

Padding, Borders, Outlines,
and Margins in CSS

Eric A. Meyer

 Padding, Borders, Outlines, and Margins in CSS

 by
 Eric A.
 Meyer

 Copyright © 2016 Eric A. Meyer. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Editor:
 Meg Foley

 	
 Production Editor:
 Colleen Lobner

 	
 Copyeditor:
 Molly Ives Brower

 	
 Proofreader:
 Amanda Kersey

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Randy Comer

 	
 Illustrator:
 Rebecca Demarest

 	
 December 2015:
 First Edition

 Revision History for the First Edition

 	
 2015-12-08:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781491929803
 for release details.

 While the publisher and the author have used good faith efforts to
 ensure that the information and instructions contained in this work are
 accurate, the publisher and the author disclaim all responsibility for
 errors or omissions, including without limitation responsibility for
 damages resulting from the use of or reliance on this work. Use of the
 information and instructions contained in this work is at your own risk.
 If any code samples or other technology this work contains or describes is
 subject to open source licenses or the intellectual property rights of
 others, it is your responsibility to ensure that your use thereof complies
 with such licenses and/or rights.

 978-1-491-92980-3

 [LSI]

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Note

This element signifies a general note.

Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/padding-borders-outlines-margins.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Padding, Borders, Outlines, and Margins

Way back in the 1990s, pretty much all web pages were designed using tables for layout. There were a lot of reasons for this, but one of the most common was the desire to put a box around a bit of text, like a callout. Of course, this was a ridiculously complicated way to put a border around a paragraph or sidebar. Shouldn’t it be easier than that?

The authors of CSS felt it should, indeed, be easier, so they devoted a
great deal of attention to allowing you to define borders for
paragraphs, headings, divs, anchors, images—darned near everything a web
page can contain. These borders can set an element apart from others,
accentuate its appearance, mark certain kinds of data as having been
changed, or any number of other things.

CSS also lets you define regions around an element that control how the
border is placed in relation to the content and how close other elements
can get to that border. Between the content of an element and its
border, we find the padding of an element, and beyond the border,
there are outlines and then the margins. These properties affect how
the entire document is laid out, of course, but more importantly, they
very deeply affect the appearance of a given element.

Basic Element Boxes

As you’re likely aware, all document elements generate a rectangular box
called the element box, which describes the amount of space that an
element occupies in the layout of the document. Therefore, each box
influences the position and size of other element boxes. For example, if
the first element box in the document is an inch tall, then the next box
will begin at least an inch below the top of the document. If the first
element box is changed and made to be two inches tall, every following
element box will shift downward an inch, and the second element box will
begin at least two inches below the top of the document.

By default, a visually rendered document is composed of a number of
rectangular boxes that are distributed so that they don’t overlap. Also, within certain constraints, these boxes take up as little
space as possible while still maintaining a sufficient separation to
make clear which content belongs to which element.

Boxes can overlap if they have been manually positioned, and visual
overlap can occur if negative margins are used on normal-flow elements.

In order to fully understand how margins, padding, and borders are
handled, you must clearly understand the box model, illustrated in
Figure 1.

[image: pbom 0101]
Figure 1. The CSS box model

Width and Height

It’s fairly common to explicitly define the width of an element, and
much less common to explicity define the height. By default, the width
of an element is defined to be the distance from the left inner edge to
the right inner edge, and the height is the distance from the inner top
to the inner bottom. The properties that affect these distances are, unsurprisingly, called height and width.

One important note about these two properties: they don’t apply to
inline nonreplaced elements. For example, if you try to declare a
height and width for a hyperlink that’s in the normal flow and
generates an inline box, CSS-conformant browsers must ignore those
declarations. Assume that the following rule applies:

a:link {color: red; background: silver; height: 15px; width: 60px;}

You’ll end up with red unvisited links on silver backgrounds whose
height and width are determined by the content of the links. They will
not have content areas that are 15 pixels tall by 60 pixels wide. If,
on the other hand, you add a display value, such as inline-block or
block, then height and width will set the height and width of
the links’ content areas.

width

	Values:

	<length> | <percentage> | auto | inherit

	Initial value:

	auto

	Applies to:

	All elements except nonreplaced inline elements, table rows, and row groups

	Inherited:

	No

	Percentages:

	Refer to the width of the containing block

	Computed value:

	For auto and percentage values, as specified; otherwise, an absolute length, unless the property does not apply to the element (then auto)

height

	Values:

	<length> | auto | inherit

	Initial value:

	auto

	Applies to:

	All elements except nonreplaced inline elements, table rows, and row groups

	Inherited:

	No

	Percentages:

	Calculated with respect to the height of the containing block

	Computed value:

	For auto and percentage values, as specified; otherwise, an absolute length, unless the property does not apply to the element (then auto)

Note

It’s possible to change the meaning of height and width using
the property box-sizing. This is not covered in this text, but in
short, you can use either the content box or the border box as the area
of measure. For the purposes of this text, we’ll assume that the default
situation holds: that height and width refer to the height and width
of the content area (box-sizing: content-box).

In the course of this text, we’ll keep the discussion simple by assuming
that the height of an element is always calculated automatically. If an
element is eight lines long, and each line is an eighth of an inch tall,
then the height of the element is one inch. If it’s 10 lines tall, then
the height is 1.25 inches. In either case, the height is determined by
the content of the element, not by the author. It’s rarely the case that
elements in the normal flow have a set height.

Padding

Just beyond the content area of an element, we find its padding,
nestled between the content and any borders. The simplest way to set
padding is by using the property padding.

padding

	Values:

	[<length> | <percentage>]{1,4} | inherit

	Initial value:

	Not defined for shorthand elements

	Applies to:

	All elements

	Inherited:

	No

	Percentages:

	Refer to the width of the containing block

	Computed value:

	See individual properties (padding-top, etc.)

	Note:

	padding can never be negative

As you can see, this property accepts any length value, or a percentage
value. So if you want all h2 elements to have 1 em of padding on all
sides, it’s this easy (see Figure 2):

h2 {padding: 2em; background-color: silver;}

[image: pbom 0102]
Figure 2. Adding padding to elements

As Figure 2 illustrates, the background of an element extends into the
padding by default. If the background is transparent, this will create
some extra transparent space around the element’s content, but any
visible background will extend into the padding area (and beyond, as
we’ll see in a later section).

Note

Visible backgrounds can be prevented from extending into the
padding by using the property background-clip.

By default, elements have no padding. The separation between paragraphs,
for example, has traditionally been enforced with margins alone (as
we’ll see later on). It’s also the case that, without padding, the
border of an element will come very close to the content of the element
itself. Thus, when putting a border on an element, it’s usually a good
idea to add some padding as well, as Figure 3 illustrates.

[image: pbom 0103]
Figure 3. The effect of padding on bordered block-level elements

Any length value is permitted, from ems to inches. The simplest way to
set padding is with a single length value, which is applied equally to
all four padding sides. At times, however, you might desire a different
amount of padding on each side of an element. That’s simple as well. If
you want all h1 elements to have a top padding of 10 pixels, a right
padding of 20 pixels, a bottom padding of 15 pixels, and a left padding
of 5 pixels, here’s all you need:

h1 {padding: 10px 20px 15px 5px;}

The order of the values is important, and follows this pattern:

padding: top right bottom left

A good way to remember this pattern is to keep in mind that the four
values go clockwise around the element, starting from the top. The
values are always applied in this order, so to get the effect you
want, you have to arrange the values correctly.

An easy way to remember the order in which sides must be declared, other
than thinking of it as being clockwise from the top, is to keep in mind
that getting the sides in the correct order helps you avoid
“TRouBLe”—that is, TRBL, for “Top Right Bottom Left.”

It’s also possible to mix up the types of length value you use. You
aren’t restricted to using a single length type in a given rule, as
shown here:

h2 {padding: 14px 5em 0.1in 3ex;} /* value variety! */

Figure 4 shows you, with a little extra annotation, the results of this
declaration.

[image: pbom 0104]
Figure 4. Mixed-value padding

Replicating Values

Sometimes, the values you enter get a little repetitive:

p {padding: 0.25em 1em 0.25em 1em;} /* TRBL - Top Right Bottom Left */

You don’t have to keep typing in pairs of numbers like this, though.
Instead of the preceding rule, try this:

p {padding: 0.25em 1em;}

These two values are enough to take the place of four. But how? CSS
defines a few rules to accommodate fewer than four values for padding
(and many other shorthand properties). These are:

	
If the value for left is missing, use the value provided for
right.

	
If the value for bottom is missing, use the value provided for
top.

	
If the value for right is missing, use the value provided for top.

If you prefer a more visual approach, take a look at the diagram shown
in Figure 5.

[image: pbom 0105]
Figure 5. Value-replication pattern

In other words, if three values are given for padding, the fourth
(left) is copied from the second (right). If two values are given,
the fourth is copied from the second, and the third (bottom) from the
first (top). Finally, if only one value is given, all the other sides
copy that value.

This simple mechanism allows authors to supply only as many values as
necessary, as shown here:

h1 {padding: 0.25em 0 0.5em;} /* same as '0.25em 0 0.5em 0' */
h2 {padding: 0.15em 0.2em;} /* same as '0.15em 0.2em 0.15em 0.2em' */
p {padding: 0.5em 10px;} /* same as '0.5em 10px 0.5em 10px' */
p.close {padding: 0.1em;} /* same as '0.1em 0.1em 0.1em 0.1em' */

The method presents a small drawback, which you’re bound to eventually
encounter. Suppose you want to set the top and left padding for h1
elements to be 10 pixels, and the bottom and right padding to be 20
pixels. In that case, you have to write the following:

h1 {padding: 10px 20px 20px 10px;} /* can't be any shorter */

You get what you want, but it takes a while to get it all in.
Unfortunately, there is no way to cut down on the number of values
needed in such a circumstance. Let’s take another example, one where you
want all of the padding to be zero—except for the left padding, which
should be 3em:

h2 {padding: 0 0 0 3em;}

Using padding to separate the content areas of elements can be trickier
than using the traditional margins, although it’s not without its
rewards. For example, to keep paragraphs the traditional “one blank
line” apart with padding, you’d have to write:

p {margin: 0; padding: 0.5em 0;}

The half-em top and bottom padding of each paragraph butt up against
each other and total an em of separation. Why would you bother to do
this? Because then you could insert separation borders between the
paragraphs, should you so choose, and side borders will touch to form
the appearance of a solid line. Both these effects are illustrated in
Figure 6:

p {margin: 0; padding: 0.5em 0; border-bottom: 1px solid gray;
 border-left: 3px double black;}

[image: pbom 0106]
Figure 6. Using padding instead of margins

Single-Side Padding

Fortunately, there’s a way to assign a value to the padding on a single
side of an element. Four ways, actually. Let’s say you only want to set
the left padding of h2 elements to be 3em. Rather than writing out
padding: 0 0 0 3em, you can take this approach:

h2 {padding-left: 3em;}

padding-left is one of four properties devoted to setting the padding
on each of the four sides of an element box. Their names will come as
little surprise.

padding-top, padding-right, padding-bottom, padding-left

	Values:

	<length> | <percentage> | inherit

	Initial value:

	0

	Applies to:

	All elements

	Inherited:

	No

	Percentages:

	Refer to the width of the containing block

	Computed value:

	For percentage values, as specified; for length values, the absolute length

	Note:

	padding can never be negative

These properties operate as you’d expect. For example, the following two
rules will yield the same amount of padding:

h1 {padding: 0 0 0 0.25in;}
h2 {padding-left: 0.25in;}

Similarly, these rules are will create equal padding:

h1 {padding: 0.25in 0 0;} /* left padding is copied from right padding */
h2 {padding-top: 0.25in;}

For that matter, so will these rules:

h1 {padding: 0 0.25in;}
h2 {padding-right: 0.25in; padding-left: 0.25in;}

It’s possible to use more than one of these single-side properties in a
single rule; for example:

h2 {padding-left: 3em; padding-bottom: 2em;
 padding-right: 0; padding-top: 0;
 background: silver;}

As you can see in Figure 7, the padding is set as we wanted. Of course,
in this case, it might have been easier to use padding after all:

h2 {padding: 0 0 2em 3em;}

[image: pbom 0107]
Figure 7. More than one single-side padding

In general, once you’re trying to set padding for more than one side,
it’s easier to simply use padding. From the standpoint of your
document’s display, however, it doesn’t really matter which approach you
use, so choose whichever is easiest for you.

Percentage Values and Padding

As was mentioned, it’s possible to set percentage values for the padding
of an element. Percentages are computed in relation to the width of the
parent element’s content area, so they change if the parent element’s
width changes in some way. For example, assume the following, which is
illustrated in Figure 8:

p {padding: 10%; background-color: silver;}

<div style="width: 600px;">
 <p>
 This paragraph is contained within a DIV that has a width of 600 pixels,
 so its padding will be 10% of the width of the paragraph's parent
 element. Given the declared width of 600 pixels, the padding will be 60
 pixels on all sides.
 </p>
</div>
<div style="width: 300px;">
 <p>
 This paragraph is contained within a DIV with a width of 300 pixels,
 so its padding will still be 10% of the width of the paragraph's parent.
 There will, therefore, be half as much padding on this paragraph as that
 on the first paragraph.
 </p>
</div>

By contrast, consider the case of elements without a declared width. In
such cases, the overall width of the element box (including padding) is
dependent on the width of the parent element. This leads to the
possibility of “fluid” pages, where the padding on elements enlarges or
reduces to match the actual size of the parent element. If you style a
document so that its elements use percentage padding, then as the user
changes the width of a browser window, the padding will expand or shrink
to fit. The design choice is up to you.

You may have noticed something odd about the paragraphs in Figure 8. Not
only did their side padding change according to the width of their
parent elements, but so did their top and bottom padding. That’s the
desired behavior in CSS. Refer back to the property definition, and
you’ll see that percentage values are defined to be relative to the
width of the parent element. This applies to the top and bottom
padding as well as to the left and right. Thus, given the following
styles and markup, the top padding of the paragraph will be 50 px:

div p {padding-top: 10%;}

<div style="width: 500px;">
 <p>
 This is a paragraph, and its top margin is 10% the width of its parent
 element.
 </p>
</div>

[image: pbom 0108]
Figure 8. Padding, percentages, and the widths of parent elements

If the width of the div changes, the top padding of the paragraph
will, too. Seem strange? Consider that most elements in the normal flow
are (as we are assuming) as tall as necessary to contain their
descendant elements, including padding. If an element’s top and bottom
padding were a percentage of the parent’s height, an infinite loop could
result where the parent’s height was increased to accommodate the top and
bottom padding, which would then have to increase to match the new
height, and so on. Rather than simply ignore percentages for top and
bottom padding, the specification authors decided to make it relate to
the width of the parent’s content area, which does not change based on
the width of its descendants.

Note

The treatment of percentage values for top and bottom padding is
different for most positioned elements, where they are calculated with
respect to the height of the positioned element’s containing block.

It’s also possible to mix percentages with length values. Thus, to set
h2 elements to have top and bottom padding of one-half em, and side
padding of 10% the width of their parent elements, you can declare
the following, illustrated in Figure 9:

h2 {padding: 0.5em 10%;}

[image: pbom 0109]
Figure 9. Mixed padding

Here, although the top and bottom padding will stay constant in any
situation, the side padding will change based on the width of the parent
element.

Padding and Inline Elements

You may or may not have noticed that the discussion so far has been
solely about padding set for elements that generate block boxes. When
padding is applied to inline nonreplaced elements, things can get a
little different.

Let’s say you want to set top and bottom padding on strongly emphasized
text:

strong {padding-top: 25px; padding-bottom: 50px;}

This is allowed in the specification, but since you’re applying the
padding to an inline nonreplaced element, it will have absolutely no
effect on the line height. Since padding is transparent when there’s no
visible background, the preceding declaration will have no visual effect
whatsoever. This happens because padding on inline nonreplaced elements
doesn’t change the line height of an element.

Of course, an inline nonreplaced element with a background color and
padding could have a background that extends above and below the
element, like this:

strong {padding-top: 0.5em; background-color: silver;}

Figure 10 gives you an idea of what this might look like.

[image: pbom 0110]
Figure 10. Padding on an inline nonreplaced element

The line height isn’t changed, but since the background color does
extend into the padding, each line’s background ends up overlapping the
lines that come before it. That’s the expected result.

The preceding behaviors are true only for the top and bottom sides of inline
nonreplaced elements; the left and right sides are a different story.
We’ll start by considering the simple case of a small, inline nonreplaced
element within a single line. Here, if you set values for the left or
right padding, they will be visible, as Figure 11 makes clear (so to
speak):

strong {padding-left: 25px; background: silver;}

[image: pbom 0111]
Figure 11. An inline nonreplaced element with left padding

Note the extra space between the end of the word just before the inline
nonreplaced element and the edge of the inline element’s background. You
can add that extra space to both ends of the inline if you want:

strong {padding-left: 25px; padding-right: 25px; background: silver;}

As expected, Figure 12 shows a little extra space on the right and left
sides of the inline element, and no extra space above or below it.

[image: pbom 0112]
Figure 12. An inline nonreplaced element with 25-pixel side padding

Now, when an inline nonreplaced element stretches across multiple lines,
the situation changes a bit. Figure 13 shows what happens when an inline
nonreplaced element with a padding is displayed across multiple lines:

strong {padding: 0 25px; background: silver;}

The left padding is applied to the beginning of the element and the
right padding to the end of it. By default, padding is not applied to
the right and left side of each line. Also, you can see that, if not for
the padding, the line may have broken after “background.” instead of
where it did. padding only affects line-breaking by changing the point
at which the element’s content begins within a line.

[image: pbom 0113]
Figure 13. An inline nonreplaced element with 25-pixel side padding displayed across two lines of text

Note

The way padding is (or isn’t) applied to the ends of each line
box can be altered with the property box-decoration-break.

Padding and Replaced Elements

This may come as a surprise, but it is possible to apply padding to
replaced elements. The most surprising case is that you can apply
padding to an image, like this:

img {background: silver; padding: 1em;}

Regardless of whether the replaced element is block-level or inline, the
padding will surround its content, and the background color will fill
into that padding, as shown in Figure 14. You can also see in Figure 14
that padding will push a replaced element’s border away from its
content.

[image: pbom 0114]
Figure 14. Padding replaced elements

Now, remember all that stuff about how padding on inline nonreplaced
elements doesn’t affect the height of the lines of text? You can throw
it all out for replaced elements, because they have a different set of
rules. As you can see in Figure 15, the padding of an inline replaced
element very much affects the height of the line.

[image: pbom 0115]
Figure 15. Padding replaced elements

The same goes for borders and margins, as we’ll soon see.

Warning

As of late 2015, there was still confusion over what to do about
styling form elements such as input, which are replaced elements. It
is not entirely clear where the padding of a checkbox resides, for
example. Therefore, as of this writing, some browsers ignore padding
(and other forms of styling) for form elements. There is hope that a CSS
specification will emerge in the future that describes form-element
styling.

Borders

Beyond the padding of an element are its borders. The border of an
element is simply one or more lines that surround the content and
padding of an element. By default, the background of the element will
stop at the outer border edge, since the background does not extend into
the margins, and the border is just inside the margin.

Every border has three aspects: its width, or thickness; its style, or
appearance; and its color. The default value for the width of a border
is medium, which is not an explicitly defined distance, but usually
works out to be two pixels. Despite this, the reason you don’t usually
see borders is that the default style is none, which prevents them
from existing at all. (This lack of existence can also reset the
border-width value, but we’ll get to that in a little while.)

Finally, the default border color is the foreground color of the element
itself. If no color has been declared for the border, then it will be
the same color as the text of the element. If, on the other hand, an
element has no text—let’s say it has a table that contains only
images—the border color for that table will be the text color of its
parent element (thanks to the fact that color is inherited). That
element is likely to be body, div, or another table. Thus, if a
table has a border, and the body is its parent, given this rule:

body {color: purple;}

then, by default, the border around the table will be purple (assuming
the user agent doesn’t set a color for tables). Of course, to get that
border to appear, you have to do a little work first.

The CSS specification defines the background area of an element to
extend to the outside edge of the border, at least by default. This is
important because some borders are “intermittent”—for example, dotted
and dashed borders—so the element’s background should appear in the
spaces between the visible portions of the border.

Note

Visible backgrounds can be prevented from extending into the
border area by using the property background-clip.

Borders with Style

We’ll start with border styles, which are the most important aspect of a
border—not because they control the appearance of the border (although
they certainly do that) but because without a style, there wouldn’t be
any border at all.

border-style

	Values:

	[none | hidden | solid | dotted | dashed | double | groove | ridge | inset | outset]{1,4} | inherit

	Initial value:

	Not defined for shorthand properties

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	See individual properties (border-top-style, etc.)

	Note:

	According to CSS2, HTML user agents are only required to support solid and none; the rest of the values (except for hidden) may be interpreted as solid. This restriction was dropped in CSS2.1.

CSS defines 10 distinct non-inherit styles for the property
border-style, including the default value of none. The styles are
demonstrated in Figure 16.

The style value hidden is equivalent to none, except when applied to
tables, where it has a slightly different effect on border-conflict
resolution.

[image: pbom 0116]
Figure 16. Border styles

The most unpredictable border style is double. It’s defined such that
the width of the two lines it creates, plus the width of the space
between them, is equal to the value of border-width (discussed in the
next section). However, the CSS specification doesn’t say whether one of
the lines should be thicker than the other, or if they should always be
the same width, or if the space should be thicker or thinner than the
lines. All of these things are left up to the user agent to decide, and
the author has no reliable way to influence the final result.

All the borders shown in Figure 16 are based on a color value of
gray, which makes all of the visual effects easier to see. The look of
a border style is always based in some way on the color of the border,
although the exact method may vary between user agents. The way browsers
treat colors in the border styles inset, outset, groove, and
ridge can and does vary. For example, Figure 17 illustrates two
different ways of rendering an inset border.

[image: pbom 0117]
Figure 17. Two valid ways of rendering inset

Note how one browser takes the gray value for the bottom and right
sides, and a darker gray for the top and left; the other makes the
bottom and right lighter than gray and the top and left darker, but
not as dark as the first browser.

Now let’s define a border style for images that are inside any unvisited
hyperlink. We might make them outset, so they have a “raised button”
look, as depicted in Figure 18:

a:link img {border-style: outset;}

[image: pbom 0118]
Figure 18. Applying an outset border to a hyperlinked image

By default, the color of the border is based on the element’s value for
color, which in this circumstance is likely to be blue. This is
because the image is contained with a hyperlink, and the foreground
color of hyperlinks is usually blue. If you so desired, you could
change that color to silver, like this:

a:link img {border-style: outset; color: silver;}

The border will now be based on the light grayish silver, since that’s
now the foreground color of the image—even though the image doesn’t
actually use it, it’s still passed on to the border. We’ll talk about
another way to change border colors in the section “Border Colors”.

Remember, though, that the color-shifting in borders is up to the user
agent. Let’s go back to the blue outset border and compare it in two
different browsers, as shown in Figure 19.

Again, notice how one browser shifts the colors to the lighter and
darker, while another just shifts the “shadowed” sides to be darker than
blue. This is why, if a specific set of colors is desired, authors
usually set the exact colors they want instead of using a border style
like outset and leaving the result up to the browser. We’ll soon see
just how to do that.

[image: pbom 0119]
Figure 19. Two outset borders

Multiple styles

It’s possible to define more than one style for a given border. For
example:

p.aside {border-style: solid dashed dotted solid;}

The result is a paragraph with a solid top border, a dashed right
border, a dotted bottom border, and a solid left border.

Again we see the top-right-bottom-left order of values, just as we saw
in our discussion of setting padding with multiple values. All the
same rules about value replication apply to border styles, just as they
did with padding. Thus, the following two statements would have the same
effect, as depicted in Figure 20:

p.new1 {border-style: solid none dashed;}
p.new2 {border-style: solid none dashed none;}

[image: pbom 0120]
Figure 20. Equivalent style rules

Single-side styles

There may be times when you want to set border styles for just one side
of an element box, rather than all four. That’s where the single-side
border style properties come in.

border-top-style, border-right-style, border-bottom-style, border-left-style

	Values:

	none | hidden | dotted | dashed | solid | double
| groove | ridge | inset | outset | inherit

	Initial value:

	none

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	As specified

Single-side border style properties are fairly self-explanatory. If you
want to change the style for the bottom border, for example, you use
border-bottom-style.

It’s not uncommon to see border used in conjunction with a single-side
property. Suppose you want to set a solid border on three sides of a
heading, but not have a left border, as shown in Figure 21.

[image: pbom 0121]
Figure 21. Removing the left border

There are two ways to accomplish this, each one equivalent to the other:

h1 {border-style: solid solid solid none;}
/* the above is the same as the below */
h1 {border-style: solid; border-left-style: none;}

What’s important to remember is that if you’re going to use the second
approach, you have to place the single-side property after the
shorthand, as is usually the case with shorthands. This is because
border-style: solid is actually a declaration of
border-style: solid solid solid solid. If you put
border-style-left: none before the border-style declaration, the
shorthand’s value will override the single-side value of none.

Border Widths

Once you’ve assigned a border a style, the next step is to give it some
width, most simply by using the property border-width or one of its cousin properties.

border-width

	Values:

	[thin | medium | thick | <length>]{1,4} | inherit

	Initial value:

	Not defined for shorthand properties

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	See individual properties (border-top-style, etc.)

border-top-width, border-right-width, border-bottom-width, border-left-width

	Values:

	thin | medium | thick | <length> | inherit

	Initial value:

	medium

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	An absolute length, or 0 if the style of the border
is none or hidden

Each of these properties is used to set the width on a specific border
side, of course, just as with the margin properties.

Note

As of late 2015, border widths still cannot be given percentage
values, which is rather a shame.

There are four ways to assign width to a border: you can give it a
length value such as 4px or 0.1em, or use one of three keywords.
These keywords are thin, medium (the default value), and thick.
These keywords don’t necessarily correspond to any particular width, but
are simply defined in relation to one another. According to the
specification, thick is always wider than medium, which is in turn
always wider than thin. Which makes sense.

However, the exact widths are not defined, so one user agent could set
them to be equivalent to 5px, 3px, and 2px, while another sets
them to be 3px, 2px, and 1px. No matter what width the user agent
uses for each keyword, it will be the same throughout the document,
regardless of where the border occurs. So if medium is the same as
2px, then a medium-width border will always be two pixels wide,
whether the border surrounds an h1 or a p element. Figure 22
illustrates one way to handle these three keywords, as well as how they
relate to each other and to the content they surround.

[image: pbom 0122]
Figure 22. The relation of border-width keywords to each other

Let’s suppose a paragraph has a background color and a border style set:

p {background-color: silver;
 border-style: solid;}

The border’s width is, by default, medium. You can change that easily
enough:

p {background-color: silver;
 border-style: solid; border-width: thick;}

Of course, border widths can be taken to fairly ridiculous extremes,
such as setting 50-pixel borders, as depicted in Figure 23:

p {background-color: silver; padding: 0.5em;
 border-style: solid; border-width: 50px;}

[image: pbom 0123]
Figure 23. Really wide borders

It’s also possible to set widths for individual sides, using two
familiar methods. The first is to use any of the specific properties
mentioned at the beginning of the section, such as
border-bottom-width. The other way is to use value replication in
border-width, which is illustrated in Figure 24:

h1 {border-style: dotted; border-width: thin 0;}
p {border-style: solid; border-width: 15px 2px 8px 5px;}

[image: pbom 0124]
Figure 24. Value replication and uneven border widths

No border at all

So far, we’ve talked only about using a visible border style such as
solid or outset. Let’s consider what happens when you set
border-style to none:

p {border-style: none; border-width: 20px;}

Even though the border’s width is 20px, the style is set to none. In
this case, not only does the border’s style vanish, so does its width.
The border simply ceases to be. Why?

If you’ll remember, the terminology used earlier in the chapter was that
a border with a style of none does not exist. Those words were
chosen very carefully, because they help explain what’s going on here.
Since the border doesn’t exist, it can’t have any width, so the width is
automatically set to 0 (zero), no matter what you try to define. After
all, if a drinking glass is empty, you can’t really describe it as being
half-full of nothing. You can discuss the depth of a glass’s contents
only if it has actual contents. In the same way, talking about the width
of a border makes sense only in the context of a border that exists.

This is important to keep in mind because it’s a common mistake to
forget to declare a border style. This leads to all kinds of author
frustration because, at first glance, the styles appear correct. Given
the following rule, though, no h1 element will have a border of any
kind, let alone one that’s 20 pixels wide:

h1 {border-width: 20px;}

Since the default value of border-style is none, failure to declare
a style is exactly the same as declaring border-style: none.
Therefore, if you want a border to appear, you need to declare a border
style.

Border Colors

Compared to the other aspects of borders, setting the color is pretty
easy. CSS uses the single property border-color, which can accept up
to four color values at one time.

border-color

	Values:

	[<color> | transparent]{1,4} | inherit

	Initial value:

	Not defined for shorthand properties

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	See individual properties (border-top-color, etc.)

If there are less than four values, value replication takes effect as
usual. So if you want h1 elements to have thin gray top and bottom
borders with thick green side borders, and medium gray borders around
p elements, the following styles will suffice, with the result shown
in Figure 25:

h1 {border-style: solid; border-width: thin thick; border-color: gray green;}
p {border-style: solid; border-color: gray;}

[image: pbom 0125]
Figure 25. Borders have many aspects

A single color value will be applied to all four sides, of course, as
with the paragraph in the previous example. On the other hand, if you
supply four color values, you can get a different color on each side.
Any type of color value can be used, from named colors to hexadecimal
and RGBA values:

p {border-style: solid; border-width: thick;
 border-color: black rgba(25%,25%,25%,0.5) #808080 silver;}

As mentioned earlier, if you don’t declare a color, the default color is
the foreground color of the element. Thus, the following declaration
will be displayed as shown in Figure 26:

p.shade1 {border-style: solid; border-width: thick; color: gray;}
p.shade2 {border-style: solid; border-width: thick; color: gray;
 border-color: black;}

[image: pbom 0126]
Figure 26. Border colors based on the element’s foreground and the value of the border-color property

The result is that the first paragraph has a gray border, having taken
the value gray from the foreground color of the paragraph. The second
paragraph, however, has a black border because that color was explicitly
assigned using border-color.

There are single-side border color properties as well. They work in much
the same way as the single-side properties for style and width. One way
to give headings a solid black border with a solid gray right border is
as follows:

h1 {border-style: solid; border-color: black; border-right-color: gray;}

border-top-color, border-right-color, border-bottom-color, border-left-color

	Values:

	<color> | transparent | inherit

	Initial value:

	The value of color for the element

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	If no value is specified, use the computed value of the property color for the same element; otherwise, as specified

Transparent borders

As you may recall, if a border has no style, then it has no width. There
are, however, situations where you’ll want to create an invisible border
that still has width. This is where the border color value transparent
(introduced in CSS2) comes in.

Let’s say we want a set of three links to have borders that are
invisible by default, but look inset when the link is hovered. We can
accomplish this by making the borders transparent in the nonhovered
case:

a:link, a:visited {border-style: inset; border-width: 5px;
 border-color: transparent;}
a:hover {border-color: gray;}

This will have the effect shown in Figure 27.

In a sense, transparent lets you use borders as if they were extra
padding, with the additional benefit of being able to make them visible
should you so choose. They act as padding because the background of the
element extends into the border area by default, assuming there is a
visible background.

[image: pbom 0127]
Figure 27. Using transparent borders

Shorthand Border Properties

Unfortunately, shorthand properties such as border-color and
border-style aren’t always as helpful as you’d think. For example, you
might want to apply a thick, gray, solid border to all h1 elements,
but only along the bottom. If you limit yourself to the properties we’ve
discussed so far, you’ll have a hard time applying such a border. Here
are two examples:

h1 {border-bottom-width: thick; /* option #1 */
 border-bottom-style: solid;
 border-bottom-color: gray;}
h1 {border-width: 0 0 thick; /* option #2 */
 border-style: none none solid;
 border-color: gray;}

Neither is really convenient, given all the typing involved.
Fortunately, a better solution is available:

h1 {border-bottom: thick solid rgb(50%,40%,75%);}

This will apply the values to the bottom border alone, as shown in
Figure 28, leaving the others to their defaults. Since the default border
style is none, no borders appear on the other three sides of the
element.

[image: pbom 0128]
Figure 28. Setting a bottom border with a shorthand property

As you may have already guessed, there are a total of four such
shorthand properties.

border-top, border-right, border-bottom, border-left

	Values:

	[<border-width> || <border-style> || <border-color>] | inherit

	Initial value:

	Not defined for shorthand properties

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	See individual properties (border-width, etc.)

It’s possible to use these properties to create some complex borders,
such as those shown in Figure 29:

h1 {border-left: 3px solid gray;
 border-right: green 0.25em dotted;
 border-top: thick goldenrod inset;
 border-bottom: double rgb(13%,33%,53%) 10px;}

[image: pbom 0129]
Figure 29. Very complex borders

As you can see, the order of the actual values doesn’t really matter.
The following three rules will yield exactly the same border effect:

h1 {border-bottom: 3px solid gray;}
h2 {border-bottom: solid gray 3px;}
h3 {border-bottom: 3px gray solid;}

You can also leave out some values and let their defaults kick in, like
this:

h3 {color: gray; border-bottom: 3px solid;}

Since no border color is declared, the default value (the element’s
foreground) is applied instead. Just remember that if you leave out a
border style, the default value of none will prevent your border from
existing.

By contrast, if you set only a style, you will still get a border. Let’s
say you simply want a top border style of dashed and you’re willing to
let the width default to medium and the color be the same as the text
of the element itself. All you need in such a case is the following
markup (shown in Figure 30):

p.roof {border-top: dashed;}

[image: pbom 0130]
Figure 30. Dashing across the top of an element

Also note that since each of these “border-side”
properties applies only to a specific side, there isn’t any possibility of
value replication—it wouldn’t make any sense. There can be only one of
each type of value: that is, only one width value, only one color value,
and only one border style. So don’t try to declare more than one value
type:

h3 {border-top: thin thick solid purple;} /* two width values--WRONG */

In such a case, the entire statement will be invalid and a user agent
would ignore it altogether.

Global Borders

Now, we come to the shortest shorthand border property of all: border.

border

	Values:

	[<border-width> || <border-style> || <border-color>]
| inherit

	Initial value:

	Refer to individual properties

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	As specified

This property has the advantage of being very compact, although that
brevity introduces a few limitations. Before we worry about that, let’s
see how border works. If you want all h1 elements to have a thick
silver border, it’s very simple. This declaration would be displayed as
shown in Figure 31:

h1 {border: thick silver solid;}

The values are applied to all four sides. This is certainly preferable
to the next-best alternative, which would be:

h1 {border-top: thick silver solid;
 border-bottom: thick silver solid;
 border-right: thick silver solid;
 border-left: thick silver solid;} /* same result as previous example */

[image: pbom 0131]
Figure 31. A really short border declaration

The drawback with border is that you can define only “global” styles,
widths, and colors. In other words, the values you supply for border
will apply to all four sides equally. If you want the borders to be
different for a single element, you’ll need to use some of the other
border properties. Of course, it’s possible to turn the cascade to your
advantage:

h1 {border: thick goldenrod solid;
 border-left-width: 20px;}

The second rule overrides the width value for the left border assigned
by the first rule, thus replacing thick with 20px, as you can see in
Figure 32.

[image: pbom 0132]
Figure 32. Using the cascade to one’s advantage

You still need to take the usual precautions with shorthand properties:
if you omit a value, the default will be filled in automatically. This
can have unintended effects. Consider the following:

h4 {border-style: dashed solid double;}
h4 {border: medium green;}

Here, we’ve failed to assign a border-style in the second rule, which
means that the default value of none will be used, and no h4
elements will have any border at all.

Borders and Inline Elements

Dealing with borders and inline elements should sound pretty familiar,
since the rules are largely the same as those that cover padding and
inline elements, as we discussed earlier. Still, I’ll briefly touch on
the topic again.

First, no matter how thick you make your borders on inline elements, the
line height of the element won’t change. Let’s set top and bottom
borders on boldfaced text:

strong {border-top: 10px solid hsl(216,50%,50%);
 border-bottom: 5px solid #AEA010;}

Once more, this syntax is allowed in the specification, but it will have
absolutely no effect on the line height. However, since borders are
visible, they’ll be drawn—as you can see for yourself in Figure 33.

[image: pbom 0133]
Figure 33. Borders on inline nonreplaced elements

The borders have to go somewhere. That’s where they went.

Again, all of this is true only for the top and bottom sides of inline
elements; the left and right sides are a different story. If you apply a
left or right border, not only will they be visible, but they’ll
displace the text around them, as you can see in Figure 34:

strong {border-left: 25px double hsl(216,50%,50%); background: silver;}

With borders, just as with padding, the browser’s calculations for
line-breaking are not directly affected by any box properties set for
inline nonreplaced elements. The only effect is that the space taken up
by the borders may shift portions of the line over a bit, which may in
turn change which word is at the end of the line.

[image: pbom 0134]
Figure 34. An inline nonreplaced element with a left border

Note

The way borders are (or aren’t) drawn at the ends of each line
box can be altered with the property box-decoration-break.

With replaced elements such as images, on the other hand, the effects
are very much like those we saw with padding: a border will affect the
height of the lines of text, in addition to shifting text around to the
sides. Thus, assuming the following styles, we get a result like that
seen in Figure 35.

img {border: 1em solid rgb(216,108,54);}

[image: pbom 0135]
Figure 35. Borders on inline replaced elements

Image Borders

The various border styles are nice enough, but are still fairly limited.
What if you want to create a really complicated, visually rich border
around some of your elements? Back in the day, we’d create complex
multirow tables to achieve that sort of effect, but thanks to the image
borders added to CSS in the recent past, there’s almost no limit to the
kinds of borders you can create.

Loading and slicing a border image

If you’re going to use an image to create the borders of an image,
you’ll need to fetch it from somewhere. border-image-source is how you
tell the browser where to look for it.

border-image-source

	Values:

	none | <image>

	Initial value:

	none

	Applies to:

	All elements, except internal table elements when border-collapse is collapse

	Inherited:

	No

	Computed value:

	none, or the image with its URL made absolute

Let’s load an image of a single circle to be used as the border image,
using the following styles. The result is shown in Figure 36.

border: 25px solid;
border-image-source: url(i/circle.png);

[image: pbom 0136]
Figure 36. Defining a border image’s source

There are a number of things to note here. First, without the
border: 25px solid declaration, there would have been no border at
all. Remember, if the value of border-style is none, then the width
of the border is zero. So in order to make a border image appear, you
need to declare a border-style value other than none. It doesn’t
have to be solid. Second, the value of border-width determines the
actual width of the border images. Without a declared value, it will
default to medium, which is in the vicinity of 3 pixels. (Actual value
may vary.)

OK, so we set up a border area 25 pixels wide, and then applied an
image to it. That gave us the same circle in each of the four corners.
But why did it only appear there, and not along the sides? The answer to
that is found in the way border-image-slice is defined.

border-image-slice

	Values:

	[<number> | <percentage>]{1,4} && fill?

	Initial value:

	100%

	Applies to:

	All elements, except internal table elements when border-collapse is collapse

	Inherited:

	No

	Percentages:

	Refer to size of the border image

	Computed value:

	As four values, each a number or percentage, and optionally the fill keyword

What border-image-slice does is set up a set of four slice-lines that
are laid over the image, and where they fall determines how the image
will be sliced up for use in an image border. It takes up to four
values, defining (in order) offsets from the top, right, bottom, and
left edges. Yep, there’s that TRBL pattern again! And value replication
is also in effect here, so one value is used for all four offsets.
Figure 37 shows a small sampling of offset patterns, all based on
percentages.

[image: pbom 0137]
Figure 37. Various slicing patterns

Now let’s take an image that has a 3 x 3 grid of circles, each a different
color, and slice it up for use in an image border. Figure 38 shows a
single copy of this image and the resulting image border:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 33.33%;

[image: pbom 0138]
Figure 38. An all-around image border

Yikes! That’s…interesting. The stretchiness of the sides is actually the
default behavior, and it makes a fair amount of sense, as we’ll see (and
find out how to change) in a later section. Beyond that effect, you can see
in Figure 38 that the slice-lines fall right between the circles, because
the circles are all the same size and so one-third offsets place the
slice-lines right between them. The corner circles go into the corners
of the border, and each side’s circle is stretched out to fill its side.

(Wait, what happened to the gray circle in the middle? you may wonder.
It’s an interesting question! For now, just accept it as one of life’s
little mysteries, albeit a mystery that will be explained later in this
section.)

All right, so why did our first border image example, back at the
beginning of the section, only place images in the corners of the border
area instead of all the way around it? Because there’s an interesting
wrinkle in the way border-image-slice is defined. Here’s how the
relevant bits of the specification read:

…if the sum of the right and left [border-image-slice] widths is equal
to or greater than the width of the image, the images for the top and
bottom edge and the middle part are empty…Analogously for the top and
bottom values.

In other words, any time the slice-lines meet or go past each other, the
corner images are created but the side images are made empty. This is
easiest to visualize with border-image-slice: 50%. In that case, the
image is sliced into four quadrants, one for each corner, with nothing
remaining for the sides. However, any value above 50% has the same
basic result, even though the image isn’t sliced into neat quadrants anymore. Thus, for border-image-slice: 100%—which is the default
value—each corner gets the entire image, and the sides are left empty. A
few examples of this effect are shown in Figure 39.

[image: pbom 0139]
Figure 39. Various patterns that prevent side slices

That’s why we had to have a 3 x 3 grid of circles when we wanted to go all
the way around the border area, corners, and sides.

In addition to percentage offsets, it’s also possible to define the
offsets using a number. Not a length, as you might assume, but a bare
number. In raster images like PNGs or JPEGs, the number corresponds to
pixels in the image on a 1:1 basis. If you have a raster image where you
want to define 25-pixel offsets for the slice-lines, this is how to do
that, as illustrated in Figure 40:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 25;

Yikes again! What happened there is that the raster image is 150 x 150 pixels, so each circle is 50 x 50 pixels. Our offsets, though, were
only 25, as in 25 pixels. So the slice-lines were placed on the image
as shown in Figure 41.

This begins to give an idea of why the default behavior for the side
images is to stretch them. Note how the corners flow into the sides,
visually speaking.

Number offsets don’t scale when changes are made to an image and
its size, whereas percentages do. The interesting thing about number
offsets is that they work just as well on non-raster images, like SVGs,
as they do on rasters. Of course, so do percentages. In general, it’s
probably best to use percentages for your slicing offsets whenever
possible, even if means doing a little math to get exactly the right
percentages.

[image: pbom 0140]
Figure 40. Number slicing

[image: pbom 0141]
Figure 41. Slice-lines at 25 pixels

Now let’s address the curious case of the image’s center. In the
previous examples, there’s a circle at the center of the 3 x 3 grid of
circles, but it disappears when the image is applied to the border. In
the last example, in fact, it wasn’t just the middle circle that was
missing, but the entire center slice. This dropping of the center slice
is the default behavior for image-slicing, but you can override it by
adding a fill keyword to the end of your border-image-slice value.
If we add fill to the previous example, as shown here, we’ll get the
result shown in Figure 42:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 25 fill;

[image: pbom 0142]
Figure 42. Using the fill slice

There’s the center slice, filling up the element’s background area. In
fact, it’s drawn over top of whatever background the element might have,
so you can use it as a substitute for the background, or as an addition
to it.

You may have noticed that all our border areas have been a consistent
width (usually 25px). This doesn’t have to be the case, regardless of
how the border image is actually sliced up. Suppose we take the circles
border image we’ve been using, slice it by thirds as we have, but make
the border widths different. That would have a result like that shown in
Figure 43:

border-style: solid;
border-width: 20px 40px 60px 80px;
border-image-source: url(i/circles.png);
border-image-slice: 50;

Even though the slice-lines are intrinsically set to 50 pixels (via
50), the resulting slices are resized to fit into the border areas
they occupy.

[image: pbom 0143]
Figure 43. Uneven border image widths

Altering the image widths

Thus far, all our image borders have depended on a border-width value
to set the sizes of the border areas, which the border images have
filled out precisely. That is, if the top border side is 25 pixels tall,
the border image that fills it will be 25 pixels tall. In cases where
you want to make the images a different size than the area defined by
border-width, there’s border-image-width.

border-image-width

	Values:

	[<length> | <percentage> | <number> | auto]{1,4}

	Initial value:

	1

	Applies to:

	All elements, except table elements when border-collapse is collapse

	Inherited:

	No

	Percentages:

	Relative to width/height of the entire border image area; that is, the outer edges of the border box

	Computed value:

	Four values: each a percentage, number, auto keyword, or <length> made absolute

	Note:

	Values can never be negative

The basic thing to understand about border-image-width is that it’s
very similar to border-image-slice, except what border-image-width
slices up is the border box itself.

To understand what this means, let’s start with length values. We’ll set
up one-em border widths like so:

border-image-width: 1em;

What that does is push slice-lines one em inward from each of the border
area’s sides, as shown in Figure 44.

[image: pbom 0144]
Figure 44. Placing slice-lines for the border image’s width

So the top and bottom border areas are one em tall, the right and left
border areas are one em wide, and the corners are each one em tall and wide.
Given that, the border images created with border-image-slice are
filled into those border areas in the manner prescribed by
border-image-repeat (which we’ll get to shortly). Thus, the following
styles give the result shown in Figure 45:

border-image-width: 1em;
border-image-slice: 33.3333%;

Note that these areas are sized independently from the value of
border-width. Thus, in Figure 45, we could have had a border-width of
zero and still made the border images show up, by using
border-image-width. This is useful if you want to have a solid
border as a fallback in case the border image doesn’t load, but don’t
want to make it as thick as the image border would be. Something like
this:

border: 2px solid;
border-image-source: url(stars.gif);
border-image-width: 12px;
border-image-slice: 33.3333%;

[image: pbom 0145]
Figure 45. Filling in the border areas

This allows for a 12-pixel star border to be replaced with a 2-pixel
solid border if border images aren’t available. Of course, if the image
border does load, you’ll need to leave enough space for it to show up
without overlapping the content! (By default, that is. We’ll see how to
mitigate this problem in the next section.)

Now that we’ve established how the width slice-lines are placed, the way
percentage values are handled should make sense, as long as you keep in
mind that the offsets are with respect to the overall border box, not
each border side. For example, consider the following declaration,
illustrated in Figure 46:

border-image-width: 33%;

[image: pbom 0146]
Figure 46. Placement of percentage slice-lines

As with length units, the lines are offset from their respective sides
of the border box. The distance they travel is with respect to the
border box. A common mistake is to assume that a percentage
value is with respect to the border area defined by border-width; that
is, given a border-width value of 30px, the result of
border-image-width: 33.333%; will be 10 pixels. But no! It’s
one-third the overall border box along that axis.

One way in which the behavior of border-image-width differs from
border-image-slice is in how it handles situations where the slices
pass each other, such as in this situation:

border-image-width: 75%;

If you recall, for border-image-slice, if the slices passed each
other, then the side areas (top, right, bottom, and/or left) are made
empty. With border-image-width, the values are proportionally reduced
until they don’t. So, given the preceding value of 75%, the browser will
treat that as if it were 50%. Similarly, the following two
declarations will have equivalent results:

border-image-width: 25% 80% 25% 40%;
border-image-width: 25% 66.6667% 25% 33.3333%;

Note how in both declarations, the right offset is twice the left value.
That’s what’s meant by proportionally reducing the values until they
don’t overlap: in other words, until they no longer add up to more than
100%. The same would be done with top and bottom, were they to overlap.

When it comes to number values for border-image-width, things get even
more interesting. If you set border-image-width: 1, then the border
image areas will be determined by the value of border-width. That’s
the default behavior. Thus, the following two declarations will have the
same result:

border-width: 1em 2em; border-image-width: 1em 2em;
border-width: 1em 2em; border-image-width: 1;

You can, of course, increase or reduce the number values in order to get
some multiple of the border area that border-width defines. A few
examples of this can be seen in Figure 47.

In each case, the number has been multipled by the border area’s width
or height, and the resulting value is how far in the offset is placed from
the relevant side. Thus, for an element where border-top-width is 3
pixels, border-image-width: 10 will create a 30-pixel offset from the
top of the element. Change border-image-width to 0.333, and the top
offset will be a lone pixel.

[image: pbom 0147]
Figure 47. Various numeric border image widths

The last value, auto, is interesting in that its resulting values
depend on the state of two other properties. If border-image-slice is
defined, then border-image-width: auto uses the values that result
from border-image-slice. Otherwise, it uses the values that result
from border-width. These two declarations will have the
same result:

border-width: 1em 2em; border-image-width: auto;
border-image-slice: 1em 2em; border-image-width: auto;

This differs from border-image-width: 1 because number values
like 1 always relate to the value of border-width, regardless of
what border-image-slice might say.

Note that you can mix up the value types for border-image-width. The
following are all valid, and would be quite interesting to try out in
live web pages:

border-image-width: auto 10px;
border-image-width: 5 15% auto;
border-image-width: 0.42em 13% 3.14 auto;

Creating a border overhang

Well, now that we can define these great big image slices and widths,
what do we do to keep them from overlapping the content? We could add
lots of padding, but that would leave huge amounts of space if the image
fails to load, or if the browser doesn’t support border images. Handling
such scenarios is what border-image-outset is built to manage.

border-image-outset

	Values:

	<length> | <number>]{1,4} | inherit

	Initial value:

	0

	Applies to:

	All elements, except internal table elements when border-collapse is collapse

	Inherited:

	No

	Percentages:

	N/A

	Computed value:

	Four values, each a number or <length> made absolute

	Note:

	Values can never be negative

Regardless of whether you use a length or a number,
border-image-outset pushes the border image area outward, beyond the
border box, in a manner similar to how slice-lines are offset. The
difference is that here, the offsets are outward, not inward. Just as
with border-image-width, number values for border-image-outset are a
multiple of the width defined by border-width—not
border-image-width.

To see how this could be helpful, imagine a scenario where we want to use
a border image, but have a fallback of a thin solid border if the image
isn’t available. We might start out like this:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;

In this case, there’s half an em of padding; at default browser
settings, that will be about eight pixels. That plus the 2-pixel
solid border make a distance of 10 pixels from the content edge to the
outer border edge. So if the border image is available and rendered, it
will fill not only the border area, but also the padding, bringing it
right up against the content.

We could increase the padding to account for this, but then if the image
doesn’t appear, we’ll have a lot of excess padding between the content
and the thin solid border. Instead, let’s push the border image outward,
like so:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;
border-image-outset: 8px;

This is illustrated in Figure 48, and compared to situation where there’s
no outset and no border image.

[image: pbom 0148]
Figure 48. Creating an image border overhang

In the first case, the image border has been pushed out far enough that
rather than overlapping the padding area, the images actually overlap
the margin area! We can also split the difference so that the image
border is roughly centered on the border area, like this:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;
border-image-outset: 2; /* twice the `border-width` value */

Of course, what you have to watch out for is pulling the image border
too far outward, to the point that it overlaps other content or gets
clipped off by the edges of the browser window (or both).

Altering the repeat pattern

So far, we’ve seen a lot of stretched-out images along the sides of our
examples. The stretching can be very handy in some situations, but a
real eyesore in others. With border-image-repeat, you can change how
those sides are handled.

border-image-repeat

	Values:

	[stretch | repeat | round | space]{1,2}

	Initial value:

	stretch

	Applies to:

	All elements, except internal table elements when border-collapse is collapse

	Inherited:

	No

	Computed value:

	Two keywords, one for each axis

Let’s see these values in action and then discuss each in turn.

We’ve already seen stretch, so the effect is familiar. Each side gets a
single image, stretched to match the height and width of the border side
area the image is filling.

repeat has the image tile until it fills up all the space in its
border side area. The exact arrangement is to center the image in its
side box, and then tile copies of the image outward from that point,
until the border side area is filled. This can lead to some of the
repeated images being clipped at the sides of the border area, as seen
in Figure 49.

[image: pbom 0149]
Figure 49. Various image-repeat patterns

round is a little different. With this value, the browser divides the
length of the border side area by the size of the image being repeated
inside it. It then rounds to the nearest whole number and repeats that
number of images. In addition, it stretches or squashes the images so
that they just touch each other as they repeat.

As an example, suppose the top border side area is 420 pixels wide, and
the image being tiled is 50 pixels wide. 420 divided by 50 is 8.4, so
that’s rounded to 8. Thus, 8 images are tiled. However, each is
stretched to be 52.5 pixels wide (420 ÷ 8 = 52.5). Similarly, if the right
border side area is 280 pixels tall, a 50-pixel-tall image will be tiled
6 times (280 ÷ 50 = 5.6, rounded to 6) and each image will be squashed
to be 46.6667 pixels tall (280 ÷ 6 = 46.6667). If you look closely at
Figure 49, you can see the top and bottom circles are a stretched a bit,
whereas the right and left circles show some squashing.

The last value, space, starts out similar to round, in that the
border side area’s length is divided by the size of the tiled image and
then rounded. The differences are that the resulting number is always
rounded down, and images are not distorted, but instead distributed
evenly throughout the border area.

Thus, given a top border side area 420 pixels wide and a 50-pixel-wide
image to be tiled, there will still be 8 images to repeat (8.4 rounded
down is 8). The images will take up 400 pixels of space, leaving 20
pixels. That 20 pixels is divided by 8, which is 2.5 pixels. Half of that
is put to each side of each image, meaning each image gets 1.25 pixels
of space to either side. That puts 2.5 pixels of space between each
image, and 1.25 pixels of space before the first and after the last
image. Figure 50 shows a few examples of space repeating.

[image: pbom 0150]
Figure 50. A variety of space repetitions

Warning

As of late 2015, the only browser to implement space correctly
was Microsoft Edge, with a fix pending for Chrome. Other browsers not
only didn’t support space, but used different fallback behaviors when
encountering it. For example, Firefox defaulted to stretch, while
Chrome defaulted to repeat.

Shorthand border image

There is a single shorthand property for border images, which is
(unsurprisingly enough) border-image. It’s a little unusual in how
it’s written, but it offers a lot of power without a lot of typing.

border-image

	Values:

	<border-image-source> | | <border-image-slice> [/
<border-image-width> | / <border-image-width>? /
<border-image-outset>]? | | <border-image-repeat> | inherit

	Initial value:

	See individual properties

	Applies to:

	See individual properties

	Inherited:

	No

	Computed value:

	See individual properties

This property has, it must be admitted, a somewhat unusual value syntax.
In order to get all the various properties for slices and widths and
offsets, and be able to tell which was which, the decision was made to
separate them by solidus symbols (/) and require them to be listed in a specific order: slice, then width, then offset. The
image source and repeat values can go anywhere
outside of that three-value chain. Therefore, the following rules are
equivalent:

.example {
 border-image-source: url(eagles.png);
 border-image-slice: 40% 30% 20% fill;
 border-image-width: 10px 7px;
 border-image-outset: 5px;
 border-image-repeat: space;
}
.example {border-image: url(eagles.png) 40% 30% 20% fill / 10px 7px / 5px space;}
.example {border-image: url(eagles.png) space 40% 30% 20% fill / 10px 7px / 5px;}
.example {border-image: space 40% 30% 20% fill / 10px 7px / 5px url(eagles.png);}

The shorthand clearly means less typing, but also less clarity at a
glance.

As is usually the case with shorthand properties, leaving out any of the
individual pieces means that the defaults will be supplied. For example,
if we just supply an image source, the rest of the properties will get
their default values. Thus, the following two declarations will have
exactly the same effect:

border-image: url(orbit.svg);
border-image: url(orbit.svg) stretch 100% / 1 / 0;

Some examples

Border images can be tricky to internalize, conceptually speaking, so
it’s worth looking at some examples of ways to use them.

First, let’s look at how to set up a border with scooped-out corners and
a raised appearance, like a plaque, with a fallback to a simple outset
border of similar colors. We might use something like these styles and a
simple image, which is shown in Figure 51 along with both the final
result and the fallback result:

#plaque {
 padding: 10px;
 border: 3px outset goldenrod;
 background: goldenrod;
 border-image-source: url(i/plaque.png);
 border-image-repeat: stretch;
 border-image-slice: 20 fill;
 border-image-width: 12px;
 border-image-outset: 9px;
}

[image: pbom 01in01]
Figure 51. A simple plaque effect and its older-browser fallback

Notice how the side slices are perfectly set up to be
stretched—everything about them is just repeated strips of color along
the axis of stretching. They could also be repeated or rounded, of
course, if not rounded, but stretching works just fine. And since that’s
the default value, we could have omitted the border-image-repeat
declaration altogether.

Next, let’s try to create something oceanic: an image border that has
waves marching all the way around the border. Since we don’t know how
wide or tall the element will be ahead of time, and we want the waves to
flow from one to another, we’ll use round to take advantage of its
scaling behavior while getting in as many waves as will reasonably fit.
You can see the result in Figure 52, along with the image that’s used to
create the effect:

#oceanic {
 border: 2px solid blue;
 border-image:
 url(waves.png) 50 fill / 20px / 10px round;
}

[image: pbom 01in02]
Figure 52. A wavy border

There is one thing to be wary of here, which is what happens if you add
in an element background. Just to make the situation clear, we’ll add a
red background to this element, with the result shown in Figure 53:

#oceanic {
 background: red;
 border: 2px solid blue;
 border-image:
 url(waves.png) 50 fill / 20px / 10px round;
}

See how the red is visible between the waves? That’s because the wave
image is a PNG with transparent bits, and because of the combination of
image-slice widths and outset, some of the background area is visible
through the transparent parts of the border. This can be a problem,
because there will be cases where you want to use a background color in
addition to an image border—for the fallback case where the image fails
to appear, if nothing else. Generally, this is a problem best addressed
by either not needing a background for the fallback case, or else using
border-image-outset to pull the image out far enough that no part of
the background area is visible.

As you can see, there is a lot of power in border images. Be sure to use
them wisely.

[image: pbom 01in03]
Figure 53. The background area, visible through the image border

Outlines

CSS defines a special sort of element decoration called an outline. In
practice, outlines are often drawn just beyond the borders, though (as we’ll
see) this is not the whole story. As the specification puts it, outlines
differ from borders in three basic ways:

	
Outlines do not take up space.

	
Outlines may be nonrectangular.

	
User agents often render outlines on elements in the :focus state.

To which I’ll add a fourth:

	
Outlines are an all-or-nothing proposition: you can’t style one side
of a border independently from the others.

Let’s start finding out exactly what all that means. First, we’ll run
through the various properties, comparing them to their border-related
counterparts.

Outline Styles

Much as with border-style, you can set a style for your outlines. In
fact, the values will seem very familiar to anyone who’s styled a border
before.

outline-style

	Values:

	auto | none | solid | dotted | dashed | double
| groove | ridge | inset | outset | inherit

	Initial value:

	none

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	As specified

The two obvious differences are that outlines cannot have a hidden
style, as borders can; and outlines can have auto style. This style
allows the user agent to get extra-fancy with the appearance of the
outline, as explained in the CSS specification:

The auto value permits the user agent to render a custom outline
style, typically a style which is either a user interface default for
the platform, or perhaps a style that is richer than can be described in
detail in CSS, e.g. a rounded edge outline with semi-translucent outer
pixels that appears to glow.

Beyond those two differences, outlines have all the same styles that
borders have, as illustrated in Figure 54.

[image: pbom 0151]
Figure 54. Various outline styles

The less obvious difference is that unlike border-style,
outline-style is not a shorthand property. You can’t use it to set a
different outline style for each side of the outline, because outlines
can’t be styled that way. There is no outline-top-style. This is true
for all the rest of the outline properties, with the exception of
outline, which we’ll get to in a bit.

Outline Width

Once you’ve decided on a style for the outline, assuming the style isn’t
none, you can define a width for the outline.

outline-width

	Values:

	<length> | thin | medium | thick | inherit

	Initial value:

	none

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	An absolute length, or 0 if the style of the
outline is none

There’s very little to say about outline width that we didn’t already
say about border width. If the outline style is none, then the
outline’s width is set to 0. thick is wider than medium, which is
wider than thin, but the specification doesn’t define exact widths for
these keywords. Figure 55 shows a few different outline widths.

[image: pbom 0152]
Figure 55. Various outline widths

As before, the real difference here is that outline-width is not a
shorthand property. You can only set one width for the whole outline, and
cannot set different widths for different sides. (The reasons for this
will soon become clear.)

Outline Color

Does your outline have a style and a width? Great! Let’s give it some
color!

outline-color

	Values:

	<color> | invert | inherit

	Initial value:

	invert

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	As specified

This is pretty much the same as border-color, with the caveat that
it’s an all-or-nothing proposition—for example, there’s no
outline-left-color.

The one major difference is the default value, invert. What invert
does is perform a “color conversion” on all pixels within the visible
parts of the outline. This is easier to show than explain, so see Figure 56 for the expected results of this style:

h1 {outline-style: dashed; outline-width: 10px; outline-color: invert;}

[image: pbom 0153]
Figure 56. Color inversion

The advantage to color inversion is that it can make the outline stand
out in a wide variety of situations, regardless of what’s behind it. There is an exception: if you invert the color gray (or
rgb(50%,50%,50%) or hsl(0,0%,50%) or any of their equivalents), you
get exactly the same color back. Thus, outline-color: invert will make
the outline invisible on a gray background. The same will be true for
background colors that are very close to gray.

Warning

As of late 2015, invert had not been implemented in major web
browsers. Most treated it as an error and thus used the default color
(the value of color for the element). Therefore, an admission: I faked
Figure 56 with a specific outline color.

The only outline shorthand

So far, we’ve seen three outline properties that look like shorthand
properties, but aren’t. Time for the one outline property that is a
shorthand: outline.

outline

	Values:

	[<outline-color> || <outline-style> || <outline-width>
] |inherit

	Initial value:

	none

	Applies to:

	All elements

	Inherited:

	No

	Computed value:

	As specified

It probably comes as little surprise that, like border, this is a
convenient way to set the overall style, width, and color of an outline.
Figure 57 illustrates a variety of outlines.

[image: pbom 0154]
Figure 57. Various outlines

Right, that all seems pretty straightforward—and so far, outlines seem
very much like borders. So how are they different?

How They Are Different

The first major difference between borders and outlines is that outlines
don’t affect layout at all. In any way. They’re very purely
presentational.

To understand what this means, consider the following styles,
illustrated in Figure 58:

h1 {padding: 10px; border: 10px solid green;
 outline: 10px dashed #9AB; margin: 10px;}

[image: pbom 0155]
Figure 58. Outline over margin

Looks normal, right? What you can’t see is that the outline is
completely covering up the margin. If we put in a dotted line to show
the margin edges, they’d run right along the outside edge of the
outline. (We’ll deal with margins in the next section.)

This is what’s meant by outlines not affecting layout. Let’s consider
another example, this time with two span elements that are given
outlines. You can see the results in Figure 59:

span {outline: 1em solid rgba(0,128,0,0.5);}
span + span {outline: 0.5em double purple;}

[image: pbom 0156]
Figure 59. Overlapping outlines

The outlines don’t affect the height of the lines, of course, but they
also don’t shove the spans to one side or another. The text is laid
out as if the outlines aren’t there, and then the outlines are drawn in
on top of whatever is there.

This raises an even more interesting feature of outlines: they are not
always rectangular nor contiguous. Consider this outline applied to a
strong element that breaks across two lines, as illustrated in two
different scenarios in Figure 60:

strong {outline: 2px dotted gray;}

[image: pbom 0157]
Figure 60. Discontinuous and nonrectangular outlines

In the first case, there are two complete outline boxes, one for each
fragment of the strong element. In the second case, with the longer
strong element causing the two fragments to be stacked together, the
outline is “fused” into a single polygon that encloses the fragments.
You won’t find a border doing that.

This is why there are no side-specific outline properties like
outline-right-style: if an outline becomes nonrectangular, which
sides are the right sides?

Warning

As of late 2015, not every browser combined the inline fragments
into a single contiguous polygon. In those which did not support this
behavior, each fragment was still a self-contained rectangle, as in the
first example in Figure 60.

Margins

The separation between most normal-flow elements occurs because of
element margins. Setting a margin creates extra “blank space” around
an element. “Blank space” generally refers to an area in which other
elements cannot also exist and in which the parent element’s background
is visible. Figure 61 shows the difference between two
paragraphs without any margins and the same two paragraphs with some
margins.

[image: pbom 0158]
Figure 61. Paragraphs with, and without, margins

The simplest way to set a margin is by using the property margin.

margin

	Values:

	[<length> | <percentage> | auto]{1,4} | inherit

	Initial value:

	Not defined

	Applies to:

	All elements

	Inherited:

	No

	Percentages:

	Refer to the width of the containing block

	Computed value:

	See individual properties

Suppose you want to set a quarter-inch margin on h1 elements, as
illustrated in Figure 62. (A background color has been added so you can
clearly see the edges of the content area.)

h1 {margin: 0.25in; background-color: silver;}

This sets a quarter-inch of blank space on each side of an h1 element.
In Figure 62, dashed lines represent the blank space, but the lines are
purely illustrative and would not actually appear in a web browser.

[image: pbom 0159]
Figure 62. Setting a margin for h1 elements

margin can accept any length of measure, whether in pixels, inches,
millimeters, or ems. However, the default value for margin is
effectively 0 (zero), so if you don’t declare a value, by default, no
margin should appear.

In practice, however, browsers come with preassigned styles for many
elements, and margins are no exception. For example, in CSS-enabled
browsers, margins generate the “blank line” above and below each
paragraph element. Therefore, if you don’t declare margins for the p
element, the browser may apply some margins on its own. Whatever you
declare will override the default styles, of course.

Finally, it’s possible to set a percentage value for margin. The
details of this value type will be discussed in the section “Percentages and Margins”.

Length Values and Margins

As stated before, any length value can be used in setting the margins of
an element. It’s simple enough, for example, to apply a 10-pixel
whitespace around paragraph elements. The following rule gives
paragraphs a silver background, 10 pixels of padding, and a 10-pixel
margin:

p {background-color: silver; padding: 10px; margin: 10px;}

In this case, 10 pixels of space have been added to each side of every
paragraph, just beyond the outer border edge. You can just as easily use
margin to set extra space around an image. Let’s say you want one em
of space surrounding all images:

img {margin: 1em;}

That’s all it takes.

At times, you might desire a different amount of space on each side of
an element. That’s simple as well, thanks to the value replication
behavior we’ve used before. If you want all h1 elements to have a top
margin of 10 pixels, a right margin of 20 pixels, a bottom margin of 15
pixels, and a left margin of 5 pixels, here’s all you need:

h1 {margin: 10px 20px 15px 5px;}

It’s also possible to mix up the types of length value you use. You
aren’t restricted to using a single length type in a given rule, as
shown here:

h2 {margin: 14px 5em 0.1in 3ex;} /* value variety! */

Figure 63 shows you, with a little extra annotation, the results of this
declaration.

[image: pbom 0160]
Figure 63. Mixed-value margins

Percentages and Margins

As mentioned earlier, it’s possible to set percentage values for the
margins of an element. As with padding, percentage margins values are
computed in relation to the width of the parent element’s content area,
so they can change if the parent element’s width changes in some way.
For example, assume the following, which is illustrated in Figure 64:

p {margin: 10%;}

<div style="width: 200px; border: 1px dotted;">
 <p>
 This paragraph is contained within a DIV that has a width of 200 pixels,
 so its margin will be 10% of the width of the paragraph's parent (the
 DIV). Given the declared width of 200 pixels, the margin will be 20
 pixels on all sides.
 </p>
</div>
<div style="width: 100px; border: 1px dotted;">
 <p>
 This paragraph is contained within a DIV with a width of 100 pixels,
 so its margin will still be 10% of the width of the paragraph's
 parent. There will, therefore, be half as much margin on this paragraph
 as that on the first paragraph.
 </p>
</div>

Note that the top and bottom margins are consistent with the right and
left margins; in other words, the percentage of top and bottom margins
is calculated with respect to the element’s width, not its height. We’ve
seen this before, of course—in “Padding”, in case you don’t remember—but
it’s worth reviewing again, just to see how it operates.

[image: pbom 0161]
Figure 64. Parent widths and percentages

Single-Side Margin Properties

You guessed it: there are properties that let you set the margin on a
single side of the box, without affecting the others.

margin-top, margin-right, margin-bottom, margin-left

	Values:

	<length> | <percentage> | auto | inherit

	Initial value:

	0

	Applies to:

	All elements

	Inherited:

	No

	Percentages:

	Refer to the width of the containing block

	Computed value:

	For percentages, as specified; otherwise, the
absolute length

These properties operate as you’d expect. For example, the following two
rules will give the same amount of margin:

h1 {margin: 0 0 0 0.25in;}
h2 {margin-left: 0.25in;}

Margin Collapsing

An interesting and often overlooked aspect of the top and bottom margins
on block boxes is that they collapse. This is the process by which two
(or more) margins that interact collapse to the largest of the
interacting margins.

The canonical example of this is the space between paragraphs.
Generally, that space is set using a rule like this:

p {margin: 1em 0;}

So that sets every paragraph to have top and bottom margins of 1em. If
margins didn’t collapse, then whenever one paragraph followed another,
there would be two ems of space between them. Instead, there’s only one; the two margins collapse together.

To illustrate this a little more clearly, let’s return to the
percentage-margin example, only this time, we’ll add dashed lines to
indicate where the margins fall. This is seen in Figure 65.

[image: pbom 0162]
Figure 65. Collapsing margins

The example shows the separation distance between the
contents of the two paragraphs. It’s 60 pixels, because that’s the
larger of the two margins that are interacting. The 30-pixel top margin
of the second paragraph is collapsed, leaving the first paragraph’s top
margin in charge.

So in a sense, Figure 65 is lying: if you take the CSS specification
strictly at its word, the top margin of the second paragraph is actually
reset to zero. It doesn’t stick into the bottom margin of the first
paragraph because when it collapses, it isn’t there anymore. The end
result is the same, though.

Margin collapsing also explains some oddities that arise when one element
is inside another. Consider the following styles and markup:

header {background: goldenrod;}
h1 {margin: 1em;}

<header>
 <h1>Welcome to ConHugeCo</h1>
</header>

The margin on the h1 will push the edges of the header away from the
content of the h1, right? Well, not entirely. See Figure 66.

What happened? The side margins took effect—we can see that from the
way the text is moved over—but the top and bottom margins are gone!

Only they aren’t gone. They’re just sticking out of the header
element, having interacted with the (zero-width) top margin of the
header element. The magic of dashed lines in Figure 67 show us what’s
happening.

[image: pbom 0163]
Figure 66. Margins collapsing with parents

[image: pbom 0164]
Figure 67. Margins collapsing with parents, revealed

There they are—pushing away any content that might come before or after
the header element, but not pushing away the edges of the header
itself. This is the intended result, even if it’s often not the desired
result. As for why it’s intended, imagine happens if you put a
paragraph in a list item. Without the specified margin-collapsing
behavior, the paragraph’s top margin would shove it downward, where it
would be far out of alignment with the list item’s bullet (or number).

Note

Margin collapsing can be interrupted by factors such as padding
and borders on parent elements. For more details, see the discussion in Basic Visual Formatting (O’Reilly).

Negative Margins

It’s possible to set negative margins for an element. This can cause the
element’s box to stick out of its parent or to overlap other elements.
Consider these rules, which are illustrated in Figure 68:

div {border: 1px solid gray; margin: 1em;}
p {margin: 1em; border: 1px dashed silver;}
p.one {margin: 0 -1em;}
p.two {margin: -1em 0;}

[image: pbom 0165]
Figure 68. Negative margins in action

In the first case, the math works out such that the paragraph’s computed
width plus its right and left margins are exactly equal to the width of
the parent div. So the paragraph ends up two ems wider than the
parent element without actually being “wider” (from a mathematical point
of view). In the second case, the negative top and bottom margins
effectively reduce the computed height of the element and move its top
and bottom outer edges inward, which is how it ends up overlapping the
paragraphs before and after it.

Combining negative and positive margins is actually very useful. For
example, you can make a paragraph “punch out” of a parent element by
being creative with positive and negative margins, or you can create a
Mondrian effect with several overlapping or randomly placed boxes, as
shown in Figure 69:

div {background: hsl(42,80%,80%); border: 1px solid;}
p {margin: 1em;}
p.punch {background: white; margin: 1em -1px 1em 25%;
 border: 1px solid; border-right: none; text-align: center;}
p.mond {background: rgba(5,5,5,0.5); color: white; margin: 1em 3em -3em -3em;}

Thanks to the negative bottom margin for the “mond” paragraph, the
bottom of its parent element is pulled upward, allowing the paragraph to
stick out of the bottom of its parent.

[image: pbom 0166]
Figure 69. Punching out of a parent

Margins and Inline Elements

Margins can also be applied to inline elements. Let’s say you want to
set top and bottom margins on strongly emphasized text:

strong {margin-top: 25px; margin-bottom: 50px;}

This is allowed in the specification, but since you’re applying the
margins to an inline nonreplaced element, and margins are always
transparent, they will have absolutely no effect on the line height. In
effect, they’ll have no effect at all.

As with padding, things change a bit when you apply margins to the left
and right sides of an inline nonreplaced element, as illustrated in
Figure 70:

strong {margin-left: 25px; background: silver;}

[image: pbom 0167]
Figure 70. An inline nonreplaced element with a left margin

Note the extra space between the end of the word just before the inline
nonreplaced element and the edge of the inline element’s background. You
can add that extra space to both ends of the inline element if you want:

strong {margin: 25px; background: silver;}

As expected, Figure 71 shows a little extra space on the right and left
sides of the inline element, and no extra space above or below it.

[image: pbom 0168]
Figure 71. An inline nonreplaced element with 25-pixel side margins

Now, when an inline nonreplaced element stretches across multiple lines,
the situation changes. Figure 72 shows what happens when an inline
nonreplaced element with a margin is displayed across multiple lines:

strong {margin: 25px; background: silver;}

[image: pbom 0169]
Figure 72. An inline nonreplaced element with 25-pixel side margin displayed across two lines of text

The left margin is applied to the beginning of the element and the right
margin to the end of it. Margins are not applied to the right and left
side of each line fragment. Also, you can see that, if not for the
margins, the line may have broken after “text” instead of after
“strongly emphasized.” Margins only affect line-breaking by changing the
point at which the element’s content begins within a line.

Note

The way margins are (or aren’t) applied to the ends of each line
box can be altered with the property box-decoration-break.

The situation gets even more interesting when we apply negative margins
to inline nonreplaced elements. The top and bottom of the element aren’t
affected, and neither are the heights of lines, but the left and right
ends of the element can overlap other content, as depicted in Figure 73:

strong {margin: -25px; background: silver;}

[image: pbom 0170]
Figure 73. An inline nonreplaced element with a negative margin

Replaced inline elements represent yet another story: margins set for
them do affect the height of a line, either increasing or reducing it
depending on the value for the top and bottom margin. The left and right
margins of an inline replaced element act the same as for a nonreplaced
element. Figure 74 shows a series of different effects on layout from
margins set on inline replaced elements.

[image: pbom 0171]
Figure 74. Inline replaced elements with differing margin values

Summary

The ability to apply margins, borders, and padding to any element is one
of the things that sets CSS so far above traditional web markup. In the
past, enclosing a heading in a colored, bordered box meant wrapping the
heading in a table, which is a really bloated and awful way to create so
simple an effect. It is this sort of power that makes CSS so compelling.

About the Author

Eric A. Meyer has been working with the Web since late 1993 and is an internationally recognized expert on the subjects of HTML, CSS, and web standards. A widely read author, he is also the founder of Complex Spiral Consulting, which counts among its clients America Online; Apple Computer, Inc.; Wells Fargo Bank; and Macromedia, which described Eric as “a critical partner in our efforts to transform Macromedia Dreamweaver MX 2004 into a revolutionary tool for CSS-based design.”

Beginning in early 1994, Eric was the visual designer and campus web coordinator for the Case Western Reserve University website, where he also authored a widely acclaimed series of three HTML tutorials and was project coordinator for the online version of the Encyclopedia of Cleveland History and the Dictionary of Cleveland Biography, the first encyclopedia of urban history published fully and freely on the Web.

Author of Eric Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS: The Definitive Guide (O’Reilly), and CSS2.0 Programmer’s Reference (Osborne/McGraw-Hill), as well as numerous articles for the O’Reilly Network, Web Techniques, and Web Review, Eric also created the CSS Browser Compatibility Charts and coordinated the authoring and creation of the W3C’s official CSS Test Suite. He has lectured to a wide variety of organizations, including Los Alamos National Laboratory, the New York Public Library, Cornell University, and the University of Northern Iowa. Eric has also delivered addresses and technical presentations at numerous conferences, among them An Event Apart (which he cofounded), the IW3C2 WWW series, Web Design World, CMP, SXSW, the User Interface conference series, and The Other Dreamweaver Conference.

In his personal time, Eric acts as list chaperone of the highly active css-discuss mailing list, which he cofounded with John Allsopp of Western Civilisation, and which is now supported by evolt.org. Eric lives in Cleveland, Ohio, which is a much nicer city than you’ve been led to believe. For nine years he was the host of “Your Father’s Oldsmobile,” a big-band radio show heard weekly on WRUW 91.1 FM in Cleveland.

You can find more detailed information on Eric’s personal web page.

 Colophon

 The animals on the cover of Padding, Borders, Outlines, and Margins in CSS are salmon (salmonidae), which is a family of fish consisting of many different species. Two of the most common salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and Asia. There are five subspecies of Pacific salmon, with an average weight of 10 to 30 pounds. Pacific salmon are born in the fall in freshwater stream gravel beds, where they incubate through the winter and emerge as inch-long fish. They live for a year or two in streams or lakes and then head downstream to the ocean. There they live for a few years, before heading back upstream to their exact place of birth to spawn and then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America and Europe. There are many subspecies of Atlantic salmon, including the trout and the char. Their average weight is 10 to 20 pounds. The Atlantic salmon family has a life cycle similar to that of its Pacific cousins, and also travels from freshwater gravel beds to the sea. A major difference between the two, however, is that the Atlantic salmon does not die after spawning; it can return to the ocean and then return to the stream to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins. Their diet consists of plankton, insect larvae, shrimp, and smaller fish. Their unusually keen sense of smell is thought to help them navigate from the ocean back to the exact spot of their birth, upstream past many obstacles. Some species of salmon remain landlocked, living their entire lives in freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fertilizer for streambeds. Their numbers have been dwindling over the years, however. Factors in the declining salmon population include habitat destruction, fishing, dams that block spawning paths, acid rain, droughts, floods, and pollution.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/pbom_0157.png

OEBPS/assets/pbom_0104.png

OEBPS/assets/pbom_0163.png

OEBPS/assets/pbom_0138.png
Enim option nonummy at typi habent cavaliers independence andre norton the gold coast. Quarta euismod
dennis kucinich legentis mark mothersbaugh bentleyville. Dolore ii in esse etiam brooklyn glenwillow nobis

delenit shaker heights aliquam eros.

Here’s the image that was used for the border above:

OEBPS/assets/pbom_0107.png

OEBPS/assets/pbom_0115.png
This is a paragraph that contains an inline replaced element—in this case, an image —which has been styled with

padding and a background. This does affect the line heights, as explained in the text.

OEBPS/assets/pbom_0105.png
//\\/\\

right bottom

OEBPS/assets/pbom_0135.png
This is a paragraph that contains an inline replaced element—in this case, an image —which has been

styled with a border. This does affect the line heights, as explained in the text.

OEBPS/assets/pbom_0148.png
A paragraph with a 10-pixel
image border and an 8-pixel

border image outset.

A paragraph with a 10-pixel
image border but no border
image outset.

A paragraph without an
image border, but with the
same styles otherwise.

OEBPS/assets/pbom_0158.png
Cavaliers est sit luptatum. Philip johnson don king,. Omar vizquel molly shannon typi decima odio, claritatem. Qui lake
erie wisi hunting valley ea ut. Odio laoreet michael symon quinta. Brooklyn quarta.

Bob hope velit liber brad daugherty ohio city mentor headlands. Ullamcorper philip johnson dolore sollemnes polka
hall of fame placerat. Adipiscing aliquip.

Cavaliers est sit luptatum. Philip johnson don king,. Omar vizquel molly shannon typi decima odio, claritatem. Qui lake
erie wisi hunting valley ea ut. Odio laoreet michael symon quinta. Brooklyn quarta.

Bob hope velit liber brad daugherty ohio city mentor headlands. Ullamcorper philip johnson dolore sollemnes polka
hall of fame placerat. Adipiscing aliquip.

OEBPS/assets/pbom_0152.png
A thick h1! A medium h1! \A thin h1!

IA thick paragraph! I IA medium paragraph! I |A thin paragraph!

OEBPS/assets/pbom_0127.png
Home leout Contact

OEBPS/assets/pbom_0168.png
This is a paragraph that contains some strongly emphasized text ~ which has been styled with a margin and a
background. This can affect the placement of the line break, as explained in the text.

OEBPS/toc01.html
		Preface

		Conventions Used in This Book

		Safari® Books Online

		How to Contact Us

		1. Padding, Borders, Outlines, and Margins

		Basic Element Boxes

		Width and Height

		Padding

		Replicating Values

		Single-Side Padding

		Percentage Values and Padding

		Padding and Inline Elements

		Padding and Replaced Elements

		Borders

		Borders with Style

		Border Widths

		Border Colors

		Shorthand Border Properties

		Global Borders

		Borders and Inline Elements

		Image Borders

		Outlines

		Outline Styles

		Outline Width

		Outline Color

		How They Are Different

		Margins

		Length Values and Margins

		Percentages and Margins

		Single-Side Margin Properties

		Margin Collapsing

		Negative Margins

		Margins and Inline Elements

		Summary

OEBPS/assets/pbom_0114.png

OEBPS/assets/pbom_0134.png
This is a paragraph that contains some [[Istrongly emphasized text which has been styled using
borders. This [] Jidoes not affect the line heights, as explained in the text, but there are other
effects that need to be taken into account.

OEBPS/assets/pbom_0154.png
outline: medium solid olive;

Poeecccccccccccccccccccocoy
° outline: 0.5em dotted #639; °
lecocccccccccccccccccccocecd

outline: double 4px rgba(0,0,0,0.5);

outline: rgb(216,78,99) groove 8px;

I outline: teal 1mm inset;

Il N b = = .
outline: hs1(117,100%,50%) dashed 1@px;
| | | | | L

OEBPS/assets/pbom_0165.png
>

"

P

g

A normal paragraph. Nothing really exciting about it besides having a one-em margin all the way
around (that's why it doesn't go all the way to the dotted border).

paragraph with a class of one. This element therefore has negative left and right margins, and so will be
ulled out" of its parent element. ITs lack of top and bottom margins may also cause overlap with the
JO WAREPASRERARR RIS NS AHiNG (R ARG DAL ARG e agtive top and bottom margins. This
will cause it to be "pulled upward" and overlap the element before it, and also "pull up" the following
paragraph to overlap this one. Since the following paragraph has a margin, however, the content will not
overlap. The negative bottom margin of this paragraph and the positive top margin of the following
paragraph will cause the following element's top margin to overlap this one. Therefore their border
edges will end up touching.
Another normal paragraph. Nothing really exciting about it besides having a one-em margin all the
way around.

OEBPS/assets/pbom_0132.png
IAn h1 element!

OEBPS/assets/pbom_0121.png
An h1 element!

OEBPS/assets/pbom_0150.png
width: 149px; width: 15@px; width: 153px;

width: 199px; width: 200px;

OEBPS/assets/pbom_01in03.png
W W W W W W W W W W W W W v wv W

) (
) Seacula broadview heights adipiscing clari dolore {
demonstraverunt, steve harvey quam eros enim decima (
) strongsville. Typi vel etiam velit sed littera luptatum lake
) erie. James a. garfield ipsum clay mathews quod consequat {
) lectorum tincidunt nulla tation vero. {
) {
) (

A P e P P e P e e e e am

OEBPS/assets/pbom_0159.png

OEBPS/assets/pbom_0102.png

OEBPS/assets/pbom_0169.png
This is a paragraph that contains some strongly emphasized text which has been styled with a margin and a
background. This can affect the placement of the line break , as explained in the text.

OEBPS/assets/pbom_0139.png
50%

50%

50%

67%

67%

67%

67%

58%

75%

67

OEBPS/assets/pbom_0156.png
This is a paragraph that contai
space between them to keep !

pan elements, side by side. Their outlines overlap, since there’s no

not onelfbut wol

OEBPS/assets/pbom_0131.png
An h1 element!

OEBPS/assets/pbom_0167.png
This is a paragraph that contains some strongly emphasized text which has been styled with left margin and a
background.

OEBPS/assets/cover.png
O'REILLY"

Padding,

Qutlines, and
Margins in CSS

CSS BOX MODEL DETAILS

Meyer

OEBPS/assets/pbom_0130.png
Quarta et est university circle. Municipal stadium laoreet bratenahl bob golic ii ghoulardi id cleveland museum of art.
Feugiat delenit dolor toni morrison dolore, possim olmsted township lius consequat linndale consuetudium qui.
Ex;rci-c;m-digni;sia Tostrud k-en;y-lof-to; s n-1ag-na- do-mmg-sq;irfc’s-ca;tlg in br-ooT(l}Zl }Teight;]e-br-onTan-qes- ilum,
Shaker heights sequitur john d. rockefeller doming et notare nulla west side. Consectetuer minim claritas congue, elit
placerat eric metcalf lorem. Veniam decima george voinovich lobortis. Chrissie hynde nihil sit qui typi processus.
Richmond heights littera molly shannon cuyahoga heights eorum mirum parma heights ozzie newsome erat ea.

Tim conway garfield heights enim molestie, et joel grey dolore non. Don shula vel collision bend, quis mayfield heights
north olmsted. Quam me nobis wes craven. Solon mark price sit brad daugherty middleburg heights mutationem. Jim
brown nobis claritatem iis facilisis berea bowling assum. Ex erat facer parum.

OEBPS/assets/pbom_0143.png
Enim option nonummy at typi habent cavaliers independence andre norton
the gold coast. Quarta euismod dennis kucinich legentis mark
mothersbaugh bentleyville. Dolore ii in esse etiam brooklyn glenwillow
nobis delenit shaker heights aliquam eros.

OEBPS/assets/pbom_0103.png
This paragraph has a border and some padding. The padding keeps the border
away from the text content, which is generally more visually appealing. The
converse is usually true for replaced content like images.

This paragraph has a border and no padding. The lack of padding means the border is
very close to the text content, which is generally not visually appealing. The converse is
usually true for replaced content like images.

OEBPS/assets/pbom_0122.png
A thick h1! A medium h1! | |A thin h1!

|A thin paragraph!

[~ thick paragraph! | |A medium paragraph! |

OEBPS/assets/pbom_01in01.png
Bob hope investigationes.

Volutpat consectetuer
cuyahoga heights shaker
heights.

J20

204

st

Bob hope investigationes.
Volutpat consectetuer
cuyahoga heights shaker
heights.

OEBPS/assets/pbom_0108.png

OEBPS/assets/pbom_0117.png
I border-style: inset border-style: inset

OEBPS/assets/pbom_0126.png
A paragraph!
A paragraph!

OEBPS/assets/pbom_0153.png
An h2 with an inverted outline

OEBPS/assets/pbom_0161.png

OEBPS/assets/pbom_0120.png
Broadview heights brooklyn heights eric metcalf independence, enim duis. Ut eleifend quod tincidunt. Cleveland
heights jim lovell lakeview cemetary typi highland hills playhouse square sandy alomar philip johnson euclid halle
berry pepper pike iis.

Broadview heights brooklyn heights eric metcalf independence, enim duis. Ut eleifend quod tincidunt. Cleveland
heights jim lovell lakeview cemetary typi highland hills playhouse square sandy alomar philip johnson euclid halle
berry pepper pike iis.

OEBPS/assets/pbom_0119.png

OEBPS/assets/pbom_0136.png
Enim option nonummy at typi habent cavaliers independence andre norton the gold coast. Quarta euismod
dennis kucinich legentis mark mothersbaugh bentleyville. Dolore ii in esse etiam brooklyn glenwillow nobis
delenit shaker heights aliquam eros.

Here’s the image that was used for the border above: ‘

OEBPS/assets/pbom_0155.png
It’s an h1 element!

OEBPS/assets/pbom_0118.png

OEBPS/assets/pbom_0124.png
An h1 element!

A paragraph! Exerci non est nam in, the flats legentis decima. Typi carl b. stokes ipsum

putamus litterarum, eros, facit in decima eric metcalf. Dolore patricia heaton nulla insitam
john w. heisman debra winger independence habent.

OEBPS/assets/pbom_0137.png
40%

y16%

39%1

f—
20%

10%
>

40%

29%1

SR
30%

33%

133%

33%[

33%

OEBPS/assets/pbom_0146.png
33%
—— OUteT DOTder edge

i33%

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/assets/pbom_0125.png
An h1 element!

|A paragraph!

OEBPS/assets/pbom_0128.png
An h1 element!

OEBPS/assets/pbom_0112.png
This is a paragraph that contains some | strongly emphasized text ~ which has been styled with padding and a
background. This does not affect the line heights | as explained in the text, but there are other effects that need
to be taken into account.

OEBPS/assets/pbom_0166.png
Cavaliers est sit luptatum. Philip johnson don king,.
Omar vizquel molly shannon typi decima odio,
claritatem. Qui lake erie wisi hunting valley ea ut. Odio
laoreet michael symon quinta. Brooklyn quarta.

Bob hope velit liber brad daugherty ohio city
mentor headlands. Ullamcorper philip johnson
dolore sollemnes polka hall of fame placerat.
Adipiscing aliquip.

Quod te cleveland bowling saepius mayfield village.
Garfield heights parma heights. Dolore quis,. Vero augue
lakewood tempor. Erat lorem congue consuetudium.
Dolor parum placerat option. Zzril quarta. Et facilisis iis
superhost. Quam jim brown. Enim ullamcorper. Est qui
liber emerald necklace. Nobis bedford doming, minim.

nvestigationes dolor brooklyn lius liber sammy kaye. Aliquip
vel cum dynamicus processus dolore screamin’ jay hawkins

sequitur. Modo it demonstraverunt delenit. Pracsentipsum the
flats te. George voinovich amet collision bend insitam, steve
jharvey clay mathews. Ipsum praesent fiant usus nunc etiam.

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/pbom_0170.png
This is a paragraph that contains sostrongly emphasized tesfich has been styled with a margin and a background. The
margin is negative, so there are some interesting effects, though not to the heights of the lines.

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/pbom_0144.png
outer border edge

OEBPS/assets/pbom_0123.png
A very, very thick paragraph!

OEBPS/assets/pbom_0145.png
Enim option nonummy at typi habent cavaliers independence andre norton the gold

coast. Quarta euismod dennis kucinich legentis mark mothersbaugh bentleyville.
Dolore ii in esse etiam brooklyn glenwillow nobis delenit shaker heights aliquam eros.

OEBPS/assets/pbom_0149.png
border-image-repeat:
stretch;

. border-image-repeat: round;

bottom) bottom) bottom) bottom) bott

border-image-repeat: repeat;

| bottom) bottom) bottom) bottom) bottom) bottom bott ‘

‘ border-image-repeat: space; ‘
B9 DI IS

OEBPS/assets/pbom_0164.png

OEBPS/assets/pbom_0111.png
This is a paragraph that contains some | strongly emphasized text which has been styled with padding and a
background. This does not affect the line heights, as explained in the text, but there are other effects that need to
be taken into account.

OEBPS/assets/pbom_0140.png
<Enim option nonummy at typi habent cavaliers independence andre norton the gold coast. Quarta enismod
dennis kucinich legentis mark mothersbaugh bentleyville. Dolore ii in esse etiam brooklyn glenwillow nobis

delenit shaker heights aliquam eros.

Here’s the image that was used for the border above: m

OEBPS/assets/pbom_0129.png
An h1 element!

OEBPS/assets/pbom_0109.png

OEBPS/assets/pbom_0106.png
IDecima consequat dolor delenit dorothy dandridge qui iis ut tracy chapman dolor. Quis john w. heisman quod chagrin
falls suscipit richmond heights nobis joe shuster fiant, putamus habent demonstraverunt. Praesent george steinbrenner
nihil seven hills.

INonummy humanitatis eodem enim ut indians. Joel grey sollemnes nostrud dolor cuyahoga heights eleifend, iis cedar
lpoint diam vel. Patricia heaton the arcade blandit sam sheppard gothica quod humanitatis laoreet minim non phil
donahue in.

[Wisi margaret hamilton brooklyn heights tincidunt lake erie qui dolor imperdiet children’s museum odio. Clay
imathews volutpat feugiat id nibh metroparks zoo consequat parma heights dynamicus university heights south euclid
consectetuer. Claram lectorum lebron james te seacula est decima ii.

OEBPS/assets/pbom_0142.png
Here’s the image that was used for the border above:

OEBPS/assets/pbom_0116.png
border-style: none border-style: hidden

border-style: solid border-style: double

000000 cccccco g I . S .

° border-style: dotted o border-style: dashed I

becoecccccccccccd I S S S .
border-style: groove border-style: ridge

I border-style: inset border-style: outset I

OEBPS/assets/pbom_0162.png
LS |

OEBPS/assets/pbom_0147.png
border-image-slice: 33.333%;
border-image-width: 1;

border-image-slice: 50;
border-image-width: 2;

border-image-slice: 25%;
border-image-width: 0.75; bord”ﬁ!m ﬁgé!W1'

b-d

OEBPS/assets/pbom_0160.png

OEBPS/assets/pbom_0110.png
This is a paragraph that contains some stronglv emphasized text which has been styled with padding and a
background. This does not affect the line heights, as explained in the text, but there are other effects that need to be
taken into account.

OEBPS/assets/pbom_0133.png
I
This is a para i y emphasized text which has been styled using
borders. This does not affect the line heights, as explained 1n the text, but there are other effects

that need to bé taken 1nto account.

OEBPS/assets/pbom_0171.png
This paragraph contains a bunch of images in the text E ,as you can

4

and some are positive E . Since replaced element boxes affect line
height, the margi hese images can alter the amount of space between

see. Each one has different margins . Some of these margins are negative,

baselines of text is is to be expected, and is something authors must

take into consideratio

OEBPS/assets/pbom_0113.png
This is a paragraph that contains some | strongly emphasized text which has been styled with padding and a
background. This does not affect the line heights , as explained in the text, but there are other effects that need to
be taken into account.

OEBPS/assets/pbom_0101.png
border box
padding box

content box

content area

«— padding area —

<— border area —

<— margin area —

OEBPS/assets/pbom_0151.png
outline-style: none

outline-style: solid

outline-style: double

outline-style: groove

outline-style: ridge

outline-style: inset

outline-style: outset

OEBPS/assets/pbom_01in02.png
Seacula broadview heights adipiscing clari dolore
demonstraverunt, steve harvey quam eros enim decima
strongsville. Typi vel etiam velit sed littera luptatum lake
erie. James a. garfield ipsum clay mathews quod consequat
lectorum tincidunt nulla tation vero.

50

L.

|

50

OEBPS/assets/pbom_0141.png

