Chapter 5. Raspi’s Cave Adventure

 3. Pi and Python projects

 Chapter 6. Blinky Pi

 Chapter 7. Light Up Guessing Game

 Chapter 8. DJ Raspi

 Appendix A. Raspberry Pi troubleshooting

 Appendix B. Raspberry Pi ports and legacy boards

 Appendix C. Solutions to chapter challenges

 Appendix D. Raspberry Pi projects

 Index

 List of Figures

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 1. Getting started

 Chapter 1. Meet Raspberry Pi

 What is the Raspberry Pi?

 Exploring your Raspberry Pi’s parts: hardware

 Giving your Pi a cozy home: Pi cases

 The brain of your Pi: system on a chip

 Connecting a keyboard and mouse: USB ports

 Storing memories: your Pi gets a memory card

 Connecting a TV or monitor: HDMI port

 Other ports and connections

 Powering your Pi: microUSB power port

 It’s alive! Plugging in the Pi

 Getting your Pi running: software

 Installing the Raspbian operating system

 Configuring the operating system: making it yours

 Saving your configuration and rebooting

 Getting around: learning Raspbian

 Finding and opening applications on your Raspberry Pi

 Your files and folders

 Writing code

 Fruit Picker Extra: shopping at the Pi Store

 Challenge

 Scavenger hunt

 Summary

 Chapter 2. Exploring Python

 Playing with Python

 Discovering Python’s mathematical operators

 Adding and subtracting

 Multiplying and dividing

 Figuring out whole numbers and remainders

 Exponents

 Square roots

 Challenge: stacking Pis!

 Storing information using variables

 Creating variables and assigning values

 Displaying variable values

 Storing strings in variables

 Changing the value of variables

 Displaying text on a screen

 Using the print function

 Troubleshooting

 Creating programs

 Writing Python programs with IDLE

 Starting a new program

 Saving programs

 Python interpreting the program

 Fruit Picker Extra: creating documents

 Writing silly things and saving them

 Challenges

 The matrix

 Building a brick wall

 Pi electrons

 Summary

 2. Playing with Python

 Chapter 3. Silly Sentence Generator 3000: creating interactive programs

 Creating a welcome message

 Starting a new program

 Saving the program

 Adding notes in your code

 Using hashtags for comments

 Getting and storing information

 Joining strings

 Using more than one input

 Building the sentence

 Troubleshooting

 Completing the program: displaying the silly sentence

 Fruit Picker Extra: Minecraft Pi

 What’s Minecraft?

 Launching Minecraft Pi

 Python programming interface to Minecraft Pi

 Challenges

 Knight’s Tale Creator 3000

 Subliminal messages

 Summary

 Chapter 4. Norwegian Blue parrot game: adding logic to programs

 Displaying the game introduction

 Creating the game welcome message and instructions

 Collecting input from the player

 Using if statements to respond to users in different ways

 Practicing if statements

 Using while loops to repeat things

 A closer look at while loops

 Breaking out of a while loop

 Practicing while loops

 Using Python code libraries to generate random numbers

 Fruit Picker Extra: Scratch

 Challenges

 Summary

 Chapter 5. Raspi’s Cave Adventure

 Project introduction: Raspi’s Cave Adventure

 Left cave

 Right cave

 Hey wait, you need a plan (flow diagrams)

 Which way should Raspi go? (checking input)

 Handling unexpected input

 Turning flow diagrams into code

 Simplify! Making your own functions

 Finishing the left cave

 Exploring the right cave

 Troubleshooting

 Fruit Picker Extra: playing video

 Live streaming: exploring from your Pi

 Challenges

 Introducing dramatic pauses

 Random demise

 Play again?

 Scream!

 Summary

 3. Pi and Python projects

 Chapter 6. Blinky Pi

 Setting up your Pi for physical computing

 GPIO pins

 Breaking out the GPIO pins to a breadboard

 Breadboard basics

 Building the LED circuit

 Step 1. Connect the jumper from GPIO pin 21

 Step 2. Add the red LED

 Step 3. Connect a resistor

 Software: blinkLED program

 Running the program

 blinkLED: how it works

 Adding more LEDs

 Building the circuit

 Multiple LEDs: program it!

 Challenges

 Wave pattern

 Simon Says

 Random blinking

 Summary

 Chapter 7. Light Up Guessing Game

 Guessing Game design

 Hardware: building the circuit

 Numbers, numbers, numbers!

 Wiring an RGB LED

 Circuit sketch

 Software: LEDGuessingGame program

 Setting up the GPIO pins for the RGB LED

 Main game loop and logic

 Guessing Game Loop and logic

 Adding the Play Again Loop and logic

 Playing the game

 Troubleshooting

 Challenges

 Game winner

 Easter egg

 Warmer and colder

 Darth Vader surprise

 Summary

 Chapter 8. DJ Raspi

 Project overview

 Setting up your Pi to play sounds

 OMXPlayer and MP3s

 Troubleshooting

 Hardware: building the circuit

 Wiring a button

 Circuit sketch

 Adding the second button

 Software: the DJ Raspi program

 Setting up the Pi: initializing the buttons

 Getting a list of sounds

 Getting a value of an item stored in a list

 Getting the length of a list

 Building a list of sound files with the os library

 Playing a sound when a button is pressed

 Functions!

 Testing: your first gig as DJ Raspi

 Troubleshooting

 Challenges

 Double button press surprise

 Yoda Magic 8 Ball

 Continuing to explore

 Summary

 Appendix A. Raspberry Pi troubleshooting

 Making sure your Pi has power

 Checking the connection to your TV or monitor

 Pi starts booting up but then stops

 Making your Pi a new SD card

 Reformatting your SD card

 Problems not covered here

 Appendix B. Raspberry Pi ports and legacy boards

 Raspberry Pi ports

 Connecting to a wireless network

 3.5 mm audio/video port

 Camera Serial Interface: connecting a camera

 Ethernet port

 TV or monitor connection options

 Legacy boards

 Raspberry Pi 1 Model B

 Raspberry Pi 1 Model B+

 Other boards

 Appendix C. Solutions to chapter challenges

 Chapter 1

 Chapter 2

 The Matrix

 Building a brick wall

 Pi electrons

 Chapter 3

 Knight’s Tale Creator 3000

 Subliminal messages

 Chapter 4

 Rock, Paper, Scissors!

 Chapter 5

 Introducing dramatic pauses

 Random demise

 Play again?

 Chapter 6

 Wave pattern

 Simon says

 Random blinking

 Chapter 7

 Game winner

 Easter egg

 Warmer and colder

 Darth Vader surprise

 Chapter 8

 Double button press surprise

 Yoda Magic 8 Ball

 Appendix D. Raspberry Pi projects

 Halloween heads

 Time-lapse photography

 Raspberry Pi robot

 Index

 List of Figures

 List of Listings

Preface

 In 2013, a parent and friend of mine asked if I would teach a Python course to middle school students at a local school. My
 friend gently asked if I could somehow use the Raspberry Pi computer in the course. I love learning new things and I had been
 reading a lot about the Raspberry Pi. So as you can imagine, I was tremendously excited at the opportunity of using it and
 emphatically said “Yes!” That event began my journey of developing a course for kids on programming in Python and using the
 Raspberry Pi and later, this book.

 Quickly, as I worked with the Raspberry Pi, I became a disciple of the Raspberry Pi inventors: the best way for kids to learn
 programming is by giving them an affordable, ready-to-program computer. It was the perfect platform to learn how to program.

 As a teacher of computer science, I grew to deeply appreciate Python. I became convinced that it was not only a great programming
 language, but its focus on readability and simplicity made it perfect for kids to learn as their first programming language.

 Fast forward in time—after teaching Python using the Raspberry Pi to many classes of kids, I had developed a set of engaging
 and funny projects that the kids enjoyed. Just as important, the students learned! The feedback from the kids and the parents
 was fantastic! Imagine kids rushing to take part in a programming class. It was wonderful!

 A few months after developing my course, Nicole Butterfield and Robin de Jongh of Manning Publications contacted me about
 turning it into a book. I was thrilled at the prospect of bringing the activities and projects from the computer lab into
 the hands of kids everywhere. What is more, this book would fill an important gap. What I had found when I originally started
 teaching my course was that there were no books on the Raspberry Pi and programming in Python that were designed for kids.
 Since the main reason for inventing the Raspberry Pi was to get more kids programming, I was enthusiastic to work on this
 project.

 Nearly two years later, and several versions of the Raspberry Pi later, I’m proud to present this book to the kids and other
 beginners who want to learn to program. I hope you enjoy using this book and it starts you on your own journey in computer
 science!

Acknowledgments

 Thank you to my wife, Juliana, and our two children, Daniel and John, for their endless support and patience through the long
 days, nights, and weekends I needed to write this book.

 I’d also like to thank Manning Publications for having the vision to pursue this project. In particular, thanks to Robin de
 Jongh and Nicole Butterfield who kicked off this project by finding and encouraging me; to publisher Marjan Bace for his commitment
 to me and to this book; to Ozren Harlovic for orchestrating the book review process; to Kevin Sullivan and Mary Piergies for
 overseeing production; to Chuck Larson for the wonderful work on the graphics; to Tiffany Taylor for her outstanding copyediting;
 to Alyson Brener for her thorough proofreading; to Candace Gillhoolley and Ana Romac for promoting the book; to technical
 development editors Donald Bailey, Joel Kotarski, Jeanne Boyarsky, and John Hyaduck; and to Romin Irani, technical proofreader.

 This book was significantly improved by my editor at Manning, Dan Maharry, who helped to develop and edit the book from concept
 to finished product. I’d like to thank Dan for his excellent insights, support, encouragement, and guidance throughout the
 process.

 A big thank you to all the technical reviewers who read the manuscript at various stages of its development and contributed
 invaluable feedback: Adam Hinden, Antonio Mas Rodriguez, Betsy Hoofnagle, Catherine Freytag, Dr. Christian Mennerich, Dan
 Kacenjar, David Kerns, Ema Battista, Fanick Atchia, Grace Kacenjar, Henry Freytag, Jaqueline Currie, John Pentakalos, Keenan
 Hom, Kevin Adjaho Atchia, Matthew Giblin, Nathan Sperry, Odysseas Pentakalos, Sam Kerns, Richard Freytag, Savannah Wilson,
 and Scott M. King.

 Thank you also to all the readers who bought and read the MEAP (Manning Early Access Program) versions of the chapters and
 who took the time to post comments in the Author Online forum. You helped make this a better book!

 The Raspberry Pi Foundation, original inventors, and community deserve a special mention. Thank you for designing something
 that is helping children to learn computer science. I’d also like to thank Guido van Rossum, the inventor of Python; the Python
 Software Foundation; and the Python user community, for creating and maintaining a simple and useful programming language
 for everyone.

About this book

 The Raspberry Pi is a small, low-cost computer invented in the U.K. by the Raspberry Pi Foundation. It provides an easy-to-use
 tool for learning to program in Python. The Raspberry Pi, with its companion memory card, is preloaded with all the software
 you need to jump into programming in Python. The Raspberry Pi is made for you to learn to code by playing with it. It includes
 many input and output ports to give you flexibility in how you connect it. Much like a desktop computer, you need to connect
 a keyboard, mouse, monitor, and power cable to get started.

 This book will teach you how to set up your Raspberry Pi, to write programs in Python, and to use your Raspberry Pi and Python
 to complete some projects. We’ll cover the basics of Python: displaying text, gathering input, repeating commands, creating
 logic, as well as using the input and output pins of your Raspberry Pi for projects.

 This book does not cover advanced Python topics, nor act as a comprehensive reference for Python. Since it is a book for beginners,
 these topics have been left out for clarity and brevity. If you’d like to learn more Python, there are links to online resources
 throughout the book.

 This book is for kids and other beginners who would like to learn to program. It’s also for kids who have a Raspberry Pi and
 want to learn what they can do with it. We’ll introduce you to your Raspberry Pi and teach you Python in a natural, playful
 way, introducing topics and giving you activities to do using your Raspberry Pi. You don’t need to have any prior programming
 experience. As long as you know how to use a mouse and open up programs by clicking on icons or menu items, you’ll do great.

 This book requires a Raspberry Pi, cables, and some other parts to complete the projects and activities. These items are needed
 throughout the book:

 	Raspberry Pi 2 Model B

 	8 GB SD memory card, preloaded with the Raspberry Pi Foundation’s NOOBS (New Out of the Box Software)

 	USB power supply with micro USB cable (must deliver 1.2 A @ 5 V)

 	USB keyboard

 	USB mouse

 	TV or monitor

 	Cable to connect to TV or monitor (specific cables for your TV or

 	monitor are discussed in chapter 1)

 To complete the projects in part 3, you’ll also need these parts:

 	Solderless breadboard

 	GPIO ribbon cable for the Raspberry Pi 2 Model B (40 pin)

 	GPIO breakout board

 	1 dozen jumper wires, male-to-male

 	1 red LED (light-emitting diode)

 	1 green LED

 	1 blue LED

 	1 red, green, blue (RGB) LED

 	3 push buttons

 	3 resistors, 10K ohm

 	3 resistors, 180 ohm (or between 100 and 300 ohms)

 	Headphones or powered computer speakers

 You can typically find all these items in a Raspberry Pi starter kit or available individually through online retailers and
 stores that sell the Raspberry Pi, such as CanaKit, Sparkfun, or Adafruit.

 Roadmap

 This book is divided into three parts.

 Part 1 introduces you to the Rasperry Pi, shows you how to set it up, and provides an introduction to the Python programming language:

 	Chapter 1 provides an overview of the Raspberry Pi and how to set it up for the first time.

 	Chapter 2 shows you how to write your first Python programs and introduces you to doing math and displaying text with Python.

 Part 2 shows you how to build different text-based games while learning how to gather input, display information, make decisions,
 and repeat instructions in Python:

 	Chapter 3 teaches you how to create your first interactive Python game, the Silly Sentence Generator 3000, by asking users to type
 in something and then displaying funny messages to the screen.

 	Chapter 4 explores how to give your programs logic and use repeating loops as you create a Norwegian Blue Guessing Game.

 	Chapter 5 demonstrates how to build a Cave Adventure Game, give users multiple choices, check input from users, and create your own
 Python functions.

 Part 3 involves making your Raspberry Pi interact with the world around it:

 	Chapter 6 explains setting up your Pi with an electronics breadboard, building a simple circuit, and controlling an LED (light) using
 your Raspberry Pi and Python.

 	Chapter 7 dives into creating an interactive guessing game that uses lights to respond to a player’s input, letting them know with
 different colors whether their answer is right or wrong.

 	Chapter 8 teaches you how to listen to your Pi’s input pins by making a project that combines light and sound to make your own DJ Raspi
 sound mixer.

 Code conventions and downloads

 All source code in this book is in a fixed-width font like this, which sets it apart from the surrounding text. In many listings, the code is annotated to point out key concepts. I have
 tried to format the code so that it fits within the available page space in the book by adding line breaks and using indentation
 carefully.

 The code accompanying this book is hosted at the GitHub repository: https://github.com/rheitz/hello-raspberry-pi. It is also available for download as a zip file from the publisher’s website at www.manning.com/books/hello-raspberry-pi.

 Author Online

 Purchase of Hello Raspberry Pi! includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. To access the forum and subscribe to it, point your web browser
 to www.manning.com/books/hello-raspberry-pi. This Author Online (AO) page provides information on how to get on the forum once you’re registered, what kind of help is
 available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose
 contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some challenging questions, lest
 his interest stray!

 The AO forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book
 is in print.

 About the author

 Ryan Heitz is a teacher, programmer, maker, father, and big kid. He is the cofounder of Ideaventions, a Science Center for
 kids, and Ideaventions Academy for Mathematics and Science, a private school focused on science and technology. He specializes
 in teaching kids how to experience computer science in a fun and engaging way. As a programmer, Ryan has developed software
 for everything from NASA data collection systems to web mapping applications.

Part 1. Getting started

 Get ready to explore Python using your Raspberry Pi! You’ll need a Raspberry Pi and a few other parts and cables for part 1. Here’s your shopping list:

 	Raspberry Pi 2 Model B

 	8 GB SD memory card, preloaded with the Raspberry Pi Foundation’s NOOBS (New Out Of the Box Software)

 	USB power supply with micro USB cable (must deliver 1.2 A @ 5 V)

 	USB keyboard

 	USB mouse

 	TV or monitor

 	Cable to connect to TV or monitor (specific cables for your TV or monitor are discussed in chapter 1)

 Optional item:

 	Raspberry Pi case

 Part 1 will get you on your way to using your Raspberry Pi and launch you into programming it with Python. In chapter 1, you’ll set up your Raspberry Pi, learn how to start (or boot) it up, and then look around inside the Pi’s desktop. Chapter 2 is where you’ll start exploring the Python language. You’ll create your first programs and learn to give instructions to
 your Raspberry Pi using Python.

 By the end of part 1, you’ll know how to get a Raspberry Pi up and running. You’ll be able to write a Python program and interact with your Pi
 to make it do things like figure out the cost of a cheeseburger meal and display silly messages on the screen.

Chapter 1. Meet Raspberry Pi

 In this chapter, you’ll learn how to

 	Set up your Raspberry Pi

 	Install an operating system—Raspbian—on your Pi

 	Find and open applications

 	Write your first bit of code in Python

 What kinds of things do you think you can do with a Raspberry Pi?

 1. Play games.

 2. Watch videos.

 3. Create a video game.

 4. Listen to music.

 5. Make a sound mixer for a dance party.

 6. Build a robot.

 Believe it or not, these are all projects you can do yourself, and if you learn to program in Python, the sky is the limit.
 You can achieve quite a lot on your Pi, as long as you can write a program to do it. But before we talk about that, let’s
 take a look at a Raspberry Pi and discover what makes it tick.

 What is the Raspberry Pi?

 The Raspberry Pi, sometimes referred to as the Pi, is a small, low-cost computer invented in the U.K. by the Raspberry Pi Foundation. It provides an easy-to-use tool to help
 you learn to code in Python (the Pi part of its name came from the focus on using it to code in Python).

 About the size of a deck of cards, it isn’t as powerful as a laptop or desktop computer; its computing power is more similar
 to that of a smart phone. But what it lacks in processing power, it makes up for in its many features:

 	Its readiness for programming in Python

 	The many ways you can use it

 	Its small size and cost

 The Pi, with its companion memory card, is preloaded with all the software you need to jump into programming in Python. Type
 in commands, and see what happens. Enter a program you find on the internet or in a magazine, run it, and see how it works.
 The Pi is made for you to learn to code by playing with it, using it, and interacting with it.

 Once you learn to program in Python, you can use your Pi as a base for all sorts of projects—with your imagination, the possibilities
 are endless! The Pi’s small size makes it easy to carry around and include in projects. Hide it on a shelf or mount it on
 a wall with a camera to make a security system; power it with a rechargeable battery pack if you need it to be portable; or
 even attach it to a remote-controlled car or helicopter. And if you happen to mess something up, it’s simple to recover. Even
 if you manage to break the Pi, it’s pretty cheap to replace.

 At its core, the Raspberry Pi is a circuit board that has all the components found in many computers. The next section checks
 out the components of the Pi and explores what they do. Let’s go!

 Exploring your Raspberry Pi’s parts: hardware

 Ever look closely at an insect under a magnifying glass, or take apart a toy? Humans are naturally curious about what makes
 things work. What are the different parts, and what do they do? What parts are unique? Let’s treat the Raspberry Pi the same
 way, explore its parts, and learn how to set it up.

 Luckily, you don’t have to break it open to see its parts. You can see the Raspberry Pi’s components displayed before you
 on the green circuit board in your hand (see figure 1.1). Let’s walk through the parts of the Raspberry Pi and see what they do. We’ll be focusing on the Raspberry Pi 2 Model B;
 if you have a Raspberry Pi 1 Model B+ or B, see appendix B for more information.

 Figure 1.1. The Raspberry Pi provides an excellent platform for learning to program in Python. It includes many input and output ports
 to give you flexibility in how you connect it. As you would with a desktop computer, you need to connect a keyboard, mouse,
 monitor, and power cable before you can start using your Pi.

 [image:]

 	

 Defining some tech terms

 Input and output are terms used for communication to and from a computer.

 USB refers to a common connector found on computers. It’s used to plug in a keyboard, a mouse, flash drives, and many other computer
 peripherals.

 HDMI is a standard way to connect devices to high-definition TVs or monitors. We’ll talk about this more later, when we discuss
 connecting a TV or monitor to your Raspberry Pi.

 Ethernet is a technology used to connect computers together into a network. This port provides a way to plug in and connect to the
 internet or your home network if a wireless connection isn’t available.

 	

 Giving your Pi a cozy home: Pi cases

 We all like to be warm and cozy in our homes. A Raspberry Pi is no different. Do the right thing and protect your Pi by putting
 it in a case (see figure 1.2). If your Pi didn’t come with a case, you have a lot of options. You can buy one or make your own. My favorite approach is
 to make my own case from wood, cardboard, a plastic container, or even LEGOs. The key is making sure your Pi is protected
 from accidental drops and, ideally, spills. But before you close up your Pi in a case, let’s take a closer look at some of
 its features.

 Figure 1.2. A case protects your Raspberry Pi from damage while making it easy to access the ports. Some people use a case to give their
 Pi a unique personality. You can purchase a case or, better yet, make your own. Plastic cases are the most common, but these
 pictures show examples of cases made from paper, plastic, and aluminum. You could even try using LEGOs to make one.

 [image:]

 The brain of your Pi: system on a chip

 Meet the brain of your Raspberry Pi. The system on a chip (SoC) is the black square in the middle of the Pi circuit board in figure 1.3. This incredible chip is a package of many parts: the central processing unit (CPU), the graphics processing unit (GPU),
 the digital signal processor, and the Pi’s working memory. The chip provides the computing power, graphics power, and memory
 to run apps and play videos.

 Figure 1.3. The Raspberry Pi’s system on a chip (SoC) contains its computing and graphics processing power and working memory. The Pi
 uses the ARM11 microprocessor as its CPU and the VideoCore IV for its GPU. The ARM11 microprocessor is found in handheld electronics
 such as smart phones and gaming systems. The SoC in the Raspberry Pi 2 Model B comes with 1 GB of RAM.

 [image:]

 The Pi’s CPU handles running applications and executing instructions. The same processor is also found in smart phones and
 e-readers. Think of it as the part of your brain that allows you to follow instructions and calculate the answer to math problems.

 The GPU is like the visual part of your brain that allows you to visualize a 3D object in your mind or track a ball thrown
 to you. It handles the Pi’s multimedia tasks, like processing digital images, drawing graphics, and playing videos. The GPU
 gives your Pi surprisingly good high-definition video-playback capabilities. Both the central processor and the graphics processor
 share the Pi’s working memory, or RAM, which is part of the SoC.

 	

 Working memory: RAM

 Question: Can you remember the following grocery store list? Bananas, milk, peanut butter, jam, bread. Read the list once more, and then look away from the book and try to recite the list from memory.

 To remember it, you need to hold the names of the items in your memory. You only have to store them for a short time. Once
 you go to the store and buy the items, you can forget them.

 When a computer is working, it does much the same thing. It may have to remember and process millions of instructions and
 bits of information each second, but it can often forget them once it’s done processing them. The computer does this using
 working memory or random access memory (RAM). It’s packed in the SoC, and it gives your Raspberry Pi the ability to process instructions quickly by remembering pieces
 of information as it’s working and forgetting them when they’re no longer needed—much like how the neurons in your brain work
 together to remember a grocery list. Later, we’ll talk about storing information for the long term and where that happens.

 	

 Connecting a keyboard and mouse: USB ports

 Meet the USB ports on your Raspberry Pi. The two metal, rectangular boxes each contain two USB ports, shown in figure 1.4. USB stands for Universal Serial Bus.[1] The Pi provides USB ports to allow you to connect a keyboard, a mouse, flash drives, and other USB peripherals.

 1

The U for Universal is because it provides computer makers and computer equipment makers with a standard way to connect things to computers.
 Things connected to a computer are often called peripherals.

 Figure 1.4. The Raspberry Pi 2 Model B has four USB ports. They’re on the board in two sets of two, side by side. The USB ports are useful
 for connecting a keyboard and mouse to your Pi. A USB hub can also be plugged in to allow for even more peripherals.

 [image:]

 	

 Why are they called ports?

 Back in ancient times, when Romans walked around and spoke Latin to each other, the word for a gate or door was porta. Although computers don’t have doors or gates, they have places where you plug things in, called ports.

 Ports allow electrical signals to go in and out of your computer. Without ports, you wouldn’t be able to view your computer’s
 screen, download web pages, or move a mouse.

 Let’s pretend you could shrink and that you had special glasses so you could see these electrical signals. What would you
 see when I pressed the E key on the keyboard? You’d see an electrical signal flying from the keyboard through the keyboard’s
 wire, through the port on the computer, and into the computer. The port acts like a gate, allowing signals to go into or out
 of your computer.

 	

 Get your keyboard and mouse. Let’s plug them into your Pi.

 Connecting a keyboard

 You’ll need a keyboard that plugs into a USB port. Figure 1.5 shows an example of a keyboard with a USB connector.[2]

 2

If you don’t have a keyboard with a USB connector, have no fear. You can find one for under $15 online or at your local computer
 or electronics store.

 Figure 1.5. You need a USB keyboard to type and enter commands on your Raspberry Pi. The keyboard plugs into one of the four available
 USB ports on the Raspberry Pi 2 Model B.

 [image:]

 To attach your keyboard to your Pi, plug the wire from your keyboard into your Raspberry Pi’s USB port. There are four USB
 ports on your Pi. It doesn’t matter which one you choose.

 	

 Tip

 If the keyboard’s USB connector doesn’t fit into the Raspberry Pi’s USB connector, flip over the connector and try again.
 USB connectors only fit in one way.

 	

 Fantastic! Your keyboard is connected to your Pi. It’s time to move on to adding a mouse.

 Connecting a mouse

 For this step, you need a mouse that plugs into a USB port. The keyboard is using one of your Raspberry Pi’s four USB ports.
 Plug your mouse into one of the other ports.

 Another option: wireless keyboard and mouse combination

 If you own a wireless keyboard and mouse combination, instead of using wires, you can plug the USB dongle into one of the
 USB ports on the Pi. This frees up one of your USB ports, which can be handy should you decide to attach multiple USB devices
 such as a USB Wi-Fi adapter or USB flash drives, or if you want fewer wires on your desk.

 Excellent! Giving your Pi the ability to store and retrieve information is your next task.

 Storing memories: your Pi gets a memory card

 We all like to remember things that are important to us. Birthdays, vacations, and holidays are wonderful times, and we’ve
 invented ways to help us recall them. You might use a scrapbook or a photo album to store memories. Even after many years,
 you can open these books and remember these past events.

 In addition to working memory (RAM), computers also need a way to remember things, even if they’re turned off for long periods
 of time. The Raspberry Pi, like all computers, has this capability for memory storage, letting it save and retrieve data,
 files, and applications. Much like a photo album lets you recall holidays, the Pi’s memory storage allows you to store important
 applications and information. You’ll use this capability when you learn how to save sets of Python instructions or programs.

 SD memory card

 A Raspberry Pi is different from most computers because its memory storage is contained on an SD memory card, whereas most
 laptops and desktops use a hard drive. Files, applications, and even the Pi’s operating system are all stored on the SD memory
 card, whether it’s a Python game you’re creating or a new music player app for your Pi. If you purchase a Raspberry Pi kit,
 it will come with an SD card (see figure 1.6).[3]

 3

See http://elinux.org/RPi_SD_cards for more information on compatible cards.

 Figure 1.6. An SD memory card provides the storage memory used by the Raspberry Pi to hold all the software and files, including the operating
 system. Raspberry Pi kits come with an SD memory card preloaded with the software needed to start up your Pi. The two left
 images show the location of the SD memory card slot on the underside of the Pi board. The right image shows an SD memory card
 inserted into the SD card slot.

 [image:]

 	

 SD cards come in various sizes

 SD cards come in three sizes: the full-size SD card (largest), the miniSD, and the microSD (smallest). The Raspberry Pi 2
 Model B uses a microSD card.

 	

 You can add more storage to your Pi by attaching USB peripherals such as a USB flash drive or a USB hard drive.

 NOOBS

 Your Raspberry Pi kit comes with an SD card preloaded with NOOBS. Developed by the Raspberry Pi Foundation, New Out of the Box Software (NOOBS) is a set of files that helps you set up your Pi for the first time. If you lose yours or need a NOOBS SD memory card, you
 can buy new ones online. Alternatively, if you have an SD card and want to install NOOBS on it, go to the Raspberry Pi Foundation
 website (www.raspberrypi.org/downloads) to learn how.

 SD memory card slot

 Figure 1.6 shows the location of the SD memory card slot. This thin, metal slot is on the underside of the Raspberry Pi. For your Pi
 to work when you plug it in, it must have some initial knowledge to start up and display something on the screen. In addition
 to this startup information, it must also have a place to store any new information.

 Inserting the SD card in the slot

 Hold the card so that the end with the metal contacts is facing up and toward the Pi. Insert the card along the underside
 of the board into the slot. You’ll hear a small click as the card is pushed into the slot. The card is held in place by a
 small spring mechanism. The card will only fit in one way, so if it doesn’t fit, flip it over. If you need to remove the card,
 push it in again (you’ll hear a click); then you can pull it out.

 Replacing a lost or broken SD card

 If you lose your SD card, you lose the information, applications, and operating system that are stored on the card. It’s as
 if you lost your hard drive on a home computer. You can easily replace the card, but you’ll be starting over fresh. Here are the two options for replacing the card:

 	Purchase an SD card at the store, and set it up anew. It’s recommended that you get an SD memory card with at least 8 GB of
 storage space. You can download and install the startup software from the Raspberry Pi Foundation at www.raspberrypi.org/downloads. See appendix A for instructions on how to make a new SD card for your Raspberry Pi.

 	Buy an SD memory card preinstalled with the Raspberry Pi startup software. You can find cards for sale on the Raspberry Pi
 Foundation website and at online retailers.

 SD cards make your Pi’s memory portable

 If your Raspberry Pi ever breaks, you can remove the SD memory card and insert it into a new Pi. All your files and software
 will be there. It’s like taking your photo album with you to a new house. The memories are safe in the photo album, ready
 for you to enjoy.

 	

 Tip

 You can set up multiple SD cards for your Raspberry Pi and switch them whenever you want to give your Pi a whole different
 personality. Maybe set up an SD card for the Pi as a media center, complete with games, music, and videos. Set up another
 for your Pi robot project. Each memory card can be set up uniquely, with different operating systems, applications, and files.
 Swap out the SD card and reboot your Pi, and you instantly have a Pi with different traits to meet your needs.

 	

 Connecting a TV or monitor: HDMI port

 The HDMI port, shown in figure 1.7, is for connecting your Raspberry Pi to a TV or monitor. HDMI stands for high-definition multimedia interface. The output provides a combined audio and video signal—meaning both sound and picture come out of this port and go to your
 TV or monitor. If you want a crisp, clear display and you already own a high-definition TV or monitor, then you’ll want to
 connect your Raspberry Pi to it using the HDMI output port. Because the HDMI output contains audio and video signals, if your
 TV or monitor has built-in speakers, the sound from your Raspberry Pi can be set to come out of the speakers rather than through the 3.5 mm audio output.

 Figure 1.7. The HDMI port on the Raspberry Pi provides a high-definition audio and video signal that can be connected to a TV or monitor.
 Use an HDMI cable to connect your Pi to your TV or monitor. Depending on the connectors available on the TV or monitor, you
 may need an adapter.

 [image:]

 Now that you know about the HDMI port, let’s see how you can connect your Pi to a TV or monitor.

 Connecting your Pi to a TV or monitor

 Once you decide on the TV or monitor you plan to use, you’ll need to look for the available video input ports on the TV or
 monitor (look on the back or sides to find them). What kinds of ports do you see? Unfortunately, manufacturers often provide
 a variety of different ports. Think of it like a matching game. Your goal is to match the connectors on your TV to the connectors
 on the Pi. If they don’t match, you’ll need to use one of the adapters discussed in a minute. Either way, you’re sure to get
 it solved.

 Identifying ports and making the connection

 Take time to study the connections on your TV or monitor. Try to identify the video ports, comparing them to the pictures
 of connectors in figure 1.8.

 Figure 1.8. HDMI and DVI are common types of video input ports found on modern TVs and monitors. It’s easiest to connect a Raspberry Pi
 to a TV or monitor with an HDMI port. HDMI provides a highdefinition picture and doesn’t require any adapters or converters—only
 an HDMI cable, which is included in many Pi kits. The DVI port requires a special adapter to connect with a Pi.

 [image:]

 This section provides instructions on how you can connect your Pi to a TV or monitor with either an HDMI or a DVI port. If
 your TV or monitor has different video input ports, check appendix B for tips on connecting to them.

 HDMI

 The HDMI port is a metal, mostly rectangular port that is labeled HDMI. Connect an HDMI cable from the screen’s HDMI port to your Raspberry Pi’s HDMI port (see figure 1.9). If you’ve connected your HDMI cable, you can now skip ahead to the discussion of other ports on the Pi.

 Figure 1.9. A Raspberry Pi can be connected to a TV or monitor using an HDMI cable. Connect the cable from the Pi’s HDMI port to the TV’s
 or monitor’s HDMI input. In addition to video, the HDMI cable also contains the Pi’s audio output, which can be played through
 the TV’s or monitor’s speakers.

 [image:]

 DVI

 DVI ports on TVs and monitors come in several different forms. They’re all rectangular ports with three rows of eight square
 pinholes and a horizontal hole or set of holes next to them. If you already have an HDMI cable, the solution is to purchase
 an HDMI-to-DVI adapter. You can find these online or in a computer store. Plug the adapter into the computer screen’s DVI
 port, and then plug your HDMI cable into the back of the adapter and the other end into the HDMI port on your Raspberry Pi
 (see figure 1.10).

 Figure 1.10. The Raspberry Pi can be connected to a TV or monitor with a DVI port using an HDMI-to-DVI adapter and an HDMI cable. One end
 of the HDMI cable plugs into the Pi’s HDMI port. The other is connected to the adapter, and the adapter is connected to the
 TV or monitor. Adapters are available through online retailers or local computer stores.

 [image:]

 Another solution, rather than to use an adapter, is to purchase a DVI-to-HDMI cable. These can be found online or at a computer
 store. Plug the DVI connector on the cable into your computer screen, and plug the HDMI connector into your Pi’s HDMI port.

 Great! You’ve completed an important step by connecting your Pi to a TV or monitor.

 Other ports and connections

 You’ll find other ports on your Raspberry Pi. We’ll cover those in later chapters, or you can reference appendix B for more information on specific ports and connections. Some of these include the following:

 	GPIO pins —The two long rows of pins on the Raspberry Pi are used to send and receive electrical signals. Part 3 of this book will cover how to program those pins and build projects.

 	Internet —You can connect your Raspberry Pi to the internet or your home network by plugging in an Ethernet cable. But you may find
 that the easiest way to get online is to use the USB Wi-Fi adapter that is provided in many Raspberry Pi kits. Appendix B has information on the Ethernet port and using USB Wi-Fi adapters.

 	3.5 mm audio/video out —The small round connector is for plugging in headphones or powered speakers. Chapter 8 will show you how to play sounds as you turn your Raspberry Pi into a music player.

 Let’s see how you can get power to your Pi.

 Powering your Pi: microUSB power port

 Power for your Raspberry Pi is supplied through the microUSB power port located near a corner of the board (see figure 1.11). This port is where you connect a power supply to your Pi; it’s the same as the port found on many mobile phones. Raspberry
 Pi kits come with a microUSB power supply.

 Figure 1.11. The Raspberry Pi requires a microUSB power supply that provides at least 1.2 A of electric current. If you plan to use all
 the USB ports on your Pi, you may want one that provides 2 A or more of electric current. The recommended voltage is 5 volts
 (V), but the Pi can operate at voltages ranging from 4.8 to 5.2 V. If you have a power supply you want to use with your Pi,
 check its output voltage and current, which are listed on the charger in small print. In this example, the charger has an
 output of 5.1 V and 2.5 A of current, making it a suitable power supply for a Pi. Using the incorrect voltage or insufficient
 current can damage or destroy your Pi, so check carefully.

 [image:]

 	

 Note

 Only certain mobile phone chargers can be used to power your Raspberry Pi. The charger must produce sufficient electrical
 current to power it. If you want to go this route, then you should read the fine print on the charger. The charger must produce
 1.2 amp (A) or more for the Pi.

 	

 It’s alive! Plugging in the Pi

 Before plugging your Raspberry Pi into the power supply, go through this quick checklist:

 1. Are you sure your keyboard, mouse, and monitor are connected to the Pi?

 2. Have you turned on your TV or monitor and set it to the correct input source? For example, if you plugged your Raspberry
 Pi into the TV’s HDMI port, make sure the TV is set to HDMI input.

 3. Have you inserted your SD card with NOOBS into your Pi?

 An example setup is shown in figure 1.12.

 Figure 1.12. Example setup of a Raspberry Pi with peripherals connected and SD card inserted. A keyboard and mouse are connected to the
 Pi’s two available USB ports. A microUSB power supply is plugged into the Pi; the other end is lying on the desk, ready to
 be plugged into the wall. An HDMI cable is connected from the Pi’s HDMI port to the back of the monitor. The Ethernet port
 has an Ethernet cable plugged into it from a router (not shown).

 [image:]

 	

 Tip

 TVs and monitors often allow you to connect multiple video sources. Maybe your TV has a Wii, a DVD player, and a digital video
 recorder. These TVs and monitors have the option to select which input is displayed to the screen. Use your TV’s or monitor’s
 input selector to set the correct input.

 	

 All right, if you have all three steps checked off, it’s time to power up your Raspberry Pi. Plug your power supply into a
 wall outlet, and plug the microUSB connector into your Pi. Your Pi’s lights will begin to flash. Enjoy the beautiful glow
 from the lights—this is a sign that your Raspberry Pi is starting up. It’s also referred to as booting; this is when the computer detects the devices you have connected to it and starts up the computer’s operating system (OS).
 Some believe the term boot originated from kicking a horse to get it to start moving. You can imagine that you’re giving your Pi a bit of a boot to
 get it started.

 Getting your Pi running: software

 You’ve got your Pi plugged in and ready to rock. It’s time to get it running and doing something useful—and for that, you
 need some software.

 An OS is a common set of instructions, or software, that helps manage the computer. Common OSs you’ve most likely encountered
 are Microsoft Windows, Apple’s OS X, and Linux. All of these OSs control the connection of your keyboard, mouse, monitor,
 and other peripherals. Most important, the OS serves as a foundation for you to put applications on your computer and use
 them.

 The SD memory card that comes with your Pi kit already contains the files for installing several different OSs on your Pi.
 We’ll step through installing the Raspbian OS—the default for the Pi—and configuring it.

 Installing the Raspbian operating system

 The first time you boot a Raspberry Pi, you’ll need to install an OS on it and then configure it to work nicely for you. Let’s
 walk through the first task: installing an OS. You’ll configure it in the next section. Once you plug in your Pi, you’ll see
 the NOOBS menu for selecting an OS, as shown in figure 1.13.

 Figure 1.13. The NOOBS selection menu allows you to choose the OS you want to install on your SD card and use with your Raspberry Pi. This
 menu appears the first time you start up your Pi.

 [image:]

 The Raspberry Pi has a variety of OSs that can be installed on it. The Raspberry Pi Foundation recommends the Raspbian OS,
 and it’s what we’ll use for this book. Let’s go over how to install it on your Pi.

 	

 What if you don’t see the NOOBS software screen?

 If you don’t see the NOOBS software screen after your Pi boots up for the first time, then there are a few things to check.

 If you don’t see lights flashing on your Pi when you plug it in, make sure the electrical outlet you’re using has power. Many
 a Pi owner has accidentally plugged a Pi into a power strip and forgotten to switch on the power strip. Sounds silly, but
 even the best programmers make mistakes.

 If your Pi’s lights blink when you plug in the power supply but the screen of your monitor doesn’t show anything, make sure
 the monitor is plugged into an electrical outlet, the HDMI cable is connected from the monitor to the Pi, and you’ve turned
 on the monitor.

 Finally, if your Pi starts booting up and you see lots of messages displaying on a black screen, but you never see the NOOBS
 selection menu, it’s likely that your SD card has an error. See appendix A for ways to fix an SD card.

 Sometimes you’ll run into issues with your Pi. If you do, use the troubleshooting steps in appendix A, and search the Raspberry Pi Foundation website[a] to find solutions.

 a

The Raspberry Pi Foundation website is www.raspberrypi.org.

 	

 On the NOOBS selection menu (see figure 1.13), follow these steps:

 1. Select Raspbian (make sure there is an X in the box next to Raspbian; if not, click the box to select it).

 2. Click the Install button at the top of the menu.

 3. A message appears, warning you that the process will install the OS and that all existing data on your SD card will be
 overwritten.[4] Select Yes to continue with the installation.

 4

When you’re warned that all data will be overwritten, this doesn’t include NOOBS, which is retained on the SD card so that
 you can reinstall the OS if you ever need to.

 4. Wait for the installation to complete. It will take 5 to 10 minutes, so get a drink or grab a snack while you’re waiting.

 5. When the installation is done, a box pops up, letting you know the OS was installed successfully. Click OK, and your Raspberry
 Pi will start loading Raspbian.

 6. When it’s finished loading Raspbian, your Raspberry Pi reboots itself. A black screen appears, followed by many, many,
 many messages. Don’t worry; the messages are the Pi performing its startup tasks, such as detecting the keyboard, mouse, and
 TV or monitor.

 Kudos to you! You’ve installed your Raspberry Pi’s OS, Raspbian. Now you’ll want to configure how it works to suit you.

 Configuring the operating system: making it yours

 You’ve finished installing the Raspbian OS on your SD memory card and gotten it running for the first time. The next thing
 you’ll see is the Raspberry Pi configuration screen, shown in figure 1.14.

 Figure 1.14. When your Pi boots up for the first time, you’ll see the Raspberry Pi configuration menu. This menu makes it easier to set
 up your Pi by allowing you to change settings such as the time zone and keyboard layout. The menu also has the option to set
 your Pi to always boot to the Raspbian desktop environment.

 [image:]

 	

 Tip

 You can’t use your mouse with this menu! Use the arrow keys (up, down, left, and right) and Tab key to move around the menu
 instead. Press Enter to select the highlighted menu item.

 Let’s walk through some of the basic configuration settings you may want to change.

 	

 Changing the keyboard settings

 The Raspberry Pi is made in the U.K., so it’s preset to a U.K. keyboard. If you live in other parts of the world, the keyboard
 may make unexpected characters appear on the screen. For example, you might type a # symbol (Shift-3), and your Pi displays
 the symbol for a British pound. Weird, right?

 You can use the configuration tool to change your Pi’s keyboard layout by following these steps:

 1. On the Raspberry Pi configuration menu, select option 4—Internationalisation Options—and press Enter.

 2. Select Change Keyboard Layout, and press Enter.

 3. Select your keyboard model—for example, Dell—and press Enter.

 4. You see options for the keyboard layout’s country of origin. Select the appropriate country, and press Enter.

 5. A list of keyboard layouts appears. Select the one for your location, and press Enter.

 6. On the next series of screens, you can set shortcut keys. Set them to match your personal preferences. If you aren’t sure,
 accept the defaults (press Enter until you’re back to the configuration menu).

 You can always return to the configuration tool if needed. You’ll learn how in a later section when you’re introduced to the
 command-line mode for Raspbian.

 Choosing how your Raspberry Pi starts up

 Raspbian, like most OSs, allows you to use it in two different ways (see figure 1.15):

 Figure 1.15. Example screen images of a command-line mode (top) and a GUI mode (bottom) for a Raspberry Pi running the Raspbian OS. The
 command-line mode is text-based: you enter instructions at the prompt. The GUI is pretty much the same as a Windows or Mac
 interface, with windows, icons, and menus that you interact with using a mouse pointer.

 [image:]

 	Command-line mode —You type in commands to the OS. This can be tough for novices, because you need to know the commands and type them in exactly.
 Because this mode is more difficult to use, you’ll only use it in this book when you need to run commands that require administrative
 or super-user permissions. For example, you’ll need the command line when you make Python programs that use the GPIO pins
 or you want to alter your Pi’s configuration.

 	Graphical-user-interface (GUI) mode —Everything appears in windows, icons, and menus that are point and click. Just like on Windows and Mac computers, this will
 be your main way to interact with your Pi and program in Python. It represents the most natural way to access applications,
 files, and folders.

 Question: Which option do you prefer?

 	Your Raspberry Pi booting up to a screen with a blinking cursor, waiting for you to type in commands

 	Your Raspberry Pi booting up and showing you a desktop with application icons arranged on the screen, waiting for you to point
 to and click them with your mouse

 If you chose the second option, you can set Raspbian to always boot to the desktop with the following steps:

 1. On the Raspberry Pi configuration menu, select option 3—Enable Boot to Desktop/Scratch—and press Enter.

 2. Select the second option—“Desktop Log in as user ‘pi’ at the graphical desktop”—and press Enter.

 Fantastic! Next time your Raspberry Pi boots up, you’ll be taken to the Raspbian desktop.

 	

 Tip

 If you decide you prefer to boot the Raspberry Pi to the command line, you can always launch the Raspbian desktop by entering
 startx at the command line.

 	

 	

 Tip

 Sometimes you may find yourself using the Raspbian GUI, but you want to use the command line. There is an easy way to change.
 You can open the command-line mode in a window by clicking the Menu Button, then selecting the Accessories category and clicking
 the Terminal[5] icon.

 5

Terminal is short for LXTerminal or Linux terminal. Raspbian is a Linux-based OS, and terminal refers to the command-line mode where you can enter commands.

 	

 Making other changes

 The Raspberry Pi configuration menu includes other options such as setting up a camera and over-clocking. These are available
 if you ever want to use them. Check the Raspberry Pi forums for more information on these options.

 Saving your configuration and rebooting

 If you’re happy with the changes made to your Raspberry Pi, follow these steps to exit the Raspberry Pi configuration tool
 and reboot your Pi:

 1. On the Raspberry Pi configuration menu, use the arrow keys to select Finish, and press Enter.

 2. You’re prompted with this message: “Do you want to reboot now?” Select Yes, and press Enter.

 Your Raspberry Pi will display lots of lines of text as it boots up. (Yes, it does that again! Don’t worry, it will seem normal
 to you soon.) This is your Pi’s startup sequence when it connects peripherals and starts up the OS. Next, a white screen with
 a Raspberry Pi will appear, along with a set of icons—this is your Raspbian desktop (see figure 1.16). Congratulations! Your Raspberry Pi is ready to go.

 Figure 1.16. A view of the Raspbian desktop after your Raspberry Pi boots up. The desktop is similar to the desktop in Microsoft Windows
 or Apple Mac OS X. Don’t worry if your desktop is different from this one. Depending on when you bought your Pi, you may have
 received an SD card with an older or newer version of Raspbian.

 [image:]

 A bit of Pi in your face: troubleshooting

 If you don’t see the view shown in figure 1.16, don’t be discouraged. It’s likely that you didn’t select the option to boot to desktop. If your screen shows the command-line
 mode for Raspbian (figure 1.17), you can log in and launch the Raspbian GUI.

 Figure 1.17. If you didn’t set up your Pi to boot to the Raspbian desktop, the command-line mode will be displayed when your Raspberry
 Pi boots up. It will ask you for your login name and password.

 [image:]

 At the command line, you’ll be prompted to enter your login and password. The default login is pi, and the password is raspberry. After entering that information, launch the Raspbian Desktop from the command line using the following steps:

 1. Type startx.

 2. Press Enter.

 Once you execute the command, the Pi will start up the Raspbian GUI mode and display your Raspberry Pi’s desktop. If you happen
 to have a different problem, head to appendix A for troubleshooting ideas.

 Getting around: learning Raspbian

 Take a cruise around your Raspberry Pi, and look at some of the applications that come already installed with the Raspbian
 OS.

 Finding and opening applications on your Raspberry Pi

 There are many applications on your Raspberry Pi. You can access them by clicking the Menu button in the top-left corner of
 the desktop (see figure 1.18). Enjoy exploring what comes installed on your Pi.

 Figure 1.18. The Raspbian application menu opens when you click the Menu button in the top-left corner of the desktop. You can open an
 application by moving your mouse over the categories listed on the menu and then clicking the application.

 [image:]

 Your files and folders

 Similar to Windows Explorer or Mac Finder, Raspbian has some built-in tools to make it easier to navigate the folders and
 files on your Raspberry Pi. In Raspbian, the application for managing files is called File Manager, and it’s accessed by clicking the folder icon located in the top-left corner of the Raspbian desktop. Figure 1.19 shows the icon and the File Manager application. Just as in Windows Explorer, you can

 Figure 1.19. File Manager in Raspbian allows you to manage files as you do in Windows Explorer or Mac Finder. You access File Manager using
 the folder icon in the upper-left corner of the desktop. This is a view of a Pi with a lot of files stored in the /home/pi
 folder.

 [image:]

 	Navigate into folders by double-clicking them.

 	Drag files to move them to another folder.

 	Copy and paste files using the right-click menu on files and folders.

 	Rename files.

 	Open files by double-clicking them.

 The Pi was built for coding. Let’s see how you can write code on your Pi.

 Writing code

 You’re going to learn to write code in the Python programming language. Meet a new program, IDLE. IDLE is a tool that’ll help
 you write programs in Python. IDLE stands for Integrated DeveLopment Environment. The Python language was named after Monty
 Python, and the IDLE acronym is a nod to Eric Idle, one of the founding Monty Python members.

 Follow these steps:

 Click the Menu button on your desktop.

 Select Programming > Python 3.

 After a second or two, IDLE opens the Python Shell, as shown in figure 1.20.

 Figure 1.20. IDLE is a development environment that makes it easier to write Python programs. This is the IDLE Python Shell that you can
 use to enter Python commands or instructions one at a time.

 [image:]

 	

 Note

 Previous Raspberry Pi models have desktop icons for Python: IDLE and IDLE 3. You’ll use Python 3 (or IDLE 3) for the exercises in this book. On older Pi models, the IDLE 3 icon opens the Python Shell for Python 3. You may have guessed that the IDLE (without the
 3) icon opens IDLE for Python 2.

 	

 	

 Note

 To start the Python Shell from the Raspbian command line, type python3 and press Enter. You’ll see a >>> prompt and may interactively enter Python commands. When you’re finished using the Python Shell, type exit() and press Enter to end your Python session.

 	

 The Python Shell shown in figure 1.20 allows you to enter Python commands and press Enter to execute them. The command prompt lets you type in commands after the
 triple greater-than symbols (>>>).

 Do the following:

 1. Enter 3 + 4.

 2. Press Enter.

 The screen displays the answer: 7. Try some subtraction:

 1. Enter 17 – 9.

 2. Press Enter.

 The screen displays the answer: 8. Now let’s make Python talk to you by printing a message to the screen:

 1. Enter print("I am alive!").

 2. Press Enter.

 Your screen should display “I am alive!”

 Outstanding work! You wrote three lines of code. When you pressed Enter after each one, the Raspberry Pi’s processor executed
 those commands and did what you asked. That is powerful!

 Fruit Picker Extra: shopping at the Pi Store

 Your Raspberry Pi can do many things. We’ve included special sections throughout the book called Fruit Picker Extras to teach you some different things your Pi can do. This Fruit Picker Extra is about shopping at the Pi Store.

 The Pi Store is an online app store that provides access to games, apps, and resources for your Pi (see figure 1.21). You can browse the Pi Store from any device, such as a mobile phone or laptop. To access it from your Raspberry Pi, double-click
 the Pi Store icon on your desktop. If you want to download content to your Pi, you need to have your Pi connected to the internet,
 and you’ll also need to create an IndieCity account with an email address and password.

 Figure 1.21. You can access the Pi Store from the icon on your Raspbian desktop. The store allows you to browse and download apps and content
 including games, tutorials, and digital magazines. You’ll find free and fee-based content, organized into five categories:
 Games, Apps, Tutorials, Dev Tools, and Media.

 [image:]

 Some apps are free; others require you to pay a fee. You’ll find great resources, such as free issues of MagPi, the Raspberry Pi community magazine, a digital magazine full of tips, projects, and programming tutorials (look for these
 in the Pi Store’s Media category). Have fun downloading free games and tutorials onto your Pi!

 [image:]

 Challenge

 Each chapter will have challenges at the end for you to try. If you can’t figure them out, check the back of the book (see
 appendix C) for hints and answers.

 Scavenger hunt

 Time to explore your Raspberry Pi with a scavenger hunt. The goal is to learn more about the Pi by looking around, opening
 applications, and playing with them. Try to complete this list of scavenger-hunt items:

 1. Find a game where squirrels eat other squirrels. Can you achieve the title of Omega Squirrel? Hint: Double-click the Python
 Games desktop icon to look for it.

 2. Find a calculator application on your Raspberry Pi. Calculate the answer to a math problem: 87x34. Hint: The calculator
 is found under Menu > Accessories.

 3. Without unplugging your Raspberry Pi, can you figure out how to shut down or restart it?

 4. Turn your desktop’s background black.

 5. Bonus: Open Scratch, and try to make a cat dance.

 Consider yourself an official Raspberry Pi explorer. If you want, take some more time to click some icons and see what they
 do. You’ve accomplished a lot!

 Summary

 The Raspberry Pi is like other computers in a lot of ways, but with several important differences. The similarities with other
 computers include these:

 	A Pi requires a keyboard, mouse, and monitor, much like other desktop computers. The ports for plugging these in are part
 of the Pi.

 	The Pi can be set up with a desktop OS, Raspbian. It’s similar to Microsoft Windows or Apple OS X.

 	Although its computing power is limited (similar to a smart phone), the Pi can still allow you to do many things you do on
 a desktop or laptop, such as browsing websites, playing games, and listening to music.

 The Raspberry Pi has qualities and capabilities that make it special and unique. These key differences from other computers
 include the following:

 	The Pi’s cost and size are much smaller, making it a great candidate for projects.

 	The Pi was designed for programming in Python and comes preloaded with the Python development environment so you can get coding
 right away.

 	The Pi uses an SD memory card to store all files and software, including the OS.

 	It has GPIO pins that can send and receive electrical signals. In part 3 of this book, you’ll learn how you can use these to create projects that interact with the world around you.

Chapter 2. Exploring Python

 In this chapter, you’ll learn how to interact with your Raspberry Pi by using Python to

 	Do math calculations quickly and easily

 	Store information using variables

 	Get messages to display on the screen

 	Create and run your first program in Python

 An exciting part of programming is getting the computer to interact with you. It’s the first step toward having the computer
 feel artificially intelligent.

 Playing with Python

 One of the best ways to learn to program is by exploring and playing. When you play, you try things and see what happens.
 You learn by experiencing the act of programming and seeing results. In this approach, you’ll try entering different commands
 and see what happens.

 Open IDLE for Python 3 by clicking the Menu button and selecting Programming > Python 3 on your Raspberry Pi’s desktop (see
 figure 2.1). After you click it, you’ll need to wait a few seconds while IDLE opens.

 Figure 2.1. The Python 3 icon on your Raspberry Pi opens an interactive programming shell for Python 3.x.

 [image:]

 	

 Note

 There are both Python 3 and Python 2 icons under Menu > Programming on your desktop. Make sure you click Python 3 and not
 Python 2.

 	

 The Python 3 icon opens IDLE.[1] You’ll see a prompt, ready for your commands—this is the Python Shell (see figure 2.2). With the Python Shell open, let’s see how you can start talking to your Raspberry Pi using Python.

 1

The specific version of Python preinstalled on your Raspberry Pi may vary depending on when you purchased it. As of this writing,
 most Raspberry Pis come with Python version 3.2.3.

 Figure 2.2. The Python 3 application under Menu > Programming on the Raspberry Pi desktop opens IDLE to the Python Shell for Python 3.x.

 [image:]

 Discovering Python’s mathematical operators

 One of the core capabilities of a programming language is its ability to do math, or, in programmer-speak, to perform mathematical
 operations. Let’s try different mathematical operations to see what works and what doesn’t.

 Adding and subtracting

 Suppose you go to your favorite restaurant and order a burger, fries, and an orange soda. You want to know how much you owe.
 The menu (see figure 2.3) says the burger is $5.49, fries are $1.99, and the orange soda costs $1.49.

 Figure 2.3. The menu at your favorite burger restaurant

 [image:]

 Use Python to figure out the total. In the IDLE Python Shell, enter

 >>> 5.49 + 1.99 + 1.49

 Press Enter to see Python calculate the result: 8.97, or $8.97 (see figure 2.4).

 Figure 2.4. Use the + symbol to add numbers in Python.

 [image:]

 Great news: you remember you have a coupon for $3.00 off, so let’s calculate the total again. In the IDLE Python Shell, enter

 >>> 8.97 – 3.00

 The result is 5.970000000000001. Whoa! Why isn’t it exactly 5.97? Well, it has to do with how computers store numbers as 1s
 and 0s. We aren’t going to go over it here, but the footnote[2] has a web link where you can learn more. For now, the number is close enough for your calculations.

 2

Read more about decimal math (also called floating-point math) here: https://docs.python.org/3.4/tutorial/floatingpoint.html.

 As you can see, Python is pretty good at doing math and uses familiar operators for addition and subtraction:

 	The addition operator (+) calculates the sum of two numbers:

>>> 4 + 5

 The result is 9.

 	The subtraction operator (-) calculates the difference between two numbers:

>>> 8 - 5

 The result is 3.

 	

 Python style: spacing of operators and numbers

 Try entering 24 plus 32 without any spaces between the plus sign (+) and the numbers:

 >>> 24+32

 Then try it with lots of spaces:

 >>> 24 + 32

 Both result in the same answer: 56. When you’re doing math, the number of spaces between the numbers and the operator doesn’t
 matter. Python ignores the extra spaces and calculates the sum.

 What’s the best way? Well, Pythonistas (the name given to those who program in Python) believe that your code should be easy
 to read. The Python Style Guide[a] recommends using spaces before and after a mathematical operator. You don’t have to, but it’s easier to read!

 a

The Python Style Guide is referred to as PEP 8 and is found online here: www.python.org/dev/peps/pep-0008.

 	

 Let’s see what other math you can do in Python.

 	

 Tip

 When typing in large numbers, don’t enter commas to separate groups of three digits. So 1,000 should be entered as 1000. Python
 can’t interpret the comma separators in numbers, so you’ll get some odd results if you add them. Python will interpret the
 commas as if you’re typing in a list of numbers. For example, 12,231 is interpreted to be a list of two numbers: 12 and 231.
 You’ll learn more about lists in part 2 of this book.

 	

 Multiplying and dividing

 After scarfing down your burger, you find yourself hungry for two scoops of ice cream and a slice of raspberry pie for dessert.
 Ice cream is $1.79 per scoop, and pie is $3.50 per slice, so what is your total?

 Use Python to figure it out. Try Python’s multiplication operator (*):

 >>> (2 * 1.79) + 3.50

 You total bill is $7.08. You also see that you can use parentheses to group things.

 Three of your friends join you at the restaurant, and each orders dessert. After more ice cream and pie, the total bill ends
 up being $33.36. They all agree to split the bill evenly. Use Python’s division operator (/) to calculate the price they each should pay:

 >>> 33.36 / 3

 The result is $11.12 each. That’s a lot of dessert!

 With your belly full, you observe how you’ve seen Python perform multiplication and division and how you can use parentheses
 for grouping:

 	The multiplication operator (*) gives you the product of two numbers:

>>> 7 * 3.14

 The result is 21.98.

 	The division operator (/) can divide two numbers:

>>> 40 / 8

 The result is 5.

 	Parentheses can be used to group numbers so they’re evaluated first:

>>> (3 + 7) * 10

 Python answers 100.

 What do you think this will result in?

 >>> 3 + (7 * 10)

 If you guessed 73, you’re right. If you change the location of the parentheses, you’ll get a different answer. We’ll talk
 about this more when we examine the order of operations.

 Figuring out whole numbers and remainders

 Your friend mentions to you that there are 19,272 minutes of school remaining this year. How can you figure out how many hours
 and minutes? First you divide 19,272 by 60, because there are 60 minutes in an hour. You find that is 321 hours with a remainder
 of 12 minutes. In Python, you have two operators to give you the whole number and the remainder of a division sum:

 	// (floor division) gives you the whole number:

>>> 19272 // 60

 The result is 321.

 	% (modulo) gives you the remainder:

>>> 19272 % 60

 The result is 12.

 You divided some large numbers, but let’s look at how Python can handle even larger ones.

 Exponents

 An interesting fact you might’ve learned in Astronomy is that the Earth’s distance to the Sun is approximately 1.496 × 108 km. Let’s use Python to express this as a number. In Python you use the exponentiation operator (**) as follows:

 >>> 1.496 * 10**8

 Python answers 149600000.0 km.

 Exponentiation lets you take two numbers (a, b) and raise one number to the power of the other(ab). Python uses the exponentiation operator (**) between the two numbers (a**b) to do this. For example, if you wanted to raise 2 to the third power, you’d enter

 >>> 2 ** 3

 The result is 8 (2 * 2 * 2 = 8).

 Try another:

 >>> 122 ** 5

 The result is 27,027,081,632 (122 * 122 * 122 * 122 * 122 = 27027081632).

 	

 Note

 On older versions of Python, you may see 122**5 show the result 27027081632L. This is because previously Python added the letter L to denote really long integers.

 	

 Exponentiation can be useful if you’re solving problems like these:

 	Estimating astronomical distances

 	Calculating bank account balances based on a given interest rate

 	Predicting a population size for animal colonies based on a given growth rate

 Square roots

 You can figure out square roots by using an exponent of 1/2, or 0.5. This is the same as taking a square root:

 >>> 14400**0.5

 The result is 120.0.

 Challenge: stacking Pis!

 How many Raspberry Pis would need to be stacked end to end to reach the Sun? You can measure your Pi, and you’ll find that
 a Raspberry Pi measures 85.6 millimeters or 0.0856 meters. First, you need to convert the Pi’s measurements to kilometers
 by dividing 0.0856 by 1,000; then you divide the distance from the Earth to the Sun by the Pi’s length in kilometers (see figure 2.5). This should give you the distance to the Sun, expressed as a number of Pis.

 Figure 2.5. The distance from the Earth to the Sun is approximately 149,600,000 km. The Raspberry Pi is 85.6 mm in length.

 [image:]

 Enter the equation into Python:

 >>> 1.496 * 10**8 / (0.0856 / 1000)

 Python answers 1747663551401.8694. That is more than 1.7 trillion Raspberry Pis stacked end to end. It’s kind of fun to think
 about that many Pis!

 	

 Types of numbers: integers and floats

 So far, you’ve used both integers and decimal numbers in your calculations. In Python, decimal numbers are also called floating-point numbers, or floats for short. Here are some examples of floats:

 1.2
0.00001
3.14159
1000000.01

 Checking types

 Try entering this:

 >>> type(3.14)

 Python will answer you: <class 'float'>. You’ve just used Python’s built-in tool for checking the type of something. These built-in tools are called functions. You’ll see more of these later. Let’s see what this does:

 >>> type(10001)

 Did you guess it? This returns <class 'int'>, where int stands for integer.

 	

 So far, you’ve typed in numbers and performed calculations. But if you want to change one number, you have to type all the
 information again. You also have no way of saving information—you have to look up and type the number each time. Good news!
 There is a better way.

 Storing information using variables

 There are times in programming when it’s easier to store information than to type it in over and over again. Variables provide that special capability. Variables give you a way to store information and retrieve it anytime. Let’s look at an
 example.

 Imagine that you own a pizza restaurant, and your prices are shown in figure 2.6.

 Figure 2.6. The menu at your pizza restaurant

 [image:]

 The first customer, Daniel orders a meal of pizza and orange soda:

 >>> 14 + 1.5

 Daniel’s meal costs $15.50.

 A second customer, Erin orders pizza, orange soda, and wings:

 >>> 14 + 1.5 + 8

 Erin’s meal costs $23.50.

 Each time you want to calculate a meal’s cost, you must remember or look up the price of each item and type it in. Imagine
 if you had a menu of 15 items and 100 customers. It would take forever to look up the items and add their prices together!
 You’d also be prone to making mistakes. Let’s have the computer do this work for you.

 Creating variables and assigning values

 This is a perfect place to use variables in a program. Variables store information to make your life easier. (We’re programmers,
 and we like to be lazy. At least we’re always trying to find a more efficient way to do things.) Let’s do this again but create
 variables for each of the food items. The first step is to define your first variable and set its value:

 >>> cheese_pizza = 14

 Let’s take a close look at how this code works in figure 2.7.

 Figure 2.7. A variable stores information and can be created and assigned a value. The equals sign is used as an operator (also known
 as the assignment operator) between the name of the variable on the left and the value assigned to it on the right.

 [image:]

 Next, let’s create the other two variables for orange soda and wings:

 >>> orange_soda = 1.5
>>> wings = 8.00

 Nothing is displayed on the screen after you enter each line, but Python stores the variables and their values in the memory
 of your Raspberry Pi.

 Displaying variable values

 How can you check what’s stored in a variable? Like the type function earlier, you use another built-in function in Python called print, like this:

 >>> print(cheese_pizza)
 14

 Print doesn’t mean to print something with paper and ink. In Python, printing means to display something on the screen.

 	

 Note

 When you’re working in the Shell, Python displays the result of expressions. But if you assign a sum to a variable, the Shell
 doesn’t show the value unless you use print.

 	

 Using print, you’ve seen that cheese_pizza has the value 14 stored in it. You should feel confident that your variables are holding the information you put in them.

 Let’s see if you can use variables to figure out a meal cost (without having to look up numbers):

 >>> meal_cost = cheese_pizza + orange_soda

 Print meal_cost to see its value:

 >>> print(meal_cost)
15.5

 Python displays 15.5. Now, let’s calculate the cost of the other meal:

 >>> meal_cost = cheese_pizza + orange_soda + wings
>>> print(meal_cost)
23.5

 Python answers 23.5. The more calculations you need to repeat, the more you’ll appreciate how variables can save you time
 and effort. Congratulations—you’re using variables to store information!

 	

 Definition

 The process of putting a value into a variable is called assignment.

 	

 Before you start creating a lot of variables, let’s learn the guidelines for naming them.

 Naming variables

 Everyone has had the problem of not being able to read someone else’s handwriting. The writer might know what they wrote,
 but you’re unable to decipher it. You want to avoid this same confusion with variables. In order to do that, there is a set
 of guidelines for creating clear variable names—names that make sense to you and to someone else reading your code:

 	Don’t use any spaces. Instead, use an underscore (_).

 	The Python Style Guide recommends using lowercase and underscores between words to make your code easy to read.

 	Don’t start with a number.

 	Don’t use any of Python’s reserved words for your variable name (see the sidebar “Watch out for reserved words”).

 Here are some examples of variable names:

 >>> shoe_size = 10
>>> age = 16
>>> favorite_color = 'blue'
>>> first_name = "John"
>>> pizza_slices_eaten = 4

 Do your best to use meaningful variable names.

 	

 Watch out for reserved words

 Certain words in Python are reserved because they’re part of the Python language. You can’t use these words as names for variables:

 False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

 Python 3.x reserved words are used by Python for special purposes and may not be used for variable names.

 	

 Assigning values: the left side and right side

 When you’re creating a variable and assigning it a value, put the name of your variable on the left side of an equals sign.
 Put the value you want to set it to on the right side of the equals sign. Let’s create a variable name and set it to “King Arthur”:

 >>> name = "King Arthur"

 In this line, the left side creates a variable called name, and the set of characters “King Arthur” is stored in it. Let’s learn more about storing text in variables.

 Storing strings in variables

 Life isn’t only about numbers. You may want to create programs that display absurd messages or tell a story on the screen.
 These messages are a type of data called strings. A string is a group of characters.

 Strings

 Python gives you the ability to store a group of characters (or strings) in variables. You’ve already used strings in the
 example with “King Arthur”.

 Here are some things you should know about strings:

 	They always must start and end with quotation marks.

 	You may use either single quotes (‘Hi’) or double quotes (“Hi”), but you can’t mix them (“Hi’):

>>> message = "Greetings Earthlings"

 Or, in single quotes:

>>> message = 'Greetings Earthlings'

 	When a number is placed inside quotation marks, it’s a string.

 	Strings can be short (zero or only a few characters) or many characters long.

 	Strings can even be empty. These are called zero-length strings:

my_string = ""

 Examples of strings

 Some examples of strings will give you an idea of what’s possible:

 "Y"
"No"
"Spam"
"Yeah, remarkable bird the Norwegian Blue"

"There he is!"
"No, no sir, it's not dead. It's resting."
"17"
"RUNAWAY, RUNAWAY, RUNAWAY!"
"Tuesday"

 Measuring the length of a string

 You can use the len function to have Python tell you the length of a string. We’ll talk more about string functions in chapter 3, but here is an example of using len:

 >>> your_nickname = "Pi Master"
>>> len(your_nickname)
9

 Or try a longer one:

 >>> quote = "To be, or not to be, that is the question."
>>> len(quote)
42

 Even the spaces are counted when determining the length of a string. This is a great point to talk about spaces.

 Spaces count

 Although spaces may seem like nothing, they’re considered characters. You can create strings that are a single space or set
 of spaces, such as

 short_set_of_spaces = " "
long_set_of_spaces = " "

 You now know about variables and about strings, a type of data that can be stored in them. Let’s see how you can vary your
 variables.

 Changing the value of variables

 As you may have guessed already, the value stored in a variable can be changed or updated. Try it. You’re making up a password
 for your computer. Create a variable password, and set it to bunny:

 >>> password = "bunny"

 Now let’s change the password to dragon:

 >>> password = "dragon"

 What value do you think is stored in password: “bunny” or “dragon”? Let’s check the value using the print function:

 >>> print(password)
dragon

 The value dragon is displayed. Notice how Python replaces the value stored in the variable when you assign it a new value.

 Visualizing variables as boxes

 A way to visualize this is to imagine that creating a variable is like making a box—a box for storing information. When you
 create the box, you give it a name and store a value in it. Figure 2.8 is a graphical depiction of creating a variable and reassigning a value to it.

 Figure 2.8. When a variable is created, it’s stored in your Raspberry Pi’s memory. You can change the value of a variable at any time.
 Using the print function, you can display the variable’s value on the screen.

 [image:]

 Changing the value of a variable is easy to do in Python. Let’s look at another example.

 Variable reassignment

 Let’s see how Python evaluates these statements:

 >>> x = 10

 This sets x equal to the value 10. Next, you do a calculation with x and store the result of the calculation in x:

 >>> x = x * 10 + 32

 When Python evaluates this line, it first tackles the right side of the equals sign:

 1. Python evaluates the right side of the equation: x * 10 + 32.

 2. Python retrieves the current value of x, 10, and calculates 10 * 10.

 3. Python adds 32 to this amount. The right side of the equals sign is 132.

 4. It does the left side of the equals sign last. The result, 132, is stored into the variable on the left side of the equals
 sign: x.

 You’ve seen how Python can store and retrieve information using variables. Variables save you time because they hold the value
 they’re given, meaning you don’t have to remember values or look them up. Variables can take the form of numbers or strings,
 and you can check the value stored in a variable using the print function.

 Excellent! You’ve seen how the order for variable assignment is important. Check out how the order of math operations matters.

 Order of operations

 What do you think Python will return if you enter the following?

 >>> (3 * 2) * 5**3 / 25 + 10

 If you guessed 40, you’re correct. Python follows the order of operations that you learned in math class.

 	

 Tip

 You may recall BOMDAS or PEMDAS from school. This pattern of letters is useful for remembering the order you should evaluate
 operations in a math equation. Python follows this same order of operations: Brackets (or Parentheses), Orders (or Exponents),
 Multiplication and Division, and then Addition and Subtraction.

 	

 First it evaluates anything grouped in parentheses or brackets. 3 * 2 is equal to 6. Let’s replace the 3 * 2 with 6 and go to the next step:

 >>> 6 * 5**3 / 25 + 10

 The exponents (or orders) are analyzed next. 5**3 is 125 (the same as 5 * 5 * 5):

 >>> 6 * 125 / 25 + 10

 Multiplication and division come next, and you work from the left to the right. 6 * 125 is 750. 750 / 25 is 30:

 >>> 30 + 10

 The final step is addition and subtraction. 30 + 10 is 40. Graphically, figure 2.9 shows the order in which the example equation is solved in math and how Python does it.

 Figure 2.9. Python follows the order of operations used in mathematics. You may know it as BOMDAS or PEMDAS: Brackets (or Parentheses),
 Orders (or Exponents), Multiplication and Division, and finally Addition and Subtraction.

 [image:]

 You’re pretty good at doing math in Python. You’re ready to learn more about using Python to communicate and display text
 on the screen.

 Displaying text on a screen

 It’s fun to interact with technology and have it respond. This can take the form of playful responses by a computer, making
 it feel more human. Or computer responses can be more practical, displaying personal data on a website form. In either case,
 you want your computer to communicate with you.

 Displaying text on the screen, also referred to as printing in Python, is a direct way for a computer to communicate with you. You can use printing to have your Raspberry Pi do things
 like this:

 	Show random, silly messages.

 	Describe spooky scenes as part of an adventure game.

 	Spit out the answers to complex math problems.

 Printing to the screen is a key way to output all kinds of information.

 Using the print function

 Earlier in this chapter, you used the print function to display the value of variables. Let’s go over more about using the print function. Try printing the message “Hello World!” to the screen like this:

 >>> print("Hello World!")
Hello World!

 Take a closer look at how you can use the print function in figure 2.10. Python prints “Hello World!” to the Python Shell.

 Figure 2.10. The print function in Python displays text on the screen. The string inside the parentheses must be enclosed in single or double quotation
 marks.

 [image:]

 Repeating text

 Let’s try something a bit different. Type in

 >>> message = "Hello, I am your Raspberry Pi!"
>>> print(message)

 This prints the message on the screen once. You can use the multiplication operator with a string to print it many times:

 >>> print(message * 100)

 The message cascades across and down the screen 100 times (see figure 2.11).

 Figure 2.11. The Python print function can display text on the screen repeatedly if you use it with a string and the multiplication operator (*).

 [image:]

 Have fun with this. Try some bigger numbers and different messages to see what you get.

 Troubleshooting

 We’re all human, so things can go wrong when we’re pressing keys and typing in code. A common error you might make when creating
 a variable that is storing a string is forgetting to close your quotation marks:

 >>> message = "Hello, I am your Raspberry Pi!

 Notice that the quotation mark after the exclamation point is missing. It may sound goofy, but think of quotation marks as
 hugs. When you hug someone, you wrap your arms around them. One quotation mark must go on either side of a string to complete
 it. If you ran this code in the Python Shell, you would receive an error, as shown in figure 2.12.

 Figure 2.12. Remember to place quotation marks at the beginning and end of your strings. If you forget to close your quotation mark, Python
 will display an error.

 [image:]

 Python displays an error message (SyntaxError: EOL while scanning string literal). You can fix it by typing the string again with both the opening and closing quotation marks around it.

 Creating programs

 Imagine again that you own a pizza shop and you want to use Python to calculate the cost of a meal, including tax. A customer
 orders a meal of two slices of pizza and orange soda. Let’s start by creating two variables with the menu prices:

 >>> pizza_slice = 3.5
>>> orange_soda = 1.50

 Create two variables to keep track of the number of slices and number of drinks:

 >>> num_slices = 2
>>> num_drinks = 1

 Next let’s calculate the cost of the meal without tax:

 >>> meal_no_tax = (num_slices * pizza_slice) + (num_drinks *
 orange_soda)

 Define the tax rate of 5%, and figure out the tax:

 >>> tax = 0.05
>>> meal_cost = meal_no_tax + (meal_no_tax * tax)
>>> print(meal_cost)
8.925

 Now imagine if one or more of the numbers changed. Let’s say pizza slices are now $4.75 and orange soda is $1.75. You’d have
 to enter all the information again. That takes way too long.

 A better way is to put the eight statements into a text file. Then you can tell Python to read the file and execute the instructions.

 	

 Definition

 A program is a set of instructions. Python programs can be created in a text file. The programs can be run (or executed) over and over
 again.

 	

 Now you can run the program again and again, making updates whenever needed. If the cost of menu items changes or a customer
 wants a different number of slices, you can update the program and run it again. That is a big time-saver!

 A computer program is a set of instructions. So far, you’ve used the Python Shell to type in commands one at a time. Programs
 allow you to create, save, and run more complex sets of instructions. You can easily edit your programs and run them again.
 Your programs might be as short as a few lines, or thousands of lines long.

 Writing Python programs with IDLE

 To write a program, you need a way to input the instructions. IDLE will be your program of choice for this. IDLE is an application
 that makes it easier to develop programs.

 A spell checker for Python

 If you’ve ever used Microsoft Word or Gmail, you’re familiar with the spell-checker feature. It’s saved thousands of homework
 assignments from receiving low grades and stopped misspelled emails from being sent. Each program highlights words you misspell,
 so you can easily find them and make corrections.

 When you write programs, you want something to help catch your mistakes. IDLE does that for you. IDLE automatically color-codes
 your Python statements to let you know you’re using the correct spelling. By using color-coding, IDLE can help alert you if
 you enter a command incorrectly and highlight errors or bugs. In later chapters, I’ll introduce you to some of the features
 of IDLE.

 Integrated development environments

 Other programming languages have software applications similar to IDLE that make the process of programming more enjoyable,
 help prevent errors, and even suggest fixes. As a group, these software applications are called integrated development environments (IDEs). IDLE is one of the most popular ones for Python.

 Using text editors

 In addition to IDLE, you can write and save Python programs in any text editor you like. For example, you could use Leafpad
 or Nano, which are other simple text editors that come with Raspbian. A word of caution: they allow you to write, but they
 don’t help you avoid errors or find mistakes in your code, making IDLE a better choice.

 Starting a new program

 Let’s create our first program. While using the IDLE Python Shell, select File > New Window. You’ll see a blank new window
 appear, with the title Untitled at the top (see figure 2.13). This is the IDLE text editor.

 Figure 2.13. The top window is the IDLE Python Shell. The bottom window is the IDLE text editor that can be used to create and edit Python
 programs. You can open the IDLE text editor using Ctrl-N or by selecting File > New Window from the IDLE Python Shell.

 [image:]

 	

 Tip

 The keyboard shortcut to open a new IDLE text editor window is Ctrl-N.

 	

 Let’s write a program in the IDLE text editor. Enter the following lines of text:

 message = "And now for something completely different."
print(message)

 	

 Tip

 The text editor automatically highlights keywords in the Python language. In this example, you’ll notice print appears in purple text, signifying it’s a Python keyword. Strings are color-coded green.

 	

 This is a classic line from Monty Python's Flying Circus. The show begins with this quote. Figure 2.14 shows the program in the IDLE text editor.

 Figure 2.14. IDLE provides a text editor that helps you write Python programs. The editor highlights words to help you compose your programs
 and identify errors. This program prints a message to the screen.

 [image:]

 Now that you’ve written a program, you’ll want to save it so you can open it, run it, and edit it later.

 Saving programs

 To save the program, choose File > Save. A Save dialog appears. Name the file FirstProgram, and click Save (see figure 2.15). By default, the file will be saved to your /home/pi folder. If you want, you can create a folder for your Python programs.

 Figure 2.15. Save programs in IDLE using the File > Save menu selection or by pressing Ctrl-S. The default save location is /home/pi. When
 the file is saved, it has .py appended to the end of its name, signifying that it’s a Python program.

 [image:]

 	

 Tip

 The keyboard shortcut to save a program is Ctrl-S.

 	

 	

 Note

 When you click Save, the program is saved to your /home/pi folder with the extension .py. You can use File Manager to open
 your /home/pi folder and see the file you’ve saved: FirstProgram.py.

 	

 While using the Python text editor, you can run the program by clicking Run > Run Module, or you can press F5. When you do
 this, the IDLE Python Shell becomes the active window, and you’ll see the message printed to the Shell (see figure 2.16).

 Figure 2.16. You can run programs from the IDLE text editor. Running a program in IDLE displays the results of the program in the Python
 Shell. This shows the output of your first program by displaying a message.

 [image:]

 Python interpreting the program

 When you run your program, Python opens the file and interprets each line of text. The first line creates a variable message with the stored value “And now for something completely different.” The second line of your program calls Python’s print function and passes it the variable message to output to the screen. Excellent—you’ll continue to build more programs in the next part of the book.

 Fruit Picker Extra: creating documents

 This special section is about teaching you new and different things your Pi can do. This extra is about creating documents.

 Writing silly things and saving them

 Let’s start by creating a simple text file and saving it. Using a Raspberry Pi to do homework can be a lot of fun. Maybe you’ll
 write a document describing your latest idea for a game or create a collection of short stories. Rather than use your parent’s
 computer or a pen and paper, use your Raspberry Pi.

 Luckily, Raspbian comes with an application called Leafpad. It’s a lightweight software program for creating documents with
 text.

 Creating a text file in Leafpad

 Here are the simple steps for creating a document in Leafpad:

 1. Click the Menu button in the upper-left corner of the desktop.

 2. Hover over Accessories.

 3. Find Text Editor, and click it. This opens Leafpad.

 4. Type in the Leafpad window: I'm a lumberjack and I'm okay! (see figure 2.17).

Figure 2.17. Leafpad is a text editor that comes with Raspbian. You can access Leafpad from the Accessories menu.

 [image:]

 Now that you’ve created your file, let’s save it (see figure 2.18):

 1. Select File > Save, or use the keyboard shortcut Ctrl-S.

 2. A window appears that you can use to save your file. You need to pick the folder you want to save your file in. Click the
 folder labeled pi. This is your personal folder where you can save your files.

 3. In the Name box, enter lumberjack for the filename.

 4. Click the Save button.

 Figure 2.18. Saving a file in Leafpad lets you choose the folder to save to and enter a filename. The Save window works similarly to how
 you might save a file in Microsoft Word.

 [image:]

 Congratulations! You saved the lumberjack file to your Raspberry Pi’s memory card in the folder located here: \home\pi (this
 means the file is saved in the home folder and in a subfolder called pi). The file contains the sentence you typed: “I’m a lumberjack and I’m okay!”. Go ahead and close Leafpad.

 	

 Nano: a command-line text editor

 Leafpad uses windows and is therefore only available from the Raspbian GUI. But if you decide you prefer to use the Raspbian
 command line, there is a handy text editor called nano that you can use. Type nano in the command line and press Enter to open nano. Nano uses keyboard controls to open, save, and close files. Here is an
 example of the nano text editor:

 [image:]

 You must use the keyboard, not the mouse, to make selections and perform actions in nano. For example, Ctrl-X exits nano.
 Once you get used to using the command keys to get around, nano is useful if you decide you prefer using Raspbian in command-line
 mode.

 	

 Finding a saved file

 You saved the file. Now let’s see if you can use File Manager to find it and open it again:

 1. Open File Manager.

 2. Click the folder icon on the left, labeled pi.

 3. Look at the folders and files listed in the window. Notice at the top that the pi folder is located at \home\pi. This means
 the pi folder is located in the folder home on your Raspberry Pi’s SD card.

 4. Find the lumberjack file in the list of files, and double-click it (see figure 2.19).

Figure 2.19. Viewing the contents of folders using File Manager

 [image:]

 Leafpad will open, and you’ll see the message you typed. Now let’s close Leafpad and learn how to enter some code.

 Have fun making documents and exploring other things your Pi can do!

 [image:]

 Challenges

 Try these challenges, which will test your use of mathematical operators, printing, and variables.

 The matrix

 Using the print function, create a cascading screen of 1s and 0s as seen in popular computer graphics. Hint: remember how you used print(message * 100) to display a message 100 times on the screen. Figure 2.20 shows an example of what this might look like.

 Figure 2.20. Try using the print function and strings to make a screen full of 1s and 0s.

 [image:]

 The matrix challenge is about creating a full screen of digits. Experiment with other numbers and characters.

 Building a brick wall

 For this challenge, create a variable named brick and store a string in it that, when printed over and over again, will make your screen turn into a brick wall (see figure 2.21).

 Figure 2.21. This challenge uses the print function and a string named brick to create a brick wall pattern on the screen.

 [image:]

 Your goal is to figure out what string should be stored in the variable named brick to make this display. Good luck! Bonus: can you make your bricks look more like raspberries or have them contain the initials
 RPi for Raspberry Pi?

 Pi electrons

 For this advanced challenge, let’s examine the electrical current flowing into your Raspberry Pi from the power supply. Then,
 let’s see if you can express that electrical current in terms of the equivalent number of electrons flowing into your Pi per
 second.

 	

 Tip

 You may have learned that electrical current is a measure of charge flowing past a point. One amp (or ampere) of current is equal to one coulomb of charge flowing each second.

 	

 The amount of current your Pi uses depends on how many USB ports you’re using, but let’s assume your Pi is using one amp.
 One amp is equivalent to the flow of 1 coulomb of electrical charge flowing per second. A single electron has the charge of
 1.60 × 10-19 coulombs (or 0.000000000000000000160 coulombs). How many electrons per second does it take to equal 1 amp flowing into your
 Raspberry Pi? Hint: You can represent the charge of an electron as 1.60 * 10**-19.

 For hints and solutions to the challenges, see appendix C.

 Summary

 Programming is about being able to interact and communicate with a computer. Your Raspberry Pi comes with IDLE, a development
 environment for programming in Python. Python provides two different ways you can program:

 	Interactively, by entering commands one at a time using the Python Shell. The Shell is useful for quick calculations or testing
 a command.

 	By creating programs, or sets of commands, saved in a file. Programs allow you to write, edit, and run your code over and
 over again.

 One of the first conversations you can have with your Raspberry Pi is to use Python to talk math. Python provides a full set
 of mathematical operators you can use. Mathematical operators are handy when you need to perform calculations in your programs,
 such as keeping track of a player’s position on the screen. Another way to interact is to use Python’s built-in print function to display text to your Pi’s screen. This lets you create programs that communicate between the computer and you.

 An important idea in programming is using variables to store information—they save you time and can be used again and again.
 In Python, variables can store different types of data, including integers, floats (decimals), and strings. Using variables,
 you can store information and retrieve it any time. This is a key advantage, because it means you don’t have to remember values;
 Python does it for you. You can also change a variable’s value, which is a useful feature when you want to run the same instructions
 with different inputs.

Part 2. Playing with Python

 Minecraft, Pac-Man, and Super Mario Brothers are great games, and they were all created by programmers like you. You’ll have
 to gain more skills to make games like those, but you can create some basic games pretty quickly. All these games have the
 game player interact with the computer. The computer is programmed with logic: instructions that control how the game reacts to the player’s choices. The game is constantly responding to input from the
 user, whether it is a button press or a key press.

 Games are a good way to learn programming because they combine creativity, fun, and logical thinking into one project. Games
 are also interactive, requiring the user to make choices and the computer to respond to those choices. The goal is to make
 the game entertaining, so you’ll use your creativity and imagination to add magic to your games. You decide how you want to
 program your game and how it responds!

 In part 2, you’ll build your own interactive games using Python and your Raspberry Pi. You’ll start in chapter 3 by making a program that creates ridiculous sentences. You’ll learn to use Python to ask users to enter information, store
 the information in variables, and make your Pi respond. Chapter 4 dives into how you can create a guessing game that makes your Pi more intelligent: it will make simple decisions based on
 the player’s choices. You’ll also see how to use Python to make your Raspberry Pi repeat some instructions over and over again.
 In chapter 5, you’ll don a helmet and headlamp and descend into an underground cave. You’ll create a text-based game where the player
 can choose where to go; based on their choices, they may find riches or face an untimely demise.

Chapter 3. Silly Sentence Generator 3000: creating interactive programs

 In this chapter, you’ll see how you can use Python to

 	Create a welcome message for a game

 	Add notes to your code

 	Ask users to input (or type in) information and save it using variables

 	Join strings

 	Display information back to the user based on that information

 Visit a website, start up a game system, or open a mobile application, and it will probably ask you to enter a name and email
 address and create a password. These are all computer programs, and once you’re logged in, they may display special messages
 at the top of the screen saying things like “Welcome, Aaron” (or whatever your name is). Some programs are very sophisticated,
 remembering the games you’ve played, the badges you’ve earned, the balance in your account, or the products you’ve viewed.

 iTunes, Netflix, Facebook, and Gmail are all sites that use computer programs that ask you for information, save information,
 and interact with you based on that information. In this chapter, you’ll see how to do this with Python by creating a ridiculously
 fun word game called Silly Sentence Generator 3000.

 Creating a welcome message

 In Silly Sentence Generator 3000, the game player (that’ll be you) is asked to enter words such as nouns, verbs, adjectives,
 and so on. You’ll store the words as variables and then use them to create ridiculous, nonsensical sentences.[1] Figure 3.1 shows an example of what the finished program looks like.

 1

This is similar to the game Mad Libs, if you’ve ever played it.

 Figure 3.1. Silly Sentence Generator 3000 asks the user to enter their name and some words, and then it creates a silly sentence from
 those words.

 [image:]

 Think about the program like a machine that takes a set of inputs and then creates an output. You’re going to put together
 the machine by creating the instructions that drive it. Conceptually, this “machine” might look something like figure 3.2. Change the words you put in, and you’ll get a completely different result. That’s part of what makes games so much fun!

 Figure 3.2. An interactive game lets you put in information, and then it creates an output.

 [image:]

 Let’s see how to create this game. Once you create it, you can change it and add to it however you like.

 Starting a new program

 If you open a game, one of the first things you see is a main menu or title screen. Let’s use what you know about displaying
 text on the screen to make your program display a title for your game. You start by opening IDLE and creating a new program.
 Open IDLE for Python 3 by clicking the Menu button and selecting Programming > Python 3 on your Raspberry Pi’s desktop (see
 figure 3.3).

 Figure 3.3. Select Menu-->Programming-->Python 3 to open the Python Shell on your Raspberry Pi.

 [image:]

 Give your Raspberry Pi a few seconds to open IDLE. After IDLE opens, you’ll see the Python Shell (see figure 3.4).

 Figure 3.4. The Python Shell

 [image:]

 Press Ctrl-N or choose File > New Window to open the IDLE text editor. You’ll see a blank window, ready for you to start typing
 in your program (see figure 3.5).

 Figure 3.5. The IDLE text editor is where you can type in your Python program. You can also edit, save, and run programs using the menu
 options.

 [image:]

 Using the print function you learned about in chapter 2, let’s make a title screen:

 print("*" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

 Excellent. Feel free to elaborate on the welcome message and the artwork with different characters. Before you go much further,
 you should save the program.

 Saving the program

 Save the program by selecting File > Save or pressing Ctrl-S. This will open a window asking where you want to save the program
 and what to name it. Let’s name it SillySentence (see figure 3.6). By default, IDLE saves your file to your /home/pi folder. Let’s use that folder.

 Figure 3.6. Save your file as SillySentence. This stores the file on your Raspberry Pi in your /home/pi folder so you can run the program
 and make changes to it.

 [image:]

 Click Save, and the file will be saved as SillySentence.py (the .py file extension is automatically appended by IDLE). After
 you save the file, the title at the top of the text editor window will show the filename and file location, as you can see
 in figure 3.7.

 Figure 3.7. The first three lines of your program use the print function to create a welcome message for the Silly Sentence Generator 3000 program.

 [image:]

 Guess the output. What do you think you’ll get when you run the program?

 Let’s try it. Click Run > Run Module (or press the keyboard shortcut F5). Python will read each line of your program and execute
 the commands. The commands print a line of * characters, the welcome message, and another line of * characters to the screen
 (see figure 3.8).

 Figure 3.8. Running the program SillySentence.py displays a welcome message on the screen.

 [image:]

 Excellent! Now you have a proper welcome message for your game. The next thing you need to do is gather some input from your
 game player. Some games use button presses, but you’ll use the keyboard for this game.

 	

 Running programs from the command line

 Another way to run a program is from the Raspbian command line. You can access the command line using the Terminal application
 found under Menu-->Accessories. A window will open with this prompt:

 pi@raspberrypi ~ $

 [image:]

 To run the Silly Sentence program at the command line, enter

 pi@raspberrypi ~ $ python3 SillySentence.py

 The next figure shows this command and the result. Notice that you get the same output at the command line.

 [image:]

 The command line is another option for running Python programs. In part 3 of this book, you’ll see that some programs require you to run them from the command line because you must run them as the
 superuser on your Raspberry Pi.

 	

 Adding notes in your code

 Imagine a comic book without words. You’d have a hard time understanding what was happening from just the pictures. Maybe
 you could figure it out if you studied the comic long enough, but words are important for understanding a story. Lines of
 code can be like a comic book without words: you know something is happening, but you might not be able to tell what without
 guessing.

 That’s why programmers invented the idea of adding comments. Comments are notes in the code that explain what’s happening. They’re as much for you as for other people who may read your code.
 You can use comments to explain why you wrote the program and how parts of the program work.

 Using hashtags for comments

 You add a comment by starting the line with a hashtag (#) and a space and then typing in your comment text. Let’s add comments to the beginning of Silly Sentence Generator 3000 to
 explain the program’s title, its purpose, and who wrote it.

 Listing 3.1. Adding notes to your program

 [image:]

 Comments are helpful to the humans reading the code. But Python ignores comments when it runs your program. You can check
 this by saving your program and running it again; you’ll see that you get the same result as before.

 	

 Easter egg: the Zen of Python

 Python has a hidden surprise regarding Python style. In computer programs, these surprises are sometimes called Easter eggs. You can find the egg by typing import this in the Python Shell and pressing Enter. A beautiful poem called “The Zen of Python” will appear on your screen.

 [image:]

 The poem emphasizes the philosophy of Python. Some of it talks about advanced topics, but many lines discuss a way of coding
 that is meant for anyone who uses Python. The seventh line captures a great idea in Python: “Readability counts.” It’s better
 to write programs using simple instructions that are easy to read than to try to mash together steps in complicated, long
 lines of code. Try taking some deep meditational Python breaths before getting back to your project.

 	

 Python’s creator, Guido van Rossum, said that code is read more often than it’s written.[2] Readability is an extremely important part of programming and is a guiding principle in the style of Python programs. Comments
 are an important way to keep your code easy to read and understand.

 2

Check out the resource PEP 8—the Style Guide for Python, written by Python’s creators: http://legacy.python.org/dev/peps/pep-0008. A wonderful section called “A Foolish Consistency Is the Hobgoblin of Little Minds” talks about the importance of readable
 code.

 Comments are your new friend, and they will make your code easy to read. You’ll keep using them to add notes to your code
 as you collect information from your game player (or user) and create a silly sentence.

 Getting and storing information

 To gather input from users, you can use the input function. Let’s add a line of code in your program that will ask the user for their information and store that information
 in a variable.

 Listing 3.2. Gathering input from the player

 [image:]

 When you use the input function, it displays a prompt and awaits the user’s reply. After the user enters something and presses Enter, the information
 is stored in the variable on the left side of the equals sign.

 In the IDLE editor, input shows up in purple highlighting, indicating that it’s the name of a function in Python. Let’s look closely at the input function to see how it works (see figure 3.9).

 Figure 3.9. The input function displays a prompt to the user. The prompt “Please enter your name:” tells the user what you want them to type in
 or enter. In this case, you’re asking for their name.

 [image:]

 On the right side of the equals sign, the input function is called, and you open a set of parentheses. You can give the input function a string that acts as the prompt. This is the message that is displayed on the screen and that says to the user,
 “Hey you, please type something in”—only more nicely! Make sure your string starts and ends with quotation marks ("").

 Run the program by pressing F5 or selecting Run > Run Module. The program displays the welcome message and then an input prompt
 with a blinking cursor. Python is waiting for your input: it needs you to type something in and press Enter.

 On the left side of the equals sign is the name of a variable in which the information will be stored. When you type something
 in and press Enter, the value of what you typed is stored in the variable player_name as a string.

 	

 Python 2.X

 The input function was previously raw_input in Python 2.X.

 	

 Joining strings

 As in other apps and websites, you want the user to feel welcome, so let’s use their name and give them a proper greeting.
 A nice message to display on the screen might be

 "Hello, Ryan! Let's make a silly sentence!"

 To create a personal feel, you’ll create just such a message that joins the user’s name with some words welcoming them. You
 use the plus (+) symbol to join strings:

 message = "Hello, " + player_name + "! Let's make a silly sentence!"

 If player_name equals “Melissa”, the message is equal to

 "Hello, Melissa! Let's make a silly sentence!"

 Add this to your program, and display the message to the screen using print.

 Listing 3.3. Using + to join strings

 [image:]

 The program has the user input their name, which is stored in the variable player_name. On the next line, a message is made by joining strings. The message is displayed on the screen to create a personalized
 start for the game.

 	

 More tools for strings: string methods

 To make life easier, Python includes some built-in tools for working with strings. These tools are similar to the functions
 you saw earlier, but they’re called methods. Here is an example of a method that capitalizes the first letter of a string:

 "jOHn".capitalize()

 The capitalize method converts “jOHn” to “John”.

 Python has a whole set of built-in methods. One method for strings is the lower method, which converts a string to all lowercase:

 "RABBIT".lower()

 This makes “RABBIT” turn into “rabbit”.

 Another method, upper, makes all the letters uppercase:

 "king Arthur".upper()

 The upper method is great for shouting things. It makes “king Arthur” into “KING ARTHUR”.

 These methods can save you time[a] and make it easier for you to get things done.

 a

You can learn more about the available string methods in the online Python documentation: http://mng.bz/9z49.

 Methods vs. functions

 Methods are a type of function, but they use dot notation. This means you put a period (.) after the item and then the name of the method. If your item was “John Cleese” and the method you wanted to use was lower, you’d write

 "John Cleese".lower()

 Parentheses go after the method name. You put in the parentheses any inputs required by the method. You can check the Python
 documentation online to see what is required.

 Some methods don’t require any inputs, like the string methods capitalize, upper, and lower. But some methods, like count, require inputs. Imagine that you had a set of test answers with T for true and F for false, and you wanted to count the number of true answers. You could use count:

 >>> TestAnswers = "TTTFFFTTTFTFFFFTTTFFTT"
>>> TestAnswers.count("T")
12

 There were 12 true answers on the test.

 	

 Let’s go further and add more inputs.

 Using more than one input

 You have a wonderful start to your game. Now you need to gather multiple inputs from the player. Let’s start by asking the
 player for a noun—the name of a famous person:

 famous_person = input("Enter the name of a famous person: ")

 Next, you should get a few more words:

 adjective1 = input("Enter an adjective: ")
adjective2 = input("Enter another adjective: ")
verb = input("Enter a verb ending in –ING: ")

 With these multiple inputs, your code should now look like the following listing.

 Listing 3.4. Collecting multiple items from the player

 [image:]

 You use the input function multiple times to collect a set of words from the user. Each word is stored in a variable on the left side of the
 equals sign. Try to use names for variables that make sense; it’ll be easier to remember what you stored in them later.

 Building the sentence

 Now let’s create the sentence for your Silly Sentence Generator 3000 by joining the words using +:

 silly_sentence = ("The " + adjective1 + " " + player_name + " is " +
 verb + " the " + adjective2 + " " + famous_person)

 Let’s take a closer look at this line of code in figure 3.10 to see what’s happening.

 Figure 3.10. silly-sentence is created by joining a set of strings. The strings are a combination of strings you enter with quotation marks around them
 and strings collected from the game player that are stored in variables. The parentheses are needed because the code is too
 long to fit on a single line.

 [image:]

 On the right side of the equals sign, the parentheses enclose the strings that are being joined to create a sentence. They’re
 joined (or concatenated) using the + operator. Because the line is so long, you can use a set of parentheses to break it over two lines. Python recommends limiting
 all lines to no longer than 79 characters so the code can be easily read. Looking at the left side of the equals sign, you’ll
 see that the resulting string is stored in a variable named silly_sentence.

 What’s especially awesome is that this code will create a different sentence each time a user enters different words. Because
 you used variables and the variables are storing the input from the user, it’s truly a Silly Sentence Generator!

 Troubleshooting

 When typing code, it’s easy to make mistakes, called bugs. Boo to bugs. To track them down and fix them, you debug your code. Yay for debugging. You may forget to close a set of quotation marks, you may leave out a parenthesis, or you may
 misspell a word. Let’s look at some common errors you might make and how to fix them.

 In the last section, you used the + to join strings and variables that were storing strings. Look at this code, which has an error:

 silly_sentence = ("The + adjective1 + " " + player_name + " is " +
 verb + " the " + adjective2 + " " + famous_person)

 Do you see the problem? The first string ("The) is missing the closing quotation mark ("The "). If you were to run this program, Python would output an error (see figure 3.11). Add the closing quotation mark to the string that is missing it, and then save your program and run it again.

 Figure 3.11. If you forget to close a set of quotation marks around a string, you’ll receive an error from Python when you try to run your
 program. Python will highlight in red the line with the error. Check each of the strings to find and fix the error.

 [image:]

 Another common error you might make is to misspell the name of a variable or use different capitalization. Here’s the same
 line of code, but this time there is a misspelled variable and one variable with incorrect capitalization. Can you spot them?

 silly_sentence = ("The " + adjectve1 + " " + player_name + " is " +
 verb + " the " + adjective2 + " " + Famous_person)

 The first one is adjectve1, which should be adjective1 (the i is missing). The second error is Famous_person, which should be famous_person (the F should be lowercase). The error you’ll see if you run this program is shown in figure 3.12.

 Figure 3.12. A common mistake in programming is to misspell the name of a variable or use incorrect capitalization. The error displayed
 says there is a problem on line 25 of the program. The type of error is NameError: name 'adjectve1 ' is not defined.

 [image:]

 	

 Tip

 The spelling and capitalization of a variable must always be the same. If you call a variable my_number and then later type my_nomber or My_number, Python will give you an error.

 	

 Correct the error by fixing the spelling of adjectve1 so it’s adjective1. After fixing it, you’ll still receive an error, but this time because of the capitalization of Famous_person (NameError: name 'Famous_person' is not defined). Change the capitalization of Famous_person to famous_person. Once you’ve made the corrections, save the program and run it again.

 You’ve debugged your program. Superb job!

 Completing the program: displaying the silly sentence

 You’ve made your silly sentence, and you want Python to show it to the player. Use the print statement to print it out, but like your welcome message, let’s add some pizzazz to it!

 print("*" * 48)
print(silly_sentence)
print("*" * 48)

 Guess what it does? It prints a row of * characters (asterisks) across the screen 48 times. Then it displays the sentence
 and prints another row of * symbols 48 times. Try other characters or patterns of characters to see what looks good to you!

 It looks pretty good, but you can do a bit better. Test your program by running it, and you’ll notice the number of symbols
 doesn’t match the length of the sentence. You’ve programmed it to display exactly 48 asterisks—no more, no less. Instead,
 let’s update those lines to repeat the symbol to match the length of the silly sentence. You’ll use another built-in Python
 function called len, which calculates the length of a string and returns a number telling you the number of characters:

 print("*" * len(silly_sentence))
print(silly_sentence)
print("*" * len(silly_sentence))

 That’s better! Let’s look at the code all together (see figure 3.13).

 Figure 3.13. Silly Sentence Generator 3000 is a fun program that shows how programs can collect information from users, interact with them,
 and provide a more personal feel.

 [image:]

 You’ve completed your program. Let’s do some final testing to see what it can do! See figure 3.14 for an example of the game’s output.

 Figure 3.14. The Silly Sentence Generator 3000 makes some absurd sentences based on words you enter.

 [image:]

 Fantastic! Feel free to update the code to add more adjectives, verbs, or nouns. You’ve learned how to get input from a computer
 user and interact with them by displaying a message to the screen.

 Fruit Picker Extra: Minecraft Pi

 In this Fruit Picker Extra, you’ll explore another unique feature of the Pi: it has its own version of Minecraft. Thanks to
 a collaboration between Mojang, the makers of Minecraft, and the Raspberry Pi Foundation, a free, slimmed-down version of
 Minecraft is available on the Raspberry Pi. Since September 2014, this version, called Minecraft Pi, is automatically installed
 with the Raspbian operating system.

 What’s Minecraft?

 Minecraft is a game that takes place in a 3D virtual world made of blocks. At the most basic level, you run around mining
 (digging blocks by hitting them) and crafting things (combining items in the game to make new items). You can also build things
 in this virtual world using different types of blocks.

 Launching Minecraft Pi

 Look for a Minecraft Pi icon under Menu > Games (see figure 3.15). If you got your Pi before September 2014, see the chapter 6 sidebar “Updating your Pi” to learn how to update Raspbian.

 Figure 3.15. Minecraft Pi is a slimmed-down, free version of Minecraft that’s based on Minecraft Pocket Edition. It’s limited compared
 to the full version but still oodles of fun!

 [image:]

 Click the Minecraft Pi icon to open the game. A Minecraft window will open (see figure 3.16). It’s a little quirky—you’ll see a black window behind the Minecraft window—but this is normal.

 Figure 3.16. The Minecraft Pi main screen allows you to start a singleplayer game or join a multiplayer game. The multiplayer option lets
 you connect to someone else’s world, but you’ll need to be on the same network.

 [image:]

 Click Start Game to begin to play. Next, click Create New to create a new world. After it’s done loading, you’ll find yourself
 in a blocky world (see figure 3.17). Each world is different, so you may see trees, water, dirt, or any number of environments.

 Figure 3.17. Each Minecraft world is made of blocks but is different. You might find yourself in a forest or in a desert. The bottom of
 the screen shows you the items in your inventory. Use the mouse scroll wheel to select different items, or press the numbers
 1–9 on your keyboard.

 [image:]

 In Minecraft, you’re a player who can walk around using the following controls:

 	W —Move forward.

 	A —Move left.

 	S —Move backward.

 	D —Move right.

 	Spacebar —Jump.

 	Mouse movement —Look around or turn.

 	Escape —Exit the game.

 In addition to the basics, here are some other moves you may need:

 	Double spacebar —Fly up in the air (double-tap the space bar and then hold it down to fly up). Press the left Shift key to move down. If you’re
 flying, double-tap the spacebar to fall back to the ground.

 	E —Show the game inventory of blocks and items you can use (it’s limited compared to the full version of the game). Drag items
 you want to the small squares at the bottom of the screen. Press Escape to hide the inventory screen.

 	Scroll wheel or the number 1–9 keys —Select something from one of your player inventory spots at the bottom of the screen. The item selected is in your hand for
 you to use.

 Once you get the hang of moving around, use the mouse left click to dig or break blocks. Use the mouse right click to place
 a block or use the tool in your hand. When you’re ready to leave, press Escape to exit the game.

 	

 Tip

 To exit Minecraft Pi, press Escape > Quit to Title, and then click the X in the corner to close the window.

 	

 Python programming interface to Minecraft Pi

 Minecraft Pi has a fun inventory of materials and tools—even a sword! What’s even better is that there is a Python programming
 interface for Minecraft Pi. Head over to the Raspberry Pi Foundation website to learn more about how to use Python to interact
 with Minecraft Pi.

 Explore the world, dig an underground base, or build a tree house. What will you do?

 [image:]

 Challenges

 Try these challenges to see if you can use the input function and strings to create something fun and interactive.

 Knight’s Tale Creator 3000

 In this challenge, try to use what you’ve learned about input (gathering text) and output (displaying text) to create a Knight’s
 Tale Generator. Here is a story template for you to use:

 There was a brave knight, [player_name], who was sent on a quest to vanquish the [adjective] evildoer, [famous_person]. Riding
 on his/her trusty [animal], the brave [player_name] traveled to the faraway land of [vacation_place]. [player_name] battled valiantly against [famous_person]’s army using his [sharp_thing] until he defeated
 them. Emerging victorious, [player_name] exclaimed, “[exclamation]!!!” I claim the land of [vacation_place] in the name of
 Python.

 The words in brackets are meant to be variables that you’ll create in your program; you’ll need to have the player input those
 words. Remember to use + to join the strings to create a unique knight’s tale, and then print the tale to the screen. Good luck!

 Subliminal messages

 A subliminal message is a hidden message that tries to get people to think of something you want them to think about. Often used in TV commercials,
 it’s a great technique to try with friends and parents to get something you want.[3] In this challenge, try to create a message that is hidden in a large display of characters. The message should be constructed
 by asking for the person’s name, the name of something they want, and a pattern of letters, numbers, and symbols. In your
 program, you should create a message that says, “You really want to buy [player_name] a [thing]”, and hide it within a pattern
 of characters. Figure 3.18 shows an example.

 3

Use subliminal messaging at your own risk (send Ryan pizza!). If people know you’re trying to manipulate their minds, they
 may retaliate with subliminal messaging of their own.

 Figure 3.18. The subliminal-message challenge is about hiding a secret message in a bunch of characters on the screen. Can you see the
 hidden message?

 [image:]

 In this example, the hidden message is, “You really want to buy Ryan a burrito.” Be sneaky, and see if you can find a way
 to create and hide a subliminal message!

 Summary

 In this chapter, you learned how to write interactive programs that get information from a person and provide entertaining
 responses:

 	Use the input function to collect text input from a person. Use it with a variable and an equals sign to store the information that a person
 types in. Here’s an example of asking the user to tell you their favorite color and saving it to a variable called favorite_color:

favorite_color = input("What is your favorite color?")

 	Add notes to your programs by starting a line with a hashtag (#) and a space:

A comment tells you about the code
They help you read the code,
but they are ignored by Python

 	Join strings using +.

 	Use parentheses when you need to join strings that are longer than a single line:

name = input("What is your name?")
favorite_color = input("What is your favorite color?")
message = ("Your name is: " + name + " and your "+
 "favorite color is: " + favorite_color)

 The game you created uses the same ideas to collect information from users and interact with them in the same way they see
 every day on websites, mobile apps, and games.

Chapter 4. Norwegian Blue parrot game: adding logic to programs

 In this chapter, you’ll learn how to create Python programs that

 	Display an introduction

 	Collect input from the user

 	Use if statements to respond to users in different ways

 	Use while loops to repeat things over and over

 	Use Python code libraries to generate random numbers

 Open a popular game, such as Minecraft, or think about a robot, like the Mars rover. Both are computer programs. What do they
 have in common? They both have the ability to take input and do something with it. What they do depends on the input they’re
 given. In a game, if you press Forward and fall off a ledge, your character falls and dies. If it’s your only life, then you’re
 taken to the Game Over screen. Similarly, the Mars rover might be instructed to go to a certain location, but if it detects
 a large rock in its way, it will stop or attempt to drive around the obstacle.

 The logic of how games work or how the rover moves is programmed into them. But how do you create that logic in your programs?
 You’ll learn how by making a simple guessing game about a special parrot, the Norwegian Blue.

 Displaying the game introduction

 The Norwegian Blue parrot is a fictitious parrot that is the subject of one of the most famous comedy sketches from Monty
 Python.[1] Your game is about pretending you’re visiting a pet shop that has a Norwegian Blue parrot for sale. The shop owner challenges
 you to guess the age of the parrot (see figure 4.1). If you guess correctly, then you get to take home the parrot for free.

 1

If you haven’t seen it, check out this Wikipedia page, which has an audio recording of the comedy sketch: http://en.wikipedia.org/wiki/Dead_Parrot_sketch.

 Figure 4.1. The Norwegian Blue parrot has beautiful plumage and makes a great subject for a guessing game.

 [image:]

 Each time the game is played, the program selects a different random number between 1 and 20 as the age of the parrot. The
 game player gets five chances to guess the parrot’s age. If the player guesses correctly, the game displays a funny message
 congratulating them on winning their new parrot. If the player makes a wrong guess, then the program displays a good-hearted
 insult, as if it were offended by the player’s guess. If the player doesn’t guess within five tries, they lose, and the pet
 shop owner lets them know the parrot’s true age (see figure 4.2).

 Figure 4.2. The game logic can be expressed in words. The question marks symbolize when the game needs logic to make a decision. This
 diagram also shows what code needs to be repeated because the player gets five guesses. Each decision has a simple True/False
 or Yes/No answer.

 [image:]

 When this game is completed, you’ll be able to play it. The output will look like figure 4.3. In the example, the player guessed four times incorrectly; but on their fifth try, they guessed correctly. They won, and
 the shop owner gave them the parrot.

 Figure 4.3. The Norwegian Blue Guessing Game is about trying to guess the age of a bird in a pet shop.

 [image:]

 Creating the game welcome message and instructions

 Let’s start by opening IDLE for Python 3 and creating a new program. Open IDLE by clicking the Python 3 icon under Menu >
 Programming on your Raspberry Pi desktop (see figure 4.4).

 Figure 4.4. Click the Python 3 icon to open IDLE’s Python 3 Shell on your Raspberry Pi.

 [image:]

 Give your Raspberry Pi a few seconds to open IDLE. You’ll see the Python Shell. Press Ctrl-N or File > New Window to open
 the IDLE text editor. You’ll see a blank window, ready for you to start typing in the program.

 Let’s type in a few comments at the top of the program in the text editor. Start each line with a hash tag (#) and a space.

 Listing 4.1. Creating comments at the top of your new program

 # Title: The Norwegian Blue Parrot Guessing Game
Author: Ryan Heitz
The goal of the game is guess the age of a parrot.
The program generates a random age between 1 and 20.
The player gets 5 guesses to guess the age correctly.
If they're correct, they win the parrot!

 Change the words to whatever you’d like. Comments are notes for you and whoever you might share your program with, so make
 them read the way you want. Remember to avoid going off the screen with your comments—keep each line pretty short. No more
 than 79 characters per line is good style; this ensures that your beautiful Python programs fit in the window and don’t require
 the user to scroll or resize the window.

 	

 Tip

 You can keep track of which line and column your cursor is on by using the cursor-location information (see figure 4.5). It’s displayed in the bottom-right corner of the text editor. The letters Col stand for column: this shows the number of characters your cursor is from the left side of the screen. The left side is 0,
 the middle is 40, the right side is 80, and so forth.

 Figure 4.5. Once you’ve saved the file, the top of the window displays the filename and the location where the file is stored on your
 Raspberry Pi (/home/pi/NorwegianBlue.py). The cursor location is always shown at the bottom right of the window.

 [image:]

 	

 The program in the IDLE text editor now contains several lines of comments. Before you go further, save your work: press Ctrl-S
 to save the program. A window will pop up in which you can name and choose a location in which to save the file. In the File
 Name text box, type in the name of the file: name it NorwegianBlue. When you click the Save button, the file will be saved as NorwegianBlue.py (the .py extension is automatically added by
 IDLE), and it will be stored on your Pi’s SD memory card in the /home/pi folder.[2] Once the program is saved, the text editor displays the location of the file and the filename along the top of the window
 (see figure 4.5).

 2

You can create a new folder in which to store your Python program. You create a folder by opening the Raspbian File Manager
 application and selecting File > Create New > Folder. Like your shoes, you’ll want to remember where you stored your programs
 so you don’t have to spend a lot of time looking for them.

 Next you need to let the user know the name of your game and the instructions for playing it. Use Python’s built-in print function to write a few lines of code that display a title on the screen.

 Listing 4.2. Making the title display on the screen

 [image:]

 After they see the title, your game players need to know what to do. You should set the scene for the game and give them instructions.
 Let’s create a variable called instructions and store in it the sentences describing how to play the game. As in Silly Sentence Generator 3000 from chapter 3, this variable will contain a string of characters a few sentences long.

 Rather than enter a super-long string all on one line, you want to use a neater way to keep the string on the screen and limit
 it to not more than 79 characters across (remember, good Python style is to keep text on the screen). In Python, you can use
 string literals to do this.

 	

 Definition

 String literals are strings that can hold multiple lines of text and that appear exactly as you typed them in the text editor when they’re
 displayed on the screen. String literals keep the spaces between lines and characters. To make one, start and end a string
 with triple double quotes (""") or triple single quotes (''').

 	

 Let’s add instructions to your program after the program’s comments. You’ll use a string literal for the instructions and
 then print it to the display.

 Listing 4.3. String literals that hold multiple lines of text

 [image:]

 String literals give you the ability to display a string exactly as you type it in the text editor. Think of it as a “what
 you see is what you get” way of creating strings.

 	

 Getting expressive with ASCII art

 Before desktop operating systems (OSs) and games had high-end graphics, computers had limited display capabilities. Computer
 users and programmers invented a new type of art called ASCII art that uses text characters to make images.

 ASCII is a way of storing characters as binary numbers. For example, the letter A is represented as 1000001. Later encodings had many more characters to support more languages, but the name ASCII art stuck. ASCII art uses the set of 95 ASCII characters (letters, numbers, and symbols) in cleverly designed patterns to represent
 images.

 Here is an example of ASCII art for your game title that is made by creating a string literal and printing it to the screen.
 Craft your own ASCII art using a bit of imagination and trial and error:

 bird_art = """

###

 / 0 \ NORWEGIAN
 | >
 |UUU) | BLUE
 |UUU) |
 //UUU) | GUESSING
 //UUU) /
 //UU) / GAME
 //U) /
 // -|--|/
 ==// ==W==W====
 //
 /
###
"""
print(bird_art)

 Sometimes it helps to blur your eyes a bit to see if the image looks like what you want. Get creative, and think how you can
 use uppercase and lowercase letters to create effects, like using a U to represent feathers on the parrot’s wing or W for the parrot’s claws.

 Try these ASCII art sites for fun:

 	www.chris.com/ascii —A huge collection of ASCII art, sorted by topics

 	http://patorjk.com/software/taag —A text-to-ASCII art generator (TAAG). You type in words, and it automatically creates ASCII art for you.

 	http://picascii.com —A tool that converts pictures to ASCII art

 See if you can make some ASCII art for the title screen of your game that’s even better than this. Have fun with it!

 	

 It’s always a good idea to test your programs often to catch any mistakes. Test your program now, and see what you get. The
 title and instructions should display nicely on the screen.

 A common mistake you might make when typing in this code would be to forget some of the quotation marks at the beginning or
 end of the strings. If you do, figure 4.6 shows an example of the error you’ll receive in Python.

 Figure 4.6. Python will display an error if you forget starting or ending quotation marks. The line with the error will be highlighted
 in your program. Fix the program by adding the missing quotation marks, and then save and run the program.

 [image:]

 A similar mistake you might make is forgetting to start your string literals with a triple quotation mark. In this case, Python
 will give you a syntax error message (see figure 4.7).

 Figure 4.7. A string literal must start and end with a set of triple quotation marks. If you forget, Python will tell you that you have
 a syntax error. Add the missing triple quotes to fix the error.

 [image:]

 It’s easy to fix this error by making sure there are triple quotation marks at the beginning and end of the string literal.
 Use the highlighting shown in the IDLE text editor to figure out which line is causing the problem.

 Collecting input from the player

 Your game has a proper introduction; now let’s start interacting with the player. Games, websites, and apps are all about
 causing interactions, whether it’s to create some fun or help you buy something online. Contrast that with the last movie
 you watched. Movies don’t have any interaction—they’re always the same.

 A computer program’s ability to accept input and respond to that input is special. In text-based games like the one you’re
 creating, this interaction occurs through the keyboard. Players type in answers or make choices, and the game responds.

 For this game, you want to ask the game player to guess the age of the parrot. The program knows the parrot’s age and checks
 whether each of the player’s guesses matches it. To make this work, you have to give the program the age of the parrot (it’s
 stored in a variable). This gives you something akin to god-like powers as the programmer—as the game’s maker, you can decide
 what the value is. Let’s create a variable and set it to a value that you pick. One great thing about being a computer programmer
 is that only you know the parrot’s true age.[3]

 3

And anyone else who is reading this book! Later you’ll make the game use a random number so even you don’t know the parrot’s
 age.

 Let’s make the parrot old. Create a variable named parrot_age, and assign it a value of 19.

 Listing 4.4. Creating an age for the parrot

 [image:]

 Notice that in the comments you include a TODO note: this tells you that you have an item to do later.

 	

 Tip

 Use TODOs in your comments as reminders of areas of your program that are left unfinished or need further improvement. Comments are
 your friend, and they’re there to help you. Use them however you need them!

 	

 Next let’s get the user’s first guess. Use Python’s input function (like you did in chapter 2) to collect input from the user and store it in a variable named guess. Give the input function a message that clearly prompts the game player to enter an appropriate value. You don’t want them typing in 50 when
 you’re expecting a number between 1 and 20. In this case, you want them to guess a number from 1 to 20.

 Listing 4.5. Getting a guess and storing it in a variable

 [image:]

 After gathering input from the user, you need to convert the value from a string (for example, “5”) into an integer (simply
 the integer 5). By default, anything input by the game player is stored as a string (even if what they type in is a number).
 Figure 4.8 shows this graphically: you’re gathering input from the user and then converting it to an integer. The int function takes the value in the guess variable, converts it to an integer, and then stores it back in the guess variable.

 Figure 4.8. The input function gathers text typed in by the user; then the text is stored in a variable as a string data type. You take the value
 of the variable (“5”), convert it to an integer (5), and store it as the variable.

 [image:]

 One of the perils of working with people is they can type in whatever they want. If someone typed in “one” instead of “1”,
 you’d see an error like this:

 Traceback (most recent call last):
 File "<pyshell#C>", line 1, in <module>
 int(guess)
ValueError: invalid literal for int() with base 10: 'one'

 This error is saying you haven’t given the int function a valid string that is a number it can convert to an integer.

 If you compare the logic you want to create in your code with the program so far, you can see that you’ve checked off a couple
 of parts (see figure 4.9).

 Figure 4.9. On the left is the logic you want to create. On the right is your code. So far, you’ve welcomed the user and given them the
 game instructions. You’ve also added code to collect their guess.

 [image:]

 Fabulous! Test the program again to make sure it’s working. It’ll now ask you to enter a guess. In the next section, you’ll
 see how to test whether the guess is correct.

 Using if statements to respond to users in different ways

 When you wake up for breakfast, you might walk into the kitchen and look around to see what there is to eat. You use logic
 to pick your breakfast. If your favorite food is in the kitchen, you’ll eat it. For example, if your favorite food is chocolate
 chip muffins, and there are some in the kitchen, then you’ll eat them. If there aren’t, you might have a bowl of cereal. In
 this example, you apply simple logic—you use reasoning to make a decision.

 Computer programs use similar logic to interact with users and the world around them. The interactions are based on a set
 of rules that you (the programmer) write. One of the ways we as programmers can create this logic is with something called
 the if statement.

 In your game, you want to test whether the player’s guess matches (is equal to) the parrot’s age. The logic you want to create
 in your code is as follows:

 	If the player’s guess is equal to the parrot’s age, congratulate them and give them the Norwegian Blue to take home. End the
 game.

 	Else (if the player’s guess isn’t equal to the parrot’s age) display a mildly insulting message that they’re wrong. If it’s
 not their last guess, let them guess again. If it’s their last guess, end the game.

 Let’s use an if statement in the program to create the logic you need.

 Listing 4.6. Adding logic to the game with an if statement

 [image:]

 Let’s take a close look at how the if statement works and how it gives you a way to create logic in your programs (see figure 4.10).

 Figure 4.10. The if statement can control the flow of your programs. This example shows how an if statement can be used to display one message if guess is equal to the parrot’s age or a different message if they aren’t equal.

 [image:]

 The keyword if is followed by guess == parrot_age, and the line ends with a colon (:). guess == parrot_age is the condition that is being tested. The double equals sign (==) is a special operator that checks the equality of guess and parrot_age.

 	

 Tip

 Make sure you don’t use a single equals sign when testing equality. Single equals signs are used to assign (or store) values
 into variables.

 	

 If they’re equals, the if condition is evaluated as True, and Python will execute the indented commands after it. In this case, you’re printing a message:

 Congratulations! You win! Enjoy your Norwegian Blue!

 If the guess is wrong (guess == parrot_age is False), then Python will do the else part. The statements to be executed for the else part are indented four spaces. In this case, if the guess is wrong, the program displays this on the screen:

 Wrong! You obviously don't know your Norwegian Blues!

 If you examine the code and think back to the logic you want to create, you can see how the if statement lets you check whether the guess is correct (see figure 4.11).

 Figure 4.11. The logic you want to create is shown in the code. You use the if statement to check whether the player’s guess is correct.

 [image:]

 You’ve seen how the if statement can make a program make a decision. It’s an easy way to control programs by checking whether something is True
 or False.

 	

 There is no “Ummm... maybe”

 The if statement uses something called Boolean logic. In Boolean logic, the answer must always be True or False. There is no “Ummmm... maybe.” It’s always either True or False.

 Boolean logic has its own set of operations for comparisons. These comparisons should be familiar from math class, such as
 less than (<) and greater than (>). Here is a table of some of the common comparisons you may need to use with your if statements:

 	
 Comparison operation

 	
 Definition

 	==
 	Equal

 	!=
 	Not equal

 	<
 	Less than

 	<=
 	Less than or equal

 	>
 	Greater than

 	>=
 	Greater than or equal

 For this game, you’re using the equality comparison to check whether two values are equal to each other.

 If you need to reverse the logic in a comparison, you can use the not operator. The not operator changes a True to False or a False to True. If x is True, then not x is False.

 Keep these comparison operators in mind. No matter which one you use, Python analyzes the comparison and returns either a
 True or False answer.

 	

 Practicing if statements

 Trying more examples of if statements will help you get used to the logic and how to write them. Let’s do an example that checks to see whether a secret password is correct. If it is, the code should grant the person access; otherwise it should deny them access.

 Listing 4.7. Using an if statement to check a password

 [image:]

 Python’s if statements are a powerful tool for creating programs that respond the way you want them to. You now have the ability to make
 logic so your programs react and respond based on interacting with a user. This is the first step in adding a bit of artificial
 intelligence to your programs. Fabulous job!

 One of the most common mistakes when working with if statements is forgetting to put the colon (:) at the end. Figure 4.12 is an example of an if statement missing the colon.

 Figure 4.12. A missing colon at the end of an if statement will create a syntax error. Python highlights where the error is located. Add a colon at the end of the line to
 fix the problem.

 [image:]

 Errors are common when writing programs. Try to remember to add a colon at the end of your if statements. If Python throws a syntax error box and highlights a space at the end of an if statement, you know what you’ve done.

 Using while loops to repeat things

 You have input from the user, but you need a way to let the user repeatedly guess the parrot’s age. You might get bored repeating
 something over and over again, but computers will happily repeat something as many times as you want. The repeating parts
 of programs are called loops.

 In the case of your guessing game, you’re giving the game player five tries to guess the parrot’s age. Python has several
 types of loops: you’ll use the while loop. A while loop repeats over and over until a certain condition or circumstance is no longer true. What it repeats is for you to decide.
 Each time through the loop, before the program repeats the instructions you gave it, it checks that condition.

 Let’s look at how you can use a while loop with your if statement to give the user only five guesses. To help, you’ll create a variable named number_of_guesses to keep track of the guesses.

 Listing 4.8. Using a while loop to repeat instructions

 [image:]

 [image:]

 Notice how you have to rearrange the code in the program a bit. First you start the while loop, and then you ask the user to input their guess. Also notice that the code to repeat in the while loop is indented (shifted over four spaces). Let’s take a closer look at the key elements of the while loop (see figure 4.13).

 Figure 4.13. Think of the logic you’re trying to create, and then translate it into your code. When you need to repeat something, you can
 use a while loop. When you need to check whether something is True or False, you can use an if statement.

 [image:]

 There is a special thing about a while loop: you must indent all the code that you want the loop to repeat (like you did for if statements). Each line should be indented four spaces from the left (you measure this from where you type the w in while). Similarly, you stop indenting code when you want the while loop to end. Code that isn’t indented is outside the while loop and is only run after the while loop finishes.

 	

 Tip

 The IDLE text editor automatically indents the loop text for you. Indentation is used in Python to group code together.

 	

 Notice that you create a variable named number_of_guesses that helps keep track of how many guesses have been made. It starts with a value of 0; after each guess, the value increases
 by one. When it reaches a value of 5, if the last guess is incorrect, the game should end. As long as the number of guesses
 is less than five, the program will check the guess entered by the player to see if it’s correct. If a guess is correct, the
 game should congratulate the player, break out of the loop, and end.

 A closer look at while loops

 while loops run a set of instructions or code repeatedly, but only while the condition of the while loop is True. This is useful when you want to have something repeat but need a switch that signifies when it should stop.
 A very common use of while loops is in games. A loop makes it so the user can play the game again and again until they say they don’t want to play anymore.

 The while loop in figure 4.14 counts from 0 to 99. Let’s look more closely at its parts.

 Figure 4.14. You can use a while loop to repeatedly perform a task. Code that is part of the loop is indented four spaces. In this case, this while loop displays the numbers from 0 to 99; when completed, it prints the message, “I finished counting!” Typically, the condition
 should be such that code in the loop can make it False and thus end the loop.

 [image:]

 Like an if statement, a while loop has an expression that must be either True or False. The example in figure 4.14 uses count < 100. The line ends with a colon (:), and subsequent lines that belong with the loop should be indented four spaces. In a while loop, you can use any other commands you would normally use in Python. To signify the end of the loop, stop indenting statements.
 Notice that the print("I finished counting!") isn’t indented, so it’s only printed once, after the counting is complete. Python reads the indentation to know when you want your loop to start and end.

 	

 Tip

 You can use if statements in while loops. In your game, you use an if statement in a while loop. Sounds fancy, but you want to check whether the player’s guess is correct, and you need to do this repeatedly to give
 them their five guesses.

 	

 Using loops can save you from writing a lot of code. They let you order a computer to repeat a series of commands many times.
 The commands only need to be written once in the loop.

 Breaking out of a while loop

 Sometimes you need to take a break to eat some food or grab a drink. Python has a break command that lets you break out of a while loop early. In this example, you want your loop to repeat if the player’s last guess was incorrect. If the player guesses
 the parrot’s age correctly, then you want to break out of the loop—even though you haven’t reached the fifth guess, you want to stop looping because the player got the answer right.

 Let’s modify the previous example of counting to 99 so it breaks out of the loop when it reaches the number 77. You’ll use
 an if statement to do this.

 Listing 4.9. Breaking out of a loop

 [image:]

 Practicing while loops

 Let’s try another example of using a while loop to get the hang of how to write them: a while loop that asks your favorite color. See if you can figure out what this program does.

 Listing 4.10. Favorite colors

 favorite_color = input("What is your favorite color? ")

while favorite_color != "blue":
 print("Nope, you got it wrong!")
 favorite_color = input("Try again: What is your favorite color? ")

print("Me too! What a coincidence!")

 This example asks you for your favorite color; if you type in blue, it says, “Me too! What a coincidence!” and ends. If you don’t input blue, the program will keep asking you for your favorite color over and over again (until you say it’s blue).

 Suppose your loop doesn’t produce the output you expect. Maybe the guessing game gives you six guesses instead of five. This
 is when you try to find the problem and fix it—a process also called troubleshooting. Fixing errors in while loops can be tricky because there may be many commands in the loop. The commands execute quickly, so it can be hard to see what is happening. One troubleshooting technique
 you can use is to add a print function in the loop and use it to print out the value of a variable such as the counter each time through the loop.

 In this example, you might add this line in your loop:

 print(number_of_guesses)

 This prints out the value stored in the number_of_guesses variable each time the code goes through the loop. You can see whether the counter is incrementing as you expect and whether
 it’s starting with the right number.

 Using Python code libraries to generate random numbers

 You program should be working great. The player gets five guesses, and if they guess the age of the parrot correctly, they
 win! One exciting part about games is their unpredictability—you never know when you might win or lose. Your next task is
 to have the program pick a random number for the Norwegian Blue’s age. This will make it more thrilling because even you won’t
 know the answer!

 If you’ve ever tried to fix a broken bike, toaster, or car, you probably needed some tools. Bare hands are good for many things,
 but they probably weren’t enough for the job. Similarly, in Python, the standard tools (your bare hands) aren’t enough. Sometimes
 you need to get a toolbox and take out a big hammer, soldering iron, or screwdriver.

 Python has toolboxes as well. These toolboxes are also called modules. Each toolbox (module) contains different sets of tools (methods) that are useful for specific jobs. Here are some examples
 of common Python modules:

 	datetime provides useful tools for getting the current time and date and formatting them nicely.

 	random gives you the ability to create random numbers.

 	math supports a larger set of mathematical functions.

 	fileinput supports reading information from files.

 Before you can use these toolboxes, you must first carry them into the room, like you might grab a toolbox of bike tools to
 fix a bike. To bring in a toolbox, you use the import command:

 import random

 You can add this line anywhere in a program before you need to use it to create a random number. Add it right after the comments
 at the beginning of your game program. This brings in the toolbox at the beginning of the program and makes it easier for
 other people who read your code to see what toolboxes (or modules) you’re using. What the line is actually doing is loading
 the toolbox into Python’s memory so you can use the tools in your program.

 Now that you’ve added the toolbox, you can use a tool called randint to generate a random number between 1 and 20. This code replaces the line parrot_age = 19:

 parrot_age = random.randint(1,20)

 Notice that you enter the name of the toolbox, put a period or dot (.), and then put the name of the tool you want to use. This particular tool, randint, needs you to give it two numbers: the lower and upper numbers that the random integer should be between. If you wanted a
 number between 1 and 100, you’d write

 parrot_age = random.randint(1,100)

 With these two lines of code added, the complete code listing should match the code in figure 4.15.

 Figure 4.15. To randomly select a number, you need to import the random library and use the randint function to select a random integer between 1 and 20.

 [image:]

 Outstanding! You’ve made a Norwegian Blue Guessing Game and learned how to create logic in your programs using both if statements and while loops.

 Fruit Picker Extra: Scratch

 Have you been wondering why your Pi has an icon that is a picture of a cat head? That is the icon for Scratch. Developed by
 the Massachusetts Institute of Technology (MIT) to help teach programming, Scratch is a simple program you can use to create
 animations and games on your Raspberry Pi. Scratch is also its own easy-to-use programming language that is based on dragging
 and dropping program blocks.

 Open Scratch by clicking Menu > Programming > Scratch on your Raspbian desktop. When Scratch opens, you’ll see a cat in a
 white square. Figure 4.16 shows an overview of the Scratch interface.

 Figure 4.16. The Scratch interface is divided into an area for sprites to move around and a script area. You can create programs for your
 sprite by dragging blocks and connecting them in the script area.

 [image:]

 Scratch can do many things, and we won’t explain them all. You can learn more about how to create projects with Scratch by
 clicking Help > Help Pages. The help tells you how to use each block and provides some tutorials.

 Do you have an idea for a project? As in Python, you can make programs that ask for input, display messages, generate random
 numbers, and use if statements and loops. You might add a dog sprite and make it sing like a human when you click it. Or try creating a Scratch
 version of your favorite classic videogame.

 [image:]

 Challenges

 Let’s play Rock, Paper, Scissors! For this challenge, try to create the classic game.

 Rock, Paper, Scissors is played with your hands. Each person simultaneously makes one of three shapes with their hand: the
 shape of a rock, a piece of paper, or a pair of scissors. If two people make the same shape, it’s a tie. The three game shapes
 interact with each other like this:

 	Rock beats scissors.

 	Paper beats rock.

 	Scissors beats paper.

 Let’s plan how to attack this challenge. Here are some of the key elements:

 	Use a while loop to repeatedly ask the player to choose rock, paper, or scissors.

 	Create a list of choices:

choices = ["Rock","Paper","Scissors"]

 	Use the random library to have the computer randomly choose among the three choices (“Rock”, “Paper”, and “Scissors”).

 	Remember, randint selects a random integer. You can select and store the random choice in a variable:

computer_choice = choices[random.randint(0,2)]

 	You can select different items in the list by using a number representing where the item is in the list. This number is called
 a list index. In this case, there are three items in the list. The first item has an index of 0, the second item has an index of 1, and
 the third item has an index of 2. To display the second item in the list, you write print(choices[1]); the code displays “Paper” on the screen.

 	Use an if statement to compare the player’s choice to the computer’s choice and let the player know who won.

 	Ask the player if they want to play again. If so, the loop should repeat; if not, the game should end.

 See if you can come up with a program! See appendix C for solutions.

 Summary

 In this chapter, you’ve learned some new techniques for working with text in Python and a few foundational elements for creating
 logic in your programs:

 	You can make Python print things just how you want them. String literals allow you to create text that spans multiple lines.
 Use them to make text appear the same way you typed it in your programs.

 	You can write intelligent code that can make decisions. if statements add logic to programs by responding only if a certain condition is True. You can combine if with else statements to make a program do something different if the condition is False.

 	You don’t have to type things repeatedly—you can make Python repeat them for you. while loops can be used to repeat things over and over, as long as a certain condition is True. The break command lets you exit a while loop if you need to.

 	You can use modules (toolboxes) to access more powerful tools to use in your programs. The random module has a tool that generates random integers.

Chapter 5. Raspi’s Cave Adventure

 In this chapter, you’ll create a game to learn new programming techniques:

 	Drawing flow diagrams to map out complex programs

 	Using Boolean operators to check input from users

 	Making code for multiple choices using if, elif, and else statements

 	Creating and using your own functions to organize code and avoid repeating code

 	Nesting if/else statements to create games with complex logic

 Like a great book, a game can create an entire imaginary world in your mind. One of the most exciting aspects of games is
 when you feel like you’re inside the game. This doesn’t require virtual-reality goggles or high-definition graphics. You can
 create this immersive feeling even in a completely text-based game by connecting with the player’s imagination and creating
 a world where they can make decisions and determine their own fate. To create games with imaginary worlds, you often have
 to generate a sense of depth by having the user move from room to room or scene to scene. The game should allow the user to
 choose their own path and introduce elements of surprise. Finally, you should also have some great descriptions that make
 the player feel like they’re in the room.

 In this chapter, you’ll create just such a game, based on exploring an underground cavern. Along the way, the player will
 have to make choices, and if they make a wrong decision, the game is over. If they make the right decision, they’ll find untold
 treasures of gold, rubies, and diamonds!

 Project introduction: Raspi’s Cave Adventure

 The game is set in medieval days: a time of stone castles, knights with swords, and (some say) mythical beasts that breathe
 fire. Your main character is a young boy named Raspi.[1] One day Raspi is out gathering firewood and gets lost in the forest. He stumbles upon the entrance to a cave. He peers in
 the entrance and finds that the cave splits into a left tunnel and a right tunnel. He remembers a folk tale his grandmother
 used to tell of a mysterious cave in this very forest that holds enormous treasures. It’s said the treasure is guarded by
 a ferocious fire-breathing dragon. Raspi can’t resist the temptation to explore the cave; although he knows he should turn
 back, he walks slowly into the dark cavern. This is the start of your next project: Raspi’s Cave Adventure.

 1

Because this is your game, feel free to make Raspi a girl or a boy.

 The game can have many different outcomes, depending on the path the player chooses for Raspi. A short sample of the program’s
 output is shown in figure 5.1.

 Figure 5.1. Raspi’s Cave Adventure requires the player to make decisions about which way to go. Based on their choices, the player will
 meet different fates.

 [image:]

 Let’s look at a map of the cave to see where the treasure is and also where the dragon lives! Because you’re the game designer
 and developer, you’ll use this as a guide to write the code creating the game logic (see figure 5.2).

 Figure 5.2. This map of the cave system shows that Raspi will need to make many choices. If he makes the wrong ones, it’s game over! But
 if he makes the correct choices, he’ll find the legendary treasure!

 [image:]

 Let’s examine the different paths and choices Raspi has in the cave and his possible fates. After Raspi enters the entrance
 to the cave, he can choose to go left or right.

 Left cave

 If Raspi goes into the left cave, he’ll find himself near an underground river. He’ll need to decide whether to take a boat
 down the river, swim down the river, or walk along the side of the river. If Raspi decides to take the boat, he’ll soon learn
 that it has a hole in it, and he’ll sink (game over). Should Raspi choose to avoid the river and walk along its edge, he’ll
 quickly become distracted by his thoughts, trip on a rock, and hit his head (game over). If Raspi is adventurous and decides
 to swim in the river, he’ll make it to the other side and find a hidden treasure room filled with riches!

 Right cave

 If Raspi decides to go into the right cave, he’ll need to decide whether to climb down into a hole using a rope or walk toward
 what appears to be a torch. After walking toward the torch, Raspi will enter a cave full of crystals. The crystal cave sounds
 promising, but unfortunately a crystal will fall from the ceiling, ending Raspi’s life (game over). Alternatively, if Raspi
 uses the rope and goes down the hole, he’ll find himself in the dragon’s lair with a final choice: whether to fight the dragon
 or go into a dark room. If Raspi fights the dragon, the dragon will eat him; but if Raspi heads toward the dark room, he’ll
 discover that it’s filled with thousands of gold coins, rubies, and diamonds. Raspi is rich and very much alive!

 Hey wait, you need a plan (flow diagrams)

 Your goal is to create a program that allows the player to make multiple decisions. You have a map of the cave; now you need
 to make that map into a diagram that can guide you as you write the code for the game. Much as you did in chapter 2, you’ll lay out the logic of the game and then write the code to create that logic.

 You can make a map that also functions as a flow diagram. You can visualize the set of decisions and the outcome of each decision.
 Figure 5.3 shows the map of the cave as a flow diagram.

 Figure 5.3. The flow diagram for Raspi’s Cave Adventure shows the various decisions the player can make and their outcomes. It’s a map
 of the logic of the game, and it can guide you as you program that logic.

 [image:]

 Each decision in the diagram is represented by a diamond shape. Inside the diamond is the question at hand. Outside the diamond
 are arrows representing the possible choices available and the result of each choice. Sometimes choices lead to other choices
 (other diamonds). Other times, a choice leads to winning the game or game over!

 Flow diagrams follow a few simple rules (see figure 5.4). You can construct one for any set of decisions, including those used by games, robots, and apps.

 Figure 5.4. Flow diagrams are ways to visually show the logic of a program. They represent decisions, choices, and activities using diamonds,
 arrows, and boxes. This example shows a flow diagram for a program that turns on a light if a button is pressed.

 [image:]

 A flow diagram is a great way to organize your thoughts and break down complex problems into a series of simple steps. Remember
 the Python way: simple is better than complex.

 Which way should Raspi go? (checking input)

 With your diagram in hand, the first bit of logic is the user choosing whether to go left or right. Let’s display text to
 tell the player what they see in the cave, and then prompt them to enter a choice. You prompt the user and collect information
 with the input function.

 Listing 5.1. Choosing the left or right cave

 [image:]

 This example uses the input function and then an if/else statement to create the logic you want. The code asks the user to make a choice by typing L or R. The if statement checks whether the user’s choice equals “L”. If True, then the code displays a message that the player entered
 the left cave. If their choice isn’t equal to L (if that condition is False), then the program moves to the else statement and displays a message that the player entered the right cave.

 Handling unexpected input

 Users often do unexpected things. As a programmer, one thing you have to be thinking about is what happens if the user does
 something you don’t expect. The person playing your game can type in whatever they want. Let’s examine some different possibilities
 and see what would happen:

 	What if the user types in l (lowercase L)?
 If the user types in l, the program checks (evaluates) whether “l” is equal to “L”. Because these two strings are different, this condition is False.
 The program will execute the else statement and display a message that the user entered the right cave.

 	What if the user types in left?
 If the user types in left, the program evaluates whether “left” is equal to “L”. Because these two strings are different, this condition is False.
 The program will execute the else statement and display a message that the user entered the right cave.

 	What if the user types in something like 44992 or banana just to be silly?
 The program checks whether “44992” or “banana” is equal to “L”. Because neither of these equals “L”, this condition is False.
 The program will execute the else statement and display a message that the user entered the right cave.

 	What if the user enters anything except L?
 You guessed it; they will see a message that they entered the right cave.

 This isn’t ideal. Let’s improve the code as follows:

 1. Permit the user to enter L or l as well as Left or left to enter the left cave.

 2. Permit the user to enter R or r as well as Right or right to enter the right cave.

 3. Take care of anything else by having the game scold the user for entering the wrong thing and end the game in a humorous way.
 Maybe a stalactite could fall from the ceiling or a cave spider could bite them!

 To create this behavior, you need to introduce the Boolean or operator. You also need to convert the input information to all uppercase letters using Python’s upper() method. Finally, to handle all three possible outcomes, you’ll use a new if/elif/else statement (see listing 5.2).

 	

 Methods

 Methods are functions that only work on specific types of Python things, which programmers call objects. In this example, .upper() is only able to work on strings, so it’s called a string method. Methods are called differently than other functions. Methods use dot notation, which means you type the name of the thing (object) and then put a dot (.) and the method.

 Here are some examples:

 	"Left".upper() produces “LEFT”.

 	"riGHt".lower() makes “right”.

 	

 Here’s the updated code to apply these new ways to avoid errors in user input.

 Listing 5.2. Improving the code for the player’s choice

 [image:]

 The upper() method converts the input text to all uppercase. If the user enters LEFT, LeFt, left, or Left, the string is converted to “LEFT”.

 The Boolean or operator: checking whether either one is True

 The or operator checks whether one condition or another condition is True. This gives your code more flexibility—it’s able to accept
 more than one input and still proceed. If either one is True, the if statement is True, and Python does whatever is indented under the if statement.

 elif is short for else if

 The elif statement is short for else if. It checks whether another condition is True. Think of it like a multiple-choice question. If the user doesn’t enter L or Left, the program moves on to the next option. If the user doesn’t enter R or r, the program moves to the else statement and drops a stalactite on their head. Game over! Take a closer look at the if/elif/else statement in figure 5.5 to see how to make one.

 Figure 5.5. The if statement can come in many flavors. This is an if statement with two elifs and an else. It creates logic in the code that can do many different things depending on the user’s input. In this case, you’re having
 a player guess the age of a parrot. The program will tell them if their guess is too low, too high, correct, or invalid.

 [image:]

 Notice that you can have more than one elif statement. In fact, you can have as many as you want. With the if/elif statement, you can create the logic needed for your cave.

 	

 Boolean logic operators: and, or, and not

 Python has a complete set of Boolean operators that you can use to make expressions:

 	or is used when you want the expression to be True if either of the operands is True.

 	and is used when you want the expression to be True only if both operands are True.

 	not is used to change an operand from True to False or False to True.

 Let’s look at a few examples using these operators.

 and OPERATOR

 Pretend you want to create a program giving you access to the system only if your name and password are both correct. You could write this using the and operator:

 if name == "Ryan" and password == "PiTaster":
 print("The name and password are correct!")
 print("Access granted! Welcome!")
else:
 print("Access denied!")

 Only if both name and password are correct will the program grant you access. Try creating one yourself!

 or OPERATOR

 Next let’s imagine you want to create a program giving someone a free pizza if their age is under 20 or they have a coupon. Let’s assume you have a variable age that is the age of the person and another variable coupon that already holds a value of True or False. Using the or operator, you create this logic like so:

 if age < 20 or coupon == True:
 print("You get 1 FREE PIZZA")
else:
 print("No free pizza for you!")

 If either is True, the user gets a pizza. If both are True, they get a pizza. If neither is True, then no free pizza!

 not OPERATOR

 Finally, let’s say you have a variable is_absent that is equal to True or False. is_absent tells you whether a student is present or absent. To print a “Welcome to school!” message if a student is not absent, you can use the not operator:

 if not is_absent:
 print("Welcome to school!")
else:
 print("Please return to school as soon as possible. School misses you!")

 The not operator changes a variable or statement that is True to False and a False one to True. It helps you create conditional statements
 (if statements) that make more sense when you read the code. As you can see, the Boolean operators give you many different options
 for creating logical expressions.

 	

 Time to go spelunking (a fancy word for exploring caves) with your new knowledge of if/elif/else and Boolean operators!

 Turning flow diagrams into code

 For now, let’s concentrate on building a program for the left cave. The player has entered the left cave and needs to make
 their next choice. Looking at the map and the flow diagram, the next thing your player encounters is an underground stream.
 The player sees a boat and must choose among three options:

 	Keep walking along the side of the river.

 	Climb into the boat.

 	Swim in the river.

 Each of these will be an if or elif statement in your code. But wait! There’s a fourth possible outcome—that they don’t enter one of the three choices. You’ll
 make this the else statement. Figure 5.6 shows the left cave flow diagram and the code that creates the logic you need.

 Figure 5.6. The left cave has a stream inside it, and the user has three choices of what to do next. In the code, you create an if statement followed by two elif statements to cover each of the options. The else statement is used to control what happens if the user inputs something other than one of the three choices.

 [image:]

 You display a few words about what Raspi sees inside the left cave. You ask the user to choose what to do next. Then, once
 you’ve gathered this input, you evaluate that information and respond accordingly. Notice that each of the possible choices appears
 in an if or elif statement and is indented under the left cave if statement. The user has to choose whether to keep walking (W), use the boat (B), or swim (S). For each case, the program should display information as you designed it in your flow diagram.

 	

 This isn’t only for caves

 Boolean operators and if/elif/else statements are great for when your program needs multiple options or choices. Let’s see if you can create a program that
 has four possible options: A, B, C, and none of the above. The following snippet shows an example of using elif statements to create these four possible outcomes. In this example, you’re pretending that a person is on a game show and
 picking a door with a prize behind it:

 print("Welcome to the Pi Game Show!")
print("There are three doors with prizes behind them: A, B, and C.")
door = input("Select a door by typing A, B, or C").upper()

#Logic for door selection
if door == "A":
 print("You've won a new car!")
elif door == "B":
 print("You've won a new boat!")
elif door == "C":
 print("You've won a trip around the world!")
else:
 print("Uh oh! You didn't follow directions!")
 print("Game Over!!!")

print("Thank you for playing.")

 Creating programs with choices based on logic is a powerful programming skill. By combining simple choices, you can create
 complex programs.

 	

 Excellent work! You’ve created the left cave logic for Raspi’s Cave Adventure. Let’s add more decisions.

 Simplify! Making your own functions

 Yikes! The code for the left cave is starting to look long (and kind of ugly and hard to read), and you still have the right
 cave to go. How can you simplify your program?

 The answer is functions. This time you aren’t going to call a built-in Python function—you’ll make your own!

 Functions are like mini programs that you can create to organize or simplify your code. When you have long programs, you can
 take logical chunks of code (code that all goes together) and put them in a function. Once you’ve created (or defined) a function,
 you can call (or use) the function in your code.

 	

 Note

 Functions should always be defined at the top of a program. The definition of a function must come before it’s called (or
 used).

 	

 Let’s see how this works by making (or defining) two functions for the left cave.

 Listing 5.3. Creating functions for the left cave

 [image:]

 Before moving on, let’s look more closely at how you can make your own functions (see figure 5.7). You’ve created two functions: left_cave and wrong_answer. Let’s rewrite the cave program to use (or call) those functions. Whenever you call a function, it’s as if the code is all
 in that spot, but you’ve hidden it.

 Figure 5.7. Functions simplify your code and can reduce repetition. Use the def keyword to create a new function, and indent the function code under it. If you need a function to return a value, include
 a return statement in the function.

 [image:]

 Some functions need to return something; others don’t. You might have a function that prints something to the screen or plays
 a sound; those types of functions don’t need to return anything. In the example code, the wrong_answer() function is a good example. You call the function like this:

 wrong_answer()

 Alternatively, when a function returns something and you want to store that information, you write it like this:

 choice = left_cave()

 This takes whatever information is returned by calling the left_cave() function and stores it in a variable named choice. Listing 5.4 shows how you can simplify the program by calling the left_cave() and wrong_answer() functions.

 Listing 5.4. Using the new functions to simplify your code

 [image:]

 [image:]

 Amazing! The resulting code is easier to read, and you avoid repeating code. Notice that you call the wrong_answer() function twice. This saves you from having to write those lines of code twice. Also, if you ever want to change the ending for a wrong answer, you only have to change it in one place (in the function). In addition to helping
 you organize your code, the ability to reuse functions is one of their key features. You haven’t changed the functionality
 of your program, but by using functions, you’ve made it easier to read and simplified it.

 	

 Definition

 Refactoring is a programming technique that focuses on reorganizing and simplifying code in a program. Refactoring makes the code easier
 to read and less complex.

 	

 	

 Passing parameters: functions with inputs

 You’ve looked at two different functions so far: one that doesn’t return anything and one that does. Functions have another
 feature in addition to their ability to return something—they can also receive information. Think of it as input to a function.
 In programming speak, you say that the function has a parameter or parameters. Let’s see how this works with an example. Suppose you have a guessing game, and you want to create a function that prints
 a message to the screen telling the player if their guess is too high, too low, or spot on:

 def check_guess(guess, answer):
 # Compare the guess to the answer
 if guess == answer:
 print("You're correct!")
 is_correct = True
 elif guess < answer:
 print("Too low!")
 is_correct = False
 elif guess > answer:
 print("Too high!")
 is_correct = False
 else:
 print("Invalid guess")
 is_correct = False
 # Return True or False depending upon if the guess is correct
 return is_correct

 In this case, the def statement has the name of your function (check_guess). Inside the parentheses are two parameters separated by a comma: these are inputs to the function. The first input or parameter
 is guess. This is a guess the user has made. The second is answer, which is the number the user is trying to guess. The function then compares guess and answer and tells the user whether they were right or guessed too low or too high. The great thing about this function is that it
 can work with any numeric guess and answer (1 to 10, 1 to 1,000,000). By using parameters, you make the code more flexible.

 	

 The best way to learn about functions is by doing. Here are some functions dos:

 	Use a simple name that describes the function.

 	Put comments about your function inside the function.

 	Return values when you want to use them in a program.

 And here are some functions don’ts:

 	Use complex names.

 	Create functions with only one line of code.

 	Forget to put a colon at the end of the def statement.

 	Forget to call the function in your main program.

 Fantastic programming! You’re achieving the Zen of Python by simplifying your code with functions.

 Finishing the left cave

 To complete the left cave, you need to add code for Raspi’s choices: walking along the river’s edge, taking the boat, or swimming
 (the winning ending). You’ll make each of these choices its own function to help organize your code and keep it uncluttered.
 You can call the functions in the main program, shown in the next listing.

 Listing 5.5. Calling functions for each of the left cave choices

 [image:]

 [image:]

 See the source code for chapter 5 for examples of each of these functions (walk(), boat(), and swim()). They follow a structure similar to the left_cave() and wrong_answer() functions. Feel free to make up your own descriptions of what happens to Raspi or change the outcomes to how you would like
 them.

 Exploring the right cave

 In this game, Raspi has two initial cave choices: left or right. Programming the right cave is similar to the left cave. Once
 again, you’ll use the map and flow diagram as your guides. Let’s add the logic for the right cave, which starts with the user
 finding a hole in the ground (see figure 5.8).

 Figure 5.8. The right cave consists of a series of decisions. One wrong move, and certain death awaits Raspi. If the user makes the right
 choices, Raspi will find the treasure. The code uses if/elif/else statements and functions. See the code files for chapter 5 for examples of the functions.

 [image:]

 The right cave uses logic similar to that of the left cave. You’ll use if, elif, and else statements to handle all the possible choices. As with the left cave, notice that you indent the if/elif/else statements under the other if statements to create the logic you desire. Nesting is the name given to indenting one set of if statements inside another. The technique of nesting if statements is useful when you have logic that you want executed only if a prior condition is True. In this case, you only
 want to give the user the choice of fighting the dragon if they have already decided to climb down into the hole using the
 rope. The logic now matches the flow diagram for the game.

 Let’s take another look at nesting using a different example. Imagine that you want to write a program that displays a secret
 message after you enter the correct secret name (“Tim”) and correct secret password (“raspberrypi”). If the secret name is
 guessed correctly, then the user has to guess the secret password (see figure 5.9) to see the secret message.

 Figure 5.9. if statements can be nested within other if statements. In this case, the user is only prompted to guess the password if they first guess the secret name correctly.
 Python uses indentation to figure out what statements belong together and which if statements are nested within other ones.

 [image:]

 If the password is correct, the user has to enter their favorite color. If the color is red, the program will display the
 secret message (see figure 5.9).

 Troubleshooting

 A common error when creating if/elif/else statements is forgetting to include the colon at the end of the if statement. In this case, when you run the program, you’ll see a message pop up in IDLE saying “invalid syntax”, and the Python
 text editor will highlight the end of the line in red (see figure 5.10). You can fix this error by adding a colon at the end of the if statement.

 Figure 5.10. Highlighting by IDLE when there is invalid syntax due to a missing colon (:) at the end of an if statement

 [image:]

 Another error is forgetting to put a colon at the end of the def statement when creating your own function. In this case, you’ll see the same message (“invalid syntax”) and red highlighting at the end of the line missing the colon.

 Finally, a third common error is using a single equals sign (=) when comparing two values in an if statement. Python will highlight the offending equals sign as shown in figure 5.11. Remember, you need to use a double equals sign (==) to test the equality of two values. This returns True (if the values are equal) or False (if they’re not). The single equals
 sign (=) is used to assign a value to a variable, like x = 7.

 Figure 5.11. Highlighting by IDLE when there is only one equals sign

 [image:]

 Fix this error by replacing the single equals sign (=) with double equals signs (==). As you can see, small problems can cause programs to have errors. If you get really stuck, ask a friend to look at your
 code, or post your code to a forum and ask for help. You’d be surprised by how helpful other programmers are!

 Fruit Picker Extra: playing video

 In addition to displaying text, as in the cave adventure game, the Raspberry Pi can output sound, show images, and play videos.
 Let’s see how you can play a video on your Raspberry Pi. See appendix A to learn how to set up your Raspberry Pi’s Wi-Fi adapter. There are many different video player apps you can use on your
 Pi, but a great one is OMXPlayer. It was created specifically for the Raspberry Pi and comes preinstalled with Raspbian. We’ll
 explore the audio (or sound) playback capabilities of OMXPlayer in chapter 8.

 To show off your Pi’s capability, let’s play a high-definition demo video from a movie called Big Buck Bunny.[2] It’s about 10 seconds long and has no sound. Open LXTerminal, and at the prompt enter

 2

This is a video developed to test video playback and display.

 omxplayer /opt/vc/src/hello_pi/hello_video/test.h264

 You should see a silent video play for about 10 seconds. Enjoy it! If you know of a video file on the web (.mp4 or H.264 format),
 OMXPlayer can play it as long as you have a good internet connection. For example, to watch the trailer for another video
 called Sintel, make sure you’re connected to the internet and type in

 omxplayer https://download.blender.org/durian/trailer/sintel_trailer-
[image:] 720p.mp4

 Why not open movies in a web browser? Because OMXPlayer can play them much more easily—it was designed to use the Pi’s graphics
 processing unit (GPU) for playing videos. This means most of your Pi’s resources are available to do other things.

 Live streaming: exploring from your Pi

 You’ve been pretending to explore a cave. Now let’s see if you can use your Pi to explore the ocean or space by live-streaming
 videos from web cameras. You can turn your Pi into a way to see the sharks and sea turtles by connecting to a live stream
 coming from the Monterey Bay Aquarium in California. Or maybe you want to see what the Earth looks like from the International
 Space Station right now.

 With a few steps, you can configure your Pi to play live-streaming videos. First you need a small utility called Livestreamer
 that can take live video streams and output them for OMXPlayer to play, just like your test video. Let’s make sure you have
 the Python package installer. Make sure you have a working internet connection, and then open the Raspbian command line using
 the Linux Terminal (select Menu-->Accessories-->Terminal), and install the software:

 sudo apt-get install python-pip

 After it finishes, install Livestreamer:

 sudo pip install livestreamer

 Now you need a link to a live stream of video. Livestreamer will work with many of the most popular live-streaming sites.
 For this example, you’ll use Ustream, but you could also use YouTube Live and many others. If you go to the Ustream website,[3] you can find links to live-stream videos. Here are few different ones found on the site:

 3

Explore the UStream live-streaming videos at www.ustream.tv/explore/all.

 	Watch sharks and turtles at the Monterey Bay Aquarium: www.ustream.tv/channel/9600798.

 	Check out the sea life living in the kelp beds at the Monterey Bay Aquarium: www.ustream.tv/channel/9948292.

 	See the view from the International Space Station (it may appear dark if the Space Station is in the shadow of the Earth):
 www.ustream.tv/channel/9408562.

 	

 Note

 These links may change over time. You can get the latest links by searching the Ustream website.

 	

 You’ll need an internet connection for the next couple steps. You need to figure out the video resolutions available. For
 the Monterey Bay Aquarium live stream, enter

 livestreamer http://www.ustream.tv/channel/9600798

 A few messages appear, and at the bottom are the supported stream resolution(s). For this live stream, you should see a response
 that says

 Available streams: mobile_240p (worst, best)

 This means mobile_240p is the only available resolution for the video stream. This is a low-resolution stream, but it’s still fun to watch. Tell
 Livestreamer to send the video to OMXPlayer with this command:

 livestreamer http://www.ustream.tv/channel/9600798 mobile_240p --
[image:] player omxplayer --fifo

 Great! You should see a video open after a few seconds. It will be low resolution, but sit back and watch the amazing live
 view of fish, including sharks (see figure 5.12)!

 Figure 5.12. The Pi’s monitor is a live stream from an aquarium. Check out that shark! By using Livestreamer and OMXPlayer, you can stream
 live video from exotic places, like water holes in Africa and the International Space Station.

 [image:]

 	

 Note

 Notice that you have to type in mobile_240p. You’ll type in one of the supported resolutions from the previous step.

 	

 Press Ctrl-C to stop Livestreamer and OMXPlayer. Enjoy exploring the world from your Pi!

 [image:]

 Challenges

 These challenges focus on making improvements to the Raspi’s Cave Adventure game. If you get stuck, check appendix C for hints and solutions.

 Introducing dramatic pauses

 This first challenge is to include some drama in the game by adding two-second pauses between the print and input statements throughout Raspi’s Cave Adventure. This will create anticipation about what will happen next and give the player
 more time to read the messages before responding.

 Here are some clues for how to accomplish this. First, Python has a built-in time module that provides some useful functions for working with time. At the top of the program, you need to add an import statement to use this built-in Python toolbox:

 import time

 Once you’ve imported the time module, you can call the sleep function in the program:

 time.sleep(1)

 This example code makes the program pause for 1 second. It takes the form time.sleep(seconds), where seconds is the number of seconds you want the program to pause. For example, if you wanted to display a message, wait 3 seconds,
 and then display another message, you’d write

 print("It was a dark, dark cave...")
time.sleep(3)
print("Suddenly, a dragon appears out of the shadows.")

 Go ahead and try to create some drama. If you get stuck, check appendix C or review the code files.

 Random demise

 Games are always more interesting when they have an element of unpredictability. Try to add some surprises to your game by
 improving the wrong_answer function to randomly display a message from a set of possible ways your player could meet their demise. Here are a couple
 of examples to get you started:

 	Raspi sees a rock on the ground and picks it up. He feels a sharp pinch and drops the rock. He realizes it wasn’t a rock but
 a poisonous spider as he collapses to the ground.

 	Standing in the cave, Raspi sees a small rabbit approach. Raspi gets a bad feeling about this rabbit. Suddenly the rabbit
 attacks him, biting his neck.

 Hint: Create if/elif/else statements with different endings, and then use the random module to select from the possible endings.

 Play again?

 Modify the game so that no matter how it ends, the user is always given the option to play again. Hint: Create a variable
 play_again that is initially set to “Y”. You’ll also need to add a while loop to your game that will make the game repeat as long as play_again is equal to “Y”.

 Scream!

 If you have a set of headphones or your Pi is connected to a TV with built-in speakers via an HDMI cable, you should be able
 to play sounds and hear them. Let’s look at a simple program to play a sound on your Pi:

 import os
scream_file_path =
[image:] "/usr/share/scratch/Media/Sounds/Human/Scream-male2.mp3"
os.system("omxplayer " + scream_file_path)

 Test the program, and you should hear a scream. Now see how you can integrate the scream or other sounds into Raspi’s Cave
 Adventure. You can find more sounds on your Pi in the Scratch folder: /usr/share/scratch/Media/Sounds/.

 	

 Note

 OMXPlayer works best with sound files ending in .mp3. Only some files ending in .wav will work. We’ll talk more about sound
 files and the OMXPlayer in chapter 8.

 	

 See appendix C if you need help solving these! Good luck!

 Summary

 You can create engaging programs by putting logic and instructions together into more complex programs:

 	Use flow diagrams to map out complex programs before you begin.

 	Create flexible programs that can handle unexpected input through the use of Boolean operators.

 	Build programs with multiple choices and outcomes using if, elif, and else statements. Chain together multiple elif statements to create as many choices as you need.

 	When you have logic embedded within logic, nest if statements to create decisions that depend on prior choices or conditions.

 	Organize your code and cut down on repetition by defining your own functions and then calling them in your program.

Part 3. Pi and Python projects

 Let’s face it. Pressing buttons, playing sounds, and lighting up cool colored lights is fun! Now you get to use your Pi to
 make those things happen. You’re going to create interactive projects that use your Pi’s input and output pins. This makes
 your Pi a special type of computer that doesn’t just show images on the screen, but that can control and sense the world around
 it. This realm is called physical computing. Robotics is physical computing, but think about all the creative possibilities such as making interactive art, creating
 smart rooms that sense your presence and turn on a light or play music, or producing something that can alert you if it’s
 about to start raining or your pet is drinking water.

 In part 3, you’ll build projects that can interact with the world using Python and your Raspberry Pi. The projects will require some
 additional parts that you can purchase individually or as part of a kit, such as the CanaKit Ultimate Kit, Adafruit Starter
 Kit, or MCM Electronics Starter Kit:

 	Raspberry Pi 2 Model B including SD card, power supply, cables, keyboard, and monitor

 	Breadboard

 	GPIO ribbon cable for the Model B+ (40 pin)

 	GPIO breakout board

 	1 dozen jumper wires, male to male

 	1 red LED (light-emitting diode)

 	1 green LED

 	1 blue LED

 	3 push buttons

 	3 resistors, 10K ohm

 	3 resistors, 180 ohm (or between 100 and 300 ohms)

 	Headphones or powered computer speakers

 You start in chapter 6 by setting up your Pi with an electronics breadboard, building a simple circuit, and controlling an LED (light) using Python.
 You’ll learn how to communicate through your Pi’s output pins to make something happen. In this case, you’ll make an LED light
 up. Chapter 7 dives into creating an interactive guessing game that uses lights to respond to a player’s input, letting them know with
 different colors whether their answer is right or wrong. In chapter 8, you’ll learn how to listen to your Pi’s input pins by wiring up a push button on your breadboard and then responding when
 it’s pushed; and you’ll complete a project that combines buttons and sounds to make your own DJ Raspi sound mixer. By the
 end, the goal is for you to have the knowledge, skills, and confidence to think up and create your own Pi and Python projects.

Chapter 6. Blinky Pi

 In this chapter, you’ll be learning about

 	Giving your Pi the ability to talk to the outside world through connectors to anything

 	Programming the world outside your Pi with simple electric/electronic circuits

 	Programming the connectors using your previous Python knowledge to make light patterns

 Setting robots in motion, creating smart homes with sensors, and designing an interactive electronic art exhibit sound like
 vastly different topics, but they’re all things you can do with your Raspberry Pi. In each case, the Pi can act as the brain
 and interact with the world by doing things like

 	Checking a robot’s sensors and controlling its motors

 	Sensing a room’s occupants and adjusting the thermostat or lights

 	Controlling sound, motion, and light as part of an art display

 In this chapter, you’ll set up your Pi to control small light bulbs called light-emitting diodes (LEDs). You’ll make the LEDs blink using Python. To do this, you’ll need to learn a bit about how to build electrical circuits on
 breadboards. If you’ve never heard of a breadboard, don’t worry! It’s a small board with lots of holes in it to make it easier to build electrical circuits. You’ll also be using short wires (called
 jumper wires) to connect certain holes. You’ll even learn how to add resistors that keep your LEDs from burning out. See figure 6.1 for a list of parts and what they look like; gather the parts, and let’s get started!

 Figure 6.1. The Blinky Pi project requires parts that are commonly found in Raspberry Pi starter kits or that can be purchased online.

 [image:]

 Setting up your Pi for physical computing

 Your Pi is unique compared to most computers because of its input and output pins, called GPIO pins. Let’s learn how to work with those pins.

 	

 Definition

 GPIO stands for general purpose input and output. These are the pins on your Raspberry Pi that allow it to sense and control things around it.

 	

 GPIO pins

 The Raspberry Pi 2 Model B and Raspberry Pi 1 Model B+ have 40 pins located on the edge of the board, arranged in 2 rows of
 20 pins each (see figure 6.2). Most of the pins on a Pi are used for input and output, so they’re often referred to as the Pi’s GPIO pins.

 Figure 6.2. The Raspberry Pi 2 Model B has a set of pins arranged along the edge and corner of the Pi board.

 [image:]

 	

 Warning

 This project is written for Raspberry Pi 2 Model B. Earlier models of the Raspberry Pi have only 26 pins. See appendix B for information about the differences from the more modern Pi boards. To complete this project with a Raspberry Pi 1 Model
 B, you may select different pins to light up your LEDs.

 	

 Because all the pins look identical, you need a key or diagram to tell you what each one does. Figure 6.3 shows the pins labeled.

 Figure 6.3. The Raspberry Pi B+ has 40 pins. They do different things: some provide 5 volts or 3.3 volts, some are ground pins (0 volts),
 and many of them are input and output pins that you can program.

 [image:]

 	

 Physical pins vs. GPIO pin numbers

 In this book, we’ll always refer to the GPIO pin numbers, not the physical pin locations. The physical pins are numbered from 1 to 40 (shown in the circles in figure 6.3). The GPIO pin numbers go from 1 to 26, and those numbers don’t match the physical pin numbers. For example, GPIO 24 corresponds
 to physical pin 18. By always using the GPIO numbering, it will be easier to wire your circuits and create programs.

 	

 Wow, that’s a lot of pins! Some pins are for power and are labeled either 3V3 or 5V. These produce 3.3 volts or 5 volts, respectively.
 There are also 8 ground pins and 26 GPIO pins[1]—26 pins, just like there are 26 letters in the alphabet.

 1

Oddly, you’ll notice that the GPIO pins are numbered from 2 to 27. Pins 0 and 1 are used for communicating with other computer
 chips using a super-special protocol called I2C. These are labeled ID SDA and ID SCL in figure 6.3.

 The GPIO pins support sending out electrical signals (output) or listening for electrical signals from sensors (input). In
 your body, your brain can send signals to your hand to smack yourself on the forehead (try it!)—this is just like the output
 from a Pi. Signals are sent out of your Pi to make something happen in the world.

 The opposite of output is input. When someone pokes you, your body can detect that poke using nerves in your body. An electrical
 signal (input) is sent to your brain so you know you’ve been poked. This is like the way your Pi can be used to detect input
 or actions in the world.

 You’ll learn how to output signals in this chapter and chapter 7. Chapter 8 will cover detecting input from the world, such as detecting when a button has been pressed.

 Let’s get ready to connect some wires! But wait: connecting an LED directly to the GPIO pins on the board of your Raspberry
 Pi isn’t feasible, because the pins are so close together. What can you do? You need more space to build circuits.

 Breaking out the GPIO pins to a breadboard

 To give you room, you’ll move the GPIO pins over to a breadboard. This is called breaking them out. To do this, you need a ribbon cable, breakout board, and solderless breadboard (see figure 6.4).

 Figure 6.4. To easily create projects using your Pi’s GPIO pins, you can connect the Pi to a breadboard using a ribbon cable and breakout
 board. The parts shown are examples of the ones commonly found in many Raspberry Pi kits.

 [image:]

 Breadboards make it simple to prototype circuits. Like a park might provide large, open fields that make it easy to play sports,
 think of a breadboard as a nice, open electrical playing field where you can play with electrical parts. The breadboard allows
 you to plug wires and components into small holes. You can build and rebuild circuits on a breadboard with little effort.

 Find your breakout board, and insert it into the top of the breadboard. Line up the pins before you push it down hard (see figure 6.5). Your particular breakout board may look a little different, but they all act the same. With the breakout board in place,
 it’ll be easier to build circuits with your GPIO pins.

 Figure 6.5. Carefully line up the breakout board, and then press it firmly into the breadboard. The two rows of pins on the breakout board
 should straddle the center gap.

 [image:]

 Connect one end of the ribbon cable to the Pi’s GPIO pins; line it up carefully before you push it down. Then connect the
 other end of the cable to the breakout board on your breadboard (see figure 6.6). A breakout board has a notch in it so the ribbon cable will only fit one way.

 Figure 6.6. Connect one end of the ribbon cable to the breakout board. Connect the other end to your Raspberry Pi.

 [image:]

 	

 Warning

 Ribbon cables usually have a stripe that marks the first wire. White or grey ribbon cables often use a red stripe. Black ribbon
 cables often have a white stripe. These mark the first wire on the cable. Make sure this first wire is connected toward the
 edge of your Pi’s board and away from the USB ports.

 	

 Breadboard basics

 A breadboard[2] has a set of internal connections that you can’t see. But if you had X-ray vision, you’d see that certain holes are connected.
 Let’s look at the connections in your breadboard (see figure 6.7).

 2

Prior to the development of the kind of breadboards we’re using, people built circuits on pieces of wood that were used to
 cut bread on (hence the name). They needed a quick way to connect circuits, and by drilling holes and using nails and wires,
 they could use bread boards to try different circuits.

 Figure 6.7. Breadboards have internal connections. You need to know about them in order to build circuits. Rows of pins are connected
 horizontally, but not across the gap in the middle. Long rails called power buses run vertically along the sides of the board.

 [image:]

 On this breadboard, rows are labeled with numbers (1–30), and the columns have letters (a–e on the left side and f–j on the
 right side). You can refer to a specific hole in the breadboard by saying its row number and letter. For example, if you wanted
 to refer to the hole located in row 25, column c, you could say 25c (see figure 6.8). Just as you might find your seat at a stadium by walking along the aisle to find the correct row, and then moving along
 the row to find the right seat, you’ll use the letters and numbers to guide you in building your circuits.

 Figure 6.8. To find a specific hole on a breadboard, use the row and column labels. This is a close-up of a breadboard, showing how you
 can find the location of hole 25c (we’ll refer to the hole as BB25c, where BB stands for breadboard).

 [image:]

 Breadboard (BB) holes

 We’ll refer to the row and column, but we’ll prepend the letters BB so you know it’s the breadboard location we’re talking about. Figure 6.8 shows the location of BB25c. If we’re talking about a GPIO pin or connection, we’ll add GP before the number (GPIO pin 21 is GP21).

 Try to keep in mind what is connected in a breadboard and what isn’t. If you forget, you can always look back at figure 6.7. For example, notice that BB25 a, b, c, d, and e are all connected. Similarly, BB30 f, g, h, i, and j are connected. But the left side of the board isn’t connected to the right. For example, BB25e isn’t connected
 to BB25f. To connect them, you’d put a jumper from BB25e to BB25f.

 You can see vertical columns of holes along the sides of the breadboard. These are the power buses and provide easy ways to connect electrical components to power (positive) and ground (negative).

 	

 Circuits 101

 Let’s learn about electricity and circuits. At the simplest level, a circuit is a loop or path where the electrical power starts at a source (the positive side of a power source), goes through one or
 more electrical components (such as a light or motor), and then completes the loop (or path) by connecting back to the negative
 side of the source.

 WHAT IS ELECTRICITY?

 Electricity is the flow of charge. Typically, it is the flow of electrons, which have a negative charge. To get electrons to flow, you
 need to have a difference in charges. Just as the north pole of a magnet is attracted to its opposite—the south pole of another
 magnet—positive and negative electric charges are attracted to one another. If the charge is free to move, it will move. We
 generally think of circuits as having electricity flowing from the positive (+) side of the source to the negative (-) side
 of the source. For your Pi, the power is coming from the power supply (Micro USB plug). The Pi as a power source can provide
 either +3.3 volts or +5 V (volts). It provides this power through the physical pins 1, 2, and 4, but can also send +3.3 V
 out any of the 26 GPIO pins (you’ll program it to do that soon).

 VOLTAGE (VOLTS)

 Voltage is a measure of the difference in electrical charge between the positive and negative source. When you have two different
 charges, they’re attracted to one another (positive and negative attract). The greater the difference in charge, the greater
 the force (or electrical pressure) wanting to move charges through the circuit from the positive side to the negative side.

 Voltage is measured in volts (V), named after Alessandro Volta, who is credited with inventing the first battery. A 9 volt
 (or 9 V) battery has a greater electric force for moving charge than a AA battery, which only has a voltage of 1.5 V.

 CURRENT (AMPERES)

 The current in a circuit is the amount of charge flowing. So whereas voltage is a measure of how badly charges want to flow, the current is a measure of how much charge is actually flowing.

 Imagine that you could be inside a wire and see the charge flowing through it. A large current would mean a lot of charge
 (usually electrons) bumping along and through the wire over some period of time. A small current in that same wire would mean
 a lot less charge flowing over that same time period. Current is measured in amperes (A), named after André-Marie Ampère.
 A current of 1 ampere (or 1 A) is equivalent to the amount of charge of 6.241 × 1018 electrons flowing through a wire per second! That is a lot of charge flowing. You can decrease the current in a circuit by
 increasing the resistance of the circuit to the flow of electric charge.

 RESISTANCE (OHMS)

 The resistance in a circuit is a measure of how much it opposes the flow of charge (current). A light bulb, a motor, and your body all have
 resistance. The opposite of resistance is conductance. Substances such as metal (copper, silver, and gold) are all good conductors, and this is why we build circuits with metal
 wires for the electricity to flow through.

 Sometimes you need to control the current (the flow of charge). Resistors are used to do this; they’re made of materials that
 slow down the flow of charge. The most common ones are made out of carbon (you’ll be using these in your projects). The resistance
 of a circuit is measured in ohms, named after Georg Ohm, and is represented using the Greek symbol omega (Ω).

 PI CIRCUITS

 You can think of your Pi as providing 3.3 V from the positive side of the Pi or, later, coming out of one of the GPIO pins.
 This +3.3 V is a force that is trying to push electric charge to the negative (-) side of your source. The negative side is
 sometimes called the ground—think of it as a big sink or reservoir to which electricity wants to flow if there is a path to get there. During the next
 few chapters, you’ll build circuits with LEDs and resistors. You use a resistor with an LED to decrease the flow of electric
 charge (the current) so it won’t be too large and burn out your LED. Burning an LED smells bad!

 	

 On your breadboard, think of all the GPIO pins as potential sources of voltage (positive). Circuits from the GPIO pins should
 end back at any one of the many ground (negative) connections.

 Building the LED circuit

 Your first project is to light up a red LED. You’ll control the LED using GPIO pin 21 (GPIO21). You need these parts:

 	Raspberry Pi, ribbon cable, and breakout board connected to your breadboard

 	1 red LED (5 mm)

 	1 180 ohm resistor

 	1 jumper wire (male-to-male)

 You’ll build the LED circuit on your breadboard and then program it to light up. Figure 6.9 shows the circuit diagram. To light the LED, you’ll have electricity (+3.3 V) flow from your Pi’s GPIO pin 21 through the
 LED, through the resistor, and then to ground (0 V).

 Figure 6.9. Circuit diagram for the blinking LED project

 [image:]

 Figure 6.10 shows the LED circuit built on the breadboard. Note that there are many different ways to create this circuit—this is just
 one way. Let’s walk through the steps to build the circuit.

 Figure 6.10. LED circuit built on the breadboard. You’re using GPIO pin 21 as the power source. The light won’t turn on until you program
 the voltage to come out of the pin.

 [image:]

 	

 Note

 You may have a different breadboard than the one used in this book. If so, the numbering on your breadboard may be different
 than what is shown here. In that case, you’ll need to create the circuit following the same principles, but with different
 numbered holes.

 	

 Step 1. Connect the jumper from GPIO pin 21

 Raspberry Pi GPIO pins can output 3.3 V. You could pick any pin, but this project uses GPIO pin 21.

 Connect a short piece of wire from GPIO21 on your breadboard to an empty row on the breadboard. Use row 25. Firmly push the
 wire into the hole. The metal tip of the wire should go down into the hole, not sit on top.

 The breakout board pins are connected to rows on the breadboard. We’ll refer to the holes on the breadboard (see figure 6.11). Insert one end of the jumper into BB20i and the other end into BB25a.

 Figure 6.11. The breakout board has labels that correspond to the pins on your Pi. To connect a wire to GP16, you plug it into the breadboard
 in the hole labelled BB18f or BB18j.

 [image:]

 Step 2. Add the red LED

 It’s time to connect the red LED. LEDs only let electricity flow through them one way, so it’s important to put them in the
 right way. LEDs have two wires or legs. The longer leg is called the anode and connects to the positive side of the circuit (see figure 6.12). The shorter leg, called the cathode, connects to the negative or ground side of the circuit.

 Figure 6.12. LEDs have two legs (wires) coming out of them. The longer leg is called the anode and connects to the positive side of the
 circuit. The shorter one is called the cathode and connects to the negative side of a circuit.

 [image:]

 With the red LED, connect the longer leg to BB25e and the shorter leg to BB25f. You may need to bend the legs and push them
 a bit to get them into the holes.

 Step 3. Connect a resistor

 Grab your 180 ohm resistor.[3] You can identify a resistor by its color-coded bands. A 180 ohm resistor has colored bands of brown, grey, and brown (see
 figure 6.13). They are followed by a fourth band that indicates the tolerance or quality of the resistor. Common colors for the fourth
 band are gold (±5% tolerance) and silver (±10% tolerance).

 3

If you don’t have a 180 ohm resistor, you can use a resistor with a value between 100 and 330 ohms. If you use a resistor
 with a value that is too large, the LED may not light up or will be dim. Try experimenting with different resistors to adjust
 the brightness.

 Figure 6.13. The value of a resistor is determined by its colored bands. See the sidebar “Resistor color codes” for a chart; there are also many online color-code charts.

 [image:]

 The resistor prevents too much electric current[4] from passing through your LED and burning it out. Insert one end of the 180 ohm resistor into BB25j and the other end into
 the negative (-) power bus (or ground).

 4

Current is a measure of the flow of electric charges per second. If the current through an LED is too high, the LED will burn
 out.

 Electricity will flow either way through a resistor, so which way you connect it doesn’t matter. Remember that the negative power bus or ground rail is running vertically along the right side of the breadboard. Most boards
 have a blue stripe next to it.

 	

 Resistor color codes

 Resistors have color codes that tell their value and tolerance. This chart shows you how to read the resistor color bands.

 [image:]

 For example, consider a resistor with red, purple, red, and silver bands. Follow these steps to use the chart:

 	Look up the digit for the first band and the digit for the second band, and put them together. In this case, the digits are
 2 and 7: put them together, and you get 27. Note that you don’t add the numbers; you treat them as the first and second digits
 of the resistor value.

 	Find the multiplier by looking up the color for the third band. In this case, it’s 100 ohms (red).

 	Put it all together: 27 × 100 ohms is 2,700 ohms or 2.7K ohms (K = 1,000).

 	The fourth band (silver) tells you the resistor has a tolerance of ±10%.

 A red, purple, red, and silver resistor is a 2.7K ohm resistor with a ±10% tolerance. Use this handy chart any time you need
 to look up the value of a resistor.

 	

 That’s it! You have a completed LED circuit built on your breadboard. Now it’s time to program it!

 Software: blinkLED program

 Open IDLE by choosing Python 3 under Menu > Programming. This opens IDLE to the Python 3.x Shell. In the Python Shell, let’s
 check to see if your Pi has the GPIO libraries you need already installed:

 >>> import RPi.GPIO as GPIO

 If you don’t see an error, you’re ready to go. If you see an error saying there is no module named RPi.GPIO, please refer to the sidebar “Updating your Pi.”

 	

 Updating your Pi

 Before programming, you need to check that your Pi is up to date. Make sure your Pi is connected to the internet. Open the
 Terminal program by going to Menu --> Accessories --> Terminal, and run the following commands to update your Raspberry Pi
 and be certain you have the Raspberry Pi GPIO packages you need.

 First, let’s update the apt-get database. The apt-get program handles installing and removing software from your Pi. In Terminal, enter this command:

 pi@raspberrypi ~ $ sudo apt-get update

 You’ll need to wait while a bunch of files are downloaded and installed. You’ll see lots of messages displayed in Terminal.
 When the command completes, you’ll see the Terminal $ prompt again. Next, to get the latest Pi software, enter

 pi@raspberrypi ~ $ sudo apt-get upgrade

 Once again, files will be downloaded and installed. After a series of messages, you’ll see a warning about the upgrade using
 additional disk space, and this prompt: “Do you want to continue [Y/n]?” Enter Y and press Enter to continue the upgrade.

 This is a great time to grab a sandwich and soda. It can take 15 minutes or more for the update to complete. When it’s finished,
 you’ll have the latest Raspberry Pi software and Python libraries, including the ones you need to communicate with and control
 the GPIO pins.

 	

 You’re going to write a program that blinks an LED. It’ll send a voltage (+3.3 V) out of a GPIO pin to light the LED, then
 turn it off, and repeat that over and over. Begin by creating the following new program in IDLE. In the Python Shell, start
 a new program by pressing Ctrl-N or selecting File > New Window.

 Listing 6.1. Blinking LED program

 [image:]

 Save the program as blinkLED.py in your home folder. The program can’t be run the same ways you’ve run programs before using
 IDLE.

 Running the program

 Select Run > Run Module (or press F5) from the IDLE text editor to run your program. With older versions of Raspbian, programs
 using GPIO pins must be run from the Raspbian command prompt as the superuser (or root)[5]. If you run the program at the Python Shell in IDLE, you’ll get an error:

 5

In October 2015, the Raspberry Pi Foundation released Raspbian version “Jessie,” which allows you to run programs using the
 GPIO pins directly from IDLE. With “Jessie” you don’t need to open the command prompt. Simply press F5 or select Run > Run
 Module from the IDLE text editor menu to run your programs.

 RuntimeError: No access to /dev/mem. Try running as root!

 In this case, you use the sudo command to do this. To run the blinkLED.py program, open LXTerminal and enter the following command:

 pi@raspberrypi ~ $ sudo python3 blinkLED.py

 Behold the blinking LED! Try making the light blink faster by adjusting the value in the sleep function. Use a smaller number of seconds, such as 0.5 or 0.1.[6] To stop the program, press Ctrl-C.

 6

Too small a number may cause the light to appear to stay on, but more dimly. This is because your eyes can only perceive blinking
 that is greater than about 1/25th of a second, or 0.04 of a second.

 	

 Note

 Stopping the program with Ctrl-C may result in the light being left on (depending on when you press it). Also, the next time
 you run the program, you may see a runtime error, but the program still works. We don’t cover it here, but look online for
 the Python commands try/except/finally and the GPIO.cleanup() command. It’s a fancy way to make sure all the GPIO pins are reset when you exit the program.

 	

 Troubleshooting

 If the light isn’t blinking, here are some things you can check:

 	Are the on and off messages displaying on the screen? If so, it’s probably not your code that has a problem. Check the circuit
 on the breadboard. Make sure the ribbon cable is connected properly, with the first wire connected toward the edge of your Pi, away from the USB ports. Double-check that the jumper, LED, and resistor
 are connected to the correct holes.

 	Could your LED be inserted the wrong way? Make sure the shorter leg is toward the negative or ground side. Try turning it
 around.

 	Double-check the size of the resistor you used in the circuit. If the resistor is too large, the LED won’t light up. A resistor
 that is between 100 and 300 ohms should work.

 	Look through your Python program for errors. Check that you have set LED_pin_red equal to 21 and that you’re setting it HIGH and then LOW.

 blinkLED: how it works

 Let’s take a closer look at how the blinkLED.py code works.

 Loading libraries

 The import commands load the libraries or toolboxes you want to use in your program:

 import RPi.GPIO as GPIO
import time

 These commands load the Python libraries for controlling the Pi’s GPIO pins. They also load the time library so you can use the sleep function to control the rate of blinking.

 	

 Importing libraries with the as keyword

 Notice the as keyword in import RPi.GPIO as GPIO. Why can’t you just type import RPi.GPIO?

 The as keyword tells Python to load the library to a certain name you specify. It’s kind of like giving the whole library a nickname.
 In this case, it’s so you can refer to RPi.GPIO as simply GPIO.

 An example will make it clearer. Once you’ve imported the RPi.GPIO library as GPIO, you can type GPIO.setmode(GPIO.BCM). Without it, you would have to type RPi.GPIO.setmode(RPi.GPIO.BCM). You can see how using as GPIO saves you some typing!

 	

 Once the libraries are loaded, you can set up your GPIO pins.

 Setting up a GPIO pin for output

 To set up a GPIO pin, you first need to tell Python on your Pi that you’ll be referring to pins by the standard breakout numbering
 scheme. These are the numbers printed on the breakout board. You use the setmode function:

 GPIO.setmode(GPIO.BCM)

 BCM stands for Broadcom—the maker of the computer chip that the Pi uses. Next you tell your Raspberry Pi that you’ll be using
 LED_pin_red (GP21) for output, meaning you’re planning to send some electricity out of it:

 LED_pin_red = 21

GPIO.setup(LED_pin_red, GPIO.OUT)

 GPIO.OUT prepares GP21 to send out +3.3 V of electricity.

 Looping and blinking

 Finally, you create an infinite while loop and turn the LED on (set GPIO.HIGH) and off (set GPIO.LOW). You also add a delay using the sleep method found in Python’s time library. Notice how the sleep function takes a parameter that is the number of seconds to sleep or pause. In this case, you use 1 second:

 while True:
 GPIO.output(LED_pin_red, GPIO.HIGH)
 print("On")
 time.sleep(1)
 GPIO.output(LED_pin_red, GPIO.LOW)
 print("Off")
 time.sleep(1)

 The print commands display messages to the screen. Although they aren’t necessary to blink the LED, they can help debug your program.
 If you do use them, the screen could quickly fill with messages. Set a longer delay time to prevent this. If you see the messages
 on the screen but your LED isn’t lighting up, then you probably have an error in your circuit and not in your program. Check
 your wiring, try turning around the LED, or try a different LED in case that one is defective.

 Adding more LEDs

 One LED is fun, so three LEDs must be lots of fun. Let’s try adding green and blue LEDs and modify the program to control
 them. Here are the parts you need:

 	Raspberry Pi and circuit from before

 	1 green LED

 	1 blue LED

 	2 180 ohm resistors

 	2 jumper wires (male-to-male)

 Building the circuit

 You’ll follow the same process as before to add the green and blue LEDs. Figure 6.14 shows what the circuit diagram looks like now, and figure 6.15 shows the circuit on a breadboard.

 Figure 6.14. Circuit diagram for three LEDs: red, green, and blue. You’ll use 180 ohm resistors like before. They will all be controlled
 by different GPIO pins. Red will use 21, green will use 22, and blue will be connected to pin 23. You could use any of the
 26 different GPIO pins.

 [image:]

 Figure 6.15. The three-LED circuit is built on the breadboard. Each LED and its corresponding resistor are placed in a row together. This
 example uses rows 25, 27, and 29.

 [image:]

 To add the green LED, follow these steps:

 1. GP22 is located on the left side of the breakout board in row 8 on the breadboard. Connect it to row 27: insert one end of the jumper into BB8c and the other end into BB27a.

 2. Connect the long leg of the green LED to BB27e and the shorter leg to BB27f. Bend the legs if needed.

 3. Connect a 180 ohm resistor (brown, grey, and brown) from BB27j to the closest hole in the negative power bus.

 Here are the steps to add the blue LED:

 1. GPIO23 is located on the right side of the breakout board in row 8 on the breadboard. Connect it to row 29: insert one end of the jumper into BB8i and the other end into BB29a.

 2. Connect the long leg of the blue LED to BB29e and the shorter leg to BB29f. Bend the legs if needed.

 3. Grab a 180 ohm resistor. You guessed it! It’s color-coded brown, grey, and brown. Connect it from BB29j to the closest
 hole in the negative power bus.

 Multiple LEDs: program it!

 You need to make a few changes to the program to add more LEDs and get them all blinking at the same time. The following listing
 shows the updated code.

 Listing 6.2. Three blinking LEDs

 [image:]

 [image:]

 Save the code as blinkLED3.py, and try running it. Open LXTerminal, and enter the following command:

 pi@raspberrypi ~ $ sudo python3 blinkLED3.py

 Fantastic! You have your own light show going on!

 [image:]

 Challenges

 Try these challenges to practice controlling your Raspberry Pi’s GPIO pins. Each one provides a unique problem to solve.

 Wave pattern

 Change the program to make each LED turn on, one at a time, until they’re all on. Then, turn each LED off, one at a time.
 Hint: play with where you put the time.sleep(1) command. Can you make the LEDs light up and turn off in a wave pattern?

 Simon Says

 Write a function that blinks the LEDs and that can take five parameters representing a pattern of colorful blinks. Each parameter
 is a string representing a color: red, blue, or green. The function should blink the lights in the appropriate pattern. Here
 is a series of Simon Says patterns you should try to make your function produce:

 Red, green, red, red, blue

 Blue, green, blue, green, red

 Green, blue, blue, red, green

 Random blinking

 Create a program that generates random durations for how long the lights stay on and off. The durations should be random floating-point
 numbers between 0 and 3 seconds. Hint: you can use the random method to generate a random floating-point number between 0 and 1.0. Here is an example:

 off_random_time = random.random() * 3

 To scale this number so that it’s between 0 and 3, you can multiply off_random_time by 3. If you get stuck on the challenge, check appendix C and the chapter source code for hints and solutions.

 Summary

 In this chapter, you learned the following things:

 	A Pi is capable of interacting with the world around it. With a few extra parts, you can set it up for physical computing
 projects.

 	A Pi can send out electrical signals! You can send output through the GPIO pins, and this can be used to light up LEDs or
 control many other electronic components (motors, buzzers, relays, and so on).

 	Breadboards are like playgrounds for electronics. They make it easy to create circuits for your Pi because you can easily
 build and take apart circuits for use with the Pi.

 	The RPi.GPIO library has built-in functions to set up and control output (voltage) to GPIO pins with Python.

 Just imagine the possibilities of controlling pretty much any electrical device using your Raspberry Pi. Even better, imagine
 making the device work based on sensors (inputs) so you can create smart devices programmed by you!

Chapter 7. Light Up Guessing Game

 In this chapter, you’ll be learning about

 	Simplifying and improving your code with more thoughtful design and use of functions

 	Building a circuit to control a special LED (light bulb) that can make and combine red, green, and blue light

 	Adding together colors of light to create new colors

 	Making your Pi come alive by having it respond using different colored light

 Your Raspberry Pi has a unique ability to interact with the world around it. In the last chapter, you made lights blink based
 on a programmed pattern. Nice, but that isn’t truly interactive, because the Pi always blinks a pattern that you program it
 to do. In this chapter, let’s see if you can create an interactive project that responds to you through its GPIO pins. You’ll draw on what you’ve learned about conditional logic (if/elif/else) to have your Pi make decisions and respond. As you did in earlier chapters, you’ll need to gather input, use loops, and
 apply a few other programming techniques to get it done.

 You’re making a Light Up Guessing Game, but not just any one: this game will illuminate a small light called an RGB (stands for red, green, blue) LED, which can make any color. You’ll use your Pi, breadboard, and electrical parts, along with a program you’re going to write.
 Your Pi will let the player know if they’re correct by flashing the RGB in different colors if their guess is too high or
 too low.

 Figure 7.1 shows the parts you need. You’ll notice that some of them are the same as in chapter 6, but you’ll also need an RGB LED. Let’s get started!

 Figure 7.1. The Light Up Guessing Game uses a red, green, blue (RGB) LED. An RGB LED can produce many different colors because it has
 three LEDs (colored red, green, and blue) packed inside it.

 [image:]

 Guessing Game design

 The object of the game is to guess a magic number. This time, the Pi will give feedback to the user by lighting up the RGB
 LED in different colors. Here are some game details:

 	The magic number is a randomly generated number between 1 and 20.

 	The player is given five tries to guess the number correctly.

 	If they guess correctly, the RGB LED flashes green.

 	If the guess is too high, the RGB LED flashes red.

 	If the guess is too low, the RGB LED flashes blue.

 	The player is given the choice to play again.

 Figure 7.2 shows a sample of the game’s output.

 Figure 7.2. The Light Up Guessing Game responds to the user after each guess. Lights on the breadboard light up to let the player know
 if their guess is too high or too low.

 [image:]

 You’ll approach this project in two parts. The first part is to build the circuit (the hardware), and the second part is writing
 the program (the software).

 Hardware: building the circuit

 Let’s get building! You’re building a circuit on your breadboard to control a new type of LED that can make any color you
 want. You’ll start by connecting your Pi’s GPIO pins to the breadboard using the ribbon cable and GPIO breakout board. Refer
 back to chapter 6 (section 6.1) if you need a reminder about how to set this up. Your Pi and breadboard should look like figure 7.3.

 Figure 7.3. The Pi, breakout board, and breadboard setup. And you thought your desk was messy before!

 [image:]

 Numbers, numbers, numbers!

 As first explained in chapter 6, you need a way to find a particular hole on your breadboard, and to do that you’ll use the numbers and letters. Remember,
 this is much like the way you might find your seat at a stadium for a concert or sporting event.

 To refer to a specific hole on the breadboard, we’ll refer to the row and column, but we’ll add the letters BB to stand for breadboard. Not too hard, right? Finding breadboard holes involves searching for the row and then the column. When referring to a GPIO
 pin, we’ll add the letters GP in front. For example, GPIO pin 12 is referred to as GP12.

 Wiring an RGB LED

 You’re wiring up a new type of LED, called an RGB LED.

 	

 Definition

 An RGB LED is a light bulb that consists of three LEDs: one red (R), one green (G), and one blue (B), all in a single plastic
 LED bulb casing.

 	

 The RGB LED can produce pretty much any color you want, using the three tiny LEDs inside it. By powering these in varying
 amounts, you can mix light to make colors.

 The RGB LED has four legs (or wires) coming out of it, so you’ll need to figure out how to wire it up. It’s a bit different than the single-color LEDs
 you wired up in chapter 6, but it’s pretty easy to use.

 Circuit sketch

 The circuit diagram for the Light Up Guessing Game is shown in Figure 7.4. To light the RGB LED, you’ll have electricity (+3.3 V) flow from your Pi’s GPIO pins 12, 16, and 21; through each resistor;
 through the LED; and then to ground (0 V).

 Figure 7.4. Circuit diagram for the Light Up Guessing Game project

 [image:]

 You’ll build the RGB LED circuit on the breadboard and then program it to light up. Wire it up in this order:

 1. Put the RGB LED into the breadboard.

 2. Connect the three jumper wires, which will connect the GPIO pins to the LED (one for each color).

 3. Add the three resistors to connect the jumpers to the LED’s red, green, and blue legs.

 4. Add the final jumper wire to connect the ground leg of the LED to the negative (ground) power bus.

 When it’s done, the circuit will look like what you see in figure 7.5. Let’s walk through the steps to build this circuit.

 Figure 7.5. The RGB LED circuit you’re building on the breadboard uses GPIO pins 12, 16, and 21 to power the LEDs. The light won’t turn
 on until you program the voltage to come out of the pins.

 [image:]

 Step 1. Add the RGB LED

 Before you can add it to the breadboard, let’s look a bit closer at the RGB LED. Remember that there are three tiny LEDs (red,
 green, and blue) inside it. You need to be able to figure out which leg is which color and which one is ground. Figure 7.6 is a handy reference.

 Figure 7.6. The RGB LED has lots of legs! The longest leg is the ground. The other ones are for red, green, and blue. This applies to
 what is called a common cathode RGB LED, which is what comes in Pi kits and what you’ll find most commonly at electronics suppliers.

 [image:]

 	

 Note

 You’ll need to bend the RGB LED’s legs quite a bit to get them into the holes on the breadboard. Try to bend them to line
 up with the holes, and slowly push the legs in all at once.

 	

 Grab your RGB LED, and let’s insert it into the breadboard. You’re going to put it in rows 22, 24, 26, and 28 along column
 h on the breadboard. Here’s where to connect the legs:

 	Red leg into hole BB22h

 	Ground leg (longest leg) into hole BB24h

 	Green leg into hole BB26h

 	Blue leg (shortest) into hole BB28h

 When it’s inserted, it will look like Figure 7.7. Double-check that it’s pushed down into the breadboard so all the legs will make a good connection.

 Figure 7.7. Bend the legs of the RGB LED, and insert it into the breadboard at BB22h, BB24h, BB26h, and BB28h. The longest leg goes into
 hole BB24h.

 [image:]

 Good job! You just completed the trickiest part.

 Step 2. Connect the GPIO jumper wires

 The breakout board has numbers on it that refer to the Raspberry Pi’s GPIO numbering system. Remember that we refer to GPIO
 pins by adding GPIO before the number of the pin. So if we’re talking about GPIO pin 12, it’s GPIO12.

 Question: What hole on your breadboard is next to GPIO12 (GPIO pin 12)?

 Answer: Look closely, and you’ll see that the holes next to it are BB16i and BB16j.

 	

 Note

 The color of the jumper wires doesn’t matter, but it’s sometimes helpful to pick ones that match the colors of the LED legs.
 When you’re troubleshooting problems, that can help you easily remember which GPIO pin is controlling each color of light
 coming out of the RGB LED.

 	

 Now that you’ve located the holes near the GPIO pins, you can start connecting jumper wires as follows:

 	Jumper wire from BB16j to BB22a (connects GP12 to the red leg of the RGB LED)

 	Jumper wire from BB18j to BB26a (connects GP16 to the green leg of the RGB LED)

 	Jumper wire from BB20j to BB28a (connects GP21 to the blue leg of the RGB LED)

 When you’ve added the wires, the circuit will look like figure 7.8.

 Figure 7.8. The jumpers connect the GPIO pins from your Pi to the RGB LED. If you have an earlier model Pi, you can use other GPIO pins.
 Just remember which ones you’re using, and use these numbers when you program the Pi to turn the GPIO pins on and off.

 [image:]

 Step 3. Add the three resistors

 It’s time to connect your 180 ohm resistors![1] They should have bands of brown, grey, and brown, followed by a fourth gold or silver band. Remember that electricity will
 flow either way through a resistor, so the way you connect it doesn’t matter. Figure 7.9 is a handy diagram that reminds you how you can figure out the value of a resistor by using the colored bands.

 1

This is a safe value that won’t risk damage to your Pi and will keep things simple. For those of you who are into precision,
 technically you might want to use slightly different resistors for each color LED (red, green, and blue), because each one
 requires a different amount of electrical current (amps) to make it shine. Check out some of the online resistor calculators
 and Pi forums on RGB LEDs if you’re interested.

 Figure 7.9. The colored bands on a resistor tell you how much resistance the resistor has. For this project, you want a brown (1), grey
 (8), brown (×10) resistor, or 18 × 10 = 180 ohm resistor. Don’t have one? Any resistor between about 100 and 300 ohms should
 work well.

 [image:]

 Connect the resistors as follows:

 	Insert one end of the first resistor into BB22c and the other end into BB22f.

 	Insert one end of the second resistor into BB26c and the other end into BB26f.

 	Insert one end of the third resistor into BB28c and the other end into BB28f.

 Once they’re added, you’ll have something that looks like figure 7.10. Now you’re ready for the final step!

 Figure 7.10. Add your resistors! Make sure you push them down into the breadboard holes. If you don’t like them sticking up so high, you
 can trim the ends using wire cutters.

 [image:]

 Step 4. Add the jumper to ground

 Remember that a ground rail runs vertically along the right side of the breadboard, with a blue stripe next to it. Add a jumper
 from BB24j to the negative (-) power bus or ground rail (any hole next to the blue stripe will do). Figure 7.11 shows how it looks.

 Figure 7.11. The jumper is added to connect the ground of the RGB LED to the ground of the Raspberry Pi. The jumper can connect anywhere
 along the ground rail (it usually has a blue stripe running next to it).

 [image:]

 Wahoo! You’ve completed the RGB circuit on the breadboard. With the circuit complete, it’s time to write your program so you
 can test it.

 	

 Color mixing with an RGB LED

 You can program your RGB LED to light up red, green, or blue by turning on or off GPIO pins 12, 16, and 21. But RGB LEDs can
 make more colors by mixing different amounts of red, green, and blue light. For example, you can combine equal amounts of
 red and blue light to make a nice magenta color. Or to make your LED yellow, you can combine equal amounts of green and red.
 Televisions work on the same principle. This concept, called additive color, means mixing varying amounts of different colors of light to make new colors.

 [image:]

 Wait! Your Pi can only turn LEDs on or off (you set them to HIGH or LOW)! How can you make something like a raspberry red color that might be 80% red and 20% blue? It’s possible, but you’ll need
 to learn how to very quickly pulse your Pi’s GPIO output. This is called pulse width modulation (PWM). Check online for information on how you can use the RPi.GPIO module to do PWM and create almost any shade of color you want.

 	

 Software: LEDGuessingGame program

 You’re creating a game to guess a magic number. As mentioned at the start of the chapter, you’ll design the game play based
 on these simple rules (feel free to change them to your liking):

 	The magic number is a randomly generated number between 1 and 20.

 	The player is given five tries to guess the number correctly.

 	If they guess correctly, the RGB LED flashes green.

 	If they guess too high, the RGB LED flashes red.

 	If they guess too low, the RGB LED flashes blue.

 	After five guesses, the game is over.

 	The player is given the choice to play again.

 As you’ve seen in earlier chapters, programming is often about breaking down complex problems into smaller ones and then solving
 them. Let’s start by laying out a quick diagram outlining what the program should do (see figure 7.12).

 Figure 7.12. Flow diagram showing how the guessing game should work. Notice how you’re blinking LEDs if the guess is too low, too high,
 or correct. You also give the player the choice of whether they’d like to play again.

 [image:]

 As you approach this program, let’s see if you can simplify the code by organizing it into functions, especially when you have chunks of code that can be easily separated. Remember that you can use functions to organize your
 code and simplify it. You’ll create three functions to handle each of the flashing lights, to simplify the main part of your
 program:

 	flash_red —Flashes the RGB LED red

 	flash_blue —Flashes the RGB LED blue

 	flash_green —Flashes the RGB LED green

 You’ll also create a function to display a message when the game is over.

 Now that you have a plan, let’s code it in this order:

 1. Import libraries, create the flashing and game-over functions, and set up the GPIO pins for RGB LED output.

 2. Display the title and introduction, create a loop, and get and check up to five guesses.

 3. Add logic to allow the user to decide if they want to play again.

 Let’s begin! Open IDLE by choosing Python 3 under Menu > Programming. This opens IDLE to the Python 3.x Shell. In the Python
 Shell, start a new program by pressing Ctrl-N or selecting File > New Window.

 Setting up the GPIO pins for the RGB LED

 In the IDLE 3 text editor, you’ll first load the Python libraries you need, create functions, and prepare your Pi to send
 electricity to the RGB LED (see figure 7.13).

 Figure 7.13. The program starts by importing the Python libraries you’ll need to use, setting up your Pi’s GPIO pins for lighting up the
 LEDs, and defining the functions you’ll need.

 [image:]

 Setting up your Pi’s GPIO pins

 You need to get your Pi ready for output to the GPIO pins and tell the Pi which pins you plan to use (see listing 7.1). If you recall from the earlier wiring, you’re using these pins to control the three LEDs that are inside the RGB LED:

 	GP12 for the red LED

 	GP16 for the green LED

 	GP21 for the blue LED

 Later, you’ll write the code to control those pins. Let’s start by importing the GPIO library for the Raspberry Pi and setting
 up the GPIO pins so they can output a voltage to control the RGB LED.

 Listing 7.1. Setting up the Pi’s GPIO pins

 [image:]

 [image:]

 Great! You’ve started by importing the time and random libraries, because you’ll need them to flash the LED and help you generate a random number when the game starts. You define
 variables for the pins you’re using and even add a variable, BlinkTime, that says how much time you’ll blink the light on and off. Finally, you tell your Pi that you want to use three pins as
 output. Now let’s write the functions.

 Creating functions to simplify the code

 You need three functions to flash the three LEDs inside the RGB LED and one for game over. Name the flashing functions flash_red, flash_blue, and flash_green, as shown in the following listing.

 Listing 7.2. Functions that flash LEDs different colors

 [image:]

 [image:]

 In the code, you create four functions:

 	flash_red()

 	flash_green()

 	flash_blue()

 	game_over()

 The three flashing functions blink a different color LED in the RGB LED. The blinking is created by using a for loop and the sleep function while you switch the output from the GPIO pin from HIGH (on) to LOW (off). Think of this as being like standing at a light switch and flipping it on and then off, five times.

 Before you go any farther, save the program as LEDGuessingGame.py in your home folder.

 	

 When to use functions

 Believe it or not, we don’t always know when to create a function. The ability to figure that out is a skill that comes with
 experience in writing programs and seeing patterns. Here are some tips for deciding what to make a function:

 	Is there a group of instructions that you’ll need to use over and over again, with little variation?

 	Do you have large blocks of code that make your programs hard to read?

 Functions can simplify your code and make it easier to update.

 	

 Refactoring your functions

 Did you notice that the functions for flashing the LEDs are very similar? Most of the code in each function is the same except
 for the GPIO pin, so let’s see if you can improve this code to make it simpler. This process of simplifying code is called
 refactoring.

 What if you rewrote the three functions as a single function, as shown in listing 7.3? This new function takes one parameter, LED_pin, that represents the number of the GPIO pin you want to control. It can be any one of the GPIO pins you’re using for the
 colors of the RGB LED. For example, if LED_pin is 16, this corresponds to GPIO pin 16, which should blink the green light.

 Listing 7.3. Refactoring the three flashing functions to a single function

 [image:]

 In this case, you’re refactoring a set of functions that are very similar to a single function that takes a parameter (LED_pin). This parameter makes the function more flexible or dynamic so it can take the place of the three separate functions.

 Main game loop and logic

 The next part of the program creates the main game loop (see figure 7.14). You’ll do the following:

 	Set up the game.

 	Display the title and instructions for the person playing.

 	Create some variables, and get a random number.

 	Create the loop and guessing logic.

 Figure 7.14. After displaying the game title and instructions, you need to define variables to store important game information, including
 a random number the player is trying to guess. The main loop in the game is repeated to allow the user to make five guesses;
 it also blinks the lights.

 [image:]

 Game setup

 Let’s look at some of the variables you’ll need for the game:

 	number_in_my_head holds a random number (an integer between 1 and 20) that the player is trying to guess.

 	count_guesses helps you count and keep track of how many guesses the player has made.

 	play_again tracks the status of whether the player wants to play again. You’ll use a Boolean type for this, because it should always
 be True (yes, let’s play again) or False (no, let’s not play again).

 The next listing adds these three variables and sets them up. You also create and display the title and game instructions.

 Listing 7.4. Creating variables and displaying the game title and instructions

 # A random number for our game
number_in_my_head = random.randint(1,20)
count_guesses = 1 # Counter for the number of guesses

Used to keep track of whether they want to play again
play_again = True

title = """
**
 Light Up Guessing Game
**
"""
print(title)

intro = """
Game Play:
I'm thinking of a number between 1 and 20. You have five guesses to guess it.
After each guess, my light will blink.

 Red ---> Your guess is too high!
 Green ---> Your guess is correct!
 Blue --> Your guess is too low
"""

 Fantastic! The variables set the stage for the guessing-game logic. It’s a lot like the foundation of a house—you need it
 in order to build the rest.

 Guessing Game Loop and logic

 The code features two loops, one inside the other. The outer loop gives the user the option of playing again—we’ll call this
 the Play Again Loop. Within that loop is another that gives the player five guesses—we’ll call this the Guessing Game Loop.

 The main game loop involves getting a guess, checking the guess, blinking the RGB LED the appropriate color, and then repeating
 until the player guesses right or has used all five guesses. The next listing shows the program for the Guessing Game Loop
 and the logic for checking guesses.

 Listing 7.5. Guessing Game Loop

 [image:]

 The Guessing Game Loop contains the logic to

 	Keep track of the number of guesses.

 	Get a guess.

 	Check to see if a guess is correct, too high, or too low.

 Where is the logic for responding to the player? It’s in the loop. Each time you get a guess, a series of if/elif statements checks whether the guess is correct, too high, or too low. Based on which of those cases is True, the flash() function is called to flash the appropriately colored LED on and off. If the user guesses the number correctly, the RGB LED
 will flash green, and then the break command will exit the while loop.

 Notice that you add an else statement to the while loop. When the number of guesses has been exceeded (count_guesses is greater than 5), the else statement is triggered and the game_over function is called. The else block only happens when the while condition is checked and is False (in this case, when the number of guesses has exceeded 5).

 In the next section, you’ll see how to give the player the option of playing again.

 Adding the Play Again Loop and logic

 You want to add a feature to the game that lets the user choose whether they want to play again. To do this, you need another
 loop that goes around the Guessing Game Loop (see figure 7.15). The Play Again Loop needs to repeat the Guessing Game Loop as long as the user answers that they want to play again.

 Figure 7.15. The Play Again Loop is wrapped around the Guessing Game Loop. After the player has exhausted their guesses or guessed the
 number correctly, they’re asked if they want to play again. Depending on their answer, the game will either start over or
 end.

 [image:]

 Listing 7.6. Play Again Loop

 [image:]

 [image:]

 Awesome job! You have put together a circuit to control an RGB LED and written the Python code to make a game interact with
 it. Now, let’s test it.

 Playing the game

 Save the code as LEDGuessingGame.py, and try running it. Select Run > Run Module (or press F5) from the IDLE text editor to
 run your program. If you have an older version of Raspbian (prior to October 2015), open Terminal and enter the following
 command:

 pi@raspberrypi ~ $ sudo python3 LEDGuessingGame.py

 Excellent! You should see your guessing game start up. Let’s test it to see if it works. Try seeing if you can guess the number.
 Try getting it wrong, just to make sure the game_over function works.

 	

 Note

 Remember that any programs that use GPIO pins must be run from the Raspbian command prompt as the superuser (or root). The
 sudo command lets you do this. If you try running the program at the Python Shell in IDLE, then you’ll get the error that ends
 “RuntimeError: No access to /dev/mem. Try running as root!”

 	

 Troubleshooting

 If the lights aren’t blinking after each guess is made, here are some things you can check:

 	Check the circuit on the breadboard. Is the ribbon cable connected properly, with the first wire connected toward the edge
 of the Pi, away from the USB ports?

 	Double-check that the jumper, RGB LED, and resistors are connected to the correct holes on the breadboard. Could your RGB
 LED be inserted the wrong way (the shorter legs go toward the negative or ground side)? Try turning it around if you aren’t
 sure.

 	Look through your Python program for errors. If necessary, edit the program to add some print statements so you can see which parts are working. For example, in the inner loop that handles the five guesses, you can
 use the print function to display the value of count_guesses:

print(count_guesses)

 	Try adding a print message in the flash function so you’re sure it’s being called. For example, you could add

print("Blinking the LED")

 If you’ve enjoyed playing your game, try some additional challenges to increase the fun factor!

 [image:]

 Challenges

 These challenges use the RGB LED that you’ve already wired up. If you can’t figure them out, check appendix C for hints and solutions.

 Game winner

 Write a function in the game that creates a flashing animation whenever the user correctly guesses the number. For example,
 you could try quickly flashing the RGB LED different colors.

 Easter egg

 Was the last one too easy? Well, try this: create an Easter egg in your game. Create logic so that if someone types in a certain
 word (maybe Spam), the program displays a secret message and flashes the light in a crazy way.

 Warmer and colder

 Expand the logic of your program to make the speed of the blinking indicate whether the player’s guess is close to or far
 away from the correct answer. As a hint, think about the blinking speed you’ve set. Let’s say a guess is off by 10 (the player
 guesses 15, and the magic number is 5). You want the light to blink slowly. You can take the difference (ignore any negative
 signs) and divide it by 10. This will make the blinking speed one-tenth of the difference, or once every second if you’re
 off by 10 (pretty slow). If the player’s guess is off by 2, the light will blink every two-tenths of a second (pretty fast).
 This way, the blinking speed tells the player if their guess is close or far away.

 Darth Vader surprise

 Let’s see if you can get an image of Darth Vader to pop up if the player doesn’t correctly guess the number. Here’s a hint
 to get you started. Install the Linux image-viewing software called fim,[2] a program that allows you to open images from the Raspbian command line. To install fim, make sure your Pi is connected to
 the internet, and then open Terminal and use the following command:

 2

fim is the improved version of fbi, image-viewing software for Linux that can be run from the command line.

 pi@raspberrypi ~ $ sudo apt-get -y install fim

 Next, download an image of Darth Vader and have the game display it on the screen. Let’s say you’ve downloaded an image called
 Darth_Vader.jpg. You can display it with these commands in Python:

 import os
os.system("fim Darth_Vader.jpg")

 Good luck! May the Force be with you!

 Summary

 In this chapter, you learned that

 	Pis can respond in rich and exciting ways by interacting through the GPIO pins in your programs.

 	Functions, loops, and conditional statements can be combined with your Pi’s output capabilities to create programs that react
 to people and the environment.

 	RGB LEDs are very cool because they can make different colors and are actually three LEDs packed into one small package.

 	A while loop can have an else statement that allows you to control what happens when the loop condition is no longer true.

 	A play again loop can be wrapped around a main game loop to allow users to play the game over and over again.

 	Refactoring is a fancy word that just means simplifying or shortening your code by looking for ways to make it more efficient. Be careful,
 though—you don’t want to simplify something so much that it becomes too hard to understand (remember the Zen of Python)!

Chapter 8. DJ Raspi

 In this chapter, you’ll be

 	Giving your Pi the ability to respond to input signals by making it interact with you in response to button presses

 	Learning about electronic buttons and how to build circuits on a breadboard with them

 	Running Raspbian operating system commands so your programs can play music, show videos, and more

 	Using Python to store sets of information called lists

 	Exploring how you can play sounds on your Pi and make your Pi into a music machine

 We don’t think about our five senses (taste, smell, touch, hearing, and sight), but without them we wouldn’t be able to feel,
 know, and interact with the world around us. Think of your Pi as a person who, until now, has had a limited set of senses.
 So far, your Pi has only been able to respond to keyboard keys being pressed and mouse clicks.

 Like a mad scientist bringing something to life, in this chapter you’re going to embark on a project to wire up a new sense
 of touch for your Pi. Okay, maybe it won’t be as crazy as creating a bionic creature, but a button gives your Pi a sense of touch. You’ll wire a
 couple buttons to the Pi’s GPIO pins (recall that GPIO stands for general-purpose input/output, so this is how your Pi can
 sense and affect the environment). Then you’ll program your Pi to react to button presses. Exciting times are ahead!

 This project is a small glimpse of all the different senses you could possibly give your Pi. Electronic components that can
 detect the environment around them are called sensors. A button is one of the simplest sensors, because it can detect touch. What other sensors could you add? How about some of
 these ideas:

 	A camera that can track a ball or face using special software called computer vision that can recognize objects (this is similar to how a Microsoft Kinect works)

 	Super-human capabilities like a proximity sensor to detect when someone is walking nearby (like the ones used to trigger the
 doors to open at the grocery store)

 	A microphone so it can hear

 All this is possible with a Pi, some determination to figure it out, and a bit of fearlessness about trying new things.

 Project overview

 In this chapter, you’ll turn your Pi into DJ Raspi—a musical computer that plays different sounds when you press buttons.
 You’ll wire up two mini pushbuttons on your breadboard and figure out how to write the code to make the buttons play sounds.
 Later, if you want, you can add other sensors to your Pi and program them. This project will give you an example of how to
 work with input from sensors. Figure 8.1 shows the parts you’ll need.

 Figure 8.1. The DJ Raspi project requires several different parts to turn your Pi into a music player. The length and color of the jumper
 wires don’t matter.

 [image:]

 Gather the parts and get ready for some fun. You’ll notice that some of them are the same as in chapters 6 and 7, but you’ll also need a few new items. Most of these are included in Raspberry Pi starter kits, but you can find them at
 online electronics retailers as well. You’ll approach this project in two parts: building the circuit (the hardware) and writing
 the program (the software). Let’s go!

 Setting up your Pi to play sounds

 To start, let’s get your Pi ready to play sounds. A Pi can output sounds through the headphone jack (also called the 3.5 mm audio port) or through HDMI. Before you start, plug in your headphones, powered computer speakers, or, alternatively, a TV with built-in
 speakers connected via an HDMI cable.

 	

 All sounds aren’t the same: audio formats

 If you wanted to leave a secret message for someone, you could choose several different ways to make the message into a secret
 code. You could use different symbols to represent words, or you might substitute letters or shift letters around. There are
 many different ways to encode something.

 Similarly, people have come up with many different ways to store sounds (or audio files). These ways (called formats) are different ways of compressing or encoding the information in a sound to make it easy to store on a computer or music
 player. Sometimes sounds are encoded so they will only work on certain music players.

 Here are some common formats:

 	MP3 —The most common audio file format used in most audio players. The files end in .mp3.

 	WAV or WAVE —Stands for Waveform Audio File Format. It’s used on many Windows computers. These files end in .wav.

 	Ogg —An open format that was developed for streaming applications. The files end in .ogg.

 Each format uses a different method to compress or shrink a sound and make it smaller to store. The Pi has many different
 software applications for playing audio. Each one can play different formats. Check the Raspberry Pi forums if you want to
 learn more about the different players and what they’re best for.

 	

 You’ll be focusing on playing MP3s from your Pi, because that is a common audio file format. What can you use to play them?

 OMXPlayer and MP3s

 When you watch movies or listen to music on a computer, you may use iTunes or Windows Media Player. Raspbian has its own equivalent
 called OMXPlayer that can play sounds or videos. Lucky for you, it’s capable of playing MP3 files (or MP3s)—one of the most
 common audio formats.

 	

 Definition

 OMXPlayer is a video and audio player that was created for Raspberry Pi.

 	

 If you don’t have an MP3, you can test OMXPlayer using one of the sounds already on your Pi. There are quite a few MP3s in
 the folders included with the Scratch software. Open File Manager, and go to this folder to see some of them: /usr/share/scratch/Media/Sounds/Vocals/.
 In the folder, you’ll see both MP3 and WAV format files (see figure 8.2).

 Figure 8.2. When you install Raspbian on your Pi, it comes with Scratch, which has a number of sound files including vocals, sound effects,
 animal sounds, and drum beats.

 [image:]

 To play an MP3 using OMXPlayer, open Terminal, and enter

 pi@raspberrypi ~ $ omxplayer /usr/share/scratch/Media/Sounds/Vocals/
[image:] Oooo-badada.mp3

 You should hear a short music clip of a woman singing. Enjoy the song!

 	

 Note

 In Terminal, pressing the up and down arrows cycles through previous commands. Press the up arrow once and then press Enter
 to run the last command again.

 	

 Fantastic! Your Pi can speak to you now.

 Troubleshooting

 What if you have speakers or headphones plugged in but don’t hear anything? OMXPlayer should automatically detect whether
 to output the sound to the 3.5 mm audio output or HDMI. If it doesn’t, try this command for the headphone jack (3.5 mm audio
 output):

 pi@raspberrypi ~ $ omxplayer –o local /usr/share/scratch/Media/Sounds/
[image:] Vocals/Oooo-badada.mp3

 –o is a special switch or flag that lets OMXPlayer know that you want to tell it something. In this case,–o stands for output, and it tells OMXPlayer where you want to output the sound. In this case, you set it to -o local, which outputs sound to the 3.5 mm (headphone jack) output.

 	

 Switches (flags)

 Switches, such as–o for output, act like options or special controls for a program. They’re common when using the command-line interface. You
 can usually get a list of what switches a program has by making the command print out its help information. Most programs
 that you can run at the command line will give you a list of all switches or flags when you type the name of the program and
 then –h. The –h switch- stands for help. Try it with OMXPlayer:

 pi@raspberrypi ~ $ omxplayer –h

 You’ll see a long list of options you can use to control how video and audio files are played. Try -h with other command-line programs to see what results you get.

 	

 If you need to specify sending the sound to speakers in your monitor, then use the –o switch and specify hdmi for output to the HDMI port:

 pi@raspberrypi ~ $ omxplayer –o hdmi /usr/share/scratch/Media/Sounds/
[image:] Vocals /Oooo-badada.mp3

 Now that you know you can play music, let’s build the circuit and write some code to create your DJ Raspi!

 Hardware: building the circuit

 Building time! You’re building a circuit on your breadboard to detect or listen to buttons. When a button is pressed, your
 circuit will send electricity flowing to a GPIO pin on your Pi. You’ll start by connecting the Pi’s GPIO pins to the breadboard
 using the ribbon cable and GPIO breakout board. Refer back to chapter 6 (section 6.1) if you need to recall how to set this up.

 	

 A reminder about numbers

 Like finding a seat in a stadium, we’ll refer to the holes on a breadboard using the prefix BB. So the hole located in row 25, column a, is BB25a. Similarly, we’ll refer to the Pi’s GPIO pins using the prefix GP and then the pin number. So GPIO pin 24 is called GP24 for short.

 	

 Wiring a button

 Let’s get busy wiring the buttons. There are many different types of buttons, but you’ll be using a mini pushbutton (see figure 8.3). These buttons commonly come in Raspberry Pi kits along with jumper wires, resistors, and LEDs. If you need to purchase
 them, you can find them at many online electronics retailers in packs of 10 or 20 for less than the cost of a cheeseburger.
 With the parts gathered, let’s assemble the circuit.

 Figure 8.3. The mini pushbutton makes a nice clicking sound when you press the black button in the middle. Pressing it acts like closing
 a switch to complete a circuit.

 [image:]

 Circuit sketch

 The circuit diagram for the DJ Raspi is shown in figure 8.4. To listen to whether a button is being pressed, you’ll have electricity (+3.3 V) flow from your Pi to the button. When the
 button is pressed, the electricity will flow through the button and then split. A small amount of electricity will flow to
 GPIO pin 6 (GP06) and the rest will flow through the 10K ohm resistor and then to ground (0 V). Let’s put it together on the
 breadboard.

 Figure 8.4. The circuit diagram for the first button in the DJ Raspi project shows how electricity will flow through the circuit. The
 button is a switch that allows electricity to flow to GP06 and ground (-) when it’s pressed or closed.

 [image:]

 Let’s build the button circuit on the breadboard and program your Pi to know when the button is being pressed. You’ll give
 your Pi the ability to feel the button being pressed, by wiring up the button in this order:

 1. Add the mini pushbutton to the breadboard.

 2. Connect a jumper wire from 3.3 volts to the button. You’ll use the positive power bus (+) that runs along the side of the
 breadboard.

 3. Add the resistor from the button to the negative power bus (-), also called ground.

 4. Connect the second jumper wire from the button to GP06 (GPIO pin 6).

 The completed circuit for one button will look like what you see in figure 8.5.

 Figure 8.5. The mini pushbutton will have 3.3 volts connected to it from the positive power rail. When the button is pressed, power flows
 through the button and splits. Some electrical current goes to GP06 (GPIO pin 6), and the rest goes through the resistor and
 then to the negative power bus (-).

 [image:]

 Don’t forget, nothing will happen when you press the button. You have to program your Pi to react to this new-found sense
 of touch. Let’s go through the steps to build the circuit:

 Step 1. Add the mini pushbutton

 Let’s look at how pushbuttons work before we go on. If you had X-ray goggles, you would see that the left and right legs at
 the top of the button are connected. Similarly, the left and right legs along the bottom of the button are connected. The
 top and the bottom of the button aren’t connected.

 But when you press the button, figure 8.6 shows what happens. Pressing the button pushes down a small metal bar so that the top and bottom are connected. We say the
 switch is closed. When you let go of the button, the spring in the button pushes the metal bar back up, and the switch is open again. Grab
 your mini pushbutton, and let’s insert it into the breadboard.

 Figure 8.6. In a button, the legs are connected along the top and are separately connected along the bottom. When the button is pressed,
 the top and bottom are connected by a small metal bar.

 [image:]

 	

 Note

 You’ll need to push the button into the breadboard very firmly. If the button legs aren’t lined up with the breadboard holes,
 you may accidentally bend some of the button legs. Don’t worry—you can bend them back and try again. If a leg breaks off,
 use a new button.

 	

 You’re going to put the button in rows 23 and 25 along columns d and g on the breadboard. Connect the legs:

 	Top legs: BB23d and BB23g

 	Bottom legs: BB25d and BB25g

 When the button is inserted, it will look like figure 8.7. Double-check that it’s pushed down into the breadboard so that all the legs will make a good connection. Good job—you just
 completed the trickiest part!

 Figure 8.7. Align the pushbutton with the breadboard holes, and then press it down into the breadboard. Make sure you press it so the
 button legs are down into the breadboard holes and make a good connection. If you accidentally bend the legs, don’t worry!
 Just bend them back and try again.

 [image:]

 Step 2. Connect a jumper wire from 3.3 volts to the button.

 You need to connect the button to a source of electrical current. You’ll use the positive power rail along the edge of the
 breadboard as the source of power (you could also directly connect the jumper to the 3V3 pin on the breakout board).

 Connect the jumper wire from the positive power bus (+) to BB25a. Remember, you can connect the jumper to any hole along the power rail (it has a red line next to it). When you’ve added
 the wire, it will look like figure 8.8.

 Figure 8.8. The jumper connects power (3.3 volts) to the bottom of the button.

 [image:]

 Fantastic! Now you have electricity reaching the bottom legs of the button.

 Step 3. Add the 10K ohm resistor

 Time to connect your 10K ohm resistor. It has bands of brown, black, and orange followed by a fourth gold or silver band.
 Remember that electricity will flow either way through a resistor, so it doesn’t matter which way you place it.

 You’re connecting the resistor from the top of the button to the negative power bus (-). This is the set of holes with a blue
 stripe next to it running along the edge of the breadboard.

 Insert one end of the resistor into BB23i and the other end into the negative power bus (-). You can choose any hole along the blue line. Once the resistor is added, you’ll have something that looks like figure 8.9. Now you’re ready for the final step.

 Figure 8.9. Add the resistor. Make sure its ends are pushed down into the breadboard holes.

 [image:]

 Step 4. Add the jumper to a GPIO pin

 A small amount of electricity needs to reach a GPIO pin (you’ll use GP06), so you need a jumper wire from the top of the button
 to a hole next to the GPIO pin. To make this connection, add a jumper from BB23a to BB16a. Figure 8.10 shows how it looks.

 Figure 8.10. The jumper connects the top of the button to GP06. Later, you’ll set your Pi to listen for electrical input on this GPIO pin.

 [image:]

 When the button is pressed, a small amount of electricity will flow to GP06 and through the resistor to ground. Nothing happens
 yet, but next you’ll write a Python program to detect that electricity and play some sounds.

 Adding the second button

 Let’s add a second button to the board. Figure 8.11 shows what it will look like when it’s done.

 Figure 8.11. Add the second pushbutton just below the first one. The wiring is the same, but you’ll connect it to GP19 (GPIO pin 19). Any
 available GPIO pin will work, but remember that your code will have to reflect the GPIO pins you select.

 [image:]

 To add another button, you’ll create the same circuit but place the button in rows 28 and 30 on your breadboards. You’ll wire
 the button to GP19.

 Step 1. Add the mini pushbutton

 Insert the button so that the top legs are in BB28d and BB28g and the bottom legs are in BB30d and BB30g.

 Step 2. Connect a jumper wire from 3.3 volts to the button

 You need to connect power from the positive power bus to the bottom of the button. The power rail is the line of holes with
 a red line running next to it. Insert a jumper from anywhere along the positive power bus (+) to BB30a.

 Step 3. Add the 10K ohm resistor

 To prevent too much electricity from flowing when the button is pressed, you need to add a resistor. As before, you’ll add
 a 10K ohm resistor (color bands are brown, black, and orange) to connect the top of the button to the negative power bus (-).

 Insert one end of the resistor into BB28i and the other end into the negative power bus (-). Any hole along the blue line will work.

 Step 4. Add the jumper to a GPIO pin

 Finally, when the button is pressed, you need electricity to flow to a GPIO pin. For the second button, you’re using GP19.
 Connect a jumper wire from BB28a to BB18a (GP19).

 Terrific! The second button is connected, and you’ve completed the button circuit. Let’s call the first button Button 1. It’s
 wired to GP06. The second button, Button 2, is wired to GP19. Now that everything is wired up, let’s write code for it!

 Software: the DJ Raspi program

 Your project is to turn your Pi into an awesome music player that is controlled by buttons. Here’s how it will work:

 	Pressing Button 1 makes the Pi play random music clips.

 	Pressing Button 2 makes the Pi play random vocal (singing) sounds.

 You’ll need one of the following to hear the sounds:

 	Headphones

 	Powered computer speakers

 	Your Pi connected via HDMI to a TV with built-in speakers

 Let’s think through how this program will work. Figure 8.12 shows a quick diagram of the logic.

 Figure 8.12. A flow diagram showing how the DJ Raspi program should work. The program must gather a list of sounds at the beginning and
 then check whether the buttons are pressed. The buttons will be checked over and over again.

 [image:]

 Let’s write the code in this order:

 1. Set up your Pi to listen to input coming from the buttons.

 2. Gather a list of music and vocal sounds.

 3. Program a loop to check the buttons. If they’re pressed, then play random sounds.

 You’ll try to use functions along the way to simplify your code.

 Let’s begin! Open IDLE by choosing Python 3 under Menu > Programming. In the Python Shell, start a new program by pressing
 Ctrl-N or selecting File > New Window.

 Setting up the Pi: initializing the buttons

 In the IDLE text editor, you’ll start by loading the Python libraries you’ll need to use. You’ll also set up a couple of the
 Pi’s GPIO ports to listen for electrical signals coming in from the buttons being pressed. In the flow diagram, this is the
 first step of initializing the buttons (see figure 8.13).

 Figure 8.13. The first step is to set up the buttons as inputs. This will mean your Pi is ready to check whether it’s detecting any voltage
 coming in, which will happen when a button is pressed.

 [image:]

 When you set up the GPIO ports, you use GPIO.IN to tell the Pi that you plan to use that port as an input. To prepare your Pi for input to the GPIO pins, you need to tell it which pins you plan to use. Based on the circuit, you’re using these pins as inputs:

 	GP06 for Button 1

 	GP19 for Button 2

 The following listing shows how you can use the GPIO.setup command to set a GPIO pin to input.

 Listing 8.1. Setting up GPIO pins for input

 [image:]

 You may notice that you import a new os module. We’ll talk about why you need that in the next section when you gather your lists of sound files.

 Getting a list of sounds

 Lists are everywhere around you. You make lists of things you need to do, gifts to buy, places you want to visit, and favorite
 things, such as your top-10 movies or books.

 Your DJ Raspi needs a list of sound files: one for music clips (or loops) and one for vocals. Based on the design, you need to get a list of files from
 a folder on your Pi, and then you need to select a random sound file from the list and play it (see figure 8.14).

 Figure 8.14. The next step of the DJ Raspi program gets a list of sound files. Later, you’ll add the part that uses the button to trigger
 playing random sounds from the lists.

 [image:]

 In Python, you can create lists or groups of things easily. Let’s look at some examples.

 Let’s create a list of basketball player names. Open IDLE to the Python 3.x Shell by choosing Python 3 under Menu > Programming.
 In the Python Shell, make a list:

 >>> basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul",
[image:] "John Wall"]

 Print out the list like this, and you’ll see what’s inside:

 >>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'John Wall']

 To make a list of the items, put them in a set of square brackets ([]) and separate each item with a comma (see figure 8.15). For lists of strings, each item in the list has to have quotation marks around it. Pretty simple! That’s the Python way.

 Figure 8.15. You make lists by using square brackets to enclose a set of things. Each thing in the list should be separated with a comma.
 Python will even let you make lists that combine different types of data, like strings and integers.

 [image:]

 Try creating a list called favorite_numbers, like so:

 >>> favorite_numbers = [22, 27, 49, 121, 2, 25]

 Display the contents of the list using print:

 >>> print(favorite_numbers)
[22, 27, 49, 121, 2, 25]

 	

 Note

 When making a list of numbers, you don’t use any quotation marks.

 	

 Enjoy making lists of some of your favorite things!

 	

 More things you can do with lists

 There are lots of things you can do with lists! Let’s try a few.

 You make a list longer by adding more items to it. To do this, use the append method. Let’s add the name Stephen Curry to the list of basketball_players. Here is how you can use append to do that:

 >>> basketball_players.append("Stephen Curry")

 Use print to see the result:

 >>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'John Wall', 'Stephen Curry']

 Excellent! To remove an item from a list you can use the remove method. If you wanted to take John Wall out of the list, write

 >>> basketball_players.remove("John Wall")

 Print the list again to see if it worked:

 >>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'Stephen Curry']

 Wonderful! If you need to put a list in order alphabetically or from lowest to highest, you can use the sort method like so:

 >>> favorite_numbers.sort()

 Check that it worked by printing the list to the screen:

 >>> print(favorite_numbers)
[2, 22, 25, 27, 49, 121]

 The numbers are all sorted! This works on lists made of strings as well. If you sort the list of basketball_players, it puts them in alphabetical order based on the first letter of each string. Python has many built-in methods for lists.

 Check the online Python documentation[a] for more things you can do with lists. Then sit back and enjoy thinking about all you can do with them in your future programs.

 a

Go to the Python website for more information on things you can do with lists: https://docs.python.org/3.4/tutorial/datastructures.html.

 	

 For your DJ Raspi, let’s see how to

 	Get the value of an item stored in a list.

 	Get the length of a list.

 Getting a value of an item stored in a list

 Let’s start with a fresh list of basketball players:

 basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul",
[image:] "Stephen Curry"]

 As you’ve seen, lists store information. What you might not know is that each spot in a list is given a number called the
 index. The index of the first item in the list is zero (0). The second item has an index of 1. The third item’s index is 2, and
 so on. To get the third item in the basketball_players list, you’d type

 >>> print(basketball_players[2])
Chris Paul

 If you want to search a list and have Python tell you the index of where an item first appears in the list, you use the index method:

 >>> basketball_players.index("Kevin Durant")
0
>>> basketball_players.index("Stephen Curry")
3

 If the item isn’t in the list, Python will give you an error saying so:

 >>> basketball_players.index("Me")
Traceback (most recent call last):
 File "<pyshell#40>", line 1, in <module>
 basketball_players.index("Me")
ValueError: 'Me' is not in list

 	

 Note

 Remember that the index for lists starts counting at 0, not 1! For example, basketball_players[1] gives you "Lebron James", the second item in the list.

 	

 Figure 8.16 shows examples of the indexes for a list and how you can get a specific item in a list.

 Figure 8.16. Sets of things can be stored in lists. You can retrieve items from the list using the index, which represents the position
 of an item in the list. The index of a list starts at 0.

 [image:]

 Getting the length of a list

 Finally, there are times when you’ve loaded information into a list and you need a way to check how long the list is. Use
 the len() function to do that:

 >>> yummy_snacks = ["chips", "popcorn", "donuts", "cheese",
 "pretzels", "spam"]
>>> print(len(yummy_snacks))
6

 Great job—you know the basics of lists. Now let’s see how you can create lists of MP3s.

 Building a list of sound files with the os library

 To make the DJ Raspi project work, you need to

 1. Grab two lists of sound files from folders on your Pi.

 2. Make OMXPlayer play sound files from Python as part of the DJ Raspi program.

 Let’s learn how.

 The Pi has both these abilities through a Python module called the os module (OS stands for operating system). With it, you can run operating system commands (things you can type in the Terminal window) from your Python programs.
 This is fantastic, because it means you can get lists of files and also call OMXPlayer to play a certain file—exactly what
 you need!

 Getting a list of files from a folder: using listdir()

 Your Pi has some sound files on it already, as you saw in section 8.1. You’ll use the files in these two folders:

 	/usr/share/scratch/Media/Sounds/Music Loops/

 	/usr/share/scratch/Media/Sounds/Vocals/

 The os library provides a built-in function, os.listdir(some_path), to get a list of files at some_path. To get a list of Scratch music loops and vocals, use these commands:

 # Folders with sound files
path_music = "/usr/share/scratch/Media/Sounds/Music Loops/"
path_vocals = "/usr/share/scratch/Media/Sounds/Vocals/"

Creating two lists with the files in the folders
sounds_music = os.listdir(path_music)
sounds_vocals = os.listdir(path_vocals)

 If you print the lists, you’ll have something that looks like this:

 print(sounds_music)
['Cave.mp3', 'Techno.mp3', 'HipHop.mp3', 'Triumph.mp3', 'Medieval2.mp3',
[image:] 'HumanBeatbox2.mp3', 'DripDrop.mp3', 'Xylo3.mp3', 'GuitarChords1.mp3',

[image:] 'DrumSet2.mp3', 'Xylo2.mp3', 'DrumSet1.mp3', 'Garden.mp3',
[image:] 'GuitarChords2.mp3', 'Jungle.mp3', 'Xylo1.mp3', 'Eggs.mp3',
[image:] HumanBeatbox1.mp3', 'Drum.mp3', 'DrumMachine.mp3', 'Techno2.mp3',
[image:] 'Medieval1.mp3', 'xylo4.mp3']

print(sounds_vocals)
['Oooo-badada.mp3', 'Singer1.wav', 'BeatBox1.wav', 'Ya.wav',
[image:] 'BeatBox2.wav', 'Come-and-play.mp3', 'Hey-yay-hey.mp3',
[image:] 'Doy-doy-doy.mp3', 'Singer2.wav', 'Got-inspiration.mp3',
[image:] 'Join-you.mp3', 'Sing-me-a-song.mp3']

 Wow—you have nice-looking lists! But wait: it looks like sounds_vocals has WAV (.wav) files and MP3s. Let’s filter out the WAVs so you only have MP3s.

 Filtering for Only MP3s

 To filter a list, you can use Python’s list-comprehension feature. List comprehension is a quick way of creating lists. When you use it, you can include certain conditions or operations
 that are applied to the items in the list, such as making sure all the files in the list end with .mp3. Let’s look at how
 you can use list comprehension to create a new list from your old list, but only keep the files in the list that end with
 .mp3:

 sounds_music = [sound for sound in sounds_music if
 sound.endswith('.mp3')]
sounds_vocals = [sound for sound in sounds_vocals if sound.endswith
[image:] ('.mp3')]

 The list comprehension has a for loop inside it. In this case, Python is looping through the list of sound files in your original list of sounds. For each
 item in the list, Python only adds it to the new sounds list if it matches the condition of being a file ending with .mp3.

 Playing a sound when a button is pressed

 Next in your plan is to write the code that will play a random sound from your lists when a button is pressed. You’ll need
 this to be in a loop so the buttons are repeatedly checked to see whether they’re being pressed (see figure 8.17). Let’s start by creating the game’s title and creating the main game loop.

 Figure 8.17. The main part of the DJ Raspi program is the loop to check the buttons. You’ll use a while loop to check the buttons over and over again. If one of them is pressed, you’ll tell Raspbian to play a random sound using
 OMXPlayer.

 [image:]

 Loop to check the buttons

 First let’s add some code to display a title screen and the DJ Raspi instructions. Feel free to make the title screen fancier!

 Listing 8.2. DJ Raspi title screen

 [image:]

 Now let’s write the code to loop over and over again to check whether either button is being pressed. When a button is pressed,
 the GPIO pin will give you a response of True, and you can then call a function to play a random MP3.

 Listing 8.3. DJ Raspi game loop

 [image:]

 The code repeatedly checks whether Button 1 or Button 2 is pressed. If Button 1 is pressed, the code plays a random music
 sound. If Button 2 is pressed, the code plays a random vocals (singing) sound. If neither is pressed, the code loops around
 and checks them again. The loop never ends, so you’ll need to press Ctrl-C to exit the program.

 Playing sounds: using operating system commands from Python

 You’re ready to play your sounds! The os module will let you run operating system commands (ones you normally run using Terminal). To play the first sound in the
 sounds_music list, you could write

 os.system("omxplayer -o local '" + path_music + sounds_music[0] + " &")

 Later in this chapter, we’ll explain why the end of that command has an ampersand (&). The result of this command would be the same as typing this at the Raspbian command line:

 omxplayer –o local "/usr/share/scratch/Media/Sounds/Music Loops/Cave.mp3"

 	

 Note

 Remember, if you’re outputting the sound to HDMI (if your TV has speakers), you need to change –o local to –o hdmi.

 	

 Excellent! Let’s review what you’ve learned so far:

 	Your Pi can play sounds that are in MP3 format using OMXPlayer.

 	Python can store sets of things as lists.

 	The Python os library has a function called listdir(path) that can give you a list of sounds in a folder.

 	Python’s os library has an os.system(command) function that can run operating system commands from Python, such as playing sounds with OMXPlayer.

 Functions!

 Let’s think about how you can write the functions for DJ Raspi. You’ll want to create two functions:

 	get_MP3_sounds —This function will get a list of sounds ending in .mp3 from a specified folder. You’ll tell the function (pass it a parameter)
 the name of the folder where you want to get the MP3 sound files. The function will return a list of sounds.

 	play_random_sound —This function will take a list of sounds, pick a random number, and then use os.system to tell Raspbian to play the sound with OMXPlayer.

 Figure 8.18 shows where these functions fit into the flow diagram.

 Figure 8.18. There are two places where you can create functions so you can reuse code. One function creates a list of sound files, and
 the other function plays a random sound when a button is pressed.

 [image:]

 Why not make this a single function? One reason is that you only need to load a list of sound files once, near the beginning
 of the program. You play the sound files every time a button is pressed. Listing 8.4 shows the code for the get_MP3_sounds and play_random_sound functions.

 	

 Note

 Remember to put these functions near the beginning of the program. They must be added before they’re used for the first time.

 	

 At the end of this listing, you use (or call) get_MP3_sounds twice to get your lists of music and vocal sound files.

 Listing 8.4. Functions for loading and playing sound files

 [image:]

 You may have noticed that a few extra things are added to this line:

 os.system("omxplayer -o local '" + sound_path +
 "/" + sound_filesound_files[random_sound_index] + "' &")

 This line joins the command to run OMXPlayer with the path to your sound files (sound_path) and the random sound file you want to play (sound_filesound_files[random_sound_index]). At the end, you add an ampersand (&). The ampersand tells Raspbian to run the command in the background. This is so you can quickly press one button and then
 the other.

 	

 Doing multiple things at once: meet the ampersand (&)

 When you play sounds, you want to be able to press the buttons quickly, like a DJ, and have the sounds overlap to create interesting
 music. Normally, your Pi would play one sound, and, when it was finished playing, let you play another. Not what you want.
 Here is an example of playing two sounds. You can’t run the second command until the first one is finished:

 omxplayer /usr/share/scratch/Media/Sounds/Vocals/Oooo-badada.mp3
omxplayer /usr/share/scratch/Media/Sounds/Vocals/Hey-yay-hey.mp3

 Luckily, your Pi can do a few things at once. You might have several different windows open at the same time. Each window
 is connected to some underlying code or set of instructions running on your Pi. These underlying sets of code are called processes or threads. Raspbian, like other modern operating systems, manages these processes and assigns each one its own unique ID number. An
 ampersand (&) placed at the end of a command tells your Pi to run the command as another process in the background alongside any other
 processes.

 Try these two commands again, but this time with ampersands:

 omxplayer /usr/share/scratch/Media/Sounds/Vocals/Oooo-badada.mp3 &
omxplayer /usr/share/scratch/Media/Sounds/Vocals/Hey-yay-hey.mp3 &

 Notice the ampersand (&) at the end of each command. In this way, the Pi will play your sound, but the code won’t make your Pi wait for the sound
 to finish before doing something else. Adding an ampersand at the end of the OMXPlayer command makes the button play each
 sound in the background. Remove the ampersand to play one sound at a time. Because this is a feature of the OS, the concept
 of using ampersands to execute commands as their own unique processes applies to other Linux commands that you know already
 or will learn.

 	

 Great! You’re ready to test your project!

 Testing: your first gig as DJ Raspi

 Save the code as DJRaspi.py, and try running it. Select Run > Run Module (or press F5) from the IDLE text editor to run your
 program. If you have an older version of Raspbian (prior to October 2015), programs that use the GPIO pins must be run from
 the Raspbian command prompt as the superuser (or root). Open Terminal, and enter the following command:

 pi@raspberrypi ~ $ sudo python3 DJRaspi.py

 You should see the title screen display. Test it by pressing the buttons to see if they work.

 	

 Note

 Remember that any program that uses GPIO pins must be run from the Raspbian command prompt as the superuser (or root).

 	

 Believe it or not, it’s rare for a program to work perfectly the first time. If it doesn’t, read through the following “Troubleshooting” section and review your circuit and program to try to figure out how to get it working.

 Troubleshooting

 If sounds aren’t playing when you press the buttons, here are some things you can check:

 	Check the circuit on the breadboard. Is the ribbon cable connected properly, with the first wire connected toward the edge
 of your Pi, away from the USB ports?

 	Double-check that the jumpers, buttons, and resistors are in the right holes and pressed all the way into the breadboard.

 	Does your program print “You pressed #1!” and “You pressed #2!”? If it does, you know your circuit is working, and either
 it’s an issue with the code to load the sound files or your speakers or headphones aren’t working. Try running one of the
 following commands from Terminal to check whether the speakers are working.
 For headphones or speakers plugged into the 3.5 mm audio output:

omxplayer –o local /usr/share/scratch/Media/Sounds/Vocals/
[image:] Oooo-badada.mp3

 For TV speakers connected by HDMI:

omxplayer –o hdmi /usr/share/scratch/Media/Sounds/Vocals/
[image:] Oooo-badada.mp3

 	Look through your Python program for errors. Try adding some print statements to your functions to make sure they’re getting the list of MP3 files properly.

 If you’ve enjoyed creating DJ Raspi, check out the button challenges.

 [image:]

 Challenges

 Try some of these button activities for extra fun!

 Double button press surprise

 Give your program a surprise button combination. See if you can make pressing both buttons at once play a new set of sound
 effects.

 Hint: When you want something to happen only if both conditions are True, you can use the ampersand (&). The if statement will only be True if both the first and second conditions are True. It looks like this:

 if GPIO.input(button_pin1) & GPIO.input(button_pin2):
 print("Both buttons are pressed!")

 Here is the path to some Scratch sound effects on your Pi:

 path_effects = "/usr/share/scratch/Media/Sounds/Effects/"

 Yoda Magic 8 Ball

 There is a great classic toy called the Magic 8 Ball. It’s a ball that displays an answer to a question when you shake it.
 Ask it a question, and you’ll get some truly magical advice. The Magic 8 Ball has 20 different answers, ranging from “It is
 certain” to “My sources say no.”

 	

 Note

 I don’t recommend using the Magic 8 Ball to advise you on major life matters!

 	

 Your challenge is to make a Magic 8 Ball program:

 	Ask a question aloud, and then press a button.

 	Pressing the button makes your Pi select a random Yoda clip from a folder and play it.

 To get started, find some short sound files of Yoda sayings. One place to find them is on soundboard.com. Search for “yoda” to see if you can locate some good clips (you’ll need to create an account to download them for your personal
 use).

 Bonus: Try to give your Pi a handy button that plays Monty Python sound clips whenever you press it.

 Continuing to explore

 Now that you’ve given you Pi a new sense of touch, you’ll only need to change a few lines of code to make many other projects,
 such as these:

 	An interactive display that shows different digital photographs each time a button is pressed

 	Your own Raspberry Pi movie player that plays clips or movies at the press of a button

 	An MP3 music player that shuffles through your favorite songs

 You can also expand past buttons to sensors, such as passive infrared (PIR) sensors or cameras. For example, PIR sensors detect
 motion near the sensor. These are great for creating a Pi security system or something that scares people when they come to
 your door. Maybe you want to trigger a movie to make a frightening zombie head appear or generate a blood-curdling scream.
 Your only limit is your imagination and mischievous thoughts.

 Summary

 In this chapter, you learned that

 	A Pi can sense the environment around it using the input capability of the GPIO pins. This creates incredible possibilities
 to make the Pi have human or even superhuman senses.

 	Python lists make it easy to store and retrieve sets of things like numbers, sound files, images, and videos.

 	Buttons act as simple switches that send a small amount of electricity to your Pi’s GPIO pins, which it can detect. You have
 nothing to fear in wiring up buttons or other sensors!

 	Python programs can run Raspbian commands using the os library. This opens lots of possibilities for your programs, from playing music to showing or taking videos, displaying or
 taking pictures, and accessing information from websites.

 You’ve completed a great adventure in learning Python programming and how to use your Raspberry Pi. But there is much more
 excitement ahead of you. Check out appendix D for even more ideas of projects you can do with your Pi. With your Raspberry Pi, knowledge of Python, and a bit of fearlessness,
 the possibilities are endless!

Appendix A. Raspberry Pi troubleshooting

 In this appendix, you’ll learn how to solve common issues when setting up a Raspberry Pi. We’ll cover common Pi startup (or
 boot) issues, including how to fix an issue with an SD card for your Pi or set up a new SD card.

 Making sure your Pi has power

 Sometimes a Pi won’t start up. Before you try something drastic like creating a new SD card for your Pi, check the Pi’s power:

 	When you plug in your Pi, does the Pi’s red power light come on?
 Look for a small, red light (LED) on your Pi board. All Pis have them, but you may need to take off your case if you can’t
 see the Pi board. The red power light tells you that your Pi is receiving power. It should come on when you plug in your Pi
 and stay on the whole time you’re using it. If it doesn’t come on, that means your Pi isn’t receiving power. Check that the
 power supply is plugged in. If you’re using a power strip, check that it’s turned on. Sadly, some power supplies are poorly
 made. Get a new power supply if it’s a power issue.

 	Next to the red light, does the green activity light (LED) flash a lot when you plug in your Pi?
 The flashing is a sign that your Pi is doing some work. The green activity light should turn on and off, flashing quickly
 at times, as your Pi boots up. When it’s done starting up, the green light will turn off and only come on when your Pi is
 actively doing something like opening a game or Python. If the green light comes on and stays on, but nothing is displayed
 to the screen, it’s likely an issue with your SD card. Jump ahead to section A.4 to learn how to create a new SD card.

 If you suspect a power issue, purchase a new power supply and try it out. Providing sufficient electrical power (2 amps) at
 the correct voltage (5 volts) is important for a Pi to work correctly.

 Checking the connection to your TV or monitor

 If the red light is staying on and the green light turns on and off after you plug in your Pi, but you don’t see any image
 on your TV or monitor, it’s time to check the connection to your screen. Here are a few things to investigate, depending on
 the type of TV or monitor you’re using.

 If you’re connecting an HDMI cable from your Pi to your TV or monitor, try these things:

 	Check that the TV or monitor is turned on.

 	Check that the TV or monitor is set to the correct input. They typically have multiple inputs, and you must press an input
 button to select the proper one. Otherwise, the screen will display nothing or a message saying no input is detected.

 	If you have an extra HDMI cable, try using it to see if it’s an issue with the cable.

 If your setup requires that you use an adapter to connect your Pi to your TV or monitor, then you may need to make sure your
 adapter works or is the correct type. There are two common types of adapters:

 	HDMI-to-DVI adapter —This adapter is used to connect the Raspberry Pi’s HDMI cable to a monitor with a digital visual interface (DVI) port. Sometimes
 you might purchase a bad adapter that doesn’t work. If you can, try connecting your Pi to another TV or monitor that uses HDMI to check whether it’s an issue with the adapter. Again, if the red light comes on and the green light
 flashes, but you don’t see anything on your screen, it’s likely an issue with the monitor connection.

 	HDMI-to-VGA adapter —Older monitors don’t have HDMI or DVI ports and may only have a video graphics array (VGA) port. Your only option may be
 to buy an HDMI-to-VGA adapter to connect your Pi to the monitor. Not all HDMI-to-VGA adapters work. Your best bet is to buy
 one that is advertised to work with the Pi from a store that sells Raspberry Pis. If you aren’t sure, try hooking up your
 Pi to another TV or monitor using only the HDMI cable to test whether that is your issue.

 If, after all those steps, you don’t see a picture, it’s likely an issue with your SD card.

 Pi starts booting up but then stops

 Another issue you may see is that your Raspberry Pi starts booting up, you see a series of messages displayed on the screen,
 and then the messages stop but the Pi doesn’t reach the Raspbian desktop or command line. If this is the case, it’s likely
 that the SD card has been damaged. But another reason is that there could be something wrong with one of your GPIO pins.

 If you’re building circuits on a breadboard connected to your Pi (see the examples in chapters 6–8), the Pi may fail to boot all the way up if a wire is improperly connected. To see whether this is the issue, disconnect
 the ribbon cable and breadboard from your Pi and try powering it up again. If the problem persists, it’s likely an issue with
 the SD card.

 Making your Pi a new SD card

 Still not starting up? An issue with an SD card is a common reason. The SD card may stop working if the Pi is turned off when
 information is being stored (or written) on the card, or it may fail with age.

 	

 Note

 When an SD card fails, you’ll need to start over, and you’ll lose any data or new applications installed on the card. In the
 future, you can create a backup of your SD card. Check out online forums to learn how to do this.

 	

 You have a couple options if you think this is the problem:

 1. Clean and reset your SD card with the Raspberry Pi New Out of the Box Software (NOOBS).

 2. Purchase a new card from one of the many online stores that sell Raspberry Pis. They cost around $10.

 Let’s go over how to clean and set up your SD card with NOOBS. To perform these steps, you need another computer, such as
 a Windows PC or a Mac.

 Reformatting your SD card

 Formatting is the process of setting up the memory storage so that information can be put on it. To reformat your SD card and set it
 up with a fresh version of NOOBS, do the following:

 1. Using your other computer, download and install the SDFormatter software from the SD Association website: https://www.sdcard.org. On the website, look under Downloads, and download the appropriate version of SDFormatter for either Windows or Mac. Follow
 the install instructions to load the software on your computer.

 2. Insert your SD card into the computer. Take note of which drive letter is assigned to the SD card after it’s inserted:
 it may be E:, F:, or similar.

Note

 For the Raspberry Pi Model 2 and B+, the SD card is a microSD card, so you’ll need a microSD-to-SD card adapter in order for
 it to insert into the SD card slot on your computer. You can purchase such an adapter online.

 	

 3. Open SDFormatter, select the correct drive letter for your SD card, and then click Format (see figure A.1). It’ll ask if you want to continue. Accept the warnings to reformat the SD card.

 Figure A.1. Clean up (or reformat) your SD card using the SDFormatter software available from the SD Association website. In SDFormatter,
 select the drive letter for your SD card, and click Format to have your card wiped clean. This process means you’re starting
 over—you lose anything saved or installed on your Pi—but sometimes that is the only option.

 [image:]

 4. Go to the Raspberry Pi website at https://www.raspberrypi.org/downloads, and click the link to download the NOOBS zip file. It’s a large file, so grab a snack while you’re waiting for the download.

 5. Extract the NOOBS zip file, and drag all the extracted files onto your SD card.

 6. Once the files have been copied, take the SD card out of the computer and put it into your Raspberry Pi. With your keyboard,
 mouse, and monitor connected, plug in the Pi to see if it boots up. If it doesn’t, it’s probably time to purchase a new NOOBS
 SD card for your Pi from a local or online store that sells Raspberry Pis.

 Problems not covered here

 Not everything can be covered here, so get online! A large amount of troubleshooting information is posted on the Raspberry
 Pi forums. If you’re stuck, search the internet for “Raspberry Pi troubleshooting,” and you’ll find numerous resources. Although we’re all special, it’s rare to have an issue with the Pi that no one else
 has discovered. Chances are, many other people have had the same issue, so read the forums to benefit from all the knowledge
 that comes from the diverse community of Raspberry Pi users!

Appendix B. Raspberry Pi ports and legacy boards

 In this appendix, you’ll find information about some of the Raspberry Pi ports and connections that we didn’t discuss in chapter 1. Our focus is on the Raspberry Pi 2 Model B. The connections and ports that we’ll cover in more detail include the following:

 	Wireless internet connections using a USB Wi-Fi adapter

 	3.5 mm audio/video port

 	Camera Serial Interface (CSI) port

 	Ethernet port

 	TV or monitor connection options

 In section B.2 of this appendix, we’ll review key differences between the legacy Raspberry Pi 1 models as compared to the
 Raspberry Pi 2 Model B. We’ll look more at these popular, but older models:

 	Raspberry Pi 1 Model B rev 2 (released September 2012)

 	Raspberry Pi 1 Model B+ (released July 2014)

 Let’s take a closer look at ports and connections.

 Raspberry Pi ports

 The Raspberry Pi has many different ports, and you can connect many different things to it. In chapter 1, we covered most of the common ones you’ll use, but we’ll talk about a few of the other ports here. For reference, figure B.1 shows the ports and their typical uses for the Raspberry Pi 2 Model B.

 Figure B.1. The Raspberry Pi 2 Model B has many different input and output ports that allow you to connect a keyboard or mouse, monitor,
 and even high-definition cameras.

 [image:]

 Now let’s look in a little more detail at some of the ports and connections we didn’t cover in chapter 1 or in later chapters.

 Connecting to a wireless network

 A preferred way to connect to the internet is using a USB Wi-Fi adapter. Once connected, you can surf the web, download applications
 from the Pi Store, or remotely log in to your Pi from another computer. Most of us don’t have our Pi set up near an Ethernet
 cable, so connecting wirelessly is the best and only option. Let’s look at how you do it.

 Plugging in your USB Wi-Fi adapter

 With your Raspberry Pi turned off, plug your USB Wi-Fi adapter into one of the USB ports. There are many different USB Wi-Fi
 adapters that will work for the Pi. Most kits come with one, but if you need to buy one, refer to the Raspberry Pi forums
 (see https://www.raspberrypi.org/forums/) to research those that are known to work. Stores that sell Raspberry Pis also tend to sell compatible USB Wi-Fi adapters.

 Configuring your Wi-Fi connection

 To connect to a Wi-Fi network for the first time, follow these steps:

 In the top-right corner, click the network icon (looks like two small computers connected). You’ll see a list of available
 Wi-Fi networks (see figure B-2).

 Figure B.2. The network connection icon is located near the top-right corner of the Raspbian desktop. Clicking on it allows you to view
 nearby wireless networks.

 [image:]

 Click on the Wi-Fi network name that you want to connect to.

 Clicking on a Wi-Fi network name will make a small box appear. Enter the pre-shared key (also called the Wi-Fi password) and
 click OK to connect (see figure B.3). The network icon will change into a Wi-Fi icon showing the strength of the Wi-Fi signal.

 Figure B.3. Enter the pre-shared key for the network and click OK to connect to it.

 [image:]

 Fantastic! Open a web browser, such as your Raspberry Pi’s Epiphany web browser, and go to one of your favorite websites to
 enjoy your new Wi-Fi connection.

 Troubleshooting

 If you weren’t able to connect, check that your pre-shared key was entered correctly. If it’s correct and your web browser
 shows an error message saying “cannot resolve hostname,” then your Pi may need to renew its IP address. The IP address is
 a unique series of numbers that a wireless router assigns to your Pi and other devices on the network. To renew your Pi’s
 IP address, open the Terminal and enter these two commands:

 pi@raspberrypi ~ $ sudo dhclient -v -r eth0
pi@raspberrypi ~ $ sudo dhclient -v eth0

 If you still are unable to connect to the internet, check with the person who set up or manages the network to get help.

 3.5 mm audio/video port

 Whether it’s Beethoven, Lady Gaga, or the creeper explosions in Minecraft, you’ll want to listen to sounds on your Pi. Meet
 the 3.5 mm audio/video port (see figure B.4). This port is a black connector[1] with a round hole. It gets its name from the fact that the hole is 3.5 mm in diameter. Connect either headphones or a set
 of powered-computer speakers to listen to sounds from your Raspberry Pi.

 1

In older versions of the Raspberry Pi, the port may be blue rather than black.

 Figure B.4. The Raspberry Pi’s 3.5 mm audio/video port is used to connect headphones or speakers for playing sounds. It can also function
 as a low-quality video output, if you purchase a 3.5 mm-to-RCA composite video adapter.

 [image:]

 	

 Tip

 If you connect computer speakers, use powered speakers, such as the type used with a desktop computer or iPod. The sounds
 that come out of the Raspberry Pi 3.5 mm audio/video port are only loud enough for a set of earphones or headphones. If you
 would like a roomful of people to hear your music, connect a set of powered speakers, which contain a built-in amplifier to
 boost the sound.

 	

 Starting with the Raspberry Pi 1 Model B+ and the Raspberry Pi 2 Model B, this port can also be used to output a video signal.
 The video signal isn’t high resolution like the HDMI port, but in a pinch, it’s an option. The output video signal is composite or single-channel
 video, meaning all the video signal comes out in a single wire. It’s what many of the older DVD players and video game consoles
 used at one time. You can purchase a cable that plugs into the port and at the other end has RCA connectors for plugging your
 Pi into an older TV.

 Camera Serial Interface: connecting a camera

 If you’d like to try time-lapse photography or set up a camera to take pictures of wild animals or your pet, you’ll want to
 add a camera to your Pi. The best way to add a high-def digital camera to your Raspberry Pi is with the Raspberry Pi camera
 module. Created by the Raspberry Pi Foundation, it doesn’t usually come with Pi kits, so you’ll have to buy it separately.
 The module contains a 5 megapixel camera mounted on a circuit board and comes with a short ribbon cable (see figure B.5).

 Figure B.5. The Raspberry Pi camera module was created by the Raspberry Pi Foundation to take high-def digital photographs and video.
 The camera attaches to the Pi using a ribbon cable that connects to the Camera Serial Interface port. The camera module can
 be programmed using Python and used for nature photography or creating your own home-surveillance system.

 [image:]

 The camera connects to your Pi’s Camera Serial Interface (CSI) port (see figure B.6) and can take still photographs or high-def video. The module is able to connect easily to the Pi and record high-def video
 while consuming less processing power than using a USB camera with your Pi.

 Figure B.6. The Raspberry Pi camera can connect to the CSI port, which is located between the HDMI port and the 3.5 mm audio/video port.
 To connect a camera, you need to lift up the black connector, insert the ribbon cable (metal contact toward the HDMI port),
 and push down on the black connector again.

 [image:]

 To connect the camera module, follow these steps:

 1. Open the CSI connector on your Pi by lifting up on the top portion of the black plastic connector.

 2. Insert the end of the ribbon cable into the CSI connector. The shiny metal contacts on the ribbon cable should face away
 from the Ethernet port and toward the HDMI port (see figure B.6).

 3. Push the black plastic connector back down to close it, clamping the ribbon cable into the connector.

 	

 Tip

 The Pi camera board comes with a short ribbon cable. If you need a longer one, you can find extension cables at online stores
 such as Adafruit.

 	

 Once the camera module is connected, you need to enable it. Open Terminal to enter Raspbian command-line mode. Enter the command
 to open the Raspberry Pi configuration menu:

 pi@raspberrypi ~ $ sudo raspi-config

 When the blue screen and Raspberry Pi configuration menu appear, select option 5: Enable Camera. Select Enable, and then select
 Finish on the main configuration menu. Your Pi will ask if you would like to reboot now; select Yes. When your Pi has rebooted,
 test out your camera by opening Terminal and typing

 pi@raspberrypi ~ $ raspistill -t 3000 -o PiPhoto.jpg

 This will turn on the camera and take a picture after 3 seconds. The –t 3000 part tells the raspistill program the time to wait—in this case, it’s set it to 3,000 milliseconds or 3 seconds. The image is saved to a file called
 PiPhoto.jpg. You can view the file by opening File Manager and looking in your pi\home folder. Check out online resources
 for more that you can do with your camera, including using PiCamera, a Python library for controlling the camera.

 If you’re thinking about taking videos or photos at night, there is an alternate version of the Pi camera module called the
 Pi NoIR (for near infrared) camera module. It uses the same CSI port and connects the same way. One difference is that you’ll
 need to shine an infrared light source at the target you’re filming. With the Pi NoIR, you’re armed for some great new possibilities
 for nighttime mischief with your Pi.

 Ethernet port

 Having a connection to the internet lets you use your Pi to surf the web and download software; you can even control your
 Pi from another computer. Your Raspberry Pi’s Ethernet port is located next to the USB ports (see figure B.7). Using the Ethernet port is an easy way to connect a Raspberry Pi to the internet. The only trouble is that you’ll need
 to have your Pi where an Ethernet cable connection can reach it.

 Figure B.7. The Ethernet port on the Raspberry Pi supports connecting a Pi to a home network. Connect an Ethernet cable from your Pi to
 your router or modem to access the internet. With your Pi connected to a network, you can remotely connect to the Pi from
 another computer using special programs such as SSH and VNC Server.

 [image:]

 TV or monitor connection options

 It’s easiest to connect your Pi to a TV or monitor if it has an HDMI port or DVI port; this is covered in chapter 1. But what if you don’t have one of those ports? There are other ways to connect your Pi. Let’s first identify a couple different
 types of ports you might see on the back of your TV or monitor and then learn how to connect your Pi to them.

 Identifying ports and making the connection

 Take time to study the connections on your TV or monitor. Try to identify the video ports, comparing them to the pictures
 of connectors in figure B.8.

 Figure B.8. Common types of video input ports found on TVs and monitors. A Raspberry Pi can connect to any one of these ports. Some ports
 (DVI, VGA, RCA [or composite], and component) require using special adapters or converters with a Pi.

 [image:]

 For certain ports, you may need to buy an adapter that converts one type of port to another. We’ll cover VGA, RCA, and component
 ports. See chapter 1 for the HDMI and DVI port connections.

 RCA port

 This type of port is a yellow, round connector. It’s usually found next to red-and-white RCA audio connectors.

 You’ll need to purchase a special cable that is a 3.5 mm four-pole plug at one end and an RCA composite video and audio cable
 at the other end. Plug the cable into the 3.5 mm audio/video port, and plug the other end into your screen’s composite video input. Typically,
 the screen will have red-and-white audio-input connectors next to the video input. Connect the red-and-white RCA audio connectors
 if you want to have sound as well (see figure B.9).

 Figure B.9. The Raspberry Pi can be connected to a TV or monitor using an RCA video cable. The cable connects from the Pi’s 3.5 mm audio/video
 port to the RCA video input port on the TV or monitor. Using the RCA connection produces a low-quality picture but can be
 a good option if you don’t have a TV or monitor that supports HDMI.

 [image:]

 VGA port

 A VGA port has a flat top and bottom with sides that slant inward. The port has three rows of five round pin holes. Connecting
 a Pi to a TV or monitor with a VGA port isn’t recommended because you’ll need to purchase an adapter and may run into potential
 issues with configuring your Pi to detect your monitor. If you decide to try this option, you’ll need an HDMI-to-VGA adapter.
 You’ll also need to update the configuration settings on your Raspberry Pi. This isn’t covered in this book, but the Raspberry Pi forums can provide you with more information on altering the configuration settings to use an HDMI-to-VGA
 adapter.

 Component video input

 A component video port on a TV has a set of three round connectors that are green, blue, and red. Using this port isn’t recommended
 because of the additional cost of a converter and because you may have to do additional configuration of your Pi to successfully
 connect to your monitor. If you decide to use this option, you’ll need a component-to-HDMI converter. Such a converter should
 come with its own power supply. Avoid ones that don’t, because they won’t work with your Pi. The converter will cost you around
 $50, so if you have other options, save your money—try using a different TV or monitor, or put that money toward a new or
 used LCD or LED monitor for your Pi.

 With the ports covered, let’s examine the differences between the Raspberry Pi 2 Model B and older model boards.

 Legacy boards

 The Raspberry Pi is made by the Raspberry Pi Foundation, and several versions and models have been released over the last
 several years. We’ll show and discuss the major differences between the boards.

 Raspberry Pi 1 Model B

 The Raspberry Pi 1 Model B was the version of the Pi that many came to love. The Pi was originally conceived to help develop
 a new generation of programmers and hackers, but it was unexpectedly popular with many hobbyists and entrepreneurs because
 of all the great things they could do and make with it. The board looks a bit different from the Raspberry Pi 2 Model B (see
 figure B.10)

 Figure B.10. The Raspberry Pi 1 Model B has been wildly popular. It has been used for a spectrum of applications from scientific research
 to art and education.

 [image:]

 Here are a few key differences between the Raspberry Pi 1 Model B and the Raspberry Pi 2 Model B:

 	USB ports —The Pi 1 Model B has only two USB ports. This makes it challenging to connect a keyboard, a mouse, and a USB Wi-Fi adapter.
 A great workaround is to use a powered USB hub to connect more USB devices.

 	RCA (or composite) video out —The Pi 1 Model B has a dedicated RCA connector to connect it to old-style TVs. The Pi 2 Model B has integrated this into
 the 3.5 mm audio/video port.

 	System on a chip —The earlier Pi Model B uses a single-core 700 MHz processor, whereas the Pi 2 Model B uses a quad-core 900 MHz processor.
 Thus the newer model is about four times faster.

 	Memory card slot —The Pi 1 Model B used a standard size SD card. The Pi 2 Model B uses a mini-SD card slot that has a spring mechanism to hold
 the card in securely.

 	GPIO pins —The number of pins and how they’re numbered is different on the earlier Model B. There are only 20 pins on the older model;
 the newer model has 40 pins. If you’re working with a Pi 1 Model B, refer to online references for the pin numbering.

 Raspberry Pi 1 Model B+

 After the Raspberry Pi 1 Model B came the Raspberry Pi 1 Model B+. The boards look very different. In contrast, if you compare
 the Raspberry Pi 1 Model B+ to the later Raspberry Pi 2 Model B, they’re nearly identical—in terms of available ports and
 the location of those ports, they’re exactly the same. Figure B.11 shows the Raspberry Pi 1 Model B+.

 Figure B.11. The Raspberry Pi 1 Model B+ was a major revision of the Raspberry Pi 1 Model B. It increased the number of USB ports from
 two to four, added more pins for GPIO, and changed to a microSD memory card slot. The ports on the Raspberry Pi 1 Model B+
 are the same as those on the Raspberry Pi 2 Model B.

 [image:]

 The key differences from the Raspberry Pi 2 Model B are as follows:

 	System on a chip —The B+ has a single-core, 700 MHz processor, whereas the Pi 2 Model B has a quad-core, 900 MHz processor.

 	Working memory (RAM) —The Model B+ has 512 MB compared to the Pi 2 Model B’s 1 GB.

 Other boards

 We aren’t covering the Raspberry Pi Model A or A+, but many of the ports are the same. The main difference is that the Model
 A and A+ have only one USB port, no Ethernet port, and less working memory (RAM)—256 MB. The Model A and A+ are useful when
 you have a project that needs a smaller computer that requires less power than the Model B or B+.

Appendix C. Solutions to chapter challenges

 In this appendix, you’ll find answers to the challenges presented at the end of each chapter. For challenges that require
 more lines of code than will fit on a page, I provide hints and snippets of code. The complete programs for the solutions
 are found in the code download that goes with this book. Comments are included in the code to help you understand the design
 and function of the programs. The solutions to the challenges are organized by chapter. Let’s begin!

 Chapter 1

 At the end of the first chapter, you go on a scavenger hunt:

 	Squirrel —To find the squirrel game, choose Menu > Games > Python Games. After you select how you would like sound (audio) to be output,
 you’ll see a list of Python games. The squirrel game is near the middle of the list. Win the game, and achieve Omega Squirrel.

 	Calculator —Select Menu > Accessories > Calculator. 89 × 34 is 3,026.

 	Shutdown —Shut down or restart your Raspberry Pi by choosing Menu > Shutdown. The shutdown menu lets you choose to shut down, reboot,
 or log out.

 	Black desktop —To change the desktop background to black, right-click anywhere on the desktop and select Desktop Preferences. In the Desktop
 Preferences window, look in the middle of the screen for a Background Color label. Click the white box to select a new background
 color. Click OK to select the color, and then click Close to close the Desktop Preferences window.

 	Scratch bonus —To open Scratch, select Menu > Programming > Scratch. When Scratch opens, construct a program by dragging blocks into the
 script area for your cat sprite. Figure C.1 shows an example of a dancing cat program that makes the cat dance back and forth 10 times when the space bar is pressed.

 Figure C.1. Make the cat dance in Scratch by dragging program blocks into the script area.

 [image:]

 Chapter 2

 The challenges in this chapter are about displaying characters to the screen and doing some mathematics.

 The Matrix

 Create a screen full of 1s and 0s by using the print function and the multiplication operator like this:

 matrix = "0100101101001100100110001011001011110000010101"
print(matrix * 100)

 Building a brick wall

 To solve this one, create a variable named brick and give it a string of characters like this:

 brick = "|__"
print(brick * 1000)

 To make the bricks look like raspberries, you could try

 brick = "|_o88{_"
print(brick*300)

 Use your imagination to visualize that this is a sideways raspberry brick. The bracket is the leaf on top of the raspberry.

 Pi electrons

 You’re trying to figure out how many electrons per second it takes to equal 1 amp flowing into your Raspberry Pi. The calculation
 using Python looks like this:

 >>> electron_charge = 1.60 * 10**-19
>>> electrons_flowing = 1 / electron_charge
>>> print(electrons_flowing)
6.249999999999999e+18

 The answer is 6,250,000,000,000,000,000. That’s a lot of electrons!

 Chapter 3

 These challenges are about gathering input, joining together strings, and displaying text to the screen.

 Knight’s Tale Creator 3000

 To make this program, you want to first print a title and then gather a series of words from the player:

 [image:]

 Next, you join the input words with the story. You can do this sentence by sentence to make the code a bit easier to follow:

 sentence1 = "There was a brave knight, " + player_name + ", who was
[image:] sent on a quest to vanquish the " + adjective + " evildoer,
[image:] " + famous_person + ". "
sentence2 = "Riding on his/her trusty " + animal + ", the brave " +
[image:] player_name + " traveled to the faraway land of " + vacation_place
[image:] + ". "
sentence3 = player_name + " battled valiantly against " + famous_person +
[image:] "'s army using his " + sharp_thing + " until he defeated them. "
sentence4 = "Emerging victorious, " + player_name + " exclaimed, '" +
[image:] exclamation + "!!!' I claim the land of " + vacation_place + " in the
[image:] name of Python."

 Finally, let’s join the sentences and display the tale to the screen:

 tale = sentence1 + sentence2 + sentence3 + sentence4
print(tale)

 Subliminal messages

 You’re trying to create a message that’s hidden in a large display of characters. You start by asking for the person’s name
 and something they would like:

 [image:]

 Next, create a pattern of letters, numbers, and symbols in which you’ll hide the message:

 weird_characters = "*#ad@32*)23)@*sad# 2&^ 32^423!"

 Finally, you create the full message by making it read “You really want to buy [player_name] a [thing]”, but hide it by printing
 out on the screen the pattern of characters before and after the message:

 [image:]

 Chapter 4

 This chapter’s challenge is about using some of your new skills, like if/then (or conditional) statements, as well as toolboxes like the random module.

 Rock, Paper, Scissors!

 For this challenge, you start by importing the random module, creating a title, and defining any variables you’re going to need:

 import random

play_again = "Yes"
choices = ["Rock","Paper","Scissors"]

 Next, you want to display the title and then start a while loop that will gather the player’s choice and get a random computer choice:

 [image:]

 You then want to display the two choices and use an if statement to test whether the player and computer choices are the same. If not, you want to check whether you have one of
 the following Player versus Computer combinations:

 	Rock (Player) beats scissors (Computer)

 	Scissors (Player) beats paper (Computer)

 	Paper (Player) beats rock (Computer)

 You program all this inside the while loop because you want it to be repeated as long as the player wants to play. At the end of the loop, the player is asked
 if they want to play again:

 [image:]

 You create a large if statement that tests whether player_choice and computer_choice form one of the winning combinations. Each of the combinations is wrapped in parentheses, and you use or between them. This ensures that if any one of the combinations is correct, the winning message will be displayed.

 Chapter 5

 Introducing dramatic pauses

 You were given some good hints about how to do this in chapter 5. Rather than display too much code here, I suggest that you head over to the code download to see what this looks like.

 Random demise

 In this challenge, you’re creating a more random and exciting end for your adventurer, Raspi. For this, you need to import
 the random module at the top of your program, define some new variables for the different endings, and create a list of the endings.
 This will allow you to have the computer pick a number:

 import time
import random

demise1 = """Raspi sees a rock on the ground and picks it up. He feels a
[image:] sharp pinch and drops the rock. Just then he realizes it wasn't a rock
[image:] but a poisonous spider as he collapses to the ground."""
demise2 = """Standing in the cave, Raspi sees a small rabbit approach
[image:] him. Raspi gets a bad feeling about this rabbit. Suddenly, the
[image:] rabbit attacks him, biting his neck."""
demise3 = """Whoa, is that a piece of gold? As Raspi walks over to it,
[image:] he doesn't see a hole in the floor. Suddenly, he falls down the hole,
[image:] never to be heard from again."""
endings = [demise1, demise2, demise3]

 You use triple quotation marks, called string literals, to make strings that span multiple lines. You also store the three different endings in a list called endings.

 Finally, to solve this challenge, change the wrong_answer function to get a random number, select an ending, and then display it to the screen:

 [image:]

 Check the code download to see how it all works together.

 Play again?

 To add a play-again option, add a new variable at the top of your program and set it equal to "Y" to start:

 play_again = "Y"

 Next, put all of your cave-selection logic in a while loop. The while loop will depend on the value of play_again, but you’ll use the string function upper() to make the play_again value all uppercase. This helps if the user accidentally enters y instead of Y:

 while play_again.upper() == "Y":

 At the end of the while loop, you also need to ask the user if they want to play again. Store their response in the play_again variable:

 print("Do you want to play again?")
play_again = input("Enter Y for yes or N for no: ")

 Another part of this challenge is adding a scream sound (or any other sound you want). First, make sure you import the os module and set up a variable with a sound file:

 import os
scream_file_path =
[image:] "/usr/share/scratch/Media/Sounds/Human/Scream-male2.mp3"

 Add a new line to the wrong_answer function that calls OMXPlayer and tells it to play the scream sound:

 os.system("omxplayer " + scream_file_path)

 Run the program to test it out! Add it to all the other game-over endings in the game to make it even more fun!

 	

 Note

 Make sure you have speakers or headphones connected, or you won’t hear anything.

 	

 Chapter 6

 Wave pattern

 Let’s turn on each LED one by one. Then, when they’re all on, you’ll turn them off one by one. Each light is turned on or
 off by setting its state to HIGH (on) or LOW (off). You create the sequence by adding a time delay between each command:

 [image:]

 You can adjust the sleep time to get a faster or slower animation.

 Simon says

 In this challenge, you’re creating a program that blinks lights in a pattern like the classic game Simon. As before, the program requires that the GPIO and time modules be imported and the GPIO pins be set up properly. See the
 code download for the full code listing. Start by defining the simon_says function:

 [image:]

 This creates a list with all the colors and loops through them one by one. For each one, the function checks its value and
 turns on and off the LED of that color. To use the function, you call it and give it the pattern you want to create, along
 with some helpful messages:

 [image:]

 Go, Simon, go!

 Random blinking

 This challenge is about blinking LEDs on and off for random amounts of time between 0 and 3 seconds. Let’s see how to do it.
 I won’t show the top part of the program with the typical setup of the GPIO pins; refer to the code download for the full
 code listing. At the top of your program, don’t forget to import the random module so you can use it to generate random numbers:

 import random

 To accomplish this challenge, you need to create two variables and store in them a random number between 0 and 3. These variables
 are the amount of time the lights should stay on and off:

 on_random_time = random.random() * 3
off_random_time = random.random() * 3

 Next, you can use the random time with the sleep function to make the light blink. Put this inside a loop, making sure that each time through the loop, new random on and
 off times are created:

 [image:]

 The off and on times change each time through the loop. Enjoy some fun blinking!

 Chapter 7

 The chapter challenges involve using your Guessing Game and controlling the RGB LED.

 Game winner

 Let’s write a function to quickly flash the RGB LED three different colors. Define a new function called winning_flash:

 [image:]

 If you need help figuring out where to add this function and call it in your code, check the code download for more answers.
 You add it to the if statement when guess is equal to number_in_my_head so you get a wonderful flashing celebration when you win.

 Easter egg

 To make an Easter egg in your program, you need to have the code check to see whether the player entered a certain value instead
 of the usual number guess. Edit the main portion of the logic for the LED Guessing Game program to first check whether the
 secret word was entered. If it wasn’t, the program continues to convert the input text into an integer and check whether the
 guess was correct, too high, or too low. If the player enters the word Spam, you call an easter_egg function:

 [image:]

 As a special bonus, you can create an easter_egg function that displays a Spam song or whatever message you’d like.

 [image:]

 In the easter_egg function, you call a crazy_flash function. The one shown here makes the RGB LED quickly flash purple and green. It’s similar to how you created the winning_flash function:

 [image:]

 Create your own easter_egg and crazy_flash functions, or see the code download for example ones that you can modify.

 Warmer and colder

 Let’s alter the guessing game to flash slower if you’re colder or further from the correct answer, and flash faster if you’re
 warmer or closer to the correct answer. Add some calculations so that blink_time is determined by the difference between the guess and the correct answer:

 [image:]

 The abs function gets the absolute value—the distance a number is from zero. You need to do this because you can’t tell your Pi to
 sleep for a negative amount of time. That would be silly! You make this addition for both cases: when the player’s guess is
 higher and lower than the actual number. You divide the numbers by 10 to speed up blink_time and make sure your light isn’t blinking too slowly.

 Finally, a nice touch is to add extra information to the game instructions so the player knows the blinking speed gives them
 a hint about how close or far they are. See the code download for an example.

 Darth Vader surprise

 Using what you learned in chapter 7 and a couple of new things, let’s see if you can make a Darth Vader image pop up on the screen when you lose the game. You’ll
 need an internet connection for the next few steps. Download a good Darth Vader image from the web, and make sure to save
 it to the home\pi folder where your Python programs are located. Take special note of the filename.

 After downloading the image, install the fim image-viewing software on your Raspberry Pi:

 pi@raspberrypi ~ $ sudo apt-get -y install fim

 	

 Note

 Make sure you include a line at the top of the program to import the os module.

 	

 When it’s done, test that fim works from Terminal:

 pi@raspberrypi ~ $ fim Darth_Vader.jpg

 	

 Note

 When fim is running, you need to press Esc (escape) to exit.

 	

 When you exit fim, the screen will display remnants of the image. It’s a funny issue, which you can fix by grabbing one of your windows by
 the title bar and swiping it around the screen to erase the image remnants and return it to the normal Raspbian desktop appearance.

 In the Guessing Game, because you need to call fim from your Python program, add a line to import the os module at the top of the program:

 import os

 Next, edit the game_over function to display the image. The game_over function is called only when the player guesses incorrectly five times:

 def game_over():
 print("You lost!")
 print("Better luck next time!")
 time.sleep(2)
 os.system("fim –a Darth_Vader.jpg")

 Notice that you use fim with the –a option to display Darth Vader. This option automatically scales the image to fill the full screen. Here are some commands
 you can use to rotate or resize the image when it’s displayed on the screen:

 	
 Option

 	
 Result

 	+/-
 	Zoom in/out

 	A
 	Automatically scale

 	F
 	Flip

 	M
 	Mirror

 	R/r
 	Rotate 10 degrees clockwise / counterclockwise

 	Esc/q
 	Quit

 Test it to see if it works!

 Chapter 8

 Let’s see what fun things you can do with buttons.

 Double button press surprise

 This challenge involves taking the project from the chapter and making something new and different happen when both buttons
 are pressed at the same time. In this case, you’ll make your Pi play a percussion sound to go with your vocals and music.
 You don’t need to change any of the wiring because you already have the two buttons.

 First let’s add some code at the top of the program to create a path to where the sound effects are stored:

 path_effects = "/usr/share/scratch/Media/Sounds/Effects/"

 Next get a list of effects from the folder and store the list in a variable, sounds_effects. Put this next to where you load the other lists:

 sounds_effects = get_MP3_sounds(path_effects)

 Finally, you need to tell your program to check whether button 1 and button 2 are pressed. You’re going to modify the main
 game loop to first check if both are being pressed. You use the if/elif statement for this. Use the Boolean “and” operator—the ampersand (&)—to make this if statement true only if both button 1 and button 2 are pressed. If they aren’t, the statement will next check button 1, and
 finally it will check button 2:

 [image:]

 Let’s test to see if it works! Check out the code download if you need further details on the program.

 Yoda Magic 8 Ball

 Before you dive into the programming for this challenge, you need to work on the hardware. Because this challenge needs only
 one button, remove button 2 from the breadboard, along with its jumper wires and resistor. Your breadboard should have one
 button now, connected to GPIO 6.

 Next, gather a set of Yoda sounds. You can download sounds from Soundboard once you create a free account. For this example
 solution, you’ll use five sound files, but feel free to use any ones you want. Make sure they’re MP3 sound files so they’ll
 work with OMXPlayer. The Yoda sound files in this example solution are as follows:

 	Fear in You.mp3

 	I am strong.mp3

 	No.mp3

 	Patience.mp3

 	Use the Force.mp3

 Much like the classic Magic 8 Ball game, the answers are sometimes clear and other times strange or unclear.

 As in the DJ Raspi project, you need to import several modules for this project, set up your Pi’s GPIO pin for input (detecting
 electrical signals), and create some variables. Most notably, you need to create a variable for the folder with your Yoda
 sound files:

 [image:]

 Use the same get_MP3_sounds and play_random_sound functions from your DJ Raspi project. One slight improvement you can make to the play_random_sound function is to hide the messages that OMXPlayer displays on the screen (they make it harder to read what the game is telling
 you to do). Change this one line to divert all the output messages to an empty or null location:

 def play_random_sound(sound_path, sound_files):
 random_sound_index = random.randint(0,len(sound_files)-1)
 # print("Playing: " + sound_files[random_sound_index])
 os.system("omxplayer -o local '" + sound_path +
 "/" + sound_files[random_sound_index] + "' >/dev/null")

 This is a great example of being able to reuse code! Next, you’ll gather the list of MP3 Yoda sounds from the folder.

 sounds_yoda = get_MP3_sounds(path_yoda)

 After printing out a nice title, you then show instructions to the player and enter the main loop that checks whether the
 button was pressed. In this loop, you call the play_random_sound function so the Raspberry Pi responds with an answer to the player’s question:

 [image:]

 Enjoy making your future decisions with the help of Yoda!

Appendix D. Raspberry Pi projects

 In this appendix, you’ll find short discussions and descriptions of projects you can do with your Raspberry Pi. The goal is
 to launch you on your way. This isn’t a detailed set of instructions, but rather hints and basic steps for how you can make
 some of these projects.

 Halloween heads

 Halloween can be an inspiring time to use your Raspberry Pi to create a fun or scary display for your home. Let’s face it—it’s
 fun to scare people on Halloween. This project is about building a system for surprising trick-or-treaters who come to your
 door. When they approach, their movement will trigger a motion sensor that will display a video of a face talking or singing.
 The video is projected onto a Styrofoam head that is placed next to the door.

 Here is what you’ll need for this project:

 	Raspberry Pi with a breadboard, a breakout board, and a ribbon cable

 	Passive infrared (PIR) motion sensor

 	Projector

 	Powered computer speakers

 	Styrofoam heads (one or more)

 	Small tables: one for the Pi and projector, and another for the Styrofoam head

 	Extension cord and power strip

 	Video of a singing or talking head

 To construct this project, here are the steps:

 1. Connect your Raspberry Pi to the breadboard, and add the PIR sensor. This is similar to how you added the mini pushbutton
 in chapter 8.

 2. Download a video with a talking or singing head, or record your own. Write a Python program to play the video when the
 PIR sensor is triggered. This is similar to the DJ Raspi program, which plays a sound when the button is pressed.

 3. Test your program with the sensor and video working together.

 4. Set up a small table about 10 feet from your front door. On the table, set up your Raspberry Pi, breadboard with PIR sensor,
 speakers, and projector. Place the PIR sensor so that it will detect motion as someone approaches the door. Use an extension
 cord to provide the electrical power needed. (Only set this up if no rain is predicted!)

 5. Set up another small table or box next to your door. Place the Styrofoam head on it. Position the head so that the projector’s
 video displays the face on the head. Test and adjust the projector and the positioning of the head so that everything is aligned.
 When the video plays, the head will appear to come alive!

 Here are a couple of key resources that may help you with this project:

 	Visit the SparkFun website at www.sparkfun.com and search for PIR sensors. This company has lots of great components that can help you make almost any electronics project
 you can imagine.

 	You can make the whole screen blank (all black) by using OMXPlayer with the blank option like so:

pi@raspberrypi ~ $ omxplayer –b singheads.mp4

 Time-lapse photography

 You can easily connect a high-definition camera to your Raspberry Pi that is capable of taking digital photographs or videos
 (see appendix B for more information). In this project, you explore how you can set up your Pi to take time-lapse photographs.

 Time-lapse photography typically involves taking a series of photographs and then stitching them together into a video. The
 individual photographs may be taken seconds, minutes, hours, or days apart. This technique is commonly used to show an accelerated
 view of something happening. Here are some examples of time-lapse scenes:

 	A glacier slowly retreating over the course of a year

 	The sun rising and setting, and the moon rising and setting

 	A plant growing

 Here are some simple steps to get started with a time-lapse photography project:

 1. Set up your Raspberry Pi with the Pi camera kit, and test that it’s working.

 2. The subject of your time lapse determines how you need to mount the Pi camera. The camera doesn’t come with a case or any
 way to hold it up, so you’ll need to engineer a mount of some kind. Cardboard, hot glue, craft sticks, and duct tape are all
 great materials for fabricating something to hold up the camera. LEGO blocks can also be a useful material.

If you’re going to leave the camera outside for a long time, consider whether you’ll need to waterproof your Raspberry Pi.
 Plastic containers left over from takeout food can make a great case; you’ll just need to make holes in the container for
 wires and seal any gaps with hot glue.

 3. Plan how to get electrical power to your Pi. That may determine where you set up the Pi and camera.

 4. Program your Raspberry Pi to take the photographs and store them in a folder. Open LXTerminal, and install the picamera module for Python 3.X:

pi@raspberrypi ~ $ sudo apt-get install python3-picamera

 To get you started, you can use a program like this to capture a series of photographs. This example takes a photograph every
 3 minutes:

 [image:]

 When the camera has finished taking images, you can press Ctrl-C to end the program.

 	

 Note

 This program saves the images in the folder where the program is being run. You should make a folder for your time-lapse project
 and run the program from that folder.

 	

 Next you’ll need to combine the images into a video. You can use an application called mencoder to turn images into a movie. Install it like this:

 pi@raspberrypi ~ $ sudo apt-get install mencoder

 Then you’ll create a simple text file that contains all the names of the images you want to combine. You can use the list
 command (ls), select all the files ending in .jpg, and output the list to a text file:

 pi@raspberrypi ~ $ ls image*.jpg > list.txt

 Next use mencoder to combine all the individual images into a time-lapse movie. This example makes a movie called TimeLapseMovie.avi:

 pi@raspberrypi ~ $ mencoder -nosound -ovc lavc -lavcopts
[image:] vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf scale=1920:1080 -o
[image:] TimeLapseMovie.avi -mf type=jpeg:fps=24 mf://@list.txt

 When it’s done, you can watch the movie using OMXPlayer:

 pi@raspberrypi ~ $ omxplayer TimeLapseMovie.avi

 You can read more online about the mencoder options available.

 Raspberry Pi robot

 The Raspberry Pi can readily be turned into a robot by adding servomotors and sensors using the Pi’s GPIO capabilities. The
 Pi can be programmed in Python to make decisions, gather input from sensors, and control servomotors to interact with the
 world.

 Although you could assemble you own robot from scratch, there are some Raspberry Pi robot kits that can make it a lot easier.
 For this project, we’ll discuss using the GoPiGo kit from Dexter Industries. It’s an affordable, well-engineered kit that
 within a few hours will let you have your Pi moving around under your control. You can add an ultrasonic sensor (detects objects
 in front of it) and write a Python program to make your Pi GoPiGo robot navigate the room autonomously (on its own) using
 the same if/else statements you learned earlier.

 We’ll cover the basic steps for building the GoPiGo (you can read the full set of instructions online at www.dexterindustries.com/GoPiGo):

 1. Build your GoPiGo robot following the online instructions. Connect your Raspberry Pi to the robot: it fits upside down
 on top of the GoPiGo board. The Pi communicates to the GoPiGo board through the GPIO pins.

 2. Insert the GoPiGo SD card into your Pi. The SD card contains a custom distribution of Raspbian. Connect your Pi to a keyboard,
 mouse, USB Wi-Fi adapter, and TV or monitor. Later you’ll be able to connect to your GoPiGo remotely from another computer.
 Power it up using the provided battery pack. Boot up your Pi, and connect the GoPiGo to your wireless network.

 3. Set up your computer to remotely access your Pi from another computer. This means you’ll be able to see your Raspbian desktop
 from another Windows or Mac computer in your home. To do so, you use software called VNC. You need to install VNC Server on
 your Raspberry Pi and then install VNC Client on your computer. There are some great tutorials on how to do this, such as
 the one on the Adafruit website. Go to https://learn.adafruit.com, and search for “installing VNC.”

 4. Using VNC, connect to your Raspberry Pi from your home Windows or Mac computer. Once you’re sure VNC Server and Client
 are working properly, you can disconnect your Pi from the monitor, keyboard, and mouse, leaving only the USB Wi-Fi adapter
 plugged in. Your GoPiGo is ready to move!

 5. From the VNC Client on your Windows or Mac, open LXTerminal on your Pi. Change directories to the GoPiGo Python folder
 on the desktop using the cd command:

cd Desktop/GoPiGo/Software/Python/

 Run the GoPiGo test controller Python program:

 sudo python basic_test_all.py

 After the program starts, you can use these keys to move your GoPiGo around the room:

 	w
 	Move forward

 	a
 	Turn left

 	s
 	Move back

 	d
 	Turn right

 	x
 	Stop

 	t
 	Increase speed

 	g
 	Decrease speed

 Excellent! You’ve made your Raspberry Pi into a robot. Add sensors and make programs to navigate around a room, or attach
 a Pi camera and stream video to another computer so you can see what your Raspberry Pi sees.

Index

 [SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]

 SYMBOL

 _ (underscore)

: (colon), 2nd, 3rd

. (dot notation)

& (ampersand)

== (equality operator), 2nd

3.5 mm audio/video port

 A

 -a option

addition (math)

additive color

ampersand (&)

and operator

anode, defined

append method

as keyword

ASCII art

assignment operator

audio formats

 B

 Blinky Pi project
 breadboards
 electrical circuitry and
 holes in
 overview
 circuit for
 adding LED
 adding more LEDs
 connecting jumper from GPIO pin
 connecting resistor
 overview
 GPIO pins
 breaking out to breadboard
 overview
 overview
 program for
 adding more LEDs
 loading libraries
 main program loop
 overview
 running
 setting up GPIO pin for output
 troubleshooting

Boolean logic

booting
 defined
 issues

breadboards
 breaking out GPIO pins to
 circuit for Light Up Guessing Game
 adding jumper to ground
 adding resistors
 connecting GPIO jumper wires
 connecting RGB LED
 sketch
 connecting Pi to
 electrical circuitry and
 finding holes on
 holes in
 overview

bugs, defined

buttons
 connecting in DJ Raspi project, 2nd, 3rd
 connecting jumper wires to, 2nd

 C

 Camera Serial Interface.
 See CSI.

capitalize method

cases

cathode, defined

central processing unit.
 See CPU.

colon (:), 2nd, 3rd

command-line mode

commenting code

common cathode RGB LEDs

comparison operators

component video input

computer vision

concatenation

conductance, defined

CPU (central processing unit)

CSI (Camera Serial Interface)

current, defined

 D

 datetime module

debugging

desktop, booting to

digital visual interface.
 See DVI.

division (math)

DJ Raspi project
 audio formats
 circuit for
 adding jumper to GPIO pin, 2nd
 adding mini pushbutton, 2nd
 adding resistor, 2nd
 connecting jumper wire to button, 2nd
 sketch
 MP3 format
 overview
 program for
 building list of sound files with os library
 creating functions
 getting length of list
 getting list of sounds
 getting value of item stored in list
 initializing buttons
 overview
 playing sound when button is pressed
 testing
 troubleshooting, 2nd
 wiring button

dot notation, 2nd

DVI (digital visual interface)

DVI port devices

 E

 electricity, defined

elif statements

else statements

equality operator (==), 2nd

ethernet

Ethernet port

exponents

 F

 File Manager

fileinput module

fim program

flags, command-line

floating-point numbers

flow diagrams
 overview
 translating into code

for loop

functions
 creating
 creating for DJ Raspi project
 defined
 left cave exploration in Raspi’s Cave Adventure
 methods vs., 2nd
 right cave exploration in Raspi’s Cave Adventure
 troubleshooting
 when to use

 G

 GoPiGo kit

GPIO pins
 adding jumpers to, 2nd
 breaking out to breadboard
 connecting jumper wires for Light Up Guessing Game
 defined
 overview
 purpose of
 setting up pins for RGB LEDs

GPIO.cleanup() command

GPU (graphics processing unit)

GUI (graphical user interface) mode

 H

 Halloween heads project

hardware
 cases
 HDMI port
 connecting TV or monitor
 DVI port devices
 overview
 overview
 ports
 power supply
 SD cards
 inserting card in slot
 NOOBS on
 overview
 portability of
 replacing cards
 system on a chip
 USB ports
 connecting keyboard
 connecting mouse
 overview
 wireless keyboard and mouse combination

hashtag comments

HDMI port
 connecting TV or monitor
 defined
 DVI port devices
 overview

 I

 IDLE (Integrated DeveLopment Environment)
 creating programs
 overview, 2nd, 3rd
 saving programs

if statements
 in Norwegian Blue Guessing Game
 using in loops

import statements

index, list

input
 defined
 getting from player
 handling unexpected
 and operator
 elif statements
 not operator ??–131131
 or operator
 overview

input function, 2nd, 3rd

Integrated DeveLopment Environment.
 See IDLE.

 J

 jumper wires

 K

 keyboard
 connecting to USB port
 wireless

 L

 Leafpad

LEDs (light-emitting diodes)

legacy boards
 Raspberry Pi 1 Model B
 Raspberry Pi 1 Model B+

legs, defined, 2nd

len() function, 2nd

libraries
 loading
 using in programs

Light Up Guessing Game
 breadboards
 connecting Pi to
 finding holes on
 circuit for
 adding jumper to ground
 adding resistors
 connecting GPIO jumper wires
 connecting RGB LED
 sketch
 overview
 program
 guessing game logic
 main game loop
 overview
 play again logic
 playing game
 setting up GPIO pins for RGB LED
 troubleshooting
 RGB LEDs

light-emitting diodes.
 See LEDs.

list-comprehension feature

live streaming video

Livestreamer

loops
 using if statements in
 while loops
 breaking out of
 overview
 troubleshooting

lower method

 M

 math module

mathematical operators
 adding and subtracting
 exponents
 multiplying and dividing
 order of operations
 remainders
 square roots

memory.
 See also SD cards.

mencoder program

methods, functions vs., 2nd

microSD cards

Minecraft Pi

miniSD cards

MIT (Massachusetts Institute of Technology)

monitors
 component video input
 connecting to HDMI port
 identifying ports
 RCA port
 VGA port

monitors, checking connection to

mouse
 connecting to USB port
 wireless

MP3 format

multiplication

 N

 nano text editor

negative power bus

NOOBS (New Out of the Box Software), 2nd

Norwegian Blue Guessing Game
 getting player input
 if statements
 overview
 using libraries to generate random numbers
 welcome message and instructions
 while loops
 breaking out of
 overview
 troubleshooting

not operator

 O

 -o switch

Ogg format

OMXPlayer, 2nd

operators
 adding and subtracting
 comparison
 exponents
 multiplying and dividing
 order of operations
 remainders
 square roots

or operator

OS (operating system), 2nd

os module, 2nd

output, defined

 P

 Pi NoIR module

Pi Store

picamera module

PIR (passive infrared)

ports
 3.5 mm audio/video port
 Camera Serial Interface
 defined
 Ethernet port
 overview
 TV/monitor
 component video input
 identifying ports
 RCA port
 VGA port

positive power bus, 2nd

power supply

print function
 Python
 troubleshooting using

PWM (pulse width modulation)

Python
 creating programs
 IDLE, 2nd, 3rd
 mathematical operators
 adding and subtracting
 exponents
 multiplying and dividing
 order of operations
 remainders
 square roots
 print function
 saving programs
 troubleshooting
 type checking
 using text editors
 variables
 box analogy
 changing value of
 creating and assigning values
 defined
 displaying values
 naming
 reassignment of
 strings in

 Q

 quotation marks

 R

 RAM (random access memory)

randint tool

random module

random number generation

Raspberry Pi
 cases
 hardware overview
 HDMI port
 connecting TV or monitor
 DVI port devices
 overview
 overview
 Pi Store
 ports
 power supply
 powering on checklist
 Raspberry Pi 1 Model B
 Raspberry Pi 1 Model B+
 Raspbian operating system
 applications on
 booting to desktop
 configuring
 files and folders
 IDLE
 installing
 SD cards
 inserting card in slot
 NOOBS on
 overview
 portability of
 replacing cards
 system on a chip (SoC)
 updating
 USB ports
 connecting keyboard
 connecting mouse
 overview
 wireless keyboard and mouse combination

Raspi’s Cave Adventure
 flow diagrams
 overview
 translating into code
 functions
 creating
 left cave exploration
 right cave exploration
 troubleshooting
 handling unexpected input
 and operator
 elif statements
 or operator
 overview
 left cave
 overview
 right cave

raspistill program

RCA port

refactoring, defined

remainders

remove method

resistance, defined

resistors
 adding for DJ Raspi project, 2nd
 connecting for Light Up Guessing Game
 purpose of

RGB LEDs
 connecting to breadboard
 overview

robot project

 S

 Scratch, overview

SD cards
 inserting card in slot
 NOOBS on
 overview
 portability of
 reformatting
 replacing cards

SDFormatter software

setmode function

Silly Sentence Generator 3000, 2nd, 3rd
 commenting code
 creating program
 debugging
 input function
 joining strings
 building sentence
 overview
 using multiple inputs
 Minecraft Pi
 overview
 printing to screen
 saving program

SoC (system on a chip)

SparkFun website

square brackets

square roots

streaming video

string literals, 2nd

string methods

strings
 joining
 building sentence
 overview
 using multiple inputs
 storing in variables

subliminal messages

subtraction (math)

sudo command, 2nd

switches, command-line

system on a chip.
 See SoC.

 T

 TAAG (text-to-ASCII art generator)

time-lapse photography project

triple double quotes

troubleshooting
 checking monitor connection
 checking power
 DJ Raspi project, 2nd
 functions
 incomplete booting
 Light Up Guessing Game program
 Python
 reformatting SD card
 searching online for help
 while loops

TV connections
 component video input
 connecting to HDMI port
 identifying ports
 RCA port
 VGA port

type checking

 U

 underscore (_)

upper() method, 2nd

USB ports
 connecting keyboard
 connecting mouse
 defined
 overview

 V

 variables
 box analogy
 changing value of
 creating and assigning values
 defined
 displaying values
 naming
 reassignment of
 strings in

VGA (video graphics array)

VGA port

video
 live streaming
 playing videos

voltage, defined

 W

 WAV format

while loops
 breaking out of
 overview
 troubleshooting
 using if statements in

whitespace

wireless keyboard/mouse

List of Figures

 Chapter 1. Meet Raspberry Pi

 Figure 1.1. The Raspberry Pi provides an excellent platform for learning to program in Python. It includes many input and
 output ports to give you flexibility in how you connect it. As you would with a desktop computer, you need to connect a keyboard,
 mouse, monitor, and power cable before you can start using your Pi.

 Figure 1.2. A case protects your Raspberry Pi from damage while making it easy to access the ports. Some people use a case
 to give their Pi a unique personality. You can purchase a case or, better yet, make your own. Plastic cases are the most common,
 but these pictures show examples of cases made from paper, plastic, and aluminum. You could even try using LEGOs to make one.

 Figure 1.3. The Raspberry Pi’s system on a chip (SoC) contains its computing and graphics processing power and working memory.
 The Pi uses the ARM11 microprocessor as its CPU and the VideoCore IV for its GPU. The ARM11 microprocessor is found in handheld
 electronics such as smart phones and gaming systems. The SoC in the Raspberry Pi 2 Model B comes with 1 GB of RAM.

 Figure 1.4. The Raspberry Pi 2 Model B has four USB ports. They’re on the board in two sets of two, side by side. The USB
 ports are useful for connecting a keyboard and mouse to your Pi. A USB hub can also be plugged in to allow for even more peripherals.

 Figure 1.5. You need a USB keyboard to type and enter commands on your Raspberry Pi. The keyboard plugs into one of the four
 available USB ports on the Raspberry Pi 2 Model B.

 Figure 1.6. An SD memory card provides the storage memory used by the Raspberry Pi to hold all the software and files, including
 the operating system. Raspberry Pi kits come with an SD memory card preloaded with the software needed to start up your Pi.
 The two left images show the location of the SD memory card slot on the underside of the Pi board. The right image shows an
 SD memory card inserted into the SD card slot.

 Figure 1.7. The HDMI port on the Raspberry Pi provides a high-definition audio and video signal that can be connected to a
 TV or monitor. Use an HDMI cable to connect your Pi to your TV or monitor. Depending on the connectors available on the TV
 or monitor, you may need an adapter.

 Figure 1.8. HDMI and DVI are common types of video input ports found on modern TVs and monitors. It’s easiest to connect a
 Raspberry Pi to a TV or monitor with an HDMI port. HDMI provides a highdefinition picture and doesn’t require any adapters
 or converters—only an HDMI cable, which is included in many Pi kits. The DVI port requires a special adapter to connect with
 a Pi.

 Figure 1.9. A Raspberry Pi can be connected to a TV or monitor using an HDMI cable. Connect the cable from the Pi’s HDMI port
 to the TV’s or monitor’s HDMI input. In addition to video, the HDMI cable also contains the Pi’s audio output, which can be
 played through the TV’s or monitor’s speakers.

 Figure 1.10. The Raspberry Pi can be connected to a TV or monitor with a DVI port using an HDMI-to-DVI adapter and an HDMI
 cable. One end of the HDMI cable plugs into the Pi’s HDMI port. The other is connected to the adapter, and the adapter is
 connected to the TV or monitor. Adapters are available through online retailers or local computer stores.

 Figure 1.11. The Raspberry Pi requires a microUSB power supply that provides at least 1.2 A of electric current. If you plan
 to use all the USB ports on your Pi, you may want one that provides 2 A or more of electric current. The recommended voltage
 is 5 volts (V), but the Pi can operate at voltages ranging from 4.8 to 5.2 V. If you have a power supply you want to use with
 your Pi, check its output voltage and current, which are listed on the charger in small print. In this example, the charger
 has an output of 5.1 V and 2.5 A of current, making it a suitable power supply for a Pi. Using the incorrect voltage or insufficient
 current can damage or destroy your Pi, so check carefully.

 Figure 1.12. Example setup of a Raspberry Pi with peripherals connected and SD card inserted. A keyboard and mouse are connected
 to the Pi’s two available USB ports. A microUSB power supply is plugged into the Pi; the other end is lying on the desk, ready
 to be plugged into the wall. An HDMI cable is connected from the Pi’s HDMI port to the back of the monitor. The Ethernet port
 has an Ethernet cable plugged into it from a router (not shown).

 Figure 1.13. The NOOBS selection menu allows you to choose the OS you want to install on your SD card and use with your Raspberry
 Pi. This menu appears the first time you start up your Pi.

 Figure 1.14. When your Pi boots up for the first time, you’ll see the Raspberry Pi configuration menu. This menu makes it
 easier to set up your Pi by allowing you to change settings such as the time zone and keyboard layout. The menu also has the
 option to set your Pi to always boot to the Raspbian desktop environment.

 Figure 1.15. Example screen images of a command-line mode (top) and a GUI mode (bottom) for a Raspberry Pi running the Raspbian
 OS. The command-line mode is text-based: you enter instructions at the prompt. The GUI is pretty much the same as a Windows
 or Mac interface, with windows, icons, and menus that you interact with using a mouse pointer.

 Figure 1.16. A view of the Raspbian desktop after your Raspberry Pi boots up. The desktop is similar to the desktop in Microsoft
 Windows or Apple Mac OS X. Don’t worry if your desktop is different from this one. Depending on when you bought your Pi, you
 may have received an SD card with an older or newer version of Raspbian.

 Figure 1.17. If you didn’t set up your Pi to boot to the Raspbian desktop, the command-line mode will be displayed when your
 Raspberry Pi boots up. It will ask you for your login name and password.

 Figure 1.18. The Raspbian application menu opens when you click the Menu button in the top-left corner of the desktop. You
 can open an application by moving your mouse over the categories listed on the menu and then clicking the application.

 Figure 1.19. File Manager in Raspbian allows you to manage files as you do in Windows Explorer or Mac Finder. You access File
 Manager using the folder icon in the upper-left corner of the desktop. This is a view of a Pi with a lot of files stored in
 the /home/pi folder.

 Figure 1.20. IDLE is a development environment that makes it easier to write Python programs. This is the IDLE Python Shell
 that you can use to enter Python commands or instructions one at a time.

 Figure 1.21. You can access the Pi Store from the icon on your Raspbian desktop. The store allows you to browse and download
 apps and content including games, tutorials, and digital magazines. You’ll find free and fee-based content, organized into
 five categories: Games, Apps, Tutorials, Dev Tools, and Media.

 Chapter 2. Exploring Python

 Figure 2.1. The Python 3 icon on your Raspberry Pi opens an interactive programming shell for Python 3.x.

 Figure 2.2. The Python 3 application under Menu > Programming on the Raspberry Pi desktop opens IDLE to the Python Shell for
 Python 3.x.

 Figure 2.3. The menu at your favorite burger restaurant

 Figure 2.4. Use the + symbol to add numbers in Python.

 Figure 2.5. The distance from the Earth to the Sun is approximately 149,600,000 km. The Raspberry Pi is 85.6 mm in length.

 Figure 2.6. The menu at your pizza restaurant

 Figure 2.7. A variable stores information and can be created and assigned a value. The equals sign is used as an operator
 (also known as the assignment operator) between the name of the variable on the left and the value assigned to it on the right.

 Figure 2.8. When a variable is created, it’s stored in your Raspberry Pi’s memory. You can change the value of a variable
 at any time. Using the print function, you can display the variable’s value on the screen.

 Figure 2.9. Python follows the order of operations used in mathematics. You may know it as BOMDAS or PEMDAS: Brackets (or
 Parentheses), Orders (or Exponents), Multiplication and Division, and finally Addition and Subtraction.

 Figure 2.10. The print function in Python displays text on the screen. The string inside the parentheses must be enclosed
 in single or double quotation marks.

 Figure 2.11. The Python print function can display text on the screen repeatedly if you use it with a string and the multiplication
 operator (*).

 Figure 2.12. Remember to place quotation marks at the beginning and end of your strings. If you forget to close your quotation
 mark, Python will display an error.

 Figure 2.13. The top window is the IDLE Python Shell. The bottom window is the IDLE text editor that can be used to create
 and edit Python programs. You can open the IDLE text editor using Ctrl-N or by selecting File > New Window from the IDLE Python
 Shell.

 Figure 2.14. IDLE provides a text editor that helps you write Python programs. The editor highlights words to help you compose
 your programs and identify errors. This program prints a message to the screen.

 Figure 2.15. Save programs in IDLE using the File > Save menu selection or by pressing Ctrl-S. The default save location is
 /home/pi. When the file is saved, it has .py appended to the end of its name, signifying that it’s a Python program.

 Figure 2.16. You can run programs from the IDLE text editor. Running a program in IDLE displays the results of the program
 in the Python Shell. This shows the output of your first program by displaying a message.

 Figure 2.17. Leafpad is a text editor that comes with Raspbian. You can access Leafpad from the Accessories menu.

 Figure 2.18. Saving a file in Leafpad lets you choose the folder to save to and enter a filename. The Save window works similarly
 to how you might save a file in Microsoft Word.

 Figure 2.19. Viewing the contents of folders using File Manager

 Figure 2.20. Try using the print function and strings to make a screen full of 1s and 0s.

 Figure 2.21. This challenge uses the print function and a string named brick to create a brick wall pattern on the screen.

 Chapter 3. Silly Sentence Generator 3000: creating interactive programs

 Figure 3.1. Silly Sentence Generator 3000 asks the user to enter their name and some words, and then it creates a silly sentence
 from those words.

 Figure 3.2. An interactive game lets you put in information, and then it creates an output.

 Figure 3.3. Select Menu-->Programming-->Python 3 to open the Python Shell on your Raspberry Pi.

 Figure 3.4. The Python Shell

 Figure 3.5. The IDLE text editor is where you can type in your Python program. You can also edit, save, and run programs using
 the menu options.

 Figure 3.6. Save your file as SillySentence. This stores the file on your Raspberry Pi in your /home/pi folder so you can
 run the program and make changes to it.

 Figure 3.7. The first three lines of your program use the print function to create a welcome message for the Silly Sentence
 Generator 3000 program.

 Figure 3.8. Running the program SillySentence.py displays a welcome message on the screen.

 Figure 3.9. The input function displays a prompt to the user. The prompt “Please enter your name:” tells the user what you
 want them to type in or enter. In this case, you’re asking for their name.

 Figure 3.10. silly-sentence is created by joining a set of strings. The strings are a combination of strings you enter with
 quotation marks around them and strings collected from the game player that are stored in variables. The parentheses are needed
 because the code is too long to fit on a single line.

 Figure 3.11. If you forget to close a set of quotation marks around a string, you’ll receive an error from Python when you
 try to run your program. Python will highlight in red the line with the error. Check each of the strings to find and fix the
 error.

 Figure 3.12. A common mistake in programming is to misspell the name of a variable or use incorrect capitalization. The error
 displayed says there is a problem on line 25 of the program. The type of error is NameError: name 'adjectve1 ' is not defined.

 Figure 3.13. Silly Sentence Generator 3000 is a fun program that shows how programs can collect information from users, interact
 with them, and provide a more personal feel.

 Figure 3.14. The Silly Sentence Generator 3000 makes some absurd sentences based on words you enter.

 Figure 3.15. Minecraft Pi is a slimmed-down, free version of Minecraft that’s based on Minecraft Pocket Edition. It’s limited
 compared to the full version but still oodles of fun!

 Figure 3.16. The Minecraft Pi main screen allows you to start a singleplayer game or join a multiplayer game. The multiplayer
 option lets you connect to someone else’s world, but you’ll need to be on the same network.

 Figure 3.17. Each Minecraft world is made of blocks but is different. You might find yourself in a forest or in a desert.
 The bottom of the screen shows you the items in your inventory. Use the mouse scroll wheel to select different items, or press
 the numbers 1–9 on your keyboard.

 Figure 3.18. The subliminal-message challenge is about hiding a secret message in a bunch of characters on the screen. Can
 you see the hidden message?

 Chapter 4. Norwegian Blue parrot game: adding logic to programs

 Figure 4.1. The Norwegian Blue parrot has beautiful plumage and makes a great subject for a guessing game.

 Figure 4.2. The game logic can be expressed in words. The question marks symbolize when the game needs logic to make a decision.
 This diagram also shows what code needs to be repeated because the player gets five guesses. Each decision has a simple True/False
 or Yes/No answer.

 Figure 4.3. The Norwegian Blue Guessing Game is about trying to guess the age of a bird in a pet shop.

 Figure 4.4. Click the Python 3 icon to open IDLE’s Python 3 Shell on your Raspberry Pi.

 Figure 4.5. Once you’ve saved the file, the top of the window displays the filename and the location where the file is stored
 on your Raspberry Pi (/home/pi/NorwegianBlue.py). The cursor location is always shown at the bottom right of the window.

 Figure 4.6. Python will display an error if you forget starting or ending quotation marks. The line with the error will be
 highlighted in your program. Fix the program by adding the missing quotation marks, and then save and run the program.

 Figure 4.7. A string literal must start and end with a set of triple quotation marks. If you forget, Python will tell you
 that you have a syntax error. Add the missing triple quotes to fix the error.

 Figure 4.8. The input function gathers text typed in by the user; then the text is stored in a variable as a string data type.
 You take the value of the variable (“5”), convert it to an integer (5), and store it as the variable.

 Figure 4.9. On the left is the logic you want to create. On the right is your code. So far, you’ve welcomed the user and given
 them the game instructions. You’ve also added code to collect their guess.

 Figure 4.10. The if statement can control the flow of your programs. This example shows how an if statement can be used to
 display one message if guess is equal to the parrot’s age or a different message if they aren’t equal.

 Figure 4.11. The logic you want to create is shown in the code. You use the if statement to check whether the player’s guess
 is correct.

 Figure 4.12. A missing colon at the end of an if statement will create a syntax error. Python highlights where the error is
 located. Add a colon at the end of the line to fix the problem.

 Figure 4.13. Think of the logic you’re trying to create, and then translate it into your code. When you need to repeat something,
 you can use a while loop. When you need to check whether something is True or False, you can use an if statement.

 Figure 4.14. You can use a while loop to repeatedly perform a task. Code that is part of the loop is indented four spaces.
 In this case, this while loop displays the numbers from 0 to 99; when completed, it prints the message, “I finished counting!”
 Typically, the condition should be such that code in the loop can make it False and thus end the loop.

 Figure 4.15. To randomly select a number, you need to import the random library and use the randint function to select a random
 integer between 1 and 20.

 Figure 4.16. The Scratch interface is divided into an area for sprites to move around and a script area. You can create programs
 for your sprite by dragging blocks and connecting them in the script area.

 Chapter 5. Raspi’s Cave Adventure

 Figure 5.1. Raspi’s Cave Adventure requires the player to make decisions about which way to go. Based on their choices, the
 player will meet different fates.

 Figure 5.2. This map of the cave system shows that Raspi will need to make many choices. If he makes the wrong ones, it’s
 game over! But if he makes the correct choices, he’ll find the legendary treasure!

 Figure 5.3. The flow diagram for Raspi’s Cave Adventure shows the various decisions the player can make and their outcomes.
 It’s a map of the logic of the game, and it can guide you as you program that logic.

 Figure 5.4. Flow diagrams are ways to visually show the logic of a program. They represent decisions, choices, and activities
 using diamonds, arrows, and boxes. This example shows a flow diagram for a program that turns on a light if a button is pressed.

 Figure 5.5. The if statement can come in many flavors. This is an if statement with two elifs and an else. It creates logic
 in the code that can do many different things depending on the user’s input. In this case, you’re having a player guess the
 age of a parrot. The program will tell them if their guess is too low, too high, correct, or invalid.

 Figure 5.6. The left cave has a stream inside it, and the user has three choices of what to do next. In the code, you create
 an if statement followed by two elif statements to cover each of the options. The else statement is used to control what happens
 if the user inputs something other than one of the three choices.

 Figure 5.7. Functions simplify your code and can reduce repetition. Use the def keyword to create a new function, and indent
 the function code under it. If you need a function to return a value, include a return statement in the function.

 Figure 5.8. The right cave consists of a series of decisions. One wrong move, and certain death awaits Raspi. If the user
 makes the right choices, Raspi will find the treasure. The code uses if/elif/else statements and functions. See the code files
 for chapter 5 for examples of the functions.

 Figure 5.9. if statements can be nested within other if statements. In this case, the user is only prompted to guess the password
 if they first guess the secret name correctly. Python uses indentation to figure out what statements belong together and which
 if statements are nested within other ones.

 Figure 5.10. Highlighting by IDLE when there is invalid syntax due to a missing colon (:) at the end of an if statement

 Figure 5.11. Highlighting by IDLE when there is only one equals sign

 Figure 5.12. The Pi’s monitor is a live stream from an aquarium. Check out that shark! By using Livestreamer and OMXPlayer,
 you can stream live video from exotic places, like water holes in Africa and the International Space Station.

 Chapter 6. Blinky Pi

 Figure 6.1. The Blinky Pi project requires parts that are commonly found in Raspberry Pi starter kits or that can be purchased
 online.

 Figure 6.2. The Raspberry Pi 2 Model B has a set of pins arranged along the edge and corner of the Pi board.

 Figure 6.3. The Raspberry Pi B+ has 40 pins. They do different things: some provide 5 volts or 3.3 volts, some are ground
 pins (0 volts), and many of them are input and output pins that you can program.

 Figure 6.4. To easily create projects using your Pi’s GPIO pins, you can connect the Pi to a breadboard using a ribbon cable
 and breakout board. The parts shown are examples of the ones commonly found in many Raspberry Pi kits.

 Figure 6.5. Carefully line up the breakout board, and then press it firmly into the breadboard. The two rows of pins on the
 breakout board should straddle the center gap.

 Figure 6.6. Connect one end of the ribbon cable to the breakout board. Connect the other end to your Raspberry Pi.

 Figure 6.7. Breadboards have internal connections. You need to know about them in order to build circuits. Rows of pins are
 connected horizontally, but not across the gap in the middle. Long rails called power buses run vertically along the sides
 of the board.

 Figure 6.8. To find a specific hole on a breadboard, use the row and column labels. This is a close-up of a breadboard, showing
 how you can find the location of hole 25c (we’ll refer to the hole as BB25c, where BB stands for breadboard).

 Figure 6.9. Circuit diagram for the blinking LED project

 Figure 6.10. LED circuit built on the breadboard. You’re using GPIO pin 21 as the power source. The light won’t turn on until
 you program the voltage to come out of the pin.

 Figure 6.11. The breakout board has labels that correspond to the pins on your Pi. To connect a wire to GP16, you plug it
 into the breadboard in the hole labelled BB18f or BB18j.

 Figure 6.12. LEDs have two legs (wires) coming out of them. The longer leg is called the anode and connects to the positive
 side of the circuit. The shorter one is called the cathode and connects to the negative side of a circuit.

 Figure 6.13. The value of a resistor is determined by its colored bands. See the sidebar “Resistor color codes” for a chart;
 there are also many online color-code charts.

 Figure 6.14. Circuit diagram for three LEDs: red, green, and blue. You’ll use 180 ohm resistors like before. They will all
 be controlled by different GPIO pins. Red will use 21, green will use 22, and blue will be connected to pin 23. You could
 use any of the 26 different GPIO pins.

 Figure 6.15. The three-LED circuit is built on the breadboard. Each LED and its corresponding resistor are placed in a row
 together. This example uses rows 25, 27, and 29.

 Chapter 7. Light Up Guessing Game

 Figure 7.1. The Light Up Guessing Game uses a red, green, blue (RGB) LED. An RGB LED can produce many different colors because
 it has three LEDs (colored red, green, and blue) packed inside it.

 Figure 7.2. The Light Up Guessing Game responds to the user after each guess. Lights on the breadboard light up to let the
 player know if their guess is too high or too low.

 Figure 7.3. The Pi, breakout board, and breadboard setup. And you thought your desk was messy before!

 Figure 7.4. Circuit diagram for the Light Up Guessing Game project

 Figure 7.5. The RGB LED circuit you’re building on the breadboard uses GPIO pins 12, 16, and 21 to power the LEDs. The light
 won’t turn on until you program the voltage to come out of the pins.

 Figure 7.6. The RGB LED has lots of legs! The longest leg is the ground. The other ones are for red, green, and blue. This
 applies to what is called a common cathode RGB LED, which is what comes in Pi kits and what you’ll find most commonly at electronics
 suppliers.

 Figure 7.7. Bend the legs of the RGB LED, and insert it into the breadboard at BB22h, BB24h, BB26h, and BB28h. The longest
 leg goes into hole BB24h.

 Figure 7.8. The jumpers connect the GPIO pins from your Pi to the RGB LED. If you have an earlier model Pi, you can use other
 GPIO pins. Just remember which ones you’re using, and use these numbers when you program the Pi to turn the GPIO pins on and
 off.

 Figure 7.9. The colored bands on a resistor tell you how much resistance the resistor has. For this project, you want a brown
 (1), grey (8), brown (×10) resistor, or 18 × 10 = 180 ohm resistor. Don’t have one? Any resistor between about 100 and 300
 ohms should work well.

 Figure 7.10. Add your resistors! Make sure you push them down into the breadboard holes. If you don’t like them sticking up
 so high, you can trim the ends using wire cutters.

 Figure 7.11. The jumper is added to connect the ground of the RGB LED to the ground of the Raspberry Pi. The jumper can connect
 anywhere along the ground rail (it usually has a blue stripe running next to it).

 Figure 7.12. Flow diagram showing how the guessing game should work. Notice how you’re blinking LEDs if the guess is too low,
 too high, or correct. You also give the player the choice of whether they’d like to play again.

 Figure 7.13. The program starts by importing the Python libraries you’ll need to use, setting up your Pi’s GPIO pins for lighting
 up the LEDs, and defining the functions you’ll need.

 Figure 7.14. After displaying the game title and instructions, you need to define variables to store important game information,
 including a random number the player is trying to guess. The main loop in the game is repeated to allow the user to make five
 guesses; it also blinks the lights.

 Figure 7.15. The Play Again Loop is wrapped around the Guessing Game Loop. After the player has exhausted their guesses or
 guessed the number correctly, they’re asked if they want to play again. Depending on their answer, the game will either start
 over or end.

 Chapter 8. DJ Raspi

 Figure 8.1. The DJ Raspi project requires several different parts to turn your Pi into a music player. The length and color
 of the jumper wires don’t matter.

 Figure 8.2. When you install Raspbian on your Pi, it comes with Scratch, which has a number of sound files including vocals,
 sound effects, animal sounds, and drum beats.

 Figure 8.3. The mini pushbutton makes a nice clicking sound when you press the black button in the middle. Pressing it acts
 like closing a switch to complete a circuit.

 Figure 8.4. The circuit diagram for the first button in the DJ Raspi project shows how electricity will flow through the circuit.
 The button is a switch that allows electricity to flow to GP06 and ground (-) when it’s pressed or closed.

 Figure 8.5. The mini pushbutton will have 3.3 volts connected to it from the positive power rail. When the button is pressed,
 power flows through the button and splits. Some electrical current goes to GP06 (GPIO pin 6), and the rest goes through the
 resistor and then to the negative power bus (-).

 Figure 8.6. In a button, the legs are connected along the top and are separately connected along the bottom. When the button
 is pressed, the top and bottom are connected by a small metal bar.

 Figure 8.7. Align the pushbutton with the breadboard holes, and then press it down into the breadboard. Make sure you press
 it so the button legs are down into the breadboard holes and make a good connection. If you accidentally bend the legs, don’t
 worry! Just bend them back and try again.

 Figure 8.8. The jumper connects power (3.3 volts) to the bottom of the button.

 Figure 8.9. Add the resistor. Make sure its ends are pushed down into the breadboard holes.

 Figure 8.10. The jumper connects the top of the button to GP06. Later, you’ll set your Pi to listen for electrical input on
 this GPIO pin.

 Figure 8.11. Add the second pushbutton just below the first one. The wiring is the same, but you’ll connect it to GP19 (GPIO
 pin 19). Any available GPIO pin will work, but remember that your code will have to reflect the GPIO pins you select.

 Figure 8.12. A flow diagram showing how the DJ Raspi program should work. The program must gather a list of sounds at the
 beginning and then check whether the buttons are pressed. The buttons will be checked over and over again.

 Figure 8.13. The first step is to set up the buttons as inputs. This will mean your Pi is ready to check whether it’s detecting
 any voltage coming in, which will happen when a button is pressed.

 Figure 8.14. The next step of the DJ Raspi program gets a list of sound files. Later, you’ll add the part that uses the button
 to trigger playing random sounds from the lists.

 Figure 8.15. You make lists by using square brackets to enclose a set of things. Each thing in the list should be separated
 with a comma. Python will even let you make lists that combine different types of data, like strings and integers.

 Figure 8.16. Sets of things can be stored in lists. You can retrieve items from the list using the index, which represents
 the position of an item in the list. The index of a list starts at 0.

 Figure 8.17. The main part of the DJ Raspi program is the loop to check the buttons. You’ll use a while loop to check the
 buttons over and over again. If one of them is pressed, you’ll tell Raspbian to play a random sound using OMXPlayer.

 Figure 8.18. There are two places where you can create functions so you can reuse code. One function creates a list of sound
 files, and the other function plays a random sound when a button is pressed.

 Appendix A. Raspberry Pi troubleshooting

 Figure A.1. Clean up (or reformat) your SD card using the SDFormatter software available from the SD Association website.
 In SDFormatter, select the drive letter for your SD card, and click Format to have your card wiped clean. This process means
 you’re starting over—you lose anything saved or installed on your Pi—but sometimes that is the only option.

 Appendix B. Raspberry Pi ports and legacy boards

 Figure B.1. The Raspberry Pi 2 Model B has many different input and output ports that allow you to connect a keyboard or mouse,
 monitor, and even high-definition cameras.

 Figure B.2. The network connection icon is located near the top-right corner of the Raspbian desktop. Clicking on it allows
 you to view nearby wireless networks.

 Figure B.3. Enter the pre-shared key for the network and click OK to connect to it.

 Figure B.4. The Raspberry Pi’s 3.5 mm audio/video port is used to connect headphones or speakers for playing sounds. It can
 also function as a low-quality video output, if you purchase a 3.5 mm-to-RCA composite video adapter.

 Figure B.5. The Raspberry Pi camera module was created by the Raspberry Pi Foundation to take high-def digital photographs
 and video. The camera attaches to the Pi using a ribbon cable that connects to the Camera Serial Interface port. The camera
 module can be programmed using Python and used for nature photography or creating your own home-surveillance system.

 Figure B.6. The Raspberry Pi camera can connect to the CSI port, which is located between the HDMI port and the 3.5 mm audio/video
 port. To connect a camera, you need to lift up the black connector, insert the ribbon cable (metal contact toward the HDMI
 port), and push down on the black connector again.

 Figure B.7. The Ethernet port on the Raspberry Pi supports connecting a Pi to a home network. Connect an Ethernet cable from
 your Pi to your router or modem to access the internet. With your Pi connected to a network, you can remotely connect to the
 Pi from another computer using special programs such as SSH and VNC Server.

 Figure B.8. Common types of video input ports found on TVs and monitors. A Raspberry Pi can connect to any one of these ports.
 Some ports (DVI, VGA, RCA [or composite], and component) require using special adapters or converters with a Pi.

 Figure B.9. The Raspberry Pi can be connected to a TV or monitor using an RCA video cable. The cable connects from the Pi’s
 3.5 mm audio/video port to the RCA video input port on the TV or monitor. Using the RCA connection produces a low-quality
 picture but can be a good option if you don’t have a TV or monitor that supports HDMI.

 Figure B.10. The Raspberry Pi 1 Model B has been wildly popular. It has been used for a spectrum of applications from scientific
 research to art and education.

 Figure B.11. The Raspberry Pi 1 Model B+ was a major revision of the Raspberry Pi 1 Model B. It increased the number of USB
 ports from two to four, added more pins for GPIO, and changed to a microSD memory card slot. The ports on the Raspberry Pi
 1 Model B+ are the same as those on the Raspberry Pi 2 Model B.

 Appendix C. Solutions to chapter challenges

 Figure C.1. Make the cat dance in Scratch by dragging program blocks into the script area.

List of Listings

 Chapter 3. Silly Sentence Generator 3000: creating interactive programs

 Listing 3.1. Adding notes to your program

 Listing 3.2. Gathering input from the player

 Listing 3.3. Using + to join strings

 Listing 3.4. Collecting multiple items from the player

 Chapter 4. Norwegian Blue parrot game: adding logic to programs

 Listing 4.1. Creating comments at the top of your new program

 Listing 4.2. Making the title display on the screen

 Listing 4.3. String literals that hold multiple lines of text

 Listing 4.4. Creating an age for the parrot

 Listing 4.5. Getting a guess and storing it in a variable

 Listing 4.6. Adding logic to the game with an if statement

 Listing 4.7. Using an if statement to check a password

 Listing 4.8. Using a while loop to repeat instructions

 Listing 4.9. Breaking out of a loop

 Listing 4.10. Favorite colors

 Chapter 5. Raspi’s Cave Adventure

 Listing 5.1. Choosing the left or right cave

 Listing 5.2. Improving the code for the player’s choice

 Listing 5.3. Creating functions for the left cave

 Listing 5.4. Using the new functions to simplify your code

 Listing 5.5. Calling functions for each of the left cave choices

 Chapter 6. Blinky Pi

 Listing 6.1. Blinking LED program

 Listing 6.2. Three blinking LEDs

 Chapter 7. Light Up Guessing Game

 Listing 7.1. Setting up the Pi’s GPIO pins

 Listing 7.2. Functions that flash LEDs different colors

 Listing 7.3. Refactoring the three flashing functions to a single function

 Listing 7.4. Creating variables and displaying the game title and instructions

 Listing 7.5. Guessing Game Loop

 Listing 7.6. Play Again Loop

 Chapter 8. DJ Raspi

 Listing 8.1. Setting up GPIO pins for input

 Listing 8.2. DJ Raspi title screen

 Listing 8.3. DJ Raspi game loop

 Listing 8.4. Functions for loading and playing sound files

01fig04_alt.jpg
"

01fig05.jpg

01fig02_alt.jpg
Paper Plastic Aluminum

01fig03_alt.jpg
D

S
System on a chip

common01.jpg

01fig01_alt.jpg
Crrosecrsh, Where you plug wires to make
T, cool projects with electronics

General-purpose.

inputotut (GPIO) pins
utoutpul (GPIO) p ‘Where you connect

things (with USB
connectors)

Where you store
the operating
system, apps, Uss,
and files pory
Memory
card siot

il Etemet
ot
/_‘ LK ‘Where you connect

35mm to the internet
MicroUs8 HOMIport audiohvideo out

power port

-

Where you plug Where you can hear
in the power cord a high-def display sounds or plug into
an old-style TV

common02.jpg

03fig04_alt.jpg
Ele Ede Shell Debug Qptions Wndows el

Python 3.2.3 (default, Har 1 2013, 11:53:50)
(GeC 4.6.3] on Linuxz

Type "copyright?, "credits® o *license()" for more information.
|

Xy

03fig06.jpg
Directory: /home/pi

& Wolframéngine
& idlerc & archive

«]
Flename: [Silysentence | Sawe
Files of type: _Python files (*.py.*.pyw) —| cancel

03fig05_alt.jpg
The Run menu appears

in the IDLE text editor. The new window is
Select Run>Run Program labeled Untitled until
to test your programs. you have saved the file.

/

fle Edit Format Bun Options Windows Help

The corner displays the location of

the cursor. Ln: | is for line number one.
Col: 0 is for the p
Zero is the first po:

01fig06_alt.jpg
S0P View Of Ruspoerny F1
Top view of Raspberry P with SD memory card inserted

03fig08_alt.jpg
Ele ESt_shell Debug Qptions windows Holp

Python 3.2.3 (default, Har 1 2013, 1
(GSC 4.6.3] on Linux2
Type "copyright”, "credits® or "license ()" for more information.

e

3:50)

+ Welcome to the Silly Sentence Generator 3000 *

01fig07_alt.jpg
HOM port

03fig07_alt.jpg
The window title
updates after you

save. The tile o
changes from i
Unitied to brine -t e
illSentence py. =

cover.jpg
Python programming for kids and other begirmers

Ryan Heitz

MMANNING

02fig20_alt.jpg
J[E)

s

Edt_Shel Debug Qptions Windows Holp

o o 4584

268fig01_alt.jpg
while True:
> GPIO.output(LED_pin_red, GPIO.HIGH)

TumontheLEDs time.sleep(1)
one by one.

“_ Loop t blink the LEDs
s wave patiemn.

GPI0.output (LED_pin_green, GPTO.HIGH)
tine.sleep(1)

GPIO.output (LED_pin_blue, GPIO.HIGH)
time.sleep(1)

GPIO.output (LED_pin_red, GPIO.LOW)

cine.steen(l) N\ Bt 530
GPIO.output (LED_pin_green, GPIO.LOW)

time.sleep(1)

GPIO.output (LED_pin_blue, GPIO.LOW)

P

one by one.

02fig19_alt.jpg
Displays the current
folder location.

file to open it.

267fig01_alt.jpg
det wrong_answer():

print("You seem to have trouble making good decisions!")
time.sleep(2)

randon._ending - endings randon. randint(9.2)] 4\ g random ending
print(random_ending) rom the lst o endings.
time.sleep(2)

print("Game Over!!

03fig01_alt.jpg
Ble Edt Shell Debug Gptions Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)
(6eC 4.6.3] on Linux2
Type "copyright®, "credits® or "license()* for more

RESTART =

+ Welcome to the Silly Sentence Generator 3000 *

Please enter your name: Daniel
Hello, Daniel! Let's make a silly sentanc!
Enter the name of a famous person: Elvis
Enter an adjective: dangerous

Enter another adjective: eager

Enter a verb ending in ~ING: hunting.

The dangerous Daniel is hunting the sager Elvis

information.

02fig21_alt.jpg
Ele Edt Shell Dobug Gptions Windows Help
>>> print (brick + 1000)

03fig03_alt.jpg

271fig02_alt.jpg
det winning.flash(): Function to creste &

> for 1 in range(0,20): s TN s
Flash three GPI0.output(LED.pin_red, GPIOHIGH) 4\
different colors time.sleep(0.05) Flash the red LED.

R0 et GPIO.output (LED_pin_red, GPIO.LOW)

tine.sleep(0.05)

GPI0.cutput (LED.pin_green, GPIO.HIGH 4
time.sleep(0.05) ~ Flash the green LED.
GPI0.output (LED_pin_green, GPIO.LOW)

time.sleep(0.05)

GPTO.output (LED_pin_blue, GPIO.HIGH) -
time.sleep(0.05) s Fllak the blus LEL.
GPTO.output (LED_pin_blue, GPIO.LOW)

time.sleep(0.05)

03fig02_alt.jpg
Input

mﬁec.t'\"ex

player_name

ecyy, verb

5o
vey 0o’

ow\o“s .

\z/

b

e
%) silly_sentence mj» Output
boooo(o

N|

271fig01_alt.jpg
(¥ wiile True:

Loop to blink
the LED.

Turn the lights on
for a random
amount of time.

on_randon_time = random.random() * 3
off_random_time = random.random() * 3

GPIO.output (LED_pin_red, GPIO.HIGH)

GPI0.output (LED_pin_green, GPIO.HIGH)
GPIO.output (LED_pin_blue, GPIO.HIGH)
time. sleep(on_random_time)

GPIO.output(LED_pin_red, GPIO.LOW)
GPTO.output (LED_pin_green, GPTO.LOW)
GPIO.output (LED_pin_blue, GPIO.LOW)
time.sleep(off_random_time)

Get a random
number.

Turn the lights off
for a random
amount of time.

270fig01_alt.jpg
print(‘Ready Tor #117)
time. sleep(1)

print("Simon Says: red, green, red, red, blue")
time. sleep(1)

print("Watch my lights!™)

time.sleep(1)

simon_says("red”, "green", “red”, “red", "blue")

print("Ready for #2
time.sleep(1)
print("Simon Says: blue, green, blue, green, red")
time.sleep(1)

print("Watch my lights!")

tine.sleep(1) Galthe simon_sas
simon_says("blue”, "green", "blue", "green", "red") *+— function to play
the pattern.

print("Ready for #31")

time. sleep(1) |
print("Simon Says: green, blue, blue, red, green") \
tine.sleep(1)

print("Watch my lights!")
time.sleep(1)
simon_says("green”, "blue", "blue", “red”, "green")

time.sleep(1)
orint("Thank you for playing!!!™)

269fig01_alt.jpg
det simon_says(colorl, coloré, color3, color4, colori):
> colors - [colorl, color2, color3, colord, colors) b gur o8
Createatistwith for 1 in range(9,5): Ve
the v colors. color = colors(i
ol lor. = colors(i] “_ Grab the name of asngle colo

if color == "red" and turn the color on and off.
GPI0.output (LED_pin_red, GPIO.HIGH)

time.sleep(1)
GPI0.output (LED_pin_red, GPI0.LOW)
elif color == "green’
GPI0.output (LED_pin_green, GPIO.HIGH)
tine.sleep(1)
GPI0.output (LED_pin_green, GPIO.LOW)
elif color == "blue"
GPI0.output (LED_pin_blue, GPIO.HIGH)
time.sleep(1)
GPI0.output (LED_pin_blue, GPIO.LOW)
[o gy

274fig01_alt.jpg
elif guess > number_in_my_head:

Calculate the » blink_time = abs(guess — number_in_my_head)/16
ference between Flash(LED_pin_red)

the guess and the .

s s o che ehfb?‘:ess < nunber_in_my_head:) ,

divide by 10. ink_time = abs(guess - number_in_my_head)/10

—» flash(LED_pin_blue)

273fig02_alt.jpg
[Flash different

—* def crazy_flashO: o/ lors 0times.

Function to for i in range(0,20):

create a crazy GPIO.output(LED_pin_red, GPIO.HIGH) Flash the red and
Mash sequence. GPI0.output (LED_pin_blue, GPIO.HIGH) | blue LED together

time
GPI0.
GPI0.
time

GPT0.
time.
GPTO.
time.

.sleep(0.05)
-output (LED_pin_red, GPIO.LOW)
.output (LED_pin_blue, GPIO.LOW)
.sleep(0.05)

output (LED_pin_green, GPIO.HIGH)
sleep(0.05)
output(LED_pin_green, GPIO.LOW)
sleep(0.65)

Flash the green LED.

273fig01.jpg
def easter_egg(): 2
crazy_flash(Q) e ?;f,'.'\';’,:.':,(:,'g,

print("Easter Egg!!!™)
time.sleep(1)
print("""
Spam spam spam spam.
Lovely spam!
Wonderful spam!
Spam spa-a-a-a-a-am spam spa-a-a-a-a-am spam.
Lovely spam!
Lovely spam!
Lovely spam!
Lovely spam!
Lovely spam!
Spam spam spam spam!

272fig01_alt.jpg
Wrile comi_guesses < ©:

guess = input("guess " + str(count_guesses) + " - What is your
~ guess?: ")
if guess ‘Spam” :
easter_e
L U Gall the easter_egg

"~ function.
quess = int(guess)

count_guesses += 1

if guess == number_in_ny_head:
flash(LED_pin_green)
print("You won! No doom for you!
break

elif guess > number_in_my_head:
Flash(LED_pin_red)

€lif guess < number_in_my_head:
Flash(LED_pin_blue)

else:
aome_over(O)

077fig01_alt.jpg
Joins

Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message

print("*" * 48)

print("* Welcome to the Silly Sentence Generator 3000 *")
print("s" * 48)

Get the user's name and say hi

player_name = input("Please enter your name: ")
message = "Hello, " + player_name + "I Let's make a silly sentence!”
print(message) “

[WS —

03fig09.jpg
The variable to Calls
store the input the input
information function

/_/AA\

player_name = input("Please enter your name:

g

Equals sign is used A string of text to
to assign the input display as a prompt
to the variable. on the screen

03fig10_alt.jpg
Createsa Strings such as "The" and "is™
variable to store are joined with variables that contain
the joined string strings like adjectivel and player_name.

T “

silly_sentence = ("The " + adjectivel + "" + player_name + " is " +
_—~"verb + " the " + adjective2 + "" + famous_person)
3 3

/ s 2 ‘

Opening paranthesis Plus signs join together Closing parenthesis
starts the set of strings strings (must have + ends the set of strings
ok lolned Betncenerck shil. s

079fig01_alt.jpg
Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message
print("=" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("s" * 48)

Get the user's name and say hi
player_name = input("Please enter your name: ")

message = "Hello, " + player_name + "! Let's make a silly sentence!"
print (message)

Gather words from the player for our sentences
fanous_person = input("Enter the name of a famous person: ")

adjectivel = input("Enter an adjective:) i
adjectivez = input("Enter another adjective: ") the player.
verb = input ("Enter a verb ending in ~ING: ")

03fig12_alt.jpg
Ble Edt_Shell Debug Gptions Windows Help

Python 3.2.3 (default, Mar 1 2013, 1
(Gec 4.6.3] on Linux2

Type "copyright”, "credits® or "license ()" for more information.
>>> = RESTART =

350)

Sentencs Gensrator 3000 +
Please enter your name: Ryan
Hello, Ryan! Let's make a silly sentence!
Enter the name of a famous person: Albert Einstein
Enter an adjective: fuzzy
Enter another adjective: purple
Enter a varb ending in ~ING: whomping
Traceback (most recent call last)

File */home/pi/SillySentence.py®, line 24, in <module>

verb + " the " + adjective2 + " " + Famous_person)

LR R

* Helcome to the Sill:

T isko 4

03fig11_alt.jpg
[SillySentence py - /home/pi/SillySentence py ‘Baol
Ble £ Fama B Gptons windows o

4 Get the user’s nane and say hi

Player_nams = input (Pleass snter your name:)

message = "Hello, * + player_name + "' Let's make a silly sentence!®
print (message)

Gather words from th
famous_person = input (
adjectivel = input ("Ent
adjective2 = input ("Ent
veib = input ("Enter a

) ot whie scanning string keral

=

iCreats the sentence by Joining togsther the words

silly_sentence = ("The + adjectivel + * = + player_name + = ic * + [
verb 4 " the " + adjectivez + ° " + famous_person)

#bisplay the silly sentence to the screen
print ("+* + len(silly_sentence))

print (silly_sentence)

print ("+* * len(silly_sentence))

073fig01_alt.jpg
File Edit Tabs Help

piGraspl

pi@raspberrypi

072fig01_alt.jpg
The terminal shows
a prompt, ready for
your commands.

074fig02_alt.jpg
Ble Edt Shell Debug Gptions Windows Help

Python 3.2.3 (default, Har 1 2013, 11:53:50)

[GeC 4.6.3] on Linux2

Type "copyright®, "credits® or "license()" for more information.
>>> rport this

The Zen of Bython, by Tim Peters

Beautiful is batter than ugly.
Explicit is better than implicit

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Brrors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --cbvious way to do it.
Although that way may not be obvious at first unless you'rs Dutch.
Now is better than never.

Although never is often better than *right® now.

IE the implementation i hard to explain, it's 4 bad idea.

If the implementation is sasy to sxplain, it may be a good idea

Namespaces are one honking great idea —- lst's do more of those!

v 26Cok 4

074fig01_alt.jpg
Dispays
s welcome
message

Title: The 5illy Sentence Generator 3000
Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display o welcome message
print("" * 48)
print("* Welcome to the Silly Sentence Generator 3600 *
print("+" * 48)

Lines beginring
with hashtags are

‘comments and are
ignored by Python.

075fig01_alt.jpg
Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message
print("s" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)
Gathers input

Get the user's name and say hi o oo
slayer nolks = Int("Pleass arter vour nase: ™

03fig17_alt.jpg

04fig01.jpg

03fig18_alt.jpg
Ble Edt Shell Debug Gptions Windows Help
Fython 3.2.3 (default, Mar 1 2012, 1
(Gee 4.6.3) on linux

Type "copyright®, "credits® or "license()* for more information.
RESTART =

350) T

Subliminal Messages

Enter your name: Ryan
Enter the name of something you want: burrito

*#ad032+)23ads) @*saddsat Jkg 26" das32°423!*#ade32+)23ads)@*saddsat Jkg 26 das3
2%423144ade32+) 23ads) @*saddsat Jkg 20 das32*4231+#ade32+)23ads) @*saddsat Jkg 2c
" da332°4231*3ad@32+)23ads) @*saddsad Jkg 26" das32*4231*3ade32¢)23ads)@*saddsad
Skg 20" das32~4231+#adg32+)23ads) @*saddsat Jkg 26" das32*423+#ade32+)23ads)8*s
addsad Jkg 26" das32°4231*4ade32¢)23ads)0 saddsad Jkg 20 das32*423!+#ade32*)23ad
5)@'saddsat Jkg 20" dasi2*423!You really want to buy Ryan a burrito.'#add32*)23a
ds)@*saddsad Jkg 26" das32"4231*4ad@32*)23ads) *saddsat kg 20" das32°423! *ade3
2%)23ads)@+5addsat kg 20" das32°423!*#ad@32+)23ads) @*saddsat kg 26~ das3z~423!
+$ade32+)23ads) 0*saddsat Jkg 26" das32°4231+4ada32+)23ads)@+ saddsat kg 26" das3
2%423114ade32+) 23ads)@ saddsat Jkg 20 das32*4231'#ade32+)23ads) @ saddsa Jkg 2c
" das32°4231+3ad@32+)23ads) @*saddsat Jkg 20" das32*4231+4ade32t)23ads)@*saddsat
e

T 12kor 4

04fig03_alt.jpg
Elo ok Sholl Debug Qptions Windows Holp 'J
Fython 3.2.3 (@sfault, tar I 2003, 11:53:50)
(6cC 4.6.3] on Linuxz

Type "copyright”, "credits® or "license ()" for more information.
RESTART =

THE NORWEGTAN BLUE GUESSING GAME

You walk into an old and smelly pet shop.
A2 the door closes behind you, you see

a beautiful blue parrot sitting very
St in a cage. The pet shop owner
grests you and says,

“Today is your lucky day!

This is the rare Norwegian Blue parrot.
Guess hiz age and take him home for fras!

You get five gussses.®

Gusss the age of the parrot (number from 1 to 20]: 10
Wrong! You obviously don’t know your Norusgian Bluss!
Guezs the age of the parrot (number from 1 to 20): 4
Hrong! You obviously don’t know your Norwegian Bluss!
Guess the age of the parrot [(number from 1 to 201: 18
Hrong! You obviously don’t know your Norwsgian Bluss!
Guess the age of the parrot (number from 1 to 201: 7
Wrong! You obviously don’t know your Norwegian Bluss!
Guess the age of the parrot [number from 1 to 20): 12
Congratulations! You win! Enjoy your Norwegian Blue!
Thank you for playing!

T 3ako 4

04fig02.jpg
Logic for game

Display the tiie and
the instructions.

Keep track of the number of
guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

(]

Geta guess from a player.

Keep track of the number of
guesses, and add one.

Checkif the guess is correct.

®

Iftrue, then tell them they win!
Then break out of loop.

Check f that was the fifth
and last guess.

Iftrue, then tell them they lose!
Then break out of loop.
End of loop:
o back to the start of the loop.

o

Whether they win or lose, after the
loop say, “Thank you for playing!”

04fig05_alt.jpg
le Edt Famat gun Qptions indows ielp

¥ Title: The Norwegian Blue Parrot Guessing Game
Author: Ryan Heitz

The goal of the game is guess the age Of a parrot.

The program generates a random age between 1 and 20.

The player gets 5 guesses to guess the age correctly.

If they're correct, they win the parrot!

I

I T ekars

Cursor location Cursor location is shown in the J
corner. The cursor is on line
6 and 42 spaces from the left.

04fig04_alt.jpg
EEW W &

1 Accessaries
2 vep

B preerences

[A] shutdown.

*0

 Vatamaica

03fig14_alt.jpg
Ele Ede Shell Debug Qptions Windows Help

Python 3.2.3 (default, Har 1 2013, 1
(Gec 4.6.3] on Linuxz
Type "copyright®, credits

3:50)

or "license ()" for mors information.
RESTART =

* Welcome to the Silly Sentence Generator 3000 *

Please enter your name: Ryan
Hello, Ryan' Let's maks a silly sentence!

Enter the name of a famous person: Albert Einstein
Enter an adjective: fuzzy

Enter another adjective: purple

Enter a verb ending in ~ING: whomping

Albert Einstein

T ek 4

128fig01_alt.jpg
The oraperator
checks i cither
condition s

RN

—

1st Choice: Left or Right Cave? s, The uppen) method
print("You see the cave split into a Left and right tumel" "™ comen theers
print('Do you chaose to go left or right?") inp 3 ppercse
cave_chotce - {nput("Enter L for Left or R for right: *).upper() 4—

iF cave_chotce -

or cave._choice == "LEFT":
Left cove I—
print(*You walk into the left cave.”) idon s T

e
elif cave_choice RIGHT" : /
¥ Riant cove

print("You walk into the right cave. The cave starts sloping
~ downward.")

or cave_choice

els

cse handiesthe case # Wrong answer

where 3l o el

atements are False.

print("You seem to have trouble making good decisions!™)

print("Suddenly a stalactite falls from the ceiling and bonks you
“ on the head.")
oriitl"Gme Dvart i

03fig13_alt.jpg
Ele Edt Fomat Bun Qptions windows Help 'J

¥ Title: The Silly Sentence Generator 3000
Author: Ryan Heitz

2 This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message

print ("+" + 48)

print ("+ Welcome to the Silly Sentence Generator 3000 +7)
print (" + 48)

4 Get the user's name and say hi
Player_name = input("Please enter your name: ")

message = "Hello, " + player_name + "\ Let's make a silly sentence!”
print (message)

Gather words from the player for our sentences
famous_person = input ("Enter the name of a famous person: ")
adjectivel = input ("Enter an adjective: ")

adjective2 = input (“Enter another adjective
verb = input ("Enter a verb ending in ~ING:

=)
)

#Create the sentence by Joining together the words
silly_sentence = ("The " + adjectivel + ° * + player_name + " is " +
verb + * the " + adjectivez + " " + famous_person)

#Display the silly sentence to the screen
print (1" * len(silly_sentence))

print (silly_sentence)

PN ("* + len(silly_sentence))

T 30Kk 0

126fig01_alt.jpg
1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel”) 4\ Display
DrintC'o yau choose o g0 16t or right?™s bt

+ St helce = pviCEothr L for 1eFEGh B fur Hghes e
¥ e chwtcn = "1

¥ Laft cave
printCYou walk o the Left cave.”)

ot
ity

“_ Wrue, display text about
 valking it te Il cove.

L # Right cave
walking into
N | GRREC Vol walk ts e wiLghit cava:: TN cove $tarts: Scplig dosward sy

03fig16_alt.jpg
MINECRRAFY

- P11 EDITION

vB.1.1 alpha

05fig04.jpg
Diamonds are
used to show —
a decision.

Arrows from the

diamond show the ——

possible choices.

Boxes show an

activity or what
happens aftera
des

the button
pressed?

Lightis on

Light is off

Labels on the
“~ arrows describe
the choices.

03fig15.jpg
>
@ intemet >
>
>

05fig07_alt.jpg
TUONSUNSRS HNS (RN 0. WS Ay P

Name of (inputs) that the function might need. In this
the function case, none are needed, so they are empty.
def is a keyword
it N lmsadinacm)
afunction. 7

gt Vet sivatys 4
+ print(You nalk into the Left cave, Tt i cold and dark.
B prANEC"The cove opens up to o Large roan wih an underground river
PrintC'You motice a snall boat on the sdge of the river:")
PrAntC0o yau use the boot, swin, or walk dlong the side of the river
.+ Tiver_chaice - {nputCEnter B for boat. S for i, o W for walk:
return river_chotce

function must be
indented four spaces.

Input is gathered 1 N

from the user and \ e

stored in 2 variable \ g

river_choice.
returnis a keyword needed river_choice is the
only if your function needs to variable whose value is
return information back to the returned from the function

i progyam. whenever it Is called.

134fig01_alt.jpg
SRR - BESETEEAN B ANS RETL SIS NG LY SGanes: def defines a

def left_cove): < funcion. Alter
print("You malk into the left cave. It is cold and dark.”) '\ dfis the rame
PrTKCTe coue oens w 0.6 Large rom ich an ndersrond Sl

X doss) et b print("You notice a small boat on the edge of the river.

sces ander the print("Do you use the boat, swin, or walk along the side of the

g satement. = riverr

7> river_choice - input("Enter B for boat, S for swin, or W for walk:

Gather input from). upper()

heuserandsiore return river_choice T

i avarisle “_ send iformation o the program

e choice. hen the function s caled

Displays text describing the player's demise and a game over message
def wrong_answer():
print("You seen to have trouble making good decisions”)
print("Suddenly a stalactite falls from the ceiling and bonks you
“ on the head.”)
print("Game Over!!1")

05fig06_alt.jpg
Fiow diagram.

Left cave

Wrong
nput

Entorcave v an
underground fiver

Lade

15t Cholce: Left or Right Cove?
print(“You see the cave Split into o Left and right tumel”)
cove_choice = input Enter L for left or R for right:).upperG

1F cove_cholce == “L" o cave_choice == "LEFT
¥ Left cave
print("You wolk fnto the left cove. It is cold ond dark.”
print(“The cave opens up to a large roon with an
= underground river.")
print("You notice o snall boat on the edge of the river."
print("0o you use the boot. swin, or wolk along the side
o of the river?
Fiver_choice = inputC"Enter B for boat, S for swin, or W
o for walk: .upperQ)

§F rlver_cholce == "W" or river_cholce = "WALK':
You walk along the edge of the river

print(“You walk along the narrow edge of the river.")

Elif river_choice — "B" or river_choice ~—"BOAT"
#You hop tn the boat

print("You step tn the boat and start drifting

L« o the river.

EIF river_choice — *S" or river_choice — "SWIN':
You jump in the woter and start swiming
print("You dive into the water and start swisming

L« dow the river.”

else:
Wrong input
print("You seen to hove trouble naking good dectsions!
print("Suddenty o stalactite folls fros the ceiling and
s bonks you on the heod.”)
print(Game overt11")

€1if cave_choice ~- "R or cove_choice ~= "RIGHT:
¥ Right cave
print("You walk into the right cove. The cove storts
= Sloping domnmard.”)
elie:
rong ansver.
print(“You seem to have trouble saking good decisionst™)
print(“Suddenly o stalactite falls fros the ceiling ond
= bonks you on the heod.”)
iR o T

05fig05_alt.jpg
The keyword i starts The condition tested must The if, elif,

the 1f statement. be either True or False. and else statements

% T et .

* if guess > parrot_age: 4~
print("Too hight") andelse aatamants
» elif guess < parrot_age: s ot
 print("Too low!™) +— Psidedy
> elif guess == parrot_age
print("Correct!")
else:
+ print("That was not a valid guess!™)

The el statement
s only checked when
the previous 1f
statement is False.

Lines after i, elif,

You can put together
multiple el f statements.
eLif statements are only
checked if the previous
one i False. The else statement is executed only if all the
rudlons AT sl S LF soabisnt aos Tata:

ch05ex05-0.jpg
S INAN JYOE.

1st Choice: Left or Right Cave?
choice = left_or_right()
if choice == "L" or choice == "LEFT

Calafnctioncalledwalk) # You walk into the Left cve

hat displays messages choice = left_caveO

about Rapl'sate.See the (£ chofce = "W" or chofce == "WALK":

source code for examples

o # You walk along the edge of the river... game over

L walkO

€lif choice == "B" or choice == "BOAT' Calla functon named bot()
You get in the boat... game over ~ thattells you what happens
boatO &/ ifRaspi gts inthe boat.

elif choice or choice == "SWIN
You jump in the water and start swimming... Raspi wins.

ch05ex04-1.jpg
elif river_choice == "S" or river_choice == "SWIM":
You jump in the water and start swimming
print("You dive into the water and start swimming down the
- river.")

else: The statements that displayed game-
Wrong answer over information are replaced by
wiong. ansnerO calling the wrong_answer() function.

elif cave_choice 4 “RIGHT" :

Right cave

print("You walk into the right cave. The cave starts sloping

~ downward.")

print("You come to a room with a large hole in the floor.")

else:

‘wrong_answer() can be called
Wrong answer /% manytimes as needed.

or cave_choice

wrong_answer ()

ch05ex04-0.jpg
1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel")
cave_choice = input(“Enter L for left or R for right: ").upper()

if cave_choice == "L" or cave_choice == "LEFT":
Left cave
choice = left_caveQ) Teft_cave() calls your

function. The information

. . returned by the function
if choice == "W" or choice == "WALK": stored in the variable choice.

You walk along the edge of the river
print("You walk along the narrow edge of the river.")
elif choice == "B" or choice == "BOAT":
You hop in the boat
print("You step in the boat and start drifting down the
“ river.")

102fig01_alt.jpg
Making up the parrot’'s age
TODO: Make this automatically pick a random number between 1 and 20

parrot_age = 19
Create a variable and

hore the mamther 10 ke &

04fig07_alt.jpg
The opening triple
quotation mark is /
et or o aving |12 e 2 14t oty o
teral. It should be:

instructions

Error message pops up when trying to run
the program. Invalid syntax is a generic error
‘meaning something Is not following Python’s rules.

04fig08_alt.jpg
The input function gathers text typed in by the user. It always
returns a string, even f you type in a number, like 5.

Creates a new variable (or memory storage box) and
names it guess. The string 5" is placed inside it.

guess

guess = int(guess) .5.

int convets the sting 5" t the nteger 5
(noice there arent quotes around it anymore). ‘ int function

‘The memory storage box named guess.

already exists, so Python replaces the value

in the box wih 5 (the integer). "5 (the string)

s no longer stored. [guess |

102fig02_alt.jpg
itk ot oo e e o
> #TODO: Need to make this repeat to give them five guesses

Leaveancteto guess ~input("Guess the age of the parrot Dispay 3 prompt to
yousditomake — [pick o number fron 1 to 20]: ") [\ the ot apsore

program o = whatve they ypelnt
sllow he user o 9UeSS = {nt(guess) 0\ Change thevalue Tt cated s
gucs e s, toredn guass from

fryriredpiop weetony

105fig01_alt.jpg
Checking to see if the guess is correct
if guess == parrot_age:

% print("Congratulations! You win! Enjoy your Norwegian Blue

T, this else:

mescae deplars print("Wrong! You obviously don't know your Norwegian Blues!

Wase, display 3
A

04fig09_alt.jpg
Logic for game

7 Display the tito and
the insiructions.
Koep track of the number of
quesses, starting at zero.

‘While the numbor of guesses s
less than 5, repeatthe following:

v/|

|

Geta guess from a player.

Koep track of the number of
‘guesses, and add one.

(Gheckif the guess i correct.

o, then toll thom thoy wint
“Then break out of loop.
‘Check f that was the fth
and last guess.

End of loop:
go back o the start of the loop.
‘Whether they win or lose, afer the
loop say, “Thank you for playing!”

TR0 FR T R

the title and instructions
* 80)
Print("THE NORWEGIAN BLUE GUESSING GAVE")
print("" * 80)

instructions =
You walk into an old a

print(instructions)

Get a guess from the user
guess = input("Guess the age of the parrot
[nunber from 1 to 26]: ")

guess = int(guess)

(]

e, then tell them they lose
“Then break out ofloop.

04fig11_alt.jpg
LOg or gEne

Display he tte and
the instructions.

Koep track of the number of
guesses, starting at zero.

Whie tho rurber o uesses s | @
less than 5, repeat the following:

|

Keep rack of the number of
quesses, and add one.

e, then tel them they winl
“Then break out o loop.
Chockilatuas reih | @
and last guess.

v/

Checkif the guess i correct.

- parrot [nunber from 1 to 20]

SN TN g0 M Po0N

the title and instructions
* 80)
Print("THE NORWEGIAN BLUE GUESSING GAVE™)
print("+" * 80)

instructions
You walk into an old a...

print(instructions)

Get a guess from the user
quess = input(“Guess the age of the

¢
guess = int(guess)

Checking to see if the guess is correct

if guess == parrot_age:
print("Congratulations! You wir
Enjoy your Norwegian Blue!

else:
print("Wrong! You obviously don’t
know your Norwegian Blues!™)

e, then tel them they lose!
“Then break out o lop.

Endof oop:
90 back o the start o the loop.
‘Whethr they win or lose, aftor the
loop say, “Thank you for playing!”

04fig10_alt.jpg
Vhe keyword The condition The first line of the
if starts the 1F tested must be ~ iF statment must

statement. either True or False. end with a colon ().

1

*if guess == parrot_age:
—» print("Congratulations! You win! Enjoy your Norwegian Blue
7 else:
P # print("Wrong! You obviously don’t know your Norwegian Blues!")
Lines after the if " The else statement Lines after the else statement
statement need endsin a colon () need to be indented four spaces
to be indented andisn'tindented. and are only executed when the
four spaces and condition tested i False.

are only executed
when the condition
R iy

097fig02_alt.jpg
instructions =
You walk into an old and smelly pet shop.
As the door closes behind you, you see

a beautiful blue parrot sitting very
still in a cage. The pet shop owner
greets you and says,

"Today is your lucky day!

This is the rare Norwegian Blue parrot.
Guess his age and take him home for free!

You get five guesses #

print(instructions)

End the string
literal with """ or ™.
P

*\ Start a string literal
with ™ or "

‘\, You can use double
quotes in string literals.

Displays the instructions
in the Python Shell window.

278fig01_alt.jpg
print(’ 80)
print("Ask aloud a Yes or No question, then press the button:
print("*" * 80)

" " Check if the button
while play_again.upper() o/ hasbeenpresed
if GPIO.input(button_pin
print("Yoda is considering your question...")
time.sleep(1)
print("Listen to Yoda's answer:")
time.sleep(.5)
play_randon_sound(path_yoda, sounds_yoda)
print("*" * 80)
print("Ask aloud a Yes or No question, then press the button:
print("*" * 80)

else:
print("Thank you for consulting Yoda!")

)

097fig01_alt.jpg
Draws a line.
ofasrsks # Display the title ond tnstructions 4\
on the screen print("*" * 80) Add a comment.
print(“THE NORWEGIAN BLUE GUESSING GAME") 4\ " "
print("+" * 80) \.c Deplays the cti
i by

277fig01_alt.jpg
import RPi.GPIO as GPIO
import time

import random

import os

6
oy

button_pin
play_again

GPIO.setmode (GPIO.BCM)
GPIO.setup(button_pin,GPIO.IN)

path_yoda = "/home/pi/yoda/"

Import the libraries
you need.

Variable for the GPIO pin
used by the button.

Set the path to the

J Yoda sound files.

276fig01_alt.jpg
> weile True:

Startaninfinte i GPIO. input (button_pinl) & GPIO.input (button_pin2):
loop (must use #print("You pressed both #1 and #21")
Cur-C o stop i) play_randon_sound(path_effects, sounds_effects)

time.sleep(.1)
€lif GPIO. input (button_pin1):
#print("You pressed #11")
play._randon_sound(path_nusic, sounds_music)
time. sleep(.1)
elif GPIO.input(button_pin2):
#print("You pressed #21")
play_randon_sound(path_vocals, sounds_music) Pause sightly before
time.sleep(.1) checking the button

time.sleep(.1) for input again.

04fig06_alt.jpg
PR EI0N SRR Highlighting shows
mark is missing. It should where there is an error
be print (" * 80) in the program.

ToweganBiue by - home P NomeganEie py
e 0 i gt strtom 0

{ Title: The Horwegian Blue Parrot Guessing Game

R el

“roday

An error message pops up when you try
to run the program. EOL stands for end

of line. A string must start and end with

quotation marks and can't be more than
one fine long.

282fig01_alt.jpg
mport time
import picamera

with picamera.PiCanera() as camera: X
Give the camera a couple

canera.start_preview()
tine.sleep(2) o memmaBp,
Fad for filename in camera.capture_continuous
Start 2 loop to “ ("inage{counter:04d} . jpg"
take pictures print('Captured %s' % filename) ~ Wait 3 minutes.
repeatedly. Hine.sleant180): s

logo.jpg
/I MANNING PUBLICATIONS

01fig08.jpg

b0fig11_alt.jpg
- ‘Vhare you phy
i to make cool projects
< (e with electronics

=, -
¢) the operation”

inputioutput
(GPIO) pins T

- —

Where you connect
things (with USB
connectors)

Where you store
the operating
system, apps,
and files

B;::x {

Ethernet
port
[}
‘Where you connect
to the internet

HOMI port Gamera Seral 35mm
MicroUsB Intertace port audionidoo out
power port ks O
Where you plug Where you give it Where you plug a Pi Where you can
in the power cord a high-def display camera board to take hear sounds

photos and

b0fig10_alt.jpg
'ERANG PURECEN [N (O 5 S 08
old-style TV (see HDMI port for high-def)

Where you plug wires

with electronics N Jowo
“ O General-purpose ’

Where you connec
Where you store things (with USB.
the operating connectors)
system, apps,
and files

Memory

card siot uss (R

pots B

L §

el -
=

Where you plug
i the power cord

b

‘Where you connect
to the internet

Systom ona chip HOMIport Camera Serial
e Interface port

“The brain of Where you give it Where you plug a Pi
the operation” a high-def display camera board to take
Slabine ol videss

b0fig09_alt.jpg
o niia! B
(t0p view)

3.5 mmto-RCA 'RCA composit video
35 mm audiol composite video okt o Pt
video port ‘and audio cable.

N NN N
EHE

b0fig08_alt.jpg
FHOMI port UOVi port VGA port

RCA port Component port

265fig01_alt.jpg
¢ % ISRy = YO PRALLY WAL O oy UL Ao ¥ T8 T thing
Creste e Print(weird characters * 10 + message + weird_characters * 10) 4—
message.

Hide it between the
pensotch ey

264fig02_alt.jpg
title = "Subliminal Messages™
print("*" * 80)

print(title)

print("*" * 80)

player_name = input(“Enter your name: ") Gather input from
thing = input("Enter the name of something you want: ") | theplayer.

01fig19_alt.jpg
i 5t e Bt Go Toos b
© vt @ IEY

— 0 0 BB BN
o

Sonmes Somits b ST

. 0e1s Ws00ts asa6IE 081 WS 06TE:
SIS 00710 e 3 oS8 e 16
Sioae. otke. sz, 20z e

L I)

0618 2150615 150621 bikry ey BeriE

ks T 0 Tk .

5 8 8 8 8
Oemine O ORemney oty SO0 Gt
o Sy -

e) 3768 o 6268)

264fig01_alt.jpg
print(title)
print("*" * 80)

Gather input from the player
. and store it in variables.
player_name input("Enter your name: ")

adjective = input("Enter an adjective: ")
famous_person = input("Enter the name of a famous person: ")
animal = input("Enter the name of an animal: ")
vacation_place = input(“Enter a place you would go on vacation: ")
sharp_thing = input(“Enter the name of something sharp: ")
exclamation = input("Enter something you might exclaim aloud

01fig18.jpg
Qe | (D = = %O

< Programming >

@ emet >

20, cames >

T i~
o[colsor

3 Bl Fievarage
R e vewr

B o v

B s

c0fig01.jpg
10 keep the cat from flipping upside down when
it points in a new direction, click this button
so that the cat will only face left and right.

01fig10_alt.jpg

01fig09_alt.jpg
Rih b o Raspberry Pi

-

HOMI port HOMI cable

01fig12.jpg

266fig01_alt.jpg
two choices.

print(“You choice is ~ + player_choice + ".")
print("The computer's choice is " + computer_choice +
if player_choice == computer_choice:
print("It's a tie")
else:
if ((player_choice == "Rock” and computer_choice == "Scissors") or
(player_choice == "Scissors" and computer_choice == "Paper") or
(player_choice == "Paper” and computer_choice == "Rock")):

print("1" * 80)

print("You win

print("t" * 80)
else:

print(":(" * 40)

print("You lose!

print(": (" * 40)

play_again = input("Do you want to play again [Yes/No]? ™)

01fig11.jpg

265fig02_alt.jpg
Get a random

Rock, Paper, Scissors!
print("+" * §0)

print(title)

print("+" * §0)

while play_again == "Yes’
print("Choose Rock, Paper, or Scissors:")

computer choice. player_choice = input("Enter your choice: ")
\p comuter choice = choices[randos. randint(e.2)1

_ Get the player’s

o/ choiee

01fig14_alt.jpg
{ Baspherry Pl Sof tuare G

i Do Tesam Ehmme. PuLEutnd. for Gk detautt user: (P13
EIbie Bt 16 Deskton Scratch Chotie Lhether 0 boot ko deskepp Emoiroment, Scratc
Tt ion | fation Dptions Set up Iampiage awh rgiom1 SeCtingt t maich e Tocation
Eaabie s bl 2 F1 o sk wih the Racpterry Fi Caners

' Rasirack A Ui T1 U0 e ont i Fatpherey P Fap (actroch)
Duerciocs Conclaure mcrelocking for gour FI

01fig13.jpg
e - @ 4«

nstall (53 Eit config (e} Online help (h) _ Exit (Esc)
[Installs the selected operating system Image onto this SD card |

[5 Data Prtition
‘Adds an empty 512MB exta format parttion to the parttion layout.

Raspbian - Boot to Scratch
Aversion of Raspblan that boots stralght Into Scratch

sk space.

Needed: 2762 M8
Avallable: 6675 M8,

01fig16.jpg

01fig15.jpg
Debian GMU/Limux wheezy/sid raspberrypi ttyl

raspberrypl login: pi
Passuord

Last login: Tue fug 21 21:24:50 EDT 2012 on ttyl
Linux raspberrypi 3.1.9+ 8168 PREENPT Sat Jul 14 18:56:31 BST 2012 armubl

The prograns included with the Debian GMULinux systen are free softuare
the cxact distribution terms for cach progran are described in the

individual files in susr/sharesdoc/=/copyright

Debian GMU/Linux coes with ABSOLUTELY NO WARRANTY, to the extent
pernitted by applicable lau

Type *startx’ to launch a graphical session

pieraspberrypt

Raspbian command-ine mode

Rasobinn tranhicaluseiciitarEcs [CUR mods:

01fig17.jpg
€ ok 1 Setting up ALSA...done.
{info) Setting cowole séreen modes.
{inte) Skipping font ind Sepmap setp undied by consale-sota).
€01 Setting up cosole font and heymap.

€ ok 1 Setting up X socket diroctaries,
INIT: Entering renlevel: 2

Cinfo) Using naketile-style concurrent boot In runlevel 2.
L01") Hetuork Tnterface Plugging Dacson. 2

Debian GRULInax 7 raspherrypt tts1

raspberryp! login:

02fig06.jpg
Menu

Cheese pizza
Orange sod

02fig08_alt.jpg
>>> password = "bunny"

Creates a new variable (or memory storage box)
and names it password.
The string "bunny" s placed inside it

>>> password = "dragon”

Amemory storage box named password already
exists. Python replaces the value in the box with
“dragon", and "bunny" is no longer stored.

“dragon

>>> print(password)

When using print, the current mmmsp>
value stored in a variable is
displayed to the screen.

>> password = "bunny"
>>> password = "dragon"
>>> print(password)
dragon

>>>

02fig07.jpg
Value
Name of assigned to
the variable the variable

—— A

>»> cheese_pizza =

NG

Python Shell Equals sign is used
prompt to assign a value
to a variable

01fig21_alt.jpg
i

& he pi store
BN o wes 40D

2]
Foioms o
Games
- e -
Hokk Free! ki Free! #k## Free!

01fig20_alt.jpg
Ele Edt Shell Debug Qptions Windows Help
Python 3.2.3 (default, Mar 1 2013, 11:53:50)
(GeC 4.6.3] on linuxz

T R AR 0 e TP G SRy

T

02fig01_alt.jpg
Menu | (D) B
A Mathematica

> pyhon2
>

> scratch

common03.jpg
EEEREREEREEREER K

02fig03.jpg
Menu
Burger........ $5.49

Fries $1.99
Soda............. $1.49

02fig02_alt.jpg
i

k4l
Prompt for entering W

Python commands

e

02fig05_alt.jpg
How many Fle does it taks to reach the Suny

Earth o Sundistance

Raspberry Filength

1.496x10° kilometers

Definitely not to scale

02fig04_alt.jpg
Elo_ ot Shell Debug gotons indows oo

Python 3.2.3 (default, Mar
(Gec 4.6.3] on Linuxz

Type "copyright®, "credits®
555 5.49 + 1.99 & 1.49
G

T 2013,

11:53:50)

or "license()" for more information.

e

02fig17.jpg
*(Ontitled)’

[[/

Elle Edit Search Options Help

I'm a lumberjack and I'm okay!|

02fig16_alt.jpg
Python s
Ele Edt shel Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2
Type "copyright”, "credits" or "license ()" for more information.

55> - mmmmnn RESTART R———
5>

And now for something completely different.

5> |

T 7]Cok

059fig01_alt.jpg
Read File i Prev Page il Cut Te)
15 M [Uncut Tex

02fig18_alt.jpg
Enter the filename

lumberjack.
Name: [lumberacd)
saveinfolder <
Name v Size Modified |
& Desktop 02/16/2015
& Documents 06/19/2015)
83 Downloads 047122015
Eindiecity 067212015
@Filesystem | ||l [Bpython_games 01/01/1970
Bsermines | |[+] BScratch 06/19/2015|
& Timelapse 06/21/20151
Character Coding: | Curent Locale (UTF-8) o[LF o
@ Cancel
Select the Click Save to save
pi folder. the file to your

Raspberry Pi.

02fig10.jpg
3trings must be
print in single (') or
function double (") quotes.

)\/—A

>>> print("Hello World!")
v
Y
Python Shell Opening

prompt. and closing
parentheses

02fig09.jpg
Order of operations

1. Parentheses (or brackets) first

(G * 2) * 5%%3 / 25 + 10
|

2. Exponents (or orders) second

|

6 * 5%*3 / 25 + 10

3. Multiplication and division third
(always work from left to right)

|
}

6 * 125 / 25 + 10

|

4. Addition and subtraction last

750 / 25 + 10
|
30 + 10

40

02fig12_alt.jpg
Ble_Edt shall Dobug Gptions Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[Gec 4.6.3] on Linux2

Type "copyright®, “credits® or
>>> message = "Hello,

Syntaxgrror:
> |

“license ()" for more information.
I am your Raspberry Pi
EOL while scanning string literal

02fig11_alt.jpg
Ble_Edt Shell Dobug Gptions Wndows Help
Python 3.2.3 (default, Har 1 2013, 1
(6oC 4.6.3] on Linuxz

Type "copyright”, "credits® or "license()® for more information.

>>> message = "Mello, T am your Raspberry Pil®
55> print (message ¢ 100)

Hello, T am your Raspberry PilMello, I an your Raspberry Pi'Hello,
spberry PitHello, 1 am your Raspberry Pi'kello,

am your Raspberry Pilkello,

itHello,

3:50)

T am your Ra
T am your Raspberry Pilkello, T
T am your Raspberry PilHello, I am your Raspberry P
I am your Raspberry Pi'Mello, I am your Raspberry PilMello, I am your

Raspberry

I am your

Raspberry Pi'Hello,

Pithello, T am your Raspberry

1 an your
PitHello,
Raspberry

Raspberry PilHello,
I am your Raspberry
Pilhiello, T an vour

I an your Raspberry Pi'Mello,
Pithello,
Raspberry Pi'Hello,

T am your

I am your Raspberry Pi'Hello,
I am your Raspberry

Piihello,
Raspberzy
I am your
Pithello,

T 7Cok 4

02fig14_alt.jpg
Elo_Edt_Famat fun Options Windows Hop

message = "And now for something completely different.”
print (nessage)

tn: 2[Cok 14

02fig13_alt.jpg
File Edit Shell Debug Qptions Windows Help

Python 3.2.3 (default,
[GeC 4.6.3] on linux2

Type "copyright”, "credits" or "license()" for more information.

Mar

12013, 11:53:50)

>>> |
T 3ol
IDLE Python Shell
- riiied ==
Ele Edt Fomat Bun Options Windows Help
T 2
T 1IGaE o

IDLE text editor

02fig15.jpg
Directory: /home/pi d| (=] |

.cache Jocal
~config minecraft

dbus pulse
fontconfig scratch
gstreamer-0.10 thumbnails
Wolframengine
) archive

5

File name: [FirstProgram Save
Files of type: Python files (*.py.*.pyw) | cancel ||

08fig01_alt.jpg
Hanem pes:

Raspverry Pi
(not shown)
Ribbon cable
Broakout board 2mini 2 resistors: 10K ohm
‘Soldorloss breadboard pushbutons Color bands: brown, black, and orange

4jumper wires (male-to-male);
any length wil do

B8 < »

Headphones, powered computer speakers,

o TV with bud

5 aails.

08fig05_alt.jpg
Jumper connects
the button to GP06. —

Jumper connects
the power (3.3 V)
to the button.

Insert the mini
pushbutton into / "
rows 23 and 25. -

10K ohm resistor connects the button
to the negative (-). Color bands:
brown; black; orange.

08fig04_alt.jpg
The button acts as a switch
that is normally open so no
electricity flows through it i

and nothing happens. \p"shmm
GPIOpin6

33V (vols) Ground
¥ -
. >
- f
/ i~
When the button is pressed, — 10K ohm resistor

the switch is closed, and electricity
will flow through the button to
GPIO pin 6 and ground ().

08fig03.jpg

08fig02_alt.jpg
You'll try playing this Tlype the path in
file: Oooo-badada.mp3. the address bar.
|

ol el 7 JI 7

B o S, Sl S e

i | Rubbah N N

i ovcirs e} 7 A)

_ sermios bt et s Drnres
- S s.m.

oo
1zems \/ e 368 TR €760

Notice there are both .wav
and .mp3 format sound files.

08fig09_alt.jpg
10K ohm resistor. Color bands
are brown, black, and orange.
The resistor connects the
button to ground.

Connect the other end
~ of the resistor to the
negative power bus (-).

Connect one end of
the resistor to BB23i. s,

08fig08_alt.jpg
The jumper connects a source
of electricity (3.3 volts) to the
bottom legs of the button. —_

Jumper from
positive power bus (+) —

Connect the other end —
of the jumper to BB25a.

08fig07_alt.jpg
Firmly push the
button into the -
breadboard.

Insert top legs into BB23d
and BB23g. Insert bottom
legs into BB25d and BB25g.

08fig06_alt.jpg
How pushbuttons work

& m s

lnnnm Itgs

Not pressed (open) Pressed (closed)

Toplegs

Connected
. whenpressed

Bottom legs

\ \

Electricity can flow along the top and Pressing the button connects
botton, but they are NOT comnected. the top and botsom.

08fig10_alt.jpg
Connect jumper wire from
the top of the button to GP06

Connect the other end of —
jumper to hole BBI6a (GPO6)

Connect one end of
jumper to hole BB23a

The color of your jumper wires
doesn’t matter (it's simply the color
of the plastic on the outside of the wire).
Pick any color you like!

ch07ex02-1.jpg
def flash_blueO):
for i in range(1,6): #Blink on and off 5 times
Turning on LEDs
GPI0.output (LED_pin_blue, GPIO.HIGH)
time. sleep(blink_time)
GPI0.output (LED_pin_blue, GPIO.LOW)
tine.sleep(blink_tine)

An ending to the game if they don't guess it
def game_over():
print("You lost!™)
print(“Better luck next time!")
time.sleep(2)

foitliacolsroucresty lour Fndtioni

ch07ex02-0.jpg
Blinks an Leo.

def

—

Tell the P to sart
(GPIOMIGH) outputting
vltag tothe GPIO pin.

def

flash_redO: “_ efine the name of
for 1 in range(1,6): #BLink on and off 5 times \- pefetenEnesl,

Turning on LEDs

hae. eep (oot
GPIO.output (LED_pin_red, GPIO.LOW) < —
time.sleep(blink_time) 2
o
pt o LI
O Grnaio oxpatre

for 1 in range(1,6): #Blink on and off 5 times
Turning on LEDs
GPI0.output (LED_pin_green, GPIO.HIGH)
tine.sleep(blink_tine)
GPI0.output (LED_pin_green, GP10.LOW)
time. sleep(blink_time)

ch07ex01-1.jpg
Create variables for the pins used for LEDs cwhich GPIO pins you'l
LED_pin_red = 12 use to light the LEDs.
LED_pin_green = 16

LED_pin_blue = 21

Blink speed in seconds

bLipktine;~:0:25 \ Create avariable to store how long

the light should blink on and off.
Tell the Pi which Pins we will use

Set them up as OUT pins (send electricity out)
GPIO. setup(LED_pin_red,GP10.0UT) S— »

ell your Pi to set up three
GP10. setup(LED_pin_green,GPI0.0UT) GPIO pins for output.
GPIO. setup(LED_pin_blue,GPT0.0UT)

ch07ex01-0.jpg
Light Up Guessing Game
Ryan Heitz

importing the libraries we need

import RPi.GPIO as GPTO gyl Mk

import time you'll need later.
import random

#Tell the Pi we want to use a breakout board
GPI0. setmode (GP10.BCM)

07fig15_alt.jpg
Sewpyourio
contl RGB LED
- I At
squesses
Gotaguess
Repest
S %
auess
ooty
Toolow, comt
Too
non
e Red Gruon
binkng binking S
l Yount
vos puy
sgmin?

Nﬂ-

197fig01_alt.jpg
-
Start the game
loop tht givs the
player S chances to
guess correcty.

—
Callthe flash
function and tel it
to flsh the RGB
LED a certain color.

& frnpe.
while count_guesses < 6: - for a user to enter

guess = input("Guess " + str(count_guesses) + ":) «/ their guess.
guess = int(guess) # Convert the input string to an integer
count_guesses += 1 # Add one to the nunber of guesses

~ to keep track

if quess == number_in_my_head: # Guessed it correctly

Flash(LED_pin_green) Exit (break out of)
print("You won!") - thegameloopit he
break # Breaks out of loop </ player guesses comrectly

elif guess > number_in_ny_head: # Guess too high
flash(LED_pin_red)

€Lif guess < number_in_my_head: # Guess too low
Flash(LED_pin_blue)

else: # For the while loop, it happens when the while condition
- isn't True

End of gane

game_over () O\ Callafter the player

emsadar | g

07fig14_alt.jpg
Set up your Pito
control RGB LED

| Ater
~[F Copferpion] Savesses [T
5 guesses.
Geta guess.
s
quess
corect?
Toolow Corect
Too
high
Blue. Red Green
binking binking binking
You wint
vos " piay
again?
No

End

194fig01_alt.jpg
Blinks an LED.

def Flash(LED_pin): T o i i
for i in range(1,6): #Blink on and off 5 times - parameteras input (the
Turning on LEDs GPIO pin number).
GPI0.output (LED_pin, GPIO.HIGH) «
: e Turn the signal to
time.sleep(blink_time) b e
GPTO.output (LED_pin, GPIO.LOW) <

time.sleep(blink_time)

ch07ex06-1.jpg
f answer.upper() == "Y".
Get a new e
T Starting over. Get o ne

—» number_in_my_head
count_guesses = 1

random

else:
play_again = False

print("Good bye!")

GPI0. cleanup()

randon number and reset the counter

randint(1,20)

N —
of gwsses to

Sot play_agan to Fale, which

" causes the Play Again Loop to end.

R r———
Rt tha GHIO plas uasd it

ch07ex06-0.jpg
hecohancadt o s bt -
> print(intro)
Prin nstructions.

Start the Play Again Loop that repeats

Guessing Game Loop
while count_guesses < 6:
Loop code hidden
else
Aok the user fthey game_over()
want to play again. 4 g of Guessing Game Loop
_» answer = input("Would you like to play again [Y/N]? ")

a0fig01.jpg
Format your drive. All of the data
on the drive will be lost whenyou 529"

format it.

SD. SDHC and SDXC Logos are trademarks of
SD-3C, LLC.

2 ‘ Refresh

7 GB Volume Label : RECOVERY

Format Option :
QUICK FORMAT, FORMAT SIZE ADJUSTMENT OFF

233fig01_alt.jpg
>
Use the lstdir
functon to get
st o e in 3
older on your Pi.

—
Use the randint
and len functions
o get a random
sound number.

Returns o List 07 Wp3 sound Tiles Tor the path gives
def get_WP3_sounds (sound_path) :

sound_filesound_files = os.listdir(sound_path) ‘Comprehension fiters
sound_filesound_files = [sound_file for sound_file in - thelistto only keep
sound_filesound_files fles ending in mp3.

if sound_file.endswith('.mp3")])
return sound_filesound_files

Plays o randon sound from a List of mp3s for the path given
def play_randon.sound(sound_path, sound_filesound.files):
randon_sound_ndex = randon.randint 9, Len(sound. i Lesound. files)-1)
0s.systen(“omxplayer -0 local ** + sound_path + «
)

/" + sound_filesound_files[randon_sound_index] +

Get the list of music loops and vocals (mp3s only) Play the sound
Sounds_nusic = get_MP3_sounds (path_music) with os.system.
e g S e T

08fig18_alt.jpg
Set up your Pito
listen to two buttons.

Get two lists of sound files:
music and vocals.

I

Check buttons.

Button 1

pressed?

Button

Button 2

Button 1

Play random
[|)) music
sound.

Button 2

Play random
1)) vocal
sound.

[

Repeat until
user quits
(presses Clrl-C)

b0fig04_alt.jpg
e i

Side view

b0fig03_alt.jpg
Pre Shared Key.

Cancel

Enter the pre-shared
key for the wireless
network and click
OK to connect.

b0fig02_alt.jpg
In the top-right corner of your Pi's
desktop, click on the network icon to
view a list of available wireless networks.

‘//
o (@) 23]2324
1975 w=

Click on the wireless network
you want to connect to.

b0fig01_alt.jpg
Srrosersy Where you plug wires to make
TR, cool projects with electronics

“The brain of
the operation”

General-purpose Systom ona chip

opulotput (GPIO) pins
i iicds Where you connect

things (with USB
connectors)

Where you store
the operating
system, apps,
and files
Memory
card siot

Etnemet
/4 port

Li Where you connect
st oo S e et
pover port

aljl'EI O

Where you plug Where you give it Where you can hear
in the power cord a high-def display sounds or plug into
an old-style TV

b0fig07_alt.jpg
Top view

Side view

b0fig06_alt.jpg
Ribbon cable — — Raspberry Pi

- camera

When plugging in the
camera, make sure the ——
metal contacts on the

ribbon cable are facing
the HDMI port.

Camera Serial
Interface (CSI)

b0fig05_alt.jpg
— Ribbon cable

08fig12_alt.jpg
Set up your Pi to
listen to two buttons.

I

Get two lists of sound files:
music and vocals.

I

Check buttons. f——

Button
pressed?

Repeat until
user quits
(presses Ctrl-C),

Button 1 Button 2

Button 1 Button 2

Play random Play random
)) music)) vocal
sound. sound.

08fig11_alt.jpg
Connect a jumper from
the button to GPI9 —
(BB28a BBISa).

Add a jumper from
3.3V to BB30a.

Add a 10K ohm resistor
~_ from BB8i to the
negative power bus (-).

Add the buttonin
rows 28and30.

08fig15_alt.jpg
SRR RRUNNTS NN N A S . -
the left square bracket ([) to start the list and
s the right square bracket (] to end the lst.

stored in variables.

“
basketball_players = ["Kevin Durant”, "LeBron James”, "Chris Paul", "John Wall"]

B *
A g7 . -
7 N ~
The equals sign If you have a list of Use commas to
stores the list strings, then each separate each
in the variable item must be in item in the list.

on the left. quotation marks.

08fig14_alt.jpg
Set up your Pi to
listen to two buttons.

Check buttons. oo

Button
pressed?
Repeat until
user quits
(presses Ctrl-C).

Button 1 Button 2

Button 1 Button 2

Play random Play random
1)) music])) vocal
sound. sound.

221fig01_alt.jpg
DJ Rasp1v
Ryan Heitz

importing the libraries you need
import RPi.GPIO as GPIO
import time

it “raridos Import the os library that lets you

: execute a Raspbian command.

import os

Variables for the button GPIO input pins

button_pinl = 6 s
Store the value of the GPIO pins.

button_pin2 = 19

#Tell the Pi we want to use a breakout board
GPIO. setmode (GPIO.BCM)

Set up GPIO pins as input pins (detect electrical signals coming in)
GPIO. setup (button_pin1,GPI0.IN) Set up the pins for input
GPIO.setup(button_pin2,GPI0.IN) (notice you use GPIO.IN).

08fig13_alt.jpg
Get two lists of sound files:
music and vocals.

I

Check buttons. e

Bution
pressed?

Button 1

Button 2

Button 1

Play random
)) music
sound.

Button 2

Play random
)) vocal
sound.

Repeat until
user quits
(presses Ctrl-C),

230fig01_alt.jpg
Start an infinite loop (must use Ctri-C to stop 1t)

while True:
iF GPI0. input (button_pinl)
print("You pressed #11") 1 the GPIO detects
—» play_random_sound(path_music, sounds_music) input, this is True, and
Ply a random tine.sleep(.1) Gemmdi ped
sound using the iF GPIO. input (button_pin2):
unction you wrte. print("You pressed #21")
~» ploy_randon_sound(path.vocals, sounds.vocals) (L
time.sleep(.1) /" amountof time.

time.sleep(.1)

229fig01_alt.jpg
Clear the screen
os.system("clear™)

#Display a title screen
title = """
DI RASPI!!!
Press Button 1 for Music Sounds
Press Button 2 for Vocal Sounds
Press Ctrl + C to exit

print(title)

The clear command makes the
Terminal a blank. black window.

Use triple quotation marks
create a string literal for the title.

08fig17_alt.jpg
Set up your Pito
listen to two buttons.

.

[[Gettwo ists of sound fes:
music and vocals.

Checkbutions. {+————)

)

Bution "\ No
pressed?
Repeat until
Bution 1 Button2 user quits
presses Ctr-C)
Bution 1 Bution2

Py rancom oy
1) = D))
s soun.

| S

08fig16_alt.jpg
£ach item In the Nist is given a number, calied an
index. The index represents its position in the list.

pasketballPlayers = ["Kevin Durant", "LeBron James",

/

Index of 0 Index of | Index of 2 Index of 3

‘Chris Paul”, "Stephen Curry"]

/ /

‘ The index numbers start at zero (0).

To find the index of a certain value in a list:
basketball_players. index("Stephen Curry") — Retums 3

To find the value of an item at a certain index:
basketball_players[6]

Retums "Kevin Durant”

Use len() to find how many items are in the
len(baskeiball plavers) — o ol

ch04ex08-0.jpg
mmoer_of.guesses = 9
while loop will repeat until the nunber_of_guesses is five
> while number_of_guesses < 5:
Startthe # Get a guess from the user
while loop. guess = input("Guess the age of the parrot [number from 1 to 20]
guess = int(guess)

Increase the guess
Add one to our guess counter o comerbyon.
number_of_guesses = number_of_guesses + 1

Checking to see if the guess is correct

Exitthe whileloop = ar 7
e aheop if guess == parrot_age:

print("Congratulations! You win! Enjoy your Norwegian Blue!
break
else:

04fig13_alt.jpg
SO RO IO MO8
Display the title and instructions
print("s" * 80)

print("THE NORWEGIAN BLUE GUESSING GAYE

Logic for game Print("+" * 80)
instructions
Display the e and You walk into an old a..
the nstructions. .

print instructions)

q Keepackofthenumberof | uper_of_guesses - 0
guesses, sarting at zero. ik

While loop will repeat until

Whie the rurbero guesses s | @ = the nusber.of_guesses is flve
less than 5, repeat the following: while number_of_guesses < 5:

q Geta guess from a player.
Koep track o the number of
‘quesses, and add one.

Get a quess from the user
|~ guess = input("Guess the age of the parrot
* [nuber from 1 to 20]: ")
quess - int(guess)
| # Add one to our guess counter
number._of_guesses = number_of guesses + 1

P # Checking to see if the guess is correct

é (Checkifthe guess s correct.

Eise

7 Vet they win o lose, e he
loop say, “Thank you for playing!

e, then telthem they win! > Norwegion Blue!
Then break outofloop. breok

8 e, thn el thom try ose! i nunber_of_uesses ==
“Tren break outof loop. print("You lose!")

if guess = parrot_age:
print("Congratulations! You win! Enjoy your

)

else
f———=print("Wrong! You obviously don't know your
= Norvegian Blues!")

T
e g # If True, tell them they lost and reveal

the parrot’s age

print("The Norwegian Blue is * + str

End of loop: > (parrot_age))
o back to the startof the loop. #5top Tndenting (This marks the end of while 1o0p)

print("Thank you for playing!™

ch04ex08-1.jpg
print("Wrong! You obviously don't know your Norwegian Blues!™)

Checkifit's the # Check to see if this is the fifth guess
e # If True, tell then they lost and reveal the parrot's age
message it 5, if nunber_of_guesses == 5:

print("You lose!")
print("The Norwegian Blue is " + str(parrot_age))
Stop Indenting (This marks the end of while loop)

print("Thank you for playing!l™

114fig01_alt.jpg
count = 0
while count < 100:
print(count)
if count
break
count = count + 1
print("I finished counting!™)

77:

Check if the value of

P /" count is equal to 77.

'\ If the value is equal to 77, the break
command breaks out of the loop.

04fig14_alt.jpg
to count, and give be given a condi

n
ita vzlue ofzero. that s True or False.
_— A colon goes at the end.
Start while loop. Yy cuunt

— Display the current
value of count.

~~> while count < 100: «
print(count) «

(ount count + 1 +——

print("I finished counting!")

Nty

Display a message to the
scrowe: " alshed countls

Code in the Ioup
indented four

spaces.

~ Add one to the
value of count.

04fig16_alt.jpg
Each sprite has three tabs
Click categories to Access help for writing_programs, loading
get different blocks. documentation. costumes, and loading sounds. Cat sprite

Block palette: drag blocks Seript area Loada load Thestageis
to the script area, and background or paint where the sprites
snap them together. image. asprite. ‘canmove around.

06fig04_alt.jpg
(GPIO breakout board: A handy board

40-pin ribbon cable: super- that lets you break out or move the
useful for connecting your Pi's pins to a breadboard to make it
Pi to a breadboard easier to build circuits

’ \\

Usually the first — /
wire is marked in
red, to let you know

its the wire for pin I.

'\\ Solderless breadboard: Plug
the breakout board into the
breadboard and connect it to

o e T

04fig15_alt.jpg
Reicnencs b b bl

Title: The Norvegion Blue Parrot Guessing Game
Author: Ryan Heitz

The goal of the gome is guess the age of a parrot

¥ The prograa generates o randoa age between 1 ond 20
The player gets 5 guesses to guess the age correctly.
If they’re correct, they win the parrot!
inport.randoa

Display the title and tnstructions
prine(™+" * 50)

Logeroams Prine C"THE NORWEGIAN BLUE GUESSING GAYE™)
print(e" * 80)

] Dy e o e instructions -
bavencions, You walk 1nto an old and snelly pet shop.

AS the door closes behind you, you see
a beautiful blue parrot sitting very
Still in a cage. The pet shop owner
areets you and says,

“Today 1s your lucky day!
Ths is the rare Norwegian Blue parrot.
Guess his age and toke hin hose for free!

S S

Whtle nusber_of_guesses < 5:
W2 Gota guess foma piayer. # Get @ guess from the user
quess = input("Guess the age of the parrot

T o frumer frn 1 t0 300
M s o s

Add one to our guess counter

W2 checxitthe guess s 0\ nusber_of_guesses = nusber_of_guesses + 1

!I

Checking to see if the quess is correct
1 guess = parrot.oge
B " e ten el hem oy it print‘Congratulations! You wint
“Thenbroo ot faop. = Enjoy your Norwegian Blue!™>
break
& ets
print (rong! You abviously don't

5 o
M O oo to se i s s e rireh uess
Ml e |,
Thst) ot ol e print("The Norwegian Blue is * + str(parrot_oge))
— i o T
WA g0 back o the starof e oop.

Vinather ey win o los,afr the
Al 1oop say, Thank you for playing!”

prine("Thank you for playing!™)

05fig02_alt.jpg
Right cave

Start. > Rt
W e cavewin

aholein the floor

lLskcave Enter cave with an.
underground rver down rope or
’ Cimp Walkloward
s torch?
down rope
s
Enera
aragon's e
Use the oat,swim,
ey =
Keepuaing K
sin § sy Figi e
aragon orgo
ino he dark

You win

05fig01_alt.jpg
Elle Edt Shell Debug Qptions Windows Help

It is the Dark Ages, the tine of stone castles, knights with avords,

SAS BARLLY. Midians ‘Shis Seciie Alns - Duguss

04fig12.jpg
the end of the if statement.

password = "bunny”
my_guess = "rabbit"

it my_guess == password EEEEG——
print ("Access granted!")
else:

print ("Access denied!")

° invalid syntax

==

06fig08_alt.jpg
connected in the
row from a to e.)

-
-
-
-
-
-
-
.

Hole BB25¢
(BB stands for
breadboard.)

s samsssanana
PR R R
Se A Aa A aaaaEs

2
2
2
23
%
5
%
2
%

+

06fig07_alt.jpg
X-ray goggles (not for sale)

In each row, holes

in the
a-care connected /|

same row are

.

-

Each side has positive (+) and
negative (-) power buses.
These are connected vertically.

horizontally.

4

& B
Y
Note the letters labeling

the holes along the
Boktows S o

IO

connected as well.

Numbers are
used to label
sach row of hols.

109fig01_alt.jpg
password = “cheese

user_password = input("Enter the

if user_password == password:
print("Access granted!")

else:
The else part executes if the
print("Access denied!") Mo rpthengedondy

_ The equal-to comparison checks
¢/ fthe passwords are equal.

06fig06_alt.jpg
Caution: Be careful not to bend any pins. Line up
the connector and pins before pressing them together.

Connect the
ribbon cable to
the breakout board. ——

Connect the AN A Warning! Make sure the
ribbon cable to wire for pin | (marked red
the Raspberry Pi. or white) is toward the

corner of the Pi and away
from the USB ports.

06fig05_alt.jpg
Breadboards usually have numbers Insert the breakout board
along the side to label each row. Columns into the breadboard. Make

are labeled with letters (a-j). \ /7 suretoline it up carefully.

The holes allow you to
connect components

so you can build
ciruits e:

Insert it along the top edge
of your breadboard. Not sure
which way is up? Lok at the

There are two groups numbering on the board.

of letters. On the left are
letters a-e, and on the
iht are letters —j.

06fig12.jpg
Very small flat spot on
the edge of the LED's
negative side

Shorter leg connects
toward the negative (-)
N /
Longer leg connects
toward the positive (+)

06fig11_alt.jpg
‘Where is GPl6? ‘Where is GP217
It's connected to Answer: Row 20f-j of
fj of the breadboard. the breadboard.

The breakout board has the GPIO,
power, and ground pins labeled.

_~ (Don't worry about the other labels—
they're for more advanced projects.)

Note: GP is short for GPIO.
50 GPI6 means GPIO 6.

Where is GP22?
Answer: Row 8a-e
SRS LR

06fig10_alt.jpg
>3

. Connecta —

jumper from
BB20i to BB25a.

_— 3. Connect a resistor
- from BB2Sj to the
negative (or ground).

2. Connect an LED from BB2Se (longer leg)
to BB2Sf (shorter leg).

06fig09_alt.jpg
3.3 V (volts) ‘Ground
+

Vi

Symbol for LED Symbol for resistor
(light-emitting
diode)

06fig13.jpg
180 ohm resistor

Grey Brown

— Gold
(the tolerance
of the resistor:
gold = *5%)

05fig10.jpg
$ 1st choice: Left or Right Cave?

choice = lefe_or_right()
reer [

if choice == "L" or choice
% You walk into the Left cave
choice = left cave ()

05fig03_alt.jpg
Start
.2 [E—
SO Lt

orright
cave?
Lot
Leftcave
Wrong
input
Enter cave with an P
underground iver
Use Koep
e boat, waking

K2

swim, or keep
walking?

You win

Right
Right cave

Enter cave wih a
ole in the floor

down rope. Torch
or walk toward)"
torch?

Climb
down rope.

Entora
dragon's air

)

Fight Fight
the dragon orN_dragon
gointo the dark > [
room?
Dark room

Youvin

05fig09_alt.jpg
The if statement tests whether Gathersinput Asks the user to enter the password.
the user’s input matches from user The message only appears if
secret_nane. the name was guessed correctly.

secret_nane = "Tin"
secret_password - "raspberrypi” N\

nane = input("Who are you who can summon code? "
iF name == secret_
within the first. It only print("Welcone! ") v
happens if the irst ~ — password = input(secret_name + *, enter the secret passwor
i statement is True. » if password == secret_password:

print("I bestow upon you a Raspberry Pi

> elser +
indented tomatchthe _~ print(*You are not worthy!"

password 1F statement,_ €lse:)

i 4 printC"Next tine, try entering 'Tin'")
only f the password \

s incorrect. =3

Indented to match the secret name The secret message is displayed only if
4f statement, this else s evaluated the name was guessed correctly and
ol i s s I ot then the password was guessed correctly

05fig08_alt.jpg
FIN g

Game over

Right cave

15
choi
if o

Enter cave with

hole in the floor

G
down rope
o walk toward
torch?

Wiong
nput

Cimb

Enter
dragon's lair

l! Fight

the dragon or
gointo the dark

Dark room

Torch

2.

ar

down rope

Fight
dragon

else:

Code

€ Choce: Left or Right Cave?

ce - left_or_right()

hoice — “L" or choice —- "LEFT

You walk into the Left cave

choice - left_caveQ)

iF choice == "W' or choice == "WALK".

You walk along the edge of the river
walkO

el choice == "B" or choice
You get in the boat
boat()

@Lif choice == "S" or choice == "SHIW
You jump in the wter and start swimming
swin©)

etse!
¥ wrong ansver
gane_over()

choce == "R or choice =

You walk in the right cave

choice = right_cave()

i choice —- "T" or choice -~ "TORCH"
You walk towards the torch Light
torchQ)

elif choice o choice
You clinb domn the rope
choice = holeQ)

BoAT

RIGHT"

0PE":

§F choice - "S" or chofce == "SLAY':
You try to slay the dragon
slay0

€14 choice — "R" or choice —- "ROON":
You enter the dark room
FoonQ)
else:
Wrong answer
wrong_answer)
else.
rong answer
wrong_answer)

Wrong answer.
wrong_answer O

ch05ex05-1.jpg
swinQ) N s callthe ()
; You guessed swim()
sla funcion that containsthe
Wrong answer ool pareos

wrong_answer ()
elif choice == "R" or choice
You walk in the right cave
else:
Wrong answer
R D)

“RIGHT"

06fig01_alt.jpg
Blinky Pi parts

Shopping List

Raspberry Pi
(not shown) 3 jumper wires 3light-emitting
Breakout (male-to-male): any diodes (LEDs): red,
Ribbon cable board fength will do.

green, and blue

m R \
Vi
3 resistors: 180 ohm
Color bands: brown,
grey, and brown
——
———
———

Solderless
BT

05fig12_alt.jpg
© Jomt

enter.jpg

05fig11.jpg
1st choice: Left or Right Cave

choice = lafe_ox.right ()

¥ choice Wl "5- 5: choice = "zrm
+ You walk inco the Lefc cave

06fig03_alt.jpg
NYou'll find 26 GPIO pins

rticular order.

in no pa

12019
0201d9
9101d9
—{I*aNno¥e

—1:aNno¥o
10s al
101dD
80IdD
SZ0IdO

#2019
£201d9

8101d9
SLOIdO
#101d9
—{i:aNnno¥o
+ AS
+ AS

volt and

5

3.3-volt pins:

9201d9
6101d9
49

vas ai
ANNOYO 11 +

22019
£101d9

OIS
£01d9
201d9

§
s
H
z

8 ground pins
(0 volts)

06fig02_alt.jpg
Side view

40 pins in 2 rows of 20 pins.
each. 26 of the pins are called
GPIO pins because they're usec
for general purpose input

and output.

Top view

07fig07_alt.jpg
Insert the RGB LED

into the breadboard. \

Rows 22, 24, 26, and 28

07fig06_alt.jpg
~ Each of the legs for the colors will
connect toward the GPIO pins (+).

Redleg Blue leg
(shortest)
Ground 7 Green eg
[
Ground leg (longest) Don't forget to make your LEDs
‘connects toward the happy by making sure each one has
negative (-). a resistor. Without resistors, you

could burn out your RGB LED.

07fig05.jpg

07fig11_alt.jpg
The jumper completes the circuit, but don't Add a jumper from
expect the RGB LED to light up just yet! You BB24j to ground(-).
need to tell your Pi to send it some electricity

from the GPIO pins (12, 16, and 21).

07fig10_alt.jpg
|
If
{

Add resistors:
BB22c to BB22f, BB26¢ to BB26f, BB28¢ to BB28f

07fig09.jpg
Red Purple Red

\

1stdigit 2nd digit Multiplier Tolerance

N o I o] [1]
srown (KD GID [0 1 1% }
Red (D GHEND (100) (2%)
orange (QHEHD GESED ax
velow (D) CTAD (0K)
(100K) (0.5%)
C1m) (025%)
(lom) (04%)
Siver
oD E8%D Gou
K =1,000
M= 1,000,000

Example

$

Red Purple Red Silver
-

(G \'
“27” x 100 = 2700 ohm or 2.7k ohm +=10%

\

07fig08_alt.jpg
| Jumpers from GPIO pins:
— 'BBIGj to BB22a, BBIS] to BB26a, BB20j to BB28a

07fig13_alt.jpg
After
5 quesses
Loop forup o o
5 quesses
Geta guess
Repeat
5 times. g
quess
correct?
Too low Correct
Too
high
Blve. Red Green
blinking blinking blinking
You win!
Yes

07fig12_alt.jpg
Setup your Pito
control RGB LED
After
P 5 guesses
Loop for up to p—
S 5 guesses
Geta guess
Repeat
5times
1
Too low Correct
Too
high
Blue Red Green
blinking blinking blinking
You win!
Yes Play

again?

188fig01_alt.jpg
Additive color

Red light Magenta Blue light

You can get many different
shades of color by varying
the amounts of each color.

Note: TVs and projectors work
by mixing colors like this!

Green light

167fig01_alt.jpg
tmport KFL.GPR0 as GFL0 9N Load the libraries you need to
inport time control the GPIO pins.

Create a variable for the
Variable for the GPIO pin number GPIO pin number you're
LED_pin_red = 21 &/ using to control the LED,

Tell the Pi we are using the breakout board pin numbering
GPIO. setmode (GPIO.BCM)

Set up the GPIO pin for output o

GP1O0. setup(LED_pin_red, GPIO.OUT) v

Loop to blink our led Turn on GPIO pin 21

while True: J (GPIO.HIGH means turn on).
GPIO.output(LED_pin_red, GPIO.HIGH)
prLALCEOnT) Turn off GPIO pin 21
time.sleep(1) / (GPIO.LOW means turn off).
GPTO.output(LED_pin_red, GPTO.LOW)

print("0ff")
time.sleen(1)

165fig01.jpg
Black
Brown
Red
Orange
Yellow
Green
Blue
Purple
Grey
White

Red Purple Red Silver

v

1stdigit 2nd digit

-RE8088NE

Multiplier Tolerance

[}

[10]
(100
(10K)
Cim)
(oM
(Coo1) Silver
Gold

K =1,000
M = 1,000,000

Example .:m:,

Red Purple

Red Silver

A

“27” x 100 = 2700 ohm or 2.7k ohm *=10%

ch06ex02-1.jpg
Loop to blink our LEDs
while True:
GPI0.output(LED_pin_red, GPIO.HIGH) Turn on the GPIO pins.
GPIO0.output (LED_pin_green, GPTO.HIGH) e
GPIO.output(LED_pin_blue, GPIO.HIGH)
print("0n")
time.sleep(1)
GPIO.output(LED_pin_red, GPIO.LOW) Turn off the GPIO pins.
GPIO0.output (LED_pin_green, GPTO.LOW) e
GPTO.output (LED_pin_blue, GPTO.LOW)
print("0ff")
time.sleep(1)

ch06ex02-0.jpg
import RP1.GPIO as GPIO
import time

Variable for the GPIO pin number Create variables for the
LED_pin_red = 21 GPIO pins you're using for
LED_pin_green = 22 the green and blue LEDs.

LED_pin_blue = 23

Tell the Pi we are using the breakout board pin numbering
GPI0. setmode (GPI0.BCM)

Set up the GPIO pins for output Set up GPIO pins 22

GP10.setup(LED_pin_red, GPI0.0UT) /7 and 2 as outputs.
GP10.setup(LED_pin_green, GPIO.OUT) «

GPIO.setup(LED_pin_blue, GPIO.OUT)

06fig15_alt.jpg
Connect jumpers:
BB20b (GP2I) to BB25a —

BBSC (GP22) to BB27a —
BBSi (GP23) to BB29a -

AN RS

Connect resistors:
—— BB2Sj to ground (-

—— BBYJj to ground (-)
BB29j to ground (-)

Connect LEDs:

Red LED: BB2Se to BB2S{
Green LED: BB27e to BB27f
Blue LED: BB29e to BB29f

06fig14_alt.jpg
ADK 0.

GPIO pin 21

GPIO pin 22

GPIO pin 23

faround

ry Red LED Resisor =
. Pt MWV
AN
- GreenteD =
. < MV D>
ANN
* Blue LED
. Pt VWV
AN

Note: Technically, the LEDs will be connected to a
common ground on the Pi, so we could show these
wires all connected together to one ground.

07fig04_alt.jpg
RGB LEDs have 3 tiny LEDs {
packed inside: one red, RGBLED
one green, and one blue. —

33V (volts)

+ Resistor A

sPIopin 12 @ AN

[Green LED
+ | v

GPIOpin 16 @ ANV P
Blue LED

+ P
GPIOpin21 @ N

E

07fig03_alt.jpg
Get ready to start
breadboas

your circuit!

Connect your Pi
to your breadboard
using the ribbon cable.

Remember, the wire for pin | goes toward the corner
of your board (usually marked red or white).

07fig02_alt.jpg
pi@raspberrypi - § sudo python3 LEDGuessingGane.py

ght Up Guessing Game

Gane Play
I'm thinking of a n
After each guess, my |

ber between 1

twill bl

d 20. You have five guesses to guess

Red ---> Your guess is too high
Green ---» Your guess is corre
Blue --> Your guess is too low

Guess 1 guess?
Guess 2 quess?:
Guess 3 quess?:
Guess 4 quess?:
Guess 5 guess?
You lost!

v luck next time:
you like to play

S48 |

Light flashes different colors to respond to the player's guesses

\ - Too low
g Blue

Correct!
Green

Too high
Red

07fig01_alt.jpg
Light Up Guessing Game parts

Shopping List

Raspberry Pi
(not shown)
Breakout 4 jumper wires (male-to-male): 1 red, green, blue light-emiting
Ribbon cable board ‘any length will do. diode (RGB LED)
i 3 resistors: 180 ohm
Color bands: brown,
grey, and brown
———
———
o .

Solderless
Bis e

